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I. INTRODUCTION

In recent years several investigators (for example, Refs. 1 and 2)
have developed numerical analyses to investigate the nonlinear effects
of disturbances propagating in a laminar boundary layer with a view towards
a better understanding of boundary layer stability. Such investigations
are extensions of earlier linear stability analyses (for example, Refs.
3-7) and were motivated by the work of Stuart® and others who viewed the
transition process as a series of distinctly observable stages. In the first
stage, the two dimensional Tollmien-Schlichting waves are developed and the
flowfield can be analyzed linearly. However, downstream of this region, non-
linear and three dimensional effects begin to play a more and more dominant
role. Thus a complete physical understanding of the transition phenomenon

must await the development of a nonlinear, three dimensional program capable

of measuring amplification of the waves as they propagate.
Numerical analyses capable of solving the nonlinear system of equations
in the boundary layer (even two dimensional codes) can be extremely useful
for the study of the wave amplification phenomenon. Linear stability theory,
exemplified by eigen solutions of the Orr-Summerfeld equations, cannot directly
incorporate the properties of imposed disturbances. Once disturbances are
introduced, the mechanism of introduction not appearing in these solutions,
it is presumed that they can no longer significantly influence the boundary
layer process, which is, perhaps, a serious shortcoming of linear theory.
Nonlinear analyses (such as Refs. 1 and 2) have investigated the stability
of laminar, incompressible boundary layers and the initial phase of the transi-

tion process (prior to the three dimensional bursting phase) by direct numeri-

cal solution of the partial differential equations which describe such a process.

The boundary layer flow on a flat plate is disturbed by forced time-dependent
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perturbations, and the reaction of the flow, i.e. the temporal and spatial
development of the perturbations, is determined by a numerical solution of
the governing equations. Such programs thus have the ability to analyze the
effects of large scale disturbances (i.e. on the order of .1% of the free
stream velocity) and how they are amplified or damped by the boundary layer,
whereas linear stability programs cannot directly incorporate the effect

of disturbance amplitude into the stability calculation.

While these nonlinear analyses represent a significant advance in the
state of the art, they are restricted to incompressible flow. The effects
of such parameters as Mach number and wall temperature are, of course, of
great significance and a compressible analog to these methods is necessary.

In addition, such programs are unabie to determine directly the effects
of imposed acoustical disturbances. Experiments, for example Refs. 9 and 10,
have indicated that the effects of imposed acoustic perturbations on boundary
layer transition is similar to the effects of freestream turbulence'! in low
speed flow. One would expect waves propagating through the flowfield at the
speed of sound to affect boundary layer transition in a different way than
waves propagating through at the freestream velocity, but the Spangler and
Wells experiments, as well as others, have shown that this is not the case.
The frequency range which affects transition at a given Reynolds number is
the same as when freestream disturbances are introduced, even though there
appears to be a mismatch in propagation velocity (and thus in wave number).

The necessity for a study of the effects of these acoustical distur-
bances was the motivation of the present investigation and it's exten-
sion. The unsteady, compressible,second order boundary layer equations have
been utilized. Terms of the order of the reciprocal of the Reynolds number
and the reciprocal squared have been retained and thus the system is consis-

tent with the Navier Stokes equations. These equations have been solved by an

-




explicit scheme in the high Reynolds number range (where the equations are,
essentially, the boundary layer equations) consistent with the experiments
of Spangler and Wells.

In Section II, the equations of motion and, method of analysis is
developed. In Section III, the results and conclusions of the present in-
vestigation are presented. This work is part of a continuing effort and
additional results, especially with regards to the effects of such param-

eters as Mach number and wall temperature, will be forthcoming.




II. METHOD OF ANALYSIS

A. Equations of Motion

The system of equations have have been utilized are the compressible,
two-dimensional, higher order boundary layer equations (retaining terms of
order 1/Re and 1/Re?). This system is thus, essentially, the compressible

Navier Stokes equations. For unit Prandtl number, the system, for a perfect

gas is;
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In order to study the effect of the propagation of acoustical free-

stream disturbances, the equations have been transformed by a stretched

coordinate system which packs many points into the boundary layer, but
allows for a significant distribution of data in the freestream. The

transformation utilized is:

n=1- exp(-ay/8%) (6)

where &* = 8*/L /REL and Gg(x) is the initial boundary layer displacement
thickness distribution (i.e., the distribution at t = 0). Thus by varying a
one can pack as many points as needed near the surface (note as y > ®,n > 1).

The system of equations in the transformed system is;

- sou (7)
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Equations (7) through (11) are the basic system of equations which have been

numerically solved.

B. Initial and Boundary Conditions

The investigation has centered on a study of the amplification or damping
of acoustical disturbances propagated into a boundary layer. The experiments
of Spangleé and Wells?- who utilized an air-driven, rotating vane sound gener-
ator to create the disturbance without producing any appreciable turbulence,

were used. Both the frequency and intensity of the sound source were varied

experimentally. A low velocity boundary layer channel was run at a unit Reynolds
number of 2.4 x 10°/ft., the channel wall representing the flat plate. Measure-
ments of transition occurred at distances on the order of 10-20 feet, and thus
the length Reynolds numbers of interest are in the 10° to 107 range (see next

section).

In order to model this problem, a set of initial and boundary conditidns
must be established, consistent with the propagation of acoustical disturbances
and at the same time consistent with the set of differential equations utilized.
The initial data, consistent with equations (1) through (5) under steady state
conditions, was originally established utilizing numerical techniques for sub-

sonic boundary layer analysis with normal pressure gradients established by

g




the principal investigator and reported previously, i.e., Ref. 12. Thus the
solution at T = o was the solution of the two dimensional steady boundary
layer equations with normal momentum equation included.

During the past year, consistent with Refs. 1 and 2, the Blasius solu-
tion has been utilized (since for the cases of interest, M_ &% .03) and has
caused no major problems .

At the wall (n = o), for a rigid body, one can neglect the effect of
the wave on temperature, and for an adiabatic wall one can establish the

following relations (if one drops terms of order 1/Re which implies some incon-

sistency for lower Re)

- ® = T
u = Sﬁ =0
tE B e
Boiias e [-Re L
i Sl LR S
e
; {-Re —dt]
2 (enp) = 3 [lenp)lg . it é g
an on

The outer boundary condition (n =+ 1) is established by allowing the wave to
travel as a plane wave with speed of sound c_.

Much effort has been placed on the determination of a proper downstream
boundary condition. It has been found, consistent with the results of
Fasel!, that the boundary condition that yields the least upstream influence,

and is thus superior to other possible ones (including a non reflective condi-

tion) is:

-'— - -
52 ul(xf, yo t) = -, -,
SR S u
X
where a = fL/'lph (f is the frequency and Vph the phase velocity), u' is the
perturbation quantity (u - Go). and if is the downstream boundary. This condi-

tion says that at the downstream boundary, the disturbance has a periodic form.
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At £ = o0, an acoustical disturbance is initiated at X A o so that the

velocity field at x = x* X oand t > o can be written as

u(xxy,9 = a (x*, y) + fi(y) sin (wt)
where ﬁo(i*, y) is the velocity profile at £ = o, w = enfL/U_ (f being the
frequency of the imposed disturbance, in cycles per second) and f;(y) is
the disturbance profile near the leading edge. The form of f,(y) has been
the object of extensive analysis and is described here. The other boundary
conditions at x = x* are consistent with linear theory and are determined
once the form of f,(y) is known.

In order to derive appropriate perturbation profiles for use as the
initial boundary coqdition in our program (at x = X*) the compressible
analogue of the Orr-Sommerfeld equations must be solved. We have at present
considered these equations in the inviscid limit and under the additional
assumption of no temperature gradient in the mean flow.

Thus nondimensionalizing all lengths by the boundary Tayer thickness &
at a suitable station along the plate, all velocities by the free stream speed

of sound, and the pressure by p_cZ, the linearized perturbation system

solved is;
i(ku, - wlp + ikup, + g‘y (V) = 0 (12)
i(ku, - wu +uly o+ ;—';p = 0 (13)
i(kug -0V + 1 9 = (14)
i(kuo - w)T + T(')v = iy 501 ) (kuo - wp (15)
p/. =P/ T/ (16)
pO pO * TO

where bars have been dropped and subscript zero refers to the profile at t = o.

The appropriate boundary conditions are discussed below. As is customary the

normal mode ‘decomposition has been used, and hence we note that p, u, V,p, T
=0a




are functions of y, the distance normal to the plate. The parameters w
and k, the dimensionless frequency and wave number respectively are given by

w = QG/C,k=R6

[+ ]

where Q and k are dimensional quantities. The mean flow quantities
du

)

dn

are the dimensionless velocity and velocity gradient respectively where

U, = M ug and ué = 5.6 (M_

M, is the freestream Mach number, ug is the dimensionless Blasius profile
and the factor 5.6 results from changing the normal coordinate from n to y.

Several simplifications can be made in equations (12 - 16). We have

solved for p, u, v and T in terms of the pressure p and find that p must

satisfy the second order equation

1 2
T TR ICTE S an) |
(0] 0 !

In solving this equation we have considered w as fixed and k as an unknown ;

to be found. (In general, the phase velocity, Vp = w/k and the wave number %

can be complex). For the present we are considering neutral stability and thus

k and V_ are real, however, we plan to extend the calculation to include complex k.
To derive suitable boundary conditions, we assume that at the plate

the perturbation V, in the normal velocity is zero and since

V= i dP
po(ku0 - W) dy i
i
we take g
& d 1
Iy oaty=o0

To derive a boundary condition at the top of the boundary layer or in the free
stream, we write equation (17) in the free stream, i.e. with "6 = 0 and ug = 8
Then the equation has constant coefficients and can be readily solved. The

nature of the solutions, depends of course, on the sign of A= - (M“k - w)? + k2,

-10-
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For the frequency and Mach numbers considered,A is positive and hence
p = C]exp(-/Xy)fs the solution of (17) which vanishes at infinite distances
from the plate. Using this solution to provide boundary conditions for the top

of the boundary layer we have

g:’;(” - A= ATTT K0 andp (1) = 1 (18)
We note that the second condition is a normalization condition.
Equations (12) - (17) now provide an eigenvalue problem for the eigen-
value k. Once k is determined, the profiles at x = x* (i.e. the f,(y))can

be determined and thus the initial and boundary conditions for the calculation

are entirely prescribed.




C. HNumerical Method

The MacCormack predictor corrector scheme has been utilized in the study.

Equations (7) - (10) are four equations of the form

at - Q1 px T2yt 8 g v AT tas o

If these equations are written as
Beji (X, M i) = F(x, M, 1)
ot

e = 59 €z = Bﬁ’ €y = BV» €5 '= EE

the MacCormack method states that
e(X, n, t +At) =e(x, n, t) + V2[F(x, n, ¥) +F(x, n, t- + At)]at
In order to solve for e (x, n, t + At) one first calculates a provisional
solution, .

el (&,n, T+a7) =e(® n, ©) + FP(%, n, ©) &t
(+)

where F refers to evaluation by non-centered differences, using values

at x-+ AX, n +An. x, and N, e. g.
of = f(i + AE: N, E) < f(;, Ny E)
X -
(1) r: G PR
then one can use e' / to evaluate the term F'"/( x, n, £ + At) using non-

centered differences based on X - AX, n - An, X, N3 e.g.,

af

# . )%, ot o+ aB) - VG- A% 0 E o+ aB)

AX
Thus one can solve for e (x, n, t + At) from the system,

e(,m T + aE)=12e(% n ) +el) (K n T + af)

+ F\(')(i, ns t 4+ AE) At)

«12-
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Equations (7) - (10), the full unsteady compressible Navier Stokes sys-
tem are a complex set of elliptic differential equations to numerically
integrate. No other nonlinear analysis, that we are aware of, has attempted .
to solve the compressible system for the present ;pplication (both Fasel and
Murdock solve the incompressible problem). The explicit MacCormack scheme
_was seen as a simpler method for the solution of this system as opposed to
an implicit (or ADI) method.

The problem with utilizing an explicit scheme for such calculations
is manifested in the problem of the time step which can be utilized in order
to insure a stable solution. Since Ay << Ax in the boundary layer, the time
step to satisfy the C.F.L. condition is such that At < Ay/c, which is ex-

tremely small,and in order to insure on the order of ten time periods fcr

the freauencies of interest,on the order of 105 time steps would be required.
We have noticed though that for the problems of interest (the modeling of

the experiments of Ref. @) the local Reynolds numbers of interest are

greater than 10° and thus the leading terms are the parabolic system (i.e., the

first order boundary layer equations). The parabolic system has a much less

stringent time size criteria (like At < Ay?/2v).

For the grid sizes used in the present investigation, At ~ M, Ax sat-
isfies the parabolic time step criteria (At < Ay2/2). Over .the time scale
of interest (on the order of ten perturbation periods) the relaxation of the

C.F.L. criteria is manifested not in a gross instability (because of the very

high Reynolds numbers) but as a drift in the solution. This was noticed by
imposing a zero perturbation field at the station x = x* (i.e., fi(y) = 0)

and tracking the perturbation solution (u - u Blasjus): The program was thus
modified to circumvent this problem in the following manner. At any time step,
the equations are solved under two sets of conditions, first for the flow
without external disturbance (1.e., fi(y) = o) and then for the flow with dis-

turbance. The solution of every point at each time step is then taken as

-13-




the difference between the two solutions. Thus it is felt that any errors

due to numerics have been suppressed. The time traces which will be pre-

lations at each position in the flowfield are due only to the disturbance
imposed and are not numerical in nature. At lower Reynolds numbers or for
times greater than those of the present calculations the error introduced
by not satisfying the C.F.L. will grow and an instability will undoubtedly
occur, necessitating one to resort to time splitting (or some other such
technique). During the coming year, the program will be modified towards

this end.

sented in the next section exhibit no drift and, thus, we feel that the oscil-



IV. THE PRESENT INVESTIGATION AND RESULTS TO DATE

One of the tasks that was pursued this year was
an attempt to interpret the results of experimental investigations of
large scale (.1% to 1% of freestream) perturbations on boundary layer
stability. The experimental results of Klebanoff and Tidstrom * for
boundary layer transition induced by a two dimensional roughness element
were examined in detail towards this end.

Figure 1 (reproduced from Reference 14) presents the longtitudinal
velocity fluctuations downstream of the roughness element. In the top
figure, the fluctuations directly downstream of the element (located at
X=X = 2 ft) for a unit Reynolds number of 1.16 x 10%/ft.are plotted as
a function of frequency. At the end of the recovery zone ( x - Xg X 4.5 in)
amplification in the Tollmien Schlichting range has occurred. In the lower
figure the transverse profiles, for a range of unit Reynolds numbers are
presented. At larger unit Reynolds numbers, transition occurred in the
recovery zone and the analysis presented below is no longer pertinenff
For the unit Reynolds number 1.16 x 105/ft the boundary layer profile became
highly inflected (and more unstable) downstream of the element until
X = X = 4.5 in where the profile returns to a Blasius representation, as
is shown in Figure 2 taken from Reference 14. For this case, transition

occurs at x - X = 19 in.

Thus for a length of approximately two feet, a Blasius like flowfield is under

the influence of a large perturbation (U'/U, > .1% at x - Xy = 4.5 in) initial

profile. This initial profile is shown by the triangles in (b) of the lower

figure of Figure 1. This profile corresponds to a linear spatial stability

profile for 50 cycles/sec (the dominant mode for the case) but for a somewhat

higher Reynolds number (the roughness element has, of course, amplified the

-15-
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the boundary layer response at this station). Therefore, downstream of

X =X = 4.5 in, the boundary layer is acting like a typical flat plate
boundary layer under the influence of a large initial disturbance profile.
We will attempt to show similarities between this flowfield (or the forced
response to other larger scale perturbations) and the response to acoustical
disturbances, by an examination of the results of our computer code.

For the computation of the acoustic response, one must first solve the
linear acoustic stability problem (at x = Xx*) as described in the previous
section. Suchb: analyses have been performed. An eigenvalue search indicates
that for a given frequency, the wave numbers corresponding to the eigen solu-
tions occur at propagation velocities on the order of the freestream velocity
(actually two to three times larger). Thus the results of Refs. 5 and 6 are
correct, even for an acoustical disturbance, in the linear range.

The cbmputer program for the solutions of equations (7) - (10) has been
run for certain cases corresponding to the Reynolds number and frequency
range of the Spangler and Wells experiments. Figure 3 presents the results
of three such computations for the forced response of the boundary
layer to acoustic waves of different frequencies (using linear stability
theory at x* = .025). For these cases the values of U'R.M.S. taken was
.3% of the freestream.

Linear stability theory would predict that for the length Reynolds number
of interest for the Spangler and Wells experiments (¥ 3 x 10%at x = 12 ft)

a frequency of 27 cycles/sec is within the unstable region, whereas at

150 cycles/sec the flow is stable. This factor is evident in Figure 3. The
43 cycles/sec case exhibits neither amplification or damping (and thus appears
neutrally stable) a factor which does not agree with the experimental results
which showearly transition at 43 cycles. It may be possible that if the

computation were carried further in time some amplification would exist.

«18-
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Figures 4 and 5 present the temporal history, for the 27 cycle/sec case
for U'R.M.S. = .3% of freestream at different stations downstream of the
leading edge at two different transverse stations. As one moves significantly
downstream (i.e., to x = 16 ft) the level of amplification decreases (its maxi-
mum is at x = 8 ft, corresponding to an ReL = 1.9 x 10%). Such results are in
line with previous results, i.e., the amplification curves of Fasel! where the
amplification increases as one passes into the instability region and decreases
as the neutral stability curve is again crossed.

An illustration of severe damping is exhibited in Figure 6, which shows
how a large perturbation is damped when the frequency is well outside of
stability theory. The exceptionally high value of disturbance is almost
completely damped at x = 6 ft.

Much.has been said about the effect of acoustics on transition, the
application of linear stability theory with the mismatch of propagation velo-
cities between turbulence and acoustic waves,\and whether or not Tollmien
Schlichting waves are excited under the influence of sound waves. Indeed, the
frequency range of the experiments is in line with stability theory. An inves-

tigation was initiated to determine what the propagation speed inside the

boundary layer was. In all cases, while the disturbances were propagating with
the speed of sound along the freestream, the waves within the boundary layer
were propagating at a speed of the order of the freestream speed, and thus

indeed, the waves are the classical Tollmien Schlichting waves. Such a

result is presented in Figure 7. This result is in agreement with the recent

experiments reported in Ref. 10.

What is essentially occurring is that the wave propagating along the outer

edge has little effect on the boundary layer development. Instead, the major
effect is the profile at the leading edge, and thus, the effect of *he acoustic

wave is only to set up the initial disturbance field (i.e., at x = x*). Since

«20-
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we have found that the profiles of References 5 and 6 are representative of
the acoustical disturbance profile near the leading edge, the effect of
acoustics on transition is, indeed, similar to the effect of other large
(or small) perturbations such as the roughness element effects described
previously.

In order to test this result, a series of runs were made to compare the
results of the present code to those of other investigations. Figures 8 and 9
illustrate how the results of the present analysis compare with the results of
Ref. 2. Even though at the outer boundary, waves are propagatingat a speed one
to two orders of magnitude greater than the freestream velocity, the results
of the present investigation with respect to boundary layer response are in
good agreement with the results of Ref. 2.

Figure 10 illustrates a test case run to see how the method compares
with linear stability theory. For the case Uo/y = .6 x 103/ft and f = 25 cps
(with L = 12 ft) linear stability theory predi;ts that the Reynolds number
based on displacement thickness for neutral stability is approximately 1125.
For Re* < 1125 waves are damped, for Re* > 1125 waves are amplified. The
results of the present calculation indicate this to be the case,again confirm-
ing both the utility of the method and the fact that the response of a boundary
layer to acoustic vibrations is similar to the response to other disturbance
fields.

A remark is necessary with respect to the utility of the present analysis
with respect to the problem of transition. There is much question as to the
length of the three dimensional region prior to transition. Indeed, if three-
dimensional effects predominate over a long distance prior to transition, two
dimensional programs will be unable to predict transition accurately. Such
a program though, can be of value with respect to determining basic flow

structure in regions prior to the onset of transition, as has been demonstrated

here.
-25-
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It is felt that the results achieved to date provide a fundamental
understanding with respect to boundary layer response to acoustical dis-
turbances. It seems necessary at this time that the numerical analysis
and computer code be modified with respect to the marching step utilized
in order to allow the program to have general applicability (for example,
to allow the program to be utilized at lower Reynolds numbers). Therefore,
in the coming year, the full, compressible, unsteady Navier Stokes equations
will be reprogrammed and solved by an explicit MacCormack scheme with time
splitting’®. Thus the small time scale in the normal direction (Aty'<Ay/c)
can be properly accounted for. There are advantages to utilizing an explicit
scheme for the complex system to be solved (as opposed to a fully implicit
scheme or an A.D.I.). When solving the full compressible Navier Stokes
equations, all derivatives in x and y are immediately computed and thus
the solution of the full system is no more complex, in principle, than the
solution of the boundary layer system. In addition, whereas an implicit
scheme allows one to utilize a bigger time step from a stability viewpoint
one is still bound by the small time step criterion from the viewpoint of
accuracy.

Once the program has been changed to allow for general applicability,
the program will be extended so that a wide range of parameters can be
varied. The effects of Mach number, type of disturbance, wall temperature,
wall suction or injection, and wall compliance will be studied after the

program has been properly modified.
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