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I. INTRODUCTION

In recent years several investigators (for example, Ref s. 1 and 2)

have developed numerica l analyses to investigate the nonlinear effects

of disturbances propagating in a laminar boundary layer with a view towards

a better understanding of boundary layer stability. Such investigations

are extensions of earlier linear stability analyses (for example, Refs.

3-7) and were motivated by the work of StuartB and others who viewed the

transition process as a series of distinctly observable stages. In the first

stage, the two dimensional Tol lmien-Schlichting waves are developed and the

flowfield can be analyzed linearly. However, downstream of this region , non-

linear and three dimensional effects begin to play a more and more dominant

role. Thus a complete physi cal understanding of the transition phenomenon

must await the development of a nonlinear , three dimensional program capabli

of measuring amplification of the waves as tliey propagate.

Numerical analyses capable of solving the nonlinear system of equations

in the boundary layer (even two dimensional codes) can be extremely useful

for the study of the wave amplification phenomenon. Linear stability theory,

exemplified by eigen solutions of the Orr-Suninerfeld equations, cannot directly

incorporate the properties of imposed disturbances. Once disturbances are

introduced , the mechanism of introduction not appearing In these solutions,

it is presumed that they can no longer significantly influence the boundary

layer process, which is , perhaps, a serious shortcoming of linear theory.

Nonl inear analyses (such as Refs. 1 and 2) have investigated the stability

of 1~ u inar , incompressible boundary layers and the Initial phase of the transi-

tion process (pr ior to the three dimensional bursting phase) by direct rnanerl-

cal solution of the partial differential equations which describe such a process.

The boundary layer flow on a flat plate is disturbed by forced time-dependent
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perturbations , and the reaction of the flow , i.e. the temporal and spatial

development of the perturbations, is determined by a numer ical solution of

the govern ing equations. Such programs thus have the ability to analyze the

effects of large scale disturbances (i.e. on the order of .1% of the free

stream velocity ) and how they are amplified or damped by the boundary layer,

whereas linear stability programs cannot directly incorporate the effect

of disturbance amplitude into the stability calculation.

While these nonlinear analyses represent a significant advance in the

state of the art, they are restricted to incompressible flow. The effects

of such parameters as Mach number and wal l  temperature are , of course , of

great significance and a compressible analog to these method s is necessar i .

In additi on , such programs are unable to determi le directly the effects

of imposed acoustical disturbances . Experiments , for example Refs . 9 and 10,

have indicated that the effects of imposed acoustic perturbations on boundary

layer transition is similar to the effects of freestream turbu lence1’ in low

speed flow. One would expect waves propagating through the flowfield at the

speed of sound to affect boundary layer transition in a different way than

waves propagating through at the freestream velocity , but the Spangler and

Wells experiments , as well as others , have shown that this is not the case.

The frequency range which affects transition at a given Reynolds number is

the same as when freestream disturbances are introduced , even though there

appears to be a mismatch in propagation velocity (and thus in wave number).

The necessity for a study of the effects of these acoustical distur-

bances was the motivation of the present investigation and it ’ s ex ten-

sion. The unsteady , compressible,second order boundary layer equations have

been utilized. Terms of the order of the reciprocal of the Reynolds number

and the reciprocal squared have been retained and thus the system is consis-.

tent with the Navier Stokes equations. These equations have been solved by an

-2- 



expli cit scheme in the high Reynolds num ber range (where the equations are,

essentially, the boundary layer equations ) consistent with the experiments

of Spang ler and Wells.

In Secti on II , the equations of motion and , method of analysis is

developed. In Section III , the results and conclusions of the present in-

vesti gation are presented. This work is part of a continuing effort and

additional results , especially with regards to the effects of such param-

eters as Mach num ber and wal l temperature, will be forthcoming.

-3-
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II. METHOD OF ANALYSIS

A. Equations of Motion

The system of equations have have been utilized are the compressible,

two-dimensional , higher order boundary layer equations (retaining terms of

order 1/Re and 1/Re2). This system is thus , essentially , the compressible

Nav ier Stokes equations. For unit Prandtl number , the system, for a perfect

gas is; -
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In order to study the effect of the propagation of acoustical free-

stream disturbances , the equations have been transformed by a stretched

coordinate system which packs many points into the boundary l ayer, but

allow s for a significant distribution of data in the freestream. The

transformation utilized is:

T) = 1 - exp(_ cjS~/~*) 
(6)

where ~ = iS~/L 
~
‘1
~ L and 6~(x) is the initial boundary layer displacement

thickness distribution (i.e., the distribution at E = 0). Thus by varying a

one can pack as many points as needed near the surface (note as + 
~ ,r1 

÷ 1).

The system of equations in the transformed system is;
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Equations (7) through (11) are the basic system of equations which have been

numerically sol ved.

B. Initial and Boundary Conditions

The investigation has centered on a study of the amplification or damping

of acoustical disturbances propagated into a boundary layer. The experiments

of Spangl er and Wells9 ’ who utilized an air-driven , rotating vane sound gener-

ator to create the disturbance without producing any appreciable turbulence,

were used. Both the frequency and intensity of the sound source were varied

experimentally. A low velocity boundary layer channel was run at a unit Reynolds

number of 2.4 x 105/ft., the channel wall representing the flat plate. Measure-

ments of transition occurred at distances on the order of 10—20 feet, and thus

the length Reynolds numbers of interest are in the 106 to IO~ range (see next

section).

In order to model this problem, a set of initi al and boundary conditions

mus t be estab l i shed, consistent with the propagation of acoustical disturbances

and at the same time consistent with the set of differential equations utilized.

The initial data, consistent wi th equations (1) through (5) under steady state

conditions , was originally established utilizing numerical techniques for sub-

sonic boundary l ayer analysis with normal pressure gradients established by

-7-
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the principal investigator and reported previously, i.e., Ref. 12. Thus the

solution at E = o was the soluti on of the two dimensional steady boundary

layer equations wi th normal momentum equation included.

During the past year , consistent with Refs. 1 and 2, the Blasius solu-

tion has been utilized (since for the cases of interest , M0,~ .03) and has

caused no major prob lems .

At the wall (ri o), for a rigid body, one can neglect the effect of

the wave on temperature, and for an adiabatic wall one can establish the

fol l owing relations (if one drops terms of order 1/Re which implies some incon-

sistency for lower Re)

n = O ( ~~>~~*)
= 

= = 0

= ~~[(~n~)]~ = 0 
exp - eL I =

(-Re ~
a ~ [(a. ~) 1- exp L I Uri p 

~~ 

-
=

The outer boundary condition (n s 1) is established by allowi ng the wave to

travel as a plane wave with speed of sound c~,,.

Much effort has been placed on the determination of a proper downstream

boundary condition. It has been found , consistent with the results of

Fasel’ , that the boundary condition that yields the least upstream influence ,

and is thus superior to other possible ones (including a non reflective condi-

tion ) is:

~2_~i(~~~~~~ ,~~~) _ 2 1
~~

where & = fL/’t ph (f is the frequency and Vph the phase velocity), ~i ’ is the

perturbation quantity (~ - ~
), and Xf is the downstream boundary. This condi-

tion says that at the downstream boundary, the disturbance has a periodic form. 



- -  _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

At ~t = o, an acoustical disturbance is initiated at ~ o so that the

veloc i ty field at x = x~ % o an d ~ > o can be written as

= G (i*, ~
) + f,(~) si n (at)

where ~~~~ ,~) is the velocity profile at ~ = o, 
= 2wfL/U~ (f being the

frequency of the imposed disturban ce, in cycles per second) and f,(~) is

the disturbance profile near the leading edge. The form of f1L~) has been

the object of extensive analysis and is described here. The other boundary

conditions at x = x~ are consistent wi th linear theory and are determined

once the form of f,() is known .

In order to derive appropriate perturbation profiles for use as the

initial boundary condition in our program (at i = ~*) the compressible

analogue of the Orr-Saiimerfeld equations must be solved . We have at present

considered these equations in the inviscid limit and under the additional

assumption of no temperature gradient in the mean flow.

Thus nondimensionalizing all lengths by the boundary layer thickness ~

at a suitable station along the plate , all velocities by the free stream speed

of sou nd , and the pressure by ~~~~ the linearized perturbation system

solved is;

i(ku 0 - ~i)p + i kup 0 + 
~~~ 

(p0V) 
= 0 (12)

i(k u0 
- w)u + U, V + ~-!~ p = o (13)

i (ku0 - w)V + -~- = 0 (14)

i(ku - w)T + T’V = i(y — 1 ) (ku - w)p (15)• 0 0 0
0

P/ = P/ ~ + 
T/T (16)

where bars have been dropped and subscript zero refers to the profile at t = o.

The appropriate boundary conditions are discussed below. As is customary the

normal mode decomposition has been used , and hence we note that p, u,.V,p , I
-9-
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r

are functions of y, the distance normal to the plate. The parameters w

and k, the dimensionless frequency and wave number respectively are given by

= ~6/~~’ k 
=

where ~ and ~ are dimensional quantities . The medn flow quantities

u0 M u 8 and u~ = 5.6 (M~,,~~!)

are the dimensionless velocity and velocity gradient respectively where

M is the freestream Mach number, UB is the dimensionless Blasius profile

and the factor 5.6 results from changing the normal coordinate from n to y.

Several simplification s can be made in equations (12 - 16). We have

solved for p. u, v and T in terms of the pressure p and find that p must

satisfy the second order equation

p
II _~~~~~~~.Q p

I + [ (1
~0JL ~~~

) . k 2 ] p o (17)

In solving this equation we have considered w as fixed and k as an unknown

to be found. (In general , the phase velocity , V~ 
= w/k and the wave number

can be complex). For the present we are consideri ng neutra l stability and thus

k and V
P 
are rea l , however , we plan to extend the calculation to include complex k.

To derive suitable boundary conditions , we assume that at the plate

the perturbation V , in the normal velocity is zero and since

- 
i dPV p0(ku0 - ui) ~J~T

we take

= o a t y = o .

To derive a boundary condition at the top of the boundary layer or in the free

• stream we write equation (17) in the free stream , i.e. with u~ 
= o and UB 

= 1.

Then the equation has constant coefficients and can be readi ly solved. The

nature of the solutions , depends of course, on the sign of A= - (M,,~k - w)2 + k2.

-10-
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For the frequency and Mach numbers considered,X is positive and hence

P = C1 exp(-IXy)is the solution of (17) which vanishes at Infinite distances

from the plate. Using this solution to provide boundary conditions for the top

of the boundary layer we have

p
~
(1) 

= -~~~ -A~~-(M~ k - w )z  and~~(l) = 1 (18)

We note that the second condition is a normal ization condition.

Equations (12) - (17) now provide an eigenvalue problem for the eigen—

value k. Once k is determined, the profiles at x = ~~~ (i.e. the fj(y))can
be determined and thus the initial and boundary conditions for the calculation

are entirely prescribed.



C. Humerical Method

The MacCormack predictor corrector scheme has been utilized in the study.

Equations (7) - (10) are four equations of the form

a af a a2 h  a21
~~ = a 1~~ - + a 2 a + a 3 +

If these equations are written as

Be~j  (~
, fl~ E) = F(~, fl, t)

at

e1 = 
~~, e2 - = 

~~~~, e3 = ~, e~ - 

= pE

the MacCormack method states that

e(~, T~, ~E + ~t) = e(~, ri, E) + l/2[F(~, r~, E) + F(~ , r~, t - + ~t)]~E
In order to solve for e (

~
, n, t + ~

) one first calculates a provisional
solution, 

-

~~~~~~~ t+A ~) = e(~, ii, t) + ~~~~~ n, ~
) ti~E

where F~
’
~ refers to evaluation by non-centered differences, using values

at i-3 ~i, n +‘&. ~~, and i~, e. g.

= 
f(~ + ~?, n t) - f(,~~ n, t)

ax
then one can use e(1) to evaluate the term F~~~( i~, n, ~ + ~ ) using non-
centered differences based on - A~, n — tn, ~, i~; e.g.,

= f~~
)(j, ,~ i tt ) - f~~)(~ - ,~ ~ + a)~

Thus one can solve for e (~
, Ti, ~ + tt ) from the system,

e.(~, q, E + A~) = l/2[e (~
, r~, t ) + e 

( 1)  

~~~ ~~~ ~ + ~
)

+ ~~~~~~~ •r~, t + tE) tE)

— 12—
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Equations (7) - (10) ,  the full unsteady compressible Navier Stokes sys-

tem are a complex set of elliptic differential equations to numerically

integrate. No other nonlinear analysis, that we are aware of, has attempted

to solve the compressible system for the present application (both Fasel and

Murdock solve the incompressible problem). The explicit MacCormack scheme

was seen as a simpler method for the solution of this system as opposed to

an implicit (or ADI) method.

The probl em with utilizing an explicit scheme for such calculations

is manifested in the problem of the time step which can be utilized in order

to insure a stable solution. Since 4y << tx in the boundary layer, the time

step to satisfy the C.F.L. condition is such that tt < Lty/c, which is ex-

tremely sma l l ,and in order to insure on the order of ten time periods fc~
the frequencies of interest,on the or der of lO~ t ime steps would be requi red.

We have noticed though that for the problems of interest (the modeling of

the experiments of Ref. 9) the local Reynolds numbers of Interest are

greater than 106 and thus the leading terms are the parabolic system (I.e., the

first order boundary layer equations). The parabolic system has a much less

stringent time size criteria (like tt < Ay2/2v).

For the grid sizes used in the present investigation, tE ‘
~~ P’t~ ti sat-

1~ftes the parabolic time step criteria (t~ < A?/2). Over .the time scale

of Interest (on the order of ten perturbation periods) the relaxation of the

C.F.L. criteria is manifested not in a gross instability (because of the very

high Reynolds numbers) but as a drift in the solution. This was noticed by

imposing a zero perturbation field at the station i = i~ (I.e., fi (y) 
= o)

and tracking the perturbation solution (~i - ~i Blastus~ 
The program was thus

modified to circumvent this problem in the following manner. At any time step,

the equations are solved under two sets of conditions, first for the flow

without external disturbance (I.e., f~(y) o) and then for the flow wtth dis-

turbance. The solution of every point at each t1 step Is then taken as

-13- 
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the difference between the two solutions. Thus it is felt that any errors

due to numerics have been suppressed. The time traces which will be pre-

sented in the next section exhibi t no drift and , thus , we feel that the oscil-

lations at each position in the flowfield are due only to the disturbance

imposed and are not numeri cal in nature. At lower Reynolds numbers or for

times greater than those of the presen t ca l cula ti ons the error introduce d

by not satisfying the C.F.L. will grow and an instability will undoubtedly

occur , necessitat ng one to resort to time splitting (or some other such

technique). During the coming year, the program will be modified towards

thi s end.

-14-
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IV. THE PRESENT INVE STIGATION AND RESULTS TO DATE

One of the tasks that was pursued this year was

an attempt to interpret the results of experimental i nvestigations of

large scale (.1% to 1% of freestream) perturbations on boundary layer

stability . The experimental results of Klebanoff and Tidstrom ~ for

boundary layer transition induced by a two dimensional roughness element

were exami ned in detail towards this end.

Figure 1 (reproduced from Reference 14) presents the longtitudina l

velocity fluctuations downstream of the roughness element. In the top

figure, the fluctuations directly downstream of the element (located • at

x = xk = 2 ft) for a unit Reynolds number of 1.16 x 105/ft are plotted as

a function of frequency. At the end of the recovery zone C x - Xk ~ 4.5 in)

amplification in the Tollmi~n Schl ichti ng range has occurred. In the lower

figure the transverse profiles , for a range of unit Reynolds numbers are

presented. At larger unit Reynolds numbers, transition occurred in the

recovery zone and the analys is presented bel ow is no longer pertinent.

For the unit Reynolds number 1.16 x l05/ft the boundary layer profile became

highly inflected (and more unstable) downstream of the element until

x - Xk 
= 4.5 in where the profile returns to a Blasius representation, as

is shown in Figure 2 taken from Reference 14. For this case, transition

occurs at x - Xk 19 in.

Thus for a length of approx imately two feet, a Blasius like fIowfield is under

the influence of a large perturbation (W/U , > .1% at x - X
k 

= 4.5 in) initial

profile. This initial profile is shown by the triangles in (b) of the lower

figure of Figure 1. This profile corresponds to a linear spatial stability

profile for 50 cycles/sec (the dominant mode for the case) but for a somewhat

higher Reynolds number (the roughness element has , of course, amplified the

l5
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the boundary layer response at this station). Therefore, downstream of

x - X k 
= 4.5 in , the boundary layer is acting like a typical flat plate

boundary l ayer under the infl uence of a large initial disturbance profile.

We will attempt to show similarities between this flowfield (or the forced

response to other larger scale perturbations) and the response to acoustical

disturbances , by an exami nation of the resul ts of our computer code.

For the computation of the acoustic response, one must first sol ve the

linear acoustic stability problem (at ~ = ~*) as described in the previous

section. S.u.c~b - analyses have been performed. An eigenvalue search ind i cates

that for a given frequency, the wave numbers corresponding to the eigen solu-

tions occur at propagation velocities on the order of the freestream velocity

(actually two to three times larger). Thus the results of Refs. 5 and 6 are

correc t, even for an acoustical disturbance , in the linear range.

The computer program for the solutions of equations (7) - (10) kas been

run for certain cases corresponding to the Reynolds number and frequency

range of the Spangler and Wells experiments. Figure 3 presents the results

of three such com putat ions for the forced response of the boundary

layer to acoustic waves of different frequencies (using linear stability

theory at x~ = .025). For these cases the values of U’R M S  taken was

.3% of the freestream.

Linear stability theory woul d predict that for the length Reynolds number

of in terest for the Spangler and Wells experiments (% 3 x lO6at x = 12 ft)

a frequency of 27 cycles/sec is withi n the unstable region, whereas at

150 cycles/sec the flow is stable. This factor is evident in Figure 3. The

43 cycles/sec case exhibits neither amplification or damping (and thUs appears

neutrally stable) a factor which does not agree with the experimental results

which show early transition at 43 cycles . It may be poss ible that If the

computation were carried further in time some amplification would exist.

-18-
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Figures 4 and 5 present the temporal history , for the 27 cycle /sec case

for U’R M S  = .3% of freestream at different stations downstream of the

l eading edge at two different transverse stations. As one moves significantly

downstream (i.e., to x = 16 ft) the level of ampl i fication decreases (its maxi-

• mum is at x = 8 ft, corresponding to an Re1 
= 1.9 x 106). Such results are in

line wi th previous resul ts, i.e., the ampl i fication curves of Fasel ’ where the

ampl i fication increases as one passes into the ins tability region and decreases

as the neutral stability curve is again crossed.

An illustration of severe dampi ng is exhibited in Figure 6, which shows

how a large perturbation is damped when the frequency is wel l outside of

stability theory. The exceptionally high value of disturbance is almoFt

completely damped at x = 6 ft.

Much has been said about the effect of acoustics on transition , the

application of linear stability theory with the mi smatch of propagation velo-

cities between turbulence and acoustic waves, and whether or not Toilmien

Schlichting waves are excited under the influence of sound waves. Indeed, the

frequency range of the experiments is in line with stability theory. An inves-

tigation was initiated to determi ne what the propagation speed inside the

boundary layer was. In all cases, while the disturbances were propagating with

the speed of sound along the freestream, the waves wi thin the boundary layer

were propagating at a speed of the order of the freestream speed, and thus

indeed, the waves are the classical Tolimien Schlichting waves. Such a

result is presented in Figure 7. This result is in agreement wi th the recent

experiments reported in Ref . 10.

What is essentially occurring is that the wave propagating along the outer

edge has little effect on the boundary l ayer development. Instead , the major

effect is the profile at the leading edge , and thus , the effect of ~.he acoustic

wave is only to set up the initial disturbance field (i.e., at ~ = ~ ). S ince

-20-
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we have found that the profiles of References 5 and 6 are representative of

the acoustical disturbance profile near the leading edge, the effect of

acoustics on transition is , indeed , simi lar to the effect of other large

(or small) perturbations such as the roughness element effects described

previously.

In order to test this resul t, a series of runs were made to compare the

results of the present code to those of other investigations . Figures 8 and 9

illustrate how the results of the present analysis compare with the results of

Ref. 2. Even though at the outer boundary, waves are propagating at a speed one

to two orders of magnitude greater than the freestream velocity, the results

of the present investigation with respect to boundary layer response are in

good agreement wi th the results of Ref. 2.

Figure 10 illustrates a test case run to see how the method compares

with linear stability theory. For the case U1Jv = .6 x l05/ft and f = 25 cps

(with I = 12 ft) linea r stability theory predicts that the Reynolds number

based on displacement thickness for neutral stability is approxImately 1125.

For Re* < 1125 waves are damped, for Re* > 1125 waves are amplified. The

results of the present calculation indicate thi s to be the case,again confirm—

ing both the utility of the method and the fact that the response of a boundary

layer to acoustic vibrations is similar to the response to other disturbance

fields .

A remark is necessary with respect to the util ity of the present analysis

with respect to the problem of transition. There is much question as to the

length of the three dimensiona l region prior to transition. Indeed, if three—

dimensional effects predominate over a long distance prior to transition, two

dimensional programs will be unabl e to predict transition accurately. Such

a program though, can be of value with respect to determining basic flow

structure in regions prior to the onset of transition, as has been demonstrated

here.
-25- 
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It is felt that the results achiev ed to date provide a fundamental

understand i ng with respect to boundary layer response to acoustical dis-

turbances. It seems necessary at this time that the numerical analysis

and computer code be modified with respect to the marching step utilized

in order to allow the program to have general applicability (for example,

to allow the program to be utilized at lower Reynolds numbers). Therefore,

in the coming year, the full , compressible , unsteady Nav ier Stokes equati ons

will be reprogrammed and solved by an explicit MacCormack scheme with time

splitting 13 . Thus the small time scale in the normal direction (~t~ < Ay/c)

can be properly accounted f or. There are advantages to utilizing an explici t

scheme for the complex system to be solved (as opposed to a ful ly implicit

scheme or an A.D.I .). When solving the full compressible Navier Stokes

equations , all derivatives in x and y are immediately computed and thus

the solution of the full system is no more complex , in principle, than the

solution of the boundary layer system. In addition , whereas an implicit

scheme allows one to utilize a bigger time step from a stability viewpoint

one is still bound by the small time step criterion from the viewpoint of

accuracy.

Once the program has been changed to allow for general applicability , -

the program will be extended so that a wide range of parameters can be

varied . The effects of Mach number, type of disturbance , wall temperature,

wall suction or injection , and wall compliance will be studied after the

program has been properly modified.
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