
I / AO—AOb l 1395 GENERAL ELECTRIC Co ARLINGTON VA FIG 9/2
PREDICTING SOFTWARE COMPREHENSIBILITY. (U)
FEB 78 S B SHEPPARD. N A OORST , L t LOVE N00014 77 C—01 58

UnCLASSIFIED TR—78—388100 2 NL

_ I

— END
_______________ FIL ~~t

Fr-- T~~~~~~TTT

p

T~~~~~~1OO~~

TECHNICAL REPORT

PREDI CTING SOFTWARE COMPREHENSIBI LITY

O D O
~~ r?r~1Laflflflr 2~~1

MAR 2~~19T8

FEBRUAR Y 1978 F

P
t

1 1

GENERA L• ELECTRICI INFORMATION SYSTEMS PROGRAMS
•1

ARLiNGTON, VIRGIN IA

~~

SECURITY CLASSIF ICATION OF THIS PAGE (1PIi~~i D.ja En’.r.d)

REPORT flfl rl l r~JTATIf~ J p~rc READ LNSTRUCTIONS
_

BEFORE COMPL.ETIN O FORM
t . REPORT NUMEER a. GOVT ACCESSION NO S. RECIPIENT S CAl ALOG MUMIER

TR-388100-2 / I ___________________________

4. TITLE (wd Subtifi.) S. TYPE OF REPORT I PERIOD COVERED

PREDICTING SO FTW ARE COMPREHENSIBILITY ...— TECH~1ICAL REPORT
6. PERFORMING ORG. REPORT NUMSER

__ 388100-2. .
7. AUTHOR(s) I. CONTRACI OR GRAN T NUMICR(.)

S.B. SHEPPARD , M.A. BORST , L.T. LOVE N00014—77-C—0158 ‘—
6. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMCNT PROJECT 1*1K

AREA S WORK UNIT NUMBERS

OFFICE OF NAVAL RESEARCH NR197 037
Arlington, VA 22217

—

It . CONTROLLING OFFICE NAME AND ADDRESS 12. SEPQR1 DAT E —

2124/78
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AOO RESS(SS dUi.,.ie t I,.., Conlr.111n5 Ottle.) 1$. SECURITY CLASS. (of ItS. r.p. ~1)

UNCLASSIFIED
IS.. DECLASSIFIGATION/OOWNGRAOING V

SCHEDULE

IS. DISTRIBUTION STATEMENT (of III. RIP.,.)

Approved for public release; Distribution unlimited. Reproduction in whole V

or in part is permitted for any purpose of the U.S. Government

-~~~~~

V

IT. DISTRIBUTION STATEMENT (of It. abitr .et ilmd Sn 1S..& 30, ~

~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IS. SUPPLEMENTA RY NOTES

This research was supported by Engineering Psychology Programs, Office of
Naval Researc h

II. KEY WOR DS (C.nthtv . on rsvsr•• sid. U n.c...a~ ~~ bJ.ck m~~b.v)

MNEMONIC VARIABLE NAMtS, STRUCTURED PROGRAMMING, SOFTWARE PSYCHOLOGY METRICS,
CONT ROL FLOW COMPLEXITY , SOFTWARE ENGINEERING , MODERN PROGRAMMING PRACTICES ,
PROGRAM MEMORIZATION

20. A~1SyIACT (C•nIenu. on r.~~~.. sSd• U onc... y ond SdontSSV ~r &I.ck m èss)

This report describes the fi rst-experiment in a program of re~earch de-
signed to identi fy characteristics of computer software which are related to it
psychological complexi ty. This experiment evaluated the effect of three Inde-
pendent var iables (mnemonic variab le names , complexity of control flow, and gen
eral type of program) on a prograi~iuer’s understanding of a computer program.
The contributions of several variables , including Halstead t s software sc ience
metric and McCabe ’s complexit~ .metr1c. to the prediction of program understand-
ing were also evaluated. In a pi lot study 1 by Sheppard and Love (1977)

DD
~~~~~~ 

1473 EDITION OF I NOV 65 IS OBSOL ETE UN~rASS/N 01C2- 014- 6601 I )  SECURITY C~ A11lPICATION OF THIS PAGE (W~ sn D.~a Intsr.d

A ~~~~~~
- 

- 
V ____________ & 21 ~~~‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


..L.~..UHITY CLASSIFICAT ION OF THiS PAGE(lTh on Do.. &fl. r.d)

Block 20 continued

significant resul ts were achieved with the materials and procedures employed
here.

Thirty-six experienced prograniners we re instructed to study a computer
V

program for 20 minutes , and were then given 25 minutes to reconstruct a functioi
ally equivalent one. Performance was measured by the percentage of functionall,
correct statements recalled. Results indicated that complexity of control flow
affected program understanding, while no relationship was found for mnemonic
variable names and general program type. The metrics of both Halstead and
McCabe were related to program understanding when di fferences between subjects
and specifi c programs were taken into consideration.

-
- - - IN - L

-
-

..

.

• V

%• •
~ ~~~~~~~~~~~~~ .dl

I, ~CCtS~’
V

~~~~~~~~~ ~~~~ 
-

- 
V - . ‘ ; V ~~~~ 

•
~~~~~ V~~~~~~

\
-

- - - V

V V V

._

~\

L SECURITY CLASSIFICATION OF THIS PAGE(WN.n Dot . ~~~~~~~~

V~i ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - - V

—
~~~~~~ .~~~ 

-. — - 
~~~ TT -,

~ -~) ~ -~~~~

~L . . - -_ _

TR48-388100-2

) ~~ECF~N~ CA L ~~~~~~~ ~/
‘

—

-

L -~~~~~~~~~

PREDICT ING SOFTWARE COMPREHENSIBILITY ’ (
V

~~~~~~~ 

by

‘L
~

SJ ~ hep~ard~ MJ~ 1~orstIL T /Love

~(Feb~~~y- ~ 78)

Submitted to:

Office of Naval Research
Engineering Psychology Programs
Arl Ingt Virginia 22217

Contr NØOa14-77-C- 158
Work Unit: NR 197—037

GENER A L ELECTRIC COMPANY

INFORMATION SYSTEMS PROGRAMS
1755 Jefferson Davi s Highway

Suite 200
Arlington , Virginia 22202

Approved for public release; distribution unlimited .
Reproduction in whole or in part is permitted for

any purpose of the United States Government

~ 

~~~~~~


-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~ ~~~

I
1
I
I
I
I

V 

PREDICTING SOFTWARE COMPREHENSIBILITY

~~~~~

• I by

S. B. Sheppard, N. A. Borst,
& L. T. Love

V
,

Information Systems Programs
-
~ General Electric Company

1755 Jefferson Davis Highway, Suite 200
Arlington, Virginia 22202

February 1978

I
L ~~~ - - ~~~~~~~~~~~~~~~~~~~~ -- ~ -.-~&~~~~ ~- - - - - -

I

Software Complexity Research Program

Department of Defense (DOD) software production and

maintenance is a large , poorly understood , and inefficient

process. Recently Frost and Sullivan (The Military Software

Market, 1977) estimated the yearly cost for software within

DOD to be as large as $9 billion. DeRoze (1977) has also

estimated that 115 major defense systems depend on sof tware

for their success. In an effort to find near—term solutions

to software related problems , the DOD has begun to support
- I research into the software production process. -

A formal 5 year R&D plan (Car].son & DeRoze , 1977)

related to the management and control of computer resourceS

was recently written in response to DOD Directive 5000.29.

This plan requested research leading to the identification
-

V

and validation of metrics for software quality. The study

described in this paper represents an experimental

investigation of such metrics , and is part of a larger

research program seeking to provid e valuable information

about the psychological and human resource aspects of the 5

year plan.

DOD is also initiating the development of a more

powerful higher order language for general use by all

services (Department of Defense , 1977). With a language

independent measur e of the complex ity of sof tware , we can

evaluate not only prog ram A versus prog ram B, but also the

individual constructs of a language (cf. Gordon , 1977).

I ~~kV V~~~~~~ V~~~~~~~~~~~~ V V V V V V~~ - ~~~~~~ V :~~


~~~~~~~~~~~~~ ~ r T ~~r~~~~~T.TT~~~~~~~~ - - -

I
I . 

. 

V

I Thus , an obiective , auantitative theory based on sound

experimental data can replace idiosyncratic , subjective

I evaluations of the psychololgica]. complexity of software.

Long term benefits of this effort involve improved software

1 system reliabi].ty and reduced development and maintenance

I costs. 
-

The challenge undertaken in this research program -is to

H I quantify the psycholog ical complexity of software. It is

important to distinguish clearly between the psychological

F and computational complexity of software. Computational

F complexity refers to char acter istics of algor ithms or

programs which make their proof of correctness difficult ,

I lengthy, or impossible. For example, as the number of

distinct - 2aths through a program increases, the

computational complexity also increases. PsycholoQical

I complexity refers to those characteristics of software which

make human understanding of software more difficult. No V

I direc t linear relationship between computational and

I psycholog ical complexity is expected. A program with many

control. paths may not be psychologically complex. Any

I regularity to the branching process within a program may be

used by a programmer to simplify understanding of the

1 program. -

V Balstead (1977) has recently developed a theory

concerned with the psychological aspects of computer

programming . His theory provides objective estimates of the

-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



~~~
-

~~: ~~~~~~~~~~~~~
~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-4

I
I
I effort and time required to generate a program , the effort

required to understand a program , and the number of bugs in

I a particular program (Fitzsimmons & Love , in press). Some

I predictions of the theory are counterintuitive - and

contrad ict some results of previous psychological research. -

The theory has attracted attention because independent tests

of hypotheses derived from it have proven amazingly

accurate .

I Although pred ictions of programmer behavior have been

particularly impressive , much of the research testing

I Haistead ’s theory has, been performed without sufficient

experimental or statistical controls. Further , much of the

data were based upon imprecise estimating techniques.
- Nevertheless , the available evidence has been sufficient to

justify a rigorous evaluation of the theory.

I Rather than initiate a research program designed

specifically to test the theory of software science, a

research strategy was chosen which would generate

I suggestions for improving programmer efficiency regardless

of the success of any particular theory. This research

I focuses on four phases of the software life—cycle:

understanding , modification , debugging , and construction .

Since dif feren t cognitive processes ar e assumed to

I predominate in each phase , no single experiment or set of

experiments on a particular phase would provide sufficient

1 basis for making broad recommendations for improving

•

~

i V

~ 

V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



_ _ _

~~ •~_- -— _~~_~~—--

I
I
I programmer efficiency . Each experiment in the series

comprising this researc h program has been designed to test

I important variables assumed to affect a particular phase of

software development. Professional programmers will be used

in these experiments to provide the greatest possible

I external validity for the results (Campbell & Stanley,

1966). In addition , Halstead ’s theory of software sc ience

1 and other related metrics can be evaluated with these data . —

I
I . 

. 

V

‘ I
1

I



~ 
--.—

~~~~ 

---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1~~~ 1ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of

Dr. Bill Curtis in analyzing the data and in revising this

technical report. We anticipate a long and productive

association with him as a member of our staff. We also

appreciate the assistance of Dr. Gerald Hahn of General

Electric ’s Corporate Statistics Staff in developing the

experimental design. Dr. John O’Hare ’s care ful rev iew of a

preliminary version of this report has resulted in

substantial improvements.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -• ——-.~~~~~~~~~~~~~~—~~~--~~~~~• ~~~—- -



- .. 
TABL E OF CONT ENTS

Page

Software Complexity Research Program i
Acknowledgements v
Table of Contents vi
Abstract vii

1.0 INTRODUCTION - 1
2.0 METHOD - - -

2.1 Participants 5
2.2 Procedure 5
2.3 Experimental Design 6
2.4 Independent Variables 8

2.4.1 Program Class 8
2.4.2 Program Structure 9

2.4.2. 1 Haistead ’s E 11
2.4.2.2 McCabe ’s V (G) 12

2.4.3 Variable Name Mnemonicity 12

j 2.5 Covariates 13
2.6 Dependent Variable 13
2.7 Analysis 14

3.0 RESULTS

3.1 Individual Differences among ‘Participants 16
3.2 Differences among Programs 16
3.3 Program Structure 18
3.4 Variable Name Mnemonicity 18
3.5 Order of Presentation 20
3.6 Software Complexi ty Metrics 21

3.6.1 Relationships among Metrics 21
3.6.2 Relationships of Metrics with Performance 22

4.0 DISCUSSION 27

5.0 REFERENCES 32

6.0 APPENDICES

6.1 Instructions to Participants 34
6.2 Program Descriptions 35
6.3 Program Code Li stings 38
6.4 Measuring Complexity of Control Flow 41
6.5 MnemonIc Vari able Names 46
6.6 Scatterplots for Complexity Metrics 49

~~~~~~~~ V~~~~~~~~~YLV~~~~_~~~~~~~~~ • , •— ~~~~~~~~- ~~~~~~~~~~~~~~~~~~ -


~

~~~~~~~~~~~~~~~~~~~~~~~

i
I Predicting Software Comprehensibility

I ABSTRACT

This report describe s the first experiment in a prog ram

I of research designed to identify characteristics of computer

I software which are related to its psychololgical complexity.

This experiment evaluated the effect of three independent

I variables (mnemonic 
- 
var iable names , level of program

structure, and general type of program) on a prog rammer ’s

1 understand ing of a computer program . The contributions of

I several variables to the pred iction of program understanding

- 
were also evaluated. Significant results were achieved in a

I pilot study by Sheppard and Love (1977) using the materials

and procedures employed here.

I Thirty—six experienced programmers were instructed to

I study a computer program for 20 minutes , and were then given

25 minutes to reconstruct a functionally equivalent

I program . Performance was measured by the percentag e of

I functionally correct statements recalled . Results indicated

that level of program structure ari d program class affected

I prog ram understanding , while no relationship was found for

mnemonic variable names. The metrics of both Halstead and

I McCabe were related to program understanding when

differences between subjects and specific programs were

taken into consideration .
-

~~ I

v l i
-- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1
I Predicting Software Comprehensibility

1 1.0 INTRODUCTION

Programmers ’ ability to understand computer programs

may have substantial impact on their efficiency in debugging

or modifying these programs . There are several software

1 engineering practices which have been designed to increase

I programmers ’ efficiency in terms of both the accuracy and

speed of their work. Programs developed in accordance with

these practiàes should be more easily understood .

1 Dijkstra (1972) suggested that program construction
1 should proceed in a top—down structured fashion. He

contended that structured programs are easier to understand ,

debug , and mod ify. In a study using student programmers and

text book programs, Love (1977) found that simplified

i 
control flow made programs easier to understand for graduate

(but not for introductory) students. That study did not use

programs which were strictly structured .

-- 
Another standar d software engineering practice is the

use of carefully chosen variable names which serve as

mnemonic aids in understanding prog rams. Weissman ’s (1974)

researc h’ 
suggested that menmonic variable names resulted in

- - 
performance increases (up to a factor of 2). His results

- need replication since there were difficulties with his

i experimental design arid dependent measures.
- 

In parallel with these attempts to improve programmer

efficiency , several approaches were developed for predicting

the psycholog ical complexity of software algorithms. In

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~ V~~~~~~V~~~~~~~~~



- ~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ I

- ‘ I
Predicting Software Comprehensibility

1 1972, Halstead first published his software physics theory

(later renamed software science) stating that algorithms

have measurable characteristics analogous to physical laws.

His objective was to develop quantitative measures of the

- complex ity of computer programs in terms of language level ,

I algorithm purity , programming effort, and programming time.

I Preliminary tests of the theory have shown very high

correlations (some greater than .90) between his software

• physics metrics and such dependent measures as the number of

bugs in programs (Funam i & Baistead , 1975) , programming time

I (Gordon & Halstead , 1975) , and quality of programs

I (Haistead , 1973). V 

V

There have been several recent attempts to develop

I metrics for the complexity of control, flow through a

computer program (e.g., Bell & Sullivan , 1974). One of the

most promising of these metrics was proposed by McCabe

V (1976). McCabe ’s metric will be used in this study as an

alternative against which Halstead ’s metr ics can be

I compared .

A critical issue in assessing the utility of these

— 
- 

software engineering practices and metrics involves the

I definition of a dependent variable. A model of a

pr ogrammer ’s understand ing of a computer program is shown in
I Figur e 1. First , a programmer must understand the overall

1 purpose of a program . Then an interactive process beg ins in

which successive modules must be understood separately, and



a

I V V 
‘
- - .: ~~~~~ _ - _ ... :- ~~~~

‘ V ‘ : .:~~~ 
•:V .

V 
~~~~~~~~~ .

. ..

I READ OOCJMENTA’rION

REA D COMMENTS -

a. ~— - ~ TALK TO ORIGINAL PROGRAMMER

I KNOWLEDGE OF
NO ~ .4I. ..~ EXECUTE PROGRAM

I THE PROGRAM ta a. ______________________________

~
LOOK FOR MEANINGFUL

V
S RAM5~ VARIABLE P~~MES

IDENTiFY MOST IMPORTANT LOOPS
SELECT MOST —~~~~~ AND WAUC THRU THEM

IMPORTANT MODULE TO IDENTIFY GENERAL FUNCTION

• ‘ I UNDERSTOOD

I
UNDERSTAND NO

PRECISE FUNCTION
OF CJRRENT

MODU LE
DETERMINE OVERALL.

CONTROL FLOW THRU MODULE

DISCOVER FUNCTiON
OF MOST USED CODE

FIND OUT HOW REST OF CODE
REL&TES TO MOST USED CODE

_

•

[
UNDERSTANDS V

/ CAN REWRITE
(FUNCTIONAU..V

EQUIVALENT
-

V PROGRAM

Figure 1: MODEL OF HUMAN UNDERSTANDING OF

1 SO FTWARE
L A~~ ~~~


~~~~~~~~~TVT~~ ~ - i  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

Predicting Software Comprehensibility

then integrated into the overall flow of the program .

Measures of understanding such as quiz scores or ability to

hand simulate a program may have reflected existing

I knowledge of programming method s and techniques rather - than

specific knowledge of the particular prog ram under

f consideration .

Current literature (Love . 1977; Shneiderman , 1974,

1977) suggests that the most sensitive measure of whether

• people understand a computer program is their ability to

learn a program ’s structure and reprod uce a functionally

equivalent program without notes. It would be extremely

difficult to reproduce a non—trivial program without some

understanding of its function . The dependent measure

• employed here was the functional correctness of a

participant’s reconstructed program.

The main purpose of this exper iment was to ascertain

the relationship between two programming style variables and

the ability to understand a program . There was also an

assessment of whether comprehensibility differed as a

function of program type. In addition , the relationship

between comprehensibility and three program metrics (i.e.,

Halstead ’s E, McCabe ’s V(G), and the number of statements)

was evaluated .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V



Predicting Software Comprehensibility

2.0 METHOD

2.1 Participants

• Thirty—six professional programmers were tested in five

• different locations. Each participan t was a General

Electric employee with working knowledge of FORTRAN. 
- 
These

programmers had an average of 6.8 years of professional

programming experience (ranging from 0 to 18 years). The

majority (fl=23) came from an engineering ’ background , two

were statistical programmers , arid nine had been pr imarily

involved with non—numeric or text processing software.

2.2 Procedure

- A packet of materials was prepared for each

participant. The initial instructions to each par ticipant

are presented in Appendix 6.1. The written instructions

included questions on the extent of programming experience

and area of expertise . The first exercise was a short

FORTRAN program with a brief description of its purpose

All 36 participants received the same program , which they

were allowed to study for ten minutes. They were permitted

to make notes or draw flowcharts. At the end of the study

period , the original program arid all scrap papers were

collected . Each participant was then given five minutes to

recons truct a func tional eauivalent of the prog ram from

memory on a blank sheet of paper , but was not required •to

reprod uce the comment section .

The purposes of this short introd uctory program were

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~ - -V ._  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~- V . - ,•—


—• ~~~~~ --
-
~

-
~~~~~~~~~~~~~~ -_T T :~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
_
~
7•

Predicting Software Comprehensibility

1) to provide a common basis for compar ing the skills

— of the participants on this type of task , and

2) to control for initial learning effects.

This second point is important since a previous study

(Sheppard and Love , 1977) ind icated that learning may occur -

~ I 
dur ing an initial task of this type.

Following this initial exercise , participants were

presented in turn with three programs which comprised the

I 
- 

experimental task for this - study. They were allowed 25

minutes for study and 20 minutes for the reconstruction • of

I each program . A break of 15 minutes occurred before the

last program was presented .

2.3 Experimental Design

I In order to control for individual differences in

performance , a within—subjects 3~ fractional factorial

I design was employed in this experiment (Hahn & Shaprio ,

1 1966). Nine programs of three general classes were tested

- 

. (Table 1). Three levels of program structure were defined

for each of the nine programs , and each of these 27 vers ions

was presented in three levels of variable mnemonicity for a

I total of 8]. programs. The programs were selected from a set

of programs solicited from practicing programmers at several

GE locations.

I Four sets of nine participants were used in the

experiment. The 27 participants in the first three sets

I exhausted the total of 81 programs. The four th set of 9

[ 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


I

~~~J 

~~ 

_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~
~~- -:z~~~~~~~~~~~~~~~~~-r - -- ~~~ ~~~~~~~“

~1

Predicting Software Comprehensibility

participants repeated one of the three previous sets. Table

1 shows the design for the first 27 participants.

Programmers at each locati’~n were randomly ass igned to

experimental conditions in order that over the course of

their three experimental programs, every participant had
•

worked with a program from each class, and at each level
V

of

structure and variable mnemonicity. For example ,

participant 4 received the following three programs: 1)

BESSEL — an engineering program , unstructured control flow,

medium mnemonic level , 2) CHISQ — a statistical program ,

quasi—structured control flow , least mnemonic level , and 3)

SELECT — a non—numeric program , structured control flow,

most mnemonic level. For simplicity the design is presented

in Table 1 without regard for the order of presentation to

the participants. One of the six possible orders of

presentation of three programs was assigned randomly and

without replacement to each par ticipant.

2.4 Independent Variables

2.4.1 Program Class
V

Three general classes of programs were used:

engineering , statistical , and non—numeric . Three programs

of each class were developed . Appendix 6.2 describes the

purpose of the nine programs and shows their lengths , which

varied from 36 to 57 statements. The program s selected were

considered to be representative of the type of programs

actually encountered by professional programmers in each of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



L~T~’ ~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~

Predicting Software Comprehensibility

these areas. Appendix 6.3 has some sample program listings.

All nine programs used in this experiment were compiled and

executed using appropriate test data.

4.2 Program Structure

Three levels of program structure were defined . The

structured level adhered strictly to the tenets of

structur ed programming (Dijkstra, 1972). Program flow

proceeded from top to bottom with one entry and one exit.

Neither backward transfer of control nor arithmetic IF’s

were allowed .

Awkward constructions may occur in FORTRAN , when the

rules for structured programm ing are applied rigorously.

These include necessary but artificial GO TOe s and DO loops

• with dummy variables (Tenny, 1974). These awkward

constructions were largely eliminated in the

quasi—structured level , where a more natural control flow

was allowed . A judicious use of backward GO TO statements

and multiple exits was permitted . IF statements were again

restricted to assignment and logical IF’s.

In the unstructured version of each program the control

flow was not straightforward. The GO TO statement occurred

more frequently and backward transfer of control was not

restricted. The three—way transfer of control statement

(arithmetic IF) was allowed only at this level (Table 2).

Two well—known metrics for program complexity were also

calculated for each of the progran~R4,~ order to determine

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -.-

~~
-—

~~~~
—-.-

~~~~~ ~~~~~~~

I
I

+
LU

—1 LL~C....) I — ~
L)

I C/)
- E LU LU LU

I.—. —
I i  o_ — U . .  C.’)
I I >< C.’)

F LU ~~

I — — — —
LU V

~~~ >- LU
LU I.— LUH -

I-
C.’) ~~~~ — ~~~ ~~~~~~~

CsJ LU C..) ~~LU
LU ~~ LU U~ i.— LU

— I ~~ = ~~ ~~ LU
C.’) ~~~- ~~ LU ~~I— — LU

C.’) ~~~ ~~~
-

LU ~~~‘ I—. O~ I—
I ~~ -~~

C.~ C..)

~~ =
C-) ~—

-

~~~~~~~~

LU

II . JZ

I __I cn~~~
I 0 I-.

LU 0 i Z
LU

= I— ~~ i— )-
p ,_•. — ._j —

I C-) )( ~~I LU ~~ ~~~o— 0 LU
‘ I—

1 
10

L~ . - --~~~~~~~ -~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~~~ 

- ,
~~~~~~~~~~ 

_



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Predicting Software Compr ehensibility

their correspondence with the working~~definitions. The

metrics selected were: McCabe ’s V(G) (McCabe , 1976) and

Haistead ’s E (Haistead , 1977).

2.4.2.1 Halstead ’s E V

In Haistead ’s theory of software science, the amount of

effort required to generate a program CE) , can be calculated

from simple counts of the actual code. The calculations are

based on four quantities: 1) the number of distinct

operators and operands, and 2) the number of occurrences of

operators and operands. From these relationships , Halstead

derives the number of mental comparisons required to

generate a program .

Since different programming languages produce varying

numbers of instructions , the number of elementary mental

discriminations for each mental comparison var ies with the

language used. When a correction is made to account for

these differences , one can define E in terms of the number

of mental discriminations per prog ram ; i.e., the number of

comparisons in the program multiplied by the average number

of mental discriminations made per comparison . A discussion

of the computational formula can be found in Fitzsimnion s and

Love (in press) or Ha].stead (1977).

All software science metrics were computed precisely

from a program (based on Ottenstein , 1975) which had as

input the source code listings of 27 programs (9 separate

prog rams at each of three levels of structure)

II•~~~~. ——- V.
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~ pVS~~~~ V~VV ~~~~~~~~~~~~~~ V.—-- - -



~T~~~ TTTr T~~~T 
- 

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~~~~~~~~~~~ -

~~~~~

-

~~~~ I

Predicting Software Comprehensibility

2.4.2.2 McCabe ’s V(G)

McCabe ’s metric is the classical graph—theory

cyclometric number , defined as V(G) = * edges — * nodes + *
connected regions. Because the McCabe measure is defined

only for programs that adhere strictly to the rules of

structured programming , some modifications to the metric

were necessary in order to evaluate the less structured 
V

- control flow versions. (See Appendix 6.4 for a description

of these modifications) . All experimental programs were

checked before the experiment to insure that the most

complex version of program had the highest McCabe value and

the least complex version had the lowest value.

2.4.3 Variable Name Mnemonicity . - -

- 

Three levels of mnemonicity for variable names were

manipulated independently of program structure levels. -

Because meaningfulness is difficult to assign arbitrarily, a

preliminary assessment was done . The nine programs were

+ modified so that the variable names were Vi, V2, ..., VN.

~ 1 Professional programmers were presented the programs and

descriptions of their purpose. They were asked to

substitute meaning ful names for the ‘Vt names. The names

most often generated were used in the most mnemonic

condition . The moderately mnemonic level consisted of less

frequently chosen names. In the least mnemonic condition
I ~-

names consisted of a randomly chosen letter such that all

real variables began with A through H or 0 through Z, and 

~~~~~~~~~~~
-— - - —-~~~~~~~~~~~ - ~~~~--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- .~~~~~~~

: ~T: V V V .

V Predicting Software Comprehensibility

all integer variables began with I through N. In the few

cases where there were more than six integer names , the

letter was followed by a single digit (e.g., 12). Counters

in DO loops often had idential names in all three mnemonic

versions (See Appendix 6.5), since long mnemonic variable

names are rarely used as counters, in programs. -

2.5 Covariates -

In order to obtain a measure which was assumed to be

related to programming ability, all participants were

reauired to perform the same preliminary task . A short

program was given to each participant to study and’ then

reconstruct . Their scores on this task were used as a
V covariate to measure individ ual performance differences.

Participants were also asked their type of programming

experience and the number of years they had been programming

professionally. Situational covariates included the

sequence of presentation and the specific program .

2.6 Dependent Variable

All warm—up programs were scored by the same grader .

The remaining 108 experimental programs were score d

independently by three graders. The criterion for scoring

the programs was the functional correctness of each

separately reconstructed statement. Variable names and

statement numbers which differed from those in the or iginal

program were counted as correct when used consistently. All

errors were classified as either syntactical or log ical .

t i i

I V

!-~ I Predicting Software Compr ehensibility

J Only one error of each type was counted per statement , even

though multiple syntactical and logical errors could occur

in the same statement. Control structures could be

different from the or iginal program as long as the statement
V

performed the same function .

Because it is difficult to prove the equivalence of two

versions of the same program, function , or statement , three

judges scored each program independently. Interjudg e

correlations of .96, .96, and .94 were obtained across the

three sets of scores. The average of the three scores

(percents of statements correctly reconstructed) for each

program was used as the dependent variable in the data
V

analysis. - : 1
2.7 Analysis V

The analysis of results was conducted in two phases.

The first phase was an experimental test of the programming

style variables , while the second phase was an evaluation of

the software complexity metrics.

The first phase , involving an experimental test of

programming practices, was analyzed in a hierarchical

regression analysis. In this analysis , domains of variables

were entered sequentially into a multiple regression

equation to determine if each successive domain

significantly improved the prediction of the equation

developed from domains already entered . Thus , the order

with which doma ins were entered into the analysis was

14
-— -—V _- V.- ~~~~~~

~~~~~~~~~~~~~~~~~~~~~ -V A



~~~~~—- ~~~~~~~~—~r~~~ --- - - _ _ _

I
Predicting Software Comprehensibility

important. In this study effects related to pre—existing

differences among participants and programs were entered[I into the analysis prior to evaluating the effects of

programming styles. The variable domains were entered, in

the following order:

- I Differences related to participants and programs -

1) Pretest scores

2) Class of program

3) Specific program
V Programming styles

4) Program structure - . -

V —

5) Variable mnemonicity

6) The interaction between program structure and

variable mnemonicity .

The variables representing the different conditions of

domains 2 through 5 were effect coded (Kerlinger & Pedhazur ,

1973). -
The second phase of analysis investigated relationships

among Halstead ’s E, McCabe ’s V(G) , number of statements in

the program , and performance. Analysis consisted of

examining correlations among the measures in both the raw

data and data corrected for differences among participants

and programs.

15
- — ‘-V

~ iVV ~~~~~~~~~~ - —~~~~~—V- ~~~~~~~~~~~~~~~~~~~~~~~ V _ V . . V ~~~
A

L~~~~TT~ ~~~
V.

I
Predicting Software Comprehensibility

V

3.0 RESULTS

3.1 Individual Differences among Participants

• I Data presented in Table 3 ind icate that scores on the

pretest were significantly related to the percent of

statements correctly reconstructed during the experiment.
V

-. Pretest scores accounted for 17% of the variance in
‘
V performance, while no relationships were observed for type

or length of programming experience. The two statistical

programmers recalled more statements - correctly than

• engineering or non—numeric programmer s, but generalization

is not possible from such a limited sample. Further , job

location was not related to performance. -

3.2 DifferenceS among Programs

V A mean of 50% of the statements were correctly recalled

across all, programs and experimental conditions. While this

was a preferred level for mean task difficulty , there were

• substantial differ ences in difficulty among the various

programs. As evident in Table 3, performance differed

significantly as a function of the class of program . These

differences accounted for 8% of the variance in performance

in addition to that accounted for by ind ividual differences

among participants. Engineering programs were the most

difficult (41% of the statements correctly recalled) ,

followed by statistical (52%) and non—numeric (57%) .

When the specific program was taken into account an

additional 20% of the variance in performance was

16

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ---V. --- - 
- V .- . -  

~~~
V.V. V.V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE 3

}ilERARCIUAL REGRESS ION ANALYSIS

VARIABLE DOMAIN DOMAINa

V - - . . - . df - -

1) PRETEST .1.7~~ 1 .17~~
—

2) CLASS OF PROGRAM .O9~~ 2 .O8~~

3) SPECIFIC PROGRAM .26~~ 8 ~~~~
4) PROGRAM STRUCTURE (PS) . •

.O7~~ 2 .07~~
V 5) VARIABLE MNEMONICITY (VM) .01 2 .Q1

6) PS X VM .03 4 .03

TOTAL 19 .56

Note: n = 108

a Correlations in this column represent the total relationship between
each variable domain and performance. Where there Is only one degree
of freedom for a particular domain , figures in this column represent
zero-order correlations, otherw ise they represent mul tiple correl a-
tions for all variables in the domain.

b Figures in this col umn indi cate the percent of variance contributed
to prediction of performance ‘in addition to that afforded by preceding
domains. Signifi cance levels indicate whether this represented a
significant contribution to prediction .

17

111k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.~~~• .  ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ VV V VV V.V~~~~~ V . • V  .~~~~~ ~~~~~~~~~



_ _ _

- 1

~

?redicting Software Comprehensibility

explained .However , this result is not strictly a function of

differences among programs, because variance related to

specific programs was confounded with variance related to

participants. Overall, 45% of the variance in performance

V 
was accounted for by differences among participants and

general program char acter istics.

3.3 Program Structure

Significant differ ences in performance were obtained as

a function of program structure. The three levels of

V struc ture accoun ted for 7% of the var ianc e in per forman ce in

addition to variance related to differences among programs

and participants. As expected , the least structured level

was the most difficult to. reconstruct (Figure 2). Contrary

to the tenets of structured programming , however , the most

structured level did not produce the best performance. A

greater percent of statements were recalled from

quasi—structured programs, conceivably because of their less

cumbersome constructs. A post hoc analysis (Scheffe , 1959)

showed the means for the quasi— and unstructured programs to

be significantly different (p< .05).

3.4 Variable Name Mnemonicity 
-

No significant differences in performance were observed

in relation to the three levels of mnemnonicity assigned to

var iable names. Consequently, variable mnemonicity did not

contribute significantly to the hierarchical regression

equation. Further , no significan t interaction was found

L V V.~~~~~~~~~~~~~~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V
~~~~~~~~~


~iur T ’ —-~~~~~~
- -
~~~ :r~ :~~~~~~TV1 T~~~~ 

-
“

I
i~
.

V ,~~,

~~1I

60%_ 
I

I - 

• 

V

H

I I I

+ unstructured quast~structured structured

CONTROL FLOW COMPLEXITY

FIGURE 2: Mean percent of statements correctly recalled for three— ‘ levels of program structure

“ l

19



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

Predicting Software Comprehensibility

- between variable mnemonicity and level of structure.

-
L 3.5 Order of Presentation

I Performance did not differ as a function of the order

- in which the programs were presented to participants ,

I suggesting that any learning process which might have

affected the results occurred dur ing the pretest rather than

dur ing the three experimental tasks. .

-
V

Since different levels of variable mnemonicity neither

affected performance significantly, nor caused any change in

- 1 complexity metrics for a particular program , the data

-~ -

(
reported in this section were averaged over levels of ,

mnemonicity . Thus , the 27 data points each represent a

1 value for a specfic program at a specific level of

structure. This averaging process also reduced to some

extent the effect of individual differences among

- -
participants since each data point is averaged across either

- 3 or 6 participents (9 of the conditions were repeated by an

additional three participants).

1
3.6.1 Relationships among Metrics

Table 4 presents correlations among the three metrics

of software complexity employed in this study; namely,

length (number of statements) , McCabe ’s V(G), and Haistead ’s

E. Length and McCabe ’s V(G) were strongly correlated , while
V - Halstead ’s E displayed only moderate relationships with

these other two metrics. Investigation of the scatterplots

(Appendix 6.6) indicated that the correlations for

20

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ,__ •~~V~~~~~~~_VV V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


.- :~~~~~~~~~~:~~~~~~ i

— TABLE 4

Correlations among Metrics of Software
-- Complexity

CORRELATIONS —

METRIC LENGTH MCCABE

1

-

MCCABE .75~~

-
.

HALSTEAD . 47~~
V

HALSTEAD (~=26~ .75~~

NOTE: Except where indicated, n = 27.

- *p~~~Q5
•

-
-

~~p~~~.Ol

21

I

___ -
~~~~~~~~~

-
~~~~~~~

Predicting Software Comprehensibility

Halstead ’s E were weakened by an extreme value for E of

250.With this outlier removed the correlation s of E with the

other two metrics rose to the same level observed in their

- (intercorrelation .

3.6.2 Relationships of Metrics with Performance

The percen ts of var iance in ’ performance accounted for

by each complexity metric are presented in Table 5. The

correlations underlying the data reported in this section
V were all negative indicating that performance fell as the

-
‘ level of complexity indexed by these three metrics

increased . Length and McCabe ’s V(G) were moderately related

to performance, accounting for 28% and 20% of the variance ,

respectively. Halstead ’s E was not significantly related to

performance. Investigation of the scatterplot for the

Halstead result (Figure 3), however , produced some

interesting observations. There were three data points

(circled in Figure 3) which were developed by averaging

across three participants who consistently outscored other

participants on both the pretest and the experimental V

programs. Recognizing the effect of individual differences

on performance, it was likely that the three data points

generated by this group of participants resulted more from

the failure of random assignment to fully neutralize the V

effect of ind ividual differences , than from the experimental

conditions. When these three data points were removed the

variance accounted for by all three metrics increased .

___ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

TABLE 5

Percent of Va riance in Performance Acco~ited
for by Software Complexity Metric -

S.

V
• - V PERCENT OF’ VARIANCE

EXCEPTION AL.. ALL GROUPS GROUP REMOVED
V

-- METRIC
- V • V

(~,=27) (~~24)

I-

•

RAW SCORES
V

-- LENGTH
-

.28~~ .37~~~
•

~~ MCCABE’S VIG) .2O~~ .26~~
HALSTEAD’S E .02

TRANSFORMED SCORES

LENGTH .14* 42***
-

MCCABE’S V(G) .31~~ .48~~
HALSTEAD’S E .04 ~~~~

V

***.2.~~~ 001

23

V

V V V .

V _ _ _ - — ‘

~
--

~~~~

- ~~~~~~~~~~~ ~~~~~~~~~~~~~~

kelationship between
pcrfornance and E

-- within each separate
-. 100 • program

-- Relationship elimi nated 
• when 3 exceptional data

points ;.-cre wi thdrawn

/ \
7 ’t, 

/ 3 \7~~l 
/ 3 \

25 , 70 115 160 205
- 

HALSTEAD ’S E

• FIGURE 3: PERCENT OF STATEMENTS CORRECTLY
RECALLE D VERSUS HALSTEAD ’S E

NOTE : NUMBERS IN THE FIGURE REPRESENT THE SP ECIFIC PROGRAM

24 
. V~ ~~~~~~~~~ V V V.~~~~~~~~ V • V V •  • _ _ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • V - . . -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
TTI’:VV ~~

Predicting Software Comprehensibility

With the three points for the exceptional group

removed , the relationships between performance and the

complexity metrics were generally linear within the data for

each specific program (observe the solid lines in Figur e 3).

It was apparent from Figur e 3, and was confirmed in the

regression analyses, that there were considerable

differences among programs in difficul ty and complexity. In

order to determine whether the complexity metrics were more

predictive of performance within program s than across them ,

a transformation was applied to the data. The lowest value

obtained for each metric among the three versions of each

specific program was set to zero. Similarly, the percent of

statements correctly ‘ recalled for the version with the

lowest value of the par ticular metric was also set to zero ,

allowing the percent recalled to fall below zero in several

instances (a difference score). This transformation of

scores represented an attempt to determine whether

performance d iminished as a function of increasing

complexity when initial differences among programs had been

removed .’ V

The percents of variance in performance accounted for

by each of the transformed metrics are presented in Table 5

for samples with and without
-
the exceptional group of

-• participants removed . The effect of the transformation on

the results for length was not great. However , substantial

:
increases were observed for both McCabe ’s V(G) and

V
. 25

A V _ . V
—

- .~~~—-~~~--- - - - -~~--~~~-~~ --- - -—~~~~ -.-
~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ 
‘

~~~~~~~~~~ 

V-V. -- .,
-

- Predicting Software Comprehensibility

Halstead ’s E. Thus , while Halstead ’s E accounted for only

2% of the variance in performance among the raw scores, it

accounted for 53% after some corrections were made for

differences among programs and participants. •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



__ ~~~~~
‘
~~~~~~~T~I

Predict ing Software Comprehens ib i l i ty

4 .0 DISCUSSION

Three factors were found to influence programmer s’

ability to correctly recall programs they had previously
-

(
studied . These factors included individ ual differences

among participants , characteristics of specific programs ,

and the level of program structure. Each of these factors

contr ibuted separately to the pred iction of performance on

the task studied here. In addition , several metr ics of

software complexity were found to pred ict understand inf

• under certain conditions.

Individual differences among prog rammers represent ~ an

important topic which has been mentioned more frequently

than studied . Such differences (as measured by a pretest)

accounted for almost one—fi f th of the variance in

performance. The effec t of individual d i f f e rences might be

V

even greater were the sample expanded beyond the

experienced , professional programmer s studied here. The

size of the effect for these differences suggests that an

important area for f u t u r e research will be in ident i fy ing

strategies for the selection , placement and training~of

computer programi~ers.

Performance effects due to differences among programs

are not easily explained from these results. While there

was a significant effect due to class of program

(engineering vs. non—numeric vs. statistical) , this result -

may have been a function of some experiencial or familar ity

_ _ _
V

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

I
Predict ing Software Comprehensibi l i ty

factor particular to the sample studied . Further , effects

due to differ ences among specific programs were confounded

in this experimental design with effects related to

individual differences among participants. Nevertheless ,

the suggestion of substantial differences in the ease of

understanding based on type of program is interesting ‘ in

light of the limited range of programs employed here.

In order to properly analyze subtle participan t X

pr og r am interact ions , more part icipants would be required in

each cell of this experimental design. Such effects may

involve interactions between the nature or purpose of the

program and some experiential or cognitive factor among

programmers. Such interactions may hold important

implications for the management of software development

projects, especially - regarding the assignment of

V

programmers.

The characteristics of programs studied in this

experiment included two principles of programming style and

several metrics of software complexity . Of the programming

style variables examined , only level of structure had an

effect on performance. Results confirmed that well

structured program s were easier to understand than

unstructured ones. Yet, adhering strictly to the rules of

structured programming in FORTRA N often caused clumsy V

constructions that were no more effective than taking

certain liberties with the structure to create cleaner

~~~~~~~~~~~~~~~~~~~ 



Predicting Software  Comprehensibil i ty

code.These l iberties incl uded multiple returns and

jud ic ious ly-  placed backward GO TO statements; both are

violations of the rules for structured coding.

No differences in p erformance  were observed as a

function of the mnemonic value of variable names. However ,

many participants evidenced a preference for -mnemonic names , H

in that the.y used their own , more mean ingful names when

rewriting the least mnemonic versions of the programs. For

the medium and most mnemonic versions they tended to use the

names supplied in the orig inal programs. Thus, the

- 1 importance of mnemonic variable names is supported by the

- anecdotal rather than statistical evidence.

I In addition to the experimental  evidence that the level

of program structure affects understand ing , there was

correlational evidence that understand ing was related to the

V psycholog ical complexity of the program. The best pred ictor

of performance in the raw data among the three complexity

I metr ics studied was the total number of statements in the

program . However , the considerable amoun t of variance in

this study related to differences among individ uals and

J programs may have masked relationships between performance

and complexity metrics , especially Haistead ’s E. When the

data were transformed in an attempt to remove some of the

I 
effects due to differences among programs and exceptional

progr ammers , the Haistead and McCabe metrics were found to

be substantially better predictors of performance than they

V V V

~ 

~~~~~~~~~ 


-- TV7~r~~i. H -- -
~~~~~~~~~~~~~~~~~~~~

- -
~~~~~

’ -

Predicting Software Comprehensibil i ty

had been in the untransformed data . This result is

consistent with the finding in a pilot study (Sheppard &

Love , 1977) that Haistead ’s E was highly correlated with

performance.

V In essence , the relationships of the Haistead and

McCabe metrics with performance were approximately linear

within different version-s of a single program . This

observation implies that pred iction of the number of bugs in

a program by the Halstead and McCabe metrics alone may not

prove adequate. Prediction may be substantially improved by

including some variable(s) relating to differences among

programs or programmer X program interactions. This issue

will be addressed by future studies in this research
V

program.

An interesting problem in the Ralstead metric was

observed in a program which generated a Haistead value of

250 and a McCabe value ‘ -
~~ only 6. Inspection of the program

showed a series of assignment statements of the form :

IF (AMT2.LT.AMT3) MAXPHI SQRT((MT2/AMT1) + (AM T4/AM T3))

F Although such statements resulted in a high E value,they did

not affect the control flow . Relationships between

performance and different ways of computing complexity

metrics will be addressed as data are collected in

add itional experiments from this research program . These

additional data will provid e a more comprehensive base from

which to test hypotheses regarding these metrics.

30

-
V.~~~~~V ~-.

_,VV V VV.~’V.~~~~

I
Predicting Software Comprehensibility

Finally, it should be noted that smaller , single factor

I experiments would have precl uded analysis of a number of the

I
effects reported in this study. In part icular , implications

that individ ual and/or program factors may need to be

I incl uded in predictions of psychological complexity may not

I
have emerged had this stud y included only three rather than

n ine separate computer programs (cf . Sheppard & Love , 1977) .

V- V
V

V

1
V

-

V

I ‘

V
-

- . V

I -

1
V

I

.• ‘I

I

h111111iL i — ~~~~~~~~~~~~~~~~~~~~~~~~~
V _____

~~~~
_
~
••_V. _V _ ~~ _r _ ____ VV___-V__.,__,_.. . _ ______ ‘_____

~~
_  

~~~~~~~~ . j ~~~~~,


_ _ _ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

5,0 REFERENCES

Mister, S.J.. , Davis, E.J,, Dtckman, R N , , & Koun i , J.P. An experiment fn auto-
matic quality evaluation of softwa re, Proceedin~s of the Symposium on
Computer Software Engineering,1 1976, 24 , 171— 197 .

Bell , D.E. , & Su ll ivan , J.E. Further ’tnvestl gations into the complexity of soft-
ware (Tech. Rep. MTR-2874). Bedford ,Mass.: MITRE Corp., June ‘1974.

Campbell, 0., & Stanley, J.C. Expertmental and quasi—experi mental designs -for
research. Chicago : Rand McNally, 1V6 . V

Cari so n, W. E., & DeRoze , B. Defense system software research and development
plan. Unpublished manuscript, Arlington , VA.: Defense Advanced Research
Projects Agency, September 1977.

Department of Defense requirments for high order computer programing languages:
Revised “IRONMAN”. Si~p1an Notices, 1977, 12, 39—54.

DeRoze, B. Software research and development techno1o~y in the Department ofDefense. Paper presented at the AIIE Confererence on Software, Washington,
V D.C.: December 1977.

Dljkstra, E.W. Notes on structured programing. In O.J. Dahi , E.W. Dijkstra,
& C.A.R. Hoare (Eds.), Structured programing, New York: Academic Press,
1972.

Fitzsimons, A.B.,& Love , L.T. A review and evaluation of software science.
ACM Computing Surveys, in press. -

Funami , V . , & Haistead, M.H. A software physics analysis of Akiyama’s debugging
• data (Tech. Rep. CSD-TR-144). West Lafayette, m d .: Purdue University,

Computer Science Department, May 1975.

Gordon, R.D. A measure of mental effort related to program clari ty. Unpublished
doctora l dissertation, Purdue University , 1977.

Gordon, R.D. ,& Hai stead, M.H. An experiment compari ng FORTRAN programing time
with the software physics hypothesis. AFIPS Conference Proceedings,
1976, 45, 935—937 .

Hahn, G.J.,& Shapiro, S.S. A catalogue and computer program for the design and
analysis of orthogonal syninetric and asyninetric fractional factorial exper-
iments (Tech. Rep. 66—C—165). Schenectady, N.Y.: General Electri c, May 1966.

Haistead, M.H. An experimental determination of the “puri ty” of a trivial algor—
ithm (Tech. Rep. 73). West Lafayette, md.: Purdue University , Computer Science
Depar tment , 1973.

Haistead, M.H. Software physics: Basic principles (Tech. Rep. RJ-l582). Yorktown
Heights, NY. : IBM, 1975.

32

T~~~~~~~~T_ i ~~ ~~~~ ~~~~~~~~~~~~
-

j
Haistead, M It. Elements of software science, New York: Elsevier North—Holland ,

1977.

Kerlinger , F.N., & Pedhauzer , E.J. Multiple regression In behavioral research.
New York: Holt, Rinehart & Kinston , 1973.

Love, L.T. Relating -Individual differences In computer programing performance
to human information processing abilities. Unpublished doctoral disserta—

J tion, University of Washington , 1977.

McCabe, T.J. A complexity measure. IEEE Transactions on Software Engineering,

I 1976, SE—2, 308—320.
V

Ottenstejn, K.J. k...orooram to count operators and operands for ANSI-FORTRAN
I modules (Tech. Rep. CSD-TR-196). West Lafayette, md.: Purdue University
I Computer Science Department, June 1976.

1 Ramsey, H.R. Human factors in computer systems: A review of the literature
I (Tech. Rep. SAI-77-054—DEN). Englewood , Col.: Science Applications , Apri l

1977.

1 Reiter, R.W. Measuring software complexity: An experimental study. Unpublished
manuscript, University of Maryland, Department of Computer Science, 1977. V

Richards, P. Localization of variables: A measure of program complexity (GE-
TIS—76CISO7J~ Sunnyvale, Calif.: General Electric, December 1976.

I Scheffe, H.A. The analysis of variance. New York: Wiley , 1959.

SVreppard, S.B.,& Love , L.T. A~~rel iminary experiment to test infl uences on
1 human understanding of software. Paper presented at the meeting of the
I Human Factors Society, San Francisco , October 1977.

Shnelderman , B. Human factors experiments in programing: Motivation, methodoloqy,
and research directions (Tech. Rep. ISM-TR-9). Col lege Park, Md.: University
of Maryland, Department of Information Systems Management, September 1976.

1 Shneiderman, B. Measuring computer program quality and comprehension (Tech.
Rep. ISM-TR16). College Park, MD.: Uni versity of Maryland, Department of
Information Systems Management, February 1977.

-~ Sullivan,- J.E. Measuring the complexity of computer softwa re (Tech. Tep. MTR-2648).
Bedford , MA~~MITRE Corp., June 1973.

Tenny, 1. Structured programing in FORTRAN. Datamati on, 1974 , 20, 110-115.

—~ The Military softwa re market (Rep. 427). New York : Frost & Sullivan , 1977 .

We issman, L.M. A methodology for studying the psychological complexity of computer
programs (T~ch. Rep. TR-CSRG-37). Toronto, Canada : University of Toronto,
Computer Systems Research Group , 1974.

33

— .VV!•~ ~~~~~~~~~ VV ~ •r V__ .• - V~5 S_ _ V - -• ~~~~~~~~~ ~~~ •_ V~~ _ VV7~VSV~
_ - - -

V Is . _ . ._ . .S —
- IN~TRIJCT1ON~ TO PART1C~PANTS

I
GOOD MORNING!!

. Today we are going to ask you to parti ci pate in an experiment which
we hope will be both entertaining and challenging.

This work, sponsored by the Offi ce of Naval Research , is being done . -

to make computer programs more readable. To do this , we need to measure your
understanding of a particu lar program. We will gi ve you three Separate programs
and ask you to study each program carefully; then reconstri.~ct that program frommemory wi thout any notes . -

In previous research, we have discovered that recoding a program from
memory is a very sensitive measure of understanding of a program.

Our purpose j~~~ to evaluate di fferent ways of writing a computer program.
It is not to evaluate computer programers . Your performance on a program will
be compared only to your performance on other programs. Your only competi tion
is yourself. All programs and papers that you will be handed are carefully

1
numbered so it i s not necessar y for you put your name on any of these.

We would like you to answer the following questions for our research
purposes :

1. How long have you been programing in FORTRAN professionally?
~.years

months - -

2. Please circl e one of the following : Has yourprimary experience
been in Engineering, StatIsti cal or Non—numeri c programs? V

During this experiment, each of you will be working on different
programs . If someone else seems to finish ear li er than you , don ’t be conc’~rned .
They will have been working on something else enti rely which mi ght not require as
much time.

We will begin this morning wi th a simple test program. We will ask you
to study this FORTRAN program for ten minutes . During this time , you may write
anything , draw a flow chart , or make any notes to help you understand and memorize
the program. When the 10 minutes are up, you will be asked to hand In the programs
and any notes. We will then give you 5 minutes to rewri te the program f’- ’~m memory
as best you can. Since we are interested in your unders tand ing of the program , it
It not necessary for you to memorize statements, statement numbers , or var iabl e names
exactly. It’s O.K. as long as the program still does the same job.

If there are any questions, please ask them at this time.

L&4 V V~~~~~~~V V SV ~~~~~~~~~~~~ V. V V V ~~ V~~~~~~~~~~~ V V ~~~ ~~~~~~~~

____ ____ ____ ____ ____ _______

— V

c E~~~~ 4-’w~~~~~q- .~
.
~
.

E .~ ~~ 0 ~.. C.J 0 C’J ~~ c’J mu I .
~— o~w —•o #’ -

~~ (‘)
0 C.J

I-.
~
_ -

~~~
j  —0’

4.’
in c—.j

‘~ ~ 0 0 I ‘ ~~ oL) E 4~ ~.OCsJ V

‘•- -,- I -

~- 1.0
_ 4.’ ,—

in e’~ ~~. V

-r u ...- ~~ ,
0 ~~ W ~~- c.a c~

.j q~~ ~~
“~~~~~ .-I C~J - c—i V

V ~~. 1.
V ~I W  4.’

— 
~~~~~~ S..

— 4J .’‘,~ ~~ .~~ c- ‘0 0
U, W .0

~ ~Q C~J r r.-
4.3 in ~~.

— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.) E W ’ — C 4.’
in
0 ~~

~~ c--i ~~~ u-i 0
£

I-

0
Co
4.’ ‘.0 ‘.0
0 0~ C in ‘.0 ~~ ‘~~~ C’ 0

~1~~
in ., E5 I ,—
I 4.3 C’)

C) .,-V C _J (—.4
U,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _—0V 4.)
0’ .C Qi

P y, “ C’- C—j
I ~~ r’-

0.0 -~I c-J ‘.0 C.J ~~inS.. I~ V I .— I C’ ‘.0
— r..) ~I- 4.’ 0 C’.J 0

• 4.3 Z
P C%J ____ _____ _____ ____ _____ ________

• —
4.’
U, ‘.0 Csl

X C J > VQ c-J Csj ~~ in ~~
• .~~ ~~ c—.a I ~~c-.iC. C’..,

C’?

V V ~ V~~~~~~~JL
V V~~~~~! V V V ~~~~~T!~~~~~~~ V

T~~~T=T
-~~~~~~~~~~~

4’ 0 V

45 I ~-Ol5 r- 5) — 01.1. .j
___ ___ ___ _ _ _ _0.5) — _____ _____ _______

45 4.) .- W
4’

45 C’) in
IS I.. C’) in I 0 ‘.0

C O U I 0 ‘.0
W I S N ~~~ —
4.’ 5.’ 0 C’)L. 0. ~~0 . 0 4 5W E9- &.

V - ~~~~in 0 4.’
4.’- — O w in C—V-i

0 ~~ .C 0 C’) C%J ~~ ~~~~ ic,
V

~~~~~ 4.’ X ~~
. r-

V 4.)
45 5 )  in ‘.0

in 4’ IS c’.j
E 4- ~s w s 0 C..j I It) C’)45 0 ~~

. -.~ ~~ r-. ‘.0

411 .0
V 0 ~~~V 4 5  5)

5- U) 4.’ 4)
>1 45S.. ~.0• I5r- U (‘si 0 c-si C’) ‘.0C Cr-  V I r— I C’)
4 5 4 5  Q ‘.0

V ~~ — U C  ~~ c-si C’)
- - — _ _ _  _ _ _  _ _ _ _a ~c, 5)~~~~

.,.. —• F o• - S- .’-- U 4.’
1 . C  in C’ 01 Ci C’)-

~~~~~~~~~ 
c-si c’~

S..
4’ 51

* ‘4-. OS . .0- .,-
~~~4.)- 4.)

V C C  U) ~~45 IS C’..’ c-si— ‘4- 51 , C—-.’ c-si in ~~ 0
4.’ ..J ‘.0 C’..’ I 01

C%J 0
— 1.. VQ1 5.’ it)

m E  —UV 5)0)  4.’. .  
IS

_~ 
45 S..

iLl U
. C C  V c-si It)

• ~~ 4.) 5) C—si I ‘.0 0
C-’.) it)

• it)
c-si — _ _  _ _  _ _  _ _  _ _  _ _

• =4 5  4)
0. in ~~0 C%1 -~ c—si in -s~ 0
o 0 C—si c-si .-.~~ (.34- ‘.0 C-..’

— ___  _ _ _ _  
in 

_ _ _ _  _ _ _ _ _

W V

0.



~~~VV ~~ 

~~~~~~~TV

I— >1 5- O~0..— 4.’ C a.’ 0
4.’ in-

0>  S.. IS .— r-~ r’-~V. I 01 01
C)~~~~~4 5 4 ’  S.. I r— 01 C-si

4.) U) 51 in (‘3
V

- 5 ) 0 5 . .
in. - U 

_ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _ _I— U U m h .C

01 0 1. 45 C ill it) C-si ts. ~~ in
( . 3 0 0 .4 5  0 r- C-si

4.3 
V V‘I, 45

C) 
V45 .,- 4-’S.. ,-. -~

. C’) c-si C’ C’0. 45 C~sJ .— C’) VO = 51
- _ V ..J

U
5) 51S.. U 4.’

-

~~~~ 5. 0 ~~ C-si 01 in C’)
_ LU V U) U c-si c-si

IS E V
0’ 5) 0C — ‘.114.-i
Z~~ 0.. ’- _ _ _ _ _ _ _ _ _ -t

V4.’ 4.) V
It) in in Cs.’ in C-’..’ C4’ o .- c~ in c-si

-~~~~~ 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -

•
0 001

43 .,- 4110. 5) 15 it) Cs.’ U) c--i ~~
~.‘ c-.’ ~~

.
V

.0 411

U 41, 4.)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

H
-0 51

4-’

~~
. It) in ~~~ 0 J~5..

• LU In V C’..’ .- ‘-. (1)

Cs.’ —I 55. .
fl - LU’... U

‘.0 It) (114.’
_ _ _ _ _43 (•)

x

in U 9 (‘3 .- I-—.
V 0.

W I i

~ T~ TJ~. L V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

- ~~~~~~~~
-
~~~~:~~~~~~~~ V~~~~~~~~~: ____  -~~~~~~~~~~~r• ~~~~~~T T T T~~~~~~~~~~~~~ T—- 

-

APPENDIX 6 , 3,3

SELECT, CONTROL FLOW LEVEL 3, MNEMONIC LEVEL 1

SUBBOUT INE SELECT(J,B,LU,LP,J1.I~1) 
V

I1!TECER B (J). U,LD(26),Q.i’,Y,N(26),L
FXrER1~AI. L

2 DATA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 iRK, IRL, lEN, lEN, lEO , 1UP, 1HQ, 1~~~, lBS. lET. 1HU, IHV, 1EV,
2 lEN. lET, 1HZ’

1T(J.LE.25) CO TO 90
P~99GO TO 5~090
DO i.e I’1.26
DC I)~ II( I)

• 100 CONTINUE
Do 120 I~~l,25 - V

Q~L (I ,26,Ji,N1)
I \ YsD( Q)

D(W ~~DC f )
D (I)~ Y120 CONTINUE
DO 140 Ial,J
B(I)~ D (1)140 CONTINUE
IF (BAIP (Ji,N1).CT.0.5) CO TO 200
N *  1

~~
L(1,J,J1jfl)

U~ BC ~~
CO TO 500

200 K1~J+I
K~LC 11, 26 , Ji, Ni)Us D( K~

500
urn
I E c ~~~TUNC’rTON L(I1, Ni, J1.II1)
INTEGER 11. Ni , Ji , Ni
IT (N1.GE .I1) GO TO 10
IY~~~Ni
Ni • 11
Ii S

10 R • NI — Ii + 1
V C • RAN (Ji , Ni)

L . ITIX (G *R + FLOAT(I1))

_ _ _ _  
- ~~~~~~~L~~~~~~~V V~~~~~~V V ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~-- 

~~~~~~~~~~~~~~~~~~ LT~V. :~~ ‘ - -
~~~

-
~~ 

-
~~‘: •I~~~~~~~~

-
~~~~ ~~~~~

- -

~~~~~~~~~~~~~~

APPENDIX 6.3,1

INTEGI CONTROL FLOW LEVEL 1, MNEMONIC LFVEL 3

SUBROUTINE Q&TR( LEOUND • UBOTJND, ABSEBR, ND IN, FNCT. RYSULT, ERROL ARRAY) V

DIPIENSION ARBAY( NDIM)
I1~TECER ERROR V

REAL LBOUND. INCRE
ABRAYC I) . 5*( FNCT( LBOUN’D) +FNCT( UBOUND) )
WIDTH UBOUND-LBOUND
IF (NDIN— 1)90,90,10

10 IF (WIDTH)20,110,20
20 RAFW1D~W1DTR

ERRI~~D ABSERB.’ABS( WiDTh)
CON 1~0.VAL 1~~l.

- - INDE~c3~ 1
DO 00 I=2,NDlIf

V P U N A R R A Y (  1)
CON2~COI11
INcRE~aAFVIDRAFVID•.5*HAFWID
VAL1s .5*VAL 1
ABCUM’LBOUIID+EAFWID
DLIX’ 0.
DO 30 J~~1, Z NDEX3
DLIX DLTX+FNCT( ARCUID
AZtCU)1= ARCUN+ INCRE

30 CONT I NUE
ARRAY( I)a .5*ABMY(1 1)+VAL1*DLTX
X’rBAPL= 1.
INDEX 1~ 1—1DO 40 J~~1, iIWEX l
INDE~~~ 1—JETBAPL~4. * XTRAPL 

____

ABBAYC INDE~~~) • ARPAYC INDE~~ + 1) +( ARRAYC Iiu~ i~~+ 1) -AREA’T( IND~~~~
) )~

1 (XTRAPL-1.) V
40 CONTINUE

CON i~ ABS( RZSULT-ABRAY( 1))
IF( 1—5)70,50.50

50 IF (CONI—EBBIIED) 110,110 ,60
60 IF(CON1—C0112)70, 120. 120
70 I~ DE~~~ 2*INDE~C3
00 CONTINUE
90 EBROR’2
100 RESULT WIDIB*ABMYC 1)

110 ERMR~0• GO TO I$0
120 EBROR~ 1RESULT WIDTR*RESULT

RETURN
END 

4

FUNCTION FNCT( ARGUm
FNCT 1 ./(2 .+ABCUIO
R~~TUBK
END

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

~~
- —

~~~~~~~ 
~~ ~~ ‘r~-

V 

APPENDIX 6.3,2

= CKISQ , CONT ROL FLOW LEVEL 2, MNEMONIC LEVEL 2

SUBROUTINE CEISQ( N&T, N, 
~~~, CS, DEC. ERR, RTOT, CTOT)

INTEGER ERR. DEC. PTR
REAL MAT

VDIMENSION XAT 100 ,RroT(!c, ,CTOTUI)
NM=N*X

I ERR~0
CS O.0
DEG (N—1) *CX—1)
IF (DEG .GT. 0) GO TO 1OI ZRR~2

I RETURN
10 Do 20 I•1,N

RTOT (1)20.0I PTR~ I—N
DO 20 J~ 1,N V

PTh~PTR+N
RTOT(I)ZRTOT(I) +NAT(PTR)

I 20 CONTINUE
PTR~e

:1 DO 30 J*1,N
CTOT(J)~0.0Do 30 I~~l,NI V rrR:PTR+ 1 V~~~~~~~~~~~~~ V V V -

I CTOT J =CTOTsJ)+MATCPTh)
30 CONTINUE

GTOT e.e- - I DO 40 Izi, N
V

I CTOT CTOT+RTOTC I
40 CONTINUE

- : IF (NIl •EQ. 4) GO TO 60
t PTRae

DO 50 .I~l,3Do 50 I•l,N
V PTR~PTR+ 1

• EXPTZ WTO’l’(I) *CTOT(J) .“CIOT
~~~V I IF (EXPT .LT. 1.0) EBR~ i- I CS CS+ ( !IAT( PTR) E)~~T) *( NATC FIB) —~~~T) ‘~sisrr • -

50 CONTINUE
RETURN1 60 CSs CTOT*( ABS~ MAT ( 1) *NAT( 4) -MAT( 2) *M&T( 3)) -CTOT~2. 0) **21 1 /(CTOT(l)*CTOT(2)*RIOT( 1)*ftl’or(2))

70 RETURN
END

i i
- i - I -  •



~~~~~~L ___IT

~~~~~ 

I ~~~~ ~~~~~~~~~~~~ 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

APPENDIX 6.4

MEASURING COMPLEXITY OF CONTROL FLOW

In developing a metric for software complexity , one

approach might consider the number of statements i-n a

program , thus equating length and complexity. A slightly

more sophisticated measure is the percent of statements that

affect control flow. A Bell Telephone Laboratories study

(Davis, Dickman , K ouni , & Mister , 1976) used this metr ic on

a large number of programs. It has a problem because

complexity can be held constant as the size of the program

V increases.

To assign a metric to control flow complexity , we mus t

examine the elementary control structures of a program .

This requires breaking the program down into elementary

building blocks , assessing the complexity of each block , and

then combining these assessments into higher level

components. -

Baistead (1975) accomplished this decomposition and

synthesis by choosing operand s and operators as the smallest

conceptual units to develop E, his measure of the complexity

of a program .

At a more abstract level , we can define statements and

groups of statements which represent cognitive blocks (or

chunks) to a programmer (e.g., DO , GO TO). These blocks are

— probably more represen tative of the way people manipulate

concepts than the smaller units Haistead uses. Ramsey

41

V ~~~~~~~~~~~~~~ ~~ ~~~

(1977) is currently involved in experimental studies to test

this assertion .

- Another attempt to work at this more abstract level is

show-r~ by McCabe (1976), who has defined complexity in

relation to the decision structure of the program . He

V ignores the data structure totally. His complexity metric,

V (G) , is the classical graph—theory cyclomatic number

defined as: * edges — # nodes + # connected regions. Simply

stated , he Counts the number of basic control paths through

V a computer program .

The simplest program possible would have V(G) = 1.

Sequences do not add to the complexity. IF—THEN—ELSE is

valued as 2, increasing the complexity by 1, a DO or DO

WHILE is also 2 , the assumption being that there are really

only two control paths , the straight path through the DO and

V the return to the top, regardless of the number of times

executed . Clearly a DO executed 25 times is not 25 times

more complex than a DO executed once.

McCabe ’s method is explained only for structured

programs. In order to compute the metric for unstructured

programs, several alterations were made. An additional

RETURN was counted as an extra path in each case, keeping

the cyclomatic number the same as a “GO TO end ” would have. V

For statements of the form: IF() 100 , 200 , 300 , the

complexity was increased by 2 as opposed to the logical IF ,

which increases the complexity by 1. These are small

VV~~~V .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



~~~~ -‘~~~~~ ~~~~~~~~~~~~~~

V
changes which appear to be reasonable extensions of McCabe ’s

theory. However , one question which arises is the case of

the arithmetic IF where two paths are the same:

IF (). 100, 100 , 200
V

V

Should this add 1. or 2 to the complexity? In order to

standardize the procedure, it was counted as the standard

arithmetic IF with 2 added to the V(G) mr~tric .

A limitation of McCabe ’s measure is that it does not

deal with an important feature that may affect program

V complexity. There is no provision for considering the level

V
of nesting in various constructions. For example , the

complexity of three DO loops in succession would be rated

exactly . the same as three DOs that are nested . Possibly at

some later time it will be decided that these two conditions

have the same complexity, but at this time it seems rash to

prematurely exclude nesting as a major contributor of

complexity. Presently, many programming shops limit the

degree to which nesting is allowed because managers feel it

causes problems.

Sullivan and his associates (Bell & Sullivan , 1974;

Sullivan , 1973) at the MITRE Corporation , have incorporated

the effects of nesting levels into a quantitative measure of

complexity . Like McCabe , Sullivan works with a program flow

graph , making his metric independent of the programming

language used . Sullivan breaks the code into units such

that he can define a “local complexity ” at any point as the

~

~~~~~~~~~~~~~~~~~~ 



- _ _ _ _ _

~~~~
V
~

- VV ~
_ - • V V ~~~~~~~~~~~~~~~~~~~~~

- -

- number of “active concepts” one must consider at that point

- in the program. He suggests several ways of combining the

local complexities into an overall complexity measure for

-
- the program . For example, sum the local compl exi ties or -

take the largest local complexity. :

The problem with this metric is that it is complicated
-

i to compute and has been implemented only in JOVIAL to scan

JOVIAL code. Hand calculation would be extremely tedious

and probably error—prone for any non—tr ivial prog ram. It is

-
- not even clear that the decompositions are unique in all

V cases. Were it discovered to be a good predictor of

- complex ity, it would still take machine implementation in
-

several languages to get people to use it. A similar metric

-
which can be easily computed by machine has recently been

-
V

described by Richards (1976).
V

Reiter (1977) has developed a new metr ic, designed to

eliminate the problems discussed above. Be uses the same

rating scheme for the three basic structures described

above , but in addition , assignment statements are accounted

for in the complexity metric. He represents a program as a

group of nested b~oxes. Complexity is eval uated from the

innermost .part of the nest outward , adding a weighting

I factor for each escape to a higher level. This appear s to

be a reasonable approach. However , the metric is in the

I development stage and has not been tested . It is therefore

L difficult to decide whether the allocation of values to the

44
4.
- --- — —

~~--

1T1TT~
‘~- ~~~~~-~ -~~~~~~~~~~~~~~~~ -~~~~~~~~~

~~~~_ _ _ _ _ _ _  

- 
~~~~~~~~ 

V

0.

-
-,

assignment statements and to the escape from the nested

V

levels is well chosen. —

- I i .

-

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~ V~~~~~~~V~~M



r’~-~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_______  ~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(~) ~,, — C’ ~~V E C’ ~~ — C’ C’ C Z ~~~~~~

< w ~~‘ ~~ I— — C’ C’
~ ~

. ~~ v, ~~ ~ —w -~
V

-

-J ~~- -~~ <I-.
~~ c~j — — C., =o ~C’ Z ~

. < tP~ ~.Pi .. ~~ C’ — ~~

I-,_ v, -

)~ ~~
. ~~~~~ (1J © -~ ~~ ~~ —

-~ V

I

C’
~- — C’ ~~ < ..J ~~ — ~M — ~~

. >- ~~-C.) C’_~ V~ Ce.) (/))~
I....)- < L~J ~~ ~~ Z Z

— C’ — C’ C’ ~- ~~. ~- C’ C’I- ~~ = u_ ~-. ~~. I- C’ C’) . L&J ~~ C’ ~~ — C.) I- UJ ~~ — ~~ C’ C’ C’
- -

-~~I-_ v)
‘1 • —

~~ ~- ~-. ~-. c’-j e~= ~~ c~J — ~~, C’ ~~ C’ C’ ~ . ~— —
— C~ E o z ~~ ~~ w l~- I- >< ~~ C’

Z UJ C.) C’ ~~ ~. c.~ C~ L~J Z ~~~ ‘~~~ ~~ C’ C’ C’ Z

C’ Is.
— — —— — —--

~~- uJ
I- — ‘I,

-. ,_ .- ,- C%J
X < .. .i Z L~ Z C’ ~~ I- ~~ = ~C .J E — ~~ .. .I ~~

uJ L5J - * 1
-~ _I

C.)

IM

—
— p.. C•.J ‘- C” =V

~)
~~ C’ s... uj

~~. .J ,- c~j
r,., ~~C’ ~~ C.) C’ C’ — — >C ..J ~~~ ~- ~~~W C ’ O~~~~~~~~~~~~~~~~~

—
j ~j ,- e.j (‘~ V ~~~C~J — -‘ ..J -~ ~~.. ~~. ~~. ~~. C’ ~~ ~~ .-J -.1 ~ J .~I C’ C’ C’ C’

~~ — U) ~~ LU LU LU UJ C\J ~~= ~. ~. — = ~~ C.) ~~ W C.) C.) C.) ~~~ ~~. ~~. ~~.

~~~~~ t V

— U )
X < ~~ ~~ U) r.~ ~~ = ~< C’ ~~ b- ~~ — ~. C’ C~ r-J ~~.

— 

-J 



_ _ _  _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a

I — ~ V
’
~V V ~~~~~~~ ~~~~~~~-- —

V ~~~~~J~~~~~~U) Z 3.
I- C’ C’ — J wU) I- ~~ = L~ V C’ - ‘- ‘- W 8. ~-

C’ C.) ~-)< L~ ~~ — = U) C’ LU U)
C’ C’ — C C’~J — C’ —— C.) C.) UJ — U) C.) C.) U) Is. ~~ = — C’ U) 8.

C\J C
C’

= — —— cV-J = = =— C~J — C.) ~- C’ U) = ~~ I- C. C.) C..~ C 8.
C’ w Z ~~ C’ — ~~~ = ‘- ~— c~ c-,j - C’ w w ~~ ~~ —

4 ~~ C’ ~ — C’ C.) U) LU — U) C.) C.) U) Is. .- — C.) 3. 3. C.,
Is.

~~ _ _ _ _

< = Z _J L~ — Z >~ C’ ~(~~ C.) ~~ 3. C’ — P.4 U) ~~ ~ =
-• V -k

—

- -

C’ -

8. —

=
— C’ C’ ~~ ~— C’ C’ .J — C~.i -

— Z -J ~~ ~~- = — LU IsJ X 8.)~).CLU (/, LU E — C’ ~~ ~~ LU LU LU
0 0 C U) — C. V, ~~ C’ Is.. ~~ Z ..J C’ - C.) ~.D — ~~ C’ C’

— E ~~ ~~~ C’~~~~~~~~~~~~ J
_J Is. LU < ~~ = LU C.) > — C.) — < C’)< — — —= - _ _ _ _ _c~ IsS

U). =
~~~~ z

~~ — LU ~~ C’~J C’ C’ ~~ C.) C.) C~ ~~— ~~ C’ Z J U) IL. — ~~ C’ I-. L~ ~~.

LU ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C’ C’ ..J = I- ~~ LU — LU U) — = LU C.) ~. — C.) — >C C’ ~~ — —

8. _ _ _

3. LU 
-

3.

I.-
LU — U)
_J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LU

-I

~~~~ 

i

_ _ —

-

U) LU C — ~~ — C’
~~ C’ U) — — —LU ~~ — — ~~ LU C.) C.) C.)
< C ’~~~~~~~L U 3 . J~~~~~~~~~~~ L~~~~LI. Is.

-
V

H — 1 Z
LU ~~ U)

~~ Z C’
V LUJ ~~

= ~~ LU 3. P- ~ ~- I~ U.. Is. — ~~

3.

Z~~ ~~~
-I

_ _ _ _ _ -~~~~~~

_______ V V -V~~~~~~~~~~~V V ~ ~~~~ ~~~~~~~~~~ ~~~~~~~~~

-
V

_ V - -
-

LU ~~ ..J — C’J C’) C.) C’ C~.JI. Z~~~~- L) t - ~~~~ ~~~~~~~~~ ~~~~L U P — Z~~ —
C’) CO — ~~ I- < U) ~~ 0 I- LU LU LU U) ~~ 3.
~~ 0 ~~~E I- LU — U) = ..J LU C’ ~~ — ~- ~~- I- .-U) _J ~~ C’ P.4 C.) — U) U) U) v — ._j —

*
C.’

r = Z
LU .- C~J ..) C.J Z

C’ — C’ 3. 4 I- I- ~~ C.) C’ C.) C’— C.D ~~ C I— LU U) — I— I— ~~ 8. U C Z C’ — C%J
~~ C’ LU U) J ~~ Z ...J C.) U C.) ~~ ~~ _i ‘0 ~J — — I —8.

C’
—U)

—
— U) p. . ~%J ~.‘J ~ J ~ J ~~~

. ,_ C’) C’) C’) V LU-. Z< s Z ~~~~~~X~~~~~~~~~~~~~~~~~ X — — I —~~~~~~~~~~ ~~LU
V P

• 8.

U

8.
— ~~ LU U) ~-J ~~ ~ J C’ —-. C’) (I) LU ...J ~~ LI. LI. ~~ — 3. I- Z

Z C’ t-)< LU LU. Is I- ~~ LU C’ C’— � I- = U) C’ I- C’ C~ C’

_
LU — C.)

C~%J — ~-C’ C’ ..J _I C.’J .- 8. C~ ~-

•
LU ~~~ 0

‘PLU 8. U C .)
C. LU
C. ~~ = =cC — —

—LiJ - — (/) ,- ,- 0 0
-J < Z~~~~~~~~~~~~~~~~~~~~’~~~~~~~~J F Z Z

LU
cC -k ‘P -P

4 — P.4- .
cC

C.) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _-

l V ~ =
— _ _ _ _ _

LU

-J
V — ~~ Is. C.) — C~J — — J~- LU C’C’) U) cC — ~~ LU C’ LI. I- 8. ~ J — I.- .J — — _J
E0 ~~~~~~~~~~~~~ C’~~~~~~~~~~~~~~~ Z 3 . LU~~~~~~~~~~~~~~~ Z~~~~~~~cCU ~- LU = ~~ = LU LU ~~J U) Z C — — C.)U)~~~~~~U

k- ~ J C’).C 0 8. C’C.)
~~~~~~~~Z~~~~~~~~~~U~~~~~~~J ~~LU IsJ U) U — LU Z ~~ U) — ~~ Z Z V — ~ 1 1 U) ~~

— — _ —3. C’ C’ ,-  Z — _I ~) X ~~ —
LU
-I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-

V

— APPENDIX 6.6.1 •
V V

I t

a.

-
CATTERGRN OF (DOWN) HA [.STEAD 8

-
(ACROSS) MCCABE V (G !

6.00 8 .00 10.00 12.00 14.00 16.00 18.00 20.00 22 .00 24.00

250.00 + . +—.
V I I

I I
V I I

I I
227.50 + +

I I
I I
I I
I V - I

205 .00 + +
I I
I I

• I V

I I
182.50 + + —-

I
I r

• I I
V I

160.00 +
I I
I

V I --. I • I
I I

137 .50 + - * + :
- . I I

I -
-

- I
I I -

I a
115.00 + + -

I I -

I a * r
I ~V~~~~~~~~~ V V - - I
x a a r

92 50 + a +
t a

- I
a

V

i a a I
I a I

70. 00 + * +
I a * I
I I
I I
I I

47 .50 + +
I a * i

- I V * I
a V

a .
2 5 . 00 + * a -- +

5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00

CORRELA flON (R I— .421 6 R SQUARED .17788 SIGNI?ICANCE R — .01422
STO ERR or ES? — 45 .35207 INTERCEPT (A) — 34 .05423 STO ERRO R OF A — 21.96209
SIGNIFICANC E A — 06678 SLOPE (B) — 3.61582 STO ERROR OF B — 1.55468
SIGN IFICANCE S — 01422
PLODFED VALUES — 27 EXCLUDED VALUE S— 0 M ISSING VALUES — 0

VI~

— ~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V~~~~~~~~~-~V V

_____ 
_ - — -

APPENDIX 6.6.2

V SCATTE RGRAN OF (DO WN > TOTAL LENGTH (ACROSS) MCCABE V I G I

6.00 8 00 10.00 12.00 14.00 16.00 18.00 20.00 2 2 . 0 0  24 .00V .
60.00 + +

I - I
I I
I I
I I

57.00 + +
I V I
r a a

I I
I I

- . 5 4 . 0 0  4. - 
+

V I I
V I • a!

I I
I * I

51.00 + 2 + —

I * 
V 

* I
- - I I • I

I I
• I * I -

4 8 . 0 0  +
I * * I
I I

-. 
- I V V V  - - - V I

I • I
— 

V~~ 45.00 + - 
* +

I * I
I * a I
I I— I I

V 42 .00  + +
I * I
I * I

— •  I I
I - - I

39 .00  + * +• r * 
- a -

I I
r a a
I I

36 .00  + * +
I V I
I I
I I
I . I

3 3 . 0 0  + +
I I
I I
I I
I - I

30 .00  + +

5.00 7 .00 9 .00 11.00 13.00 15.00 17 .00 19 .00  21 .00  2 3 . 0 0  2 5 . 0 0

C CORRELATION CR )— .750~ 5 R SQUARED — . 5 6 3 6 3  SIG NIFICANC E R — .00001
STO ERR OP EST — 4.04616 INTERCEPT (A , — 35 .83217 STD ERROR OF A — 1.95939
SIGNIFICANC E A — .00001 SLOPE (B)  — .78818 STD ERROR OF B — .13870
SIGNIFICANC E B — .00001
PLOTTED VALUES — 27 EXCLUDED VALUES— 0 MISSING VALUES — 0

so
_ _ _ _ _ _  -~~~



V -- V~~~~~~_- ’V_ V ~~~~~~~~ - - -

L
V
I

APPENDIX 6 .6.3

1

• ATTERGRAM OF 
- 

(DOWN) TOTAL LENGTH (ACROSS) EALSTHAD S

36.25 S8.~~~ 81.25 103. 75 126.25 148. 75 171.25 193. 75 216.25 2 3 8 . 75

60.00 + +
V 

I . 
V

V I
I I
I I

57 .00  + +
— I I

I * * 
V I

54 .0 0 + - +
- — I I

I a * I
I I
I * I

51.00 + V 
+

I * * I —

I a I
I I-- I * I

48 .00  + 4.

—. I *a I
I I
I I
I I

45.00 + * +

f ~~~~~~~~~* a  
a

42.00 + 
* 

V V

39.00 + * -- - - - V +

I * *  - V~~~~~~ * _ • • V~~~~~~~ V . - I
I I

V I aa I.. I I
36.00 + * +

I I
- -- I I

— 
I - I

— I I
33.00 + +

I I
I I
I I

. I I
30.00 + +

25.00 47 .50 70.00 92.50 115.00 137.50 160.00 182.50 205.00 227.50 250.00

COREELATION (H)— .46986 R SQUARED — .22077  SIGNIFICANCE H — .0067 0
STO ERR 0? ES? — 5.40692 INTERCEPT (A) — 41.39306 STO ERROR 0? A — 2 .03565
SIGNIFICANC E A — .00001 SLOPE (B) — .05754 SF0 ERROR OF S — .02162
SIGNIFICANCE B — .00670
PLOTTED VALUES — 27 EXCLUDED VALUES— 0 MZSSZNG VALVES — 0

51 -

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _



~~~~~~r._~
VV
~ = ~~~~~ 

~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ -

H - 

H
APPENDIX 6.6,.4 

V

—
/ 

-

- V

1 SCATTERGRAI OF (DOWN) PERCENT COR RECT (ACROSS) TOTAL LENGTH
V 3 1.50 34.50 37 .50 40.50 43.50 46.50 49.50 52.50 55.50 - 58 . 5 0

100.00000 + .I . I
I I
I I
I I

90.00000 + * +
• I V

I I
- - I I

I
V 80.00000 + -

I * I
I I
I I
I * * - I

70.00000 ~~ * +
I * I
I i
I I
I a I

60.00000 + * +
—- I I

I - 
a £

I * I
I * *

50.00000 + * V 
+

I 
V 

* - x
I * - I
I - * * I

— I - I
40.00000 + * +

I - a * I
I I
I * I
I V *  I

30.00000 + * 
- 

* +
I V - * I

— I V I
I 

V a
I I

20 .00000 + +
I I
I - I
I I
I I

10.00000 + - +
I I

- I I
I I
I I

0 +  +

30.00 33.00 36 .00  39 .00 42 .00 45 .00  48 .00  51.00  54 . 0 0  57 .00  6 0 . 0 0

CORRELATION (N)— — .52643 H SQUARED — .27713 SIGNIFICANC E H — .00240
SF0 ERR OF ES? — 14.87754 INTERCEPT (A) — 120.10065 STD ERROR OP A — 22.55263
SIGN IFICANCE A — .00001 SLOPE (B) — —1.50394 STD ERROR OP B — .48579
SIGNIFICANC E B — .00240
PLO TTED VAL UES — 27 EXCLUDED VA LUES— 3 MISSING VALUES — 0

- 52 
---“ - -—- V - - - - -—V - - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V---— - - -



APPENDIX 6.6.5

SC flPGRM OF (0011W) PERCENT CORRECT 
- 

(ACROSS) NCCAU V ( GJ

6.00 6.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00
.1 * 4 * 4 I — -t- ——-— $ —- t 

+____V
~~~~t I -t----—— t 4 —,  I * I 4

100.0 0000 + +
I I -

I .
I

I I
I I90.00000 + * +
I I
I - II I~~~I - 1-

60.00000 + +
I * - I
I I
I I
I * * - I70.00000 + * +1 * I --

I
I I
I a

I60.00000 + * + -
V I I

I * I
1* I .z * * I50.00000 +

V
* +

a- I
I V I

a
I I

- 40.00000 ~ - * -

I V -
*1I I

I I• I * - I30.00000 + *
- - -

* +
I ~~

- I :I -
I VI * II I- 20.00000 + + -

I I
I II I V

1 I—
10.0 0000 + +

I I ,
I I
I II I0 + +
• t 4 4 P 6 4 4 4 * I— I- - 4 P I 4 — +—----—-— t t I I.
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 23.00

CORRELATION (1)— — .44 946 1 SQUARED — .20203 SZGWI?!CAJICE I — .00933STO EU or UT — 15.63129 INTERCEPT (A) — 68.32077 STO ERROR OF A — 7.56957SIGNITICAIIC I A — .00 001 SLOPE (I) — —1.34811 STO ERROR OP I — .53565
SIGWI?ICA$CI I — . 00~ 33

V
PLOPTID VALUES — 27 EXCLUDED VALUES— 0 M ISSING VALUES — 0

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V VV ~~~~~ V V~~~~~~~~ V



! Y

— V VI—’ 
- - V

APPENDIX 6.6.6
V /

- i~ V 

V

V
~~~~.i _ V~~~~_

C V

CA?TERGRM OF (DOWN) TRANSFORMED PERCENT (AC ROSS) TRANSFORMED LENGTH

a. 1.25 3 . 75 6 . 2 5 $. 75 11.25 13.75 16.25 18.75 21.25 23.75

50.00 + . + -

I
I I V

a. I I
I a I

40.00 + 4
I - I
I I

I
V I

30.00 + +
I I

V I
a. I - I

I * * I
20.00 + 4 —

I - * I
I I
I I
I I—

10.00 + 4
I I

V I I
I I
I - I

0 -*2 2 * - - +
1*a 2*

V V I
I * *

V V
I

I I
I ** * I

—10.00 + +
— I

• I I
I V_ V V V

-
I

I V V £
—20 . 00 + a - V

+
I * V * I

C I ~~~~~~~ I
C I * I

-— I * I
—30.00 ~ - * -4.

I I
I I
I I

—
- I V I

— 40.00 + 4
— , I V I

- I I
I I
I I

— 3 0 . 0 0 + +
-

.

0 2 .50 5 . 0 0 7 .50 . 10 .00 12 .50 15.00 17 .50 2 0 . 0 0 2 2 . 5 0 2 5 . 0 0

4 CORR!1.A?ION C R) — — .37695 R SQUARED — .14210 SIGNIFICANC E H — .02630
U STO ERR OF ES? — 15.46792 INTERCEPT (A) — 3.33687 STO ERROR OF A — 4.23920

SIGNIFICANC E A — .21930 SLOPE (B) — —1 .30229 STO ERRO R OF B — .63998
SIGNIFICANCE B — .02630
PLOTTED VALUES — 27 EXCLUDED VALUES— 0 MISSING VALUES — 0

1:

APPENDIX 6,6.7

/
L. - - -

~C~ATTERGRAN OF (DOWN) • TRAN SFORMED PERCENT • (ACROSS)
-

TRANSFORMED V(GI

1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00
- +——+————-4-———+———+————+———+————+— ——— +————+———+— ——— +———— +———..+————+———— +————-4-.——— +———+————+———+ .

50.00 4 + V
I - I

V I I
I I
I * I

40.00 4
I I
I £
£ I

— I I
30.00 ~ V + -

I I
I I
I £

a I * - I
20.00 +

1* I —-

I I
I I
I * I

10.00 4
I I
1* I
I I
I I

0 + 3 * V +
16 * - - I

• I * * * -
- I

I - -I
I - - 2 V I

—10.00 + +
I * I

— I - I
• I I

I ~~~~~~~ •~~~~V~~~~V V V V V~~~ V ~~~~~~~~~~~ V V ~~~~V ~ • V V V V - I
— 2 0 . 0 0 • V V -

- + -

I a * - - - -

I * I
I * 1
I - * I

—30.00 + +
I I

— I I
I I
I I

— 4 0 . 0 0 +
I I

C . I - - I
- I I

I - I
‘ —50 . 00 4 +

+———+————+————+— —— + ———— + ———— + ———— * -- +- — - —+— —— — +———— 4—__ +—__ +————+————+————4——— — +-.—— +———— +———— + .
-— — 0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

p

COR R ELA TION (R i — — .56248 H SQUARED — .31638 SIGNIFICANC E H — .00113 V

$70 ERR 0? ES? — 12. 79068 INTERCEPT (A) — 4.62167 SID ERRO R OF A — 3.08226
SIGNIFICANC E A — .07314 SLOPE (B) — — 1 . 6 3 8 12 570 ERROR OF a — .48159
SIGNIFICANC E B — .0011 3

~~ PLOTTED VALUES — 27 EXCLUDED VALUES— 0 MISSING VALUES — 0

V V VV ±V V V . V

V~~~~ ~~~~!V V V ~~ .~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
APPENDIX 6.6.8

SCADTERGRM OF (DOWN ) 
- 

TRANSFORMED PERCENT (ACROSS) 
- 

TRANSFOR M ED S

2.75 18.25 33.75 49.25 64.75 80,25 95.75 111.25 126.75 142.25
f .

60.00 + 4
8 I I

I I -

I ‘ I
I I

48.00 + +
I I
I * I
I - I

-~~~~~ 
I I

3 6 . 0 0  + 4
I I
I - I
I - - - V - I
I I

24.00 + * - -4.

I I
I I
I I
I I

12.00 + 4
I I-
I *

I * I
I I

0 + 5 * *  +
I 4 1
I * * * - I
I * * - I -( .  I I -

—12.00 + 
- 

4 -

I - I
I I
I * I

— I * * I -
C —24.00 4 * * - + -

I I
I - a I
I a I
I I

—36.00 +
I I
I I
I I

— I I
—48.00 -4. +

I I
1 1
I I

- I I
—60.00  + 4

I
— —5.00  10.50 26 .00  41.50 57.00 72.50 88.00 103.50 119.00 134.50 150.00

CORRELATION (H)— — .09678 R SQUARED — .00937 SIGNIFICANCE R — .31553
570 ERR OF ES? — 15.60792 INTERCEPT (A) — —2 .59806 STD ERROR OF A — 3.57718
SIGNIFICANCE A — .23720 SLOPE (B) — — .04662 STD ERROR OF B — .09589

V SIGNIFICANC E 8 — .31553
PLOTTED VALUES — 27 EXCLUDED VALUES— 0 MISSING VALUES — 0

~~~~~~~~ 
V~~~~ f -

-
- -

.
. -

-

- -

~

~~~~~V
VV~~~~~~~~~~~~_~~~~~~~~~ V~~~~~~~~~~VV V ~~~~~~~~~~V 



-~~~~~~ — V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~ VV ~~ VV~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V - 
-

- -

OFFICE OF NAVAL RES EARCH , CODE 455
TECHN ICAL REPORTS DISTRIBUTION LIST

Director, Engineering Psychology Office of the Chief of Naval Operations,
Programs , Code 455 OP 987H - 

V

Office of Naval Research Personnel Logistics Plans
800 Nort h Quincy Street Department of the Navy
Arl ington, VA 22217 (5 cys) Washington, D.C. 20350 - -

Defense Documentation Center Mr. Arnold Rubinstefn 
- -

Cameron Station Naval Material Coninand
Al exandria, VA 22314 (12 cys) NAVMAT 0344 V

Department of the Navy
Dr. Robert Young Washington, D.C. 20360 - . —

Director, Cybernetics Technology Office
Advanced Research Pro4ects Agency Comander
1400 Wil son Blvd. Naval Air Systems Coninand
Arlington , VA 22209 Human Factors Programs, AIR 340F V

Washington, D.C. 20361
Office of Naval Research
International Programs Consuander
Code lO2IP Naval Air Systems Coninand
800 North Quincy Street Crew Station Design, AIR 5313
Arlington, VA 22217 Washington, D.C. 20361

Director, Information Systems Mr. 1. Momiyama L
Program, Code 437 Naval Air Systems Coninand
Office of Naval Research Advance Concepts Division , AIR 03P34
800 North Quincy Street Washington, D.C. 20361
Arlington , VA 22217

Coninander -‘ 
- -

Comuianding Officer Naval Electronics Systems Coninand —

ONR Branch Office Human Factors Engineering Branch
ATTN: Dr. J. Lester Code 4701
495 Sunaner Street Washington, D.C. 20360
Boston, MA 02210

Dr. James Curtin
Coninanding Officer Naval Sea Systems Coninand
ONR Branch Office Personnel & Training Analyses Office
ATTN: Dr. Charles Davis NAVSEA 074C1 V

536 South Clark Street Washington , D.C. 20362
Chicago , IL 60605

Di rector
Dr. Bruce McDonald Behavioral Sciences Department
Office of Naval Research Naval Medical Research Insti tute
Scientific Liaison Group Bethesda, MD 20014
American Embassy , Room A—407
APO San Franc isco, CA 96503 Dr. George Moeller

Human Factors Engineering Branch
Director, Naval Research Laboratory Submarine Medical Research Laboratory V

Technical tn-formation Division Naval Submarine Base
Code 2627 Groton, CT 06340

• Washington, D.C. 20375 (6 cys~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I i
Mr. Phtll tp Andrews Runtan Factor Engineer ing Branch
Naval Sea Systems Coninand Naval Ship Research and Development
NAVSE.A 0341 Center, Annapolis Division
Washington, D.C. 20362 Annapolis , MD 21402

Bureau of Naval Personnel Naval Training Equipment Center
Special Assistant for Research ATTN: Technical Library

Liaison Orlando, FL 32813
PERS-OR - .

Washington , D.C. 2037Q Dr. Al fred F. Smode
- Training Analysis and Evaluation Group

Navay Personnel Research and Naval Training Equipment Center
Development Center Code N—OOT

Management Support Department Orlando , FL 32813
Code 2lO
San Diego, CA 92152 Dr. Gary Poock

Operations Research Department
Dr. Fred Muckler Naval Postgraduate School
Navy Personnel Research and Monterey, CA 93940

Development Center
Manned Systems Design , Code 311 Dr. A. L. Slafkosky
San Diego, CA 92152 Scientific Advi sor

-

- Coninandant of the Marine Corps
• Mr. A.V. Anderson Code RD— I

Navy Personnel Research and - Washington , D.C. 20380

~ I Development Center
Code 302 Mr. J. Barber
San Diego, CA 92152 Headquarters, Department of the Army,

• DAPE-PBR
LCDR P.M. Curran V

Washington, D.C. 20546
Human Factors Engineering Branch

— Crew Systems Department , Code 4021 Dr. Joseph Zeidner
Naval Air Development Center Di rector , Organizati on and Systems
Johnsville Research Laboratory
Warminster, PA 18950 U.S. Army Research Institute

V 5001 Eisenhower Avenue
LCDR William Moroney Al exandria , VA 22333
Human Factors Engineering Branch
Code 1226 Dr. Edgar M. Johnson
Pacific Missile Test Center Organization and Systems Research
Point Mugu, CA 93042 Laboratory

U.S. Army Research Lab
H uman Factors Section 5001 Eisenhower Avenue
Systems Engineering Test Directorate Alexandri a, VA 22333
U.S. Naval Air Test Center
Patuxent River , MD 20670 Technical Director

-
-

U.S. Army Human Engineering Labs
Dr. John Silva Aberdeen Proving Ground
Man—System Interaction Division Aberdeen, MD 21005
Code 823, Naval Ocean Systems Center
San Diego, CA 92152

_ _ _ - V -—— ~~~~~~~ - -.-~~~~~~~~~~~~~ ~~~

-‘
~~~~~ 

~~~ ~~~~~~~~~~~~~~~~~~~ 
V~~

-
~~~~~

U.S. Air Force Office of Scientific Dr. Stanley Deutsch.
Research Office of Life Sciences

Life Sciences Directorate, NL KQS, NASA
Boiling Air Force Base 600 Independence Avenue
Washington , D.C. 20332 Washington , D.C. 20546

Dr. Donald A. Topmiller Director, National Security Agency
V 

Chief, Systems Engineering Branch ATTN: Dr. Douglas Cope
H uman Engineering Division Code R51
USAF AMRL/HES Ft. George G. Meade, MD 20755
Wright-Patterson AFB , OH 45433

Journal Supplement Abstract Service
It. Col . Joseph A. Birt American Psychological Association
Human Engineering Division 1200 17th Street , NW
Aerospace Medical Research Laboratory Washington, D.C. 20036 (.3 cys)
Wright Patterson AFB , OH 45433

Dr. William A. McClelland
Air University Library Human Resources Research Office
Maxwell Air Force Base, AL 36112 300 N. Washington Street

Al exandria , VA 22314
Dr. Arthur I. Siegel
Applied Psychological Services, Inc. Kin B. Thompson
404 East Lancaster Street NDAC
Wayne, PA 19087 Pentagon, Room BD770

- Washington,D.C. 20301
Dr. Gershon Weltman V

Perceptrontcs , Inc. A. Stohoim
6271 Variel Avenue NPRDC V
Woodland Hills , CA 91364 San Diego , CA 92152

Dr. Edward R. Jones Director, Human Factors Wing
McDonnell-Douglas Astronautics Defense & Civil Institute of Environmental
Company - East Medicine

St. Louis, MO 63166 Post Office Box 2000
Downsville, Toronto , Ontario

Dr. H. Rudy Ramsey CANADA
Science Applicati ons, Inc.
40 Denver Technological Center West Dr. A.D. Baddeley
7935 East Prentice Avenue Director, Applied Psychology Unit
Englewood, CO 80110 Medical Research Council

15 Chaucer Road
Dr. Meredith Crawford Cambridge, CB2 2EF
5606 Montgomery Street ENGLAND
Chevy Chase, MD 20015

Dr. Jesse Orl ansky
Institute for Defense Analyses
400 Army-Navy Drive
Arl ington, VA 22202

---

~ 

~~~~~~~~--~~ V~~~~-~~~~~~~ --— —-V -~~~~~~~--~~~ - - V~~~~~~ V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


