~ AD=A051 495

UNCLASSIFIED

GENERAL ELECTRIC CO ARLINGTON VA

F/G6 9/2

PREDICTING SOFTWARE COMPREHENSIBILITY.(U)

FEB 78 S B SHEPPARDs M A BORST»
TR-78-388100-2

L T LOVE NOOO14-77-C~-0158
NL

=

END
DATE
FILMED
Ad="78
poc

g

TECHNICAL REPORT

ADA0S51495

PREDICTING SOFTWARE COMPREHENSIBILITY

oD

3 mlelainhi
} 5 : | { :
i 1 ‘ MAR 20 1978
E g i s
& ! UG OUETTELE

FEBRUARY 1978 Q,\f F

0 M=
0OG FiLE_cOPYF

GENERAL @ ELECTRIC .

INFORMATION SYSTEMS PROGRAMS

4

ARLINGTON, VIRGINIA .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE azrgiﬁncggggrcggisou
T. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
TR-388100-2 ~
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
PREDICTING SOFTWARE COMPREHENSIBILITY __— TECHNICAL REPORT
6. PERFORMING ORG. REPORT NUMBER
b e 388100-2 B
7. AUTHOR(S) 3. CONTRACT OR GRANT NUMBER(®)
S.B. SHEPPARD, M.A. BORST, L.T. LOVE NOOO1 4-77-@-0158 A
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. RROCRAN ELEMENT. FROJECT. TASK
OFFICE OF NAVAL RESEARCH
Arlington, VA 22217 ~ KRII=051
t1. CONTROLLING OFFICE NAME AND ACORESS ' 12. REPORT DATE
2/24/78 £
3. NUMBER OF PAGES
I T8, MONITORING AGENCY NAME & ADORESS(({ different from Contrelling Office) | 15. SECURITY CLASS. (of thia report)
UNCLASSIFIED
"~ Ii%a DECLASSIFICATION/ COWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; Distribution unlimited. Reproduction in whole
or in part is permitted for any purpose of the U.S. Government

Bt | C |
P '\?Aj‘.},\i uf—?\\

17. DISTRIBUTION STATEMENT (of the abstract entered in Bleck 20, if dilferent frem Rapert, LA =0 i
(L
\ wa 20 9% 4
= {G’l\ ¥ (e
o S e 3 R ..

‘118, SUPPLEMENTARY NOTES
This research was supported by Engineering Psychology Programs, Office of
Naval Research

19. KEY WORDS (Continue on reverse side If y and identify by block number)

MNEMONIC - VARIABLE NAMES, STRUCTURED PROGRAMMING, SOFTWARE PSYCHOLOGY METRICS,
CONTROL FLOW COMPLEXITY, SOFTWARE ENGINEERING, MODERN PROGRAMMING PRACTICES,
PROGRAM MEMORIZATION

20. NACT (Continue on reverse side if nececsary and identify by bleck number)

This report describes the first-experiment—in—a—programof research de-
signed to identify characteristics of computer software which are related to its
psychological complexity. This experiment evaluated the effect of three inde-
pendent variables (mnemonic variable names, complexity of control flow, and gen;
eral type of program) on a programmer's understanding of a computer program.
The contributions of several variables, including Halstead's software science

metric and McCabe's complexity metric, to the prediction of program understand-
ing were also evaluated. In a pilot study,by Sheppard and Love (1977)
DD 5%y 1473 eoimion oF 1 NOv 68 13 ossOLETE ym ?UNCEASSIFIED

S/N 01C2-014-6601 |
{ ™

. YP7 ¥Y¢

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered;

| (R e

~LLURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block 20 continued

\\S significant results were achieved with the materials and procedures employed
here.

Thirty-six experienced programmers were instructed to study a computer
program for 20 minutes, and were then given 25 minutes to reconstruct a function|
ally equivalent one. Performance was measured by the percentage of functionally
correct statements recalled. Results indicated that complexity of control flow
affected program understanding, while no relationship was found for mnemonic
variable names and general program type. The metrics of both Halstead and |
McCabe were related to program understanding when differences between subjects
and specific programs were taken into consideration.

4 } : . \

\

— e

SR ——

B b D,

e p— w— s

SECURITY CLASSIFICATION QF THIS PAGE(When Data Entered)

e

3 —

P £ P A

{TR-¥8-388100 -2 (

9; QLECHNILAL Rsﬁz;} //

(I e

! _PREDICTING SOFTWARE COMPREHENSIBILITY
e —— e s e e 5

-

by

/ ?jF /éheppard ﬁjﬁ /ésrstgﬂL T /tove (/

e s e o s e A B et e B R

Submitted to:

Office of Naval Research
Engineering Psychology Programs

Arlingﬁ/ Virginia 222174__
Comg:fff‘iﬂom 4-77-C-@158 /

Work Unit: NR 197-037

GENERAL ELECTRIC COMPANY

INFORMATION SYSTEMS PROGRAMS

1755 Jefferson Davis Highway
Suite 200

Arlington, Virginia 22202

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government

&

PRI SO S e

PREDICTING SOFTWARE COMPREHENSIBILITY

by

S. B. Sheppard, M. A. Borst,
& L. T. Love

Information Systems Programs
General Electric Company
1755 Jefferson Davis Highway, Suite 200
Arlington, Virginia 22202

February 1978 i

[
|
|
|
|
|

T

o e

A Sy,

T

e

Software Complexity Research Program

Department of Defense (DOD) software production and
maintenance is a large, poorly understood, and 1inefficient
process. Recently Frost and Sullivan (The Military Software
Market, 1977) estimated the yearly cost for software Qithin
DOD to be as large as $9 billion. DeRoze (1977) has also
estimated that 115 major defense systems depena on software
for their success. In an effort to find near-term solutions
to software related problems, the DOD has begun to support
research into the software production process.

A formal 5 year R&D plan {Carlson & DeRoze, 1977)
related to the management and control of computer resources
was recently written in response to nob Directive 5000.29.
This plan requested research leading to the identification
and validation of metrics for software quélity. The study
described in this paper represents an experimental
investigation of such metrics, and 1is part of a larger
research program seeking to provide &aluable information
about the psychological and human resource aspects of the 5
year plqn.

DOD is also initiating the development of a more
powerful .higher order 1language for general use by all
services (Department of Defense, 1977). With a language
independent measure of the complexity of software, we can
evaluate not only program A versus program B, but also the

individual constructs of a language (cf. Gordon, 1977).

Thus, an objective, quantitative theory based on sound

S T A L SRS AT RO .

experimental data can replace idiosyncratic, subjective
evaluations of the psychololgical complexity of software.

Long term benefits of this effort involve improved software

O P S

system reliabilty and reduced development and maintenance

costs.

The challenge undertaken in this research program is to

T ——

guantify the psychological complexity of software. It is

S W R O

important to distinguish clearly between the psychological

and computational complexity of software. Computational

e

P A PRI

complexity refers to characteristics of algorithms or
programs which make their proof of correctness difficult,

lengthy, or impossible. For example, as the number of

distinct = paths through a program increases, the

computational complexity also increases. Ps ol
complexity refers to those characteristics of software which

make human understanding of software more difficult. No

direct 1linear relationship between computational and

psychological complexity 1is expected. A program with many

control. paths may not be psychologically complex. Any
regularity to the branching process within a program may be
used by a programmer to simplify understanding of Vthe
program.

H Halstead (1977) has recently developed a theory

concerned with the psychological aspects of computer

i programming. His theory provides objective estimates of the

-

effort and time required to generate a program, the effort
required to understand a program, and the number of bugs in
a particular program (Fitzsimmons & Love, in press). Some
predictions of the theory are counterintuitive - and
contradict some results of previous psychological research.
The theory has attracted attention because independent tests
of hypdtheses derived from it have proven amazingly
accurate.

Although predictions of programmer behavior have been
particularly impressive, much of the research testing
Halstead's theory has Been éerformed without sufficient
experimental or statistical controls. Further, much of.the
data were based upon imprecise estimating techniqueéL
Nevertheless, the available evidence has been sufﬁicient to
justify a rigorous evaluation of the theory.

Rather than initiate a research program designed
specifically to test Athe theory of software science, a
research strategy was chosen which would generate
suggestiOnsl for improving programmer efficiency regardless
of the success of any particular theory. This research
focuses on four phases of the software 1life-cycle:
understanéing, modification, debugging, and construction.
Since different cognitive processes are assumed to
predominate in each phase, no single experiment or set of
experiments on a particular phase would provide sufficient

basis for making broad recommendations for improving

iid

2 = o~ (A S RGN Y A U AL i3y RN i b e s RO A A SO AN PR 3~ N S S ide

programmer efficiency. Each experiment in the series
comprising this research program has been designed to test
important variables assumed to affect a particular phase of

software development. Professional programmers will be used

SRS =~ S

in these experiments to provide the greatest possible

external validity for thé results (Campbell & Stanley,

1966). 1In addition, Halstead's theory of software science

and other related metrics can be evaluated with these data.

ACKNOWLEDGEMENTS

‘fhe authors gratefully acknowledge the assistance of
Dr. Bill Curtis in analyzing the data and in revising this
technical report. We anticipate a 1long and productive
association with him as a member of our staff. We also
appreciate the assistance of Dr. Gerald Hahn of Genétal
Electric's Corporate Statistics Staff in developing the
experimental design. Dr. John O'Hare's careful review of a

preliminary version of this report has resulted in

substantial improvements.

1.0
2.9

3.0

4.0
5.0
6.0

TABLE OF CONTENTS

Software Complexity Research Program
Acknowledgements

Table of Contents

Abstract

INTRODUCTION
METHOD
Participants
Procedure

Experimental Design
Independent Variables

NN NN
. . . .
HwWN —~

2.4.1 Program Class
2.4.2 Program Structure

2.4.2.1 Halstead's E
2.4.2.2 McCabe's V(G)

2.4.3 Variable Name Mnemonicity
Covariates

2.5
2.6 Dependent Variable
2.7 Analysis

RESULTS

3.1 Individual Differences among Participants
3.2 Differences among Programs

3.3 Program Structure

3.4 Variable Name Mnemonicity

3.5 Order of Presentation

3.6 Software Complexity Metrics

3.6.1 Relationships among Metrics
3.6.2 Relationships of Metrics with Performance

DISCUSSION

REFERENCES

APPENDICES

6.1 Instructions to Participants

6.2 Program Descriptions

6.3 Program Code Listings

6.4 Measuring Complexity of Control Flow
6.5 Mnemonic Variable Names s

6.6 Scatterplots for Complexity Metrics

0 0o oo,

11
12

12
13
14

16
16
18
18
20
21

21
22

27
32

- P e - | . i i . e M e e — e e pr—

Predicting Software Comprehensibility

ABSTRACT

This report describes the first experiment in a program
of research designed to identify characteristics of computer
software which are related to its psychololgical complexity.
This experiment evaluated the effect of three independent
variables (mnemonic variable names, level of program
structure, and qene&al fype of program) on a programmer's
understanding of a computer program. The contributions of

several variables to the prediction of program understanding

were also evaluated. Significant results were achieved in a

pilot study by Sheppard and Love (1977) using the materials
and procedures employed here.

Thirty-six experienced pfogrammets were instructed to
study a computer program for 20 minutes, and were then given
25 minutes to reconstruct a functionally equivalent
program. Performance was measured by the percentage of

functionally correct statements recalled. Results indicated

thaﬁ levei of.prbgram struéturé éﬁéﬁbfégraﬁ Eléés affected
program understanding, while no relationship was found for
mnemonic variable names. The metrics of both Halstead and
McCabe were related to program understanding when
differences between subjects and specific programs were

taken into consideration.

i e

Baiisw

[y

Predicting Software Comprehensibility

1.0 INTRODUCTION

Programmers’' ability to understand computer programs
may have substantial impact on their efficiency in debugging
or modifying these programs. There are several software
engineering practices which have been desigred to increase
programmers' efficiency in terms of both the accuracy and
speed of their work. Programs developed in accordance with
these practices should be more easily understood.

Dijkstfa (1972) suggested that program construction
should proceed in a top-down structured fashion. He
contended that struétured programs are easier to understand,
debug, and modify. 1In a study using student programmers and
text book programs, Love (1977) found that simplified
control flow made programs easier to understand for graduate
(but not for introductory) students. That study did not use
programs which were strictly structured.

Another standard software engineering practice is the
use of carefully chosen variable names which serve as
mnemonic aids in understanding"programs. Weissman's (1974)
research.suggested that menmonic variable names resulted in
performancg increases (up to a factor of 2). His results
need replication since there were difficulties with his
experimental design and dependent measures.

':In parallel with these attempts to improve programmer
efficiency, several approaches were developed for predicting

the psychological complexity of software algorithms. In

e Ty M P) = TN S L o ol bl o Gdaias

Predicting Software Comprehensibility

1972, Halstead first published his software physics theory
(later renamed software science) stating that algorithms
have measurable characteristics analogous to physical laws.
His objective was to develop quantitative measures of the
complexity of computer programs in terms of language level,
algorithm purity, prograﬁming effort, and programming timé.
Preliminary tests of the theory have shown very high
correlations (some greater than .90) between his software
physics metrics and such dependent measures as the number of
bugs in programs (Funami & Halstead, 1975), programming time
(Gordon & Halstead, 1975), and quality of programs
(Balstead, 1973). . ;

There have been several recent attempts to develop
metrics for the complexity of control flow through a
computer program (e.g..‘Bell & Sullivan, 1974). One of the
most ‘promising of these metrics was proposed by McCabe
(1976) . McCabe's metric will be used ih this study as an
alternative against which Halstead's metrics can be
compared.

A critical issue in assessing the utility of these
software engineering practices and metrics involves the
definition of a dependent variable. A model of a
programmer's understanding of a computer program is shown in
Figure 1. First, a programmer must understand the overall

purpose of a program. Then an interactive process begins in

which successive modules must be understood separately, and

START
——t READ DOCUMENTATION e
. a
— READ COMMENTS e |
i § 1
,! § § s TALK TO ORIGINAL PROGRAMMER |t jj
- Y
VE OVERALL “Jd -—-l EXECUTE PROGRAM :]—-- |
] KNOWLEDGE OF o Z & |
THE PROGRAM 3 [
yy LOOK FOR MEANINGFUL
: s & § SUBPROGRAMS / VARIABLE NAMES
IDENTIFY MOST IMPORTANT LOOPS
SELECT MOST o AND WALK THRU THEM
IMPORTANT MODULE TO IDENTIFY GENERAL FUNCTION |
WHICH IS NOT -
UNDERSTOOD
UNDERSTAND NO
PRECISE ;gENC;ION - =
MODULE -
DETERMINE OVERALL
. YeS CONTROL FLOW THRU MODULZ

Y

{ . DISCOVER FUNCTION
OF MOST USED CODE

\

FIND OUT HOW REST OF CODE
RELATES TO MOST USED COOE

|

UNDERSTAND
ALL MODULES

UNDERSTANDS

FUNCTIONALLY
] EQUIVALENT
PROGRAM

CAN REWRITE)

|

l STOP

Figure 1: MODEL OF HUMAN UNDERSTANDING OF
SOFTWARE

Predicting Software Comprehensibility

then integrated into the overall flow of the program.
Measures of understanding such as quiz scores or ability to
hand simulate a program may have reflected existing
knowledge of programming methods and techniques rather ' than
specific knowledge of the particular program under
consideration. |

Current 1literature (Love. 1977; Shneiderman, 1974,
1977) suggests that the most sensitive measure of whether
people understand a computer program is their ability to
learn a program's structure and reproduce a functionally
equivalent program without\notes. It would be extremely
difficult to reproduce a non-trivial program without some
undersztanding of its function. The dependent measure
employed here was the functional correctness of a
participant's reconstructed program.

The main purpose of this experiment was to ascertéin
the relationship between two programming style variables and
the ability to understand a program. There was also an
assessment of whether comprehensibility differed as a
functioﬁ of program type. In addition, the relationship
between cqmprehensibility and three program metrics (i.e.,

Halstead's E, McCabe's V(G), and the number of statements)

was evaluated.

Predicting Software Comprehensibility

2.0 METHOD

2.1 Participants

Thirty-six professional programmers were tested in five
different locations. Each participant was a General
Electric employee with working knowledge of FORTRAN. These
programmers had an average of 6.8 years of professioﬁal
programming experience (ranging from 0 to 18 years). The
majority (hF23) came from an engineering' background, two
were statistical programmers, and nine had been primarily
involved with non-numeric or text processing Software. '
é.z Procedure

A packet of materials was prepared for each
participant. The initial instructions to each participant
are presented in Appendix 6.1. The written instructions
included gquestions on the extent of programming experience
and area of expertise. The first exercise was a short
FORTRAN program with a brief description of its purpose
All 36 participants received the same program, which they
were allowed to study for ten minutes. They were permitted
to make notes or draw flowcharts. At the end of the study
period, the original program and all scrap papers were
collected. Each participant was then given five minutes to
reconstruct a functional equivalent of the program from
memory on a blank sheet of paper, but was not required "to

reproduce the comment section.

The purposes of this short introductory program were

Predicting Software Comprehensibility

1) to provide a common basis for comparing the skills
of the participants on this type of task, and
2) to control for initial learning effects.
This second ﬁoint is important since a previous étudy
(Sheppard and Love, 1977) indicated that learning may occur

during an initial task of this type.

Following this initial exercise, participants were
presented in turn with three programs which compr;sed the
- experimental ‘task for this - study. They were ailowed 25
minutes for study and 20 minutes for the reconstruction of
each program. A break of 15 minutes occurred before the

last program was presented.

2.3 Experimental besign

In order to control for individual differences in
performance, a within-subjects 3" fractional factorial
design was employed in this experiment (Hahn & Shaprio,
1966) . Nine programs of three general classes were tested
(Table 1). Three levels of program structure were defined
for each 6f the nine programs, and each of these 27 versions
was pre?ented in three levels of variable mnemonicity for a
total of 8l programs. The programs were selected from a set

of programs solicited from practicing programmers at several

GE locations.
Four sets of nine participants were used in the

experiment. The 27 participants in the first three sets

exhausted the total of 81 programs. The fourth set of 9 !

'(HOV3 SINVAIDILYVd § 40 S13S ¢) SINVAIDILYVd /7
40 %2079 3FHL NIHLIM LNVAIOJIL¥Vd 3INO 40 LINFWNOISSV 3FHL SINISIU4IY ¥Y3IEWNN HOV] :310)

9¢ | 6T | WC | £ | SC | TZ | HLAIM

I 9T | ST } ZT | T | ZI | 3NOINN

e | s |z |9 | z | 1mas | onyunn-non

Q¢ | T¢c | €€ | ¢C | L2 | OC}) 93INI

OT | 8T | wI | 9T | ST | TT py3nunod

mb S I b ¢ L 9 8 b ¢ | 13SS34 | INIY3INIONG

g Te| se|se|] oe)ee|we)| 9| er) Wil

ST | TT | 9T | ¢T | LT | ¢T § 8T | HwI | OT IHd

OSIHI SIIISILVIS

HOTH | "d3W | 01
ANLINYLSKN

SIINOWINW — J HOIH | ' G 1 JHITH | "G3W | o
MO Aozhzou.|._ AUNLINYLS | aNLIAYLS-ISVNL

! N9IS3A TYINIWIYIdXI
,_M . ﬁMAm<h

JWYN
WV490ud

SSVID

. | it St . Ml

Predicting Software Comprehensibility

participants repeated one of the three previous sets. Table
1 shows the design for the first 27 participants.

Programmers at each location were randomly assigned to
experimental conditions in order that over the course of
their three experimental programs, every participant had
worked with a program from each class, and at each level of
structure and variable mnemonicity. For example,
participant 4 received the following three programs: 1)
BESSEL - an engineering program, unstructured control flow,
medium mnemonic level, 2) CHISQ - a statistical program,
guasi-structured control flow, least mnemonic level, and 3)
SELECT -~ a non-numeric program, Structured control flow,
most mnemonic level. For simplicity the design is presented
in Table 1 witﬁout regard for the order of ptesentation to
the participants. One of the six 'possible orders of
presentation of three programs was assigned randomly and
without replacement to each participant.
2.4 Independent Variables
2.4.1 Program Class

~Three general classes of programs were used:
enginee:ipg, statistical, and non-numeric. Three programs
of each class were developed. Appendix 6.2 describes the
purpose of the nine programs and shows their lengths, which
varied from 36 to 57 statements. The programs selected were
considered to be representative of the type of programs

actually encountered by professional programmers in each of

R

Predicting Software Comprehensibility

these areas. Appendix 6.3 has some sample program listings.
All nine programs used in this experiment were compiled and
executed using appropriate test data.

4.2 Program Structure

Three levels of program structure were defined. The
structured level adhered strictly to the tenets 6f
structured programming (Dijkstra, 1972). Program flow
proceeded from top to bottom with one entry and one exit.
Neither backward transfer of control nor arithmetic IF's
were allowed.

Awkward constructions may occur in FORTRAN, when the
rules for structured programming are applied rigorously.
These include necessary but artificial GO TO's and DO loops
with dummy variables (Tenny, 1974). These awkward
constructions were largely eliminated in the
quasi~-structured level, where a more natural control €£flow
was allowed. A judicious use of backward GO TO statements
and multiple exits was permitted. IF statements were again
restricted to assignment and logical IF's.

In ihe unstructured version of each program the control
flow was not straightforward. The GO TO statement occurred
more frequently and backward transfer of control was not
restricted. The three-~way transfer of control statement
(arithmetic IF) was allowed only at this level (Table 2).

Two well-known metrics for pfogram complexity were also

calculated for each of the programs\in order to determine

NdNnL3Y ung~m13

< @IMOTIV SNYNLIY T1dILTNW
0L 09 @IN9ISSY
ILIX3 ANV AYLN3
“A3IMOTIV QUVYMI OV JI9NIS - ATTNO Q¥VYMYO04
< 01 09 @3LNdWO) 01 09 @3LNdW0D
<— @aMoTv auvmIaveE Q) 09 AINO QuvM¥0od () Q9
+0 - ()4l
41 J113IWHLIYY
< 41 WI1901
4007 00 @3ANVdX3 . .
daamoy LIX3 @ivmidvd . ATINO 1IX3 QuvMy04
< 4007 0d d007 0d
aN1INYLSKN ARNLINYLS-1SVNO

NLINYLS

ALIX31dW0) 40 S13AFT J3WHL

JHL NI

@IMOTIV STUNLINYLS TOYLNOD

¢ J1avl

Predicting Software Comprehensibility

their correspondence with the working definitions. The
metrics selected were: McCabe's V(G) (McCabe, 1976) and
Halstead's E (Halstead, 1377).
2.4.2.1 Halstead's E

In Halstead's theory of software science, the amount of
effort required to generate‘a program (E), can be calculated
from simple counts of the actual code. The calculations are
based on four gquantities: 1) the number of distinct
operators and operands, and 2) the number of occurrences Af
operators and operands. From these relationships, Halstead

derives the number of mental comparisons required to

'generate a program.

Since different programming languageé produce varying
numbers of instructions, the number of elementary mental
discriminations for each mental comparison varies with the
language used. When a correction is made to account for
these differences, one can define E in terms of the number
of mental discriminations per program; i.e., the number of
comparisons in the program multiplied by the average number
of mental discriminations made per‘comparison. A discussion
of the computational formula can be found in Fitzsimmons and
Love (in press) or Halstead (1977).

all sqftware science metrics were computed precisely
from a program (based on Ottenstein, 1975) which had as
input the source code listings of 27 programs (9 separate

programs at each of three levels of structure).

Predicting Software Comprehensibility

2.4.2.2 McCabe's V(G)

McCabe's metric 1is the <classical graph-theory
cyclometric number, defined as V(G) = # edges - # nodes + #
connected regions. Because the McCabe measure is defined
only for programs that adhere strictly to the rules of
structured programming, some modifications to the mefric

were necessary 1in order to evaluate the less structured

- control flow versions. (See Appendix 6.4 for a description

of these modifications). All experimental programs were
checked before the experiment to iﬁsure that the most
complex version of program had the highest McCabe vaiue and
the least complex version had the lowest value.

2.4.3 Variable Name Mnemonicity ‘

Three levels of'mnemonicity for variable names were
manipulated independently of program structure levels.
Because meaningfulness is difficult to assign arbitrarily, a
preliminary assessment was done. The nine programs were
modified so that the variable names were V1, V2, ..., VN.
Professional programmers were presented the programs and
descriptions of their purpose. They were asked to
substitute meaningful names for the 'V' names. The namés
most often generated were used in the most mnemonic
condition. The moderately mnemonic level consisted of less
frequently chosen names. In the least mnemonic condition
names consisted of a randomly chosen letter such that all

real variables began with A through H or O through 2, and

12

Predicting Software Comprehensibility

all integer variables began with I through N. 1In the few
cases where there were more than six integer names, the

letter was followed by a single digit (e.g., I2). Counters

in DO loops often had idential names in all three mnemonic

versions (See Appendix 6.5), since long mnemonic variable
names are rarely used as countets~in programs.
255 Covariateé

In order to obtain.a measure which was assumed to be
related to programming ability, all participants were
required to perform the same preliminary task. A short
program was given to each participant to study.and then
reconstruct. Their scores on this task were used as a
covariate to measure individual performance differences.
Participants were also asked their type of programming
experience and the number of years they had been programminé
professionally. Situatiénal covariates included the
sequence of presentation and the specific program.
2.6 Dependent Variable

All warm-up programs were scored by the same grader.
The remaining 108 experimental programs were scored
independently by three graders. The criterion for scoring
the programs was the functional correctness of each
separately reconstructed statement. Variabie names and
statement numbers which differed from those in the original
program were counted as correct when used consistently. All

errors were classified as either syntactical or 1logical.

13

S—.

B b e M e

Sk S B

s s e

Y TS T IO 6

R S

g

Predicting Software Comprehensibility

Only one error of each type was counted per statement, even
though multiple syntactical and logical errors could occur
in the same statem;nt. Control structures could be
different from the original program as long as the statement
performed the same function. .

Because it is difficult to prove the eguivalence of two
versions of the same program, function, or statement, three
judges scored each program independently. Interjudge
correlations of .96, .96, and .94 were obtained across the
three sets of scores. The average of the three scores
(percents of statgments correctly reconstructed) for each
program was used as thé dependent Qariable in the data
analysis. i .

2.7 Analysis

The analysis of results was conducted in two phasés.
The first phase was an experimental test of the programming
style variables, while the second phase was an evaluationAof
the software complexity metrics.

The first phase, involving an experimental test of
programming practices, was analyzed in a hierarchical
regression analysis. 1In this'analysis, domains of vériables
were entered seguentially into a multiple regression
eguation to determine if each successive domain
significantly improved the prediction of the equation
developed from domains already entered. Thus, the order

with which domains were entered into the analysis was

14

s T

Predicting Software Comprehensibility

important. In this study effects related to pre-existing
differences among participants and programs were entered
into the analysis prior to evaluating the effects of
programming styles. The variable domains were entereq in
the following order:

Differences related to participants and programé

l) Pretest scores

2) Class of program

3) Specific program

Programming styles

4) ‘Program structure

5) Variable mnemonicity

6) The interaction between program—sttucture and

variable mnemonicity.
The variables representing the different conditions of
domains 2 through 5 were effect coded (Rerlinger & Pedhazur,
1973).

The second phase of analysis investigated relationships
among Halstead's E, McCabe's V(G), number of statements 1in
the program, and performance. Analysis consisted of
examining correlations among the measures in both the raw
data and’ data corrected for differences among participants

and programs.

e A A —

Predicting Software Comprehensibility

3.0 RESULTS
3.1 1Individual Differences among Participants
Data presented in Table 3 indicate that scores on the
pretest were significantly related to the percent of
statements correctly reconstructed ddring the experimeﬁt.
Pretest scores accounted for 17% of the variance in
performance, while no relationships were observed for type

or length of programming experience. The two statistical

'programmers recalled more statements - correctly than

engineering or non-numeric programmers, but generalization
is not possible from such a limited sample. Further, job
location was not re1a£ed to performance.
3.2 Differenceg among P:ogramsu

A mean of 50% of the statements were correctly recalled
across al; programs and experimental conditions. While this
was a preferred level for mean task difficulty, there were
substantia} differences in difficulty among the various
programs. As evident in Table 3, performance differed
significantly as a function of the class of program. These
differences accounted for 8% of the variance in performance
in addition to that accounted for by individual differences
among participants. Engineering programs were the most
difficult (418 of the statements correctly recalled),
followed by stat;stical (52%) and non-numeric (g7%).

When the specific program was taken into account an

additional 20% of the variance in performance was

16

| TABLE 3

{ HIERARCHIAL REGRESSION ANALYSIS
VARIABLE DOMAIN DOMAIN® ; ‘
| S ar o R |
1) PRETEST N7 1 A7 |
2) CLASS OF PROGRAM .0g*+ 2 .Qg**
3) SPECIFIC PROGRAM .26%* 8 20 %
4) PROGRAM STRUCTURE (PS) =~ .07** 2 Q7%
5) VARIABLE MNEMONICITY (VM) .01 2 .Q1
6) PS X VM .03 4 .03
} TOTAL 19 .56 |
Note: n = 108

a Correlations in this column represent the total relationship between
each variahle domain and performance. Where there is only one degree
of freedom for a particular domain, figures in this column represent

' zero-order correlations, otherwise they represent multiple correla-
tions for all variables in the domain.

b Figures in this column indicate the percent of variance contributed
to prediction of performance in addition to that afforded by preceding
domains. Significance levels indicate whether this represented a
significant contribution to prediction.

** p=.01

predicting Software Comprehensibility

explained.However, this result is not strictly a function of
differences among programs, because variance related to
specific programs was confounded with variance related to
participants. Overall, 45% of the variance in performance

was accounted for by differences among participants and

|

general program characteristics.
3.3 Program Structure

Significant differences in performance were obtained as
a function of program structure. The three levels of
structure accounted for 7% of the variance in performance-in
addition to variance related to differences among programs
and participants. As expected, the least structured level

was the most difficult to reconstruct (Figure 2). Contrary

to the tenéts of structured programming, however, the most
structured 1level did not produce the best performance. 2
greater percent of statements were recalled from
guasi-structured programs, conceivably because of their less
cumbersome constructs. A post hoc analysis (Scheffe, 1959)
showed the means for the quasi- and unstructured programs to
be significantly different (p<.05).
3.4 Variable Name Mnemonicity

No sfgnificant differences in performance were observed
in relation to the three levels of mnemnonicity assigned to
‘variable names. Conseguently, variable mnemonicity did not
contribute significantly to the hierarchical regression

equation. Further, no significant interaction was found

18

| 60%

50%

40%

30%_

MEAN PERCENT OF CORRECT STATEMENTS

] 1 t
unstructured quast* ;
structured structured

CONTROL FLOW COMPLEXITY

FIGURE 2: Mean percent of statements correctly recalled for three
- levels of program structure

Predicting Software Comprehensibility

between variable mnemonicity and level of structure.
3.5 Order of Presentation

Performance did not differ as a function of the order
in which the programs were presented to participgnts,
suggesting that any learning process which might have
affected the results-occurred during the pretest rather than
during the three experimental tasks.

Since different levels of variable mnemonicity neither
affected performance significantly, nor caused any charge in

complexity metrics for a particular program, the data

reported in this section were averaged over levels of.

mnemonicity. Thus, the 27 data points each represent a

value for a specfic program at a specific level of
structure. This averaging process also reduced to some
extent the effect of individual differences among
participants since each data point is averaged across either
3 or 6 participants (9 of the conditions were repeated by an
additional three participants). \
3.6.1 Relationships among Metrics

Table 4 presents correlations among the three metrics
of software complexity employed in this study; namely,
length (ndmbet of statements), McCabe's V(G), and BHalstead's
E. Length and McCabe's V(G) were strongly correlated, while
Halstead's E displayed only moderate relationships with
these other two metrics. Investigation of the scatterplots
(Appendix 6.6) indicated that the correlations for

20

TABLE 4

Correlations among Metrics of Software

e e e

Complexity
CORRELATIONS
| METRIC ‘ LENGTH MCCABE
| ' MCCABE (75w
HALSTEAD 47k 2%
HALSTEAD (n=26) L T5%* 84%*

NOTE: Except where indicated, n = 27.

*p < .05
**p % .01

21

et e

AT A s - -t S SR SRS SRS

Predicting Software Comprehensibility

Halstead's E were weakened by an extreme value for E of
250.With this outlier removed the correlations of E with the
other two metrics rose to the same level observed in their
intercorrelation.
3.6.2 Relationships of Metrics with Performance

‘ The percents of variance in performance accounted for
by each complexity mettic.are presented in Table 5. The
correlations underlying the data reported in this section
were all negative indicating that performance fell as the
level of complexity indexed by these three metrics
increased. Length and McCabe's V(G) were moderately related
to performance, accounting for 28% and 20% of the variance,
respectively. Halstead's E was not significantly related to
performance. Investigation of the scatterplot for the
Halstead result (Figure 3) . however, produced some
interesting observations. There were three data points
(circled in Fidure 3) which were developed by averaging
across three participants who consistently outscored other
participants on both the pretest and the experimental
programs. Recognizing the effect of individual differences
on performance, it was likely that the three data points
generated. by this group of participants resulted more from
the failure of random assignment to fully neutralize the
effect of individual differences, than from the experimental

conditions. When these three data points were removed the

variance accounted for by all three metrics increased.

22

i e A S 1 A B A 0 e

TABLE §

Percent of Variance in Performance Accob@ted
for by Software Complexity Metric -

i
e

|

PERCENT OF VARIANCE _

EXCEPTIONAL
ALL GROUPS GROUP REMOVED
| METRIC -~ (n=27) (n=24)
! : : ha g g ;
" RAW SCORES
LENGTH .28%* L 37k
MCCABE'S V(G) .20%* .26%*
HALSTEAD'S E .02 .13
TRANSFORMED SCORES
LENGTH J14% Q2%
MCCABE'S V(G) L 3] e e
HALSTEAD'S E .04 J53%we

*p £ .05
**p < .01
wikp < 001

PERCENTAGE OF STATEMENTS CORRECTLY RECALLED

Relationship between

nerformance and E

within each separate
100 program

Relationship eliminated ------
when 3 cxceptional data
points ..cre withdrawn

T T T . |
L 70 115 160 205
HALSTEAD'S E

FIGURE 3. PERCENT OF STATEMENTS CORRECTLY
RECALLED VERSUS HALSTEAD'S E

NoTE: NUMBERS IN THE FIGURE REPRESENT THE SPECIFIC PROGRAM]

24

Predicting Software Comprehensibility

With the three points for the exceptional group
removed, the relationships between performance and the
complexity metrics were generally linear within the data for
each specific program (observe the solid lines in Figure 3).
It was apparent from Figure 3, and was confirmed in the
regression analyses, that there were considerable
differences among programs in difficulty and complexity. In
order to determine whether the complexity metrics were more
predictive of performance within programs than across them,
a transformation was applied to the data. The lowest value
obtained for each metric among the three versions of.each
specific program was set to zero. Similarly, the percent of
statements correctly " recalled for the versioﬁ with the
lowest value of the particular metric was also set to zero,
allowing the percent recalled to fall below zero in several
instances (a difference score); This transformation of
scores represented an attempt to determine whether
per formance diminished as a function of increasing
complexity when initial differences among programs had been
removed.

The percents of variance in performance accounted for
by each of'the transformed metrics are presented in Table 5
for samples with and without the exceptional group of
participants removed. The effect of the transformation on
the results for length was not great. However, substantial

increases were observed for both McCabe's V(G) and

25

Predicting Software Comprehensibility

Halstead's E. Thus, while Halstead's E accounted for only
2% of the variance in performance among the raw scores, it

accounted for 53% after some corrections were made for

differences among programs and participants.

Predicting Software Comprehensibility

4.0 DISCUSSION

Three factors were found to influence programmers'’
ability to «correctly recall programs they had previously
studied. These factors included individual differences
among participants, characteristics of specific programs,
and the level of program structure. Each of these -factOrs
contributed separately to the prediction of performance on
the task studied here. In addition, several metrics of
software complexity were found to predict understandin‘r
under certain conditions.

Individual differences among programmers represent ‘an :
important topic which has been mentioned more frequently
than studied. Such differencés (as measured by a pretest)
accounted for almost one-fifth of the wvariance in
performance. The effect of individual differences might be
even greater were the sample expaﬁded beyond the
experienced, professional programmers studied here. T;e
size of the effect for these differences suggests that an
important area for future research will be in identifying
étrategies for the selection, placement and ﬁrainingyof
computer programmers.

Perf&rmance effects due to differences among programs
are not easily explained from these results. While there
was a significant effect due to class of program
(engineering vs. non-numeric vs. statistical), this result

may have been a function of some experiencial or familarity

!

27

Predicting Software Comprehensibility

factor particular to the sample studied. Further, effects
due to differences among specific programs were confounded
in this experimental design with effects related to
individual differences among participants. Nevertheless,
the suggestion of substantial differences in the ease of
understanding based on type of program is interesting ‘in
light of the limited range of programs employed here.

In order to properly analyze subtle participant X
program interactions, more participants would be required in
each cell of this experimental design. Such effects may
involve interactions between the nature or purpose of the
program and some experiential of cognitive factor among
programmers. Such interactions may hold important
implications for the management of software developﬁent
projects, especially .regarding the assignmant of
programmers.

The characteristics of programs studied in this
experiment included two principles of programming style and
several metrics of software complexity. Of the programming
style variables examined, only 1level of structure had an
effect on performance. Results confirmed that well
structured programs were easier to understand than
unstructured ones. Yet, adhering strictly to the rules of
structured programming in FORTRAN often caused clumsy
constructions that were no more effective than taking

certain liberties with the structure to create cleaner

28

g

et

PP

PRVICHEI—

st e,

-

Predicting Software Comprehensibility

code.These liberties included multiple returns and
judiciously- placed backward GO TO statements; both are
violations of the rules for structured ching.

No differences in performance were observed as a
function of the mnemonic value of variable names. However,
many participants evidenced a preference for mnemonic names,
in that they used their own, more meaningful names when
rewriting the least mnemonic versions of the programs. For
the medium and most mnemonic versions théy tended to use the
names supplied in the original programs. Thus, the
importance of mnemonic variable names is supported by the
anecdotai rather than statistical evidence.

In addition to the experimental evidence that the level
of program structure affects understanding, there was
correlational evidence that understanding was related to the
psychological complexity of the program. The best predictor
of performance in the raw data among the three complexity
metrics studied was the total number of statements in the

prodram. However, the considerable amount of variance in

this stuay related to differences among individuals and

programs may have masked relationships between performance
and complexity metrics, especially Halstead's E. When the
data were transformed in an attempt to remove some of the
effects due to differences among programs and exceptional
programmers, the Halstead and McCabe metrics were found to

be substantially better predictors of performance than they

29

| S

gy

Predicting Software Comprehensibility

had been in the untransformed data. This result is
consistent with the finding in a pilot study (Sheppard &
Love, 1977) that' Halstead's E was highly correlated with
performance.

In essence, the relationships of the Halstead and
McCabe metrics with performance were approximately linear
within different versions of a single program. This
observation implies that prediction of the number of bugs in
a vorogram by the Halstead and McCabe metrics alone may not
prove adeguate. Prediction may be substantially improved by
including some variable(s) relating to differences among
programs or programmer X program interactions. This issue
will be addressed by future studies in this research
program.

An interesting problem in the Halstead metric was
observed in a program which generated a Halstead value of
250 and a McCabe value =7 only 6. 1Inspection of the program
showed a series of assignment statements of the form:

IF (AMT2.LT.AMT3) MAXPHI = SQRT((AMT2/AMT1) + (AMT4/AMT3))
Although such statements resulted in a high E value,they did
not affect the control flow. Relationships between
performadce and different ways of computing complexity
metrics will be addressed as data are collected in
additional experiments from this research program. These
additional data will provide a more comprehensive base from

which to test hypotheses regarding these metrics.

30

Predicting Software Comprehensibility

Finally, it should be noted that smaller, single factor
experiments would have precluded analysis of a number of the
effects reported in this study. In particular, implications
that individual and/or program factors may need to be
included in predictions of psychological complexity may not

have emerged‘had this study included only three rather than

nine separate computer programs (cf. Sheppard & Love, 1977).

l 5.0 REFERENCES

l Amster, S.J., Davis, E.J., Dickman, B.N., & Kouni, J.P. An experiment in auto-
matic quality evaluation of software. Proceedings of the Symposium on
Computer Software Engineering, 1976, 24, 171-197.

Bell, D.E., & Sullivan, J.E. Furthe?finveéti ations into the complexity of soft-
ware (Tech. Rep. MTR-287%). Bedford,Mass.: MITRE Corp., June 1974.

Campbell, D., & Stanley, J.C. Experimental and quasi-experimental designs for
research. Chicago: Rand McNally, 1976. i

Carison, W.E., & DeRoze, B. Defense system software research and development
lan. Unpublished manuscript, Arlington, VA.: Defense Advanced Research
Ero}ects Agency, September 1977. |

Department of Defense requirments for high order computer programming languages:
Revi;ed "IRONMAN". Sigplan Notices, 1977, 12, 39-54.

DeRoze, B. Software research and development technology in the Department of
Defense. Paper presented at the AIIE Confererence on Software, Washington,
D.C.: December 1977.

Dijkstra, E.W. Notes on structured programming. In 0.J. Dahl, E.W. Dijkstra, ‘
% C.A.R. Hoare (Eds.), Structured programming. New York: Academic Press, ;
972. 3

Fitzsimmons, A.B.,& Love, L.T. A review and evaluation of software science.
! ACM Computing Surveys, in press.

. Funami, Y., & Halstead, M.H. A software physics analysis of Akiyama's debugging
! data (Tech. Rep. CSD-TR-144). West Lafayette, Ind.: Purdue University,
. Computer Science Department, May 1975.

Gordon, R.D. A measure of mental effort related to program clarity. Unpublished
doctoral dissertation, Purdue University, 1977.

Gordon, R.D.,& Halstead, M.H. An experiment comparing FORTRAN programming time
with the software physics hypothesis. AFIPS Conference Proceedings,
1976, 45, 935-937.

Hahn, G.J., & Shapiro, S.S. A catalogue and computer program for the design and
analysis of orthogonal symmetric and asymmetric fractional factorial exper-
iments (Tech. Rep. 66-C-165). Schenectady, N.Y.: General Electric, May 1966.

Halstead, M.H. An experimental determination of the "purity" of a trivial algor-
ithm (Tech. Rep. 73). West Lafayette, Ind.: Purdue University, Computer Science
Department, 1973.

Halstead, M.H. Software physics: Basic principles (Tech. Rep. RJ-1582). Yorktown

Heights, NY.: IBM, 1975.

Halstead, M.H. Elements of software science. New York: Elseyier North-Holland,
1977.

Kerlinger, F.N., & Pedhauzer, E.J. Multiple regression in behavforé1 research.
New York: Holt, Rinehart & Winston, 19/3.

Love, L.T. Relating individual differences in computer programming performance i
to_human information processing abilities. Bnpu5|1sﬁe3 aocfgral disserta- i
tion, University of Washington, .

McCabe, T.J. A complexity measure. IEEE Transactions on Software Engineering, ?
1976, SE-2, 308-320.

Ottenstein, K.J. A_program to count operators and operands for ANSI-FORTRAN i
modules (Tech. Rep. CSD-TR-196). West Lafayette, Ind.: Purdue University |
Computer Science Department, June 1976. :

Ramsey, H.R. Human factors in computer systems: A review of the literature {
(Tech. Rep. SAI-77-054-DEN). Englewood, Col.: Science Applications, April ﬁ

1977. :

|

Reiter, R.W. Measuring software com?1exitx: An_experimental study. Unpublished i
manuscript, University of Maryland, Department of Computer Science, 1977.

Richards, P. Localization of variables: A measure of program complexity (GE-
TIS-76CIS07). Sunnyvale, Calif.: General Electric, December 1976.

Scheffe, H.A. The analysis of variance. New York: Wiley, 1959.

Stveppard, S.B., & Love, L.T. A preliminary experiment to test influences on
human understanding of software. Paper presented at the meeting of the
Human Factors Society, San Francisco, October 1977.

Shneiderman, B. Human factors experiments in programming: Motivation, methodology,
and research directions (lech. Rep. I§H-$§-95. Coi1ege Park, Md.: University

of Maryland, Department of Information Systems Management, September 1976.

Shneiderman, B. Measuring computer program quality and comprehension (Tech.
Rep. ISM-TR=16). College Park, MD.: Univers%ty of Maryland, Department of

Information Systems Management, February 1977.

Sullivan, J.E. Measuring the complexity of computer software (Tech. Tep. MTR-2648).
Bedford, MA: MITRE Corp., June l§;3.

Tenny, T. Structured programming in FORTRAN. Datamation, 1974, 20, 110-115.

The Military software market (Rep. 427). New York: Frost & Sullivan, 1977.

Weissman, L.M. A methodology for studying the psychological complexity of computer
rograms (Tech. Rep. %ﬁ-f§§§-§7$. goronto. Canada: University of Toronto,
omputer Systems Research Group, 1974.

- ‘ “33 — " — . “

M wevw e -

INSTRUCTIONS TO PARTICIPANTS

GOOO MORNING!!

Today we are go1ng to ask you to participate in an experiment which
we hope will be both entertaining and challenging.

This work, sponsored by the Qffice of Naval Research, is being done
to make computer programs more readable. To do this, we need to measure your
understanding of a particular program. We will give you three saparate programs
and ask you to study each program carefully; then reconstruct that program from
memory without any notes.

In previous research, we have discovered that recoding a program from
memory is a very sensitive measure of understanding of a program.

Qur purpose is to evaluats different ways of writing a computer program.
[t is not to evaluate computer programmers. Your performance on a program will
be compared only to your performance on other programs. Your only competition
is yourself. All precgrams and papers that you will be handed are carefully
numbered so it is not necessary for you put your name on any of these.

We would 1ike you to answer the following questions for our research
purposes:

1. How long have you been programning in FORTRAN professionally?
years months

2. Please circle one of the following: Has yourprimary experience
been in Engineering, Statistical or Non-numeric programs?

Ouring this experiment, each of you will be working on different
programs. If someone else seems to finish earlier than you, don't be concerned.
They will have been working on something else entirely which might not require as
much time.

We will begin this morning with a simple test program. We will ask you
to study this FORTRAN program for ten minutes. Ouring this time, you may write
anything, draw a flow chart, or make any notes to help you understand and memorize
the program. When the 10 minutes are up, you will be asked to hand in the programs
and any notes. We will then give you 5 minutes to rewrite the program f-om memory
as best you can. Since we are interested in your understanding of the program, it

t not necessary for you to memorize statements, statement numbers, or variable names
exactiy. It's 0.K. as long as the program still does tne same job.

If there are any questions, please ask them at this time.

(suoijeujwiadsyp

Lejudw jo spuesnoyly)

86 3 S,peajs|ey

8l JLAI9 §,9Qqe)OK

2¢S-8h SINIWILVLS Tvi0oL

1/ SJuUaWA}eIS 43Y3I0 #

22 SJUBWR3 LS MO|{ |O43u0) #

12-0¢ ve-£€2 | 82-92 LE-62 92 92 92-¢t2 pe-2¢ | 92-¢2 sjuawajels Juawubyissy #

35037 |93e43pol | ISOW 3sea |aj3eaapoy | 3SOW 35037 |33e42pOon | ISOW 13A37 A31x3|dwo)
ejep 0 335 © 404 snowo?y .

SUO}JR}A3p paepuR)S pue -0Yd|p a4e YdLym sa|qe alqey weabouad

swhwpupw® sunupxew | -jARA OM} Ud3IMI3Q JUILD A2uabujjuod © wouaj anieA 40

‘sueaw aje|ndje)

F143900 jyd 3y3 sayndwo)

aJaenbs-1yd ay3 sayndwo)

£
W10L

N
IHd

L
OSIND

WYH90ud

sweaboad |e31354303$ oyl JO UOLIALAISAQ Y - [°2°9 x| purddy

PR eSS ——"

(suojjeujwiadsip

ooL |, oLl fauzws 40 spuesnoyl) 3 s,peaisiey

9 ve JLJ433| 5,3QqRYON

L5-9G | $5-2§ SIN3W3LVLS 101

4 4 sjuswajels 43y3p #

Sl Sl cl ol oL 8 22 L2 ve Sjuswajlels Mol4 |043u0) §#
EE-1€ ge-1¢€ 2¢€ 92-¥2 92-v2 | 62 82-92 82-92 | 82-92 sjuswalels jJuawubissy #
3seaq | ajeaapoy | 3soy | 3sea) | ajeaapoy | 3soy 3sea] |ajeaapoy | Isoy L2A37 A3 }x3)dwo)

a|na |eplozades3 3yj

uoL3ouny

Aq (eub3juy ue a0y uory | paje(nqe} A[(eaipofuad [43p4o pue judwnbue uaALb e a0y weuboud
-ewjxouadde ue 33ndwod o) e JO SsisAjeue u3aiuano4 uotjouny |assag ayy saiyndwo) 40 3sodang
9] 1
93INI ¥3nunod 135534 # W490ud

Sweaboud bupasouasul 3y} SO udiadiddEqy -.2°2°9 xwo:ﬂam<

e ———————— o

(suogjeupwiadstp

92 62 1 6¢ €8 02l L€ LE €/ |lejusw jo spuesnoyl) 3 s,peais|ey
8 6 bl 14} 1 22 8 oL st O33N §,3qRI
ch-0ob O¥-6¢t 144 6¢ 6Y 99 44 144 8Y SIN3W3LVIS W0l
8 L L 4 4 4 S S S Sjuauwalels 43ylQ #
Ll Ll 22 £¢ L2 9¢ el Sl €l sjuswalels mol4 (os3uo) ¥
L1-G1 9L-51 L 141 02 8l G2 ¥e 0 sjuswajels juawubissy
3seat | ajeaapoy| 3Isow 3seaq | ajeaspoy | 3Isol 3sea] | ajesspoy | 3sSoW (3A37 A3ix3{dwo)

*buiags 43yjoue
ojut Buguals e jo sjued

$31dod A|9A}32913S 40 Swaj ¢ waj} 3S93 e pue Saddeaeyd weabouay

bupals 939)dwod e sapdo)y |ajesy|dnp Juadefpe sdiais 40 33sqns wopues e $323|3S 30 3sodung
6 8 L

-HLQIM: INDINN 19313s # WVY90Ud

Swedboud dl43unh-uoN ay1 jo uoljdidasag y - €°2'9 x|puaddy

37

"

90

100

120

140

10

N -

APPENDIX 6.3.3
SELECT, CONTROL FLOW LEYEL 3, MNEMONIC LEVEL 1

.

SUBROUTINE SELECT(J,B,M,U,K,P,J1,MD)
INTEGER B(J), U,M,D(26),Q,#,Y,N(26),L
EXTERNAL L
DATA N/1HA, 1HB, 1HC, 1HD, 1HE, 1HF, 1HG, 1HH, 1HI, 18J,
15K, 1HL, 1HM, 1HN, 1HO, 1HP, 1HQ, 1HR, 1HS, 1HT, 1HU, 1BV, 1HW, -
1HX, 1HY, 1HZ/
IF(J.LE.25) GO TO 9%@
P=99
GO TO 300
P=0
DO 100 1=1,26
DCI)=NCI)
CONTINUE
DO 120 1=1,25
Q=L(1,26,J1,M1)
Y=D(Q)
DC@Q=DC 1)
D(I)=Y
CONTINUE
DO 140 I=1,J
B(I)=D(1)
CONTINUE
!I‘thul.m).c'r.o.s) GO TO 200
= 1
K>L(1,J,J1,M1)
U=B(O
GO TO 3500
KlzJ+1
K=L(K1,26,J1,M1)
U=D(BO
M=2
K=0
RETURN

END

INTEGER FUNCTION L(1I1, N1, J1,MD)
INTEGER 11, N1, Ji, M1

IF (N1.GE.11) GO TO i@

IY = K1

N1 =11

I1 = 1Y

R=Nl-11¢+1

G = RAN (J1, M1)

L = IFIX (G x* R + FLOAT (1I1))
END

50
60
70

100

110

120

APPENDIX 6.3.1
INTEG, CONTROL FLOW LEVEL 1, MNEMONIC LFVEL 2

SUBROUTINE QATR(LBOUND, UBOUND, ABSERR, NDIM, FNCT, RESULT, ERROR, ARRAY)

DIMERSION ARRAY(NDIMD

INTEGER ERROR

REAL LBOUND, INCRE

ARRAY(1) = . 5% (FNCT(LBOUND) +FNCT(UBOUND))

W1DTH= UBOUND-LBOUND

IF(NDIM-1)990,90, 10

IF(WIDTH)290, 110,20

BAFWID=VWIDTH

ERRMED= ABSERR/ABS(W1DTH)

CON1=0.

VAL1=1.

INDEX3= 1

DO 80 1=2,NDIM

RESULT=ARRAY(1)

CON2=CON1

INCRE= HAFWID

HAFWID=.S5xHAFWID

VAL1=.3%VAL1

ARGUM= LBOUND+HAFWID

DLTX=0.

DO 30 J=1, INDEX3

DLTX=DLTX+FNCT(ARGUM

ARGUM= ARGUM+ INCRE

CONTINUE

ARRAY(1) = .5%ARRAY(I-1)+VAL1*DLTX

XTRAPL=1.

INDEX1=1~1

DO 40 J=1, INDEX1

INDEX2= I~J

XTRAPL=4. * XTRAPL

ARRAY(INDEX2) = ARRAY(INDEX2+ 1) +(ARRAY(INDEX2+ 1) -ARRAY(INDEX2))/
(XTRAPL-1.) : ——

CONTINUE

CON1=ABS(RESULT-ARRAY(1))

IF(CON1-ERRMED) 110,110,60

IF(CON1-CON2) 70, 120, 120

INDEX3=2* INDEX3

CORTINUE

ERROR=2

RESULT= WIDTHXARRAY(1)

RETURN

ERROR= 0

GO TO 100

ERROR= 1

RESULT=WIDTH*RESULT

RETURK

END

FUNCTION FNCT(ARGUM
FNCT=1./(2.+ARGUID
RETURN

END

T e 3

- RSP —————————

S g

10

S0
60
70

APPENDIX 6.3.2
CHISQ, CONTROL FLOW LEVEL 2, MNEMONIC LEVEL 2

SUBROUTINE CHISQ(MAT,N, M, CS, DEG, ERR, RTOT, CTOT)
INTEGER ERR,DEG,PTR

REAL MAT

DIMENSION MAT(100) , RTOTC(N) , CTOT(ID
KM=NxM

ERR=0

CS=0.0

DEG=(N-1)*(M~1)

IF (DEG .GT. @) GO TO 1@

ERR=2

RETURN

DO 20 I=1,N

RTOT(1)=0.0

PTR= I-N

DO 20 J=1,M

PTR=PTR+N

RTOT(1) =RTOT(I) +MAT(PTR)

CONTINUE

PTR=0

DO 30 J=1,M

CTOT(J)=0.0

DO 30 I=1,N

PTR=PTR+1 Sl e e s
CTOT(J) =CTOT(J) +MAT(PTR)

CONTINUE

CTOT=0.0

DO 40 1=1,N

GTOT=GTOT+RTOTX I}

CONTINUE

IF (KM .EQ. 4) GO TO 60

PTR=0

DO 50 J=1,M

DO 50 I=1,N

PTR=PTR+1

EXPT=RTOT(1) 2CTOT(J) /CTOT

IF (EXPT .LT. 1.0) ERR=}

CS=CS+(MAT(PTR) -EXPT) *(MAT(PTR) ~EXPT) /EXPT
CONTINUE 7

RETURN

CS=GTOT*(ABS< MAT(1) *MAT(4) - MAT(2) *MAT(3)) -GCTOT/2. 8) *%x2
1 /(CTOT(1) *CTOT(2) *RTOT(1) *RTOT(2))

END

APPENDIX 6.4
MEASURING COMPLEXITY OF CONTROL FLOW

In developing a metric for software complexity, one
approach might consider the number of statements in a
program, thus egquating 1length and complexity. A slightly
more sophisticated measure is the percent of statements that
affect control flow. A Bell Telephone Laboratories study
(Davis, Dickman, Kouni, & Amster, 1976) used this metric on
a large number of programs. It has a problem because
complexity can be held constant as the size of the program
increases.

To assign a metric to control flow complexity, we must
examine the elementary control structures of a program.
This requires breaking the program down into elementary
building blocks, assessing the complexity of each block, and
then combining these' assessments into higher 1level
components.

Halstead (1975) accomplished this decomposition and
synthesis by choosing operands and operators as the smallest
conceptual units to develop E, his measure of the complexity
of a program.

At a more abstract level, we can define statements and
groups of statements which represent cognitive blocks (or
chunks) to a programmer (e.g., DO, GO TO). These blocks are
probably more representative of the way people manipulate

concepts than the smaller units Halstead |uses. Ramsey

4

tommn et e

(1977) is currently involved in experimental studies to test

this assertion.

Another attempt to work at this more abstract level is
shown by McCabe (1976), who has defined complexity in
relation to the decision structure of the program. He
ignores the data structure totally. His complexity metric,
V(G), is the <classical graph-theory cyclomatic number
defined as: # edges - # nodes + # connected regions. Simply
stated, he counts the number of basic control paths through
a computer program.

Ihe simpiest program possible would have V(G) = 1.
Sequences do not add to the complexity. IF-THEN-ELSE .is
valued as 2, increasing the complexity by 1, a DO or DO
WHILE is also 2, the assumption being that there are really
only two control paths, the straight path through the DO and
the retufn to the top, regardless of the number of times
executed. Clearly a DO executed 25 times is not 25 times
more complex than a DO executed once.

McCabe's method 1is explained only for structured
programs. In order to compute the metric for unstructured
programs, several alterations were made. An additional
RETURN was counted as an extra path in each case, keeping
the cyclomatic number the same as a "GO TO end" would have.

For statements of the form: IF() 100, 200, 300, the
complexity was increased by 2 as opposed to the logical 1IF,

which increases the complexity by 1. These are small

42

R——————

changes which appear to be reasonable extensions of McCabe's
theory. However, one gquestion which arises is the case of
the arithmetic IF where two paths are the same:
IF () 100, 100, 200

Should this add 1 or 2 to the complexity? 1In order to
standardize the procedure, it was counted as the standard
arithmetic IF with 2 added to the V(G) metric.

A limitation of McCabe's measure is that it does not

deal with an important feature that may affect program

. complexity. There is no provision for considering the level

of nesting in various constructions. For example, the
complexity of three DO loops in succession would be rated
exactly - the same as three DOs that are nested. Possibly at
some later time it will be decided that these two conditions
have the same complexity, but at this time it seems rash to
prematurely exclude nesting as a major contributor of
complexity. Presently, many programming shops 1limit the
degree to which nesting is allowed becéuse managers feel it
causes problems.

Sullivan and his associates (Bell & Sullivan, 1974;
Sullivan, 1973) at the MITRE Corporation, have incorporated

the effects of nesting levels into a guantitative measure of

complexity. Like McCabe, Sullivan works with a program flow

graph, making his metric independent of the programming
language used. Sullivan breaks the code into units such

that he can define a "local complexity" at any point as the

43

number of "active concepts" one must consider at that point
in the program. He suggests several ways of combining the

local complexities into an overall complexity measure for

the program. For example, sum the local complexities or -

take the largest local complexity.

The problem with this metric is that it is complicated
to compute and has been implemented only in JOVIAL to scan
JOVIAL code. Hahq calculation would be extremely tedious
and probably error-prone for any non-trivial program. It is
not even clear that the decompositions are wunique in all
cases; Were it discovered to be a good prediétor of
complexity, it would still take machine implementation in

several languages to get people to use it. A similar metric

which can be easily computed by machine has recently been

described by Richards (1976).

Reiter (1977) has developed a new metric, designed to
eliminate the problems discussed above. He uses the same
rating scheme for the three basic structures described
above, but in addition, assignment statements are accounted
for in ghe'éomplexity metric. He represents a program as a

group of nested boxes. Complexity is evaluated from the

innermost .part of the nest outward, adding a weighting

factor for each escape to a higher level. This appears to
be a reasonable approach. However, the metric is in the
development stage and has not been tested. It is therefore

difficult to decide whether the allocation of values to the

44

i e b s 2

P e—

P s g é LA e S BN i By 0 i Fisgrlasins a2 e o bt

assignment statements and to the escape from the nested

_levels is well chosen.

45

o
| SNOTSYIA
2) NI LON SI1GVIUVA viNY bdoud d
ey | cdoud 2
cAWina | €ving Zx wesop] | :
ZAWNNG ZHNG AN il :
; LAWHNG LWNa i = % \
LNNOY L INs : _ _
P P . ’ i ; al vvm N
I 1 I) ' : 3l e 1
A x N ST " i a| 2w v
SEON 580 N SHBIiN " = vl 1o b
VAN VA 1 BET A 5 TN N W
LNNOY I, 0 e i g THAXWH XVH X
STOXVH XW s L e J bSIHD $3 i
SAONTH m A i . LItd SNV 4
A300LS as M UEmity ey A 23000 | 2wAIn z
WS WS n e i ! 13002 | 1WA s
9AV AV b = 1 . 2193 2A n
¥OL93A 23N L VOSIH) i 2 (L3A LA 1
XTULVW W X ey o “ SAOWNN N \
Z1SaVL WN 1

- (il J8 1sod | wnigaw | 1svan 1So4 | woam | asym

€M 2 N €W oy N
£ WVU90Yd 2 WYU90ud 1 WVI90Ud
w101 DSIHD oy
SWYY904d WOILSILVLS 3HL ¥O4 SINVN IT8VINVA JINOWINW

1°6°9 XIAN3ddY

'y e e

L2 NI 1ON « S I I

2X3aNI 2 N

d31S1d audId A IX30MT % i

diis Q4d v 1dVULX ULX a

8 5 ¥ X110 Xa X

on | ounday i o v g

I I ! WINI INI 9

n RINEN! b 2N03 2 Y

an | z2unom d o i "

. e ¢ LIVA LA 9
X30NIx X0lx M e 4 g r \ r
LINA 14 2 fenhi o g I I N
s zs H A e b Q40124 N4 7
J 2d Y H1QIM AINI 0 133 14 S
(509 19 X b S . 194 r4 a
INIS LS a i " . Y31 1 v
ZIALNI 2INI A s T smmir g VA A A
E E N REY e ‘ LML 101 H
NIS409 INIS L e o ; 1d 1d g
500402 1502 4 " . . ouy3 O x
YYHX YW Q40 1 aNnoan aNgn N 1Sy SNV X
NYINT LINI N - i : 30 N N
¥0123A 93A n 94y X d

LSOK wniaaw | 1svan 1sow | wWinaw 1SV 1SON | Wnioaw 1SV
EN 2H IN €N 2N I €W W IN
9 WYY90Yd G WVU90Ud ¥ WVH90Yd
31404 B3INI 135538
SWYYD0Yd DNIYIINIONI JHL ¥O4 SIWVN 31GVINVA DINOWINW
2°5°9 X1GNIddV

i

) 3 y
\ \ ¢
I I I
d00 1« = =
21 2 21
Ll L L
ZLuv1S 2201 €N
aNSYLS ans ex 12 ¥0 €3 NI LON x»
LLYVLS 1201 er L9 NI 1ON
I3WY1S ADY I
£XI0NI n 1 UINNO | UL L
ZX3ONI WON A 0L0D%y Dhvx Lhex
LX30NI LdN I 00 dh Dhe
TYINOD UND 2N WAL 1 ¢
043z rATR 21 14N LI y
INVIE 19 o dIYLSN 21 W
¥1S1N0 NI 20 244ng | 21w e
30VdSN dSN W t44ng | 1w L
HLGIM aIm N SWILI yay 1
HLONIT N3 e NI TXVW W N
ONIYLS uLs W SHALIN N I
LSO Wnlgaw | Lsval 1SOW | WNIQ3W LSV
EW 2 LW €N 2 LW
6 WY¥90Yd 8 WYH90ud
HLOIM NDINN

SWYY90Yd ITUIWNN-NON JHL ¥O4 SIWVYN IT1GVIYVA DINOWINW
€°6°9 XION3ddY

e N S e W B P o e e DT RS 0 1 BT e T T e Y ey

'

BTV S e SV AP W T S g e

o T A P T T T T VIR =y S

ONNVY o 9
WIS 21S u
ZLINIT 21 IN
LLIWI T 11 L
WIN0Y L 0
ZLINI 2N IW
LLINI IN Ty
12735y aNY 1
I I I
VHd W dW N
dW3L 01S A
LXIN UHOY b
1440HS XIW a
youY3 E d
X3ONI QNI |
UVHD Hd n
AN M W
ONIYLS uls g
UVHON N r

LSO WOIOIW | 1SV3T
£W 2 LW

£ WVY90Yd
193138

S———

-

s
*
Fﬂ . APPENDIX 6.6.1
yr
”
SCATTERGRAM OF (DOWN) HALSTEAD E (ACROSSj MCCABE V(G!
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00
250.00 + @ 3 +
: 1 I
H I [§
! I -
f : :
4 227.50 + +
; : :
] 1 1
§ 1 I
gl I : §
g 205.00 + +
E; I 1
: I T
1 1
£ I I
§1 182.50 + + ==
{ 1 I
i I I
{ b I
I =
g 160.00 + L2
i X 1
| 1 I
! b 4 T
- I I
137.50 + * +
1 ¢
I I {
1 > R
I * 1 i
115.00 + $ 1
T I
b » . I
b - .. §
I L * I
92.50 + . +
1 * I W
I * 1
1 . . I
1 . ¥
70.00 + * » +
1 * * I
I I
I I
1 I 3
47.50 '+ + :
1 . * I y
1 . 1 :
1 * = .. o- - I A
I' * L I p
25.00 + * . +
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 !
CCRRELATION (R)= .42176 R SQUARED - .17788 SIGNIFICANCE R - .01422
STD ERR OF BST - 45.35207 INTERCEPT (A) -~ 34.05423 STD ERROR OF A - 21.96209
SIGNIFICANCE A - 06678 SLOPE (B) - 3.61582 STD ERROR OF B - 1.55468
SIGNIFICANCE B - 01422
PLOTTED VALUES - 27 EXCLUDED VALUES- 0 MISSING VALUES - 0

e

APPENDIX 6.6.2

SCATTERGRAM OF (DOWN) TOTAL LENGTH (ACROSS) MCCABE V(G]
6.00 8 Q0 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00
60.00 + +
I ¢
) I
I I
I I
57.00 + +
1 ¢
I L I
E 1
I I
54.00 + +
b I
b . L §
I 1
I - I
51.00 + 2 +
I ® * I
) - I
I I
I * - £
48.00 + +
I - L I
I %
I L - I
I . I
45.00 + . +
I L I
I i~ - I
I I
I - I
42.00 + +
I » d
I . » b4
) ¢ I
I I
39.00 + * +
b = - b
I I
I* . I
I I
36.00 + * +
I L
I I
I I
4 I
33.00 + +
I I
1 I
n I I
I I
30.00 + +
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00
CORRELATION (R)~- .75075 R SQUARED - .56363 SIGNIFICANCE R - .00001
STD ERR OP EST =~ 4.04616 INTERCEPT (A} ~ 35.83217 STD ERROR OF A =~ 1.95939
SIGNIFICANCE A - .00001 SLOPE (B) - .78818 STD ERROR OF B = .13870
SIGNIFICANCE B - .00001
PLOTTED VALUES =~ 27 EXCLUDED VALUES~ 0 MISSING VALUES - 9

1

.e

s e LT s gt g

l APPENDIX 6.6.3
*
f:u'rncm OF (DOWN) TOTAL LENGTH (ACROSS) ., HALSTEAD E
8 36.25 $8.75 81.28 103.7S 126.25 148.7 171.258 193.75 216.25 238.75
60.00 + +
- E I
I i
g I T
I I
57.00 + +
I I
I * L4 I
¢ I
3 I
54.00 + +
D | I
) - * I
I :
I - I
51.00 + L i +
) ¢ L I
I = I
I I
I * I
48.00 + *
I . I
4 I
) I
I I
45.00 + - +
I » I
I - » I
p
: o]
42.00 + +
I b I
I' * P 1
1 I
) 4 I
39.00 + * +
1 s == : : 1
5 4 I
I e I
I I
36.00 + o -
I 3
I I
I I
1 I
33.00 + +
1 4
I I
I I
I I
30.00 + +
25.00 47.50 70.00 92.50 115.00 137.50 160.00 182.50 205.00 227.50 250.00
CORRELATION (R)=- .46986 R SQUARED - .22077 SIGNIFICANCE R - .00670 E
STD ERR OF EST - 5.40692 INTERCEPT (A) =~ 41.39306 STD ERROR OF A - 2.03565
SIGNIFICANCE A -~ .00001 SLOPE (B) o .05754 STD ERROR OF B - .02162
SIGNIFICANCE 8 = .00670
PLOTTED VALUES - 27 EXCLUDED VALUES- e MISSING VALUES = 0
1

F P
v '/'
» F S
I SCATTERGRAM OF (DOWN) PERCENT CORRECT (ACROSS) TOTAL LENGTH
31.50 34.50 7.50 40.50 43.50 46.50 49.50 52.50 55.50 - 58.50
100.00000 + +
1 : I
I 1
I b
1 I
90.00000 + * +
b4 1
I
I I
1 1
80.00000 + .
- 1 - 1
{ I I
P 4 1 1
I t] * x
j 70.00000 + * .
" I * 1
I 1
s 1 I
. 1 » 1
E 60.00000 + . :
1 1
1 " I
1 v 1
£ * » 1
3 $0.00000 + . +
1 * 1
1 * 1
be * * I
1 I
40.00000 + * +
I & * » ¢
1 1
1 * I
I 5 . L] 1 i
30.00000 + . * +
1 d R
I 1
1 . I
I 1
20.00000 + :
b < 1
1 1
1 I
1 I
10.00000 + 5
1 1
- I 1
| 1 1
3 I I
| b :
: ’i 30.00 33.00 36.00 39.00 42.00 45.00 48.00 $1.00 54.00 57.00 60.00
!
CORRELATION (Rj~ ~.52643 R SQUARED - .27713 SIGNIFICANCE R - .00240
‘ STD ERR OF EST ~ 14.87754 INTERCEPT (A} -~ 120.10065 STD ERROR OF A ~ 22.55263
SIGNIFICANCE A - .00001 SLOPE (B) - -1.50394 STD ERROR OF 8 ~ .48579
SIGNIFICANCE 8 - .00240
PLOTTED VALUES - 27 EXCLUDED VALUES- b} MISSING VALUES ~ 0

bl

APPENDIX 6.6.5

SCATTERGRAN OF (DOWM) PERCENT CORRECT (ACROSS) , MCCABE V(G]
6.00 8.00 12.00 14.00 16.00 18.00 20.00 22.00 2¢.00

100.00000 + +

T I

1 1

I I

I I
90.00000 + +

1 1

I I

I E o

1 £ 1
80.00000 + 1

1 . e

b 4 I

I I

1 . I
70.00000 + . +

b4 . 1 —~

1 1

1 I

1 * 1
60.00000 + . -

b < I

1 * I

I* i

I L L I '
50.00000 + . *

4 I

1 - 1

I - S L] x

I -
40.00000 + . .

1 1

b < I

1 . t

1 . 1
30.00000 + . . >

1 . £ 3

1 .

1 . z

1 1
20.00000 + = 3

I I .

1 I

t .

1 g
10.00000 + +

1 1

1 1

T 1

1 1

0« .

5.00 7.00 9.00 11.00 13.00 17.00 19.00 21.00 23.00 25.00]
CORRELATION (R)= -.44948 R SQUARED - .20203 SIGNIPICANCE R - .00933
STD ERR OP EST - 15.63129 INTERCEPT (A) - 68.32077 STD ERROR OF A - 7.56957
SIGNIPICANCE A - .00001 swore (B) - -1.34811 STD ERROR OF B - .53585%
SIGNIPICANCE 8 - .00933

- 27 EXCLUDED VALUES- 0 MISSING VALOUES - 0

PLOTTED VALUES

s fed

APPENDIX 6.6.6

7

’.
4 - -
CATTERGRAM OF (DOWN) TRANSFORMED PERCENT (ACROSS) TRANSPORMED LENGTH
1.2% 3.75 6.25 8.75 11.25 13.75 16.25 18.7 21.25 23.75
50.00 + +
I I
I I
I I
1 2 I
40.00 + +
¥ b4
E 4
I I
8 3 ! s
30.00 + +
I I
I I
b 4 I
I * * I
20.00 + +
) 4 s I
¢ I
I I
- I-
10.00 + B
2 4 5 ¢
I I
1 ‘
b 4 .
g. #3% I +
I.. 2. I
I - - I
b 3 I
) " L I
-10.00 + +
% 1
b . I
I I
I B ¢
=20.00 + . +
I * * T
I I
4 . I
1 * 1
-30.00 + . +
I I
I I
I 1
.3 I
-40.00 + +
» I I
I I
I b
I I
-50.00 + , +
0 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00
CORRELATION (R)=~ -.37695 R SQUARED - .14210 SIGNIFICANCE R - .02630
STD ERR OF EST ~ 15.46792 INTERCEPT (A) -~ 3.33687 STD ERROR OF A - 4.23922
SIGNIFICANCE A =~ .21930 SLOPE (B) - -~1.30229 STD ERROR OF B =~ .63998
SIGNIFICANCE B =~ .02630
PLOTTED VALUES - a7 EXCLUDED VALUES-~) 0 MISSING VALUES =~ 0

GG L el i e e PRI I

APPENDIX 6,6.7

Y

¥

rd ¢
L - - —— i
SCATTERGRAM OF (DOWN) | TRANSFORMED PERCENT s (ACROSS) TRANSFORMED V(G] ‘
i 1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 :
50.00 + 4 + 4
I % I 5
I I #
| : ; —
! 1 » 1 1
i 40.00 + + t
I I ¥
I I §
I 1 ;
I I :
30.00 + * E
I I §
)) T i
1 I ;
I * I
1 20.00 + +
; I* I =
: 1 I
. I I
| I % I
10.00 + + -~
E I
I* I
I I
I I
| 0 +3 = +
f 16 * - I
\ I » 4 * I
I I
I 2 L
-10.00 + +
1 L I
p ¢ I
I I :
x L3 - . - I -
-20.00 + & + 3
b . i I !
;- . T
I * I
I » &
; -30.00 + +
4 I
I I
I
I I
-40.00 + +
I I
. I 1
I I
I I
-50.00 + +
SE 0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
CORRELATION (R)=- -.56248 R SQUARED - .31638 SIGNIFICANCE R =~ .00113
STD ERR OF EST - 12,.79068 INTERCEPT (A) =~ 4.62167 STD ERROR OF A =~ 3.08226
SIGNIFICANCE A - .07314 SLOPE (B) - -1.63812 STD ERROR OF B ~ . 48159
SIGNIFICANCE B = .00113
PLOTTED VALUES - 27 EXCLUDED VALUES=- 0 MISSING VALUES -~ 0

P —

P

e L —

e

s

SCATTERGRAM

60.00

48.00

36.00

24.00

12.00

-12.00

-24.00

-36.00

-48.00

-60.00

CORRELATION (R)=~
STD ERR OF EST =~
SIGNIFICANCE A ~
SIGNIFICANCE B ~
PLOTTED VALUES =~

18.25

TRANSFORMED PERCENT

APPENDIX 6.6.8

) TRANSFORMED E
95.75 111.25 126.75 142.25

-

e e e I N N e I e R N N e N N N I N N e N e e R N e R RN e N N N

o

+ .

-

-.09678
15.60792
.23720
.31553
27

26.00

SIGNIFICANCE R
STD ERROR OF A
STD ERROR OF B

INTERCEPT (A)

EXCLUDED VALUES-

MISSING VALUES

O¢ $+HHMHHAFHHMHF SNSRI R N -t

150.00

.31553

3.57718

.09589

QFFICE OF NAVAL RESEARCH, CODE 455
- TECHNICAL REPORTS DISTRIBUTION LIST

Director, Engineering Psychology
Programs, Code 455

Qffice of Naval Research

800 North Quincy Street
Arlington, VA 22217 (5 cys)

Defense Documentation Center
Cameron Station
Alexandria, VA 22314 (12 cys)

Dr. Robert Young

Director, Cybernetics Technology Office
Advanced Research Projects Agency

1400 Wilson Blvd.

Arlington, VA 22209

Office of Naval Research
International Programs
Code 102IP

800 North Quincy Street
Arlington, VA 22217

Director, Information Systems
Program, Code 437

0ffice of Naval Research

800 North Quincy Street

Arlington, VA 22217

Commanding Officer
ONR Branch Office
ATTN: Dr. J. Lester
495 Summer Street
Boston, MA 02210

Commanding QOfficer

ONR Branch O0ffice

ATTN: Dr. Charles Davis
536 South Clark Street
Chicago, IL 60605

Dr. Bruce McDonald

Office of Naval Research
Scientific Liaison Group
American Embassy, Room A-407
APQO San Francisco, CA 96503

Director, Naval Research Laboratory
Technical Information Division

Code 2627
Washington, 0.C.

20375 (6 cys)

0ffice of the Chief of Naval Operations,
0P 987dH

Personnel Logistics Plans

Department of the Navy

Washington, D.C. 20350

Mr. Arnold Rubinstein
Naval Material Command
NAVMAT 0344

Department of the Navy
Washington, D.C. 20360

Commander

Naval Air Systems Command

Human Factors Programs, AIR 340F
Washington, D.C. 20361

Commander

Naval Air Systems Command
Crew Station Design, AIR 5313
Washington, D.C. 20361

Mr. T. Momiyama

Naval Air Systems Command

Advance Concepts Division, AIR 03P34
Washington, D.C. 20361

Commander v ' : :

Naval Electronics Systems Command
Human Factors Engineering Branch

Code 4701

Washington, D.C. 20360

Dr. James Curtin

Naval Sea Systems Command

Personnel & Training Analyses Office
NAVSEA 074C1

Washington, D.C. 20362

Director

Behavioral Sciences Department
Naval Medical Research Institute
Bethesda, MD 20014

Dr. George Mpeller

Human Factors Engineering Branch
Submarine Medical Research Laboratory
Naval Submarine Base

Groton, CT 06340

Mr. Phillip Andrews

Naval Sea Systems Command
NAVSEA 0341

Washington, D.C. 20362

Bureau of Naval Personnel

Special Assistant for Research
Liaison

PERS-O0R

Washington, D.C. 20370

Navay Personnel Research and
Development Center

Management Support Department

Code 210

San Diego, CA 92152

Dr. Fred Muckler

Navy Personnel Research and
Development Center

Manned Systems Design, Code 311

San Diego, CA 92152

Mr. A.V. Anderson

Navy Personnel Research and
Development Center

Code 302

San Diego, CA 92152

LCOR P.M. Curran :

Human Factors Engineering Branch
Crew Systems Department, Code 4021
Naval Air Development Center
Johnsville

Warminster, PA 18950

LCDR William Moroney

Human Factors Engineering Branch
Code 1226

Pacific Missile Test Center
Point Mugu, CA 93042

Human Factors Section

Systems Engineering Test Directorate

U.S. Naval Air Test Center
Patuxent River, MD 20670

Dr. John Silva

Man-System Interaction Division

Code 823, Naval Ocean Systems Center
San Diego, CA 92152

Human Factor Engineering Branch
Naval Ship Research and Development

Center, Annapolis Division
Annapolis, MD 21402

Naval Training Equipment Center
ATTN: Technical Library
Orlando, FL 32813

Dr. Alfred F. Smode

Training Analysis and Evaluation Group
Naval Training Equipment Center

Code N-0QT

Orlando, FL 32813

Dr. Gary Poock

Operations Research Department
Naval Postgraduate School
Monterey, CA 93940

Dr. A. L. Slafkosky
Scientific Advisor

Commandant of the Marine Corps
Cade RD-1

Washington, D.C. 20380

Mr. J. Barber

Headquarters, Department of the Army,
DAPE-PBR

Washington, D.C. 20546

Dr. Joseph Zeidner

Director, Organization and Systems
Research Laboratory

U.S. Army Research Institute

5001 Eisenhower Avenue

Alexandria, VA 22333

Dr. Edgar M. Johnson

Organization and Systems Research
Laboratory

U.S. Army Research Lab

5001 Eisenhower Avenue

Alexandria, VA 22333

Technical Director

U.S. Army Human Engineering Labs
Aberdeen Proving Ground
Aberdeen, MD 21005

TS T P . -
ey 5!1!

!

i

1

L}

U.S. Air Force Office of Scientific
Research

Life Sciences Directorate, NL

Bolling Air Force Base

Washington, D.C. 20332

Dr. Donald A. Topmiller

Chief, Systems Engineering Branch
Human Engineering Division

USAF AMRL/HES

Wright-Patterson AFB, OH 45433

Lt. Col. Joseph A. Birt

Human Engineering Division

Aerospace Medical Research Laboratory
Wright Patterson AFB, OH 45433

Air University Library
Maxwell Air Force Base, AL 36112

Dr. Arthur I. Siegel

Applied Psychological Services, Inc.
404 East Lancaster Street

Wayne, PA 19087

Dr. Gershon Weltman
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Edward R. Jones

McDonnel1-Douglas Astronautics
Company - East

St. Louis, MO 63166

Dr. H. Rudy Ramsey

Science Applications, Inc.

40 Denver Technological Center West
7935 East Prentice Avenue
Englewood, CO 80110

Dr. Meredith Crawford
5606 Montgomery Street
Chevy Chase, MD 20015

Dr. Jesse Orlansky

Institute for Defense Analyses
400 Army-Navy Drive

Arlington, VA 22202

Dr. Stanley Deutsch
Office of Life Sciences
HQS, NASA

600 Independence Avenue
Washington, D.C. 20546

Director, National Security Agency
ATTN: Dr. Douglas Cope

Code R51

Ft. George G. Meade, MD 20755

Journal Supplement Abstract Service
American Psychological Association
1200 17th Street, NW :

 Washington, D.C. 20036 (3 cys)

Dr. William A. McClelland

Human Resources Research Office
300 N. Washington Street
Alexandria, VA 22314

Kin B. Thompson

NDAC

Pentagon, Room BD770Q
Washington,D.C. 20301

A. Stoholm
NPRDC-
San Diego, CA 92152

Director, Human Factors Wing

Defense & Civil Institute of Environmental
Medicine

Post Office Box 200Q

Downsville, Toronto, Ontario

CANADA

Or. A.D. Baddeley

Director, Applied Psychology Unit
Medical Research Council

15 Chaucer Road

Cambridge, CB2 2EF

ENGLAND

