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The symmetric SOR method (SSOR method) for solving the linear system
Au - b is considered. The basic properties of the SSOR method are sum-
marized, and a procedure is given for estimating the optimum relaxa-
tion factor w and the corresponding spectral radius of the SSOR matrix
8 . Two procedures for accelerating the convergence of the SSOR method
are considered, one based on conjugate gradient acceleration and the
second based on the use of Chebyshev acceleration. Two versions of
conjugate gradient acceleration are considered--the nonadaptive and the
adaptive.
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THE ACCELERATED SSOR METHOD FOR SOLVING LARGE LINEAR SYSTEMS:

PRELIMINARY REPORT

by

Linda J. Hayes and David M. Young

1. Introduction. In this paper we consider the symmetric SOR method

(SSOR method) for solving the linear system
(1.1 Au - b

where A 1is a given real Nx N matrix which is symmetric and positive definite
and where b is a given real Nx1 column matrix. We are primarily interested
in cases where the matrix A 1is large and sparse.

The basic properties of the SSOR method are summarized in Section 2, A
procedure is given for estimating the optimum relaxation factor «w and the cor-
responding spectral radius of the SSOR matrix é&. These estimates are in terms
of the spectral radius S(B) of the Jacobi method and another quantity £ which
can usually be estimated to sufficient accuracy.

We consider two procedures for accelerating the convergence of the SSOR
method. The first, which is described in Section 3, is based on conjugate gradient
acceleration. The second, which is described in Section 4, is based an the use of
Chebyshev acceleration. To carry out either scheme one must choose the relaxation
factor «w. No additional parameters are required to apply conjugate gradient ac-
celeration, We consider two versions of conjugate gradient acceleration: the
nonadaptive version where the value of «w is fixed; and the adaptive version where
one chooses a value of @ and improves it adaptively based on the results of the

iterative process.

i




In order to apply Chebyshev acceleration it is necessary to assume values

of « and S(8 ). We consider three versions: the nonadaptive version where
[

neither & nor the estimate of S(8 ) varies; the partially adaptive version
(4})
where « 1is kept fixed but where improved values of S(d&) are determined

adaptively; and the fully adaptive version where improved values of both « and

S(%J) are determined adaptively.

Preliminary tests have been carried out for a very simple model problem
as described in Section 5. For these cases the adaptive procedures are very ef-
fective in the sense that the number of iterations required in each case was not
substantially greater than was required using the optimum iteration parameters.

We expect that the accelerated SSOR method with adaptive parameter determina-
tion will prove effective in a much wider class of problems. Experiments described
by Young [2] and by Benokraitis [5] indicate that the nonadaptive procedure is
effective. Tests on similar cases based on the adaptive procedures are now being

carried out,.
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2. The basic SSOR method. The equation (l.1) can be written in the form

(2.1 u = Bu + ¢
where
fa BT
(2.2)
€ = D-lb.

Here D 1is the diagonal matrix with the same diagonal elements as A. The matrix
B corresponds to the Jacobi method of iteration.
The matrix A can be written in the fomm
(2.3) A= D~€ - C
where CL and CU are strictly lower and strictly upper triangular matrices,

respectively. Evidently

(2.4) B=L+1U
where

-1 -1
(2.5) E=D CL U= D CU

and where L and U ae strictly upper triangular and strictly lower triangular

matrices, respectively,




The SSOR method can be defined in terms of the ordinary (forward) SOR method

and the backward SOR method. The ordinary SOR method is defined by

(2.6) u(ml) = £ u(n) + ku()F)

w

where

"

ffw = (L-ol) k (@U + (1-w) I)
2.7 £
l &)

W

(I-u.)L)-lwc.

i}

The backward SOR method is defined by

(2.8) u(n+1) e u(n) g k(B)
@ w
where
‘!lw = (I-al) -l(wL + (1-w) I)
(2.9)

# L ogea T,
W

One iteration of the SSOR method consists of one (forward) SOR iteration (to get

u(“*5)) and one backward SOR iteration to get ¢ s we have
u(“*%) . i\u(") + S
(2.10) w w
LD a u(n+% 4-k(B).
w Ww
If we eliminate u(n+%) we obtain
@2.11) Mkl SRR L S 8
w w
where
"sw = q‘u\iw
(2.12)

kw = w(2-w) (I-wl) -l(I-wL) -lc.




——— W“‘

PvT——

It is easy to show that

2.13) 8 - 1- W (Tall) L (T-ul) D LA
- I - 20—1—“ ( ‘in-cu)'lo( (%D-CL)-IA
o

where

(2.14) Q - &

and lwhere

(2.15) & = 2—‘*_‘;

(2.16) ¥ = B¢ (%D- ¢,

Our analysis of the convergence properties of the SSOR method will be based on
that given in Young [1974]. Let m(B) and M(B) be the smallest and largest
eigenvalues of the Jacobi matrix B. We remark that m(B) < 0 and M(B) >0.
Furthermore, M(B) < 1 since A 1is symmetric and positive definite. In addition,
the eigenvalues of the SSOR matrix, $ ., are real, non-negative, and less than unity.

Let é, 1\71, and m be numbers such that

> -2 /§
2 /B

M<1

(" m(B) >

18

M(B) <M

IA

(2.17)

S(LU) < B




It can be shown that S(B) < 2 /E“; hence if we have a bound M for M(B) such
that M > 2 /B we can replace M by 2 /E". Similarly, if m <-2 /B we can
replace m by -2 »/E? .

It can be shown that

1 - w(2-w) —_I-ME—_- if -82% or if é<% and o < w*
J l-aM+w B
(2.18) 5@ < <
1-m L
1 - w(2-w) S if B<Z and w > %,
l-am+w B

Here for f-3< we define «* by

R

(2.19) PR -

1 +V1-48 :

Moreover, the bcund (2.18) is minimized if we let

( 2 if fi<4p
1 +~J1-2ﬁ+4é
(2.20) wy = < 4 y ¥
_ =wx 1if M > 48
1 +V1-4B

\

The corresponding bound on S(.)?(l ) 1is given by
1




T S P
st L
1-2M+4B
(2.21) s@ )< (¢
w
1 -
LoNL -8B e - 1, 1f M >45,
1+ V1-48

and the eigenvalues A of 8 will be in the range 0 < A < S(sz )
1 1

We shall refer to the value of Wy given by (2.20) as a '"good" value of

. Of course, «, 1is not necessarily the true optimum value in the sense of

i
minimizing S(&,) .
For example, if the matrix A is derived from a 5-point difference

equation corresponding to a self-adjoint elliptic partial differential equation

(2.22) L[u] = (Aux)x + (Cuy)y + Fu = G,

SRS

Jacobi method

el

+ Ba(x,y)u(x.y—h) + t(x,y)

and if we rewrite the difference equation in the form which corresponds to the

(2.23) u(x,y) = Bl(x,y)U(x+h,y) 5 BZ(X.y)U(x,y+h) e 83(X.y)U(x-h,y)

where
Alx+3,y) Clx,y +5)
BI(X-Y) b _S—(_x—,-ﬁ ’ Bz(x,y) o _S—G,_;)_
(2.24) h h
A(x =35Y) C(x,y -5
B:;(’h}') o ——S—(?c,—y)__ ’ Ba(x,y) = _—é_(;(—.—y—)—




(2. 25) - !
< & Glx.¥) 3
1(x,y) h S(x.y)
then the formulas for the SSOR method are given by ;i
4 |
( v
U'“m(&y)-wUﬁJ“Nx+my)+8?J”(&y+h)+efﬁm*Nx-hJ)
|
; -+
J + Béu(n Lﬁ)(x,y--h) + t(x,y)} + (1-w)u(n)(x,y)
(2. 26)

. h
S(x,y) = A(x +5.y) + A(x—-g,y) + C(x,y+%) + C(x,y-%) -th(x,y) : { ]

(n+l
e )(x.y) - w{Blu(n+l)(x-+h,y) + Bzu(n+l)(x,y-+h) § B3u(“+5)(x-h,y)

(n+y)

+ 84u (x,y-h) + t1(x,y)} + (1-w)u(“+5)(x,y)

-

I1f one uses the natural orderingt, f can be calculated as

(2.2D B max[ﬁ3(x.y)lﬁl(x-h.y\ ~52(x-h.y)l »ﬁh(x,y)lﬁl(x.y-h)-*Be(x'y-h)l].

An upper bound M for M(B) can be obtained from (6.58), page 1037 of Young and

Gregory [1973].7 The relaxation parameter, «, is calculated using (2.20).

Application to the Model Problem P

We now consider the model problem defined by

(2.28) W uyy -1

in the unit square 0 <x <1, 0 ~y < 1 with u - 0 on the boundary. We will refer

to this as '"Model Problem P." We use a mesh size of h where h-1 is an integer.

*The "natural ordering" for points in a region R,_ is given by (x',y"') follows

(x,y) if y' > y or else y' ~y and x' > x. Thus the points of R, are treated row
’ h

by row from left to right starting at the bottom row.

*This bound may not be good enough in some cases. 1In that case an adaptive
procedure may be used.




From (2.27) we get

(2.29) B - % ;

From (6.58), page 1037, of [1] we get
(2.30) M(B) - cos Th,

From (2.20) we have

2

I T

(2.31) w

which is very close to the optimum « , namely for the SOR method.

b b
, Moreover, by (2.21) we have

i /1-M(B)
(2.32) S(8 ) < =
g e /1-}21@)

For Model Problem P, it can be shown (see, for instance, Young [1974]) that

| , 1 27k
(2.33) S(Lu) < z o8 5 .
i Using Z]: cos2 TT_2h for é we get
2
(2.34) w, = =
L4 T Y3 sin T—reh
! and
1, L= e sin g—h
(2.35) S(8 ) < /3
g 2 Th
1 1 + — sin >
V3

o
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The SSOR method requires about twice as much work per iteration as the SOR

method and is about half as fast as the SOR method. This, at first sight, would

f seem to preclude the use of SSOR. However, since all of the eigenvalues of the

o

matrix & are real, nonnegative, and less than unity Young [1974], it is possible to
accelerate the basic SSOR method using semi-iteration or variable extrapolation

as shown below. The resulting method is faster by an order-of-magnitude than

the SOR method. In order for this gain to be possible it is sufficient that

S(LU) - % be of the same order-of-magnitude, in some sense, as 1 - M(B).

|
|
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3. Conjugnte Gradient Acceleration

Let us now apply conjugate gradient acceleration to the SSOR method defined
by (2.11). We note that WQ*W‘l is a symmetric matrix, where W 1is given by
(2.16) . Moreover, as stated in Section 2, the eigenvalues of dh are real, non-
negative, and less than unity.

We define the SSOR-CG method, i.e., the conjugate gradient acceleration

g

procedure based on the SSOR method, byh

(3.1) o ) :

A S 8y «@3 s - pul®P

C:(n)

where is the pseudo-residual vector defined by

(3.2 PO S

o’ ey 2 i

and the y's are given by

(3.3) ¢ o= (1-R 1)'1

n+l n+

we'™ S 5(m)

(3.4) RQ =
n+l (wa(n)’w&(n))
Thus RQn»l is the Rayleigh Quotient of the vector WE(n) and the matrix WGW-l.
The {on) are given by
7
i o
1w
(3:3) < -1
«(n) . (n)
Pt [.1 - yn ' SE}(n-iyb (i-l) %—.] ;
n (WS ,Wd ) n

s
The formulas can be derived from the analysis of Concus, Golub, and
O'Leary [6]. See also Young [ll].
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The conjugate gradient acceleration procedure has the remarkable property

that
. (n) - . (n)
3.7 ite ]cc“Aa = e ]SIHA&
where lc(n)]cc u(n) - u (ﬁ is the exact solution of (1.1)) corresponds to

conjugate gradient acceleration, and [c(n)]SI is the error vector corresponding
to any semi-iterative method based on the SSOR method. Note that for any vector v

we have

V(A5V,A§v) V(v,Av) .

(3.8) lvll
R

Thus |jv|| , could be computed without too much difficulty.
AZ

Since W(I-& )w‘l (where W 1is given by (2.16)) and A&(I-ﬁ )A-g are
(€8] [eh

symmetric and positive definite, we could use either W or A% for W in

(3.4) and (3.5). The choice W : D-SQ%D - CU) minimizes the Aa-norm of the

error, and the choice W = A& minimizes some other norm of the error at each step.
An inefficient but attractive scheme would be to use W - D&Q%D = CU) in the
iterative and adaptive procedures and then use the Aa-norm for the stopping pro-

cedure. One would then be using the norm which is being minimized in the stopping

tests. This would involve an extra matrix/vector operation.
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Recursive Pseudo-residuals

We now describe an alternative formulation of the SSOR-CG method defined A
by (3.1)-(3.5). This alternative formulation was brought to our attention by
Alan Cline of The University of Texas at Austin, It has been used by Dr. Gene
Golub of Stanford University and others.
In the formulation (3.1)-(3.5) one is required to do two matrix/vector
multiplications involving ﬁ“ each iteration, namely, %“u(n) in (3.2) and

()

S8 8 in (3.4). We can reduce this to one such matrix/vector multiplication

&)
by computing the S(n) recursively. Thus by (3.1) and (3.2) we have '

g ol v e 8 e 3at ] ¢ aep 8T,

Atk ¢
(3.8" it

(m s -1 ()

The calculations could be done as follows. Given %nb ) .

u(n-l)‘ and IO could compute the following:

Yoid by (3.3)
;: oy by (3.5)
o E e a1

8¢ o (3.8%.

| It should be noted, however, that this procedure involves several matrix/vector
multiplications involving the matrix W. These can be eliminated as follows. Let

N(") be the pseudo-residual associated with the SOR method. Thus A(n) is given by

AM @ (B W)

w W

3.9
and 5(n) is given by

(3.9" 5™ ‘!lw[A(n) + u(n)) | ku(\B) - g

h"'"'""";"""'"'"'“"''"'-'-"f---'---------------nu-n-mlnmn.........._., i

.
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*
It can be shown that

o phene

(3.10) W(I-aw) ar D(1 .cw)
(3.11) wo ™ _ %D%A(n)
Thus we have
(3.12) ws @ sy _ %2(1)1“‘,/3(“),05&(“)).
Moreover, the A(n) and the 5(n) can be determined recursively by

(n+1) (n) (n) (n-1)
el & = Pn+l [Yn+1(£w- L% L4 :‘ + (Lrpgigda

(n+1) (n) (n) E (n-1)
LS g " Pnil {Yn+1‘uw;€v6 T L J s B s

The p and Yn+1 are given by

n+1
5.() 5 (n)
MRS < DA
(3.15) Yinl =
n+l (D%A(n),D%(I~ %D)S(n))
l 1 , ifn=0
(3.16) P =
e 1 3 @™, pi ™) _1__] Bt >
! Y, (D%A(n-l),nkA(n-l)) Py i ’ =2 L

A procedure based on these formulas is described in the flow chart of

Figure 3.1. We will defer discussion of the stopping tests until later.

*See Hageman and Young [1971], Chapter D.
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Initialization
| START | ———7
i g =0
“‘23) g om o)
u w w
S ) © (0 (B _ (0
iME(B) Qf o) = QIw[A + u ] + ku) -u
! available)
I = n+1 ‘
Stop? .
Use (3.18") y Exit
, no
2 5™
”
0™ ph®)
S RO PO
1 s difm =0
| P+l -1
r' [1 e @A™ | pi (™, 3
L Yo @D pE@Dy o]
LEn >l
(n+1) (n) (n) (n-1)
= = Pnil [Yn+16 s ] B LT
L (n+1) » aph iR . A1 v (n-1)
A - Y Fh+1({; )5 +A } + (1 pn*l)A
6(n+1) 2 QI'H~1- [Yn+l(q{ufu~) ,5(“) ki (l-Yn+1)5(n)-]
: o
+ (l-oml)s(n'l)

Figure 3.1,

The SSOR-CG Method with Recursive Pseudo-residuals,

e
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We note that this scheme requires the application of the matrix {D

o 8™, ¥ to ;cwa(“) %

w

to the vectors A(n)

and D and (I-{D)B(n). For
point SSOR, D is a diagonal matrix, and for line SSOR, D is tri-diagonal; so

this requires very little extra work.™ Since @ & B(n) = & 5(0) this operation
w W w :

requires as much work as one full SSOR iteration. Thus the total work per iteration
is approximately that of doing one SSOR iteration.
This scheme requires considerably less work per iteration than that given

by (3.1) to (3.5), at the cost of increased storage requirements. In this scheme,

-1)

one must provide additional storage for the A(n) and A(n vectors,

*
In this case we can factor D into the form STS where S is an upper

%

bi-diagonal matrix., We can use S instead of D* throughout,
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Stopping Tests

Ideally, we would like to require that our final approximation u(n) to

the exact solution u of (1.1) satisfies

3.17) —_— I

It can be shown (see Hageman and Young [1977]) that (3.17) holds if

i W 1 1 Hs(n) “W
(3.18) ‘ \/2_J /1-M<B> 186 [y ! b
D

We will show below how we can get estimates SE(éL) of S(qﬂ) while carrying out

the SSOR-CG method. 1If a good estimate ME(B) of M(B) 1is available we can use

the stopping test

™,

; 2 1 : =

(3.18" \/w /1-ME(B) 1 - SE(’Bw) HU(n)ll, S ng
D?

where A(n) is the SOR pseudo-residual. This follows by (3.11) and (2.15).

In the adaptive SSOR-CG method which we describe later in this section
we will automatically get estimates ot M(B). If, however, we are not using the
adaptive procedure and if we do not have a good estimate of M(B), then we can be

satisfied with requiring that our final approximatinn u(n) satisfy
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=
~
<}
N
]
e

(3.19) fo— <

It can be shown that this condition is satisfied if

o ]

S | T, Sgl

Since our iterative process yields estimates SE(é ) for S(éz) we can use the
w \

test
: la™ i
' e 1 D
&.a) 6 A o s &
E" w “U ”W
b= (n) e ' 20 : =
u has been replaced by u in (3.18') and (3.20). 1In practice, u is not

available, and as n increases Hu(n)H , and Hu(n)Hw become a good estimate
D

of [uf , and [
D

|
hw‘
We remark that if one uses either (3.18') or (3.20'") it is necessary to
(n) (n)
compute |ju" " || y orF [lu lh, after each iteration. However, when one has
D
reached the point where Hu(n) - u y or ”u(n) - ﬁ”w, is small, it is not
D

necessary to change Hu(n)” 4 OF Hu(n)”w. In practice, Hu(n)”w and ”u(n)”
D Dt

are not changed once the numerator of the stopping test is small.




19

For our estimate SE(QD) we use
. " Qo =
(3.20" bE(-su\) M(Tn)

*
where M(Tn) is the largest eigenvalue of the matrix Tn. Here Tn is given by

=(1-¥,) ~{3=p
o Sy . % . .
Y1 P1Y¥2Po
/-(1-01) -(1-vy /-(1-03) 4 3
Y1YoP2 Yo YoPoY3P3
/-(1-03)‘
@.21) T =| YoPoY3P4
|
H
i
{
“ €1 Y.: a0 -(1-p)
0 0 0 n-1 /
Yn-1 n 1 n- 1 n n l
?
I i
1 " . 1 \/-(1-%) -(I-Yn) |
Yn-lp -lynpn ]

*The idea of using the eigenvalues of a tri-diagonal matrix derived from the
conjugate graduate method to estimate the spectral radius of an iteration matrix is
used by Concus, Golub, and O'Leary. See also Kaniel [1966], Paige [1971], and
0'Leary [1975].




Adaptive Determination of « for the SSOR-CG Method

So far, in our discussion of the SSOR-CG method we have assumed that w 1is
fixed. Actually, since S(qw) is a very slowly varying function of w, it is not
essential that the exact optimum value of «w be used. It would not be unreasonable
to simply guess at a value of «, say 1.8, and use the non-adaptive process described
above. The sensitivity of S(ﬁr) to @ 1is much less than is the sensitivity of
S(x;).

However, it is possible to improve w adaptively using the matrices Th
described above. Instead of working with «, we actually work with ME(B)' which
is an estimate for M(B). We assume that we have an upper bound B for S(LU).
(Such a bound should not be much greater than 1/4 if the method is to be effective.)
We choose an estimate ME(B) such that ME(B) < M(B)--if nothing better is available
let M. (B) = 0. We then compute w, based on M_(B) and B, by (2.20) (with M

replaced by ME(B)). We also compute SE(AL) by (2.21).

Before beginning with the adaptive process we choose an "adaptive factor"

F such that 0 < F <1, A typical value of F 1is 3/4. The effectiveness of

the process is quite insensitive to F. If we use too large a va ue of F, say

F very close to unity, we will change parameters very often, which is inefficient.

A ke A e
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With too small a value of F we will not change parameters often enough and we will
be working with a poor value of .

After each iteration we compute §' = M(Tn), and we change ME(B) if

X1
(3.23) — < F
X2
where
O(SE(éL))
(3.24) ¥ = -log ——S——('—B—)
()
Sl
(3.25) Xa = -log ®(8"). ¥

Here we define &(x) for x € [0,1] by

(3.26) Py = SoelE % ol
1 +J/1-x s,

This procedure is based on the fact that X1 is the asymptatic average rate of
convergence of the SSOR-SI method based on _the use of S (é ), if the true spectral
radius S(é ) is equal to §', and XZ is the asymptotic average rate of conver-
gence of the SSOR-SI method based on the use qf S E& 5 = S'; -ggain as&um;ng that

! g
the true spectral radius is equal tog s' i; Cﬂé tafio of these convergence rates

o'’ Y
is at least F, then we consider that the convergence is fast enough and we do not
change parameters. If the ratio is less than F, then we consider that the con-
vergence is too slow and we change the parameters «w and SE(éh) in order to obtain

faster convergence.

1f é < 1/4 and if at any stage of the adaptive process we have

-log ®(w*-1)
(3.27) ~log ¢(SE(3L?) 2 F,

then we can settle on w* for « and we do not need to even consider changing




- - e — -
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any more., If (3.27) is satisfied we know that by using w = w* our asymptotic
average rate of convergence will be at least F times that which we could estimate
by our methods for any other . (It should be noted, however, that the actual

average rate of convergence for some «w might be greater than we can predict.)

Having decided to change parameters we compute (ME(B))new by

(3.28) M (B) |, = max (M (B), ML(B), My (B))
where
D
; (A -8"Y(A+ae B - w(2-w)
3.29) Mp(B) = o@ - (1981)
*
and
( Ise® ),
st 4f [l < uew)
s HD%
(3.30) wpy = 4
VE %™ pis @y P
% (n) % (n) ’ o] erwise.
(15 BB . R
.

New values of « and SE(éh) are obtained by (2.20) and (2.21), respectively,
with M= M (B)) _..

We remark that the value of ME(B) is obtained by setting the first form
of the right member of (2.18) equal to S' and solving for M. We note that the
first form should be used since we can show that if B < 1/4, then each « that

we use will not be greater than w*.

* ¥
1f A has Propxrty A or is an L-matrix, them m(B)] < M(B).
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Let us define the integer s as follows., The current value of « has been

(s+1)

(or will be) used for the first time in the computation of u The formulas -

for the adaptive SSOR-CG method are the same as in the non-adaptive case except that

1 g LE B =8
(3.31) o =
n+l L L ¥
53 Yol (%™ p3a ™) !;.] if n > s+l.
Y, (D%A(n-l)’D%A(n'l)) oy ¥

The overall procedure is illustrated in Figure 3.2. The input data are

()

u 0 ME(B), F, and é We set n and s equal to zero and compute « and

©) 4 50

SE(JS&) as well as the initial pseudo-~residual vectors A and Next, if

*
n#0 we find M(Tn s) where T ; is defined by (3.32). (This is not done if n = 0.)

) n,
We then apply the stopping test (3.18') with S(8 ) replaced by SE (a&). I1f con-
A 5

vergence has not occurred, we consider whether to change ME (B).

The "switch" @ is initially set equal to @ . However, each time we go
to @, we test whether w* would be satisfactory. This is the test (3.27).
If at any time (3.27) is satisfied, then we set @ to @ , and from then on
M.E(B) and  are not changed.

1
ME(B) should be changed. 1If ME(B) is to be changed, we carry out the change using

Assuming that @ = @, we then use the test (3.27) to determmine whether 1

(3.28). We then compute new values of w, SE (aw), A(n), and S(n) . We then proceed

8(n)’ 2 (n+l) A(n+1)’ oy 5(n+1)

sel? Paay? Y ’ . We are then ready

to calculate ;Cw

for the next iteration,

The computation of :Cwﬁ(n) (n+1)’ A(n+1), and 8(n+1) is the

» Yns1? Ppypr Y

same as in the nonadaptive case except that is given by (3.31).

p'n+1

*
The matrix Tn 8 is used instead of Tn since when we change ME(B) (after ]

)

the s-th iteration), we essentially start the conjugate gradient process over.
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4. Acceleration Based on Chebyshev Semi-iteration

As an alternative to the SSOR-CG method we can use Chebyshev semi-iteration

to accelerate the SSOR method. The SSOR-SI method is defined by (sce Young [2])

1 . -1
. u(". ) “ncl[vnulh(“) l u(“)l I (l,-,\“l)u(“ )

¥ (n)

where the pseudo-residual vector O is given by (3.2) and where

2

nitl 2- S(ﬂpf

4. Y

and

”l

D -
0, = (1-309""

1 2 -1
Pl (1- 29 p“) :

Here

S(e )

4.4 o ;;‘:;-l(::“”‘)‘ .

W

In order to apply the SSOR-SI method we need to choose v and an estimate
Hﬁ(fp) for S(ﬂ“). Also, if we wish to use the stopping test (3.18') we need an
estimate MH(B) of M(B). Otherwise we use the stopping test (3,20').

In this section we will consider two adaptive procedures., The first, which
we refer to as the "partially adaptive procedure," involves fixing « and adaptively
changing the estimate Sﬁ(ﬂp) for S(ﬁp). The other procedure, which we refer to as
the "fully adaptive procedure,'" involves changing « and SE(f“\ adaptively. The
procedure where « and SH(ﬁ“) are never changed {s called the "non-adaptive pro-
cedure." For the fully adaptive procedure we work with MH(“) and hence can

use the stopping test (3.18').
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Partially Adaptive Procedure (w fixed) ‘
Let SE('Bu)) be the current estimate for S(aw). Let us define the integer

s as follows., The current value of SE('Sm) has been (or will be) used starting

(s+1))

with the (s+1)St iteration (to get u The SSOR-SI method is defined by

e (n+l)

(n-1)
= Prwl {Yn+1 ®

%.5) 5(n) + u(n)) + (1 - )

n+l

where the pseudo-residual vector B(n) is given by (3.2) and

2
4.6) Y -
n+tl 2 SE(&w)
{
(‘
1 e hadE e =
(4.7) Qn+1 — 2 (1‘%0§)~1, if n = s+l
o e
| (1-%0Epn) 1, if n > s+2

S_(8)
i E”w
(4.8) % = & SE('Bw)
We change SE (-Bw) whenever »n =0 or ﬂ
5™ |, 2cP/2\"
.9 —_— (———-)
”6(8) ]lw 1+cP
where
(4.10) p=n- 38,
and
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2

| 2
= l-ot 1 -‘/1-SE(&L?

(4.11) r = ——

1+ Vl-oi 1 +-V1-SE(JL)

Here F 1is the adaptive factor discussed in Section 3 for the adaptive SSOR-CG
procedure.

Having decided to change SE(éL) we let
o 1 Sll
4.12) [sE(aw)) ]new max(sE (.sw) ’ SE('Bw) s E:(.sw))

where S'(8) and S"(8 ) are determined as follows. To get S'(8) we solve
E" w B E" w

the Chebyshev equation

8™l 2 | gl

(4.13) = .
B, 1P 1+P

where r is given by (4.11) and

2

1 -V1-(S_ (8)/SL(8))
(4.14) - E o b

i - [
1 +V1- (S;(8)/51(8))
We compute SE(%D) by the Rayleigh quotient

ws ™ s 5™
@D

(4.15) Sus ) -

n n
Having computed the new value of SE(Jh) we let s = n and then use

(4.5)-(4.8) to continue the iteration process.

.
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The overall computational procedure is illustrated in Figure 4.1. As in
the case of the SSOR-CG method, we determine the pseudo-residual A(n) for the
SOR method for each iteration as well as the pseudo-residual S(n) for the SSOR
method. This saves matrix/vector multiplications by W. At the beginning of
each iteration we compute A(n) and S(n), Usually this is done in a straight-
forward way, but if n = s+l we use a special procedure as described below. We
then carry out our stopping test. We use (3.18') if a good estimate ME(B) is
available for M(B). Otherwise we use (3.20').

If the process has not converged, we test whether SE(éL) should be
changed. If the test (4.9) is satisfied or if n = 0, we compute (SE(e.P:J‘))new =
max(SE(ﬁp), Sé(%ﬁ), SE(%I)) where Sé(%ﬁ) is the solution of the Chebyshev
equation and SE(&L) is the Rayleigh quotient (4.15)., With the new value of

and u(n+1)

SE(%L) bl Pn+1’ Yn+l’

and are ready for the next iteration.
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We use a special procedure whereby one can avoid matrix/vector multiplica-

tions by W and, at the same time,can compute the Rayleigh quotient s;:'(.s) each
w

time SE (csw) is changed without an extra matrix/vector multiplication. When

we decide to change SE ('Bw) we compute the vector

%.16)

It can be shown that

.17

Thus, for SE(«Bw) we

.18)

where

@.19)

~(n+1)

@ , 5@

= u

g(n+1) AT Ga(n+1) PR G(n+1) ol s(n).
w w w

have by (3.11} (uhich holds for BC'D ana XSUEL

(n) (n)
W™, W8 87 piaA®  pix(eel))
(w6 (n) ’WB(n) ) 2 (D%A(n) i D%A(n) )

Sg (r.Bw) =

z(n+1) 2 Ga(n+1) ] k(F) 54 aa(n+1).
w w

We note that to get the Rayleigh quotient Sg(aw) we have essentially

had to do an extra SSOR iteration, However, we can recover this by using a special

procedure to get A(n)

that if n = s+l then

@ .20)

and S(n) on the next iteration. Thus it can be shown

s _ Yn'é;(n) £ (1-y) 5(n-1)

A(n) - Yng(n) + (1- Yn)A(n'l)
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Fully Adaptive SSOR-SI Procedure

So far we have been considering the SSOR-SI method for fixed «w where we make

an initial estimate SE(éh) for S(éh) and then improve SE(dL) adaptively.
As stated in Section 3, S(éh? is a very slowly varying function of w, and it
is not essential that the value of «w be optimal. Thus it would not be unreason-
able to guess at a value of «, say 1.8, and use the partially adaptive procedure
described above. However, as we show, it is not difficult to improve « as
well as SE(éL? adaptively.

When we let «w as well as SE(ép) be determined adaptively we refer to
the procedure as '"fully adaptive.'" Actually, as in the case of the adaptive
SSOR-CG method considered in Section 3, we work with ME(B), an estimate of

M(B). Also, as in Section 3, we assume that we have an upper bound B for S(LU).
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The overall procedure for the fully adaptive SSOR-SI method is shown
in Figure 4.2, To begin with, we estimate a value of ME(B) such that 0 < ME(B) < M(B)
and also such that P%:(B) < 2@ . We compute « by (2.20) with M = ME(B) and

sp(8) by (2.21).

() ()

At the beginning of each iteration we compute A and 5 We then

apply the stopping test (3.18'). 1If convergence has not occurred, we proceed to switch

@ . Initially, @. @ . However, if at any time «* can be shown to be
satisfactory (using (3.27)) we let @: = @ and from then on we will not consider
changing ME(B). We then apply test (4.9) to see whether ME(B) should be changed.
If so, or if n = 0, we proceed as follows, We compute a new value of SE(éw) as
indicated. The value of Sg(éw) given is the Rayleigh quotient, as was shown in our
discussion of the partially adaptive process. Having found a new value of SE(éw), we
proceed to get ME(B) by (3.28). Then we compute a new « and a new SE(éu\)' We

(n+l)

then compute Pn+1’ Yasl’ and u and are ready for the next iteration,
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5. Numerical results. Several experiments were run for the SSOR method

using the conjugate-gradient adaptive scheme and using the semi-iterative fully
adaptive scheme. The following problem, which we call "model problem P,' was

used as a test case.

(-Au ==-1 in Q

0 on IR

"

(5.1) u

Q= (0,1 x(0,1).

1

Numerical experiments on more general problems, such as those considered in Young

i [19%4] are now being carried out.

The five-point finite difference method was used to generate the matrix

if problem

5.9 Au = b

; for mesh sizes of h = 1/20, 1/40, and 1/80. For these cases the parameters i,

Wy and the bound for S(éal), as given by (2.30), (2.31), and (2.32) (with g = 1/4),

respectively, are shown in Table 1.

TABLE 1
VALUES OF OPTIMUM PARAMETERS FOR MODEL PROBLEM P

h = 1/2 h =140 h=1/80

M .98769 .99692 .99923

wy 1.72874 1.85445 1.92448

S(QD ) .85451 52448 .96151
1

—_————

* . In our test cases, since we were interested in studying the effectiveness
of the adaptive schemes rather than studying effectiveness of stopping procedures,
we generated the exact solution, u, to the problem (5.2) and iterated until the

following condition was satisfied:

-

:
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LBy = X
(5.3) <l o cwn™S

K -
exact Ha”

The adaptive procedures, as described in Sections 3 and 4, were used for
the SSOR-CG and for the SSOR-SI schemes, respectively. The stopping test (5.3)
rather than (2.18') was used in both cases. For the SSOR-SI method only the
fully adaptive scheme was used. No test cases were run using the partially adap-
;(0)
E

tive procedure. For the adaptive process, an initial guess was made for

; S(B). It is necessary that ;éO)S ;, and in the absence of a better guess

;éO) can be set equal to zero. Initial estimates for «w and S(éh) were obtained

from (2.20) and (2.21) using the estimated parameter aéO). The adaptive procedures
of Sections 3 and 4 were then used to correct the estimated parameters.

A non-adaptive process was also used for both methods. In the non-adaptive
process a value of « was chosen and not changed. 1In the case of the non-adaptive
SSOR-SI method a value of S(JL) was used based on (2.21) with ;E replaced by
the true value of ; and with B = 1/4.*

Table 2 gives the results for the adaptive and non-adaptive procedures
where « = .82 was used for the non-adaptive process. (This corresponds to using

(2.20) with ;E =0 and B = 1/4.) For the adaptive cases was initially zero.

HE
The value F = 3/4 was used for the adaptive cases.

For the values given for the adaptive SSOR-CG method, the numbers in paren-
theses correspond to a different adaptive scheme where at least two iterations were

used with each parameter set. The numbers look somewhat better than in the original

adaptive case.

.*Clearly, this procedure is more favorable to the non-adaptive SSOR-SI
method than would be the case if we had used the more reasonable procedure of
choosing a value of QE and then calculating « and a bound for S(8) by (2.18),
letting B = 1/4. o




TABLE 2. COMPARISON OF ADAPTIVE AND NON-ADAPTIVE SCHEMES

Non-adaptive

= .82

(48

*
optimum parameters

Fully adaptive
;éo) -0

Non-adaptive

op timum parameters*

Adaptive

g ? i

SSOR-SI
h=1/20 h = 1/40 h = 1/80
32 67 120
1.7 25 35
28 26 39
SSOR-CG
h=1/2 h = 1/40 h = 1/80
17 28 52
12 17 23
16 (14) 21 (20) 32 (27)

_—

*
See Table 1




Figure 5.1 shows the number of iterations required to satisfy the con-

vergence criteria (5.3) for the non-adaptive SSOR-CG method and for the non-
adaptive SSOR-SI method. In each case a value of w was chosen and the non-
adaptive procedure was used as described above. It should be noted that the

SSOR-CG curve is much flatter than the SSOR-SI curve, and also lies considerably
below the SSOR-SI curve. This indicates that the SSOR-CG procedure is much

less sensitive to choice of w. The advantage of the SSOR-CG method would probably
have been even greater if we had not used the true value of ; in computing

the bound on S(éu) for the non-adaptive SSOR-SI scheme.

The results presented in Tables 3 and 4 show how the parameters 5

HE
and S(8 )E changed during the adaptive process. In the cases considered, the
w

- (0)

initial hp ~ was set equal to zero. It is evident that after only two or three

iterations, good values of the parameters are available through the adaptive

process. Furthermore, even the iterations occurring before the selection of
; : n
the final parameter set are not 'wasted" iterations since the iterant u( )

is being improved, although not as much as would be the case with the optimum

parameters.
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Number of

Iterations

75 -

M)
)
30 1 SSOR-ST
%
251 SSOR-CG
’ 15
i \
t + + ——t :
1.0 TaZ 1.4 1.6 1.8 & 2.0
Omega (w)

Figure 5.1. Model Problem P. #Iterations vs. w, h = 1/40

Non-adaptive Schemes
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TABLE 3. SSOR-SI FULLY ADAPTIVE
(F  3/4 in all cases)

h 1/
Optimum Value

Iteration No. |1

h 1/40

—rnal

Optimum Value

Tteration No. 1

h  1/80

Optimum Value
Iteration No. 1

" " I

" " 8

e w (&),
.98 769 1.72874 .85451
0 828427 17157
.97851 1.65657 812156
.98 742 1.72621 .853047
Convergence
.99692 1.85445 . 92448
0 828427 17157
.99034 1.75597 .87006
.99633 1.84218 .91785
convergence
.99923 1.92448 .96151
0 828427 17157
.99540 1.82504 .90852
.99896 1.91280 .95543
convergence
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TABLE 4. SSOR~CG ADAPTIVE
(F = 3/4 in all cases)

L1E s S(‘Bco)E
h=1/20, k=1
True Value .98769 1.72874 .85451
Iteration No. 1 0 .828427 .17157 :
:E " 23 .97851 1.65657 .812156
PR .98 742 1.72621 853047
“ A " 16 Convergence
|h = 1/40, k = 2 '
| True Value .99692 1.85445 .92448
éIteration No. 1 0 .83847 .17157
1 l t "4 .99137 1.77713 871171 !
t , & LA o) Convergence
|
1 th = 1/80, k = 1
E {True Value .99923 1.92448 .96151 ;
Iteration No. 1 0 82847 .17157 ;
1 gkt .99348 1.79784 .89047 {
L e .99881 1.91429 . 94801 j
| o wae Convergence
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°é0) and for various values

Many cases were run for various values of [

of F. Figures 5.2 and 5.3 1illustrate the effect of varying ;E in the adap-

©) is

tive procedure. The solid lines represent the non-adaptive case; i.e., ;E

chosen and the parameters are calculated based on ;éO) and are not changed

(@ is fixed throughout the procedure). The dashed line represents the fully

- (0)
“E

the improved parameter set is calculated. The ordinate represents the number

adaptive procedure; here is specified and all parameters are updated when

of iterations required for convergence and the abscissa is ;éO). The graphs
are drawn for h = 1/40, but these results are representative of all of the
test cases

In general, lowering the value of F means there will be fewer

parameter changes, and setting F closer to unity has the effect of fine-tuning
the procedure. In this case there will be more parameter changes and the final
set should be closer to the optimum values. However, when the parameters are
changed, the convergence rate of the overall method drops off initially and

then gradually increases. Thus, changing parameters too often can have the net
effect of lowering the overall convergence rate. In choosing F, one must balance
the effect of changing parameters against the gain which will be realized from
improved parameters. Figure 5.4 is a graph of the number of iterations required
versus the parameter F for the SSOR-CG adaptive procedure and for the SSOR-SI
fully adaptive procedure. In general, this procedure does not seem to be tao

sensitive to values of F as long as they are not close to zero or to one,
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6. Summary and conclusions. These preliminary test cases seem to indicate

that the adaptive procedures presented in this paper are effective when they are
coupled with both the SSOR-CG and the SSOR-SI methods. It has been shown that for
this problem very few iterations are required to obtain a good set of parameters,
and these preliminary iterations are not wasted, in the sense that the vector
u(n) is being improved on each iteration. The procedures are effective even when
the initial guess of ;E is the worst possible; i.e., Qé0)= 0. It has been
shown that in this case the number of iterations using the adaptive scheme is
not too many more than the number of iterations which would have been required
if the optimum parameters had been known from the start.

These results are preliminary in the sense that numerical experiments have

been carried out only for the model problem P. We are now testing these procedures

on a more general class of self-adjoint elliptic problems.
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