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The symmetric SOR method (SSOR method) for solving the linear system
Au = b is considered . The basic properties of the SSOR method are sum-
marized, and a procedure is given for estimating the optimum relaxa-
tion factor u~ and the corresponding spectral 

radius of the SSOR matrix

~~ , .  Two procedures for accelerating the convergence of the SSOR method
are considered, one based on conjugate gradient acceleration and the
second based on the use of Chebyshev acceleration. Two versions of
conjugate gradient acceleration are considered- - the nonadaptive and the
adaptive.
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THE ACCELE RATED SSOR METhO D FOR SOLVING LARGE LiNEA R SYSTEMS:

PRELIMINA RY REPO RT

by

Linda J . Hayes and David M , Young

I . Introduction.  In this paper we conside r the symmetric SOR method

(SSOR method) for solving the linear sy stem

(1.1) Au = b

where A is a given real NxN matrix which is symme tric and positive definite

and where b is a given real Nx l column matrix. We are primarily interested

in cases where the matrix A is large and sparse.

The basic properties of the SSOR method are summarized in Section 2. A

procedure is given for estimating the optimum relaxation factor u and the cor-

responding spectral radius of the SSOR matrix 
~~~~~

. These estimates are in terms

of the spectra l radius S(B) of the Jacobi method and another quantity ~ which

can usually be estimated to sufficient accuracy.

We consider two procedures for accelerating the convergence of the SSOR

method. The first, which is described in Section 3, is based on conjugate gradient

acceleration. The second, which is described in Section 4, is based on the use of

Chebyshev acceleration. To carry out either scheme one must choose the relaxation

factor ~.. No additional parameters are required to apply conjugate gradient ac-

celeration. We consider two versions of conjugate gradient acceleration: the

nonadaptive version where the value of w is fixed; and the adaptive version where

one chooses a value of w and improves it adaptively based on the results of the

iterative process.

1
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In order to apply Chebyshev acceleration it is necessary to assume values

of ~ and S(c!i ). We consider three versions: the nonadaptive version where

neither ~ nor the estimate of S(~ ) varies; the partially adaptive version
c- I

whe re ~. is kept fixed but where improved values of S(~~) are determined

adaptively ; and the fully adaptive version where improved values of both u and

S(~~) are determined adaptively.

Preliminary tests have been carried out for a very simple model problem

as desc ribed in Section 5. For these cases the adaptive procedures are very ef-

fective in the sense that the number of iterations required in each case was not

substantially greater than was required using the optimum iteration parameters.

We expect tha t the accelerated SSOR method with adaptive parameter determina-

tion will prove effective in a much wider class of problems . Experiments described

by Young [2] and by Benokraitis [51 indicate that the nonadaptive procedure is

effective . Tests on similar cases based on the adaptive procedures are now being

carried out.

Acknowledgement. The authors would like to acknowledge the contributions of

Mr. Edward Schleicher in preliminary stages of the work. (See [121.)

Some of the numerical experiments involving the Chebyshev acceleration

were carried out by James Sullivan in the Center •fcr Numerical Analysis at UT Austin .
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1
2. The basic SSOR method. The equation (1.1) can be written in the form

(2 .1) u = B u + c

where

I B = I - D 1A

(2 .2) )
c = D ~~b.

Here D is the diagonal matrix with the same diagonal elements as A. The matrix

B corresponds to the Jacobi method of iteration.

The matrix A can be written in the form

(2 .3) A = D - C
L 

- C
U

where C
L 

and C
U 

are strictly lower and strictly upper triangular matrices,

respectively. Evidently

(2 .4) B = L + U

where

(2 .5) L = D ’C
L 

U = D
1
C
U

and where L and U ae strictly upper triangular and strictly lower triangular

matrices, respectively.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ • -~. -  .-. ~—~~~~ —.——~,-- —---- --~- 
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The SSOR method can be defined in terms of the ordinary (forward) SOR method

and the backward SOR method . The ordinary SOR method is defined by

(2 .6) (n÷l) 
= +

where

= (I - ~ L) 
- 1(wU + (l-w) I)

(2 .7)

= (I-wL)~~wc.

The backward SOR method is defined by

(2 .8) ~~~~~ ~~~(n) +

where

= (I - t~U) 1(wL + (1-w) I)

• (2.9)

= (I-wU)
1
wc.

One iteration of the SSOR method consists of one (forward) SOR iteration (to get

and one backward SOR iteration to get ~~~~~~ Thus we have

+ k (F)

(2 .10) U’

= ~~~~~~~ + k~
B)

If we eliminate ~~~~~ we obtain

(2.11) ~~~~~ ~~~~~ + k

where

r ,~I (1~ U’ U.~
(2.12) 

1
(,~ 
k = w(2-u~) (t-wU) 

- (I-u~L) ~‘c.

~

.- -- --
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It is easy to show that

(2 . 13) I - ~-(2~ t )  (I-u~U) 
- ‘(I L) 

- 1D 1A

= I - -
~~

—
~~

- ( -~D - Cu) ~
‘D( ~D - CL) 

1A

-- I - Q
1
A

where

(2.14) Q =

and where

(2.15) =

(2 .16) W D 2 ( — D-  Cu)
~

Our analysis of the convergence properties of the SSOR method will be based on

that given in Young [19741. Let m(B) and M(B) be the smallest and largest

eigenvalues of the Jacobi matrix B. We remark that m(B) < 0 and M(B) �0.

Furthermore, M(B) < 1 since A is symmetric and positive definite. In addition,

the eigenvalues of the SSOR matrix, ~~~, are real, non-negative, and less than unity .

Let ~~, M, and in be numbers such that

1m ( ~~�~~�2 R
j M (B) <~~~< 2 1~

’

(2 .li)

I S ( L u ) < A
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It can be ahown that s(B) < 2 hence if we have a bound M for M(B) such

that i~i :-~ 2 we can replace ~ by 2 J~~
’
. Similarly, if rn <-2 we can

replace in by -2

It can be shown that

1 - u’(2-u-) 1-M 
j f  

~ 
or if ~ < and , K (~~*

(2 .18) S( -~i ) <
— 

1—rn
1 - a’(2-w) 

— 

2- if ~ < and w > w*.
1 (L1~~~O) ~

Here for ~ < we define w* by

(2.19) = 
2

1 + Jl-4~

Moreover, the bound ~2.].8) is minimized if we let

( 2 
if ~~~~< 4 ~I 1 + Ji-a~+4~

(2 .~~ )
2 

(~‘* j f i1 > 4~~.
1 + ‘/l-4~ 

—

The corresponding bound on S(~ ) is given by 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -~~~~~~~~~~~~~~~~- --
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J1-~~ -c4f~ , j f ~ 4~
l-M

~~~~~ S(.~ ) —

U’

~~~~~ Il - 
- 1, if 

~ ~
1 ul-4~

and the eigenvalues A of ~ will be in the range 0 —
~ A < S(~ ).

U
1 

W I

We shall refer to the value of given by (2.20) as a “good” value of

Of cou r se , is not necessarily the t rue opti mum value in the sense of

minimizing S(&).

For example, if the matrix A is derived from a 5-point difference

equation corresponding to a self-adjoint elliptic partial differential equation

(2.22) L[u ] = (Au
~
)
~ 

+ (Cu
y
)
y 

+ Fu

and if we rewrite the difference equation in the form which corresponds to the

Jacobi method

(2. 23) u(x,y) = ~1(x
,y)u(x+h ,y) + ~2

(x , y ) u ( x ,y + h )  + ~3
(x ,y)u(x—h ,y)

+ b, (x,y)u(x ,y h) + T(x,y)

where

A(x+ -~,y) C(x,y+~~)

~1
(x.y) 

S(x,y) ~2(x
,y) = 

S(x,y)

(2.24 )
A( x — ~~,y)  C(x , y — ~~)

~3 (x ,y) = S(x,y )  ‘ ~4
(x,y) = 

S(x,y)

--------- - — - - ~--‘ “-
. - ——-—- — ---— -- ---‘-- - - - - -~~~~~~ - -~--—- — - --- — - - - -
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S(x , v)  - A (x +~~.y) + A (x- ~~,v) + C(x ,y+~~) + C(x ,v-~~)-h
2F(x ,v)

1(x . v )  = ~2 c-:(~x ,y)S(x ,y)

t hti~ t h e  t e r m u L c s  f o r  t he  SSOR method are given by

= w{~ 1u~
°~ (x+li ,y) + ~2

U
(n)

(X,Y + h )  + ~3u~~~~~(x- h ,y)

(n+~ ) ( )+ 3’,
4
U (x,v—h )  + T ( X ,y ) }  + (1 w)u ~ (x ,y)

( 2 26 )

= w{S1u~~~~~(x +h ,y) + ~2u~~~~~
(x ,y+hi) + ~3

u~~~~~(x-h ,y)

+ ~ 4
ti ~~~~~x , -h )  + -r ( x ,y) } + (1 -w)u~~~~~(x ,y)

If one uses the natura l ordering~. ~ can be calculated as

~ m ax(~~~~x , v~ (~~1
(c--h .y) ;~~~x-h ,y)] ~34

(x,y) [~ 1
(x ,y-h) ~ ~~(x ,y-h) J ) .

An upper bound ~ for M(B) can be obtained from (6.58) . page 1037 of Young and

Gregory [1973]~
t The relaxation parameter , ~~, is calculated using (2.20).

Application to the Model Problem P

We now consider the model problem defined by

(2. .~~) u + u -1xx yy

in the unit square 0 ‘— x ‘-. 1, 0 
~~ 

‘
~
‘ ‘

~ I with u - 0 on the boundary . We will refe r

to this as “Model Problem P.” We use a mesh size of h where h ’ is an integer.

~The “natural ordering
” for points in a region Rh 

is given by (x’,y ’) follows

(x y) i f y ’ 
~ 

y or else y ’ r y and x ’ > x. Thus the points of Rh 
are treated row

by row from left to right starting at the bottom row.

tThis bound may not be good enough in some cases. In that case an adaptive
procedure may be used. 

- . •~~~~~~~ -=~ •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ — - --~~-~~ —- —- -
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From ~2 .27) we get

(2.29) 3 =

From (6.58), page 1037, of [1] we get

(2.30) M(B) cos

From (2 .~~)) we have

(2 .31) = 2

1

which is very close to the optimum ~ , name ly U b , 
for  the SOR method .

Moreover, by (2.21) we have

1 - /
1-M(B)

(2 .32) S(~3 ) 2

“ 1 .~

For Model Problem F, it can be shown (see, for instance, Young [1974 1) that

I 2 irh
(2 .33) S(LU ) K cos —

~~
-

Using ~ cos 2 
~~ fo r  ~ we get

(2 .34) u
l 

= 
2 

- ~rh1 + y ~3 sin —~-

and
2 . irh

(2.35) s (~~ ) 
~~~ 

~~~~~~~~~~~ :::~~~~ 

-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —~~ - , ---— —~~~~—— -• - - -- - - — ——
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The SSOR method requires about twice as much work per iteration as the SOR

method and is about half as fast as the SOR method . This, at first sight, would

seem to preclude the use of SSOR . However, since all of the eigenvaluea of the

matrix & are real, nonnegative, and less than unity Young [19741, it is possible to

accelerate the basic SSOR method using semi-iteration or variable extrapolation

as shown below . The resulting method is faster by an order-of-magnitude than

the SOR method . In oruer for this gain to be possible it is sufficient that

S(LU) - be ~f the same order-of-magnitude, in some sense, as 1 - M(B).

I.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. Conj~ g- ’ e Grad ien t  A c c e l e r a t i o n

Let us now app ly  c o n j u g a te  g r a d i e n t  a c c eI e r a t io i~ to the SSOR method de f ined

by (~~.l l) . We note tha t W~ W is a symmetr ic  m a t r i x , where W is given by

(2 .16) . Moreover , as s t a ted  in Sect ion 1
, the e igenvalues  of ~ are real, non-

U

n eg a t i v e , and less than u n i t y .

We d e fin e  the SSOR- CG method , i . e ., the con juga te  gradient  acce le ra t ion
I

procedure  based on the SSOR method , by

(3 . 1)  (n~~l) - 

~n - l~~~n - l ~ 

(n) n) 
~ (1-  

~n ’  i~~

where  b
(n) is the pseudo- res idua l  vector  de f ined  by

(3 .2) ~ (n) (n) 
k - 

(n)

and the y ’ s are given by

(3.3) 
n ’l  

( 1-  
~~n~~1~~~

1

(Wô~~~~,Wô h~”~ )
(3. 4) 

~~n~ 1 (W~~ ’~~, W~~~~~)

Thus 
~~~~~ 

is the Ray leigh Q u o t i e n t  of the vec tor  ~ b
(n) 

and the m a t r i x  WGW
1
.

The [
~~~

) are given by

7

p
1 

= 1

(3.5)

- - 
~~~~~~~~~ Q~~~~

11
~~, W5

(n)
) 

~

- 

(_ ‘
~
‘n ~~~~~~~~~~~~~~~~~~

*The formulas can be derived from the analysis of Concus, Golub , and
O ’Leary [61. See also Young [iii.
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The con jugate gradient acceleration procedure has the remarkable  p r o p e r t y

that

( 1 . 1) (n)~ (n)~ IICt. ~ SI A 2

where 1c~°~](.(. ~~~~~~ - u (u is the exact solution of (1.1)) corresponds to

conjugate gradient acceleration , and H 
~~~~~ 

is the error vector corresponding

to ~~~ semi-iterative method based on the SSOR method . Note that for any vector v

we have

(3.8) ilvIl , /~~~~

‘

~~v) /(v,Av)

Thus ~~ c~~u1d he computed w i t h o u t too much d i f f i c u l t y.

Since W ( I -~~ )W
’ (whe re W is given by (2.16)) and A~ (I-,c~ )A~~ are

(I ’  (I’

symmet r i c  and pos i t ive  d e f i n i t e, we could ‘.ise eithe r W or A~ for W in

(3.4) and (3.5). The choice W . D~~~(
1D - c

~
) minimizes the A~-norm of the

error , and the choice W - A~ min imizes  some other norm of the error at each step.

An i n e f t i c i e n t  but a t t r act i v e  scheme would be to use W - C
u
) in the

i t e r a t i v e  and adap t ive  p rocedure s and then use the A 2-nonn for the stopping pro-

cedicre . One would  then be using the norm which is being minimized in the stopping

tests. This would involve an extra matrix/vector operation . 

~~~~~~~~~~ -. - -- . - - - -
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Recursive Pseudo—residuals

We now describe an alterna t ive formulation of the SSOR-CG method defined

by (3.l)-(].5). This alternative formulation was brought to our attention by

Alan Cline of The University of Texas at Austin. It has been used by Dr. Gene

Golub of Stanford University and others.

In the formulation ( 3. I ) - ( 3 . 5 )  one is required to do two matrix/vector

multiplications involving ~i each ite ration, namely, ~~u
0’
~ in (3.2) and

~~~~n) in (3.4). We can reduce this to one such matrix/vector multiplication

by computing the recursive ly. Thus by (3.1) and (3.2) we have

• (3 .8’) ~(n4l) 

~~ 1~~ni 
(n) 

~ ~~n+i~ 
~(n-l)

The calculations could be done as follows. Given ~~~~~~~~~~~~ ~(n) h(
n_l) 

~
(n)

• ~~~~~~ and p ,  we could compute the following :

~~~~ 
by (3.3)

~~~~ 
by (3 .5)

by (3 . 1)

by (3.8t)..

It should be noted, however, that this procedure involves several matrix/vector

multiplications involving the matrix W. These can be eliminated as follows . Let

be the pseudo- residual associated with the SOR method . Thus \
(fl) 

is given by

(3.9) ~(i~) = t u ~~ + k~~
’
~ — ~1

(n)

(n)
and ~ is given by

(3.9’) ~(n) ~~~~(n) (n)~ 
~~~ - u

(n)
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It can be shown that

(3.10) W(I-~~) = ~~

(3.11) W5~
’
~ D~

(\
~~

Thus we have

(3.12) (W~~~~,Wb~
”
~) =

Moreover, the ~(n) and the 5
(n) 

can be dete rmined recursively by

(3.13) ~(n+l) = Pfl+1 [vfl+l (
~~ 

- I)~~~~ + ~(n)] + (l-p 1)~~~~~

(3 .14) ~ (n÷l) 
= 

~n+l [
~~~~~~~~~ 6

(n) 
+ (l_Y

n+i)6
(
~
)] + (l_p ~~1)o

(t
~~~~.

The 
%+l and ‘

~
‘n+l are given by

(D~~~~~ ~~~(n))(3.15) 
~n+1 

= 

(D (n)
,D~(I -

1 , i f n = 0

(3.16) 
%+l Yn+l (D

(n)
,D~~

(n)
) if n >1I - 

~n (D½ A(n 1)
,D~~
(n-1)

) ~n ~ 
—

A procedure based on these formulas is described in the flow chart of

Figure 3.1. We will defer discussion of the stopping tests until later.

*See Hageman and Young ~1977J, Chapte r D.

~ 
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_____________________________ 
Initialization

~~~~ART -
~~ I - n = O

~~~~~ ~c-(°) = ~~~~~ + k~~ - L 
(0)

= + ~~
(°)] + ~~~ - u~°~

available)

[~~~~~
n+l

I _ _ _ _ _

Use ..4 EXI~~~~ ]

,, ~(n)
U’

-

1 , i f n = O

n+1 ‘l -1

~ 
‘
~n+l (D~~~~~,D~~~

t
~) 1 1

___________ 
LL1 - 

“~
-
~ (D (n

~
l)
,D~A
(n_ l)

) 
p
r~

i f n � l

= Pn+l [Yn 1~~~~ ~~ + ~~~~~~~~~~~~

~~(n~ 1) 
= 

~~~~ ~~~~~~~~~~~~~~~~ 
~~(n)

] 
+ ( 1 ) ~~(fl-l)

~(n+l) 
= 

~n+l [Yn+i~~~&-V 5
(n) 

+ (l-y 1) 
~ (n)

J

~ (1-p 1)b~~~~

Figure 3.1. The SSOR-CG Method with Recursive Pseudo-residuals.
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We note that this scheme requires the application of the matrix

to ~(n), ~ to ~~~~n) and to the Vectors ~(n) and (I-~~)b~~~. For

poi n t SSOR, D is a diagonal matrix, and for line SSOR, D is tn -diagonal; so

this requires very little extra work.* Since ~ 
~ ~ ~(n) 

this operation
U’ U

requires as much work as one full SSOR iteration. Thus the total work per iteration

is approximately that of doing one SSOR iteration.

This scheme requires considerably less work per iteration than that given

by (3.1) to (3.5), at the cost of increased storage requirements . In this scheme,

one must provide additional storage for the and ~~
n-l) 

vectors .

* TIn this case we can factor D into the form S S where S is an upper

bi-diagonal matrix . We can use S instead of throughout. 

- —
~~~~~~~

• -- • - - •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Stopping Tests

Ideally, we would like to require that our fina l approximation u~
”
~ to

the exac t solution u of (1.1) satisfies

(ii) -lu 
~~ull ½

(3 .17)  
- 

D

lull
D~

It can be shown (see Hageman and Young 119 77J) that (3.17) holds if

______ 
(n)

(3.18) 

~~ Ii-~ 1-S(~~) HI~ ~

We will show below how we can get estimates S~(~~) of S(41~) while carrying out

the SSOR-CG method . If a good estimate M
E

(B) of M(B) is available we can use

the stopping test

_ _ _ _ _  I l l

(3 ’~~ ’) ~~ /i-~~~s~ I - S
E
(
~~? l!U~~~!l~

D 2

where is the SOR pseudo-residual. This follows by (3.11) and (2.15).

In the adaptive SSOR-CG method which we describe later in this section

we will automatically get estimates ot M(B). If, however, we are not using the

adaptive procedure and if we do not have a good estimate of M(B), then we can be

sat is f ied wi th  requiring tha t our fina l approximation u~~~ satisf y

___________________________________________________________________________ 
j  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •
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llU (n) - 

~IlW(3.19)

lR ’ll~~

It can be shown that this condition is satisfied if

1 lI ~~~l~(3.20) 

L l-S(~~) ll ~l~ ~

Since our iterative process yields estimates S (
~ ) for S(~B ) we can use theE +~ U’

test

li~~~ II
(3.20 ’)  

l-S (~~) (n) 
D

E w ~u 11~

u has been replaced by in (3.18’) and (3.2~i). In practice, u is not

available, and as n increases 
~~~ 

D~ 

and llu~~ ll ,~ become a good estimate

of lu ll and l~ ’j i
D2

We remark that if one uses either (3.18’) or (3.20’) it is necessary to

compute Iu~
h1) 

~~~~ 
or i~

(n) 
1~~ after each iteration. However, when one has

reached the point where llu~~ - ti ll ~~, or l~
(n) 

- UIL
~
, is small, it is not

D~

+ necessary to change ~~~~ or llu~~ j~. En practice, llu~°~ j~ and lIu~~

are not changed once the numerator of the stopping test is small.

• •~~~~~ •~~ -~~~~~ ~~~~~~~~~~~ - - • - - -



- - - - -‘----- - -- ---~ • -• —T~~ ~~~~~~~~~~~~ -~~~~~

19

For our estimate S (~ ) we use
E

(3.20”) S (~ 
) • M(T ) — -

E ~ n

where M(T ) is the largest eigenvalue of the matrix T .  Here T is given by*

0 .. 0 0

_ _  ~~~~~~~ J~~
.. 0 0

/_ (l_c
3)~

(3. 21) T =  ~~~~~~~~~~ 
.

I 
o 0 o .. ~~~~~~~~~~~~ / ~~~~~~

V ‘
~n-l~ n- l ’

~
’n% I

0 0 . .

*The idea of using the eigenvalues of a tn -diagonal matrix derived from the
conjugate graduate method to estimate the spectra l radius of an i terat ion matrix is
used by Concus, Golub, and O’Leary. See also Kaniel [1966], Paige [19711, and
O’Leary [1975]. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~ ~~~~~ • 
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Adaptive Determination of w for the SSOR-CG Method

So far, in our discussion of the SSOR-CG method we have assumed that u is

fixed. Ac tually, since S(1~~ is a very slowly varying function of U’, it is not

essential tha t the exac t optimum value of +~~
- be used. It would not be unreasonable

to simply guess at a value of ~., say 1.8,and use the non-adaptive process described

above . The sensitivity of S(~~) to u- is much less than is the sensitivity of

S(j )

However, it is possible to improve w adaptively using the matrices T~

described above , instead of working with ~~~, we actually work with M
E
(B). which

is an estimate for M(B). We assume that we have an upper bound ~ for S(LU).

(Such a bound should not be much greater than 1/4 if the method is to be effective .)

We choose an estimate ME
(B) such that M

E
(B) ‘-. M(B)--if nothing better is available

let M
E
(S) -r 0. We then compute w, based on M~ (B) and ~~, by (2.20) (with t1

replaced by ME
(B)). We also compute 

~~~~~ 
by (2.21).

Before beginning with the adaptive process we choose an “adaptive factor”

F such that 0 < F < 1. A typical value of F is 3/4. The effectiveness of

the process is quite insensitive to F. If we use too large a va ue of F, say

F very close to unity, we will change parameters very often, which is inefficient. 

~~~~~~ — - - - -  — • -- --
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With too small a value of F we will not change parameters often enough and we will

be working with a poor value of .

Af te r  each ite ration we compute S’ = M(T), and we change M
E

(B) jf

xl(3.23) — < F
x2

where

~~~ ~ ) )
(3.24) x1 

= -log 

(~~))
(3.25) x2 

= -log ~(S’) .

Here we define ~(x) for x £ 10,11 by

1 1
(3.26) ~I~(x) = 

x 
• 

-
-

l +/i~~

This procedure is based on the fact that is the asympt~tic average rate of

convergence of the SSOR-SI method based on the use of S~ (&)~ if the true spectral

radius S(~~) is equal to S’, and is tEie ~symp,totic average rate of cónver-

gence of the SSOR-SI method based on the use~~~ S~(~~) = S ’ ,’agaiii as%ux4ng that

the true spectral radius is equal t’i S %~~~. ~~tat~to of these convergence rates

is at least F, then we consider that the convergence is fast enough and we do not

change parameters. If the ratio is less than F, then we consider that the con-

vergence is too slow and we change the parameters w and S
E
(S) in order to obtain

faster convergence.

If ~ < 1/4 and if at any stage of the adaptive process we have

,.~ •) 7~ 
- log ~ (U~*_ l) 

>‘J•~~ / -log ~ (S (
~ ~ 

F,
E (0

then we can settle on (0* for w and we do not need to even consider changing ~+
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any more. If (3.27~ is satisfied we know that by using 
C) w* our asymptotic

average rate of convergence will be at least F times that which we could estimate

by our methods for any other a. (It should be noted, howeve r, that the actual

average rate of convergence for  some a~ might be greater than we can predict.)

Having decided to change parameters we compute (M
E

(B) ) by

(3.28) (ME (B) ) new = max (ME (B) , M ’ (B) , M~ (B) )

where

(3.29) M~ (B) = 
(1- S~) (1 -

*and

( lB~~ II
, if I(m(B))I < M(B)

(3.30) M~ (B) = 

(D~ 
(n)

, otherwise.

New values of to and S~ (~~ ) are obtained by (2.20) and (2.21), respectively,

with M = 

~ME~~~~new
We remark that the value of M~ (B) is obtained by setting the first form

of the right member of (2.18) equal to S’ and solving for N. We note that the

f i r s t  form should be used since we can show that if ~ < 1/4, then each u that

we use wil l  not be greater than w~~.

*If A has Pro~~ ty A or is an L-matrix, then m(B)
I 

< M(B).
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Let us define the integer s as follows. The current value of o~ has been

(or will be) used for the first time in the computation of ~~~~~~ The formulas

for the adaptive SSOR-CG method are the same as in the non-adaptive case except that

11 ,

(3.31) 
~n+1 

= 
-1I ‘

~
‘n+l (D (n)

,D~~
(1
~
)
) 1 11 -  — , i f n > s+l .

~ 
[ ‘I/n (D 2

A
(
~~~

l)
, D~~~~

t
~~~

)
) Pf l j  

—

The overall procedure is illustrated in Figure 3.2. The input da ta are

~ (O) 
•

~ ME~5~’ F , and ~~~. We set n and s equal to zero and compute a and

as well as the initial pseudo-residual vectors ~~0) and ~,(0) 
Next, if

n ,1 0 we find M(T ) where T is defined by (3.32). (This is not done if n = 0.)
n, S n, s

We then apply the stopping test (3.18’) with S(~~) replaced by SE
(
~~
). If con-

vergence has not occurred, we consider whether to change ME(B).

The “switch” is initially set equal to . However , each time we go

to we test whether ~~ * would be satisfactory. This is the test (3.27).

If at any time (3.27) is satisfied, then we set to , and from then on

ME (B) and to are not changed ,

Assuming that = a1 we then use the test (3. 27) to determine whethe r

(B) should be changed. If is to be changed, we carry out the change using

(3 .28) . We then compute new values of to, S
E(~~

), ~~~~~~~ and ~~~~~~~~~ We then proceed

to calculate ~~~~~~ 
~n+l’ %+l’ 

~~~~~~~~~~~~ ~~~~~~ and ~~~~~~ We are then ready

for the next iteration ,

The computation of ~~~~~~~~~ 
~~~~~~~~ %+1! ~~~~~~~~~ ~~n+l) and ~(n+l) is the

same as in the nonadaptive case except that is given by (3.31).

The matrix T~~8 is used instead of T~ since when we change (after

the s-tb iteration), we essentially start the conjugate gradient process over.
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4 - A ccel crntton ii ;tsi ’d on Che1~~~~ev Semi — 1 t ‘rat ion

As an a ito m a t  lye 1 o the SSOR— (~~~ method we can use CIit’b yshev sem i — 1t ’  r at  I on

to th~ce ti’ratc the SSOR method , The SSOR— ~1 method is d o l l nod hv I~ C I I  Young I ‘ I)

(4 . 1 
1) 

~~ ~ 
l ( 1 - 

(n-i’)

who n’ the pseudo— res I thus I voc tot is given iw ( 1 . • “I and wise s-c

(4. . ‘
~ V I I I  I 

~~~~
-

and

I -l
• 4~~ ~~~~ (1 — ,i1 ‘I

1 ; ’ —1I I ( I  — 
~ ) • n -

\ n ’t ‘3 I) -—

I I I’ 1- I -

~4 4’ 
~

In order to app ly the SSOR— ~ met hod we need to choo5(’ and an t’S t i tus t e

~~ f t i- S . A l. so. It we wish t o  ~is,’ t lu’ stopping test ( I  - 18’’) we need an

es t imate  Me (S) of M(II) . Othe rwise we use the stopping t i ’ s t  ( 1 , •‘o ’’)
In this soc t ion  we will c~’,is I do r two adaptive p rocodsi ros . I’hc I I 1~S I , which

wc t -o t .’t to as the “partial lv adaptive pi-ocodii re • “ involves fIxing and adaptive lv

changing the e s t ima te  
~ 1• (es ) I or 

~ 
• The othe r procedu t o , which we to let- I o as

the ‘fu I ly adaptive pr ocedure , “ Involves changing , C and (~~ ‘) adapt lye Lv , The

proceidu re wha re and 
~~~ 

~~~~~ a i-c nev,’ r cha nged is cal led the “non—adapt I ye p ro

•
1I For the fiti Ey adaptive pt-oeediit-e we work wi ( i i  N 1. ( i t ~ and h one,’ can

use the st opping teat  ( I . l8’’~

~ 

-
~~~~~~~~~~~~~~~~~
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Partially Adaptive Procedure (u fixedj

Let S (
~ 

) be the current estimate for S(~ ). Let us define the integer
E t o  to

• s as follows. The current value of S
E
(&) has been (or will be) used starting

with the (s+l)St iteration (to get ~~~~~~~~ The SSOR-SI method is def ined by

(4.5) (n+l) 

~n~l + l ~~~ 

(n)
3 + (1 -

(n)
where the pseudo-residual vector b is given by (3.2) and

2(4.6) ‘
~
‘n+i 2- S (‘~ 

)

rl 
E t o

(4.7) 
~n÷l 

= <~ (1_4~ )
l
, if n = s+l

(1 - ~a~p) 
-1 

~~ ~ s ÷2

S (~~~~)

• ‘4 8’ a E to

E 2 - s ( ~~)
E U)

• We change S (~ 
) whenever n = 0 or

E w

lw 
_____(4.9) > I

—

where

(4.10) p = n -

and 

~~~~~~—~~~~~~~- ~~~~ -~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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i~~~/i~a
2 l-Jl_ S (~~)(4.11) r =  
E E CIC

I + Jl-cy~ 1 +~~~~~~
(
~~

)

Here F is the adaptive factor discussed in Section 3 for the adaptive SSOR-CG

procedure.

Having decided to change we let

(4.12) [s
E
(s)) 1new 

= max(S~(&), S~(~~), S~
( & ) )

where 5’ (.~ 
) and S”(~ ) are determined as follows. To get S’ (

~~ ) we solveE to E (j) E w

thit Chebyshev equation

lö
(n) lw 2r P/” 2 

_____(4 .13) = _____ 
r

jo ’~ tlw l+r~ 14”

where r is given by (4.11) and

____________________ 2
1 - ff~~(s (~ ) / S ’( ~ ) )

(4.14) E to E w
1 + ‘/1 - (S~(~$)/S~(~~))

We compute s”(~ ) by the Rayleigh quotient
E t o

~~~~~~~ 8
(n)~

(4 .15) S”(.~ 
) = /E to

Having computed the new value of S
E (&

to) we let s = n and then use

• (4.5)-(4.8) to continue the iteration process.

• - • -—~~~- . •  —‘—_~•~~ t -. ~~~~~~~~~~~~~~~~~~~~ ~~- •— - -~~~~~~~~~ -~
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The overall computational procedure is illustrated in Figure 4.1. As in

the case of the SSOR-CG method, we determine the pseudo-residual ~~~
h1) 

for the

SOR method for each iteration as well as the pseudo- residual f’)(n) for the SSOR

method . This saves matrix/vector multiplications by W. At the beginning of

each iteration we compute and ~(n) - Usually this is done in a straight-

forward way, but if n = s+l we use a special procedure as described below. We

then carry out our stopping test. We use (3.18’) if a good estimate M
E

(B) is

available for M(B), Otherwise we use (3.20’).

• If the process has not converged, we test whether 
~~~~~ 

should be

changed . If the test (4.9) is satisfied or if n = 0, we compute (S (& ) )  =
E ~ new

max(S ( - ~ ) , S ’(~ ), S”(~ ) )  where S’(~ ) is the solution of the ChebyshevE E (5) E ~ - E

equation and S”(,1i ) is the Rayleigh quotient (4.15). With the new value of
E a

(n+1)we compute p 1, ~~~~ and u and are ready for the next iteration . 

• -=L. 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We use a special procedure whereby one can avoid matrix/vector multiplica-

tions by W and, at the same time1 can compute the Rayleigh quotient S”(~ ) each

time 
~~~~~ 

is changed without an extra matrix/vector multiplication. When

we decide to change S
E
(I
~~
) we compute the vector

(4 .16) .-‘.(n+l) 
= 

(n) 
+

It can be shown that

(4.17) ~(n+l) = 
“..(n+l) 

+ k - 
“<T1+1) 

=

Thus, for S~(.~ ) we have by (3.11) (which holds f or ~(n+l) and ~ (n+1))

(W~~~~,W~ 5
(Tt)

) 
~A
(n) i~..~.(n+l)(4 ) f l( ) _  to (D , D

E to (W ’
~~,W~~~~) (D~A(n), D~A

(n)
)

where

(4 .19) ~ (n-s-l) 
= 

~~ ~~~~~ + k
(F) 

-
CL) (1)

We note that to get the Rayleigh quotient S~(~~) we have essentially

had to do an extra SSOR iteration. However, we can recover this by using a special

procedure to get A(T5) and ~(n) on the next iteration. Thus it can be shown

that if n = s+l then

~(n) 
= ~ (n) 

+ -

[ 

~ (n) 
= ~ (n) 

+ (1-



-~~~~~~ --~~ ---~~~~- --~~~~~~~~~~~ • - —--- •~~~~ - • •  ~~~~~~~~——.-•~~~~~~~~ ~~~~~~~~
- • ---- 

-
~~~~~~~~~~~~~~~

=
~~
-,-

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -

r i  31

l •5IJ l 
.—

1 . 4 1  A

I~~I — 
C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘-S .4
• _ _

0) 
0) ,

~
.

.0

0) 3 -‘—S5..,
— cn ~~~ 5 3o 0 —~ W r~~~ -~ 5-’ 3 ‘0

9 5  
~~~~~~~~~~~~~~~~~~

-
~~~~~~~H ~-.

~~~~~~~~~~~~ L~~J 
‘

~~~~ 
+ c’~ U)

Cl) U) 0 0 
‘ —‘i .5

o t o w  I .—~ S~-
.-1 ..—~ 5--’ 0 3Cl) O~~~ ..—.. + ‘-4 •_• Of)— — 5... 5 + ..-~ . II 5-’

‘-‘ -a ’ - ,  ~~~ 0’0 .~ 10 ‘- ‘ ‘-‘ 0) 5 Cl)
C —.5 1<3 <I -C + -)5” -)5’1 > 144

5-” 0 0  -, 30) (0 ,_. .—i .. .0 ‘V
U) _1 + ,-~. .—. 5-’
.4 + + C 5 5  5.. 5.)

5 5- 5 - ’..~ 
~~ 3 Ci)

5-’ 2<3 ‘1<3 ~) ‘V—4 0) 5 2 0  L....j .-~E” -55” .0 5-’
+ .5 ‘— 3 3 0 0  0 s..~ to4.) 0 ~~ 

‘— ‘-‘ ~fl Eo 5.,-,
‘ S II II II II .0 II II

C ‘ ..‘ I_s S 1_s
C ~ 4 ,—4 ,—4 3 ~R -S

4.4 ‘— + + ÷ ‘V ‘V ‘V ‘V-.4 0 5 5 5 5-’ 5-’ 5-’
5-’ ‘—‘ ‘—‘ 5L~ 5.) — 5 . )  5.)
2 0  l’l ~0 U) CI) Cl) Cl)

• ‘-S —
I -‘~~‘ _ _ _ _ _ _ _  _____________
- 5 .)d

C .— ‘—‘ +

‘-.5 ~-S I

is .P ,-. ~5.4 .5-’

~~~ ‘—‘ 3 0  -.
-4 5.-, .

~~ +5.., 
+

÷ —5 i-i
—5 ‘—5 5 CI)

‘-S 5 5 ‘—
C ‘— ‘—‘ <1

2<3 o ’—~ 02(0~ ~~C ,~3 ~~3

II II II 
I ,

—S ~~~~ ~~~~C C C 5 5 ‘0.5—’ 5._~ 5— 5.— —.5 4)(0 <3 <3 (0

~~~ • .4
_ _ _ _ _ _ _ _ _  N- .0 

~1- 5..,
• 5-,

_  

.

~~

I~~I L~~1
L’~~J ° ~ ~~ “0 Q  5.’- 0 0)

5.-S Q
—4 0

____________ 
.-4 I.,

_ _ _ _ _ _ _ _ _ _ _ _ _ _  t o p - i

‘0 ._. 4)
0) 40- 1.1
I-i 5~~~~ to• .4 .4 -4 0,
0• 0’0)
S-a 1.) 03 —— 5-’ 0 3 4) 0

‘-S 03
• - 4) 3• a ,-.,. ~~ ~~ -,4 1J -,4 4)

0.0 5-’ 5-
5.) 5.) 01-4 0~~ —” C#) 3 Z

.4
_________________ 5.-i

4)
S-i
to
1.)
Cl)

- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -- • - • -  ~~S-•- -~ • • • • •-•



- 
~~~~~~~~~~~~~~~~~~~~~~ “~~~~~~~~~~~~~~~~~~~~ -re wu

32

Fully Adapt~ve SSOR-SI Procedure

So far we have been considering the SSOR-SI method for fixed to where we snake

an initial estimate S
E
(i
~

) for S(~~) and then improve S
E
(ê) adaptively .

As stated in Section 3, S(s) is a very slowly varying function of to, and it

is not essential that the value of to be optimal. Thus it would not be unreason-

able to guess at a value of to, say 1.8, and use the partially adaptive procedure

described above. However, as we show, it is not difficult to improve a- as

well as S
E
(S) adaptively .

When we let to as well as SE
(a
~~
) be determined adaptively we refer to

the procedure as “fully adaptive ” Actually, as in the case of the adaptive

SSOR-CG method considered in Section 3 , we work with M
E
(B), an estimate of

M(B). Also, as in Section 3, we assume that we have an upper bound ~ for S(LU).

__ - ~~~ — - • • -~~ -—- -~~- --- -
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The overall procedure for the fully adaptive SSOR-SI method is shown

in Figure 4.2. To begin with, we estimate a value of M
E
(B) such that 0 < M

E
(B) < M(B)

and also such that M
E
(B) < 2I~

’ 
- We compute to by (2.20) with M = M

E
(B) and

S
E
(t
~~
) by (2.21).

At the beginning of each iteration we compute and ~~~~~ We then

• apply the stopping test (3.18’). If convergence has not occurred, we proceed to switch

(~J . Initially, ~~~
‘
\ = • However, if at any time w* can be shown to be

satisfa ctory (using (3,27)) we let (i’; (~~~
. and from then on we will not consider

• changing M
E
(B). We then apply test (4.9) to see whether M

E
(B) should be changed.

If so, or if n = 0, we proceed as follows. We compute a new value of 
~~~~~ 

as

indicated. The value of S”(~B ) given is the Rayleigh quotient, as was shown in ourE U~

discussion of the partially adaptive process. Having found a new value of S
E(S), we

• proceed to get M
E

(B) by (3.28). Then we compute a new to and a new S~(~~). We

then compute %+i’ ‘~
‘n*l’ 

and ~
(n+l) 

and are ready for the next iteration .

- ~~~~~~~~
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5. Numerical results. Several experiments were run for the SSOR method

using the conjugate-gradient adaptive scheme and using the semi-iterative fully

adaptive scheme. The following problem, which we call “model problem P,” was

used as a test case.

~n = -l in Q

(5.1) u =  0 on~~~

0 = (0,1) x (0,1) -

Numerical experiments on snore general problems, such as those considered in Young

• [1974] are now being carried out.

The five-point finite difference method was used to generate the matrix

problem

(5.2) A u = b

for mesh sizes of h = 1/20, 1/40 , and 1/80. For these cases the parameters ~~,

and the bound for S(e ), as given by (2.30), (2.31), and (2.32) (with ~ = 1/4),

~
‘
~1

respectively, are shown in Table 1,

TABLE 1
• VALUES OF OPTIMUM PARAMETERS FOR MODEL PROBLEM P

h 1/20 h = 1/40 h = 1/80

.98769 .99692 .99923

1.72874 1.85445 1.92448

S (.~ ) .85451 .52448 .96151
to
’

In our test cases, since we were interested in studying the effec tiveness

of the adaptive schemes ra ther than studying effec tiveness of stopping procedure s,

we genera ted the exact solution, U, to the problem (5.2) and iterated until the

following condition was satisfied:

- - -----
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(n)
(5•3) K 11u - U~ 1 

= 10 -exact 
~i~;ii 

—

The adaptive procedures , as described in Sections 3 and 4, were used for

the SSOR- CG and for the SSOR-SI schemes, respectively. The stopping test (5.3)

rather than (2.18’) was used in both cases. For the SSOR-SI method only the

fully adaptive scheme was used. No test cases were run using the partially adap-

tive procedure . For the adaptive process, an initial guess ~~°) was made for

p S(B). It is necessary that ~~, and in the absence of a better guess

can be set equal to zero. Initial estimates for to and S(s ) were obtained

from (2.20) and (2.21) using the estimated parameter 40) - The adaptive procedures

of Sections 3 and 4 were then used to correct the estimated parameters.

A non-adaptive process was also used for both methods . In the non-adaptive

process a value of to was chosen and not changed. In the case of the non-adaptive

SSOR-SI method a value of S(~~) was used based on (2.21) with 
~E 

replaced by

the true value of ~ and with ~ =

Tab le 2 gives the results for the adaptive and non-adaptive procedures

where to = .82 was used for the non-adaptive process. (This corresponds to using

(2.20) with = 0 and ~ = 1/4.) For the adaptive cases was initially zero.

The value F = 3/4 was used for the adaptive cases.

For the values given for the adaptive SSOR-CG method, the numbers in paren-

theses correspond to a different adaptive scheme where at least two iterations were

used with each parameter set. The numbers look somewhat better than in the original

adaptive case.

*
- Clea rly, this procedure is snore favorable to the non-adaptive SSOR-SI

method than would be the case if we had used the more reasonable procedure of
choosing a value of and then calcula ting to and a bound for S(J ) by (2.18),
letting ~ = 1/4. to 

- -5- — — S  5- -
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TABLE 2 . COMPARISON OF ADAPTIVE AND NON-ADAPTIVE SCHEME S

SSOR- SI

h = 1/20 h 1/40 h = 1/80

Non- adaptive

= .82 32 67 12)

optimum parameters* 17 25 35

Fully adaptive -

23 26 39

SSOR- CC

h =  1/2) h =  1/40 h =  1/80

Non-adaptive

= .82 17 28 52

optimum parameters* 12 17 23

Adaptive

-(0) 
= 0 16 (14) 21 (20) 32 (27)

*
See Table 1

—5- -5 5-— — 5 - -  — —  —---5-- ---
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Figure 5.1 shows the number of iterations required to satisfy the con-

vergence criteria (5.3) for the non-adaptive SSOR-CG method and for the non-

adaptive SSOR-SI method . In each case a value of to was chosen and the non-

adaptive procedure was used as described above . It should be noted that the

SSOR-CG curve is much flatter than the SSOR-SI curve, and also lies considerably

below the SSOR-SI curve. This indicates that the SSOR-CG procedure is much

less sensitive to choice of to. The advantage of the SSOR-CG method would probably

have been even greater if we had not used the true value of p in computing

the bound on S(t~ ) for the non-adaptive SSOR- SI scheme.

The results presented in Tables 3 and 4 show how the parameters 
~E’ ~~

and S(s 
~E 

changed during the adaptive process. In the cases considered, the

initial 40) was set equal to zero. It is evident that after only two or three

iterations, good values of the parameters are available through the adaptive

process. Furthermore, even the iterations occurring before the selection of

the final parameter set are not “wasted” iterations since the iterant ~
(n)

is being improved, although not as much as would be the case with the optimum

parameterS. 

•—- • • • • - -•_ _-—~~---- —- - -—- 5 - -  • —
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Number of
Iterations

75

N
50 - 

SSOR—SI

/

:::
1.0 1.2 1.4 1.6 1.8 to

1 
2.0

Omega (w)

Figure 5.1. Model Problem P. #Iterations vs. w, h = 1/40

Non-adaptive Schemes
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TABLE 3. SSOR-SI. FULLY AI~ PT1VE

(F i/4 in all cases)

to S(.~s)u ’E

IL 1/20

Optimum Value .98769 1. /2814 .85451

Iteration No. 1 0 .828427 .17157

“ 4 .97851 1.6565 7 .812156

“ 15 .98 742 1. /.~~2l .853041

“ “ Convergence

h 1/ 40

Optimum Va lue .99o9~ 1.85445 .92448

l t c r a t i on  No . 1 0 .828427 .171 S 7

4 .990 34 1 7559 / 8 700 6

“ 8 .99633 1.84218 9178~

Convc rgt’ncc

h 1/80

Optimum Va lue .99923 1.92448 .96151

Iteration No. 1 0 82842/ .17157

4 99540 1.82504 90852

“ 8 .99896 1.91280 .95543
.5’)

• —__ _~~~~?,,-________ _____ __.~-:__,~~~~ —— .5-—
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TABLE 4. SSOR—CG ADAPTIVE
(F = 3/4 in all cases)

to S(&~)~
h = 1/20, k = 1

True Value .98769 1.72874 .85451

Iteration No. 1 0 .828427 .17157

“ 3 .97851 1.65657 .812156

“ 7 .98742 1.72621 .853047

“ 16 Convergence

h=1/40, k = 2

True Value .99692 1.85445 .92448

~Iteration No. 1 0 .8284 7 .17157

“ “ 4 .9913 7 1.77713 .871171

20 Convergence

= 1/80, k =

True Value .99923 1.92448 .96151

kteration No. 1 0 .82847 .17157

“ 3 .99348 1 79784 89047

“ 7 .99881 1.91429 .94801

32 Convergence

_ _ _ _ _ _ _ _ _ _  — - -- — -5 - 5 - - - -  --5,- - -- --
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-(0)Many cases were run for various values of and for various values

of F. Figures 5.2 and 5.3 illustrate the effect of varying 4n the adap-

tive procedure . The solid lines represent the non-adaptive case; i.e., 40~ is

chosen and the parameters are ca lcula ted ba sed on ~4~
) 
and are not changed

(u- is fixed throughout the procedure). The dashed line represents the fully

adaptive procedure; here 40) is specified and all parameters are updated when

• the improved parameter set is calculated . The ordinate represents the number

of iterations required for convergence and the abscissa is 40) - The graphs

are drawn for h 1/40, but these results are representative of all of the

test cases

In general, lowering the value of F means there will be fewer

parameter changes, and setting F closer to unity has the effect of fine-tuning

the procedure . In this case there will be more parameter changes and the final

set should be closer to the optimum values . However, when the parameters are

changed , the convergence rate of the overall method drops off initially and

then gradually increases. Thus , changing parameters too often can have the net

effec t of lowering the overall convergence rate. In choosing F, one must balance

the effect of changing parameters against the gain which will be realized from

improved pa ramete rs . Figure 5.4 is a graph of the number of iterations required

versus the parameter F for the SSOR-CG adaptive procedure and for the SSOR-SI

fully adaptive procedure. In general, this procedure does not seem to be too

sensitive to values of F as long as they are not close to zero or to one.

_ _ _  5- — •~~~~~~~~~~~~~~~~~-= ---—-5- - - -
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35 SSOR—SI
ON-ADAPTIVE

SSOR-SI FULLY .

\ ADAPTIVE

25 - ‘ .-

20
I — I

.5 .8 .9 -(O) .975 .99 1.0

Figure 5.2.  Iterations Vs. ~~
0
~ Fu1ly Adaptive and Non-adaptive

SSOR-SI, h = 1/40

30

25

SSOR—CG NON-ADAPTIVE

20 — — — —
SSOR-CG ADAPTIVE - 

- -

15

I- I I I~~
.5 .8 .9 975 .99 1.0

Figure 5.3. Iterations vs. 40)Adaptive and Non-adaptive

SSOR-CG, h = 1/40
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SSOR-SI Fully Adaptive
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\ C G~~~aPtive~~~~~~~~~~~~~~~~~~~
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F

Figure 5.4. Number of Iterations vs F for SSOR-CG and SSOR-SI Adaptive

(h = 1/40, (0) 
= 0., ~ = 1/4)
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6. Stmm~ar~y arid conclusions. These preliminary test cases seem to indicate

that the adaptive procedures presented in this paper are effective when they are

coupled with both the SSOR-CG and the SSOR-SI methods. It has been shown that for

this problem very few iterations are required to obtain a good set of parameters,

and these preliminary iterations are not wasted, in the sense that the vector

is being improved on each iteration. The procedures are effective even when

the initial guess of 
~E 

is the worst possible; i.e., ~40)= 0. It has been

shown that in this case the number of iterations using the adaptive scheme is

not too many more than the number of iterations which would have been required

if the optimum parameters had been known from the start .

These results are preliminary in the sense that numerical experiments have

been carried out only for the model problem P. We are now testing these procedures

on a more general class of self-adjoint elliptic problems.
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