AD-A0S5S1 480

UNCLASSIFIED

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO
SYSTEMS OF HYPERBOLIC DIFFERENTIAL EQUATIONS OF THE FIRST OR
JUL 77 W HAACK: G HELLWIG

FTD=ID(RS)T=0926-77

F/6 12/1
DER==ETC (U)

END

DATE
FILMED




T——

FTD-ID(RS)T~0926-77 @

FOREIGN TECHNOLOGY DIVISION

SYSTEMS OF HYPERBOLIC DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER. II

by

Wolfgnag Haack and Guenter Hellwig

DD C
AP rrﬂm

MAR 20 1978 | ;;

Approved for public release;
distribution unlimited.




i FTD -ID(RS)T-0926-77

‘;‘( [__AL_.. ?._‘v =T N Res
H - "ty y?
,‘ Lo o lectiss - .
! P el

REWIMINS....

EDITED TRANSLATION

| e S
SRYMILIPE  ATAHARIL(TY ML

Bl AL e A
| 4

FTD-ID(RS)T-0926-77 12 July 1977 /%‘ f
MICROFICHE NR: \77&2). 7769 O( /977/ i

SYSTEMS OF HYPERBOLIC DIFFERENTIAL EQUATIONS OF *
THE FIRST ORDER. II

By: Wolfgang Haack and Guenter Hellwig
English pages: 35

Source: Mathematische Zeitschrift, Berlin-
Charlottenburg, Vol. 53, Nr. 4, 1950,
pp. 340-356

Country of origin: W. Germany

Translated by: Gale M. Weisenbarger

Requester: AFWL/IN

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI.
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:
ADVOCATEDOR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION
‘ OR OPINION OF THE FOREIGN TECHNOLOGY DI. FOREIGN TECHNOLOGY DIVISION
i VISION. WP.AFB, OHIO.
i
1 FTD -ID(BS)T=0926-77 Date ;- Juquff

o " p- ’ S g
FTD=-ID (RS) T-0026-7% - statement A per v, flughes, FID

Stinfo Cfficer- 20 Mar 7




DOC = 0926 PAGE i1

0926,9w

SYSTEMS OF HYPERBOLIC DIFFERENTIAL EQUATIONS OF THE FIRST CRDER. II.

wolfgang Haack and Guenter Hellwig

Berlin-Charlottenburg

INTRODUCTION

The following studies are a direct continuation of our first
report on this topic which appeared recently in this journal. In
Ssection I of our first report we proceeded frcm a hyperbolic systenm
cf linear differential equations:

@y Weireuidrye b
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o4 ’-""l‘fl—'ll+vl-r. é 0.

(summmed over k = 1, 2)
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Through invariant derivatives in the characteristic direct ions

(2) f=a: =g

and appropriate linear combinations

(3) Uieswpry Ve wutvor
the system (1) was reduced to a normal form. In sections II and 1ITI

existence theorems were proved for the functions U, V and u, va.

Below we have continued the numbering of the sections and
formulas and in section IV we shall deal with several 1integral
theorems. Two Pfaffian forms w,, w, (I-13) Ltelong to the vector
system (2). Now if U, V, respectively, u, v are solutions of (1) and
W, Z are arbitrary functions, then through the extrinsic derivative
of the Pfaffian form wve+20'v, oOne arrives at integral relations for
the functions U, V. The requirement that certain terws in the
integrals vanish leads to the adjoint system of differential

equations for ¥ and Z.

In 4 manner similar to that in the Riemann method which is known




from the theory of a partial differential equation of the second

crder, one can solve the Cauchy initial value problem of system (1)

using quadratures if the characteristic initial value problenm is

solved for the adjoint system. The result is the integral

representation of the sought tunctions (IV. 28, 31). Section IV

concludes with the proof that the classical Riewmann method is

contained in these integral representations as a special case.

In section V the considerations will Lbe transformed for

quasilinear systems. Systems also result in the characteristic form

which was investigated by R. Courant et al. (see the first report,

fcotnote [ 2]). We show that here also a normal form is always present

and indicate when, through transposition of the dependent and

independent variables a "linearization" is possible and outline

briefly a difference method for the approximate solution of various

initial value and boundary value problems. In ccnclusion as an
example we shall deal with the the plane and dyrnamically balanced
stationary flow of an ideal compressible fluid. We calculate the
normal form of the problem and arrive at a methcd of characteristics
for approximate determination of the solution which also uses the
epicycloid networks and which therefore may offer certain

simplifications as opposed to the familiar methed (cf. section V,

footnote [ 3]).
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Finally we 1o not want to neglect thanking Mr. L. Bieberbach for

revision of the manuscripts of both parts and fcr numerous

suggestions for improvement.
SECTION IV.
QUASI-RIEMANN METHOD

1« Integral theorem of the normal form. The construction of the
characteristic theory of a system (1) using Pfaffian forms, as was
done in Section I brings the advantage that one can make direct
statements about the behavior of the sought functions in general
terms. Along with E. Cartan we designate the "extrinsic product" of
two Pfaffian forms w,, w, with [w;, w,] and the "extrinsic
derivative" of a Pfaffian form with [d«]. It G is a range in which
the coefficients of the form w are continucusly differentiable then

the integral theorem is valid 1@

[ FOOTNOTE: Cf., for example, B. W. Blaschke, "Introduction to

differential geometry" Berlin 1950. ENC FCCINOTE]

(IV-1) /. [ /-/-:I..,
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According to Section I two Pfaffian forms «,, w, belong to a
system of hyperbolic differential equations (1). They form the basis
of a form ring, which using two auxiliary functions W(x1, x2), Z(x!?,

x2) we write in the form
(Iv.2) .- Vet I,

In this case U, V are tc be considered as sclutions of the normal

form (I.9)

(]--AU+BV+C,

(IV.3) Vi=AU+BV 46

The application of the 1integral theorem (IV.1) to the form w (IV.2)

yields

(IV.4) Pwrveszva) = fjmwv.,+zv..n.

For transformation of the right side we use the fundamental formulas

known for extrinsic derivatives [} ]:
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If S is a position function, then

(1V.5) [d(Sw)| = {dN) @+ S|dwl.

In addition, referred to the invariaut derivatives,

(IVa6) dS = S.@ + N w,.

Then the double integral of (IV.4) becones

(Iv.7) flewye  zta)
[fidony @)+ dizl o, + WV e )4 2Ujdw,}.

since the extrinsic products are alternating it follows that

(IV.8) "JIWIIN Vo, ZUeo) = j"“:,”. Vi = (2 U (0,00,
+ ."].:"""d"‘; AU da,l)

The extrinsic derivatives [dw,; ], [dw,] are yiven by the equaticns

(1vV.9) (de = Swool
o, = K ool
with o V(B By, 181, @3
S I E - E4Y

a7 zm




If we proceed with this 1n (IV.¥) then the integral theorem becomes

(IV.10) Jwroszva,
-j f:m'r.,.- ZUL WY S=ZUR) |0,@,.

If we now note that U, V are considered as solutions of the normal
form (IV.3) then we can replace y, and ¥; in (IV.10) according to

(IV.3) and ottain

ﬁm’ Ve, + ZU ) = ffr:w;+ W+ S - ZB) (w0,
= -
(IV.11) +ffl': Z-Z(4+ R+ WA o0,

+ ./. /.:"'(' ~ZC) o W,

This is a general inteyral theorem which must ke satisfied by every
soluticn system of (IV.3) with any functions W, 2

G-

2. Generalization of the Riemann method. It 1s easy, using the
integral theorem (IV.11) to reduce the Cauchy initial value problenm

of (IV.3) for a curve K to a "characteristic initial value problem"

(Section III).
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For the arbitrary functions w, Z we make the demand

W;+WB+S—2B=0
(IV.12) Zoi LA R =WA =0,

That is a system of partial differential equaticns of the hyperbolic
type for the functions W and Z in the ncrmal form with the same
characteristics aa We call it the adjoint system to (IV.3). The
ad joint system is simpler than the original (IV.3) in that it is
always homogeneous: it is solvable, however, only through quadratures
according to the deftinition of Section 1 when the initial systenm
(IV.3) is solvable through quadratures. If in (IV.11) & and Z are
kncwn adjoint functions, 1.e., solutions of (IV.12) then only known
functions appear under the remaining double integral. It will now
come to transforming the boundary integral thrcugh the choice of an
agpropriate range so that the sought functions U, V appear before the
integral. In the case of the Cauchy initial valve problem U, V are
given aleng a curve K, the function values U(P), (VP) are sought in
any point P outside of K.

We consider a region G whose boundary is fcrwmed by the initial
curve K and the characteristics through point F (Fig. 1). For this
region G the prerequisites of the integral thecrem are satisfied. As

can be seen from Fig. 1,one can split the bcundary integral up into
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subintegrals

(Iv.13) ‘¢'_ /+f’,[

LY ]

St —

Fig | A

The first integral is to be taken along the initial curve K, on which
U, V are known. For transtormation of the inteqral over the

characteristics w2 consider the equation (IV.3) and write it in the

form

(IV. 14) BV = U,—AU-C; AU=V;-BV-C.

In order not to have to exclude the zerc places of the given

functions B and 4 in the future, we want to write the adjoint 2r

function & on the boundary P,P and the ad scint function 2 on the

boundary P,P in the form 2

(v 15) Woe=8Baul PP: 7~ 34 aul re,.

[FOOTNOTE: 2 The next thing would be to replace the function U
according to (IV.14) by ¢ ;¢k-lr~;ﬁin the chargcteristic parts of
the boundary integral (IV.14), respectively, (IV.13) for example in
the integral | #ve and then through partial integration with respect

to »: to move the function ¥V in front of the integral. This can only
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be done, however, if 4+0im. . Through intrcducticn of the auxiliary

functions ® and 8 according to (IV.15) this difficulty is

eliminated. END FOOTNOTE)

The possibility of such a formulation results directly from the fact
that for the adjoint functions W, Z characteristic initial values are
to be sought, i.e., we can have at our dispcsal W and Z on the
correspond ing characteristics throuyh F. With (IV.14, 15) we go into
the subintegrals of (IV.13) and observe that w, = 0 along the

characteristic P,P and w, = 0 along P,P. Then from (IV.11) it follows

that

]nrrq+zru“+/34¢-§r-dw
rne, rr

+"!'!lhl".—.»ll'—-l'm.= [fwe zeiew,

(IV.16)

As a result of partial integration the following formulas result:

(Iv.17) J3V: BV-Cle - gr . (Vi3 4 BRle,~ [§Ce
»nr

et o

yrnen [8".' AU Co =800 (U8 AR e~ [BCw,
rk ey rr,
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Now for ®y along the corresponding characteristics through Powe

make the demand:

8 By =0 wat rr
(1v.19)

(1v.20) W4 AW 0 ant PP

Therefrom tor 3§ in a vandom point Pe* of PP, and tor W in a

random point P* of PP, (sce Fig. 1)

e

Iv. 21 A

( 21) J* - O ! aal e,
g
[ o

(l Ve .’2) W o Ce i ant '

In this case ¢, and C, ate 1ntegration constants which we shall
1 2

have at our diusposal.

Then in accordance with (IVv.o1S), tor W, 2 tcllcews the demand:

(Iv“) ‘) A e i) ¢ Py wat PP, .

(LV.24) Wi - O Bie P aut PP

later
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These are characteristic initial values according to Section III for
the solutions W, Z of the adjoint system. According to these

stipulations the integral theorem (IV.16) finally acquires the form:

8 reom "!'I'\I‘I['I = WP ‘l'.' = "‘ul',‘r‘l'r‘

(IV. 25) + 8w, [3Co,+ [ WVa+200 4

Pp ri eor,

A R TRy T TR

We want to summarize the result up to this point in the following

ranner:

If W, Z are soluticns of the adjoint system (IV.12) which
satisfy the characteristic initial conditicns (IV.23), (IV.24) with
arbitrary constants C,, C, then the linear combtination g, g4y in the

point P can be expressed through the initial values and known values

in accordance with (IV.25). Here w 4 are explained by (IV.21),

(IV.22). We want to call W, Z guasi-Riemann functions and their

existence 1is assured according to Section 1I and III.

A further goal will be to obtain, through appropriate choice of
the constants C;, C,, two independent linear ccmbinations from which

U, V can be calculated in pcint P. This can be done in various ways.

C g e

. fw?w' ,.vm :
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If one desires certain symmetry in the formulas, then through

the demand

(IV.26) LBP 1 BM=1

one can uniquely determine the constants Cy and C, in (IV.21, 22) and

the functions W, Z according to (IV.23, 24). A second function pair

®. 3 wve subject to the demand

(Iv.27) IR =1; JiP=-—1

and correspondingly obtain uniquely determined functions W,z . If we

tegard the abbreviation H(W, Z) given in (IV.25) then it follows

directly that

(IV.28a) U= | LHOW. 2 HOW, 20,

(IV.28b) Vil VWL 20 MW, 20,

If the characteristic initial value problem is solved ftor the

adjoint normal form then the solution of the Cauchy initial value

groblem of the system (IV.3) for every initial curve K can be
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represented by quadratures.

Shorter integral representations can Le olttained in the

following manner: We choose the integration constants in (IV.21, 22)

so that
(IV.29) L BiPi=1; J=0 auf PP,
(Iv.30) I gem Br W= 00 anf PR

-—

Thereby W, 2, ;; Z are uniquely determined. From (IV.25) for the

sought functions U(P), V(P) it follows 1immediately that:

(IV.31a) Pitv= 8PP0 P s [BCo b W Vet 2w,
ror

W

P WT -zt io,0),

(IV.31b) ViP) 3PVP 4 [3Ce v [ (Ve ZUa)
¥

*Pe rir,

+ f]:iii 70! 0, |

From the integral representation (IV.31) it follows particularly
graphically that U, V are continuously dependent on the initial

values. Finally l2t us note that integral representations for the
functions u, v of the Cauchy initial value problem of the general

2 system (1) are given directly by the integral theorems (IV.28),
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(IV.31).

3. Relations to the "Riemann method." If a general hyperbolic

di fferential equation of the second order is given in the form

(I.17), in which we designate the independent variables with x, y

(IVv.32) fayt @2+ by c8t Ju=0),

then through the introducticn of both functions

(Iv.33) N=2 r=4

we can write these as a system. According to (1.19) in addition there

results the normal form

(IV.34) UV,=-blU+V.

Vy = by+ab-c)l!'—aV -/

with
u=UU; but+r - y.

since according to (I.18) and (I.1) .- U Vz=1V,.

Two Pfaffian forms (I.13) belcng to (IV.34)
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(IV. 35) @ o=dr; w, dy.

From the integral theorem (IV.25) we immediately obtain infinitely
many integral representations for a Cauchy initial value problem from
(IV.32). It is now cf interest whether, and in the given case,

through which "marked" demands these integral representations

directly yield the familiar “Riemann scluticn fcrmula."

We shall show: If for the characteristic initial value problen

cf the "ad joint system" (IV.12), in addition to requirements (IV.19,

20) we make the demand (IV.29) for the determination of the

integration constants then (IV.31la) yields precisely the Riemann

solution formula.

The adjoint system (IV.12) becomes

(IV. 36) W, Wa- % =0
Z.~Zb=W b, +ab—-c 0,

The requirements for the characteristic initial value problea cf

(IV.36) according to (IV.15) and (IV.20) since B = 1 (IV.37) u, - bW

= 0 on PPy with W(P) = 1

(IV.37a) Z = 0 on PP, according to (IV.29).
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From (IV.36) we eliminate Z by differentiating the first
E equation with respect to x and introduce frcm the second

{ equation.

Following simple transformation it follows that

(IV. 38) Way— (W an— Wb, + W0

(IV.38) is precisely the "adjoint EKiewann egquation"™ which

belongs to (IV.32).

According to (IV. 36) the requirement (IV.d37a) goes over into

(IV.39) w, - aWw = 0 on PP,.

(IV.37, 39) are the "Riemann demands" which belong to (IV.38).

According to (IV.33, 34) we set

(IV.“O) iom U: b+, |

Now we arrive directly at the Riemann solution tormula if wve
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substitute the values (IV.40) into (IV.31a). Considering the first

equation in (IV.36)

1P - W PIP)+ [(WOs+r)dr+ (W, Wasdy) v
r

(IV.41) h
~[f1widzdy,

This is the Riemann representation formula for the Cauchy problem of
the hyperbolic differential equation (IV.3¢). (Cf. perhaps Goursat

"Cours D'Analyse" Paris 1927, Volume 3, page 150.)
SECTION V. SYSTEMS OF QUASILINEAR DIFFERENTIAL EQUATIONS.

In the introduction it was already pointed out that in the past

ten years in connection with certain prcblems of fluid dynamics

methods of characteristics were developed tor the solution of

hyperbolic systems of quasilinear differential equations with two

independent variables 3.

[FCOTNOTF: 3 Even today the abundant literature is accesible here

only with difficuly so that we can only mention the following:

R. Sauer, "Theoretical Introduction in Gas Dynamics," Berlin 1943,




A
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Kl. Oswatitsch, "Methods of characteristics of Hydromechanics,'" ZAMM

1947, Issues 7, 8, 9.

Courant-Friedrichs, "Supersonic Flow and Shock Waves," New York 1948.

A. Ferri, "Elements of Aerodynamics of Supersoanic Flows," New York

1949,

Abundant bibliographical information can be found in the above works.

END FCCTNOTE ]

In particular R. Courant, K. C. Friedrichs and Lax have recently
studied the quasilinear systems in detail and given the prerequisites
fofthe existence of unique solutions of the Cauchy initial value
groblem (cf. Report I., footnote 2). Here we want to limit ourselves
to pointing out the connection of the guasilinear systems with the
theory of the linear systems developed in Secticns I through IV and

to illustrating the advantages using a simple example of the plane

and dynamically balanced flow of compressible liquids.

1. Quasilinear systems in the “characteristic form."

Let

——— R R G




(V. 1) @u v ey e =0,

s (summed over k = 1, 2).
Pus Py 4=

be a quasilinear system in which @, @...c are functions of the
independent variables x?!, x2 and of the scught solutions u, v. If we
follow the developments of Section I and assume that a solution u, v
is known, then the system (V.1) is called hyperlkolic with respect to
this solution if the determinant (I.3) has exactly two real roots

w:v,¢ Mie b2 Thereby the characteristic directions became dependent
on the solutions u, v, however, equaticns (l.1-6) of Section I
maintain their full validity, while the factors p,;, ps, €4, 05 can
now be functions of x!, x2, u, v. In this manner we always arrive at
the following “characteristic system" in which we use the indices a,
a instead of points in the differential equaticns (I.11) of the

characteristics:

(V.2a) sl ki i
& = a'

U |
i 1)

A

The a4 are known functicns of x!', x2, u, v. In addition, according
to (16) there are the accompanying differential equations of the

functions u, v




(V. 2b) L R N I N S S L SN

. u; + a0 a, ip b op,

The differential equations (V.Z2a) of the characteristic curves can

T ——

also be written in the form:

(V.ZC) Da'r—c'ri=0 1lr! r o

Now the equations are homogenecus and are preserved during the

introduction of integrating factors. Hence the directional

derivatives can be interpreted as partial derivatives. (V.2b) and

(V.2c) form a system of four partial differential equations for the

functions x!, x2, u, v of two characteristic variables. The

properties and the questions of existence for such systems are

studied by R. Courant et al. (cf. foctncte I2).

2. Normal form of quasilinear systems.

our theory of linear systeas is based essentially on the normal
form (see Section I). We turn to the questicn of whether the systenm

of equations (V.2b) possesses a nocrmal form in the sense of (19). One

immediately recognizes the correctness of the theorem:
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a) 1f 4.e in (V.2b) are functions of x!, x2 alone, then one

arrives at the normal form by setting:

{(v.3) U=gquter: '~ o ute

The normal form reads

(V.4)

In this case C and C are kncwn functions of x!, x2, U, V.

Mr. J. Nitsche pointed out to us that a ccrresponding theorem 1is

also valid in the general case:

b) If .o in (V.2b) are differentiable functions of u, v, =

then the system possesses a norrmal forw.

We have to show that instead of u, v, new functions U, V of u,
v, ¢ can be introduced which reduce (V.2L) tc tne form (V.4). For
this purpose we multiply the first equation (V.Z2Zb) with a function
“(u, v, 294 and the second equation with N(u, v, . and define M and

N so that the following equations become pessitle:
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'v"l.'+..|". - l”. t l(“‘ r, I‘)'

(v.5) No,u;+ No,v; — Vi+3( v, ).

That is certainly the case if M and N satisfy the equations:

(V. 6) Mo, ~ Mg,y = 0, ¢N¢,|.—(~.';...0_

In these equations the =»r are to be intergreted as constant

parameters. Then

U= @ v, 15 Vo= W, v, 1"
such that
Uy =@, = Mp,. Uy =@, = My,
Ve- ¥, = No,, Ve== ¥, = Nae,

(V.6a)

By differentiation in the direction of the characteristics:

Ue= Mo, ttat+ Mo, ve + Pua'
V; == Nou;  Ne,v; + Waa'.

Here the last terms are known functions of u, v, » if the

integrating factors M, N are defined according to (V.6). The
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functional determinant of the functions U, V with respect to u, v 1is
MN (p,02-P20,)« On account of the independence cf e.e. , U, V are also
independent with respect to u, v. Hence it tollcws immediately that

(Va2b) can be written in the normal form (V.4).

c) For a quasilinear system in the normal form (V.2a, 4) the
integral theorem (IV.11) can be accepted. For any two solutions U, V
of the quasilinear system and two arbkitrary functions W, 2 acccrding

to (IV.11) the integral theorem is valid:

f«w Ve, : ZUw,) = /f; [Ws;+ W) 0,0
v.7) + fj}';-z. ZR) |u o,
+ ’ I.l'l'(.' ~Z0C) v,

whereby R, S are given by (IV.9).

By setting the bracketed expression in both double integrals
equal to zero the adjoint equations result. If cne assumes U, V to be

known then the Pfaffian forms can be made integrable and the adjoint

system can be reduced to the simple form

Then

W = const, Z = const
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are the equations fer both systems of characteristics.

d) Linearizable systems. Of great interest tor applications is

the special case tor which in (V.4)

One can transpose the role cof the dependent and 1ndependent
variables, i1.e., one interprets U, V as an independent variable 1n a
U, V-plane and considers ,» (U, V) as sought functions ot the
independent variables U, V. Then (V.2¢) appear as a system of
differential equations in characteristic form tor the tunctions » (U,
V). The curves U = const, V = const are the characteristics of the U,
V-plane, which are fixed, 1.e¢., are independent ot the sought
functions (U, V). Therewith one has the same relationships as in
the linear hyperbolic systems and can carry the theory over directly.
We shall be satisfied with this short reference (see under (4c) but
would still like to note that also in general cases such a

linearization 15 possible, tor example, 1f ¢, « and .« are

functions alone of U, » and v, s Lespectively.

3. General ditterence method.




Pkl
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From the equation system (V.2a) and (V.4) (resp. (Va2b)) cne
arrives directly at difference methods which approximately solve the
Cauchy problem and all of the mixed initial value- and boundary value
froblems discussed in Section III. Let us first assume that the
solutions of the systems (V.2a) and (V.U4) are known and S,
respectively, s are the curve lengths along the characteristics. Then

the equations can be writter in integral form. Approximately

] a' S 1 a' 1
B a2 o’ s | AL
(V. 8) A0 - Cdy AN = Cds

Along the curve K let the initial values U(K), V(K) be given; along
the boundary R let some function ¢ (u, v), respectively,w (U, V) be

known (see Fig. 2). Beginning from the intersecticn (0 one passes the
characteristic directions through a number cf pcints (1, 2, 3) ot K.

They are known as quotients of the first twc equations (V. 8) along K.

|~

The characteristic straight lines intersect in pairs in the points 5,

6, 7- 1If one normalizes () =1 and @9 =1, then Aas, respectively aAS

is the spacing ot the points on the a-, respectively, a-line. Cne can
thus calculate 4,0 and &4V and determine U, V in the points 5, 6,

T«

b
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Assuming that the characteristic approaching in boundary point 4
belongs to system II of the equations (V.8) them in 4 one knows the
function V and from V and the boundary condition % (U, V) can
calculate the function U (resp. u, V). In this case it is assuned
that ¥ is uniquely solvable with respect to U. The method camn be
continued in the same manner in the range lying between K and R. With
respect to the boundary curve R it is to ke assumed that in the range

between K and R there is one and only one characteristic passing

through 0.

4) Steady flow.

As an example dynamically balanced and plane steady flow cf an
ideal gas will be treated in scmewhat ncre detail. In view of the
abundant literature on the subject [ 3] we may be brief. In cylinder
coordinates r, x let ¢(r, x) be the velocity pctential and a be the
local velocity of sound. Then the following equation is valid:

(v.9)

""

- ¥! |
®. (1 wr] FOrll= 0N - S, ""," " =00,

In this case with the constants * L w,

(V-10) a' -!l (W= "), w' =yl gl
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If we set
(V. 1 ]) 'S weosnd, @, = wsind,

then from (V.9) and the condition

? é
(Vo 12) ar (M COn ®) PR S

there results a quasilinear system of differential equations for the
functions w, 9, which give the contribution and the direction of the

flow velocity toward the x-axis. Por v > a the system is hyperbolic.
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Here it is recoamended to not go directly to the
"characteristic" derivatives, a, a but to gc first to another system

cf "invariant" derivatives.

There are

T == con b

M

rooowesin®,

(v.13) - Xe==—wtgysind
ros== W g ;'(‘nnl’

tvo vectors of which P coincides with the velocity w and E 1s

perpendicular to it. In this case y is the so-called "Mach angle"
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with sin y = a/w (cf. Fig. 3). The invariant derivatives of a

function S in these directions are

o N X
Sim L €080 L sin &

(Ve 14) 2 &
P

oN
ér CEYSRY or CWEyeos P

If one calculates these derivatives for the functions w and 9 and

observes (V.9) and (V. 12) then the system of invariant dif ferential

equations follows after a simple intermediate calculation:

(V. 15) wielgy - Bgew o U0

a) Natural equations. The formulas (V15) allow a simple
geometric interpretation. If one designates the curve length with s
and the bend radius of the flow lines with ¢ then on account of

(Vo 14)

(Ve 16a) 0 e Y V' i@ lemgn ‘f: ".,

If we call n and ¢. the curve length and the bend radius of the

crthogonal trajectories of the flow lines, then according to (V.14)
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(V. 16b) % oy,

By introduction in (V. 15) the so-called natural equations of the flow

dnw , ( 1 @ N
oY 2
ds ¥ P r

(v-17) w4

BN )

—

Fq. 3
They can be obtained quite effortlessly in this §dnner. One

recognizes then that in the case of flcw alcny a wall w only changes

continuously if the curvature of the wall 1s continuous.

b) The normal form of the system. In order to reduce the systenm
of equations to the characteristic form we have to add both equaticns
(V.15) once and subtract them once and tinally divide them by w. If

in addition we set

then we obtain the characteristic systen

(V-18)
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Here the characteristic directions a, a, as a ccmparison with

shows, are given by

(V. 19)

Since in (V. 18) the factor is a function of w alone the systenm

fossesses a normal form with the functions

(v.20) ! ' !

The normal form reads:

(Va21)

where w, 9 are to be considered as functions of U, V.

e) Let us next examine the limiting case "

Equations (V. 19) to (V.Z21) go over intc the formulas tor plane

flow for which: 0 |
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The curves U = const, V = const form a fixed grid in the w, 3-fplane
and are the characteristics of the linear system (V.19) if one writes
it in accordance with (V.2c¢) in - .and - ' . . The linearization of
the differential equation of plane flow by tramsposition of the
dependent and independent variables has been kncwn for a long time
(cf. perhaps R. ‘Sauer [!] page 111). The curves U = const, V = const
are epicycloids of the w, 3-plane. Epicycloid grids are available in
various scales and are widely used for approximate determinaticn of

plane flow.

d) Cycloid grids can also be use tc advantage for dynamically
btalanced flow, which to the best of our kncwledge has not been
mentioned in the literature up until ncw. We therefore want to

kriefly explain the method:

Along the characteristics we choose the curve lengths s and s as

rarameters. Then (V.19) and (V.21) can te written approximately in

differences:
(V.22) BN i v St W e

If in two points P, Q of the x, r-plane onc¢ knows the values of w, $§
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(Fig. 4) then from the first two equations (V.22) one calculates the

0726

characteristic tangents, their point of intersection R and obtains As

and As. From them AU, AV can be determined. The values of w(R), 9 (R)
can now be effortlessly read off of the cycloid grid. In order to
show that, we proceed from the fact that indefimnite integrals appear
in (V.20). Since vanishes for w = a we can introduce the

definite integrals in (V.20)

Then for w = a

The value AU appears therefore on the irner boundary circle ot

the grid as AU = -A% and correspondingly AV as AV = #A8. Now the

folloving method results (Fig. 5):

F'3u Fa S~
Fig. 4. ((KEY: 1) Xx,r-plane.))

Pig. S. ((KEY: 1) v,3%-plane.))
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From the given w(P), 9(P) and w(Q), 8(Q) by drawing the
corresponding radius vectors of the w,3-plane cne immediately finds
the points PO, Q0. On the U-line of the cycloid yrid one approaches
the boundary circle (w=a) throuygh (0, marks otf the value AU = -a3,
calculated from the third eguation (V.22), in radian measure and
turns back on the new grid line U + AU. If cne does the same thing

with P, as a section of the new grid lines cne cbtains [illegible]

can read off w(R), %(R) directly. Since the tramsition froa U to U AU

(resp. from V to V ¢ AV) signifies only a stable rotation of the grid
curves by the angle (-AU), resp., AV, the process can be further

sechanized.

Submitted 18 July 1950.
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