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Flow Stability Beyond Unit Roughness

S.Ya. Gertsenshteyn

Roughness of a body's surface is one of the main factors in-
fluencing the position of the point of transition between a

laminar boundary layer and a turbulent one.

This paper explains the influence of two-dimensional unit
roughness on the origin of turbulence. More accurately, a study

is made here of flow stability beyond two-dimensional unit roughness.

Many experimental studies have been devoted to studying the influence

_ of two-dimensional unit roughness on the origin of turbulence [1].

u This is explained by the value this problem has for practical application.
As a very simple example can be given the problem of selecting the

depth and shape of a welding seam, questions relating to aircraft, etc.

If, as is usually the case, the flow far from the surface is
considered close to plane-parallel, then the problem of flow stability
[' as far as infinitely small disturbances are concerned boils down to

the problem of finding eigenvalues of the Orr-Sommerfeld equation with

homogeneous boundary conditions:

il | Fle = Zaczg,r " océsp)"( - ’C)(¢/L d’w-”flzga) o
| 00=0, p(=)=0,4' (@)= 0, §()=0. @

aC
Here, U(y) is the velocity beyond unit roughness, K= uoﬁlv

is the local Reynolds number (d 1is the depth of roughness; u, is

the velocity at a roughness level remote from the surface, and




v 1is the coefficient of viscosity). All remaining symbols here
are defined by the fact that flow function for a disturbance of
¢ 1is written in the form: o )
P =Py explic (x- D)} mctyric;
Entering the discussién below will be one more Reynolds number:
R, =k (] =50/

and a frequency of .
| J';_— oL,L'C 3

A solution to the problem was sought for eigenvalues according
to [2]. Calculations were made for different positions of the unit
surface with respect to the front edge of a plate with a fixed
external streamline flow velocity (i.e., with different Reynolds
numbers for the main stream, R1 = UmG/v ). The velocity profile,

U*(y) , beyond the unit surface was taken in the following form:

| (A LA o< g £
. (’9:= ZQ'C}D) when Zz :7'<: co -
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Here U(y) 1is the Blasius profile, vu(y) is the velocity profile
beyond the unit surface computed in [3] with a corresponding Reynolds

number value of ﬁ .

Neutral curves and steady growth curves were plotted, giving the
relationship between the local Reynolds number, ﬁ‘= uod/v , the
wavelength of the perturbation, A = 27/or , the frequency of per-

turbation,'y=ufc , and the gain, o Typically, the first manifest-

;-
ations of instability (with small values of the local Reynolds number,
ﬁ) are observed in experiments sufficiently far beyond the unit surface,
i.e., exactly where the flow is close to plane-paralilel. Here the

velocity profile, U(y) , in specific computations corresponds to a
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velocity distribution in the stream at a distance of five gauge

numbers downstream from the unit surface (the depth of the unit

surface, d , is understood to be typical).

As a result of calculations of flow instability beyond the
unit surface it w2s found that the unit surface can show a stabilizing
effect with a sufficiently low local Reynolds number. Apparently,
the appearance of a point of inflection in the velocity profile
near the wall has an insubstantial influence on stability owing to
the stabilizing effect of the wall, and the increase in fullness of
the velocity profile proves to be more important. Furthermore,
the fullness of the velocity profile increases at a very dangerous
point--in the vicinity of the critical layer. Critical Reynolds
numbers for the main stream with similar comparatively moderate dis-
tortions of the initial profile increase markedly. For example,
when ﬁ = uoéﬁb =3 and d = (1/2s)§ , the maximal relative deviation
from the initial profile, m?x [U*(y) - U(y)]/U(1) , 1is less than
one percent in absolute value, and the critical Reynolds number for
this slightly altered profile increases by almost a factor of 1.5
(Fig. 2 and 3). ;
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The range of dangerous wave numbers is somewhat reduced.

Fig. 4 and 5 show the relationships between the local Reynolds
number and the wave perturbation characteristics introduced above
(a = a + iai Sy a;c) with main stream Reynolds numbers, R1 =
= Um(éllv) equal respectively to 800, 1000, 1200, and 1500.
In Fig. 5 the relationship between R , 0, and Yy is shown only for
K> 4. Calculations demonstrate that the most dangerous wave numbers
in all cases considered lie approximately between 0.93 and 1.2.
The frequencies corresponding to these wave numbers lie in the range
of 0.3 to 0.4. The maximal values of wave numbers and frequencies
on all neutral curves increase with an increase in the local Reynolds
number, ﬁ . Within the range of variation of & considered, the
maximal value of the wave number is k= 1.7, and the maximal frequency
value is Y*l 0.72.

The great relative wavelength of unstable perturbations draws
(2) »
b 3.7
is typical of the neutral curve computed by Tolmin [1] for the
boundary layer, Amin% 68 , where & = 5.2 /{vx/u ) 1is the distance
to the forward edge, and v_is the velocity at infinity. It is easy

attention. In dimensional variables A . A similar feature

to see that the wavelengths of dangerous perturbations for the boundary
layer are greater than in the case considered. It can also be seen that
the phase velocity, Cr = Y/ar , on the neutral curve varies slightly.
For example, when the Reynolds number, ﬁ , varies from 9 to 20 (the
Reynolds number of the main stream, R1 , equals 800), the phase
velocity varies from 0.4 to 0.42 (for the upper branch of the neutral
curve) or from 0.4 to 0.33 (for the lower branch of the neutral curve).
Especially striking is the strong dependence of wave numbers, a. s

gain a and frequency, y , on local Reynolds numbers. When the

| 1?
! Reynolds number, X = uod/v , varies from six to ten (R1 = 1000), the

highest of the dangerous frequencies increases approximately twofold




el

(from 0.32 to 0.65), the frequency of the most dangerous perturbation
increases approximately by 1.4 (from 0.31 to 0.43), and the wavelength
of the most dangerous perturbation by 1.3 (from 0.91 to 1.18).

The increase in the range of dangerous wave numbers and frequencies
corresponds to the manifestation in the problem of one more character-
istic dimension (the depth of the unit roughness), which is considerably
smaller than the thickness of the boundary layer. The gain (-ai) even
with moderate Reynolds numbers, K=u d/v , varies considerably

when the unit roughness is added to the stream. . In particular,

when R1 = 1000, for the Blasius profile max(—ai) = -0.05, and when

K =10 and R = 1000, max(-df) = 0.064. We recall that for the
Blasius profile max(-ai) - 0.03 <even when R = 2500. The situation

is somewhat more complex when R1 Reynolds numbers are close to
critical. For example, when the Reynolds number is 1200 the flow in the
boundary layer is unstable (max(—ai) = 0.002), and it can become stable

when the unit roughness is added. So, when R = 3 the flow is steady

(max(—ai) = -0.0145). The corresponding curves are shown in Fig. 6 and
Fig. 7.
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From the data presented in Fig. 4 and 5 it is possible to trace
the nature of the change in different wave oscillations with an

increase in the R; = u g /v Reynoldspnumber. We notice first of i

all that with an increase in Rl}gﬂ; local critical Reynolds number
is reduced: When Rl = 800, 1000, 1200, and 1500, R¥* 9 6,4, and 3.

Obvicusly, with a sufficiently high R. Reynolds number the local

1
critical K Reynolds number will equal zero. The range of dangerous
wave numbers and dangerous frequencies practically does not change

with an increase in the R, Reynolds number within the limits con-

; 1
] sidered. With a fixed local K Reynolds number, with an increase
in the R, Reynolds number the range of dangerous wave numbers and

|
4 frequencies can both increase and be reduced--all depends on the

f magnitudes of K and R If R is sufficiently low, then obviously

1°




the range of dangerous wave numbers and frequencies will first

be expanded with an increase in the R1 number and then will be
narrowed, precisely the same as without roughness. If the magnitude
of K is sufficiently great (on the order of 10), then the influence
of the unit roughness is manifested as a shift in the direction of
very small-scaled pulsations (the range of dangerous frequencies
increases and the possible wavelengths for dangerous perturbations
are reduced). With an increase in the R1 Reynolds number a
reduction in the range of dangerous -rave numbers and frequencies
predominates, owing to the suppressing influence of instability in

the boundary layer itself.

Comparison between the results obtained and experimental data
is satisfactory. Analysis of the experimental data in [4] has
demonstrated that an element of roughness becomes the cause of pre-
mature turbulence of the boundary layer when the R2 Reynolds
number, plotted for average velocity and average depth of the element,
d , is greater than 30 to 40. Here, in our case, under conditions

most close to experimental:

(%= —‘iﬂ‘-)i’h—usoo), R =40.
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