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Polymeric materials are of two types , thermoplastics and

thermosets. Unlike thermosets , thermoplastics (e.g., poly-

ethylene , polystyrene , and polyvinyl chloride) soften and flow

on heating and , when cooled , can return to their original state.

The techniques of processing them (e.g., injection molding and

extrusion) depend on this reversible behavior. Synthesis and

processing of thermoplastic materials are distinct operations .

On the other hand , thermosets are generally polymerized and

processed in a single operation (e.g., compression molding),

which transforms low molecular weight material to network poly-

mer of infinite molecular weight in an irreversible process.

Examples are epoxy and unsaturated polyester resins of fiber-

reinforced composites used in ships.

H In spite of their superior engineering properties as solid

materials , thermosets have been neglected scientifically in

comparison with thermoplastics. The reason lies in their in-

tractability - - which is the very characteristic that makes them
so important. The present article shows how an experimental

examination of the phenomena encountered in their formation

leads to an unusual and yet general way of regarding both
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thermoplastics and thermosets. Systematic perturbation of the

model should produce fuller understanding of the parameters

which bear on the molecular engineering of thermosets.

The molecules of thermoplastic materials are linear and can

be synthesized from bifunctional reactants (e.g., A-B). For

example , if A in one molecule reacts with B in an adjacent mole-

cule on a one-to-one basis , n molecules of monomer A-B may

polymerize to a linear molecule with a repeat unit (A-B) . Three

dimensional network polymers can be synthesized from systems

containing multifunctional C> 2) reactants; for example ,

A

m A  A +  3/2 m B-B

will form a network molecule. The network structure confers

macroscopic dimensional stability to the thermosets which are

therefore used in applications demanding high performance. Dia-

mond , rubber , and quartz are other examples of network molecules.

In contrast , thermoplastics flow under stress , which limits

their uses to those in which stability under load is not so

important.

Gelation and vitrification are two macroscop ic phenomena

which are encountered during the reaction which converts a

liquid to a solid in the thermosetting process. Gelation , like

a chemical explosion , is an example of a critical condition

being reached in a chemical reaction . It is associated with a
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dramatic increase in viscosity and a corresponding decrease in

processibility that occur at a calculable degree of reaction

for the particular reactive system . On the molecular level ,

this corresponds to the incipient formation of branched molecules

of mathematically infinite molecular weight . Below the critical

degree of reaction all of the molecules have finite size; at

• higher chemical conversions some are “infinite”, their number

and size increasing with chemical conversion. A network develops

by intramolecular reactions of branched molecules (Figure 1).

Eventually the total mass can be one molecule with a molecular

weight per gram-mole of more than Avogadro ’s number (6 x 1023)

and limited only by the amount polymerized. The mathematical

theory of gelatiàn was formulated many years ago by Paul Flory,

— the recipient of the Nobel Prize for Chemistry in 1974.

Vitrification is the formation of a glassy solid . In

thermosets this usually follows gelation and then occurs as a

consequence of the network becoming tighter through further

chemical reaction (crosslinking). A network structure will be

a rubber (elastomer) at a given temperature if the segments

between junction points of the network are flexible. If the

segments are immobilized by further chemical reaction , or by

cooling, the structure will change to a glassy (vitrified) state.

Vitrification can prevent further reaction . The overall trans-

formation from liquid to gel to rubber to glass due to chemical

reaction is termed “cure ”.

_ _ _ _ _ _  j
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An automated torsion pendulum has been developed which

permits monitoring of the changes which occur throughout cure (1).

A composite specimen is made by impregnating a glass fiber braid

with a solution of the reactive system and removing the volatile

solvent. After mounting the specimen , the pendulum is inter-

mittently set into oscillation to generate a series of freely

damped waves . The character of each of these waves changes

throughout cure. Two mechanical functions , rigidity and damping ,

are obtained from the frequency and damping constants which

characterize each wave. A schematic diagram of the pendulum is

shown in Figure 2.

The experimental results for the cure of an epoxy system

at a series of constant temperatures were used to obtain the

gelation time and the vitrification time versus cure tempera-

ture. These transformation times were measured using peaks in

the mechanical damping curves ; they correspond to points of

inflection in the rigidity curves (see Figure 3 which results

from an isothermal experiment at an intermediate temperature).

Results derived from a family of isothermal plots are summarized

in Figure 4 which shows that there are three types of behavior

depending on the temperature of cure. At high temperatures the

liquid gels but does not vitrify . At low temperatures the liquid

vitrifies , and need not gel if the chemical reactions are quenched

by vitrification . At intermediate temperatures the liquid first

gels and later vitrifies (Figure 3). The time to gelation de-

creases exponentially with temperature since the degree of re-

act ion at the point of gelation is constant . In contrast , it is

• .
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noted that the time to vitrify passes through a minimum which

occurs at intermediate temperatures of cure. This reflects

competition between the increased rate constants for reaction

and the increased degree of reaction required to overcome the

thermal motions for vitrification at higher temperatures. The

temperature at which gelation and vitrification occur together

is defined as Tgg (Figure 4). Vitrification can occur before

gelation (Tcure < Tgg) simply by an increase of molecular weight.

Gelation occurs without vitrification when cure is performed

above the maximum softening point , the maximum glass transi-

tion temperature Tgw of the system (Figure 4). It is also ap-

parent that if reactions cease at vitrification (Tcur e < Tgø,)~
the glass transition temperature , Tg~ of the system after cure

will equal the temperature of cure. The vitrification curve

therefore gives the time to reach the softening temperature

which the system can achieve by curing at Tcure~ 
In particular ,

Tgg is the glass transition temperature of the reactive system

at its point of gelation .

A diagram such as Figure 4 summarizes much of the behavior

of the thermosetting process and in particular shows that it is

characterized by two temperatures , Tgg and Tg,.~ which will vary

from system to system . In contrast , amorphous thermoplastic

materials are characterized only by Tg~o since gelation does not

occur in their formation. Tgg and Tg~ are critical temperature s

of a phase diagram (Figure 4), which shows the four types of

materials encountered in the thermosetting process , i.e., liquid ,

rubber , ungelled glass , and gelled glass.



From the practical point of view , the diagram (Figure 4)

explains a number of practices in the field of thermosets. Ex-

amples follow.

1) Finite versus infinite shelf-life : If the storage

temperature is below Tgg~ a reactive material will convert to

a vitrified solid of low molecular weight which is stable and

can be later liquified by heat and processed ; above Tgg the

stored material will have a finite shelf-life since gelation

will occur before vitrification . (A gelled material does not

flow.) This concept lies at the basis of a widespread technology

which includes thermosetting molding compounds with latent re-

activity.

2) Post-cure: If Tcure < ~~~ a reactive material will

vitrify and full chemical conversion may be prevented ; the

material will then need to be postcured above Tgo~ for develop-

ment of optimum properties. For the manufacture of objects of

finite size it is necessary to go through a two-step process

because of the exothermic nature of the reactions.

3) Influence of reactants: For highly crosslinkable or

rigid-chain polymeric materials Tg.~ can be above the limits of

thermal stability in which case the thermoset material need not

have a measurable glass transition temperature. In contrast ,

if Tgo. is below room temperature , the polymer system will be

used as an elastomer.
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An understanding of the relationships between bulk proper-

ties and molecular architecture is a major goal of applied

polymer science. A project is under way (2) to pursue this

quest for thermosets using as manipulable parameters gelation ,

vitrification , Tgg~ and Tg,o~ which depend on molecular consider-

ations. This will involve juxtaposing the chemistry , character-

ization , processing, and properties of thermosetting materials.

The following example (2) pertains to polymeric glassy

crosslinked matrices containing dispersed rubber inclusions .

Rubber is incorporated in inherently brittle polymeric materials

as a way of increasing toughness.

The curing of rubber-modified-epoxy systems often involves

change from an initially homogeneous solution to a heterogeneous

multiphase morphology. Evidence is presented to show that the

process of gelation arrests the development of morphology , and

therefore that the time to gelation can be used to control me-

chanical properties. The gelation time can be varied by catalysts

and temperature.

The effect of level of catalyst on the thermomechanical

behavior (rigidity and damping versus temperature) obtained

after complete cure of a single rubber-modified system is made

evident by comparison of Figure 5 (no catalyst) and Figure 6

(with catalyst). In particular , the glass transition of the

rubbery phase is more dominant for the sample cured without

catalyst and therefore with a longer time to gelation. This

result suggests that the intensity of the rubbery transition ,
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which directly affects macroscopic properties , depends on the

time available for the development of a two phase structure .

The higher glass transition temperature of the epoxy phase for

the sample cured with long gelation time also suggests more

complete separation of the two phases. Optical examination of

the same samples supported the conclusions in that curing without

catalyst led to distinctly larger size domains of dispersed rub-

ber than cure with catalyst. Similarly, the lower the tempera-

ture of cure the longer the gelation time and the larger the

size of the rubber domains . The relationship between cure tem-

perature , gelation time , and morphology is summarized schematic-

ally in Figure 7, which demonstrates how a single chemical com-

position can produce distinctly different morphologies which

in turn are responsible for distinctly different macroscopic

behavior.

Quenching of the development of morpholog ical changes by

the phenomenon of gelation may be explained by an abrupt de-

crease in diffusion of rubbery material to the growing domains

of rubber which occurs in the transformation from a viscous

liquid to a soft gel as infinite molecules form in the process

of gelation . This is a longer range and larger scale diffusion

process than that which is involved in the quenching of chemical

reactions which occurs in the transformation from a rubbery state

to a glassy state (vitrification) by restrictions on the more

localized motions of chemically reactive parts of the molecules.
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There has been much art in industrial practice with these

complex systems . The present article outlines an attempt to

understand and logically exploit some of the underlying phenomena .
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FIGURE CAPTIONS

Figure 1. Network molecules develop from branched molecules by intra-

molecular reactions.

Figure 2. Automated torsion pendulum. An analog electrical signal

results from using a light beam passing through. a pair of

polarizers one of which. oscillates with the pendulum .. The

pendulum is aligned for linear response and initiated by a

computer that also processe s the damped sine waves to provide

the mechanical rigidity and mechanic al damping data , which

are plotted on an XYY plotter (.11.

Figure 3. Mechanical rigidity and mechanical damping versus time during

cure of an epoxy at a constant temperature (T < T < T ) .
• gg cure g°°

The first peak in the damping curve represents gelation ,

the second vitrification. [Rigidity = l/P2 , where P is the

period of oscillation in seconds. Damping = = natural

logarithm of the ratio of consecutive amplitudes of a freely

decaying wave.]

Figure 4. Time to gel and time to vitrify versus isothermal cure tempera-

ture for an epoxy system. Tgg and T~~ are critical temperatures

in the phase diagram which shows the four states of materials

encountered in the thermosetting process , i .e., liq uid , rubber ,

ungelled glass, and gelled glass. 
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Figure 5. Epoxy/rubber system. 0 parts per hundred catalyst. Thermo-

mechanical behavior after cure . Experimental details and

a suimnary of the transitions appear in the figure .

Figure 6. Epoxy/rubber system. 0.5 part s per hundred catalyst . TIiexmo-

mechanical behavior after cure . Compare the intensities and

temperatures of the rubber glass transition 
~RubberTg~ 

and

epoxy glass transition (
E O Tg

) of the thermomechanical

spectra of Figures 5 and 6.

Figure 7. Deve lopment of a two-phase rubber-modified epoxy system versus

gelation time. As polymerization progresses rubber precipitates

in domains which grow in size with time. Gelation is considered

• to arrest the growth process. Different morphologies therefore

result from reaction at different temperatures (e.g., T1 and T2).
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