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Polymeric materials are of two types, thermoplastics and
thermosets. Unlike thermosets, thermoplastics (e.g., poly-
ethylene, polystyrene, and polyvinyl chloride) soften and flow
on heating and, when cooled, can return to their original state.
The techniques of processing them (e.g., injection molding and
extrusion) depend on this reversible behavior. Synthesis and
processing of thermoplastic materials are distinct operations.
On the other hand, thermosets are generally polymerized and
processed in a single operation (e.g., compression molding),
which transforms low molecular weight material to network poly-
mer of infinite molecular weight in an irreversible process.
Examples are epoxy and unsaturated polyester resins of fiber-
reinforced composites used in ships.

In spite of their superior engineering properties as solid
materials, thermosets have been neglected scientifically in
comparison with thermoplastics. The reason lies in their in-
tractability -- which is the very characteristic that makes them
so important. The present article shows how an experimental
examination of the phenomena encountered in their formation

leads to an unusual and yet general way of regarding both
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thermoplastics and thermosets. Systematic perturbation of the
model should produce fuller understanding of the parameters
which bear on the molecular engineering of thermosets.

The molecules of thermoplastic materials are linear and can
be synthesized from bifunctional reactants (e.g., A-B). For
example, if A in one molecule reacts with B in an adjacent mole-
cule on a one-to-one basis, n molecules of monomer A-B may
polymerize to a linear molecule with a repeat unit A-B}. Three
dimensional network polymers can be synthesized from systems

containing multifunctional (> 2) reactants; for example,

A
m A ——l—— A+ 3/2 mB-B

will form a network molecule. The network structure confers
macroscopic dimensional stability to the thermosets which are
therefore used in applications demanding high performance. Dia-
mond, rubber, and quartz are other examples of network molecules.
In contrast, thermoplastics flow under stress, which limits
their uses to those in which stability under load is not so
important.

Gelation and vitrification are two macroscopic phenomena
which are encountered during the reéction which converts a
liquid to a solid in the thermosetting process. Gelation, like
a chemical explosion, is an example of a critical condition

being reached in a chemical reaction. It is asscciated with a
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dramatic increase in viscosity and a corresponding decrease in
processibility that occur at a calculable degree of reaction
for the particular reactive system. On the molecular level,
this corresponds to the incipient formation of branched molecules
of mathematically infinite molecular weight. Below the critical
degree of reaction all of the molecules have finite size; at
higher chemical conversions some are "infinite', their number
and size increasing with chemical conversion. A network develops
by intramolecular reactions of branched molecules (Figure 1).
Eventually the total mass can be one molecule with a molecular
weight per gram-mole of more than Avogadro's number (6 x 1023)
and limited only by the amount polymerized. The mathematical
theory of gelation was formulated many years ago by Paul Flory,
the recipient of the Nobel Prize for Chemistry in 1974.
Vitrification is the formation of a glassy solid. In
thermosets this usually follows gelation and then occurs as a
consequence of the network becoming tighter through further
chemical reaction (crosslinking). A network structure will be
a rubber (elastomer) at a given temperature if the segments
between junction points of the network are flexible. If the
segments are immobilized by further chemical reaction, or by
cooling, the structure will change to a glassy (vitrified) state.
Vitrification can prevent further reaction. The overall trans-
formation from liquid to gel to rubber to glass due to chemical

reaction is termed '‘cure'.




An automated torsion pendulum has been developed which
permits monitoring of the changes which occur throughout cure (1).

A composite specimen is made by impregnating a glass fiber braid

with a solution of the reactive system and removing the volatile

solvent. After mounting the specimen, the pendulum is inter-

mittently set into oscillation to generate a series of freely
damped waves. The character of each of these waves changes
throughout cure. Two mechanical functions, rigidity and damping,
are obtained from the frequency and damping constants which
characterize each wave. A schematic diagram of the pendulum is
shown in Figure 2.

The experimental results for the cure of an epoxy system
at a series of constant temperatures were used to obtain the
gelation time and the vitrification time versus cure tempera-
ture. These transformation times were measured using peaks in
the mechanical damping curves; they correspond to points of
inflection in the rigidity curves (see Figure 3 which results
from an isothermal experiment at an intermediate temperature).
Results derived from a family of isothermal plots are summarized

in Figure 4 which shows that there are three types of behavior

depending on the temperature of cure. At high temperatures the
liquid gels but does not vitrify. At low temperatures the liquid
vitrifies, and need not gel if the chemical reactions are quenched %
by vitrification. At intermediate temperatures the liquid first
gels and later vitrifies (Figure 3). The time to gelation de-

creases exponentially with temperature since the degree of re-

action at the point of gelation is constant. In contrast, it is
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noted that the time to vitrify passes through a minimum which

occurs at intermediate temperatures of cure. This reflects
competition between the increased rate constants for reaction
and the increased degree of reaction required to overcome the
thermal motions for vitrification at higher temperatures. The
temperature at which gelation and vitrification occur together
is defined as ng (Figure 4). Vitrification can occur before

gelation (T < ng) simply by an increase of molecular weight.

cure
Gelation occurs without vitrification when cure is performed
above the maximum softening point, the maximum glass transi-
tion temperature Tg“ of the system (Figure 4). It is also ap-
< 1.0,

the glass transition temperature, Tg, of the system after cure

parent that if reactions cease at vitrification (Tcure

will equal the temperature of cure. The vitrification curve
therefore gives the time to reach the softening temperature

which the system can achieve by curing at T In particular,

cure’
ng is the glass transition temperature of the reactive system
at its point of gelation.

A diagram such as Figure 4 summarizes much of the behavior
of the thermosetting process and in particular shows that it is

characterized by two temperatures, T and Tgm, which will vary

g8
from system to system. In contrast, amorphous thermoplastic
materials are characterized only by Tgw since gelation does not
occur in their formation. ng and Tgn are critical temperatures
of a phase diagram (Figure 4), which shows the four types of
materials encountered in the thermosetting process, i.e., liquid,

rubber, ungelled glass, and gelled glass.
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From the practical point of view, the diagram (Figure 4)
explains a number of practices in the field of thermosets. Ex-
amples follow.

1) Finite versus infinite shelf-life: If the storage
temperature is below ng, a reactive material will convert to
a vitrified solid of low molecular weight which is stable and
can be later liquified by heat and processed; above ng the
stored material will have a finite shelf-life since gelation
will occur before vitrification. (A gelled material does not
flow.) This concept lies at the basis of a widespread technology
which includes thermosetting molding compounds with latent re-
activity. .

2) Post-cure: If 'I'Cure < Tgw, a reactive material will
vitrify and full chemical conversion may be prevented; the
material will then need to be postcured above Tgn for develop-
ment of optimum properties. For the manufacture of objects of
finite size it is necessary to go through a two-step process
because of the exothermic nature of the reactions.

3) Influence of reactants: For highly crosslinkable or
rigid-chain polymeric materials Tgw can be above the limits of
thermal stability in which case the thermoset material need not
have a measurable glass transition temperature. In contrast,

if ng is below room temperature, the polymer system will be

used as an elastomer.
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An understanding of the relationships between bulk proper-
ties and molecular architecture is a major goal of applied
polymer science. A project is under way (2) to pursue this
quest for thermosets using as manipulable parameters gelation,

, and T__, which depend on molecular consider-

g8 g
ations. This will involve juxtaposing the chemistry, character-

vitrification, T

ization, processing, and properties of thermosetting materials.

The following example (2) pertains to polymeric glassy
crosslinked matrices containing dispersed rubber inclusions.
Rubber is incorporated in inherently brittle polymeric materials
as a way of increasing toughness.

The curing of rubber-modified-epoxy systems often involves
change from an iﬁitially homogeneous solution to a heterogeneous
multiphase morphology. Evidence is presented to show that the
process of gelation arrests the development of morphology, and
therefore that the time to gelation can be used to control me-
chanical properties. The gelation time can be varied by catalysts
and temperature.

The effect of level of catalyst on the thermomechanical
behavior (rigidity and damping versus temperature) obtained
after complete cure of a single rubber-modified system is made
evident by comparison of Figure 5 (no catalyst) and Figure 6
(with catalyst). In particular, the glass transition of the
rubbery phase is more dominant for the sample cured without
catalyst and therefore with a longer time to gelation. This

result suggests that the intensity of the rubbery transition,




which directly affects macfoscopic properties, depends on the

time available for the development of a two phase structure.

The higher glass transition temperature of the epoxy phase for
the sample cured with long gelation time also suggests more
complete separation of the two phases. Optical examination of
the same samples supported the conclusions in that curing without
catalyst led to distinctly larger size domains of dispersed rub-
ber than cure with catalyst. Similarly, the lower the tempera-
ture of cure the longer the gelation time and the larger the
size of the rubber domains. The relationship between cure tem-
perature, gelation time, and morphology is summarized schematic-
ally in Figure 7, which demonstrates how a single chemical com-
position can produce distinctly different morphologies which

in turn are responsible for distinctly different macroscopic
behavior.

Quenching of the development of morphological changes by
the phenomenon of gelation may be explained by an abrupt de-
crease in diffusion of rubbery material to the growing demains
of rubber which occurs in the transformation from a viscous
liquid to a soft gel as infinite molecules form in the process
of gelation. This is a longer range and larger scale diffusion
process than that which is involved in the quenching of chemical
reactions which occurs in the transformation from a rubbery state
to a glassy state (vitrification) by restrictions on the more

localized motions of chemically reactive parts of the molecules.

s




There has been much art in industrial practice with these
complex systems. The present article outlines an attempt to

understand and logically exploit some of the underlying phenomena.
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Figure 1.

Figure 2.

Figure 3.

Figﬁre 4.

FIGURE CAPTIONS

Network molecules develop from branched molecules by intra-

molecular reactions.

Automated torsion pendulum. An analog electrical signal
results from using a light beam passing through a pair of
polarizers one of which oscillates with the pendulum. The
pendulum is aligned for linear response and initiated by a
computer that also processes the damped sine waves to provide
the mechanical rigidity and mechanical damping data, which

are plotted on an XYY plotter (1l).

Mechanical rigidity and mechanical damping versus time during
re of an e at a constant temperature (T < T <P ).

cu pOXy co emp ure ( o e g=

The first peak in the damping curve represents gelation,

the second vitrification. [Rigidity = 1/P2, where P is the

period of oscillation in seconds. Damping = A = natural

logarithm of the ratio of consecutive amplitudes of a freely

decaying wave.]

Time to gel and time to vitrify versus isothermal cure tempera-
ture for an epoxy system. ng and Tgw are critical temperatures
in the phase diagram which shows the four states of materials

encountered in the thermosetting process, i.e., liquid, rubber,

ungelled glass, and gelled glass.




Figure 5.

Figure 6.

Figure 7.

Epoxy/rubber system. O parts per hundred catalyst. Thermo-
mechanical behavior after cure. Experimental details and

a summary of the transitions appear in the figure.

'Epoxy/rubber system. 0.5 parts per hundred catalyst. Thermo-

mechanical behavior after cure. Compare the intensities and
temperatures of the rubber glass transition (RubberTg) and

epox: lass transition ( T ) of the thermomechanical
POXy 9' Epoxy g

spectra of Figures 5 and 6.

Development of a two-phase rubber-modified epoxy system versus
gelation time. As polymerization progresses rubber precipitates
in domains which grow in size with time. Gelation is considered
to arrest the growth process. Different morphologies therefore

result from reaction at different temperatures (e.g., T; and T;).
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