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• ABSTRACT

A full treatment of the flow in a two—phase Faraday generator

must include consideration of the inertial and viscous forces in the gas

phase, the inertial, viscous , and ponderomo tive forces in the liquid phase,

• • and the surface forces at the gas/liquid interfaces. Since the mass density

and viscosity of the liquid are much grea ter than those of the gas , consi-

deration of the liquid phase alone should lead to a good description of

• force distribution in the generator. Averaging the motion over the liquid

phase gives~~ a set of equations which are similar to equations

• describing a steady flow of a fluid with spatially variable

properties In this report, we discuss solutions of these equations,

first in the limit of negligible inertia and viscosity , and then in the limit

of negligible inertia and non—zero viscosity . The first case, corresponding

to conditions in the generator core, leads to expressions describing the ave-

raged pressure gradient in the generator. In this vein, we discuss also the

cross stream pinch pressure gradient and its possible effects on the two phase

flow. The second case leads to expressions of the motion which are valid

near the walls as well as in the core. The wall region in Faraday generators

is a region of very large shear and ponderomotive forces, and is important

in determining efficient generator operation. This is especially noticed in

finite difference calculations carried out under a variety of electrodynamic

conditions and also in a successful analytical boundary layer approach. On

this base a section has been devoted also to the possibilities of improved

generator efficiency by subpartitioning the generator duct. The last section

of the report concerns similitude between two—phase generators and two—phase

• gravity flows. There are two velocity scales in the systems which must be

scaled separately.
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CHAPTER 1

INTRODUCTION

During the last two years analytical and numerical studies on two—

phase MUD flows through ducts of rectangular cross sections have been in

progress at the University of Florida [1]. This program has been aimed

to gain better understanding of the flow processes occurring in two—phase

MUD flows and to aid in some of the experimental efforts underway at Argonne

National Laboratory (ANL) on liquid metal—gas MUD power generation [2,3,4,5].

Our objectives have been to calculate expected cross—stream variations in

• velocity and current distribution for flows of specified cross—stream variation in

void fraction and also to try better to understand the mechanisms responsible

for slip occurring as the two—phase mixture expands through the duct in the

presence of an externally applied transverse magnetic field. Both of these

problems are of major interest in determining whether a proposed upscaling

to a 30 megawatt or larger two—phase MIlD generator is feasible. If they

can be made to function, such MUD devices have the advantage over standard

high temperature gas MILD generators in that their power densities are an order

of magnitude or so higher and that the high temperature electrode erosion

problem is reduced.

This report presents some of the results we have obtained during the

second year of our studies. In Chapter 2, we show that averaged equations

of motion for the liquid phase of the two-phase Faraday generator are simi—

lar to equations describing steady flow of a fluid of spatially varying

properties. Chapters 3 and 4 discuss these equations in the limit of negli-

gible viscosity and inertia. Chapter 5 addresses the problem of phase slip

in the generator. The physical consequences of non—zero viscosity are examined

2
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in Chapter 6 by a finite difference solution and in Chapter 7 by an approxi-

mate analytic solution. Chapter 8 discusses channel subpartioning as a means

of reducing phase slip. Finally , Chapter 9 examines similitude in the two

phase generator.

The research has been conducted by co—principal investigators Drs. Elkins,

• Kurzweg, and Lindgren and by research assoc iate, Mr. Tom Trovillion, completing

his Ph .D. dissertion in this area. Part of this work was reported at the thirtieth

meeting of the Fluid Mechanics Division, American Physical Society, Nov 21—23,

1977 in Bethlehem , Pa. A more complete presentation is planned for the Second

Bat—Sheva Seminar on MUD Flows and Turbulence at Beer—Sheva, Israel on March

28—31,1978.

II
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CHAPTER 2

AVERAGED EQUATIONS OF MOTION

Motion within the liquid phase of a two phase MUD genera tor is descr ibed

by Hughes and Young [6]. We have

force balance:
• /3u1 au \ 

~ 
32u

P + U
j ~~ii.) + 3x~ 

‘

~ 3x~ax~ 
+ eij k Jj Bk; (2.1)

continuity:

au .
= 0 (2.2)

i

Ohm ’s law :

= ~ (E. + e
i~k

u
J
B
k) (2.3)

Ampére’s law :

1 3B~

~e 
e
~~k 3x~ 

= 

~i 
(2.4)

and Farady ’s law:

e
~Jk ~

-
~

-- = — -
~~~~~

— ; (2.5)

where u~ is liquid velocity, P is pressure , J1 
is electric curren t dens ity,

B~ is magnetic flux density, E1 
is electric f ield , p is liquid mass density,

~ is liquid dynamic viscosity, c is liquid electr ical conduc tivity, and

is magnetic permeability .

A complete solution of these equations would require consideration 
also4
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of equations describing motion of the gas phase and of equations des-

cribing stress conditions at the gas/liquid interfaces. That problem is far

too complex to be attacked in a general fashion.

An observer fixed in space in a two phase generator should expect to

see fluctuating physical conditions, both from alternate passage of phases

and from flow variations within each phase separately. Yet certain quan—

tities, such as pressure gradient, void fraction, and current density, are

most easily measured as time averages. This suggests that we attempt to

describe the motion in terms of averaged quantities. We find that, once

assumptions are made about distribution of stresses and configuration of elec-

tric and magnetic fields, the Eulerian time averaged equations of motion take

on forms similar to equations describing the motion of a fluid with spatially

dependent material properties.

Elimination of the current density between equations (2.1) and (2.3)

gives

3u~~ 82u I 3B ~B .

~ 
I _~~ + u ~~~~~ 1+ ~~~~ = ~ + ~ I B —i - BJ aX ~

/ ~xj 3xj 3xj ii~ \ .i 3x~ J 3x~ (2 .6)

If dissipation in the gas phase is neglible, then time averaging equation (2.6)

gives us

I ~~ au’’
p (l-z) 

~ ~~~~~~~ 
‘1~ ~ +

~
( (B~)(~~~> - (B;K~~~~ +;~ ~

) - (~ (2.7)

where a indicates the local time average void fraction. Brackets indicate5
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the complete time averaging operator

<~~
(xj , t)> 

~ 
f J (x~ , t)dt (2.8)

Overscores indicate a time averaging operator which operates only over the

liquid phase 
T

~~~~~ t) 
T(1-cz) 

f Y(xi,t) 6(x~~t)dt (2.9)

where ~(x ., t) is equal to unity whenever the liquid phase is present at x
1

and is equal to zero otherwise. (Note that a = 1— ). Primed quantities

indicate time fluctuating portions of respective unprimed quantities.

The use of two different averaging operators in equation (2.7) is jus—

tified by the relationship between the bracket and overscore averages

(8 4= 8(l-a)~~ (2.10)

where ~ is a constant scalar property of the liquid phase which is equal

:1 to zero in the gas phase and where ~~ is a functional of u~ , ~~~ ~~~ and J~ .

From a physical standpoint , it makes sense to express equation (2.7)  in this

fashion. The bracket averages of pressure gradient and flux density are

• those most easily perceived by external measurements, while the overscore

• average of the velocity is more relevant to the actual motion of the liquid .

The inertia term in equation (2.7) is similar in form to the inertia

term for a fluid whose mass density is a function of position. The viscous

term in equation (2.7) is simpler than that for a fluid of spatially varying

viscosity, where the viscosity would appear within the divergence operator.

To obtain an equation describing transport of averaged flux density,6



first eliminate current density between equations (2.3) and (2.4):

e
~ .k = o(E

i 
+ ej~k

u .Bk) (2.11)

Average as before -
•

+ 
~~~~~~~ijk ~~j

B
k 

+ uj Bk) (2.12)

The overscore average of Faraday’s law eliminates the electric field from

the curl of equation (2.12). In the same step , we assume that the overscore

averaged flux density is equal to the bracket averaged flux density

t 
~~ j  (~~(l~a)((~~~ ) -(~~~ = 

~~ 
- ~~~~B~~)+f( ~~~~ - u~B~~

)

<2.13)

The assumption concerning the averages of flux density is equivalent

to an assumption of good electrical connectedness between liquid elements

since it implies that the induced electric field is not balanced by local

charge distributions. This assumption may be invalid at large void fractious.

In a droplet flow , for example , the space charge will exactly balance the

induced electric field over at least part of the flow.

Experiments with flows in the Faraday generator configuration reported

by Harris [7] show tha t the flux density correlations in equations (2 .7 )

and (2.13) are typically much smaller than other terms in the respective

equations. We drop those terms to get

7



p

p (l—a) (~ 
.!±i + u~ ::~ ) +(.~!.) - = ii(1-c&) +

~e (<Bj
)<

~~~~ ~(BJ)<~~
.A,) (2. 14)

I L I 1 _ . f / ~~i \i ~~.i. =

‘
~e 

ax . ~ cy (l—a) 
~ \ ax~ f \ 3x .

~~
. (

~
. <B .) — 

~
. (2.15)

3u
The “Reynolds stress” term , u~ ~~~ , of equation (2.14 ) would

3

be significant only for self—preserving turbulence . Since experi-

ments of Branover [8] indicate that such turbulence is suppressed

in Hartmann flows, the Reynolds stress may be insignificant in the

two.-phase generator. Important viscous effects in a large Hartmann

number Faraday generator occur very close to the walls (see t~ef. [6])and

probably dominate the inertial effects there (see ref. [7]). Ponderomotive

forces seem likewise to dominate inertial effects in the core region (see

ref. [71 and also the order of magnitude discussion later in this chapter).

We believe that insight into the behavior of the two—phase generator can be

gained from a study of equations (2.14) and (2.15) without inertial effects.

It is interesting to note that these equations differ only in the viscosity

term from equations describing a steady flow of spatially varying properties.

They will be discussed in more detail Chapters 6,7, and 8.

An order of magnitude analysis suggests that equations (2.14) and (2.15)

can be simplified considerably . The NaK — N
2 device at the Argonne National

• Laboratory [3] operates typically with the parameters

channel length = .385 m

channel half width a = 10 m

S 
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void fraction c~ = 0.5

* applied flux density B2 1.2 Tesla

terminal voltage V = 0.8 volt

load resistance R 5  x 10 ohm

surface tension y = 0.12

mass density p = 890

liquid velocity U = 10

dynamic viscosity. = 5 x 10 
m s

6 ’~~°electrical conductivity a = 2 .7  10 —m
• Away from the boundaries , the ponderomotive stress gradient is , typically ,

T = 
Ra.&( 1—ct ) 10~ ;~ 

; (2.16)

• the inertial stress gradient,

T1 = p = 1.5.lO~ ;~ (2.17)

the viscous stress gradient

T = 4 = 40 ; (2.18)

the interfacial stress gradient

= = 1.2.lO~ ~~ 
. (2.19)

• Evidently, the ponderomotive stress should be at least several times

larger than any of the other stresses over most of the flow. The above ana-

lysis is invalid near the walls, where the length scales are much smaller.

9
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Near a solid boundary, viscous stresses and,perhaps in turbulent flows ,

inertial stresses are apt to be as large as the ponderomotive stresses

(see references [6] and [7]).

In the limit of negligible inertia and viscosity , equation (2.1)

becomes

F = eI.kJ
J
B
k 

(2.20)

Equation (2.3) eliminates the current density from equation (2.20):

= e . aC E . + e. U B )B (2.21)
ax . ijk j  j m n m n  k

or , upon expansion
4,

-

~~~~~ 

= e..~ aE.Bk + aU
~K k .  — au .Bk

B
k 

(2.22)

Let x1 be the downstream direction and x2 be the direction of the

• applied magnetic flux (Figure 2.1). Then equation (2.22) in the downstream

direction is,

= a(-E3
B
2 
+ u2B2B1 — u3B3B1 

- u1B2B2 
- u1B3B3)

Time averaging of equation (2.23) leads to

— (l—a)a (E
3
B
2 

— u1B 2
) (2 .24)

where the correlations of fluctuating terms are neglected and where, as before,

10
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Figure 2.1 Configuration of Faraday generator.
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the bracket averages over the electric field and over the flux density are
- 

assumed to be equal to the overscore averages. As with equations (2.14) and

(2.15), equation (2.24) describes the steady flow of a fluid with spatially

varying conductivity. Chapters 3, 4, and 5 will discuss equation (2.24)

• in more detail .

L
I

F
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CHAPTER 3

MASSLESS INVISCID APPROXIMATION FOR

THE LIQUID PHASE

A set of specific assumptions about the electric field permits certain

developments of equation (2.15), leading to some interesting conclusions con-

cerning two phase flow. In contrast to the case of a classical Hartmann flow,

the electric field produced by flow in a finite generator may not be uniform

(see Hughes & Young [6]). This is due to the development of a non—uniform

space charge distribution within the channel. In the following discussions

of equation (2.24) and related equations, we assume that this space charge

is insignificant or, which leads to the same thing,that the flow properties

do not change along the x3 direction.

It might be noted that the direct relationship between liquid fraction

(1—a) and apparent conductivity also depends on ana~~umption of good electrical

connectedness between liquid elements in the x
3
direction. As a increases,

this connectedness will degrade more and more so that equation (2.24), given

the velocity distribution, will overestimate the magnitude of . In the
1

limit of a droplet flow, for example, there are no ponderomotive forces at all.

Equation (2.24) leads to an expression for velocity profile

- ~ 1 E 3 (3.1)
1 

~~ci(l— ci) ~ ax/ B2

which demonstrates an inverse dependence on local liquid fraction (1—a).

Thus, the ponderomotive force will drive the liquid in regions of large a.

This can result in an apparent, overall slip of the gas phase even when the

gas and liquid are well coupled locally , If we assume that, locally, gas and

13



liquid move at the same velocity then the slip x is given by

f(l_a) dSJ a dS 
(3.2)

X = 

fa  
dS 

fc~
_a)

~i1 dS

which is the ratio of mean gas velocity to mean liquid velocity at some

cross section S. When equation (3.1) is used to evaluate to be used in

equation (3.2),then x is equal to unity whenever a is constant everywhere across S.

Departures of a from such a constant distribution will always lead to a slip

greater than unity in a generator. In view of this, some of the slip reported

for the Nak — N
2 
device at ANL must be linked to observed cross stream varia—

• tions in void fraction.

It is also of interest to examine the current density distribution in

the same magnetoaerodynamic approximation. Time averaging in the downstream

• direction of equation (2.1) leads to

1 j aP \
3 j  \ax f (3.3)

2 1

to the same degree of accuracy as before. This is a statement that, over

a given cross section, the average local current density will be constant

irrespective of variations in the void fraction. Evidently, the dynamics

of the system are such as to adj ust the local liquid velocity so as to

maintain the current density constant over a given cross section. There is

no short circuiting as one might have expected to occur through regions of

small void fraction. With this, it seems that phase separation reduces ope—

14
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rating eff iciency, not through internal short circuiting, but rather through

increased pump work in maintaining the high velocities of the large a regions

• and through increased ohmic dissipation in regions of high, liquid phase currents

(higher than local average current by a factor (1—a)~~ ) of large a regions.

In the absence of significant inertial and viscous forces in the liquid

phase, it is possible to derive an expression relating pressure drop and elec-

tric field in the generator. The total external current I in that case (Figure

2.1) is

v 2 b E 3
:1 1= i  =

~~~~ R 
(3.4)

e e

where V is the terminal voltage and R the external load. The current I also
e

is the net current flowing across the channel . If the applied magnetic f lux

• • B2 
is uniform, then the net force F on the liquid is

2 b E  4b2E B
— — R 2 — —  P. (3.5)

e e

4 
The force F also can be expressed in terms of the pressure change ~P over

the length of the generator:

F = 4ab2 ~p (3.6)

Equations (3.5) and (3.6) give us

R a ~P
E = —  

e (3.7)b B2

Equation (3.7) amounts to an energy balance, equating pressure work

to Joule work. It can thus be expected to overestimate the magnitude of

E
3 
in a real generator, since it does not account for viscous losses. Note

that the relationship between E3 and ~P occurs irrespective of the detailed

structure of flow in the channel.

15



Integration of the time averaged Ohm’s law over the entire generator

leads to an expression for the electric field :

E 3 —B2
u
1 

~~~~ 

+ a(J. —&) (3.8)

where and & are the averages over the entire channel of the time averaged

• velocity and void fraction:

f dv
U — 4Lab (3.9)

a dV (3.10)
- 

‘channel
4~ab

Note that equation (3.8) arises from Ohm ’s law and circuit continuity, and

thus is independent of any assumptions about inertia or viscosity.

Equations (3.7) and (3.8) can be equated and solved for 1~P to give

• £bB~ au
= b + R a ~ea(l—~) (3.11)

• This expression estimates pressure drop from data readily obtained in

experiments at Argonne National Laboratory. But, since and & are o1~tained

from integrals over measured quantities, nonsystematic errors will tend to

smooth out . Thus , fair agreement with experiment i~P can be obtained by

measuring inlet conditions only and assuming nearly any reasonable flow dis-

tribution downstream. Such a procedure has been used to obtain Figure 3.1,

where the liquid velocity is assumed to vary one—dimensionally and linearly

between inlet and outlet, and where gas and liquid are assumed to move locally

16
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105N/m2 Pressure
• drop~~P

Input pressure in N/rn2

4.0 .

o ‘
~~~~~ 1.72.lO~

0

3.0 -

2.0 . 
0

1.0

o Data from experiments at
Argonne National Laboratory [4]

Load resistance P.

0.1 0.2 0.3 0.4 0.5 0.6 m~

Figure 3.1: Graph of pressure drop ~P vs. load resistance Re for several -

input pressures. Curves were calculated from equation (3.11)
for a generator of the dimensions of Argonne National
Laboratory ’s NaK/N 2 device . The void fraction for equation
(3.11) is determined on the basis of a one dimensional,

1 linear velocity distribution with no slip.
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at the same velocity .

It is important to note that calculations of pressure drop are not

very sensitive to the structure of the flow. Thus, success in such cal-

culations cannot be construed to imply success in the describing the detailed

flow by a given analytic model. It also is noteworthy that, in the limits

of the magnetoaerodynamic approximation , equation (3.11) is valid for any

flow distribution whatsoever in the generator. The fact that it can be used

to describe the pressure drop in a one dimensional or slug flow by no means

implies that it is limited to such cases.

It is of fundamental concern to the slip problem whether the ponderomo—

tive interaction can resist the motion of voids independently of inertial,

viscous, or surface tension interactions. Consider the motion in a slug

flow of low magnetic Reynolds number and near a flat liquid/void interface.

Superimpose a small rectilinear disturbance on that interface as in Figure

3.2.

With only ponderomotive forces acting on the system, there can be no

pressure gradient in region A. Equation (3.1) gives the downstream velocity

there :

E
u —i. (3.12)

A

The downstream velocity in region B is

E3 1 3p
u 
B 

= — aB~ ~~ 
(3.13)

where is the pressure gradient in region B.

The interface velocity u
~ 
must be equal to ‘1A~ 

The interface velocity u
D

18
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Figure 3.2 Perturbation of a gas/liquid
interface.
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can be found from the continuity condition

(uD 
— uB )h 2 

= (u
D 

— u
~

) (h
2 

— h1) (3.14)

to be
UB h2 

— uc (h 2 — h1)
UD 

= (3.15)

Substitute for UB and to get

1 a~ 
h2 E3u = —  — — + — (3.16)

D aB~ 
3x1 h1 B2

Evidently, the disturbance grows at a rate relative to the rest of the

interface

1 a~ 
h2

u — u  — ____ — — (3.17)0 c aB~ 
ax1 h

1

Disturbances of any size will grow ; smaller disturbances will grow more

rapidly. Similar effects appear to be characteristic of the leading edges of

all voids. We infer that ponderomotive forces have a destabilizing influence

on the voids. Thus, the motion of the gas must ultimately be determined by

considering also inertial, viscous and surface tension forces which stabilize

the motion of the voids, permitting steady states of two—phase MUD channel

flows studied experimentally af the Argonne National Laboratory. It is of

importance to recognize that any analysis neglecting other than ponderomotive

forces cannot be valid for anything but over—all flow conditions. Similitude

considerations on bubble dynamics and the slip problem are governed by a set

of parameters which must be radically different from the parameters descri—

bing some averaged or over—all two—phase motion.

20



CHAPTER 4

TWO-DIMENSIONAL PRESSURE DISTRIBUTION

A cross stream pressure gradient arises as a consequence of the

induced magnetic field. That pressure gradient can be evaluated from the

averaged force balance (see equation (2.24) and the induction equation. Break

the force balance into two of its vector components:

— J3B2 (4.1)
ax1

0 = — u  ~~~~~ (4.2)
ax2 3 1

Eliminate between equations (4.1) and (4.2) to get the pressure gradient

ratio $

ax B
2 1

— 
— (4.3)

ax1

The induced flux density L~ can be found by integrating the x3 component

of Amp~re’s law,

I

~~ 
ax
2 

3 (4.4)

to get

~~~~~~ 
+ 

~e

where 
~e 

is a constant determined by external circuit geometry and where

is the magnetic permeability . The integration is possible in this form

21
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because is constant over x2 (see equation ( 3 . 3 ) ) .  Manipulation of equa—

tions (3.3), (4.3), and (4.5) leads to

B1 x + —
~~~ (4.6)2

2 2

which demonstrates an interesting dependence of pressure gradient ratio on

applied magnetic flux and downstream pressure gradient. When the x2 origin

is located at the center plane of the channel and when, as in the Argonne

experiments, the external electric current is returned through two equal

sheets just outside the channel , then the B of equation (4.6) is identically

zero and the cross stream pressure gradient is maximum in magnitude at the

channel walls.

The permeability of free space is equal to 41T.1O H/m. In the Nak—N
2

facility at ANL, is about 106 N/rn 3 , B2 
is about one Tesla, and the channelx

l
half width is about 0.01 m. The maximum magnitude of ~~, then is

= 
4rr .l0 7 .106 . 0.01 

= 0.013 (4.7) 
-

max 1

In the proposed full scale generator , and B2 
would have about the same

xl

values, but the channel half width would be about 0.1 m., so that we would

have = 0.13 (4.8)
max

These induced cross stream pressure gradients may well be important in

phase separation, as gas voids will tend to slip along the negative pressure

gradient towards the center of the channel.

22
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CHAPTER 5

PHASE SLIP IN THE FARADAY GENERATOR

The motion of an isolated bubble entrained in a flow through a Faraday

generator can be examined by a drag coefficient approach . The bouyancy force

FB on such a bubble is

FB = — -
~~~~~ V = aB~ U

1 
(l—K)V (5.1)

where -~-~ is the local pressure gradient which we approximate by the downstream

pressure gradient. V is the volume of the bubble, and K is the ratio of

external to total electrical resistance. The resistance force FR on the

bubble we express as

1
= 

2 CD p u~ A (5.2)

where C
D 
is the drag coefficient for the bubble, u is the velocity of the

bubble relative to its surrounding medium, and A is the cross sectional area

of the bubble. We equate FB and FR and solve fo r u~ to find

= ( pC~A ( 2:aB~ ~il(l_K)) (5.3)

For the NaK — N
2 
system operating with a -

~~~~
- of 106 N/rn3, V/A of 0.003 m ,

a liquid density of 850 kg/ rn3, and an assumed C
D 
of 2 , we find that u is

about 1.9 rn/s.

The major uncertainty in the above formula is the value of the drag

coefficient as a function of the magnetic field. The theoretical results

of Chester [9] are clearly not applicable to the large Hartmann number case
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existing in the MUD duct flows . However , the recent experimental work of

Mon et al [10] may find some application. Their results on the rise of

millimeter size bubbles In a vertical column of mercury In the presence of

a transverse magnetic field indicate that the bubble drag coefficient is

directly proportional to the magnitude of the applied magnetic field. The

effect of Reynolds number in these experiments is not clear.

If a pressure gradient induces a local slip in the flow, then a cross -

stream pressure g~adient will induce a cross stream component of the slip.

Thus, voids in the generator would “rise” down the pressure gradient towards

the low pressure region at the center of the channel. This might lead to

an accumulation of voids in the central regions at the expense of the wall

near regions. Equation (3.1) is an expression of local liquid velocity as

a function of local void fraction. As voids accumulate in the center of the

channel, the liquid remaining there accelerates while the liquid collecting

at the walls decelerates. This process might continue until electrical

connectedness is lost in the large void fraction regions or until the model

otherwise breaks down. It is possible that a substantial portion of the total

portion of the total pressure energy could be transferred to kinetic energy

of this high velocity material.

Geometric arguments lead to an upper bound on the maximum local slip

permissible if complete phase separation is to be avoided. Consider a sin-

gle void entrained in the flow within the generator. If the flow is locally

Isotropic, then the void will slip at a velocity u in the direction of the

local pressure gradient relative to the void ’s surrounding medium. The total

velocity UT of the void is equal to the vector sum of u and the velocity of

u of the surrounding medium . This is shown diagrammatically in Figure 5.1
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where u and u are the resolved components of u .  Suppose that, in the
S
1

generator , the voids are distributed uniformly Initially, and thereafter

dri f t  monotonically towards the center of the channel at a velocity depen-

dent only on cross stream pressure gradient. The two phases will be separa-

ted completely by the time a void beginning near a wall has drifted a one

&: th part of the distance to the center of the channel. Once this has

occurred, the channel can rio longer act as an effective generator. Thus,

for any given channel and set of operating conditions, there is a maximum

permissible local slip if generator effectiveness is not to be lost through

phase separation. From Figure ( 5 . 1)  we infer that if the channel has a length

Z and a width 2a, then

u + u
C 5 0

~ - � —.
~

—. (5.1)u
2

if the phases are not to be completely separated. Additionally, if the void

is to slip in the direction of the local pressure gradient relative to the

surrounding medium, then

u —
ax~

= —~~ = ~ (5 .2)
u

3x
1

Finally , we have approximately for uc >> u5 that
2

u + u  =ku (5.3)
c s

~ 
c

• where ~ is the local slip ratio .

The gli’, velocities can be eliminated between equations (5.1), (5.2),

and (5.3) to give

• k~~~ 
1

l— ct a 1
(5 .4)
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Figure 5.1. Definition of slip of a void In
cross stream and upstream pressure
gradient.
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L For the NaK—N2 
facility at Argonne National Laboratory , with

about 0.125, & about 0.5, and ‘t about 0.013 , we find that k �2 .  In

4 the full scale generator as projected in reference [2], with about

0.125 , & about 0.5, and ~ about 0.13, we find that k ~ 1.05 . This letter

figure represents a smaller slip than one might reasonably expect for a

bubbly flow. Hence, one might expect large void fraction gradients to deve—

iop in the full scale generator.
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CHAPTER 6

FINITE DIFFERENCE CALCULATIONS FOR TWO—DIMENSIONAL HARTMANN

FLOWS WITH CROSS—STREAM DEPENDENT

ELECTRICAL CONDUCTIVITY

The finite difference calculations reported on in our previous annual

report [1], have been extended to higher Hartmann numbers and to a variety of

electrical conductivity profiles. We have retained our simplifying approxima-

tion that the two—phase flow in an MUD generator duct of rectangular cross—section

be replaced by a homogeneous flow with cross—stream dependent electrical conduc-

tivity and constant viscosity . This is motivated by the fact that viscous

effects are important only in regions very near the walls. Those regions are

thin enough that, over them, the viscosity is essentially constant. Deter-

mination of the velocity and electric current fields reduces from eqs.(2.14)

and (2.15) to solution of the two coupled partial differential equations

aB fa2u a2u\
• —~~~~ +~~ B ~~~~~~~~~ 

__I + —1i = o  (6.1)ax p 2 3 x  ‘ 2 21 e 2 ~ax2 ax3

~~~~~ ~~2 
(
~ 

~!.i)+  ax ( c x a x )  
= 0  (6.2)

where the conductivity a is a function of x2 and x3. This set of. equations

is solved subject to the MUD generator boundary conditions tha t the velocity

• u
1 

vanishes at the insulating walls, x2 =±a , and at the electrodes, x3 ±b.

In addition, B1 
is constant along the insulating walls,and the tangential

component of the electric field vector as well as the normal component of

the magnetic field vector is continuous at the electrode surfaces, x3 
±b.

We have carried out finite difference solutions of eqs. (6.1) and (6.2)

using the Peaceman—Rachford alternate direction implicit method (see Michell [111 )

28
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for specified symmetric conductivity distributions with respect to the channel

axis and for given values of the channel aspec t ratio A = 2b/2a , non—dimensional

electrode conductivity Ks,, load factor K; and Hartmann number 14— aB0Va /p 0

where the o subscripts indicate properties of the pure liquid, i.e. in the

immediate vicinity of the channel walls. (K
~ 

is the ratio of resistance of

electrodes plus fluid; and again K is the ratio of external to total electrical

resistance.)

In order to secure rapid convergence, it was found neccesary to use a

variable grid spacing such that there are approximately as many points located

within the thin Hartmann layer of thickness a/M along the insulating walls

and the electrode boundary layer of thickness a1~ along the conducting walls

along the conducting walls of the channel as there are points in the core.

Because of the assumed symmetry in viscosity and electrical conductivity with

respect to the channel axis , it is sufficient to carry out the calculations

over only the first quadrant of the channel cross—section 0.zx2
<a,0<x3

<b. We

typically found solution convergence at 14 = 100 after one hundred iterations

when using a 1200 grid point subdivision of the channel quadrant. The con-

vergence was much more rapid at lower Hartmann numbers,while calculations at

higher M generally required a larger number of grid points and hence larger

CPU times for convergence.

Typical results of the finite differenc~e calculations are shown in

Figures 6.1 through 6.5. Figure 6.1 presents the velocity contours for

Hartmann flow of a constant conductivity fluid in a channel of aspect ratio

A — 2a/2b = 2. The Hartmann number is M=lOO, the load factor K = 0.91

with ideally conducting electrodes. Note the very thin Hartmann layers near

x2
±a of thickness a/M and the thicker electrode boundary layers at the conduct—
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ing walls having thickness of order a/I~i. The constant velocity core away

from the walls represents that portion of the channel cross—section where

the pressure gradient just balances the Lorentz force and where viscous

effects are unimportant. The corresponding curves of constant induced mag-

netic intensity and hence the current streamlines within the channel are shown

in Figure 6.2. Note that except in the wall near boundary layer regions the

current is uniform. Apart from channel end conditions and streamwise flow

variations, shunt currents occur only in the thin viscous layers along the

insulating walls and become negligible as the Rartmann number becomes large,

provided the external load resistance remains finite. For infinite external

loads all the current generated within the core of the flow would be returned

through the Hartmann layers.

The effect of a cross—stream variation in electrical conductivity on

two—dimensional Hartmann flow at M’ 100 is shown for a channel of aspect ratio

A — 
~ in Figures 6.3 through 6.5. Because of the flow cross—section symmetry,

we are showing only one quadrant of the channel section in these figures. The

conductivity used in these calculations has the parabolic distribution

a = (1—c (l—(x 2/a) 2](l— (x3/b) 21} , (6.3)

where a is the pure liquid conductivity and c is an adjustable constant

ranging from zero for the constant conductivity case to a value of unity

corresponding to a variable conductivity flow with zero electrical conducti—

vity along the channel axis. This particular parabolic variation of the con-

ductivity approximately simulates the void fraction distribution observed in

the experiments at Argonne National Laboratory [2]. Note that the low con—

ductivity core region develops a high velocity jet, the velocity being an

30



approximate reciprocal function of the electrical conductivity. This is

in contrast to the flat velocity profile obtained for the case of constant

conductivity.

In addition to the above finite difference calculations,we have also

obtained values for the volume flow rates and generator conversion efficiency

as a function of pressure gradient, Hartmann number , load fac tor, electrode

conductivity , channel aspect ratio and cross—stream conductivity variation.

Among other things, these additional results show that for infinite external

load the maximum flow rate at constant conductivity occurs through channels

of aspect ratio less than unity, supporting results reported by Hughes and

Young [61. For example at M” 10 the maximum flow rate occurs near A = 0.3 corn—

pared to A = 1.0 in the non—magnetic case. We attribute this effect to larger

drag being produced by the viscous layers along the insulating walls than by

the thicker viscous layers along the electrode surfaces. We will report

more about these findings in the next chapter.
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CHAPTER 7

ANALYTI CAL APPROXIMATION

En view of the very thin boundary layers found in our numerical cal-

culations, it is clear that viscous effects are confined primarily to the

wall near regions of the MHD duct and that the flow core comprises an

essentially inviscid flow in which the Lorentz force is balanced by the

pressure gradient. This suggests that an appropriate boundary layer appro-

ximation ought to be applicable to this problem in the sense that an invis—

cid core solution can be matched to a wall near viscous solution. In the

wall near region we have approximated the boundary layer profile by

u1BL
(x 2, x3) = const. (1 - exp 14 ~2 : a) (~ — exp v’~i 

X
3 : b)

(7.1)

where M = aBv’~~/~ is the Hartmann number based on the half channel height a.

Motivation for this choice is the known thickness of the Hartmann and electrode

boundary layers. The constant multiplying this velocity distribution is adjus-

ted so as to match the inviscid core velocity (see equation (2.24)

1 / ~
p E

3\u = — i — — — — (7.2)
1 core 0B2 

~ 
Dx 1 B

2 ‘

where a is the electrical o nductivity which may vary over the cross section. By

making the approximation that the electric field is uniform in the channel

(see Chapter 3) we can use Ohm ’s law to eliminate E
3 
from equation (7.2) and

find the velocity profile

u
l(X2,x3) 

= - 

a B ~ ~~l(a O~~~
i
~ 

+
1) .[

l_exP 
~

(x
2
_
a)] ~

_exP1(x3
_
b)]

(7.3)
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From this result it is straightforward to determine the average velocity U 1, 
-

and the corresponding electric field existing in the channel.

We have evaluated equation (7.3) for several different conductivity

distributions including constant conductivity a = a and the parabolic dis-

tribution given by eq:n (6.3). For a constant conductivity flow we find ,

for example, that the ratio of the average fluid velocity in units of

— -
~~

-
~~~ Ia B~ is predicted by our analytical boundary layer approximation to
xl 0

be 14.96 for a channel of aspect ratio A = 1, M 100 and resistance ratio

R /R . = 17.1. This compares to a value of 14.99 obtained with our twelvee 1

hundred variable grid point finite difference numerical calculation under

identical flow conditions. For the variable parabolic conductivity , with

c = ½, we find that the non—dimensional velocity along the channel axis for

M 100, a= 1, X= 2 and Re/Ri 
= 10 is 11.43 by the boundary layer theory com-

pared to 11.40 by the finite difference method. These results, together with

other cases, are found to be fairly close to those obtained by the numerical

method provided that AV~i>8 and the conductivity does not vanish. This shows

that equation (7.3) is a good approximation to the true two—dimensional Hartmann

profile for fluids with cross—stream dependent electrical conductivity . We

also observe directly from equation (7.3) that the core velocity profile is

not flat when the electrical conductivity varies in the cross—stream direction.

We typically have a high velocity jet structure near the axis of the channel

when the conductivity decreases toward the channel axis.

From the boundary layer approximation we find that the ratio of the volume

f low rate Q to 
~siug 

obtained when neglecting the thickness of the boundary

layers for the case of infinite ext~ rnal load, is

1 1 1
Q/Q = l — — — — +  ‘-7 ,’slug AH1~ 

¼ ’.’~)
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and yields 0.55, 0.89 and 0.97 at M 10, 100 and 1000, respectively , when

A 1. This approximation is in quite good agreement with that given by

Shercliff [12]

— 
0.852 1

~~~slug 
— 1— 

xvi~ 
— 
M (7.5)

for an MHD channel flow with insulating walls all around.

The boundary layer approximation also allows the determination of the

generator efficiency r~ as a function of resistance ratio at fixed Hartmann

number and channel aspect ratio A= 2a/2b . Defining this efficiency by

12Ra
T~l =  .~

—4 -
~~

— abLe (7.6)ax1 1

where I is the current in the external circuit, L the channel length, 4abL

the channel volume, and the mean velocity , we find

~~~[(l
i
)(l 1)]

= 

[(l~~~~) 
+ 

~]{ 
(l~~ô)(l~~~~ 

- +

(7.7)

where f(x2, x3) 
= (i_ exp M 2 ) ( ]~

.. exp 
~~ x

3_b ) is the boundary layer

deficit and a/a is given by eq:n (6.3). A plot of this efficiency is given

in Figure 7.1 for the special case of a constant conductivity flow. We note

that the generator efficiency reaches a maximum at a resistance ratio R
i/Re

approximately equal to l/61 and becomes increasingly efficient as the Hartmann

number is increased. The optimum efficiency for a Hartmann number of 400 , corres-

ponding to experimental conditions by Petrick et al [2], occurs at an external

resistance approximately twenty times the internal resistance.

L 
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CHAPTER 8

VOLUME FLOW RATES THROUGH SUBPARTITIONED MMD CHANNELS

One of the features of the proposed two—phase MMD generator system

is the tendency of the gaseous phase to slip towards the core of the

generator duct. Such a cross—stream bubble drift and the experimentally

observed axial slip of the gas component might be reduced by subpartitioning

the ~~D channel into a series of rectangular cross—section subchannels by conduct-

ing plates placed parallel to the channel electrodes and insulating plates

placed parallel to the insulating sidewalls of channel. We have performed

both numerical and analytical boundary layer calculations on such a subpar—

tioned channel geometry. Velocity fields, flow rates and current stream

lines have been determined. The calculations so far have been restricted

to a homogeneous fluid of constant electrical conductivity.

Typical results obtained from finite difference calculations for a sub—

partitioned channel geometry when the subdivision consists of eight identical

subcbannels is shown in Figures 8.1 and 8.2. In the first of these figures

we see the velocity contours corresponding to a Hartmann number of M’~5O based

on the half height of a subchannel and a load factor of K= 0.91. We find

that the flow rate through this channel is approximately 89% of that found

at the same pressure gradient when the partitions are removed . This is a

relatively small reduction in flow rate produced by the partitions at the

— high Hartmann number under consideration. Also it is found that the largest

flow rates for a given pressure gradient and infinite external load occur

for channels of rectangular cross—section where the distance between the

insulating walls is large relative to the distance between the electrodes.

The origin for this behavior is the presence of the relatively thin Hartmann
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layer along the insulating walls compared to the thicker electrode boundary

layers. We note in Figure 8.2 that the current streamlines remain nearly

uniform across the subpartitioned channel cross—section. Only in the immediate

vicinity of the ideally conducting subpartitions does one notice departure

from uniformity.

If there are n—i equally spaced, perfectly conducting partitions placed

between the electrodes, and m—l equally spaced insulating partitions placed

parallel to the insulating walls and the aspect ratio of each of the resul-

tant n x m subchannels denoted by A = 2b/2a, we find that the ratio of the

volume flow rate with the partitions to the volume flow rate without parti-

tions is

l~~~i

= k~~ k~ ±_
+ 

~~~(l L4+)~~~

r 

~~~~~ ~~~~ 

. 

/ l_
~~ ? 

(8.1)

~~~~~~~~ 
(1-I- 

R ‘
-i(i-~~~ 1 + 1
R \  A~4~~/ ~~

Again, M is the Hartmann number based on the channel half height and

R
i 

= bn/ama0
.
~ the internal resistance. It should be noted that this appro—

ximation holds only as long as M is large enough (A6~>8). For sixteen sub—

channels with n m 4 , aspect ratio A=2 , resistance ratio Re
/Ri = 10 and a

Hartmann number of M= 100 based on the subchannel half height, the above

formula predicts a flow rate ratio of 0.922, supporting our notion that the

viscous losses produced by a moderate number of subpartitions may be small

for large Hartmann number flows.

Our overall conclusion is that use of subpartitioned channels to reduce

both cross stream bubble drifts and also possibly axial bubble slip may offer
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a possibility for improving the efficiency of two—phase liquid metal—MHD

generators.
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CHAPTER 9

SINILITUDE IN THE TWO—PHASE

FARADAY GENERATOR

Evidently, two principles govern motion of the fluids in a two—phase

Faraday generator. Except very close to the physical boundaries, the ponde—

romotive forces alone are sufficient to account for much of the behavior of

the liquid phase once its physical distribution is known. The gas phase, on

the other hand , moves in the pressure gradient induced by the liquid motion,

but under the influence of inertia, viscosity and surface tension. The void

motion seems to do relatively little to change the local ponderomotive pressure

gradient.

These considerations imply that two velocity scales exist in the two phase

generator. The one scale, velocity U of the liquid relative to the test frame,

is important in determining the ponderomocive force on the liquid . The other

scale, velocity ULG of the gas phase relative to the liquid phase, is important

in determining the gas/liquid interaction. There is not necessarily any direct

relationship between these two scales. Similitude experiments should model

each separately.

Any means of creating a pressure gradient in a liquid without directly

influencing a gas phase should allow modeling of the gas/liquid interaction

in a two phase generator. A vertical two phase flow can be used in this fashion

to model the ponderomotive pressure gradient with a gravity induced pressure

gradient. The gas/liquid interaction in such an experiment should be completely

specified by the geometry of the system and by the pressure gradient -}~(— (1-a)~ g

in the gravity model), length scale L, relative velocity scale ULG~ mass density

p, viscosity ii , and surface tension y. There are many ways in which these para—

46



-----~ -_— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

meters can give three dimensionsless groups characterizing the flow. Any

one member of such a set can be taken to be a function of the other two. Thus,

in a similitude experimental designed to investigate phase slip, the relative j
velocity scale ULG should appear in only one of a set of three dimensionless

groups. This suggests the set, for example ,

White and Beardmore property group (Wailis, [13])

y 3p2 for generator
KF (l—a)gii (9.1)

y3p for gravity model

Suratman number (Ryley, [14])

Su 
ypL

(9.2)

drag coefficient

ax
PU
~G 

for generator

C =D (l—a)gL for gravity model (9.3)
LG

with

C
D 

= f(%, Su) (9.4)

The choice of 5 and Su as characterizing groups is motivated by the

facts that they are independent of ULG and that 5 is independent of L. The

choice of C
D 

as the velocity containing group is motivated by the notion that

inertial forces should be more important than viscous or surfaces forces (see

the order of magnitude analysis in Chapter 2). Other formulations of the simi-

litude , such as with Weber number and Reynolds number , are possible, but may be
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difficult to implement or interpret.

The property group 5 depends only on the pressure gradient and the

physical properties of the fluids. A liquid should first be chosen such

that there is 5 similarity with the generator . It happens that water can

be used to model a range of interesting conditions in the Nak—N
2 generator.

A water—air system run at a void fraction of 0.5 , for example , attains a

5 similar to the Nak—N2 system being run at a pressure gradient of about

2 x 10~ . Other generator conditions could be simulated by, for example,

adding a surfactant to the water.

Once a liquid has been selected for the simulation, Su similitude deter-

mines the length scale of the gravity model. The NaK—N
2 
generator, with an

overall length of 0.3 m, would be simulated by a gravity model scaled to a

length of about 1.5 m if water is chosen as the modeling liquid. Once 5
and Su simularity has been achieved, an experimental run such that the

void fraction matches the void fraction of the generator should then model the

gas/liquid interaction in the generator.

To complete the experiment, the liquid velocity scale UL must then be

modeled. This can be done by iterating on a geometric similarity principle.

The for the generator is known (or can be calculated from equation (3.11).

Hence, the generator velocity ratio TJLG/UL can be calculated once ULG has

been determined from an experiment in which gas is bubbled through a still

liquid. That velocity ratio then can be matched in the gravity model by

adjusting U
L 
in the gravity model. Since this adjustment is itself apt to

change the void distribution, a somewhat different value for ULG will pro—

bably be obtained, calling for further adjustment of UL• This procedure would

be repeated until both void fraction and velocity ratio match in generator

48

_ _ _ _ _ _ _ _ _-~~~~~~~~a~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -



~ 

and gravity model. At that point, the two—p hase flows in the generator and

in the gravity model should be as similar as is physically possible for such

an experiment.

Other choices of dimensionless groups would entail somewhat different pro—

cedures, but the above example emphasizes the need to model the two velocity

scales separately. Except in regions very close to the boundaries, the bulk

motion of the liquid plays little role in the gas/liquid interaction.

It must be kept in mind, however, that gravity simulation cannot exactly

describe flow in the generator . One might expect trouble in attempting to

model the effects of induced ponderomotive forces and of gas compressibility.

The pressure gradient in the simulation depends on local void fraction,

but not on local liquid velocity as in the generator. Thus large void frac-

tion regions conceivably can maintain large pressure gradients in the genera-

tor , but not in the simulation. Further, the cross stream pressure gradient

in the generator does not necessarily exist in the simulation. (Tipping the

sii.~ lated channel from vertical might partially model this cross stream gra—

dient.) Finally , the simulation does model the effects of forces induced in

the immediate vicinity of the voids. For example, a void in the generator

may expand more readily in the direction of the magnetic field than across it,

as pointed out by Vliet et al [15].

The gas phase will expand as it moves down the channel, and so tend to

increase the observed void fraction. This effect might be allowed for in the

gravity model by pulling a partial vacuum on the system. In that fashion, one

could match the gas expansion in the model to that in the generator . Sonic

effects may be more difficult to model. For a given void fraction and liquid

density, the speed of sound in a well dispersed bubbly flow is proportional
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to the square root of pressure (see references [13 ,1]. Thus, the speed

of sound in a high pressure generator may be several times as large as the

speed of sound in a low pressure simulation. Shocks and other compressibi-

lity effects observed in the gravity model may or may not be present in the

generator, depending on how closely Mach number similarity happens to be met.
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CHAPTER 10

CONCLUS IONS

Time averaging of the governing equations of the liquid phase leads

to a number of insights into the behavior of two—phase Faraday generators.

Evidently , one can describe averaged motion of the liquid phase, given

only the applied flux density, liquid physical properties , and averaged

void distribution. Formafly, the stress s~ate of the gas phase is largely decou-

pled from the stress state of the liquid phase. With these considerations, one can

come to relatively simple relationships which allow statements about generator per-

formance.

One such statement is that a peaked void distribution must lead to a

peaked liquid velocity profile , but not to an increased electrical shunting

near the channel walls. Before this principle was clearly understood , expe-

riments were performed at Argonne National Laboratory [4] in which gas was

injected along the insulating walls. The purpose was to blow away from these

walls the low void f r action (high effective conductivity) liquid there and

so eliminate a hypothetical electrical shunt. In some experiments , efficiency

increased fifty percent over that with no blowing . Since that efficiency increase

could not arise from elimination of a non existant electrical shunt, we infer that

it must be due to bettering the coupling between the gas and liquid phases.

It is also important to the physics of the generator that ponderomotive

forces dominate liquid flow in the core. In that region, the averaged force

balance equation for the liquid is purely algebraic, allowing ready derivation

of relationships between pressure gradient , void fraction, electric field , and

other quantities. It is interesting tha t some of these relationships , such
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as equation (.3.11), are independent of the detailed flow structure and,

in fact , can be easily derived from a one dimensional, slug flow description .

The converse may not be true; experimental verification of a relationship de-

rived for a slug flow does not necessarily imply that a slug flow exists in

the expe:iment . Further , relationships such as equation (3.11) which describe

forces in the liquid phase say nothing whatsover about the behavior of the

gas phase and, hence, cannot by themselves be used to verify a particular

two—phase model.

In contrast to the liquid phase case, treatment of gas phase motion must

include consideration of inertial, viscous, and surface forces. Experimental

and analytical studies related to single bubble motion in transverse magnetic

fields published in the last few years by Chester [9] and Mon et al. [10],

provide only limited insight into a high void fraction flow. It appears possible

to gain some understanding of the gas/liquid interaction through gravity flow

modeling where a gravity supported pressure gradient simulates the ponderomotive

gradient of the generator. Such a study is currently under way at the Argonne

National Laboratory .

In the coming year, we plan mainly to study the gas/liquid interaction in

MMD flows for an understanding of the void fraction gradient development observed

in experiments with Faraday generators at ANTS. We particularly plan to examine

the feasibility of stabilizing the two—phase flow by means of channel subparti—

tioning. In addition , we wish to examine end effects in the generator. Work

by Branover and others [8] demclnstrates large electrical shunting in the end

regions and M shaped velocity profiles in the plane perpendicular to the

applied magnetic field which may degrade the generator efficiency .
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