
1~ AD AO5 S le*a STAtWOR D (141V CALIF DIGITAL SYSTEMS LAD F/S 9/2 p
DELTRAN PRINCIPLES Off OPERATION: A DIRECTLY EXECUTED LANGUAGE F—— ETC (U)
MAR 77 L w HOEVEL DAAG2 9—76—G—000I

UNCLASSIFIED DSt—TN 108 ARO—12958.3— M NL

_ U

_ _ _

_ _ _

U
END

4 - 78

p

— -—S .— -55-. .’- - -~~~ - - “T5-
~ ~~~~~~~~~~~~~~~~~~~

SEC URITY CI~AS5 I F ICA TI O N OF T H I S PAGE (~4~~.n Data Entet•d) g5eej ~ 1$~__,~2~j~

REPORT DOCUMENTATION PAGE

BEFORE_COMPLETING_FORM
I. REPORT NUMBE R

~~
12 GOVT ACCESSlONj~~ . 3. RECIPI ENT’S CATALOG NUMBER

~~~~~~~~~~~ ILL~~~~ (
~~~ _ _ _ _ _ _ _ _ _ _ _ _ _

S IVPE OF REPORT 6 PERIOD COVEREDoc~
~~~~~~~~~ (aid Subilil.)

II~J4 ~~~~ CUTE1~~~~NGUAGE FOR~~~~~~R~~ -j I. •
. — 

~~~~~~~~~~~~~~~~ 
~ LTec~ cal ~ote\~~~~NCIPLES OF OPERATION : ~~ ~~ RECTL

— _~~~~

\.~~ . 6. PERFORMINGORG. REPORT NUMBER
—

AUTHOR(.) CO RACT OR GRANT NUMBER(a)

~ ~ W./Hoevel~
] ~~~~~~~~~~~~~~~~~~~~~~

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
A R E A 6 WORK UNIT N U M B E R S

Digital Systems Laboratory
Stanford Electronics Laboratories
Stanford Universi ty, St~ nfnr d ,_ CA__ 94105 _____________________________

II. CONTROLLING OFFICE NAME AND ADDRESS ~~~~~~~~~~~~~ FiLT~~

I IYMarm~~~77]
U .S. Army Research Office—Durham 9I NUMBER OF PAGES

~~~ 4 MONITORING AGENCY NAME 6 ADDRESS(If dili. r.nt hon, Contr olling Office) IS. SECURITY CLASS. (of thi report)

unclassif led

n S L ‘1N :1-. 0’ ~ IS..
SCHEDULE

~~ 16. DISTRIBUTION STATEMENT (of tAt .  Report)

~ pprn~ed for public release ; distribution r~ t) ~~
• __J

I_i_I un1i~~ited. ~~~~~~~~~ 
r ~~~~

B
• 17. DISTRIBUTION STA TE M E N T  (of the .befrect entered in Block 20, If different from Report) 

S 

- .

‘ U

~~

I-• b—,
a —

19. SUPPLEMENTARY NOTES

The findings ~n ~h:- report are not to be construed as MV

official f l ep a r t n~eI~ ~f th e  .A~my !.iOSiti Ofl, unless so

des igr.ated by other author~~ed documeflta.

19. KEY WORDS (Continue on revere. dde  If neceeaaii and Identify by block numb.r)

20. 
‘

~~B STR A C T  (Continue on rev.r.e aide if neceaa.ry and Identify by block number)

This paper describes a novel directly executed language (DELtran) tailored
specifically to the FORTRAN source language, ENMY host, and scientific programmin
DEttran is 4transformationally complete* in that~‘1) Code generation is linear with respect to the number of operators in a

FORTRAN program1‘~2) Only k DELtran instruction units are needed to represent a FORTRAN statement
containing k functional operators,.

(3 )  The space needed to represent a FORTRAN statement approaches N*v+F*k —— where -~~~~

DD jAN 73 1473 E D I T I O N  OF I N O V 65 I S OB SOL E T E  
)
7L~ g g ’/ j,..,. ~~~~~~~~~~~~~

— ~~
. — . • L~~ fl.. . C....4s —

- — - - ---~~~~~ - - ~~~ ~ - — -.- 55~~ T j.~~~~~- - - 
55 ~~~~~S~~~ 5-~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SECURITY CLASSIFICATION OF THIS PAGE(W1~~~ p.S. Ent.r.d) (

v is the nwziber of distinct variables in the statement , and N and F are
th. least integers such that there are less than 2**N distinct variables
and 2**F distinct operators In the relevant scope of definition.

In addition, DELtran is 4tranaparent~’ in that there is a 1—1 correspondence
between DELtran operators and control con$tructs and FORTRAN operators and -

cont rol constructs , and fnvertj ble~ in that all sensible sequences of DELtran
instruction emits have a M rect FORTRAN analogue.

L

-
. . 

- 
.

. 
-~~~~~~~ -~ -

I 3 ~
- ---_ . —,

I Sect,0,,

/ ‘ I !  cif~~.

°‘ 

~ ~~ I

- —.  — - — — —. . .— — — ——— ~~ - —  — — . —  w _ .___ ~~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. - .~~~~~ ~ ... _ _ _ .~~~~~~~~~~~~~~~~~~ — - ~ —~~~


-.-~ -_-.-- —.~~~fl~W*rnv.C~~ C:,”: _.

DELTRAN PRINCIPLES OF OPERATION :

A Directly Executed Language for FORTRAN—It

by

Lee V. Hoevel

March 1977

Technical Note No. 108

DIGITAL SYSTEMS LABORATORY

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford , CA 94305

The work described herein was supported in part by the Army Research
Office—Durham under Grant # DAAC—19—76—G—00U1.

t

~

-- .— -- - - - -~~~~~~~~~~~~~~~~ - - - - -—- —. -
‘~~~-~~~~ ~~~.i. ~~~ _______

Digi tal Systems Laboratory
Departments of Electrical Engineering and Computer Science

-

Technical Note No. 108

March 1977

DELTRAN PRINCIPLES OF OPERATION:

A Directly Executed Language for FORTRAN—Il

by

Lee V. Hoevel

ABSTRACT:

This paper describes a novel directly executed language (DELtran)
tailored specifically to the FORTRAN source language EMMY host, and
scientific programming. DELtran is “transformationaily complete” in
that:

1) Code generation is linear with respect to the number of
operators in a FORTRAN program.

2) Only k DELtran instruction units are needed to represent a
FORTRAN statement containing k functional operators.

3) The space needed to represent a FORTRAN statement approaches
N*V+F*k —— where v is the number of distinct variables in the
statement, and N and F are the least integers such that there are
less than 2**N distinct variables and 2**F distinct operators in
the relevant scope of definition.

In addition, DELtran is “transparen t” in that there is a i—i
correspondence between DELtran operators and control constructs and
FORTRAN operators and control constructs, and “invertible” in that all
sensible sequences of DELtran instruction units have a direct FORTRAN
analogue.

The work described herein was supported in part by the Army Research
Office—Durham under Grant # DAAG—29—76—G—0001.

—. ~.‘—‘,--..- . -- ~~~ - - - ~ ---‘—-~--- - - - - . —-‘~~~~~~~‘- - - ~~~~— ---‘------- - -—-----~~
,

~~ 1~~

1. Introduction:

DELtran is an intermediate language tailored to a FORTRAN source

language, EMMY host machine, and typ ical community of scientif ic
programmers. Its design is intended to minimize execution phase time

and space, subject to the limitations imposed by a one pass

compilation that performs only single statement optimization. Our

primary objective in syn thesizing this language is to demons tra te the
prac ticality of the design principles discussed in b evel and Flynn
(1], rather than to advance the state of the art in FORTRAN execution,

however.

With this in mind , we limited the magnitude of our task by

addressing only a subset of the full FORTRAN language (Basic FORTRAN),

and ignoring a number of questions relating to a production

environment such as higher level data, task, and job management. The

resulting design does not preclude extension to features like named

COMMON, additional data types and struc tures, or random access

external files. Multiple named COMMON blocks, complex variables,

logical variables, rela tional operators, and simple syntax

enhancements like an IF...THEN construc t could be imp lemen ted merely
by changing the compiler or adding a preprocessor. Inclusion of

character string data types and dynamic storage allocation features

would require altering the executor , which should not be too difficult

since it is a table driven interpreter. The instruction unit

structure and operand referencing mechanism described below should be

compatible with the modifications needed to capture the full FORTRAN

language.

General attributes of user communities, high level source

languages, and microprogrammable host machines relating to the DEL

synthesis problem are discussed elsewhere (Hoevel [2], Flynn [3],

Il iff e (4], and Welin (51), and will not be repeated here. It is

instructive, however, to consider those particular features of our

experimental system that have had the greatest impact on the design of

DELt ran.

1

.:

~

___.

~~~ 



_  _ _ _  
_ _ _ _

Source Influence:

The FORTRAN subset of interest here is usually referred to as

Basic FORTRAN (Heising [6], McClure [71) .  The adjec tive “basic” is

no t app lied lightly ; it is indeed a rudimentary programming language.

This turns to our advantage, however , by holding the size of the

design problem within reason. Some assumed source language features

and restrictions affecting the design of DELtran are:

1) Its name space is entirely static , except for the binding

of actual arguments to formal parameters.

2) The natural range for a scope of definition is a procedure

specification (I.e., SUBROUTINE or FUNCTION block).

3) Few primitive data types are needed (e.g., only single and

double precision forms of fixed and floating point numbers).

4) Uns truc tured program con trol is permitted (i.e., DO loops

need not be one—in one—out control structures).

- 5) Parameters are uniformly passed “by reference”, al though
this is equivalent to “by copy value” when expressions are

used as actual arguments (this is not required by the

standard, but follows the long established IBM tradition).

These observations are extracted from the preliminary ANS

specifications for FORTRAN vs. Basic FORTRAN (8]. Immediate

implications are: recursive procedure invocation need not be

supported ; both global and local storage can be statically allocated

during compilation; all type checking can be performed during

comp i~ 1tion (ignoring parameters to procedures, as is conventional);

and program flow analysis can involve arbitrarily complex constructs.

2 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ --- -- - - — - - --- 


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Host Influence:

The basic architecture of the EMMY host and its surrounding

laboratory environment are described In Neuhauser [9] and [101 . In

general, EMMY is a microprogrammable “universal host” with a 200 ns.

micro store and an 800 ns. main store (50 and 400 ns. access times,

respectively). Both stores are 32 bits wide; 4K words of read/write

micro store and 16K words of main store were available during the

development of DELtran. Mass storage and Intelligent console

functions are provided by two cassette tape drives integral to a Data

Point 2200 CRT terminal. Unique host characteristics impacting the

design of DELtran are:

1) Register, control, and main stores are functionally

partitioned; i.e., different micro orders must be used to

access each of these stores.

2) All storage resources are 32 bits wide, and may be

addressed on a 32 bit word basis —— main store alone may be

treated as an 8, 16, 24, or 32 bit wide memory, and addressed

on 8, 16, or 32 bit boundaries.

3) EMMY’s flexible field extraction operators , which include

double shift , are comparatively slow —— consuming as much

time as two or three arithmetic or logical operations.

4) Decisions must be implemented by explicit test and branch

sequences since EMMY has no implicit tagging capability ; more

time is needed to determine whether an address refers to main
or micro store than is needed to perform a main store access.

3

- - — ----~~~~~~~~~~~ ---- - - - -~~-- - - - - - _____ .~~~~~~ ____ _________

F- - - — — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

5) The basic addressing mode Is zero offset register

indirection (i.e., the effective address is the contents of a

micro register); multi register and/or offset indexing is not

available.

A few logistic complications also affected our design. During

coding and testing of the DELtran executor , only nascent program

support facilities and I/O substructure were available. As a result,

only a minimal interface to the external world has been implemented ——
all input and output is done through the basic front panel disp lay and
control unit , for example.

The “block access unit” anticipated in Neuhauser (9], which was
to asynchronously control memory—to—memory transfers, has been
supplanted by the “main memory control unit” described in Ne uhauser
[10]. The earlier design permitted a single command to invoke fully

overlappable transfer of an entire multi word block either within or

between storage resources; the later design permits only single word

transfers between different resources, at a per transfer cost of about

500 ns. in non-overlappable execution time. Because of this, the ;~

invocation mechanisms described below differ somewhat from the

idealized versions discussed in Hoevel and Flynn [1].

User Influence:

The intended user community is assumed to be composed of general

purpose, scientific programmers. User characteristics most relevant

to the design of DELtran are:

1) About half the statements in a typical source program deal

with program control, and about half are assignment

statements (Wichman [111, Rossman [121, and Lunde [131 )

.4



2) The single, ~*ost frequent type of statement is “A B”,

followed at some distance by “A = A + B” (Knuth [141).

3) 00 statements almost always use an implicit increment

(stepping value) of one (Knuth [14], Rossman [12]).

4) Three distinct branches are usually specified for the —

arithmetic if statement (implied by the distribution of

branch statements noted in Flynn [15]).

While these assumptions appear applicable to a variety of user

communities and source languages, specific programs could deviate from

the implied statistical distribution of operators, names , etc. A more

detailed behavioral model could , of course , be extracted from

installation—specific trace—tape data.

I

I ‘~

5



2. General Description:

Due to the sequential nature of FORTRAN, both at the source and

machine code level, a linear outer form is used. The natural scope of

definition for source level identifiers is the program or subprogram

—— i.e., MAIN , SUBROUTINE, or FUNCTION blocks. Indeed , the lack of

any other structured control units leaves little choice in this

matter , especially in light of our intent to minimize compilation

complexity.

Individual DELtran instruction units are broken down into

independen tly encoded subf ields , of varying size, called syllables. 
—

Three classes of syllables were required : operand syllables, which

denote DELtran variables (or labels); operator syllables, which denote

transformation rules to be applied to the DELtran data store; and

formlate syllables, which denote initializations to be performed in

preparation for a deferred operator syllable (“formiate” is coined

from the familiar terms format and template, and combines their

respective connotations of semantic and syntactic specification).

Word boundaries may be crossed Immediately before or immediately

after either operator or formiate syllables: i.e., sequences of

operand syllables must lie within a single word. (operand lists for

n—ary immediate operators such as CALL, READ, and WRITE excepted).

These syllables may be combined in three general syntactic sequences

to form DELtran instruction units:

Leading Operator: <OP> [ <A> [ (B> [. . .] 1 1
Leading Formlate: <F> [ <A> [...] I <OP>
Compound : <F> I <A> [...1 I <OP> [ <D> [...1

Leading operator forms generally deal with program control , involving

functions that do not fit well within the familiar molds of binary or

unary operators (the leading HOVE operator is an exception ; it is

coded in this form because of its high frequency of occurrance). The

leading formiate construction factors out the operand decode and fetch

6

— - •

~

- — — -

~

-- --—-



computations required by common operator functionalities: diadic (two

arguments, one result); monadic (one argument , one result), and onad ic
(no arguments, no result). The compound form is used only with a few

high order functionality operators , or with array access primitives

that require information about exp lici t operand references no t

provided by the standard formlate interface. The normal sequence of

interpretation is for leading formiate constructions :

Decode leading syllable —— extract 5 bit leading syllable from the

curren t ins truc tion word (1W); and transfer control to the

appropriate interface routine.

Form Interface —— extract all W bit operand reference syllables;

fetch values of of arguments; compute address of result , if

any.

Decode operator —— ex trac t opera tor code , and transfer  to
appropriate semantic routine.

Execute —— compute designated transformation; store result , if

any ; and begin another cycle of interpretation.

The leading operator form bypasses the exp licit operand fetch and

interface formation steps, proceeding directly to the execution of the

designated function. In this case, the appropriate semantic routine

assumes responsibility for fetching , decoding , and accessing (any)

operand references. This is similar to the manner in which deferred
operators that require additional operands fetch , decode, and access

referands identified by deferred operand syllables.

The mechanism for communicating information between interface and

semantic routines consists of three micro registers: P, Q, and R.

For binary formiates, P will contain the value of the left argument , Q
the value of the right argument , and R the address of the result.

Lower functionality requirements are derived from this standard

7 

~~~~~~~~~~~~~~~~ —--—“~‘-_ - -- - _  ~~~ -~~--~~ —- - ----~ -~~~--- -- ~_—---~~


I

interface by deleting specifications. In the unary case, for example,
Q con tains the value of the onl y (and hence still righ t mos t)
argument , and R the result address.

This “PQR” interface has meaning only within the interpretation

of a leading formiate or compound type of instruction unit. Some

residual control information, called the DEL program state vec tor ,
must be maintained across instruction interpretations , however. The

internal DELtran program state is defined by:

1) Instruction Word (1W): a buffer for the DELtran

instruction stream.

2) Instruction Pointer (IP): a pointer to the nex t word of
instruction units in the DELtran program store.

3) Control Pointer (CP): a pointer to a linear definition

table for all accessable labels, variables , constants , etc.

4) Stack Pointer (SP): a pointer to the top of a dynamic

evaluation stack.

5) Syllable Width (W): a specification for the number of

bits in an operand reference syllable.

6) Evaluation Stack (ES): a LIFO queue containing the

results of intermediate computations.

Five of these six entities are encoded in three micro registers; the

current instruction word is kept in micro register I, and the current

ins truc tion po in ter is kept in micro register IP. The control pointer

CP, the current stack pointer SP, and the current syllable width W are

all encoded in a single micro register

S:8

— _
~~~~~~~~~~~~~~~~~ ~ — —  ~w~~ ’ — . —:~ -——- ‘— r—~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

— — —

-+ -+
SP I unused CP : V I 

+ + +
31 26 11 5 0

This assignment leaves four micro registers available for general use.

Three of these (P, Q, and R) are temporarily dedicated to the “PQR”

in terface when in terpre ting leading formlate or compound instruction

forms; but may be reassigned when the standard interface is not

required. The remaining micro register , X, is used for general

purpose indexing and scratch storage.

The association between DELtran operand references and referands

in the data or program stores is defined by a single linear table

called the current contour. Each element of this table, called a

descriptor , contains two pieces of information —— a shape and a

locator. Shape specifiers (high 8 bits) define an entity ’s size,

justification, and the granularity of its locator, but not its logical

data type in the classical sense. Locators (low 24 bits) are directly

the address of a referand in EMMY’s main store.

The current contour is physically divided into two parts: a data

table located at the bottom of micro store; and a label table located

at the top of micro store. Since the current contour is always

located in a fixed position , a dynamic environment pointer (i.e., the

ep in Johnston’s Contour Model [191), is not required —— the control

pointer serves as an environment pointer for CALL and RETURN, but is

not normally used to interpret DELt ran reference codes.

Because it is possible to distinguish between references to

variables and references to labels syntactically (for the given

FORTRAN source language), judicious placement of descriptors can

reduce the number of bits required in operand syllables. An operand

reference code N denotes the descriptor at location N if it refers to

a variable, and the descriptor at location _2**W4+~ if it refers to a

label —— where W is the number of bits in an operand reference, and

micro 8tore is treated as a circularly addressable memory. This means

that V may in fact be the Least integer such that there are less than

2**W distinct labels and less than 2**W distinct variables, ra ther

9

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— -~~
_ -~~~~~~--~~

_
‘ —

_--_--‘_ ‘ --- _ —---

than the least integer such that there are less than 2**W distinct

entities (both labels and variables) in a given scope of definition.

This addressing scheme is illustrated below:

DELtran Reference Structure

Micro Store Main Store
64 ——>

0 —-> + + -->
/

descriptors —— Image of DELtran

for variables —— Data Store

-I-.- + -->

Executor (unallocated storage)

:
~2**W ——> +~~ + — — >

/
descriptors —— Image of DELtran

for labels —— Program Store
4— + -->

64K ——> -I +

This f i gure also illustrates the general layout of DELtran programs in
EMNY ’s main store ; with COMMON and LOCAL storage allocated just above

the 64 word evaluation stack, and program modules allocated ~t the

upper end of main store. If more than one procedure is included in a

module, COMMON is extended toward the higher addresses and LOCAL for

the n+lth procedure is allocated just above that for the n—th

procedure (MAIN is the 1st procedure). The actual bodies and skeletal

contours for procedures are allocated beginning at the high end of

main store and moving toward the lower addresses. This is identical

to the storage allocation strategy used by McClure (7], excep t for  an
inversion of addresses and the fact that we limit our evaluation stack

to 64 elements.

The current contour is initialized by the CALL and RETURN

operators from skeletal contours pre—allocated during compilation.

There is one skeletal contour for each seperate scope of definition;

i.e., for each SUBROUTINE or FUNCTION (including MAIN ) . Each skeletal

10

L _ .~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _



contour consists of a label definition table, linkage area, and a data
definition table:

4- -+
I descriptor for label L I
+ +

+ .

~~descriptor for label 2**W_1 I
Callee’s CP ——> 

Table of Contents

Caller’s CP
Caller’s IP

Caller’s 1W

descriptor for variable 1 I

I descriptor for variable V I
4- +

The table—of—contents word defines the number of formal parameters,

dynamic (overlay) variab les, static variables, and Label descriptors

for the associated block. The “Caller’s ...“ words in the linkage

contain the DELtran program state vector elements that must be

restored upon encountering a RETURN instruction. Skeletal contours

are themselves identified by the “—ith ” word of a DELtran module; the

“0th” word contains the returned value, if it is a FUNCTION ; while the

“1st” word is the actual beginning of the executable code for the

module:

11 

_~~~~~ . - _



- ‘  
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Layou t of a DEL tran Module (F)

4— +I Contour Pointer for F I
Descriptor for F ——> + +

Returned Value I
Initial tP for F — — >  + —4.

I 1st Instruction Word for F I
.4— +

4- -+
Last Instruction Word of F I

4- -+

Letting the descriptor for a FUNCTION module identify the referand of

its returned value, as well as its entry point , helps to minimize the

number of distinc t entities in a given scope of definition.

12



3. Syllable Descriptions:

All DELtran instruction units begin with a 5 bit leading

syllable. The 32 distinct codes for this key syllable specify either

an Immediate operation or a formlate that describes the preliminary

processing required to establish the standard interface for a deferred

operator.

Five Bit Lead Syllable Encoding

Code Immediate Syntax Immediate Semantics

00000 FETCH fetch next instruction
10000 MOVE <A.> (B> b :~ a
01000 TT <OP> t := OP t)
11000 AB <A> <B> <OP> b :— OP a)
00100 ‘fA <A> <OP> a := OP t)
01100 AS <A> <OP> s : OP a
10100 :~ <A> <OP> a := OP a

11100 
— 

<OP> execute OP

00010 UTU <OP> u :— OP u,t
00110 UTA <OP> a :~ OP u,t01010 ATT <A> <OP> t : OP a,t
01110 TAT <A> <OP> t := OP t,a
10010 ABS <A> <B> <OP> s := OP a,b
10110 ABC <A> <B> <C> <OP> c :— OP a,b
11010 TAB <A> <B> <OP> b :~ OP t,a11110 ATB <A> <B> <OP> b := OP a,t
00001 ABA <A> <B> <OP> a := OP a,b
00011 ABB <A> <B> <OP> b :~ OP a,b
00101 ATA <A> <OP> a :~ OP a,t00111 TAiL <A> <OP> a :— OP t,a
01001 MS <A> <OP> s := OP a,a
01011 AAB <A> <B> <OP> b :— OP a,a
01101 AM <A> <OP> a : OP a,a

01111 CALL n (F> <Al> ... <An> invoke F(A1, ..., An)
10001 RETURN return from invocation
10011 GO <L> goto 1
10101 CGO <I> <L> goto (l+i—1)
10111 IFE <E> <L> goto (l+(e 0)+2*(e>0
11001 IFT <L> goto (l+(t O)+2*(t>O
11011 ENDO ~N> <I> *1> ~L> goto 1 if n n+i < m
11101 END1 N> *1> <L> goto 1 if n n+l < m

11111 BREAK trap to monitor function

This listing, which is in “trailing zeros” order , uses the same

general notation as in the formlate discussion in Hoevel and Flynn

(1]. Generic syllables are enclosed in angle brackets “<> “, while

specific codes are not; a three character mnemonic system is used to

13

L



-- .. _ .. _ _ _ _ - . _ . . _ . _ . - _ _ -_ _ _ _ _ . _ _ _ ._ . _ .~ --_ . . - _-

identify formlate structure.

The first letter designates the operand to be associated with the

left argument of a binary operator; the second letter designates the

operand to be associated with the right argument of a binary (or only

argument of a unary) operator; and the third letter designates the

operand to be associated with the result.

The following character code is used to signify particular

operand bindings. A, B, and C denote the explicit reference codes

appearing in the first, second , and third explicit operand syllables

following a fornilate; the variables identified by these codes are

designated by the corresponding lower case letters. 5, T, and Ii

denote the top elements of an implicit evaluation stack; T corresponds

to the current top of this stack, U to the position just below T; and

S to the (unused) position just above T. Again, lower case letters

denote the values of these referands. An underscore ~~~~~‘ denotes an

argument or result position that is not used.

In practice, lead syllable codes are extracted from the residual

instruction word register (1) using the double shift technique, and

then added to the microprogram counter ($) to effect an indexed

branch. In EMMYXL notation (Hedges (16]):

X := 0 .clear index register X

.possible intervening code

X,I < 5 ; $ $+X .extract lead syllable
(table of entry points)

Instruction units in the table following the extraction may perform

useful computations as well as transfer microprogram control to the

remaining body of the appropriate routine (due to the senithorizontal

nature of EMMY’s native language; see Neuhauser [ 10 ] ) .
The DELtran fornilate set permits full exploitation of repeated

operands (either as arguments alone , or in combination with the result

specification), and is “transformationally complete” in the sense that

any binding of explicit operands (i .e. , primitive va r iab le8 ) and
implicit operands (i.e., stack elements) can be generated by local

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


combinatorial analysis of the FORTRAN source code (Flynn [3], and
Hoevel and Flynn [1]) . Note also that deferred operators are

partitioned disjoint classes according to their funct ional i ty by the
inclusion of distinct binary , unary , and nullary formlatea; and that

reverse forms of deferred operators are not needed, since all required

argument permutations are contained in the fornilate set.
The MOVE operator simply transfers the value of the referand

identified by operand reference cA> to the referand identified by

operand reference . Simple program control operators such as GO,

CGO, IFT , and IFE cause the current instruction word register (I) to

be reloaded from the bit address in DELtran’s program store identified

by the appropriate label descriptor. The single label reference

appearing in the CGO, IFT, and IFE constructs Is actually the first

entry in a subtable of the current contour ; the data dependent index

into this table is determined by the semantic routine for each of

these operators.

ENDO and ENDI operators cause the value identified by <N> to be

incremented and then execute a GO <L> if the result is less than ~r

equal to *f>. The increment value is assumed to be one for the ENDI

operator, but is explicitly denoted by <I> for the more general ENDO

operator. Breaking out the special case of END I is indicated not only

by the default specification rule for FORTRAN looping constructs, but

also by emperical user statistics (Knuth (141).

CALL and RETURN operators are somewhat more complicated , since

they involve modification of the internal state of the DELtran

executor. CALL causes the volatile portion of the current contour to

be paged out to its static image, which is identified by the control

pointer CP. The instruction pointer, instruction word, and status

registers (IP , I, and 5) are also saved in a linkage area within this

skeletal contour, thus saving the DELtran program status vector and

hence all information needed to resume the caller’s process. The

skeletal contour for the callee is then moved into the current

contour, and descriptors for formal parameters copied into the

appropriate locations. The IP is set to point to the first word of

15

—4

the callee’s program body , the first instruction word is fetched , and

the state register S is loaded with the callee’s syllable width and

control pointer.

RETURN simply undoes a CALL. Only those descriptor elements in

the original caller’s skeleton contour which were overlayed during the

CALL operation need be restored , however. These are easy to determine

by comparing the upper and lover reference indice bounds for both

programs, which are stored in a linkage area in their skeleton

contours. We save and restore the contents of the caller’s old

instruction word register to avoid wasting static space in the DELtran

program store; the time required to perform this linkage is greater

than that which would be required simply to fetch a new instruction

word from the program store.

Operand Syllables:

As noted above, the width of operand syllables may vary from one

scope of definition to another. The current number of bits in an

operand syllable, W, is maintained in the low order six bits of the

DELtran secondary state register, S, which is automatically saved and

restored by the execution semantics for CALL and RETURN. For short

subroutines or functions, only three or four bits are needed to

identify a unique variable; in larger modules, however, six to eight

bits may be needed.

The map from reference codes to descriptors for DELtran variables

is simple and direct: the descriptor for variable with reference code

N is located at address N in micro store. It is possible to extract

an operand reference and look up the corresponding descriptor in a

single EMMY instruction, which would appear in the EMMYXL notation as:

X,I << S ; R — M(X)

where X is a previously c leared index register , I is the current
instruction word register , and R is a micro register that is to

16

-~~~~~~~~~~~~~ ---- --~ :TL .~ _ - _ ~~~~~,,~~- _ . _
~~~~~ -_-- , -——-“.-.---- .—- _ -_ _— .--- -_



contain the descriptor value. The low order bits of micro register S ,
which contain the current value of W, indirectly govern the extent of

the double sh i f t  from I into X indicated in the f i r s t  half of the

instruction. The second half of the instruction causes the micro

store word at the location indicated by the low order twelve bits of

the index register to be loaded into R.
The map from reference codes into label descriptors is somewhat

more complicated to explain, but equally easy to calculate: the

descriptor for the label whose reference code is L is located at

_2**W+L, viewing micro store as a circularly addressed memory (the

absolute address is 4095_2**W+L, but since EMMY’s hardware ignores the

upper 20 bits of a micro store address, our circular model is valid).

The same micro instruction used to associate variable reference codes

with variable descriptors can be used for labels, although the index

register X must be initialized to minus one.

Descriptors for variables consist of an 8 bit shape specification

in the high order byte , which is actually a command code to the memory

control unit that specifies the width of the entity in question (8,

16, 24, or 32 bits), together with a 24 bit locator in the low order

bytes. The shape designator also specifies the granularity for the

locator (8, 16, or 32 bit quanta); the locator directly identifies the

main store image of a referand in the DELtran data store.

Descriptors for labels are similarly structured , but in this case

the locator is actually a bit address in the DELtran program store.

The target instruction word must be shifted after loading to obtain

proper alignment. The granularity specifiers within the shape code

are used to minimize the magnitude of this shift.

Deferred Operator Syllables:

Deferred operators are categorized as diadic (two arguments , one

result), modadic (one argument, one result), or onadic (no arguments,

no results). Data types are not checked dynamically because FORTRAN

17

.

~

-- - - . ~~,-
_ _--



is such a strongly typed language in its own right, and hence distinc t

operator codes are used to denote integer and floating functions.

Some col lapsing of the DEL ope ra to r set was possible whe re only t he
sign of an operand or equivalence to zero need be checked, as with the

IF statement , since these representations are the same for both fixed

and floating point (internal value representation consistent with the

370 architecture has been used for pragmatic reasons; see Wallach

(17J ).

Deferred operator syllables are decoded in the same manner as

leading syllables, except that different branch tables are used (one

for 4 bit binary operator codes, one for 4 bit unary operator codes,

and one for 3 bit nullary operator codes).

Four Bit Encoding of Diadic Operators

Code Deferred Syntax Deferred Semantics

0000 FETCH fetch the next instruction word
1000 A2E <D> associate D with (p,q)—th element of r
0100 F+ r :— p+q (floating add)
1100 1+ r : p+q integer add)
0010 F— r :— p—q floating subtract)
0110 I— r := p—q integer subtract)
1010 F* r : p*q floating multiply)
1110 1* r : p *q integer multiply)
0001 —A2— prefix for array accessing operators
“ 00 MA2 <O> r(p,q) := d
“ 01 A2M <D> d :— r(p,q)
“ 10 TA2 r ( p , q )  := t
“ 11 A2S s :— r ( p , q )

0011 Fl r : p/q floating divide)
0101 1/ r : p/q integer divide)
0111 F~ F r : p**q floating to floating power)
1001 1 I  r : p**q integer to integer power)
1011 FST r : sgn(p)*q (floating sign transfer)
1101 1ST r : sgn(p)*q (integer sign transfer)
1111 BREAK trap to monitor

The —A2— operators are perhaps not self defining ; in general, the

two argument values in the P and Q interface registers to be treated

as the first and second subscripts for the array whose descriptor will

be in the result register , R. A2E causes the effect ive  address of the
indicated array element to be computed , creates a descriptor to this
element by combining the shape field from the array descriptor with

this add ress , and stores the result in the contour slot for the

deferred reference code B. MA2 and A2M operators work in a similar



- . 

i

fashion, but actually cause a state transformation in the DELtran data

space —— they are similar to the MOVE operator. TA2 and A2S are

“push” and “pop” operators that transfer values between the evaluation

stack and array elements.

Initially , we intended to perform array accessing implicitly by

dynamically checking the structural type of each variable descriptor

before using it to load or store a value. However, without specific

hardware support this proved to be too inefficient. Substantial code

compaction, as well as execution time reduction for array accesses,

may be possible in systems based on a tagged architecture host , such

as described in Feustel (181 and Iliffe [4].

Bounds checking is not performed , following with the tradition

established by IBM. It would be easy to incorporate by modifying the

appropriate array accessing routines, and would not involve a u g h

space or time penalty for the EMMY host. The multiplier needed to

compute the effective address of an indexed array element is stored at

the “base” of the array (i.e., is its zero—th element; this works for

FORTRAN since array subscripts must begin with one).

Four Bit Encoding of Modadic Operators

Code Defe rr ed Syntax Deferred Semantics
0000 FETCH fetch new instruction word
1000 AlE <D> associate reference code D with r(p)
0100 FLOAT r : float(p)
1100 FIX r : f ix ( p )
0010 F r : —p (floating negate)
0110 I r : —p (integer negate)
1010 LOG r :— log(p) (logarithm)
1110 SIN r : sin(p) (sine)
0001 —Al— prefix for array accessing operators
“ 00 MAI <O> r ( p )  := d
“ 01 AIM <D> d :— r ( p )
“ 10 TA1 r ( p )  :— t
“ 11 AIS a :— r(p)
0011 COS r :— cos(p) (cosine)
0101 TANH r :— tanh(p) (hyperbolic tangent)
0111 PAUSE pause with code p
1001 STOP stop with code p
1011 TIME r :— (current time)—p
1101 not used
1111 BREA K trap to monitor

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - - - — - -


The “Al” array oriented operators are j ust like the “A2”
operators described above, except that only a single subscript is
required (the argument value in the P register of the standard

interface). Again in the IBM tradition, no bounds checking is

performed. The TIME function, although not required by the ANS
specification [8], is included in order to facilitate experimental

evaluation of the final system.

Some compression of the operator set suggested by the semantics

of Basic FORTRAN has been obtained by noting a few non—trivial

algebraic relations. In particular , the EXP function can be replaced

by the binary F~F operator —— i.e., instead of generating :
_XY [cA > [] I EXP

we gener ate:

AX’Y’ <e> [<A> [(B> J I F F
(where X’Y’ is derived from XY by transforming A—>B and B—>C). This

is the same as the observation that EXP(x) can be rewritten as E**(x),

where E is a constant with value 2.718..., for any expression x.

Three Bit Encoding of Onadic Operators

Code Deferred Syntax Deferred Semantics

000 FETCH fetch next instruction word
100 SET <U> <F> set Unit U and Format F
010 R EAD n <D1>...<Dn> input to D1...Dn as per Unit/Format
110 WRITE n <Dl>...<Dn> output from D1...Dn as per Unit/Format
001 REWIND rewind Unit
011 BACKSPACE backspace Unit
101 ENDFILE write end—of—file mark on Unit
111 BREAK trap to monitor

Compound instruction units of the form “ <onadic OP> ... “ are

really nothing more than a partial frequency encoding of infrequent

and/or difficult to handle functions, the bulk of which deal with

input output. Two residual control cells, Unit and Format, are used

to maintain the status of I/O operations . Unit corresponds to a

logical designation of a specific file/device/channel combination , and

would in practice be bound by a surrounding operating system as

specified by some external job control language. The Format cell is

merely a byte pointer into a string of f ield specifications produced

20

-

— - -.-

~

~

. ,

~

- ---—- -- - -- —-
~~~~~~~

— .
~~
-—-

~~



— — .-~ - - - — —-—‘-.-— .-- -- ------.-- --.-- - - -- .- - - - ----~ -- - ~~~~~~~~~~~~~~~ 
- - - . - - --- --—. - - , .-- --

during compilation from the appropriate FORTRAN format statement.

Encoding of Format Control (I/O ) Operators

FORTRAN DELtran Construct
Construc t Symbolic Actual

( n  O n
Fw.d F w d  l w d
Ew.d E w d  2 w d
In I n  3n

X n  4 n
1/... !  (n slashes) / n 5 n
nHab... (n chars.) H n a b ... 6 n a b
n... (repeat count) REP n 7 n
) ) 8

Although the full I/O structure indicated above has not yet been

implemented , the intent is that it should proceed as a

subinterpretation , either with EMMY performing conversions under

control of the current Format, or with the control device for Unit

performing these conversions asynchronously. The Unit and Format

residual control cells are, respectively, the environment pointer and

instruction po inter for this subinterpretation. An entire byte is

used to encode formatted field specifications simply to keep this

process as simple as possible ; the spatial penalty is low since I/O

statements are statically insignificant.

I .

21

--—---

~

-- ~~~~ ~~~ —- .-



,.. -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4. Examp les :

A few examples may help clarify the preceeding discussion:

FORTRAN Statement DELtran Equivalent

1) A = B MOVE <B> <A>

2) I — J—I ABB <J> <I> 1—

3) I = J * J + I  AAS <J> I*
TAA <I > 1+

4) GOTO 10 GO <#10>

5) DO 10 I = 1, 100 MOVE <1> <I>
A = F(A,I) #10 CALL 2 (F> <A> <I>

MOVE <F> <A> —

10 CONTINUE END I <I> (100> <# 10>

6) IF ( A—B ) 1, 2 , 3 ABS <A> (B> F—
IFT <#1>

7) WRITE (6 , 10) N ,M SET 6 10
WRITE 2 (N> <M>

8 10 FORMAT ( IH , 2 15) #10 <(> <H> 1 <R> 2 <1> 5 ~~~>

9) I A(I,I) AAB ci> <A> A2S
TA <I> FIX

22

~

- ~~~~~—- -- ~~~~
---

~~~~ 
- - - -- .- .

~~~
- .-- .

~~~~~~~~~~~


_____________ -.
~~-~~—---~~~~

.— - --- . -,

5. References:

[1] Hoevel, Lee W., and Flynn , Michael J., “The Structure of

Directly Executed Languages: A New Theory of Interpretive System

Sup~~ rt ,” Technical Note No. 130, Di gi tal Systems Labo ratory ,
Stanford University, Stanford , California, March 1977.

[2] Hoevel , Lee W., “Languages For Direct Execution,” Proceedings

of the 7th Annual Workshop on Microprogramming (SIGMICRO 7),

Sep tember 1974 , pp. 307—16.

[3] Flynn , Michael J., “The Interpretive Interface: Resources and

Program Repr esentation in Comp uter Organ iza tion ,” Proceedings of

the Symposium on High Speed Computers and Algorithm Organization,
University of Illinois, Champaign Illinois , (Pub. Academic Press)
April 1977.

[41 I l i f f e, J. K . , “ In terpre t ive Machines ,” lectu re survey notes ,
Digital Systems Labo ra to ry , Stanford University , Stanford ,

Califo rnia , May 1977 .

[5] Wel in , Andrew M., “The Internal Machine ,” ACM—IEEE Symposium

on High—Level—Language Computer Architecture , University of

Maryland , College Park , Maryl and , November 7—8, 1973, pp. 91—100.

[6] He ising , W. P., “History and Summary of FORTRAN

Standardization Development for the ASA ,” Communica tions of the

AcM, Vol. 7, No. 10, October 1964, p. 590.

[7] McClure , Robert M., “CUC Basic FORTRAN Description ,” (private

working notes), 1970.

2i

.—————~ ——.—-- - . -., -.--~. -——-— ---.- ~~~ ~~
.— -...—-.-—-—- .,---.-.- —

(8] American Standards Association Sectional Committee X3,

Computers and Information (R. V. Smith, ed.), “FORTRAN vs. Basic

FORTRAN —— A Programming Language for Information Processing on

Automatic Data Processing Systems ,” Communications of the ACM,

Vol. 7, No. 10, October 1964, pp. 591—625.

[9] Neuhauser, Charles J., “System Description of the JHU

Emulation Laboratory and Host Machine,” Proceedings of the 7th

Annual Workshop on Microprogranming (SIGMICRO 7), September 1974,

pp. 28—33.

[10] — ,“An Emulation Oriented , Dynamic Microprogrammable Processor

(Version 3),” Technical Note No. 65 , Digital Systems Laboratory ,

Stanford University, Stanford , California , October 1975.

[11] Wichman , B. A., “Five Algol Compilers,” Computer Journal, Vol.
15, No. 1, January 1972.

[12] Roasman, George , “Statistical Usage of the 360 Architecture ,”

Technical Repor t, Palyn Associates , San Jose , Cal ifornia , 1973.

(13] Lunde, A., “Empirical Evaluation of Some Features of

Instruction Set Processor Architectures ,” Communications of the

ACM, Vol. 20, No. 3, March 1977, pp. 143—52.

[14] Knu th , P. E., “An Empirical Study of FORTRAN Programs ,”

Software Practice and Experience, Vol. 1, 1971, pp. 105—33.

[15) Flynn, Michael J., “Trends and Problems in Computer

Organizations,” IFIPS Congress, Stockholm, Sweden, August 1974

(Pub. North Holland 1975), pp. 2—10.

24

— - . . - -- -----— ~~~-—--

—
~~~ 

-. 
~~~~~~~~~ 

— -
~

——
~

- .—-- -.-——.-—---—.--.-—-——-—.——--—-..

[16) Hedges , Tomas S., “EMMY/360 Cross Assembler,” Technical Note
No. 74 , Digital Systems Laboratory , Stanford University ,
Stanford , California , December 1975.

[17] Wallach , Walter A. , “EMMY/360 Functional Characteristics ,”
Technical Report No. 114, Digital Systems Laboratory, Stanford
University, Stanford , California , June 1976.

(18] Peustel , Edward A., “On the Advantages of Tagged
Architecture,” IEEE Transactions on Computers, Vol. C—22, No. 7,
July 1973, pp. 644—56.

(19] Johnston, John B., “The Contour Model of Block Structured

Processes ,” Proceedings of the SDSPL (SIGPLAN Notices , Vol.. 6),
February 1971 , pp. 55—82 .

25

_ _ _ _ _ _ _ _ _ _ _ _ _

- -. . .- ~~ - -—- .- .
- - -—~~-~~~~~---- - —.——.- - - - - - ---- ---- -

