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1. Introduction

In this paper we consider a class of methods which are designed
to increase the computational efficiency of computer simulations, This
increased efficiency is ébtained by simulating a stochastic process which
is related to, but different from, the stochastic process of interest,
Each event in the new process will correspond to several events in the
original précess. The simulation of this new process will then, in some
sense, proceed at a faster rate than that of the original process.

The types of processes for which this technique may be applied are
positive recurrent Markov chains in both discrete and continﬁous time as
well as semi-Markov processes, These are all examples of regenerative
processes (see Cinlar (1975) or Crame and Iglehart (1975)), and the method
to be proposed relies heavily on this fact. Under the regenerative assump-
tion a single simulation run may be broken up into randdmly spaced i.i.d.
(independent and identically distributed) blocks, or cycles. This
allows the techniques of classical statistics to be applied in analyzing
the output of the simulation.

One of the main difficulties with regenerative simulations is that
even though it may be known that the process being simulated is regenerative,
the regenerations may be few and far between. Thus even for very long
simulation runs, only a relatively few i.i.d. cycles are observed. In
this case it becomes difficult to form reliable point and interval

estimates. One possible remedy to this problem is the use of approximate




regenerations (see Crane and Iglehart (1975a) or Gunther (1975)). The

idea here is to break the simulation run up into blocks which are "almost"

i.i.d. by defining a sequence of "almost" regenerations, These blocks

are then treated as if they are i.i.d. (although they are not). Since
"almost" regenerations are defined so that they occur more frequently
than actual regenerations, one obtains more blocks using the approximation
than is otherwise possible. Presumably this facilitates the formation of
point and interval estimates, although this has never been demonstrated
satisfactorily. Because this method lacks a strong theoretical founda-
tion, it should be used with caution.

The method proposed here also seeks to increase the number of
blocks obtained during a simulation, but does so without resorting to
any approximations. Instead, a new Markov chain is simulated for which
regenerations occur more often than for the original chain, This new

chain is constructed in such a way that point estimates and confidence

intervals may still be formed for certain parameters of the original

chain,




2. Derivation of the Modified Markov Chain

We now state this basic problem. Let (X , n > 0} be an irreducible,
n

aperiodic, positive recurrent Markov chain with state space E = [0,1,2,...]

and transition matrix P = [pij -

i,j € E}.

It

there exists a probability distribution 7 = {m

random variable X 6 having distribution T,

weak convergence). T is called the stationary distribution of the process

such that Xn:X (= denotes

is then well known that

¢ i €E}] on E and a

and is usually unknown or difficult to calculate. Let f be a real

valued function on E and define r = 7f = E[f(X)] = ¥ 7

shall be interested in estimating r.

Pick some state, say O, in

Tm = inf{n > Tm_1 : Xn =

We say that a regeneration occurs at
and Tm-l is referred to as the mth

T is the length of the mth cycle.

T -1
m

Y = Y

m f(xn) s

n=Tm_ 1

Because {xn, n > 0} is positive recurrent Ei[Tm]

0}

)

time

cycle.

Let

E and let

T
m

If

g f(i). We
i€E

T0 = 0, Define

and the time between T
m-1

T -T then

Tm m m-1’

n

E['rmlxo e 1] €=,

If X =0 then {(Ym, Tm), m> 1} are i.i.d. It is also known that if

0

Wlfl = % vilf(i)| < », then
i€E

B e e




T2

(2.1) r= ao[ym]/so[rm]

(see Crane and Iglehart (1975)). Let

By equation (2.1), Eo[zm] = 0. Let 02

0 < 02 < o, Define

2
= Eo[Zm] and assume that

G M M
(2.2) ¥y =L X /L .,
m=1 m=1
and
(2.3) x(N) = L £(X)/N+1 .
-0

Then ?(M) —-r a.s. (almost surely) as M - » and '::(N) -»r a.s, as
N - », Because [Zm, n> 1} arve £.1.4. .(assuming Xo = 0) it is easy

to prove the central limit theorems

P OB SRR s s i

VM (r(M) - r) = -
2.4 N(O,1 M-
(2.4) a/EOT‘rll (0,1) -

2 (2.5) ﬂ!ﬁ(ﬂ]_-ﬂgl: N(0,1) as Now,
1

a/Eo[-r

oy

where N(O, 1) is a normally distributed random variable with mean 0
and variance 1, Point estimates for r can be given by either (2.2)

or (2.3) and confidence intervals for r can be based on (2.4) or (2.5).
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We now show how to define a modified Markov chain which will have
a shorter expected cycle length and from which point estimates and
confidence intervals for r may be derived. Introduce a new state &,
and let ﬁb = EUA. The addition of the state & will enable us to
use Dynkin's formula, which is the basis of the method, Define a new

transition matrix P = {;ij t4,5€ ﬁA] where

(
0 j=0
e J Py 1i€E, JEE, J£0O
1 .
Pio 1cE §=A
\

P is then basically the same as P, the major difference being that

column O of P has been placed in column A& of P and columm O

of P is set equal to 0. If E = [0, B eeted m}, then P may be

written as

0 1 PEAR A
5 O Pe1 " Poa  Poo
gl d O Py " P Pro
P =
o O Pm 7 Pmm Pmo
I o 0 - 0 1
5




Following the notation of Hordijk, Iglehart and Schassberger (1976)
denote the submatrix of P consisting of all rows and columns except
for row and column & by OP. Let [Ttn, n > 0} be a Markov chain
with state space EA and transition matrix P. For this Markov chain
each state in E is _transient and A is an absorbing state, Extend
the definition of any vector (or function) g on E to EA by setting

g(8) = 0. Define the absorption time 1 by

T=inf(n>0: X =08)
and let
X=F &)~

n=0

~

Notice that if Xo = Xo

have the same distribution (in fact if we simulated these two processes

a.s. then the pairs (Yl’ rl) and (Y, )
using the same stream of random numbers then (Yl,tl) = (?,;)). Let
y(i) = Ei[YI] = Ei[Y] and t(i) = Ei[rll = Ei[T]. By equation (2.1)
r = y(0)/t(0). Since ‘in =4 for all n > T and £(A) = 0 then

i ~
f« & %)

.y

By taking expectations we find that

(2.6) ye L ;nf .

e . P g o e
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Similarly if e(i) = 1 for all i € E then

(2.7) e.5) TriPas
n=

The interchanges of summation needed in (2.6) and (2.7) are justified by
the assumption that T |f| < ». Define the potential matrix

A = {aij : 1,je1~:A} by

o 3n
Ko X B %
n=0
; Then
<o, JeE
| 13
, = o j=54 ;
: and a, is the expected number of visits of the Markov chain (X n > 0}

n’

ij

é to state j given that io = i. If we interpret « O = O then (2.6) ;
&

4 and (2.7) may be written as y = Af and t = Ae.

:

- The derivation of the new Markov chain to be simulated will be

1

based on Dynkin's formula, which is given in the following proposition.

For the definition of a stopping time ses page 118 of Ginlar (1975).

e

% (2.8) PROPOSITION. Let S be any stopping time for the Markov chain
1 [in’ n > 0} such that d(i) = E[S‘io =il <® for each i, If 7l/fl <= |
then ?
s-l ~ ~ ~ |~ v‘

o - - P— ST e e -



PROOF, See page 201 of ginlar (1975). 0

Let

s-1 |
h(i):EEf(i)')‘(’=1]
n=0 l'l 0

and let

R = [rij 1 4.4 € Eﬁ}
where
X = ~='~=
r1j P[xs jAXO b ) S
Then Dynkin's formula is
y:h-}-ﬁy.

Similarly

If we assume that Ry -0 and R"t -0 as n - =, then

o
(2.9) y= % &
n=0
and
[+ ]
t= & Koo,
n=0
8




A
oy B2 0} be a Markov chain with state space E  and transition

matrix R. This Markov chain also has & as an absorbing state. Let

r=mﬂnzo:%=A}

til
¥ = e ) ,
n=0 =
and
5 ?il o
i dr&y .
n=0 o

n

-]
Since E[¥}] = ). R h, equation (2.9) implies that E[?Iéo =il = y(i).
(0]

3
n=
Similarly E[S!Co = 1] « &(i).

We now remove the state &, Assume that ;10 = P(RS = Olio =i} = 0

for all i (this will be the case for all interesting stopping times §),

[r:ij ! i,j-G E} whare

Define the transition matrix R

"t

(s
1}
o

7

ij ’

R is obtained from R by placing column A of R in colummn O
of R, deleting row and column & of R, and leaving R otherwise

unchanged. Now let ({C_, n > 0} be a Markov chain with transition

n’

matrix R, Define T6=0,

¥ ) [ . e
Tm_Lnf[n>Tm_1 .Cn_O} 5 m>1,
Y o_ oy oo
Tm_Tm Tm-l’ Bty
9




R o Ao R AN BT 4

: o
m
| ¥ w T B m>1,
‘ n=T'—1
i
i T'-1
"
i ' = i a(c ) , m>l,
3 n=T' 1
4 and e
1
: 2' =Y*' - 8! w21, 1
m ’ =
& As before if Cj =C, a.s., then (¥}, 8;, 7;) has the same

7
5
g

s
|
|
s = = i = = i '
| and E[SIICO i] = t(i) E[TI'XO i], so that Eo[le

4
Al
8]
§

i]

distribution as (¥, §, T). 1In particular E[YjlC, = i] = y(1) = E[Y,IX]

O Furthermore

the times {T; m > 1} are regenerations for (C_, n > 0} so that if

’ n}

Co =0, {(Y;, 6;, r;, Zé), m> 1} are i.i.d.

The Markov chain (C n > 0} 1is the one that will finally be

n’

simulated. The use of the state A in defining the stopping time S

automatically ensures that the return state O cannot be inadvertently

“"skipped" during the simulation of (Cn, n > a}.

Defining
= M M
(2.10) )y = L Yy 3 o
m=1 m/m=1 ™
and
o N N
(2.11) x (N) = % h(cn)/ Vi d(cn) ,
n=0 n=0

”~
then r'(M) >r a.s. as M -« and ;'(N) —-»r a,s. as N - o, Let

0'2 s < w, It is straightforward to

= 50[2;2] and assume that 0 < o

derive the central limit theorems;

10
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(2.12) (JJQ?E(?SQ]’) =5 5 No,1) |
m

as M- w 2

0

and

(2.13) L el - R as N »x .
a' Eo[ri] / /EO[SA]

Point estimates for r are now given by either (2.10) or (2.11) and
confidence intervals can be based on (2,12) or (2.13). Once the transi-
tion matrix R and functions h and d have been calculated, the
formation of point estimates and confidence intervals is essentially the

same as in the regenerative method.
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3. Numerical Discussion

To determine the amount of variance reduction obtained by simulating

the chain {Cn n > 0} rather than {Xn, n > 0} we need only compare

2

the variance terms in the central limit theorems (2.12) and (2.5). This

&
is

variance reduction, which will be denoted by RS’

2 . 1o
g o' Eplt]1/E,[8]]

2

/e [

(o] Eo 11]
; : fit ] 2

which, since E0[51] = EO[TI]’ simplifies to

0'2

2

E [t")
R - gk

02 EO[TI]

: 3 25 '
If o' and o are approximately equal then Rg EO[Tl]/EO[TI]’ the
ratio of the expected cycle lengths for the two processes. This suggests
that S be made as large as possible, however by doing so the amount of
work needed to compute R, h and d may be prohibitive. Each transition

in the chain [Cn, o > 0} corresponds to E[S[Cn] transitions in the

chain (X

qe © >0}, so that we expect tramsitions for (C

a? n >0} to

be relatively expensive to generate. The stopping timz S should there-
fore be chosen so that R, h and d may be readily computed and the

sample paths of [Cn n > 0} may be easily generated, We give several

2

examples of such stopping times,

12
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(3.1) EXAMPLE. Constant S,

m-1 - m-1 -
If S =m, a constant, then h = 2 of f,d= T oP e and
n=0 n=0
R 1is given by
Cm
oPij » jto
l‘ij =

m

1 - 5_‘, Opik ) j =0 .

k£0
If P 1is relatively sparse the work involved in computing R, h and d

should not be too great for small values of m. If S =1 then R = r,

h=1f and d = e, so that this choice of S reduces to straighforward

simulation of the original Markov chain {Xn, n>0}. If m is small

and if Pio = O for mdst i € E then

m-1 i m-1 &
d=Z Pe‘*-'}j', Pe=m .
n=0 n=0
Since
(-] n o n oo
E[t,]= % Pe= Y R=m ¥ R =nE[7!]
1 (0] 0 0 1
=0 =0 u=0

2
we expect that RS ~ 1/m. Tables 1 and 2 bear out this speculation for
two birth and death processes, the finite capacity M/M/1 queue and the

repairman problem. The repairman problem has birth and death parameters

13




o, 0<i<s
Xi =
(nes=i)N s <1i< n+s
1, 1<i<ec
l-li_
cu , ¢ <i<s+n,

where n 1is the number of operating units, s is the number of spare
units, ¢ is the number of repairmen, and A and u are the failure and
repair rates'respectively of the units. These continuous time problems
have been transformed into discrete time using the methods of Hordi jk,

Iglehart and Schassberger (1976).

(3.2) EXAMPLE. Exit Times of Sets

Suppose E is partitioned into N
N
E = igo B, and B, N Bj = f, the empty set, for i £ j. Let lBit
denote the number of elements in Bi and assume that IBi[ < @, Define

B disjoint blocks Bi; i.e.,

the stopping time SB to be the first exit time from the initial block;

: 15

= inf{n >0 : X I3 Bk} 5 for X ) € B .

SB
Let fi = {£(3) : 3 € Bi}’ e, = (e(3) : 3 € Bi} and OPij = {Opkz :k €B

g€ Bj}. Let I denote the identity mar:ix of size |Bi1 by |B

ii il'

Then

14
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and

Ry i

(I3 - ofi1)  ofij » 1£3]

where hi =iy e Bi}’ di = {d(j) : j€ Bi} and 0R1' ={,r,, : KEB

j 0 kg
L € Bj}. The transition matrix R is found by setting
0"ij » J£0
rij=
1-2 E. 2 j=0.
KEE 0 ik

The matrix 0R is the block Jacob matrix for solving the set of equations

y=f+ oPy (see Varga (1962)). The Markov chain {C_, n > 0} is the

n’
same one that appears when using the techniques of Heidelberger (1978).

Tables 1 and 2 give Ri

and the repairman problem respectively,

and Rg for the finite capacity M/M/1 queue

(3.3) EXAMPLE. Continuous Time Markov Chains and Semi-Markov Processes.

By applying this technique to continuous time Markov chains, the dis-
crete time methods of Hordijk, Iglehart and Schassberger (1976) are obtained

as a special case, Let (X t >0} be an irreducible, positive recurrent

t’

continuous time Markov chain with infinitesimal matrix Q = (q y 4,5 € B).

-1 T

15

P T S— . P

it b =




|
3
|
i
3
#
o
4

Set q = 2 qij (qi = -qii)' Dynkin's formula remains valid for continuous

time Markov chains (with an integral replacing the sum in (2.18))., Define
the stopping time S = inf{t >0 : X, # X }. We then simulate a discrete
time Markov chain {Cn, n > 0} with T qij/qi’ i# 3, h(i) = f(i)/q1
and d(i) = l/qi. Hordijk, Iglehart and Schassberger (1976) have shown
that in this case 6'.5 o. These techniques may also be used to reduce

semi-Markov processes to discrete time. Once in discrete time, the method

may be applied again to obtain further variance reductions,

16




TABLE 1

Variance Reductions, Rg and RS’ for Finite Capacity M/M/1 Queue

Obtained by Simulating the Modified Markov Chain:
r = E(X), Return State = 0

Stopping Time S
¢}
*
2 3 Sy

4 25 .L26l .2923 -2gk2
+ .6530 .5406 542y
i .50 4590 .3620 Ll
% OTT5 .6016 6664
i 15 L4841 .3585 4037
% 6957 .5987 .6353
| .90 48883 3422 362
4 .6991 .5850 .6020
] % 4893 .3570 3510
g .6995 .5805 5925
& .99 14895 55535 .3L429
8 .6996 ST73 -5856

¥ Block sizes = (1, 3,5, 3, 3, 8
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TABLE 2

Variance Reductionms, Rg and RS’ for Repairman Problem

Obtained by Simulating the Modified Markov Chain:
r = E(X), Return State = 0

Stopping Time S

Y 4

. *
2 3 Sg

1 12 L6676 .3358 .3602
g .6837 5795 .6002
3 2 6 597 .3128 .2821
: .6780 .5593 S311
i 3 b 1532 .2950 2407
i L6732 5431 .hou7
4 4 5 4476 .2821 .2432
i .6691 S511 L4932
‘% n = 10
i ; Ehe h
i

i * Block sizes = L3, 5355 9

18
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4. Conclusions

The variance reduction technique proposed in this paper shows
promise for processes with relatively long cycle lengths. Examples of
such processes may be found in both open and closed queueing networks,

By simulating the modified Markov chain [Cn n >0} an increased number

bl
of i.i.d. cycles are obtained for a prespecified run length than is
possible with the original chain {Xn, n > 0}. Assuming that the chains

{C, n>0} and [Xn, n > 0} are approximately equally variable over

n’
a cycle, this increase in the number of cycles translates directly into
a variance reduction, Since the sample paths of [Cn, n >0} will

usually be more expensive to generate than those of (X |
n

n > 0}, the
simulator must be careful to ensure that the variance reduction obtained
is sufficient to produce an overall computational savings. The method

has the best chance of being computationally efficient when the tramsition

matrix of the Markov chain is relatively sparse.
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