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1. Introduction

In this paper we consider a class of methods which are designed

to increase the computational efficiency of computer simulations. This

increased efficiency is obtained by simulating a stochastic process which

is related to, but different from, the stochastic process of interest.

• Each event in the new process will correspond to several events in the

original process. The simulation of this new process will then, in some

sense, proceed at a faster rate than that of the original process.

The types of processes for which this technique may be applied are

positive recurrent Markov’ chains in both discrete and continuous time as

well as semi-Markov processes. These are all examples of regenerative

processes (see ~inlar (1975) or Crane and Iglehart (1975)), and the method

to be proposed relies heavily on this fact. Under the regenerative assump-

tion a single simulation run may be broken up into randdinly spaced i.i.d .

(independent and identically distributed) blocks, or cyc les. This

allows the techniques of classical statistics to be applied in analyzing

the output of the simulation.

One of the main difficulties with regenerative simulations is that

even though it may be known that the process being simulated is regenerative,

the regenerations may be few and far between . Thus even for very long

simulation runs, only a relatively few i.i.d. cycles are observed . In

this case it becomes difficult to form reliable point and interval

estimates. One possible remedy to this problem is the use of approximate

1
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regenerations (see Crane and Iglehart (1975a) or Gunther (1975)). The

idea here is to break the simulation run up into blocks which are “almost”

i.i.d. by defining a sequence of “almost” regenerations. These blocks

are then treated as if they are l i d . (although they are not). Since

“almost” regenerations are defined so that they occur more frequently

than actual regenerations, o~e obtains more blocks using the approximation

than is otherwise possible. Presumably this facilitates the formation of

point and interval estimates, although this has never been demonstrated

satisfactorily. Because this method lacks a strong theoretical founda-

tion, it should be used with caution.

The method proposed here also seeks to increase the number of

blocks obtained during a simulation, but dDes so without resorting to

any approximations. Instead, a new Markov chain is simulated for which

regenerations occur more often than for the original chain. This new

chain is constructed in such a way that point estimates and confidence

intervals may still be formed for certain parameters of the original

chain.

2
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2. Derivation of the Modified Markov Chain

We now state this basic problem. Let (X , n ? 01 be an irreducible,

aperiodic, positive recurrent Markov chain with state space E = (0,1,2,...)

and transition matrix P = ~~~~~~ 
: 14 € E). It is then well known that

there exists a probability distribution ~r (n-
1 
: I € E) on E and a

• random variable X, having distribution ir, such that X~ ~* X (=
~ 

denotes

• weak convergence). ir is called the stationary distribution of the process

and is usually unknown or difficult to calculate. Let f be a real

valued function on E and define r = n-f = E(f(X)) = ~ ir 1 f(i). We
lEE

shall be interested in estimating r.

:1 Pick some state, say 0, in E and let T
0 

= 0. Define

T = in f(n > T : X = 0) i n>  1.
in m—l n ‘ —

We say that a regeneration occurs at time T and the time between T
in in-i

and T -1 is referred to as the mth cycle. If t = T - T then
in in in rn—i’

r is the length of the mth cyc le. Let
in 

T - l

Y = Y’ f(X ) tn > l .
U’ n=T 

‘

rn -I

Because (Xe, 
n ? 0) is positive recurrent E1f r l  = E(T~~X0 = i] <~~~~.

If X
0 

= 0 then ((Y , ~~~~ m �  1) are i.i.d. It is also known that if

irlf I = 
~ 

1r1l f(i) I < ~~, then
i€E

— _______________________________________
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(2.1) r = E0[Y ]/E0(T]

(see Crane and Iglehart ( 1975)). Let

Z Y -r r
UI in in

By equation (2.1), E0EZ~] = 0. Let a
2 

= E
0
(Z~] and assume tha t

Define

M M
(2.2) r(M) = Z

in-i m=l

and

(2.3) ~(N) = ~~ f(X )/N÷i
n=O

Then ~(M) — .r a.s. (almost surely) as M — ~ o and ~(N) —~r a.s. as

N ~~~~~~ Because (Z , in> 1) are i.i.d. (assuming X
0 

= 0) it is easy

to prove the central limit theorems

(2.~) 
~~~~~~~~~~~~ 

ri =~ N(O,l) as N

(2.5) ~JN (~ (N) ~ N(O,1) as N -+ .~~

a/E0
[ r
1
)

where N(O,1) is a normally distributed random variable with mean 0

and variance 1. Point estimates for r can be given by either (2.2)

or (2.3) and confidence intervals for r can be based on (2.Ii) or (2.5).
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We now show how to define a modified Markov chain which will have

a shorter expected cycle length and from which point estimates and

confidence intervals for r may be derived. Introduce a new state A,

and let = E U A~ The addition of the state A will enable us to

use Dynkin ’s formula, which is the basis of the method. Define a new

transition matrix = 
~~~~~ 

: 14 € Ff ~~)  where

0 j = 0

p
1 

l E E , j E E , J ,~~0
p —

piO l € E , j = A

1 j j A

is then basically the same as F, the major difference being that

colunnt 0 of P has been placed in column A of ~ and column 0

of ~ is Set equal to 0. If E = (0, 1, ..., in), then P may be

written as

• 0 1 . . . m A

0 ~ _ 0 p01 
p015 p00

— 

I 0 p11
... p

1~15 
p10

K: :~‘ ::: :me
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Following the notation of Hordijk, Ig lehart and Schassberger ( 1976)

denote the subinatrix of ~ consisting of all rows and columns except

for row and coluwn A by 
0
P. Let (X

11, a > 0) be a Markov chain

with state space and transition matrix ~~. For this Markov chain

each state in E is transient and A is an absorbing state. Extend

the definition of any vector (or function) g on E to by setting

= 0. Define the absorption time ~ by

= inf(n > 0 = A)

and let

t— l

~ f(~~) . 
-

f

n=0

Notice that if X
0 = a . s . then the pairs (Y], r

1) 
and (~~~~, 

)

have the same distribution (in fact if we simulated these two processes

using the same stream of random numbers then (Y 1,-r 1) = (v ,) ) . Let

y( i) = E~ (Y
1
) = E~~(~~) and t(i) = E~~(-t 1) = E

1
(~~]. By equation (2.1)

r = y(0)/t(0). Since A for all n >~~ and 1(A) = 0 then

~ f(~~)

-
• n=0

By taking expectations we find that

(2.6) y =  E ~flf

- - 

n=0 

6 
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Similarly if e(i) = 1 for all i € E then

(2.7) = 

n~~ 

~n

The interchanges of summation needed in (2.6) and (2.7) are justified by

the assumption that 7r~ fI < ~~. Define the potentia l matrix

A = (ajj : i,j € E
A
I by

n=O

Then

( <U f~~

a .
ij

j A , -

and ~~~ is the expected number of visits of the Markov chain (~~~~~~, 
a > 0)

H to state j given that = i. If we interpret ~ 0 = 0 then (2.6)

and (2.7) may be written as y = Af and t = Ae .

The derivation of the new Markov chain to be simulated will be

based on Dynkin ’s formula, which is given in the following proposition.

For the definition of a stopping t ime sea page 118 of c~inlar (1975).

(2 .8) PROPOSITION . Let S be any stopping time for the Markov chain

n > 0) such that d(i) = E (STX0 = ii < ~ for each 1. If 7r l f (  < ~

then

y( i) = E[~~~ ~~~n~~~O 
= + E(y(~ 5

) l ~ 0 = ii

7 
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PROOF. See page 201 of ~in1ar (1975). 0

Let

h(i) = ~~~~~~~~~~ f(;~); =

and let

ft = (
~jj 

: i,j €

where

= = = i)

Then Dynkin ’s formula is

y = h ÷

Similarly

If we assume that ft~
’y — 0 and ft~

’t .— 0 as n —+ 
~~~, 

then

$ (2.9) 
n

and

5~ ft’1d
n=0

8
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Let ~~~ a > 0) be a Markov chain with state space E~ and transition

matrix ft. This Markov chain also has A as an absorbing state . Let

= inf(n > 0 : = A ) 
,

~~_ 1
~ h(~~~ ) ,
n=0

and
~~~- I

~ d(ë )
n=0

Since E[~ ) = >. k~
’h, equation (2.9) implies that E[’~Ië 0 = ii = y( i) .

Similarly E[&I~0 = ii = t(i).

We now remove the state A , Assume that = 
~
‘
~~S 

= o $ ~~ = 1) = o

-
- 

for  all 1 (this will be the case for all interesting stopping times S).

Define the transition matrix R = (r1j 
: 14€ E) wh~re

j = 0

r
1~ 

=

j , 4 0 .

R is obtained from ft by placing column A of ft in column 0

of K, deleting row and column A of R, and leaving ft otherwise

unchanged . Now let (Ca, 
a 
~ 
0) be a Markov chain with transiti on

matrix K . Define T~ = 0,

T’ = inf (n>T’ :C 0) t n > l
in rn-I Ii  — ‘

m > 1
m m ~~~~~~~~~~~~ —

9

I- 

— S - 



- 
~~~~~~~~~~~~~~~~~~ • 

_
J~~

_

~ ~~~~ 
- T

T ’ -l
~ 

h(C~ ) 
, 

m > l ,
n=T ’

rn-I.

T ‘-1

~ 
d ( C )  

, 
m >  1. 

,

and

• Z’ = Y ’ - r ~ ’ m > l .
In in in ’ —

As before if C0 = 

~ 
a s ,, then (Y~, hj , Tj )  has the same

distribution as (‘1, ~~~, 
-r ) .  In par t icular  E[Y~~IC 0 = ii = y(i) = E(Y1

IX
Ø = ii

and E{~~~C0 
= 1] = t(i) = E [t 1~X0 = i}, so that E

0
[Z~ 1 = 0 Furthermore

the times (T~, in > 1) are regenerat ions fo r  (C e, a > 0) so tha t if

C0 = 0, ((Y~, e ’~, ~~~~~~ Z~ ) , m~~ 1) are i.i.d .

The Mar kov chain ( C , a > 0) is the one that wil l  f inal ly  be

simulated . The u se of the state A in def ining the stopping time S

automatica lly ensures that the return state 0 cannot be inadvertently

“ski pped” during the simulation of (C , n > o).

Defining

M M
(2 .10) ~~‘(M) = ~~

ni= 1~ m=l
and

N N
(2.11) x (N)  = 3~. h (C )/ ~ d ( C )

n=O n=O

then ‘ ‘(M) —~- r  a .s , as M — ~ c= and ~~‘(N)  —+ a . s , as N — 3 x , Let

= EØ f Z ’ 2 ] and assume that 0 < a’2 < ~~. It is straightforward to

derive the central limit theorems;

10 
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(2.12) 
o’/E

0
[~~~} 

- r) 
=~ N ( O ,l) , 

as M —~ =

and

(2.13) 12 
r) 

~~N(O,l) as N
a ’ E

0
[rfl 

/ /E0
[b ’l

Point estimates for r are now given by either (2.10) or (2.11) and

confidence intervals can be based on (2.12) or (2.13). Once the transi-

tion matrix R and functions h and d have been calculated , the

formation of paint estimates and confidence intervals is essentially the

same as in the regenerative method .

11
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3. Numerical Discussion

To determine the amount of variance reduction obtained by simulating

the chain (C , n > 0) rather than (X
e, 

a > 0) we need only compare

the variance terms in the central limit theorems (2.12) and (2.5). This

variance reduction, which wil l  be denoted by R~, is

R~ = 

,2 E
0
[T~ J/E0fS~ 1

2

a /E0
[T

11

which, since E
015~ J = E0tr 11, simplifies to

2 a E [Tfl
R = —  ~

a E0 [-r 11

If a ’ and a are approximately equal then R~ E
0
[r~ J/E0

[r
1I, the

ratio of the expected cycle lengths for the two processes . This suggests

that S be made as large as possible, however by doing so the amount of

work needed to compute R, h and d may be prohibitive . Each transition

in the chain (C
e, 

n > 0) corresponds to E[SIC J transitions in the

chain (X~, a > 0), so that we expec t transitions for (C , a > 0) to

be relatively expensive to generate. The stopping time S should there-

fore be chosen so that K, h and d may be readily computed and the

sample paths of (C
e, n > 0) may be easily generated . We give several

examples of such stopping times.

12
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(3.1) EXAMPLE. Constant S.
rn-i m-l

If S = in
, 
a constant, then h ~ 

0
pflf , d = ~ 0

P’~e and
n=O n=0

K is given by

0P~

’
j J~~~~0

r
~
.

1-  ~ ~~k 
j = 0~~

k~0 ~

If P is relat ively sparse the work involved in computing R, h and d

should not be too great for small values of in. If S = 1, then R =

h = f and d = e, so that this choice of S reduces to straighforward

simulation of the original Markov chain (X , n > 0). If in is small

and if = 0 for m s t  i € E then

rn-i rn-I
~
, a ~

-, nd =  L 0
P e~~ ,~, P e = i n e

n=O n=0

Since

E[T
1

] = 
~~

‘
, 0

P’~e = 
n=O 

0R~
’d ~ 

n=0 
0 = TOE[T~ 1 ,

we expect that R~ I/in. Tables 1 and 2 bear out this speculation for

two birth and death processes, the finite capacity M/M/l queue and the

repairman problem. The repairman prob lem has birth and death parameters

13
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0 < i < s

~
‘1

(n - s-s- i)?~ , 
s < i < n-s-s

(iL  , 
1 < i < c

=

(~Ci~L , c < i < s s - n ,

where n is the number of operating units, s is the number of spare

units, c is the number of repairmen, and A and ~ & are the failure and

repair rates respectively of the units. These continuous time problems

have been transformed into discrete time using the methods of Hordijk,

Iglehart and Schassberger (1976).

(3.2) EXAMPLE. Exit Times of Sets

Suppose E is par t i t ioned  into N~ disjoint blocks B
1; i.

e.,
NB

E = U B
~ 

and B
1 

fl B . = 0, the empty set , for  I 
~ 
j. Let IB~ I

i=O
denote the number of elements in B . and assume that 

~ 
< ~ . Define

1 i

the stopping time S
B to be the f i r s t  exit time from the initial block;

i.e.,

S
B 

= inf (n > ~ X 
~ 

B
k) for € B

k

• Let f
1 

= ( f ( J) ,j € B
f
), e~ 

= (e(j) : 3 € B
i
) and ~~~~ = : k € B1,

2 € B
3
). Let ~~ denote the identity tnar~ ix of size 1B 11 by

Then

l1~
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h . = (I  . - P. )
_ l 

f~ii Oil  1.

d = (I - P. )
_ l 

e.
1 ii O i i

and

0 , i = j

-1-$ ‘ 
~
1
ii — 0

P1.) oP~3 ‘ ~~

where h
1 = (h(j) : j € B~~}, d1 = (d(j) j € B~) and 0

R~3 
= (0

r~~ : k €

2 € B .). The transition matrix K is found by setting

r.3 = 
0
r~3 , j~~~O

I- > O
r.k ~ 3 = 0.

kEE

The matrix is the block Jacob matrix for solving the set of equations

y = f + 0
Fy (see Varga (1962)). The Narkov chain (C

s, 
n > 0) is the

• same one that appears when using the techniques of Heidelberger (1978).

Tables 1 and 2 give R~ and for the finite capacity N/N/i queue

and the repairman problem respective ly.

(3.3) EXAMPLE. Continuous Time Markov Chains and Semi-Markov Processes.

By applying this technique to continuous time Markov chains, the dis-

• crete time methods of Hordijk, Iglehart and Schassberger (1976) are obtained

as a special case . Let (X e, t > 0) be an irreduc ible , positive recurrent

continuou s time Markov chain with infinitesima l matrix Q = (q.. : 1,3 € E).

15
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Set q
1 

= ~ q
1 (q. = -q.1). Dynkin ’s formula remains valid for continuous

ji~i ~

time Markov chains (with an integral replacing the sum in (2.18)). Define

the stopping time S = inf(t > 0 : X~ ~ X0). 
We then simulate a discrete

time Markov chain (C
a, 

a > 0) with r
13 = q.3/q,, i ~ 3 , h(i) = f(i)/q1

and d(i) = l/q~. Hordijk, Iglehart and Schassberger (1976) have shown

that in this case a’ < o~. These techniques may also be used to reduce

semi-Markov processes to discrete time. Once in discrete time, the method

may be applied again to obtain further variance reductions.

I

I

II
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TABLE I

Variance Reductions, R~ and Rs, for Finite Capacity N/N/l Queue
Obtained by Simulating the Modified Markov Chain :

r = E(X), Return State = 0

Stopping Time S

2 3 S~

.25 .I~26~ .2923 .291i2
.6~3o .51~O6 .51~2Ii

.50 .~59O .3620 .!i4li 1
.6775 .6016 .6661i~

.75 .Ii8l~l .3585 .li037
- •  .6957 .5987 .63~3

.90 .~88S .31i22 .36214
.6991 .5850 .6020

.95 .14893 .3370 .35 10I .6995 .5805 .5925

.99 .11895 .3333 .31429

- 
.6996 .5773 .~ 856

4
* 

Block sizes = (1, 3, 3, 3, 3, 2)

17
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TABLE 2

Variance Reductions, R~ and R~, for Repairman Problem

Obtained by Simulating the Modified Markov Chain:

r = E(X), Return State = 0

Stopping Time S

C 1’

2 3 SB
1 12 .11.676 .3358 .3602

.6837 .5795 .6002

2 6 .Is.597 .3128 .2821
.6780 .5593 .5311

3 -14 .li532 .2950 .21411.7
.6732 .51431 .149147

14 3 .4476 .2821 .211.32
• .6691 .5311 .14932

n = l O

8 =  14

? =  1

* Block sizes = (1, 3, 3, 3, 3, 2)

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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11. . Conc lusions

The variance reduction technique proposed in this paper shows

promise for processes with relatively long cycle lengths. Examples of

such processes may be found in both open and closed queueing networks.

By simulating the modified Markov chain (Ce, ~ � 0) an increased number

of i.i.d. cycles are obtained for a prespecified run length than is

possible with the original chain (X
e, 

a > 0). Assuming that the chains

a > 0) and (X
1~, 

n > 0) are approximately equally variable over

a cycle, this increase in the number of cycles translates directly into

a variance reduction. Since the sample paths of (C , a > 0) will

usually be more expensive to generate than those of (Xe, a > 0), 
the

simulator must be careful to ensure that the variance reduction obtained

is sufficient to produce an overall computational savings. The method

has the best chance of being computationally efficient when the transition

matrix of the Markov chain is relatively sparse.

19
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