
(MV CALIF DEPy Off

_________

END
DATE

cI L t 0

4—78
0OC



i j~2 8  ~~~

_ _ _  ~I~3 2.2

I I I ~
I llIH~!±Uhi ‘ ~ IIIIIi~. OlD

MICROCOPY RESOLUTION T E ST CHA RT
NAt ~ ~~ I~~ ’I A U ,‘A N~ LA DS ~~~~~



-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

4

(~/r±~~~ TTI1y
/

1/ ~ ~~~~~~~~~~~~~~~~~~— yARIANCE REDUCTION JECHNIQUE S FOR TIlE SIMULATION OF ~1A RKOV

JROCESSES , II. MATRIX ITERATIVE ~1ETHOD S . f
/ - 

—-.-—
~~~
.—

~—-~~~
.

by 
- C

~i 
~~ Philip/Heidelberger 0

F
• —~~ Prepared under Cont~~~~i~~~ ~76_

C_,ø578(NR O1~2-~~3)

~~~~ 
Office of Naval Research

Approved for public release: distr ibution unlimited .
Reproduct ion in Whole or in Part is Permitted for any

Purpose of the United States Government

DEPARTMENT OF OPERAT ION S RESEARCH
STANFORD UNIVERSITY
STANFORD , CALIFORNIA

*The research of this author was also partially supported
under National Science Foundation Grant MCS7~ -236~7.

/~;~ 
/
~~~~)



r~ 
-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—~~~~— 

— - —‘——

1. Introduction

In this paper we continue the investigation of variance reduction

techniques for simulating Markov chains that was begun in Heidelberger (1977).

Although a brief review of the notation and results of that paper will

be given here, the reader is assumed to be familiar with the contents of

the previous paper.

Let (X
c, 

n > 0) be an irreduc ible, aperiodic, positive recurrent

Markov chain with finite state space E = (0, 1, ..., N
E) (NE <

and transition matrix P = (Pjj:i,J € E). It is well known that there

H exists a probability distribution 11 = (lr i:i € E) on E and a random

variable X having distribution ii- such that X ~~X. ir is called the

stationary distribution of the Narkov chain (X~, n > 0). Let f be a

real valued function on E and set

(1 .1) r = E(f(X)1 = = 
~ ~~ 

f ( i )
i€E

We shall be interested in finding r for the given function f. To do

so we could solve the system of stationary equations, ir = rrP, and then

find r by app lying equation (1.1). However, if the state space is very

large it may be quite difficult to solve these equations numerically . In

this case it becomes necessary to estimate r via simulation. It is the

efficient estimation of such quantities that is our concern . The techniques

developed here can also be extended to continuous time Markov chains and
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semi-Markov processes by using the techniques of Hordijk, Iglehart and

Schassberger (1976). The reader is also referred to equations (3.19) to

(3.28) of Heidelberger ( 1977) for further details concerning this extension.

As in the previous paper we seek to find functions : E —~~~~~ so

that rv = Irf
~ 

= r for each v = 0, 1, ..., k. By defining

(1.2) 
~~
(N) 

~~~~n=0 
f(X )

it is known that x
~
(N) 

~~~~ 
= r almost surely (a.s.) as N —+~~~~ for each

V. Let be constants such that . -~~~~

k
(1.3) ~~ ~(v )  = 1 .

v=o J :s 

If ~ (N)  is defined by
- 

.‘~~ :

(1. 1
~) ~~ (N)  = 

v=O 
~ (v )  

~~
(N) 

, 

-

~~~~~~~~~

then ~~(N) -.r a.s. as N —
~~~~~~. We now pick ~~ = ~~ *

, 
where minimizes

the asymptotic variance of ~~(N). We previously studied the variance

reductions obtained when the functions £ were chosen to be

(1 .5) f = p
V

f v = 0 , ..., k .

Here alternate mathods for generating multip le estimates for r = ‘rf

are considered in the special case when the Markov chain being simulated

2
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has a finite state space . Once the multiple estimates have been formed,

variance reductions can be obtained in exac tly the same manner as before. - 
-

The functions f~, v = 0, ..., k are now found by partially solving an

appropriate system of linear equations with some matrix iterative pro-

cedure, such as Causs-Seidel, and then estimating the difference between

the true and partial solutions via simulation. The method therefore

combines the techniques of numerical analysis and simulation. Each

different iterative procedure gives rise to different functions and

in some cases to different underlying stochastic processes to be simulated .

These methods are quite similar to what are cousnonly called Monte

Carlo techniques for solving systems of linear equations . Monte Carlo

solutions for these problems were first suggested ~y von Neumann and Ulam

in the 1911O ’s, however the first published paper on this subject did not

appear until 1950 (see Forsythe and Leibler (1950)). There is a vast

amount of literature on Monte Carlo methods and the reader is referred

to the books by Hammersley and Handscomb (196).~), Shreider (1966) or the

survey article by Halton (1970) for a comp lete bibliography .

The motivation and source of prob lems in the classical Monte Carlo

literature are generally quite different from those of stochastic process

simulations. The systems of linear equations in the Monte Carlo literature

typically arise as finite difference approximations to the solution of

multidimensional partial differential equations (this is also the motiva-

tion behind much of the work on matrix iterative procedures). As a

result many of the matrices involved have special properties , such as

being positive definite and symmetric . This type of structure will

3
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generally be absent in the systems of equations which arise in queueing

theory or other areas o f app lied probabil i ty . In addit ion for mos t Monte

Carlo solutions of linear equations, the underlying stochastic process

to be simulated arises in a rather arbitrary fashion. Thus simulation

of ten seems to be an unnatural solution techniqie for these prob lems. On

the other hand, the equations appearing in applied probability have an

obvious probabilistic interpretation so that if the standard numerical

methods fot solving equations are difficult to apply , simulation then

becomes a very natural solution technique. It is emphasized that simula-

tion should be used as a last resort; i.e., only after all nther methods

prove computationally inefficient. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2 . I te ra t ive  Methods

In this section a class of variance reduction techniques for

simulating finite state space Markov chains are described . Pick some

state, called the return state, in E, say 0. Set T
0 

= 0 and for

in > 1 let T be the mth time the Markov chain (X n > 0) visits— m n ’ —
the return state 0. Call the time between T and T -l the mth

rn-I m

cycle and let T = T - T be the length of the mth cycle . Becausein m rn— I

the Markov chain is assumed to be irreducible and positive recurrent

there will be, with probability one, an infinite number of visits to 0

and the expected time between consecutive visits is finite. For any

random variable Y let E
~EY1 denote the expectation of Y given that

X0 = i. Define

T1— l

(2.1) y(i) = E~[ 
E f(X )]
n=O

and

T 1-l
(2 .2) t ( i)  = EiF T i~ = E

~[ ~
n=O

Let y and t denote column vectors with ith entries y(i) and t(i)

respectively . It is then known (see Crane and Iglehart (1975)) that

(2 .3) r = 7rf = y(O)/t(O) .

Algebraic expressions for y and t have been given in Hordijk, Iglehart,

and Schassberger ( 1976) . These expressions will form the basis of the

variance reduction techniques.

5
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For any square matrix A let p (A) denote the spectral radius of

A; i.e., p (A) is the modulus of the largest eigenvalue of A . By

Theorem 3.7 of Varga (1962) the matrix I-A (where I denotes the

identity matrix) is nonsingular if and only if o(A) < I. If p (A) < 1

then

(I-A)~~ = 

~~~ 

A~ ,

and the infinite series on the right hand side of the equality converges

(eleme ntwise). Now introduce the taboo probabilities

0 for j = O

Opij =

for J~~~O -

and let 0P be the matrix with entries 0p~~
. P is nonnegative, irreducible

and ~ p~~ = I for all i so that by Lennna 2,5 of Varga (1962),
JEE

p(P) = 1. Since 0 < 0P < P with < p~0 for some i (because P

is irreducible) Lenzna 2.3 of Varga (1962) implies that p(0P) < 1.

Therefore (I-0P) is nonsingular and

(i-0P)~~ E 0P~ .

n=O

6
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We are now ready to give expressions for y and t;

(2 .I~) = 

n=O 
~~~~ = (I-0P)~~ f

Furthermore y satisfies the set of linear equations

(2 .5) y = f + 0Py

If f = e, a vector of ones, we obtain expressions for t from (2.!i.)

and (2.5).

Equations of the form (2.5) have a very special structure that

lend themselves to at least two different methods of solution. The

first is matrix iterative procedures. A coinprehensives study of these

methods is given in Var ga ( 1962) . The second approach is Monte Carlo

methods or simulation. In fact it was for equations of exactly this

form that von Neumann and Ulam first suggested using simulation.

The approach taken here is a middle ground between these two methods.

Suppose we have done k iterations of some matrix iterative procedure

in an attempt to solve (2.5). Let y~
’
~ be our approximation to y after

the kth iteration and let €k y_yk• €
k is then the error in the partial

solution A function can be defined so that

T - l
r ’

(2 .6) c ( i )  = E .[ ~ gk( X )
n=O

7 
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We can then obtain an estimate of the error E
k
(O) by setting X0 = 0,

simulating a number of independent cycles, and summing the function

k
over each cycle. An unbiased estimate, e (0), for € (0) can be obtained

k “kand by setting y (o) = y (0) + € (0) we then have an unbiased estimate

for y(O) (since y(0) = ~k(0) + ~
k(Ø))~ As more iterations are performed;

as k increases, we expect to approach y and 8k 
to approach

0. Therefore the variance of the estimate for y, ~
k
(0), is also expected

to approach 0. This will indeed be the case for any convergent iterative

method, however the matter is complicated by the fact that we are really

interested in estimates of r = y(O)/t(O), not just estimates of y(O).

This issue will be addressed later.

We can improve this procedure (at the cost of additional computer

storage) by saving the functions g0, ..., g~, obtaining k+l estimates

for r and then taking the minimum variance linear combination as before.

More specifically let g0, ..., g~ each satisfy equation (2.6). Define

by

T -l

(2.7) Y (v) = y
V
(0) + 

n T ~ _ 1 
g~(x ~ )

then E0(Ym(V)
] = y(O). Since during any cycle there is only one index

n for which X = 0 (that index is T 1 
for the mth cyc le) we note

that

T -1

~ f(X )m V nn=Trn- I

8
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where is defined by

(~~v
0) + ~

V
(0) for i = 0

(2.8) f
V

( i)  =

for i ~ 0

From here we proceed exactly as before. Set Z (V) = Y (V) - r~~, then

E
0
(Z(Vfl = 0. Let

(2.9) °i j  = E
o

[Z
~
(i) Z (j)] , 0< i, j  < k

and let E be the matrix with entries j  .. Because E is finitek ij

~1j 
< ~ for all i and j. E~ is a symmetric positive semidefinite

matrix, which we will assume is positive definite.

Suppose now that X
0 

= 0 and we simulate the process for M

(independent) cycles. Let

M
(2.10) r~(M) = E Y~(v) /  

~ 
‘
~rn 

v = 0, ..., k
m=1 in= l

Then r
~
(M) -~- r a.s. as M —~~~~ . Let B be constants summing to one

and define

k
(2.11) r~(M) ~ ~( v )  r

~
(M)

v=O

9



Then r~(M) —* r a.s. as N —
~~~~~ and we can form confidence intervals

for r based on the central h. it theorem

if~.! (r (M) - r)
(2 .12) a (~~/E ( - r  ~ =~N(0,l) as M — ~~

~~‘ 0’ I~

where

k k
= 

~~ ~~~~ 
= ~ ~( i)  °ij  ~(i)i=0 j=0

is n~w chosen to minimize a~(~) and as before

(2.13) = E ’/ ~..l

(2.l1~.) c~ (~*) = l/e E~~

~ where e is a vector of ones. Let R~ = ~~(~*)/ a00, a measure of the

amount of variance reduction . This technique can also be app lied to the

point estimate ~~ (N) defined in ( 1 5 ) .

We now derive expressions for the functions g.~, (
and also for

by equation (2 .8)) for a number of matrix iterative methods . We

have studied the Jacobi, Gauss-Seidel (G-S) and successive overrelaxation

(SOR) methods in addition to their block analogs. These methods seem to

be the most popular of the iterative procedures when the problem lacks

special properties, such as the transition matrix being symmetric or

positive definite.

10 
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Jacobi’s Method

We week the solution, y, to y = f + o’~Y . Because p (0 P) < I

Jacobi’ s method is known to converge ( t o  y) for any in i t ia l  y° ( see

Theorem 3.5 of Varga ( 1962)). Jacobi’ s itera ti ve procedure is defined

by

(2. 15) ~k f ÷ ~~~~ k_ l k > l

with y ° given . This may be wri t ten componentwise as

NEk(.) = f( i) + 
~~~~ o~~3=0

Sta rt ing from equation (2 .15) we find

( 1~~~ ) k 
= + ~~k-l 

-

= (I- 0PY
1f + (I-0P)~~ [ p ( ~~k~ l 

-

k -l k-i k
y = y + (I-0P) [0P(y - y ) )  

,

the last equality being true by equation (2 .Li.) . For k >  1 define

by

(2 . 16) = 
_ p(~~k~ l 

- ~k)

then

11
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y(i) = yk(i) + E
i[n~
:
o 

Ek~~n)]

which is the desired result. If y
0
(i) = 0 for all i € E, then the

formulas simplify to

k k-I
y = ~ 0

pflf , k > l
n=0

and

~kf 
, 

k > 0

Gauss-Seidel

The Gauss-Seidel iterative procedure can be considered as an

acceleration to Jacobi’s method. In Jacobi’s method only the values of

1 
are needed to generate yk, where-as in G-S the most recently

k . . . k .available values y (j) for j < i are used to find y (i). By Theorem 5.3

of Varga (1962) it is known that C-S converges at a faster asymptotic

rate than Jacobi’s method . The basic G.-S iteration is defined by

i-l 
N
E

(2.17) ~k(~) = f(i) + ~ ~
, ~k(~ ) + 

~~~ ~~~ 
, 

k> 1
j=0 j=i

where y
0 

is given and sums over empty sets are considered to be 0. From

equation (2.17)

yk(i) = f(i) + 
~~~ 

yk(j) + 
~~ 

~~~(~
k~l(~ ) - y

k( j))

12

iL.~ . .- 
-



Define 
~~ 

by

NE
(2.18) g~(i) = - 

~~ 

~~~(~
k l

(J) — ~
k
(~)) i € E

Then in matrix notation

ky = f + 0Py 
~~~~~~~~~

k
(I-0P)y = -

y k 
= (I-0P)~~~f - (t - 0P)~~ ~~

k -ly = y - ( I - 0P) ~~

Therefore

T-l
r 1

y( i )  = y”(i)  + E.I ~L n=0

As this is the form needed to app ly the variance reduction technique, the

appropriate function 5k 
for C-S is given by equation (2.18).

Block and Point Iterative Methods

We now turn to the study of block and point iterative methods.

These methods have the interesting property that the underlying Markov

ch a in to be simulated is generally not the same as the original Narkov

chain, (X , n > 0). The new Markov chains arise as a special case of the

method to be presented in a subsequent paper . Suppose we are again trying

13
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to solve y = f + 0Py. We now partit ion the state space into disjoint

subsets, or blocks, Bi, i = 0, ... , NB; i.e., E = B~ and B~ r B~ =

the empty set, for i 
~ .~

. For convenience we shall assume that B
0 = (0),

although this may be relaxed using the techniques of the forthcoming paper .

We now partition f and y into ( f 0, f 1, 
~~~~~ 

f~ ) ‘  and
B

(y0, y1, ..., y~ )
‘ where and y~ consist respectively of elements

f(j) and y(j) 

B

f or j € B~. Similarly 0P may be partitioned so that

~~~~~ 

::: I::::
)

0 N~O 0 N~l 0 NB
N
B

where 
~~~ 

= 

~o~
’kt k € B1, 2 € B .). Our system of equations then

becomes (for the ith block)

N B
(2 .19) ‘~. 

= ~~~~
. 
+ 

~~~ ~
P
ij Yj

Le t t ing 
~~~ 

denote the identity matrix with the number of rows and

columns equal to the number of elements in the ith block, equation (2.19)

can be simplified;

~~lIIk. — - - -—
. 

11~ 

- -
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(I~~ - 0P .~~)y 1 
= + 

~ 
0~~~ ~~

(2.20) = (i~~ - 0
P~1) 

f~ + “ii 
- 
0
P
11) ~~~ 

Yj

Define h1 
and 

0
R~~ by.

(2.21) h1 
= (I

~~ 
— f

and

0 for i = j

(2.22) o
R
ij =

(I .. — 

0
P
11) 0

P~ . for i 
~ 
j

Equation (2.20) then becomes

F- NB
(2.23) y~ = h. ~ 0

R
1~ 

y.
•j=O

or if is the matrix with elements 0
rjj which has been partitioned

as

15
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R R ... R000 001 O O NB

= 

“a 

0
R
~~

B)

ORN BO °
‘
~ B~ 

O
RNBNB

and if h = (h0, 
~~~~
‘ 

~~B 
then (2.23) may be rewritten as

(2.21i.) y = h + 0
Ry

If we now perform Jacobi (G_S) Iterations on equation (2.21i.) we obtain

the block Jacobi (G-S) iterative procedure.

We now turn to the probabilistic interpretation of the matrix 0R .

As was done with 
0
P, partition P in to the b locks B~ , i = 0, ..., NB,

and let = 

~‘k2 k € 
~~ 

2 E E
s

) . Define

P
u 

i = O

(2 .25) R~~~= 0 i,~~0, i = J

(i~~ - P )~~ ~~~ i ~ o, i. ~ 
j

~
1ii 

- will be nonsingular because P is irreducible) and let

R = (R ,. : 0 < i, j < N e) . It is then easy to show that the matrix R

is a transition matrix; i.e., if R has elements r
~j 

for i, J € E,

then r . > 0 and ~ r . = 1 for all i C E. The matrix of taboo
i j —  j€E

16
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probabilities obtained by setting the 0th column of R equal to 0 and

leaving R otherwise unchanged is then equal to 
0
R. Define the stopping

time S by

1 if X
0 -~~0

S =

in f (n>O:X
~~~~

Bk) if X
O

E B k and k ,~ O 5

One can then show that

(2.26) ~~ = P (x~ = 1)

and that

(2.27) h(i) = E1{E 1(x ) ]

From equations (2.21i.), (2.26) and (2.27) we see that if (C
a, 

n > 0) is

a Markov chain with transition matrix R and if T’ is the mth time
in

the process (C
a, 

n > 0) enters 0, then

T~
_l

y(i) = 

~LI n=O h(C~)~C0 = i] .

Similarly if d(i) = E (SIX0 
= i] then

T 
~~

- I

t(i) = 4 E d(C )JC0 
= i] .

n=O

17
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The numbers d( i) m ay be obtained from equation (2.21) when f = e.

Define

T’ .- l.
E d(C )

n=T’
in— i

and

V-I

‘i’(v) = ~V (0) + 
n T~_ 1 

~~( C )

Setting Z~(v) = Y~(v) - r~~ we have E
0
[Z’(V)] = y(0) - rt(O) = 0.

Let

r~,(M) = 

m~l 
Y~ (v )/ ~~ ~~

We can now proceed as before (inserting primes into the formulas (2.9)

and (2.11) - (2.lli~) whenever necessary). The important thing to notice

is that we are now simulating the Markov chain (Cs, 
n > 0) with its

transition matrix R rather than the Markov chain (X
e, 

n ~ 0) with

its transition matrix P.

Block Jacobi

- 

- Let h and 
0
R be defined in (2.21) and (2.22). With

given, the block Jacobi iterations are

k~~~1 .

18

L _- -

~~~~~~

-- -- .-- - - . 
_ _ 

_ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~
--

~~~~~~ r - ‘-r----~--~ —- ~~~~~ ‘

The function 
~~~~~~ 

which is derived exactly as in Jacobi’s method, is given

by

(2.28) = - 

0R(y
k
~~ - ~

k
)

Block Gauss-Seidel

Let y° be given and let h and be defined in (2.21) and

(2.22). The basic block G-S iteration is

i-I
= h(i)  + 

~ ~~~ 7
k
(~) + E ~~~~ 

y~~
1 j

j=O j=i

and the function 5k is defined by

(2 .29) ~~(i) = - 

~~~ 

~
r
i~

(Y
~~~

(i) -

If the blocks are chosen to be singletons; i.e., if B~ = (i), then

the methods are called point Jacobi and point Causs-Seidel. The convergence

of these block iterative methods can be shown by using Theorem 3.13 of

Varga (1962). Again the important thing to emphasize about the block

methods is that an entirely different Markov chain must be simulated to

apply the technique.

Successive Overrelaxation

Successive overrelaxation may be thought of as an acceleration

to Gauss-Seidel. Let o, the relaxation factor, be given. In order for

19
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SOR to converge it is necessary that 0 <w ( 2, (see Theorem 3.5 of

Varga (1962)), although this is not a suffic ient condition (co I

corresponds to G-S). However, the method does converge for 0 <co

where 1 <cu < 2. Actually for our purposes it is not really crucial

that ~~~ be restricted to this interval since for any value of a~ and

any finite number of iterations k, the procedure defines valid functions

for the simulation. Much work has been done on trying to find the

optimum relaxation factor, u~ ; i.e., trying to find that value of co

which maximizes the asymptotic rate of convergence of the iterative

procedure. In our case, finding is not so critical since we are

interested in minimizing a variance and not in maximizing the rate of

convergence of to y, two entirely different matters. What would be

more appropriate here is, for a fixed number of iterations k, to find the

value of cu, say w*, that minimizes the optimal variance, a~(~*). To do

so theoretically would be very dif f icu lt indeed so it is recommended that

u~ be estimated from relatively short preliminary simulation run s .

The SOR iterative method requires the diagonal elements of 
O
P

to be 0. If 
~~ 

> 0 for some i, partition E into blocks B
1 = (i)

as in the previous section. As a special case of equation (2 .25),  we

obtain a transition matrix R with entries

ç ~ 1 0

0 i~~~O, i = j

‘p .(~ i-p.. 
i~~~0, i~~~j

20 - 
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and let 
0R be defined to be the matrix with entries

0 j = O

rjj J~~~O .

has all diagonal elements equal to 0. Let h be defined as

f(i) 1 = 0

(2.30) h(i) =

~~~~

which is a special case of equation (2.21). Then y = h + 0
Ry, and we

are able to perform SOR iterations on this system of equations. With

y° given, the basic SOR iteration is

y
k
(i) = (1-co) y

k
~~(i) + 4h(i) + ~~~~~~~~~ y~~j~ + 

~E 

0
r.. y

k_l
(J)J

j=O j=i+i 3

To obtain g
k
(i) write

yk(j )  = ( l-co) ~k~ 1(j )  + 4h(i) + ~~~ ~k(~ ) + 
J=i:l 

0
r.j(y~~

1
(j)~y

k
(j))]

k k-i k
y = (l-w) y + w[h + 0

R y + bk

where

21
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NE
(2.31) b

k(i) = ~~~ 

0
r~~(y

k_1
(j) - y

k( j) )
j = i+1

Further simplification yields

I
— l= y - (I - 0R) ~~~~

with defined by

(2.3a) = - (b
k + (y

k_l 
y
k) ]

We then have

V-i

(2.33) y(i) = Y
k
(i) + E[ 

n O  k n O  = ~]
where (Ca, 

n .? 0) is a Markov chain with transition matrix R. Multiple

estimates for r are then produced in the same manner as for the block

iterative methods (d(i) is obtained from (2.30) with f(i) = 1). For

block SOR formulas (2 .32 )  and (2.55) remain valid provided h and

are defined as in (2 .21) and (2 .22) . Theorem 3.13 of Varga ( 1962) implies

that block SOR converges for 0 < co < 1, and therefore by the continuity

of eigenvalues for 0 <co <co where I < c o  < 2 .max —
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3. Numerical Considerations

In this section we discuss some of the problems that might be

encountered in the implementation of these methods and present numerical

results for a particularly simple Markov chain, the queue length process

in a finite capacity N/N/I queue .

The first problem that one faces with these methods is choosing a

return state . As Table 1 indicates, the variance reductions can vary

• dramatically as the return state changes. This is in contrast to the

Vprevious method of picki.n g = P f to generate the mult iple  estimates

for r. For that particular choice of functions, the variance reductions

can be shown to be independent of the return state. Preliminary simulation

runs could be used to determine a good return state. It seems likely that

frequently occuring states (or equivalently states with relatively short

expected cycle lengths) will be the best candidates for return state.

The iterative methods also assume that the states are ordered in

some manner . Very f requent ly in simulations each State represents a

vector, e.g., a state may represent the queue lengths at various service

centers in a network of queues. Since there are many ways to order the

states and each different ordering gives rise to dif ferent functions

~~~~ ~~ 
(and therefore different variance reductions), the simulator

must take care to use an ordering that will give good variance reductions.

Again this prob lem is not encountered when the simulator chooses the

functions f = pVf; in that case the order of the states is irrelevant.

Tables 2 through 6 give calculated variance reductions for estimating

the expected stationary queue length in the finite capacity N/N/I queue

23



for a variety of the methods discussed (this continuous time problem has

been transformed into discrete time using the techniques of Hordijk,

Iglehart and Schassberger (1976)). The block Gauss-Seidel method (Table 6)
gives the best variance reductions for all values of p, the traffic

intensity. The figures for this method include the variance reduction

that is obtained by simulating the Marko’, chain (C , n > 0) rather than

(Xe, n ~ 0). That variance reduction is reflected in the R~ values

and will be discussed at greater length elsewhere. Due to the work involved

in forming the transition matrix for the chain (Ci,,, n ~ 
0), block C-S

requires more computation to be done before the simulation than the other

methods. These extraord inarily good results for block C—S may not be

typical because of the very special structure of the N/N/i queue. Observe

that each of the other methods is capable of producing substantial

variance reductions, although none dominates the others for all values

of p. It is perhaps somewhat surprising that for SOR (see Table 5), the

value of w does not have that great an impact on the variance reductions .

This is probab ly because the variance reduction results primarily from

the high correlation between the estimates ~0(N), ... , r~(M) and not

from how well the iterative procedure performs; i.e., not from how close

y
k is to y. In fact for p .9 and y° = 0 G-.~ requires over 200

iterations to make j!y’~-ylI/ Ily Ij < 0.01 where ll • lI denotes the Euclidean

knorm. For small values of k, y and y tend to differ substantially .

The major difficulty with using these methods will b! computing

and storing the functions Unless the transition matrix is quite

sparse the amount of work involved in computing f0, 
~~~~~~ ~k 

f or even

2~
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small values of k will probab ly be too great to justify the use of the

methods. The work involved in generating f = 
~~~~~ is slightly less

than that required to form f for C-S. To perform k C-S iterations

requires almost exactly the same amount of work as forming f, Pf , ... ,

However at the end of the kth G-S iteration one must also calculate
N E

~~ yk(j) in order to compute f
k(i). For the block methods additi onal

j=l

computation must be done to form the necessary transition matrix R and

functions h and d, Once these have been formed the work needed for

block Jacobi (G—S) is about the same as for Jacobi (G-S).

Since all of the iterative methods we have studied are convergent

(for at least some values of co in the case of SOR), ~
k 

—~-y as k —~~~~~.

By examining the functions for each method it is seen that —
~ 0

as k — co . Recalling that

c~ = var( Z (  k ) )  = var(Y ( k) - r T )

= var(y (o) + ~~~ g~(X) - rT ) ~
n=Trn-I

it can be shown that —
~ r~ var( Tm) ,  which will in general be positive .

In fact for many Markov chains r2 var (T ) > due to the high positive

correlation between Y (O) and r . Thus for large values of k, rk(M)

tends to be a more variable point estimate for r than r
0(M). In fact

for the iterative methods we have not been able to show that

converges to 0 as k -~ co~ This again contrasts to the case when

= ~
kf where, for a finite state space, and a~(~*) both converge
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to 0. In applications, however, k will usually be small so that for

the i terative methods this proper ty  should not prove troublesome.

We have so far considered performing iterations on the set of

equations y = f + 
0
Py, which enables the formation of multiple estimates

for the numerator of r = y(O)/t(O). It is also possible to apply the

method to the equations t = e + 0Pt , thereby allowing the formation of

multip le estimates for the denominator of r, Letting t~
’ denote our

approximation to t after v iterations we could find functions e
~

such that

T1-l

t(i) t~
’(i) + E.{ 

n O  
e(X )]

Let

T -l

tV (o) + 

n=T 1 

e
~
(X)

then E0(T (V)) t(O). Had we done k
1 

and Ic2 iterations on y and t

respectively we could obtain (k1+l) (k2+l) point estimates, r~3
(M), for

r where

M N
r..(M) = 

~ ~~~~ E T (j)
in= l m=l

Let

k1 k2
~~ 

~(i ,i) =

i=O j=0

and define
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k
1 k2

r
B(M) = ~ E ~( i , j )  ri.(M)

i=O j=0

We could then pick the constants ~(i,j) to minimize the asymptotic

variance of r~(M). To carry this out in practice we would need to

estimate a (k 1+l)(k2+l) by (k1+1)(k2÷l) 
dimensional covariance matrix.

Because the estimates r~ .(M) will usually be quite highly correlated,

this covariance matrix is likely to be very ill conditioned, even for

modera te values of k
1 

and k2. Thus ; ~~*
, 
and a2(~*) are likely

to be dif f icul t  quantities to estimate. Table 7 gives variance reductions

for the finite capacity N/N/i queue when k1 = 2 and k2 = 0, 1, 2 for

the Gau ss-Seidel i terat ive procedure . For large values of p , the addi-

tional variance reductions obtained by performing iterations on t are

hardly enough to justify the use of multiple estimates for the denominator,

particularly considering the probable difficulty in estimating the

covariance matrix. Of course for different functions f it may be more

appropriate to use multiple estimates for the denominator rather than

the numerator of r (for example in estimating the stationary probability

of a particular state).

- 
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TABLE 1

Effect of Return State on Variance Reductions for
Finite Capacity M/M/ l Queue Using Gauss-Seidel:

r = E(X) , y
0 

= 0

2 2 2
R
5Return

p State R
1 

R
2

.5 0 .0720 ,oi~o3 .02(77
.2682 .2021 .l4.~O

.5 2 .2222 .1376 .0557
.1i7 13 .3709 .2361

.5 .5756 .5680 .56714
.7587 .7536 .7532

.5 6 .5225 .50314 .5002
.7229 .7095 .7(77 3
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TABLE 2

Variance Reductions for Finite Capacity H/Mu Queue Using

= p
V
f : r = E(X)

p R1 
R2

.25 .1168 .0292 .0073
.31417 .1709 .08514

.50 .23141 .1121 .0524
.li.838 .33147 .2288

.75 .3328 .114140 .0665
.5769 .37914 .25714

.90 .6050 .2659 .11148

.7778 .5 156 .3588

.95 .6880 .31425 .16(77
.8294 .5852 .4009

.99 .714OIi~ .14056 .20147
.8605 .6369 .14525
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TABLE 3

Variance Reductions For Finite Capacity M/M/l
Queue Using Jacobi’s Method :

r = E(X), y
0 

= 0, Return State = 0

2 2 2
— 

R
1 R

2 R
3

p • R~

.25 .1168 .0291 .0(773
.3417 • . 17i0 .0853

.50 :23141 .1289 - .06145
.14838 .5590 .25140

.75 .3332 .2029 .15714
.577 2 .45014 .3967

.90 .6043 .2772 .11468
.77714 .5266 .3851

.95 .6878 .51465 .1732
.82914 .5886 .14161

.99 .71405 .140148 .2087
.8605 .6362 .4569
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TABLE 14

Variance Reductions for Finite Capacity M/M/1 Queue
Using Gauss-Seidel:

r = E(X), y
0 

= 0, Return State = 0

R~ R~ R~

p R
1 

R2 
R
3

.25 .0099 .0015 .0002
.0997 .0390 .0121

.50 .0720 .01408 .0207
.2682 .2021 .11440

.75 .2720 . 11497 .08 13
.5215 .3869 .2851

.90 .5939 .3881 .1834
.7706 .6230 .4283

.95 .6789 .47914 .2414
.8239 .69214 .4914

.99 .7521 .~4146 .2963
.8556 .7380 .514143
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TABLE 5

Variance Reductions for Finite Capacity M/M/l
Queue Using SOR:

r = E(X), y
0 

= 0, Return State = 0

2 2
i R~ It

3

p It
1 R2

.5 .75 .1217 .0341 .o168
.31189 . 18147 . 1296

.5 1.00 .0720 .014.08 .0207
.2682 .2021 . 140

.5 1.25 .0268 .02116 .0212
.1638 .1567 .11455

.5 1.50 .0151 .0080 .oo~6
.1230 .0893 .07147

.5 1.75 .1096 .0261 .0091
.3310 .1616 .0955

.9 .75 .595 1 .34814 .16143
.77 14 .5905 .140514

.9 1.00 .5939 .3881 .18514
.7707 .6229 .11.282

.9 1.25 .5987 .4579 .2155
.7738 .6618 .46142

.9 1.50 .61714 .5007 .2686
.7858 .7076 .5 183

.9 1.75 .65914 .5786 .35147
.8120 .7607 .5955
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TABLE 6

Variance Reductions for Finite Capacity
Queue Using Block G-S:

r = E(X), y° = 0, Return State = 0, Block Sizes = (1,3,3,5,3,2)

R~ R~ R~ R~

p R
0 

R1 
It
2 

R
3

.25 .29112 .0003 1.22 x 10’~ 4. 17 ~
.5424 .0172 .0055 .0020

.50 .4441 .0075 .0026 1.32 x lO~~
.66611. .0864 .0512 .0056

.75 .1l.0y~’ .0116 .0112 1.36 x

~~~~ .1080 .1061 .0117

.90 .3624 .0397 .0133 .0015
.6020 .1992 .1155 .0360

.95 .35 10 .05145 .0127 .0052
.5925 .2331 .1130 .0567

.99 3429 .0662 .0127 5.23 x 10~~
.5856 .25711. .1126 .0072

33
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TABLE 7

Variance Reductions For Finite Capacity M/M/1 Queue
Using Multiple Estimates for Numerator and Denominator and G-S:

r = E(X), y
0 

= 0, t
0 

= 0, Return State = 0

R(2,0)
2 

R(2,l)
2 

R(2,2)
2

p R(2,0) R(2,l) R(2,2)

.25 .0015 2.80 x 10~~ 2.78 x l0~~
.0390 .0053 .0052

.50 .011.01 .0092 .0033
.2003 .0961 .0579

.75 .111.98 .1238 .1237
.5870 .3518 .3518

.99 .5448 .5566 .5 196
.7381 .7326 .7208

R(k1,k2)
2 

= Variance reduction when k1(k ) G-S
iterations are performed on t~e numerator
(denominator)
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4. Reconroendations

We have presented a class of variance reduction techniques for

estimating functionals of the stationary distribution of Markov chains.

The methods all require additional computation to be done both before and

during the simulation, but if the variance reduction obtained is large

enough an overall decrease in computation can be achieved. The methods

are likely to be computationa lly efficient when the transition matrix of

the Markov chain is relatively sparse. It is impossible to say a priori

which method will yield the best variance reduction for a given Markov

chain that is to be simulated . The simulator is advised to experiment with

the methods on short preliminary runs to get estimates for the variance

reductions . Based on these estimates a particular method (or methods,

one need not be limited to only one method) could be chosen . If pre-

liminary experimentation is impossib le it is then suggested that the

functions f = p”f be used to generate the multiple estimates. While

this may not always produce the best variance reductions possible, it is

likely to be the most reliab le and easily implemented method. The

reliability of this method stems from the fact that the variance reductions

are independent of the manner in which the states are ordered and which

return state is chosen for the simulation.
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Abstrac t

\- 

Let n > 0~ be an irreducible, aperiodic , Markov chain with
(

t

finite state space E, transition matrix P, and stationary distribution Ir.

Let f be a real valued function on E and define r = ,rf. A method of

reducing the variance of simulation estimates for r is presented . The

method combines the techniques of numerical analysis and simulation by

partially solving an appropriate system of linear equations using some

matrix iterative procedure and then estimating the difference between the

true and partial solutions via simulation . After k iterations of the

iterative procedure, functions f~, V =  0, ... , 
k are defined so that

r = for each V . Let x (N) 

~ 

f(X )/(N+l) and

k ,~ k
x~(N) = ~ ~(v) x (N) where ~ ~(v) = 1. Then x~~~~(N)  —~ r a.s. as

v=O V v=O

N -s~ and ~ is chosen to minimize the asymptotic variance of x~(N).

Numerical results for a simple queueing model are presented .
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