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1. Introduction

In this paper we continue the investigation of variance reduction
techniques for simulating Markov chains that was begun in Heidelberger (1977).
Although a brief review of the notation and results of that paper will
be given here, the reader is assumed to be familiar with the contents of
the previous paper.

Let {Xn, n > 0} be an irreducible, aperiodic, positive recurrent
Markov chain with finite state space E = {0, 1 ... NE) (NE < w),
and transition matrix P = [pij:i’j € E}. It is well known that there
exists a probability distribution 7 = [wi:i € E}] on E and a random
variable X, ha?ing distribution 7, such that Xn =>X. w7 is called the

stationary distribution of the Markov chain (X , n > 0}. Let f be a

n’

real valued function on E and set

(1.1) r=E£(X) =7f = % L < 4 T

icE
We shall be interested in finding r for the given function £, To do
so we could solve the system of stationary equations, 7 = TP, and then
find r by applying equation (1.1). However, if the state space is very
large it may be quite difficult to solve these equations numerically. 1In
this case it becomes necessary to estimate r via simulation. It is the
efficient estimation of such quantities that is our concern. The techniques

developed here can also be extended to continuous time Markov chains and




semi-Markov processes by using the techniques of Hordijk, Iglehart and
Schassberger (1976). The reader is also referred to equations (3.19) to

(3.28) of Heidelberger (1977) for further details concerning this extension.

As in the previous paper we seek to find functions fv : E-SR so

that r =7f =r for each v =0 1 ... k. By defining

N
o 1
(1.2) xV(N) g T | 0 fv(xn) 5
n=0

it is known that ;v(N) SE =¥ almost surely (a.s.) as N 5o for each

v. Let g be constants such that

ACC 'Q_::‘“ foe
K one
(1.3) T B(v) =1 .
=i WS
If % (N) is defined b BY
o i | DSt e
o, = ~ _.-_‘?W_ = |
(1.4) xa(N) = L B(v) x,(N) : ﬁ ; |
v=0 ! ‘

£
3

2 ulak

then ;a(N) -r a.s. as N -o. We now pick B = p*, 6 where @* minimizes
~N
the asymptotic variance of xB(N). We previously studied the variance

reductions obtained when the functions fv were chosen to be

(1.5) £ =P ¥l oo W

Here alternate m2thods for generating multiple estimates for r = «f

are considered in the special case when the Markov chain being simulated




has a finite state space. Once the multiple estimates have been formed,
variance reductions can be obtained in exactly the same manner as before.
The functions fv’ v=0, ... k are now found by partially solving an
appropriate system of linear equations with some matrix iterative pro-
cedure, such as Gauss-Seidel, and then estimating the difference between
the true and partial solutions via simulation. The method therefore
combines the techniques of numerical analysis and simulation. Each
different iterative procedure gives rise to different functions fv’ and
in some cases to different underlying stochastic processes to be simulated,

These methods are quite similar to what are commonly called Monte
Carlo techniques for solving systems of linear equations. Monte Carlo
solutions for these problems were first suggested by von Neumann and Ulam
in the 1940's, however the first published paper on this subject did not
appear until 1950 (see Forsythe and Leibler (1950)). There is a vast
amount of literature on Monte Carlo methods and the reader is referred
to the books by Hammersley and Handscomb (1964), Shreider (1966) or the
survey article by Halton (1970) for a complete bibliography.

The motivation and source of problems in the classical Monte Carlo
literature are generally quite different from those of stochastic process
simulations. The systems of linear equations in the Monte Carlo literature
typically arise as finite difference approximations to the solution of
multidimensional partial differential equations (this is also the motiva-
tion behind much of the work on matrix iterative procedures). As a
result many of the matrices involved have special properties, such as

being positive definite and symmetric. This type of structure will




generally be absent in the systems of equations which arise in queueing
theory or other areas of applied probability. In addition for most Monte
Carlo solutions of linear equations, the underlying stochastic process

to be simulated arises in a rather arbitrary fashion. Thus simulation
often seems to be an unnatural solution technique for these problems. On : |

the other hand, the equations appearing in applied probability have an

obvious probabilistic interpretation so that if the standard numerical i
methods for solving equations are difficult to apply, simulation then

becomes a very natural solution technique, It is emphasized that simula-
tion should be used as a last resort; i.e., only after all other methods

prove computationally inefficient.
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2. Iterative Methods

In this section a class of variance reduction techniques for
simulating finite state space Markov chains are described, Pick some

state, called the return state, in E, say 0. Set To = 0 and for

, n >0} visits

m>1 let Tm be the mth time the Markov chain [Xn

the return state O. Call the time between Tm- and Tm-l the mth

1
cycle and let Tm = Tm - Tm—l be the length of the mth cycle. Because
the Markov chain is assumed to be irreducible and positive recurrent
there will be, with brobability one, an infinite number of visits to O
and the expected time between consecutive visits is finite. For any

random variable Y let Ei[Y} denote the expectation of Y given that

X = i. Define

0
T,-1
2.1 i) = E
(2.1) O | I f(x,) |
and
T,-1
1
{2.2) t€(i) = Ejl71 = Ei[ IEO 1] .

Let y and t denote column vectors with ith entries y(i) and t(i)

respectively. It is then known (see Crane and Iglehart (1975)) that

(2.3) r = vf = y(0)/e(0) .

Algebraic expressions for y and t have been given in Hordijk, Iglehart,

and Schassberger (1976). These expressions will form the basis of the

variance reduction techniques.
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For any square matrix A let o(A) denote the spectral radius of
A; i.e., p(A) 1is the modulus of the largest eigenvalue of A, By
Theorem 3.7 of Varga (1962) the matrix I-A (where I denotes the

identity matrix) is nonsingular if and only if p(A) < 1. If p(A) <1

then

-1 &
(I-8) "= 7. & |
n=0
and the infinite series on the right hand side of the equality converges

(elementwise). Now introduce the taboo probabilities

0 for =0

oPij =
Py for j £ O

and let OP be the matrix with entries Opij‘ P is nonnegative, irreducible

h 1 for all i so that by Lemma 2,5 of Varga (1962),
p(P) = 1. Since 0 < of S P with oPio < Pio for some i (because P
is irreducible) Lemma 2.3 of Varga (1962) implies that p(oP) < 1.
Therefore (I-,P) is nonsingular and
©o

n

gty = T g .
n=°




E

We are now ready to give expressions for y and ¢t;

(2.4) ¥ = E oPnf = (I-oP)-l R
n=0

Furthermore y satisfies the set of linear equations

(2-5) y=f + oPy 2

If f = e, a vector of ones, we obtain expressions for t from (2.4)
and (2.5).

Equations of the form (2.5) have a very special structure that
lend themselves to at least two different methods of solution. The
first is matrix iterative procedures, A comprehensives study of these
methods is given in Varga (1962). The second approach is Monte Carlo
methods or simulation. In fact it was for equations of exactly this
form that von Neumann and Ulam first suggested using simulation.

The approach taken here is a middle ground between these two methods.
Suppose we have done k iterations of some matrix iterative procedure
in an attempt to solve (2.5). Let yk be our approximation to y after
the kth iteration and let ek = y-yk. ek is then the error in the partial
solution yk. A function g, can be defined so that

Tl-l
k
(2.6) fw -z T 5]
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We can then obtain an estimate of the error ek(O) by setting Xo =0,
simulating a number of independent cycles, and summing the function 81
over each cycle. An unbiased estimate, Ek(o), for ek(O) can be obtained
and by setting ;k(O) = yk(O) + gk(o) we then have an unbiased estimate
for y(0) (since y(0) = yk(O) + ek(O)). As more iterations are performed;
i.e., as k increases, we expect yk to approach y and gk to approach
0. Therefore the variance of the estimate for vy, ?k(o), is also expected

to approach O, This will indeed be the case for any convergent iterative

method, however the matter is complicated by the fact that we are really

interested in estimates of r = y(0)/t(0), not just estimates of y(0).

This issue will be addressed later,

K We can improve this procedure (at the cost of additional computer

storage) by saving the functions obtaining k+1 estimates

Bps ++vs Byo

ki for r and then taking the minimum variance linear combination as before.

J More specifically let Byr ++vr By each satisfy equation (2.6). Define

¥ (v) by
T -1
v m
2.7) Ym(v) =y (0) + L gv(xn) ’
n=Tm-l

then Eo[Ym(v)] = y(0). Since during any cycle there is only one index

n for which X = 0 (that index is T-1 for the mth cycle) we note

E that
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where fv is defined by

g,(0) + ¥’ (0) for £ =0
(2.8) £,(1) =

8, (1) for 1 £0

From here we proceed exactly as before, Set Zm(v) = Ym(v) -, then

EO[Zm(V)] = 0. Let
(2.9) o35 = EolZy(1) 2,(3)], 0<i, j<k

and let Zk be the matrix with entries Uij' Because E is finite
Uij <o for all i and j. Ek is a symmetric positive semidefinite

matrix, which we will assume is positive definite.

Suppose now that Xo = 0 and we simulate the process for M

(independent) cycles., Let
% M M
(2.10) r_v(M) = Y Ym(v)/ ¥ % > v=0
m=1 m=1

AN
Then rv(M) —»r a.,s. as M oo, Let B be constants summing to one

and define

N k A
(2.11) rg(M) = v‘éo B(v) (M)




A
Then ra(M) -r a.s. as M -« and we can form confidence intervals

for r based on the central lisit theorem

VH (xg(m) - 1)

48,151 S (BV/ES(T))

= N(0,1) as M-
where

A e G :
W ERE 1§o on i

B 1is now chosen to minimize ok(B) and as before

(2.13) p*

~

]
o
™M

n

(2.14) o2(p%) = Ve 5" e

where e is a vector of ones. Let Ri = ai(ﬁ*)/ooo, a measure of the
amount of variance reduction. This technique can also be applied to the
point estimate Qa(N) defined in (1.5).

We now derive expressions for the functions g, (and also for
£, by equation (2.8)) for a number of matrix iterative methods. We
have studied the Jacobi, Gauss-Seidel (G-S) and successive overrelaxation
(SOR) methods in addition to their block analogs. These methods seem to
be the most popular of the iterative procedures when the problem lacks

special properties, such as the transition matrix being symmetric or

positive definite,

10
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Jacobi's Method

We week the solution, y, to y = f + gPy. Because p(oP) <3
Jacobi's method is known to converge (to y) for anmy initial yo (see
Theorem 3.3 of Varga (1962)). Jacobi's iterative procedure is defined
by

(2.15) P on g k> 1

; O ; : .
with vy given. This may be written componentwise as

Ng

L ; 1o
y (i) = £(1) + ij oPy; ¥ (3) .

Starting from equation (2.15) we find

(1-gB)y" = £+ oy L - omy"
L W R Rt e ]
y =y + (I-oP)'1 [oP(yk'1 - ¥ .

the last equality being true by equation (2.4). For k > 1 define

g, by

(2'16) 8k = "OP(y

then

11




Tl-l

. k, .
y(1) -y v e[ T g )]
n=0
0
which is the desired result, If y (i) = 0 for all i € E, then the

formulas simplify to

k k=1 n
n=0
and
gk=0Pkf’ kZO ~
Gauss-Seidel

The Gauss-Seidel iterative procedure can be considered as an

acceleration to Jacobi's method. In Jacobi's method only the values of

k-1
y are needed to generate yk, whereas in G-S the most recently

available values yk(j) for j < i are used to find yk(i). By Theorem 3.3
of Varga (1962) it is known that G-S converges at a faster asymptotic
rate than Jacobi's method. The basic G-S iteration is defined by

(2.17)  yN(1) = £(1) + T gp
3=0

0 :
where y is given and sums over empty sets are considered to be 0. From

equation (2.17)

NE N

E
Kk : k k-1, , K
yo(i) = £(i) + ij oPij ¥ (3) + jgi oPiy(y (3 -y (3)) .

12




Define 8y by

' k-1 K

(2.18) gty a= L oo ¥ (3 ~5(D)), i1€E.
k o1 0%ij

Then in matrix notation

k k

¥ o=t B -8

k

(I-OP)y = f = gk

k -1 -1

k -1

y =¥ - (I-gP) " g .

Therefore

Tl-l
CREACRE BN B
n=

As this is the form needed to apply the variance reduction technique, the

appropriate function g for G-S is given by equation (2.18).

Block and Point Iterative Methods

We now turn to the study of block and point iterative methods,
These methods have the interesting property that the underlying Markov
chain to be simulated is generally not the same as the original Markov

chain, {Xrl n > 0}, The new Markov chains arise as a special case of the

o

method to be presented in a subsequent paper., Suppose we are again trying

13
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to solve y = £ + oPy. We now partition the state space into disjoint

B
subsets, or blocks, Bi’ sl o NB; t.2., Ex U Bi and Bi n Bj = ¢,
i=0

the empty set, for i # j. For convenience we shall assume that Bo = {0],
althougl: this may be relaxed using the techniques of the forthcoming paper.
We now partition £ and y into (fo, £, -0, fNB)' and

(yo, Yis ++s Yy )' where fi and i consist respectively of elements
B

f(j) and y(j) for j € Bi' Similarly oP may be partitioned so that

ofoo  ofo1 " OPONB
- ot10 o
a B
0
P B ese gp
0'N0  O'N.1 0NN,

where 0Pij = {Opkz : ke Bi’ S Bj}. Our system of equations then

becomes (for the ith block)

Ng

(2.19) yy=E + X

j=0 of13 7y -

Letting Iii denote the identity matrix with the number of rows and
columns equal to the number of elements in the ith block, equation (2,19)

can be simplified;

14
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(L. » By mbod i P
it @ 11°7% i 341 01ij 7]
(2.20) R TR W ek TR L R T o W
! i 1.7 0°ii L g n T e ity
Define hi and ORij by .
(2.21) RN e L P
g i ; (R | i
and
0 for i=j
(2.22) oRyj =
= .
(L5 - ofis)  ofij for 14
Equation (2.20) then becomes
Ng
(2.23) Fp =By » 420 TRATE

or if OR is the matrix with elements

as

)

0°ij

which has been partitioned

e —

S it 2O




1
and if h = (ho, S hNB) then (2.23) may be rewritten as
(2.24) y=ha+ Ry .

I1f we now perform Jacobi (G-S) Iterations on equation (2.24) we obtain

the block Jacobi (G-S) iterative procedure,

P et . e e SRR A A

We now turn to the probabilistic interpretation of the matrix _R. i

0 !
i
As was done with OP’ partition P into the blocks Bi’ i=0, ..., N, i
and let Pij = (sz : k€ B, £ € Bj}. Define |
P = |
ij i=0
(2.25) Rij = 0 140, i=]
(1 -P)'lP 140, it
ii ii ij? 4
(Iii - Pii will be nonsingular because P is irreducible) and let :
R = [Rij r 0S4 1K NB]. It is then easy to show that the matrix R

is a transition matrix; i.e., if R has elemasnts rij for 1, JEE,

then ‘13-3 0 and 7 T = 1 for all i € E. The matrix of taboo
§€E

16




probabilities obtained by setting the Oth column of R equal to O and
leaving R otherwise unchanged is then equal to OR. Define the stopping

time S by

1 if Xo =0

inf{n >0 : xn 3 Bk} if X ) €B, and k £o0

One can then show that

(2.26) rij = P{xs = jlxo = i} - 4
and that

e ] % £x) i
2 h(i) = E (X . ]
(2.27) ( i[M (n]

, >0} is

From equations (2.24), (2.26) and (2.27) we see that if [Cn
a Markov chain with transition matrix R and if T& is the mth time
the process {Cn, n >0} enters O, then

T!-1

1
y(i) = E[ Zb h(c)Ic, = 1] ‘
n=

Similarly if d(i) = E[S|Xo = i] then

Ti-l

t(i) = E[ E d(cn)[co = i] .

n=0

17




The numbers d(i) may be obtained from equation (2.21) when f = e.

Define

T'-1
m
5! = i d(cn) o
n=T"'
m-1
and
T'-1
v m
(v) =y(0) + T gfc) .

n=Tm-1

Setting Z&(v) = Y&(v) - rb& we have EO[ZQ(V)] = y(0) - re(0) = O.

s Nl

Let

ik Lwscis e i e

M M
(M) = L XXw)/ L O
¥ m=1 e m=1 =

We can now proceed as before (inserting primes into the formulas (2.9)

and (2.11) - (2.14) whenever necessary). The important thing to notice

A R S Bk it

is that we are now simulating the Markov chain {Cn, n >0} with its

i

Ql transition matrix R rather than the Markov chain {Xn, n > 0} with
|

its transition matrix P.

Block Jacobi
Let h and R be defined in (2.21) and (2.22). With P

given, the block Jacobi iterations are

{
|
!

PETSveT oy aim o - e me ey e . - !J
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The function 8> which is derived exactly as in Jacobi's method, is given

by

(2.28) ¢ AR i

Block Gauss-Seidel

Let yo be given and let h and R be defined in (2.21) and

0
(2.22). The basic block G-S iteration is

i-1 B

E
yk(i) = h(i) + j>=jo oFis yk(j) + jgi o¥ij yk-1

(1) ,

and the function 9 is defined by

Ng

(2.29) slisen Wil A= YA

1f the blocks are chosen to be singletons; i.e., if Bi = {i}; then
the methods are called point Jacobi and point Gauss-Seidel. The convergence
of these block iterative methods can be shown by using Theorem 3.13 of
Varga (1962). Again the important thing to emphasize about the block

methods is that an entirely different Markov chain must be simulated to

apply the technique.

Successive Overrelaxation

Successive overrelaxation may be thought of as an acceleration

to Gauss-Seidel., Let w, the relaxation factor, be given. In order for

19
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SOR to converge it is necessary that 0 < w < 2, (see Theorem 3.5 of
Varga (1962)), although this is not a sufficient condition (w = 1
corresponds to G-S). However, the method does converge for 0 < < w
where 1 < whax-s 2. Actually for our purposes it is not really crucial
that @ be restricted to this interval since for any value of w and
any finite number of iterations k, the procedure defines valid functions
8y for the simulation. Much work has been done on trying to find the
optimum relaxation factor, @3 i.e., trying to find that value of w
which maximizes the asymptotic rate of convergence of the iterative
procedure. In our case, finding @, is not so critical since we are
interested in minimizing a variance and not in maximizing the rate of
convergence of yk to y, two entirely different matters. What would be
more appropriate here is, for a fixed number of iterations k, to find the
value of w, say ¥, that minimizes the optimal variance, ci(ﬁ*). To do
so theoretically would be very difficult indeed so it is recommended that
w* be estimated from relatively short preliminary simulation rums,

The SOR iterative method requires the diagonal elements of OP
to be 0. If Pii >0 for some i, partition E into blocks B, = (i}
as in the previous section. As a special case of equation (2.25), we

obtain a transition matrix R with entries

pij i=0
ry=Q 0 140 i=

Pis

it % itfo léj

WPey :

20




and let oR be defined to be the matrix with entries

0'ij =

OR has all diagonal elements equal to O. Let h be defined as

£(1) {ic'0

(2.30) h(i) = i
_jlil i A 0 g
=Py i 1

which is a special case of equation (2.21). Then y = h 4 oRy, and we
are able to perform SOR iterations on this system of equations. With

yO given, the basic SOR iteration is

-1 Ng

y5(1) = (10) ¥ H) om0 4 I, o y(3) + i i * ).
To obtain gk(i) write ?
k k-1 E R °E S
1) = () ¥ D)« Juo) « I, o Y0+ T gm0 (0]
yk = (l-w) yk'l + ofh + R yk # bk]
where

21




= oy

¥

(2.31 b (i) = Z AP Y4) - 7L .
) k(1) 5 of1;(Y (3) -y (1))

Further simplification yields

(1- 0R)‘lh - (1 - 0R)’1 8

yk =
o (L BT
0 Ex 1
with 8y defined by i
1. - |3
(2.32) g = - (b + L8l (& k1
We then have
T!-1
I x ;
(2.33) y(i) = y (i) + E[ ;Eo gk(Cn)lco = 1] 5

where (Cn, n >0} is a Markov chain with tramsition matrix R. Multiple
estimates for r are then produced in the same manner as for the block
iterative methods (d(i) is obtained from (2.30) with f£(i) = 1), For
block SOR formulas (232) and (2.33) remain valid provided h and R
are defined as in (2.21) and (2.22). Theorem 3.13 of Varga (1962) implies

that block SOR converges for O < w < 1, and therefore by the continuity

of eigenvalues for 0 < w < ®pax where 1 < o < s

22




Numerical Considerations

3.

In this section we discuss some of the problems that might be
encountered in the implementation of these methods and present numerical
results for a particularly simple Markov chain, the queue length process
in a finite capacity M/M/1 queue,

The first problem that one faces with these methods is chbosing a

return state. As Table 1l indicates, the variance reductions can vary

dramatically as the return state changes. This is in contrast to the

e

previous method of picking fv = P'f to generate the multiple estimates
for r. For that particular choice of functions, the variance reductioms
can be shown to be independent of the return state. Preliminary simulation
runs could be used to determine a good return state. It seems likely that
frequently occuring states (or equivalently states with relatively short
expected cycle lengths) will be the best candidates for return state.

The iterative methods also assume that the states are ordered in

some manner. Very frequently in simulations each state represents a
vector, e.g., a state may represent the queue lengths at various service
centers in a network of queues., Since there are many ways to order the
states and each different ordering gives rise to different functions

fO’ ceey £ (and therefore different variance reductions), the simulator

must take care to use an ordering that will give good variance reductions.

e o Lo bR T naine ool S o2 B sl l s Lol S g dhald aad Sk e

Again this problem is not encountered when the simulator chooses the
functions fv = Pvf; in that case the order of the states is irrelevant,
Tables 2 through 6 give calculated variance reductions for estimating

the expected stationary queue length in the finite capacity M/M/1 queue




for a variety of the methods discussed (this continuous time problem has
been transformed into discrete time using the techniques of Hordijk,
Iglehart and Schassberger (1976)). The block Gauss-Seidel method (Table 6)
gives the best variance reductions for all values of p, the traffic
intensity, The figures for this method include the variance reduction

that is obtained by simulating the Markov chain {C n > 0} rather than

n)

(X

2 k 2
= n > 0}. That variance reduction is reflected in the R_ values

0]
and will be discussed at greater length elsewhere. Due to the work involved

in forming the transition matrix for the chain {Cn n > 0}, block G-S

b
requires more computation to be done before the simulation than the other
methods. These extraordinarily good results for block G-S may not be
typical because of the very special structure of the M/M/1 queue. Observe
that each of the other methods is capable of producing substantial
variance reductions, although none dominates the others for all values
of p. It is perhaps somewhat surprising that for SOR (see Table 5), the
value of w does not have that great an impact on the variance reductions.
This is probably because the variance reduction results primarily from
the high correlation between the estimates ?6(M), i ?k(M) and not
from how well the iterative procedure performs; i.e., not from how close
yk is to y. In fact for p = .9 and yo = 0 G-." requires over 200
iterations to make Hyk-y“/uyu < 0.01 where "-H denotes the Euclidean
norm, For small values of Kk, yk and y tend to differ substantially,
The major difficulty with using these methods will b2 computing
and storing the functions fv' Unless the transition matrix is quite
sparse the amount of work involved in computing fo, suey ke o TOT even

A -
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small values of k will probably be too great to justify the use of the
methods. The work involved in generating fv = Pvf is slightly less

than that required to form fv for G-S. To perform k G-S iterations

k
requires almost exactly the same amount of work as forming f, Pf, ..., P f,

However at the end of the kth G-S iteration one must also calculate

Vg

% Opij yk(j) in order to compute fk(i). For the block methods additional
j=1

computation must be done to form the necessary transition matrix R and
functions h and d. Once these have been formed the work needed for:
block Jacobi (G-S) is about the same as for Jaéobi (G-S).

Since all of the iterative methods we have studied are convergent
(for at least some values of w in thz case of SOR), yk -y as k - =,
By examining the functions 8y for each method it is seen that 8y -0

as k —» », Recalling that

oi = var(Zm(k)) = var(Ym(k) - rTm)
T -1
K m
=var(y (0) + ¥ g (X) -r7) ,

it can be shown that oi —>r2 var(Tm), which will in general be positive.

2
In fact for many Markov chains r2 var(Tm) > o, due to the high positive

0
~
correlation between Ym(O) and Tt Thus for large values of Kk, rk(M)
~
tends to be a more variable point estimate for r than ro(M). In fact
for the iterative methods we have not been able to show that oi(B*)

converges to O as k —» », This again contrasts to the case when

fk = Pkf where  for a finite state space, oi and oi(B*) both converge
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to 0. In applications, however K k will usually be small so that for

the iterative methods this property should not prove troublesome,

We have so far considered performing iterations on the set of
equations y = f + oPy, which enables the formation of multiple estimates
for the numerator of r = y(0)/t(0). It is also possible to apply the
method to the equations t = e + oPt, thereby allowing the formation of
multiple estimates for the denominator of r. Letting tY denote our |

approximation to t after vy iterations we could find functions e

v |

such that |
|

E Tl-l ;

t(i):t(i)+£,[ b e(x)]. ;

1 v n |

~ n=0 1

i

Let ;
T -f |

v - |

Tm(v) =t (0) + X, ev(xn) > i

n=T :

m-1 :

then Eo(Tm(v)) = t(0). Had we done ke and k, iterations on y and t

respectively we could obtain (k1+1) (k2+1) point estimates, ?ij(M), for

r where
" M M
F00 = Y/ 2 )
Let
kl k2
L B3 =)
i=0 j=0

and define
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We could then pick the constants B(i,j) to minimize the asymptotic
variance of ?E(M). To carry this out in practice we would need to
estimate a (k1+1)(k2+1) by (k1+1)(k2+1) dimensional covariance matrix.
Because the estimates ?ij(M) will usually be quite highly correlated,
this covariance matrix is likely to be very ill conditioned, even for
moderate values of k1 and k2. Thus Z, p*, and oa(ﬁ*) are likely

to be difficult quantities to estimate. Table 7 gives variance reductions

for the finite capacity M/M/1 queue when k; =2 and k, =0, 1,2 for

2
the Gauss-Seidel iterative procedure., For large values of p, the addi-
tional variance reductions obtained by performing iterations on t are
hardly enough to justify the use of multiple estimates for the denominator,
particularly considering the probable difficulty in estimating the
covariance matrix, Of course for different functions f it may be more
appropriate to use multiple estimates for the denominator rather than

the numerator of r (for example in estimating the stationary probability

of a particular state).




TABLE 1

Effect of Return State on Variance Reductions for
Finite Capacity M/M/1 Queue Using Gauss-Seidel:

r=E(X), yo=0

2 2 2
R R R

Return 1 2 5

o State R1 R2 R3
5 0 .0720 .0408 .0207
.2682 .2021 . 1440
5 2 2222 L1376 L0557
L4713 .3709 .2361
5 N .5756 .5680 567k
7587 7536 ST
.5 6 5225 .5034 .5002
.7229 .7095 197>

28
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Variance Reductions for Finite Capacity M/M/1 Queue Using

TABLE 2

£, =pPYf : r = E(X)
2 2 2
R} R, Ry
o) R1 R2 R3
e .1168 .0292 .0073
417 .1709 L0854
.50 .2341 L1121 L0524
.1838 L3347 .2288
a5 .3328 . 1440 .0663
5769 T4 .57k
.90 .6050 .2659 L1148
7778 5156 .3388
.95 .6880 3425 . 1607
.8294 5852 .4009
.99 74Ok L0556 .2047
.8605 .6369 4525
29




TABLE 3
Variance Reductions For Finite Capacity M/M/1
Queue Using Jacobi's Method:
r = E(X), y0 = 0, Return State = 0 %
2 2 2
R1 R2 R5
o Rl R2 R5
2> L1168 .0291 .0073
3417 . .1710 .0853
.50 .2341 1289 .06L5
.4838 .3590 .25L40
19 wJDe .2029 157k !
5772 504 <3967 |
.90 6043 ore . 1468 1
7T .5266 +3831
.95 .6878 3465 L1732 ; 4
.829M .5886 L4161 ¥
.99 7405 .4OL8 .2087 ¥
.8605 .6362 4569 1]
|
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TABLE

L

Variance Reductions for Finite Capacity M/M/1 Queue
Using Gauss-Seidel:

0
r = E(X), vy

= 0, Return State = O

2 2 2

Ry R, Ry

P R1 R2 R5
.25 .0099 .0015 .0002
0997 .0390 .0121
.50 .0720 .0408 .0207
.2682 .2021 L1440
o .2720 .97 .0813
5215 .3869 2851
.90 .5939 .3881 . 183k
7706 .6230 4283
-5 .6789 79k 241k
.8239 692l LLgly
.99 7321 5446 .2963
.8556 .7380 543

31
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TABLE 5

Variance Reductions for Finite Capacity M/M/1

Queue Using SOR:

2

r = E(X), yo = 0, Return State = 0

32

2 2 2

Ry R, R5

p w Rl R2 R3
5 .15 L1217 L0341 .0168
.3489 . 1847 . 1296
5 1.00 .0720 .0408 .0207
.2682 .2021 . 1140
5 1.25 .0268 .0246 .0212
.1638 L1567 . 1455
.5 1.50 L0151 .0080 .0056
.1230 .0893 L0747
5, £ . 1096 L0261 .0091
.3310 .1616 .0955
9 15 5951 .3484 L1643
71k .5903 L4054
9 1.00 .5939 .3881 L1834
7707 .6229 4282
9 125 .5987 4379 .2155
7738 L6618 .h6u2
617L .5007 .2686
.7858 7076 5183
.659L .5786 3547
.8120 .7607 .5955




TABLE 6

Variance Reductions for Finite Capacity
Queue Using Block G-S:

r = E(X), yo = 0, Return State = 0, Block sjzes = (1,3,3,3,3,2)

>

2 2 2 2

: RS RS RS Ry

[o) Ro Rl R2 R3

i .25 .2942 .0003 1.22 x 1072 4.17 x 1070
i L5424 .0172 0035 .0020

1 .50 bkl .0075 .0026 1.32 x 107

6664 086k 512 0036

i .75 4037 .0116 0112 1.36 x 107"

k| .6353 . 1080 1061 .0117

! .90 .3624 .0397 0133 .0013

i .6020 .1992 1155 .0360

i {

i .95 .3510 .05L3 0127 0032

| .5925 .2331 1130 0567

| .99 3429 .0662 0127 5.25 x 107
| .5856 257k 1126 .0072
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TABLE 7

Variance Reductions For Finite Capacity M/M/1 Queue
f Using Multiple Estimates for Numerator and Denominator and G-S:
i r = B(X), y'0 =0, to = 0, Return State = 0
;
i 2 2
E R(2,0) R(2,1) R(2,2)2 i
3 o R(2,0) R(2,1) R(2,2)
i
.25 .0015 2.80 x 107 2.78 x 107
3 .0390 .0053 .0052
i : .50 .0401 .0092 .0033
:_ .2003 .0961 0579
4 .75 . 1498 .1238 L1237
| .3870 .3518 S51
: .99 5448 .5366 .5196

<1381 .7326 .7208

R(kl,k2)2 = Variance reduction when k.(k,) G-S
iterations are performed on the numerator
(denominator)

E
:
i
b
:

o a ol - aaih s

3u




4. Recommendations

We have presented a class of variance reduction techniques for
estimating functionals of the stationmary distribution of Markov chains.
The methods all require additional computation to be done both before and
during the simulation, but if the variance reduction obtained is large
enough an overall decrease in computation can be achieved, The methods
are likely to be computationally efficient when the transition matrix of
the Markov chain is relatively sparse, It is impossible to say a priori
which method will yield the best variance reduction for a given Markov
chain that is to be simulated. The simulator is advised to experiment with
the methods on short preliminary runs to get estimates for the variance
reductions. Based on these estimates a particular method (or methods,
one need not be limited to only one method) could be chosen. If pre-
liminary experimentation is impossible it is then suggested that the
functions fv = Pvf be used to generate the multiple estimates, While
this may not always produce the best variance reductions possible, it is
likely to be the most reliable and easily implemented method, The
reliability of this method stems from the fact that the variance reductions
are independent of the manner in which the states are ordered and which

return state is chosen for the simulation,
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