

DDC

MAR 17 1978

П

CUTTER RESOURCE EFFECTIVENESS EVALUATION MODEL EXECUTIVE SUMMARY

C. W. Pritchett and F. M. Hamilton USCG Research and Development Center Avery Point, Groton, CT 06340 and A. Passera and D. S. Prerau Transportation Systems Center Kendall Square, Cambridge, MA 02142

June 1977

FINAL REPORT

Document is available to the U. S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

DEPARTMENT OF TRANSPORTATION UNITED STATES COAST GUARD OFFICE OF OPERATIONS Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research and Development Center, which is responsible for the facts and accuracy of data presented. This report does not constitute a standard, specification or regulation.

D. L. Binkimer

DONALD L. BIRKIMER, Ph.D., P.E. Technical Director U.S. Coast Guard Research and Development Center Avery Point, Groton, Connecticut 06340

Technical Report Documentation Page Report 2. Government Accession No. 3. Recipient's Cotalog No. USCG D-44-77 Title and Subtitle Report Date CUTTER RESOURCE EFFECTIVENESS EVALUATION MODEL June 1977 forming Organization Code EXECUTIVE SUMMARY. 8. Performing Organization Report No. 7. Author(s) A./Passera, D. S./Prerau, CGR4DC-14/77 W. Pritchett and F. M. Hamilton C. 9. Performing Organization Name 10. Work Unit No. (TRAIS) USCG R&D Center Transportation Systems Center Avery Point Kendall Square 11. Contract or Grant No. Groton, CT 06340 Cambridge, MA 02142 None 13. Type of Report and Period Covered June 1975 -12. Sponsoring Agency Name and Address Department of Transportation U.S. Coast Guard 14. Sponsoring Agency Office of Operations Washington, DC 20590 15. Supplementary Notes This report summarizes a series of reports which document the Cutter Resource Effectiveness Evaluation Project at the CG R&D Center and Transportation Systems Center. 16. Abstract This report provides a concise overview of the Cutter Resource Effectiveness Evaluation Model which evaluates the performance of HPWC and conventional craft in Coast Guard missions. The background of the project is briefly discussed to provide an historical perspective of the CREE Model. An overview of the technical aspects of the model is presented. Appendices contain sample results to illustrate the technical aspects. 1,25:39:69 39 state Section 1 1.115 1 005 Gaff Section m 314233219559 17 14671618// 11611... STOTERSTORY ANALLONDER LOSIS MAR 17 1978 101. ATAB. 101/1 8 18. Distribution Statement 17. Key Words advanced marine vehicles, watercraft Document is available to the U.S. assessment, evaluation, mission analysis, public through the National Technical Information Service, Springfield, operations analysis, modeling Virginia 22161 21. No. of Pages 22. Price 19. Security Classif. (of this report) 20. Security Classif. (of this page) 25 UNCLASSIFIED UNCLASSIFIED Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 408730 1B

	state		= 9	Ē		ĨŦ [®] Ĕ		5 2		20 H F	ē~+	°PA		¥°	 * [≈] _ 1
Measures	To Find	inches inches	feet yards	miles		square inches square yards square miles acres		ounces pounds short tons		fluid ounces pints quarts	gallons cubic feet	cubic yards		Fahrenheit temperature	
ons from Metric	Multiply by LENGTH	0.04 0.4	3.3 1.1	0.6	AREA	0.16 1.2 0.4 2.5	MASS (weight)	0.035 2.2 1.1	VOLUME	0.03 2.1 1.06	0.26 35	13	TEMPERATURE (exact)	9/5 (then add 32)	98.6 80 120
Approximate Conversions from Metric Measures	When You Know	millimeters centimeters	meters	kilometers		square centimeters square meters square kilometers hectares (10,000 m ²)	MA	grams kilograms tonnes (1000 kg)	1	milliliters liters liters	liters cubic meters	cubic meters	TEMPE	Celsius temperature	°F 32 -40 0 40
	Symbol	E 5	EE	Ę		25° 25° 25°		6 × +		Ē	- ^{°°} E	Ē		°,	
53	50 51 55	61	81	21	91	SI +I	5 13	τιτοτ	6	8	² 	9	s 	•	5 3
9 '' ' 	50 51 55 10 51 55 10 10 11 11 11 8		1. 1. 1 1. 1. 1 7	.I] 	.1. .1.		EI Z		•••••••		. 1.1.	.1.1.1.	2 2	·•••	
	20 21 22 10 21 23 8 8 8		1' ' 7 5 5	ι ε <u>ε</u>	10 11 11 11 11 11 11 11 11 11 11 11 11 1	ی بالا او تی تی ت	.ı		······	 ' ' ' 3 E E E		"	4'1' 2 2 E [°] E		rature "C
''' ' 9	7 by To Find Symbol 8 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	LENGTH	1. 1. 1 1. 1. 1 7	ι ε <u>ε</u>	AREA AREA			grams 9 frame 9 frame 9 frame 1			Inters I The second sec	liters	2 2	RATURE (exact)	Is us a construction of the construction of th
Approximate Conversions to Metric Measures	7 by To Find Symbol 8 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		centimeters cm 2 1	s 0.9 meters m		square centimeters cm ² 9	.ı	grams 9 frame 9 frame 9 frame 1		multitees al a subject of the subjec	0.24 Inters I	0.95 liters 1	cubic meters m ³ 2 4	TEMPERATURE (exact)	Celsius "C

PREFACE

This volume is one of a series which collectively documents the Cutter Resource Effectiveness Evaluation Project. The complete documentation includes the following:

- Executive Summary
- Volume I: Analysis and Synthesis of Coast Guard Programs
- Volume II: The Evaluation of Craft Performance in Coast Guard Programs
- Volume III: Utilization of the Cutter Resource Effectiveness Evaluation Model
- Users/Programmers Guide to the Cutter Resource Effectiveness Evaluation Computer Program

The study was requested in August 1974 by the Office of Operations and until August 1975 was directed by CAPT C. L. BLAHA, Chief, Plans and Programs Staff. Subsequent efforts have been directed by CAPT P. M. JACOBSEN, Chief, Plans and Programs Staff. The initial Project Monitor in G-OP staff was Mr. P. J. D'ZMURA. Since October 1975, LCDR B. C. MILLER of the G-OP staff has been Project Monitor. The Project Office in G-DOE-2 has been CDR A. TURNER.

This study was conducted by the Coast Guard Research and Development Center, Groton, Connecticut, with technical assistance from the Department of Transportation's research and development activity, Transportation Systems Center, Cambridge, Massachusetts. The full-time study team members were:

LCDR F. M. HAMILTON	(R&DC)	MR.	Α.	PASSERA (TSC)
MR. C. W. PRITCHETT	(R&DC)	DR.	D.	S. PRERAU (TSC)

Additional assistance was provided by the following:

CWO	Н.	HUDGINS (R&DC)	FI1 R. YOUNG (R&DC)
MR.	н.	GREEN (R&DC)	MS. L. KOSTRICH (TSC)
MR.	к.	MURPHY (TSC)	MS. M. E. MAHONEY (R&DC)
MR.	J.	GARLITZ (TSC & IOCS, Inc.)	MS. I. LARROW (R&DC)
MS.	J.	COLLIER (TSC)	Cadet 1/C G. McGARVA
MS.	Ρ.	CONCANNON (TSC)	MS. S. KEAVENY (R&DC)
MS.	R.	CHIN (TSC)	

i

TABLE OF CONTENTS

	Page
1.0 BACKGROUND	1
2.0 PROJECT OBJECTIVES	2
3.0 TECHNICAL ASPECTS OF THE CREE MODEL	4
4.0 APPLICATION OF THE CREE MODEL	8
5.0 CONTENTS OF THE STUDY DOCUMENTATION	10
APPENDIX A - SAMPLE ELT SCENARIO	A-1
APPENDIX B - SAMPLE CREE COMPUTER PROGRAM OUTPUT	B-1

LIST OF ILLUSTRATIONS

	Page
rview of Cutter Resource Effectiveness Evaluation Model	5
cept of Operations	6
ft/Task Evaluations	7
Scenario	A-1
tch of Operational Area For Sample ELT Scenario	A-2
	cept of Operations ft/Task Evaluations Scenario

LIST OF TABLES

Table		Page
4-1	Summary of CREE Model Evaluation Steps	9

Preceding Page BLank - Fi

1.0 BACKGROUND

The Cutter Resource Effectiveness Evaluation Project was initially concerned with the rather well-defined objective of determining the type of craft which should replace the aging WPB fleet, with an emphasis upon using HPWC (High Performance Watercraft) in the mix of craft selected to replace the patrol boats. Later, the Office of Operations redirected the "WPB Replacement Project" to include a much broader consideration of HPWC to determine the potential for utilization of HPWC in all Coast Guard missions. The thesis for this redirection and expansion in the study was that HPWC could improve Coast Guard mission performance in some areas, yet would be less effective than conventional craft in other areas. Later, after considerable problem definition, a project title change, and planning by personnel in both the Office of Operations and the Office of Research and Development, an approach to the investigation of the suitability of HPWC in Coast Guard missions was developed and a Specific Administrative/Planning Requirement for the project was issued by the Office of Operations in January 1976.

2.0 CREE PROJECT OBJECTIVES

The Specific Administrative/Planning Requirement contained the following objectives:

a. To determine the mission-related capabilities, limitations, and operational and support requirements of high performance watercraft and of conventional Coast Guard vessels (with and without aircraft), present and future.

b. To develop a method which provides a quantitative description of the costs and effectiveness of HPWC and conventional vessels and which presents a quantitative evaluation of the craft considered in task, program and multiprogram mission performance, singly, comparatively and within a mix of resources.

c. As an end product, to provide the Office of Operations with a theoretical model, implementing computer programs, and documentation which satisfy the above objectives, with sufficient flexibility so that the user may tailor the computational procedures to his operational or analytical requirements.

As discussed more fully in the next section, the CREE Model is composed of three major elements entitled Concepts of Operations, Craft/Task Evaluations, and Scenario Calculations. The first element is where the user sets up his problem by defining the operational requirements, selects the resources for evaluation and develops his scenario for use in the evaluation. The second and third elements are those areas where the mission-related capabilities and limitations of HPWC and conventional Coast Guard vessels are determined, and where the quantitative effectiveness evaluations of craft performance are made. The project has been closely monitored by the Operations Planning Staff insuring that, among other things, sufficient flexibility exists in the model for a user to tailor the computational procedures to his specific requirements.

Although the outputted craft capabilities and limitations, and the effectiveness evaluations are highly sensitive to the user-specified operational requirements (e.g., expected sea state, geographic distances, and anticipated workload), the CREE Model does not address support requirements as desired by the SOR objective (a). Nor does the model address costing as requested by the SOR objective (b). Including support requirements was considered in one way as having too small an effect on the effectiveness evaluations in comparison with the operational requirements, and in another way, too complex an issue to incorporate into the methodology which was fairly well developed when the SOR was issued. The incorporation of costing on the other hand, although desirable, was agreed to be less valuable than originally envisioned and, therefore, given a rather low priority with respect to other items arising subsequent to the issuing of the SOR, namely, some major refinements to make the results of the model more realistic.

In addition to the model not addressing support requirements and costing, the model does not fully tackle the problem of multi-unit operation. Basically, the model is designed for single-unit evaluation and any multi-unit operations must be considered external to the computerized model using a series of singleunit runs. Furthermore, at the present time, considerations of aircraft operating from and with surface vessels has yet to be programmed although the methodology has been developed. Present planning envisions delivery of two versions of the CREE model; one version, formally documented, will be strictly single-unit; the second version, informally documented, will be a modified single-unit computer program that incorporates a limited aircraft capability to provide some multi-unit evaluation capability.

The primary reason a more complete multi-unit capability has not been incorporated into the CREE Model, is that the complexity of the methodology is orders of magnitude greater than the quantification of single-craft effectiveness. In addition, there is some question as to whether the approach taken in the CREE Model (probabilistic) would be acceptable for force mix analysis. Perhaps a simulation-type model would be more appropriate. In any case, further definition of the force mix analysis problem is in order, prior to any continued effort at modeling in this area. It is expected that user experience with both versions of the CREE Model by the Office of Operations will provide more insight into what should be undertaken in future efforts at multi-unit modeling.

3.0 TECHNICAL ASPECTS OF THE CREE MODEL

The Cutter Resource Effectiveness Evaluation Model is presently made up of three major elements as shown in Figure 3-1 and listed as follows:

- a. Concepts of Operations
- b. Craft/Task Evaluations
- c. Scenario Calculations

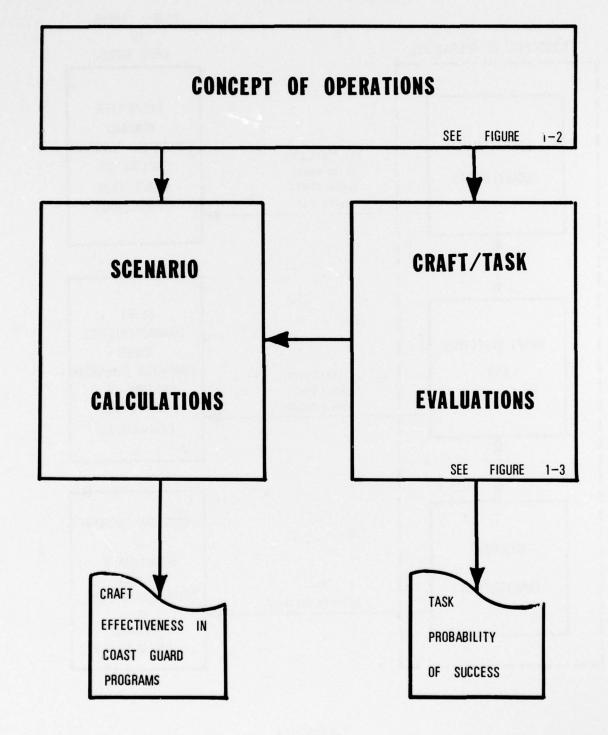
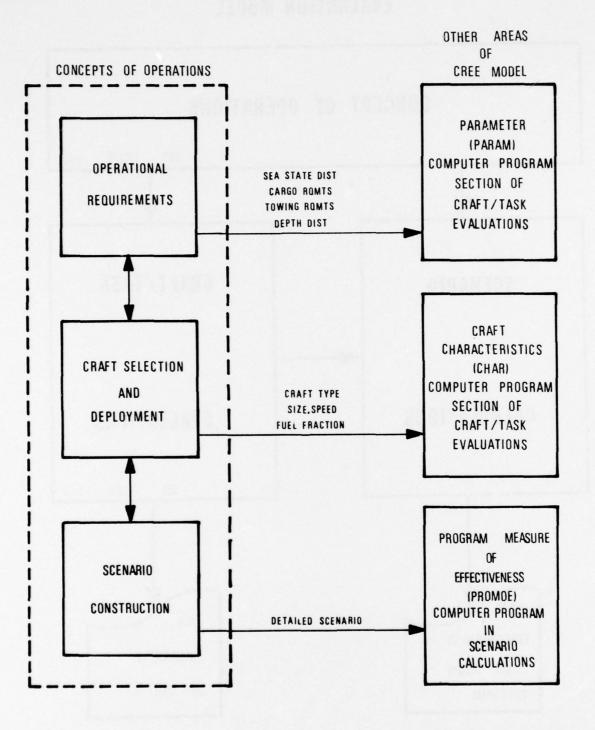
Broadly speaking, the Concepts of Operations element is concerned with modeling the job to be performed and the method of craft deployment. This is where the operational requirements are specified, various craft and suitable methods of deployment are chosen, and task-oriented scenarios are constructed. Concepts of Operations is the starting point for use of the CREE Model and has been organized in such a fashion that the user has great flexibility in choice of requirements, selection of craft and construction of scenarios. Figure 3-2 illustrates the information flow from Concepts of Operations to other portions of the CREE Model.

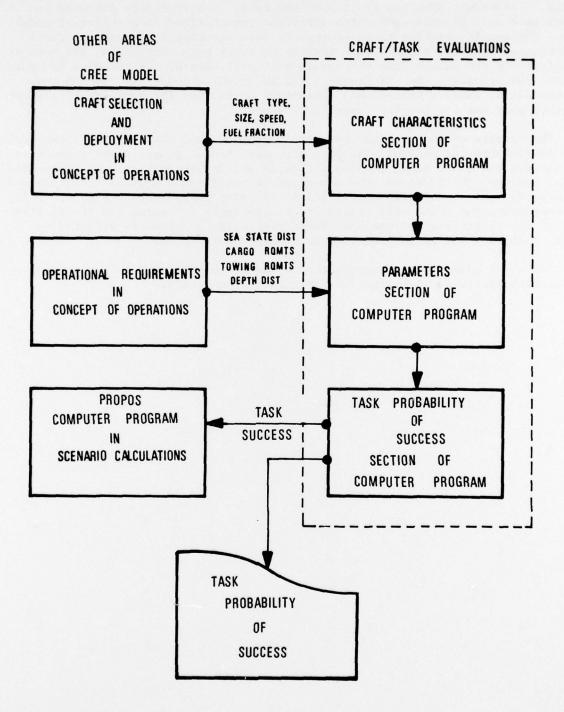
The Craft/Task Evaluation element of the CREE Model consists of three sections that eventually provide a numerical evaluation of craft performance of a task. The first section, called Craft Characteristics (CHAR), takes the craft concept specified in the Concept of Operations and determines typical detailed characteristics of that craft. The second section, called Parameter (PARAM), uses these Craft Characteristics coupled with various operational requirements from the Concept of Operations, and calculates dimensionless numerical values (parameters) indicative of the craft's performance in a variety of areas, such as maneuverability at various operational speeds, towing ability, and seakindliness, to cite a few. These Parameters form the input for the third section, called Task Probability of Success (TPOS), which calculates craft performance of a task. The outputs of the Craft/Task Evaluations element are numerical values indicative of how a given craft performs the given tasks with the specified operational requirements. Figure 3-3 illustrates the organization of Craft/Task Evaluations.

The Scenario Calculations element addresses the performance of craft in a larger arena - that of complete sorties or missions, in either single or multiprogram scenarios. Because scenarios are made up of tasks, like search, tow, board or transit, and since craft performance of tasks is quantified in the Craft/Task Effectiveness output, the Scenario Calculations element utilizes this output as shown in Figure 3-1. In addition to these values, the frequency of task occurrence is also considered in evaluating overall craft performance in the scenario. The calculations incorporating the Task POS, and the frequency of task occurrence are accomplished by the Program Probability of Success (PROPOS) element of the CREE computer program, which has as its output, values for craft mission effectiveness for the specified operational requirements.

Appendix B contains sample problem computer output of the CREE Model for a sample ELT problem.

OVERVIEW OF CUTTER RESOURCE EFFECTIVENESS EVALUATION MODEL


FIGURE 3-1

CONCEPT OF OPERATIONS

CRAFT/TASK EVALUATIONS

4.0 APPLICATION OF THE CREE MODEL

The CREE Model can be used to evaluate either craft performance in a fixed scenario, or the suitability of a concept of operations with a given craft. The choice is dependent upon the desires of the user. The procedure followed for either case only depends upon which variables remain fixed in a series of model runs. The sample problems in these reports were structured to evaluate craft performance; however, since a wide variety of craft were considered, the results do illustrate the suitability and unsuitability of some of the concepts of operations. Specifically, the ELT Sample Scenario, used in these reports and shown in Appendix A, shows a well-chosen concept of operations for hydrofoil craft but a rather poor one for larger conventional vessels.

The results of the preliminary exercising show that the CREE Model behaves in a predictable and understandable manner, and, hence, should prove invaluable for various craft and mission-related studies and investigations. On a broader scale, however, the model has the advantage of providing a unified structure and organization for the diverse activities in the many Coast Guard missions. Using and exercising the model will assist Program Managers in seeing how the realization of the objectives and goals of their particular programs is affected by craft capability and variations in operational requirements.

Table 4-1 summarizes the evaluation steps of the CREE Model illustrating the various levels of investigations that may be performed.

TABLE 4-1

SUMMARY OF CREE MODEL EVALUATION STEPS

LEVEL OF EVALUATION	INPUT TO EVALUATION	EVALUATION CRITERIA	LOCATION IN MODEL OUTPUT
CRAFT	Craft Type Craft Size Craft Speed Fuel Fraction	Craft Characteristics	Craft Characteristics Output Page
TASK	Craft Characteristics and Operational	Parameters	Parameter Output Page
	Requirements and Tasks	Task Probabilities of Success	Task POS Output Page
SORTIE	Above	Task Probability of Success Task Time Task Fuel	Sortie Output Page
SCENARIO	and Scenario	Sortie Probability of Success Sortie Frequency of Occurrence Sortie Time & Fuel	Sortie Output Page (Table 4-2) - Volume II - Sortie Summary Page
		% Scenario Completed Probability of Successfully Completing Scenario Average Sortie Composition and Average Time & Fuel	Scenario Overall Results Page
	Above and User Chosen Tasks and Time Frame	Important Tasks Completed in <u>X</u> Days of Operation	Scenario Evaluation Page

5.0 CONTENTS OF THE STUDY DOCUMENTATION

The theoretical aspects of the CREE Project are documented in the following volumes:

(a) "Executive Summary" is a concise overview of the CREE Project.

(b) Volume I - "Analysis and Synthesis of Coast Guard Programs" addresses the analysis of the Coast Guard Programs and the logic of the structured synthesis necessary to obtain useable scenarios. Volume I describes the modeling procedure followed and contains the detailed information necessary to construct scenarios. A simple scenario is presented as an example.

(c) Volume II - "Evaluation of Craft Performance in Coast Guard Programs" explains and documents the computer program that provides the typical characteristics and capabilities of the various types of HPWC, conventional, and Coast Guard vessels. It describes the logic and presents the procedure for developing Task Probabilities of Success and other quality indicators; and this volume details the computational procedures that are utilized to obtain figureof-merit values, or effectiveness values for vessel performance in single or multi-program scenarios.

(d) Volume III - "Utilization of the Cutter Resource Effectiveness Evaluation Model" contains various craft evaluations in sample scenarios to illustrate the application and sensitivity of the CREE model.

(e) "User's Manual" contains detailed programmer documentation regarding the content, format and procedures utilized in the CREE Model computer programs.

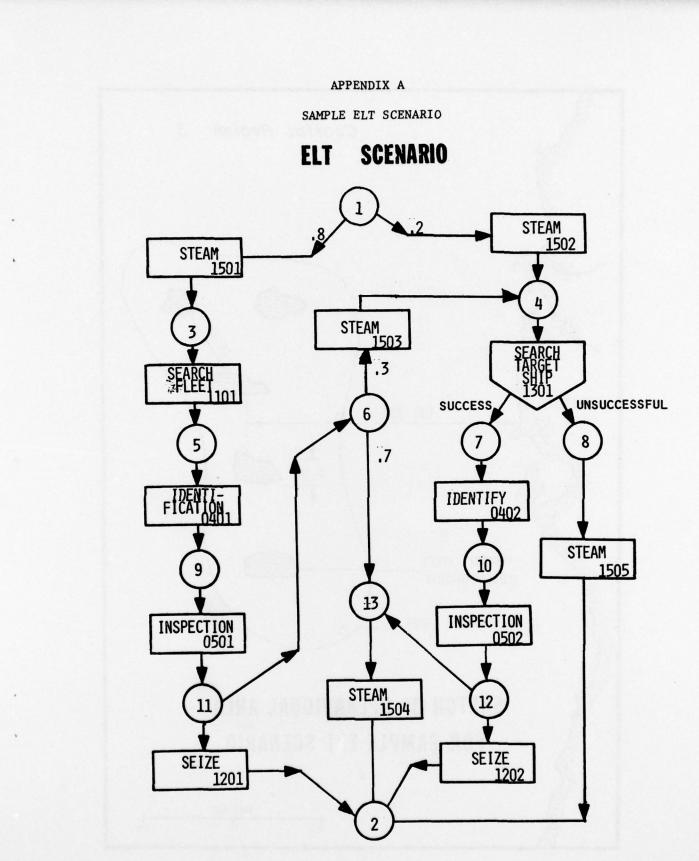


FIGURE A-1

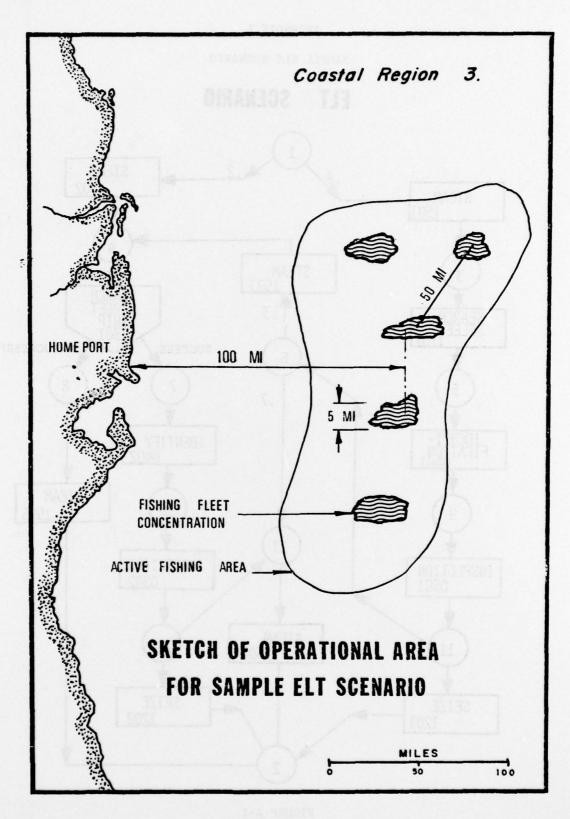


FIGURE A-2

A-2

APPENDIX B

SAMPLE CREE COMPUTER PROGRAM OUTPUT

CRAFT CHARACTERISTICS

CRAFT TYPE	PLANING CRAFT
DISPLACEMENT	96 TONS
LENGTH	100 FEET
DESIGN SPEED	40 KNOTS
FUEL FRACTION	0.50

LENGTH
BEAM
URAFT
LENGTH/BEAM RATIO
DRAFT/LENGTH RATIO
DISPLACEMENT
SURVIVABILITY
TOWS VESSELS UP TU
USEABLE DECK AREA
CARGO CAPACITY
FUEL CAPACITY
USEFUL PAYLOAU
INSTALLED POWER
POWER TO WEIGHT
TRANSPURT EFFICIENCY
RANGE AT CRUISE SPEED
ENDURANCE AT LRUISE SPEED

18.2 FEET 6.0 FEET 5.50 0.06 95.5 TONS 5 SEA STATE 941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER 64.7 HP/TON	100.0	FEET
5.50 0.06 95.5 TONS 5 SEA STATE 941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	18.2	FEET
0.06 95.5 TONS 5 SEA STATE 941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	6.0	FEET
95.5 TONS 5 SEA STATE 941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	5.50	
5 SEA STATE 941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	0.06	
941. TONS 455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	95.5	TONS
455. SQUARE FEET 21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	. 5	SEA STATE
21.3 TONS 21.3 TONS 42.7 TONS 5182. HORSEPOWER	941.	TONS
21.3 TONS 42.7 TONS 5182. HORSEPOWER	455.	SQUARE FEET
42.7 TONS 5182. HORSEPOWER	21.3	TONS
182. HORSEPOWER	21.3	TONS
	42.7	TONS
CH 7 HP/TON	5182.	HORSEPOWER
OTA/ NF/IVN	64.7	HP/TON
1.62 HP/TON-KNOT	1.62	HP/TON-KNOT
578. NAUTICAL MILES	578.	NAUTICAL MILES
16.5 HOURS	16.5	HOURS

3. 1848 A.314 3. 1949 - 193	FLANK SPEED	CRUISE	REDUCED	ON	
ENGINE TYPE	(GT)	(GT)	(GT)	(DE)	
CALM WATER SPEED	40.0	35.0	12.0	5.0	KNOTS
SFC (WEIGHT)	0.54	0.58	0.89	0.35	LBS/HP-HR
SFC (VOLUME)	80.0	0.09	0.13	0.05	GAL/HP-HR
HP UTILIZED	6181.8	5022.7	2053.8	440.1	HP
FUEL CONSUMPTION	495.1	432.5	272.0	23.0	GAL/HR
FUEL CONSUMPTION	12.4	12.4	22.7	4.6	GAL/NAUT MI
ENDURANCE (FUEL)	14.4	16.5	26.3	310.2	HOURS
RANGE	577.3	578.3	315.3	1550.9	NAUTICAL MI
TURNING RADIUS	322.6	282.3	96.8	40.3	YARDS
CRAFT MOTION	1.4	1.1	0.5	0.4	G
AVG FUEL RATE	409.1	364.9	249.9	23.0	GAL/HR
AVG SPEED	28.1	24.8	11.8	5.0	KNOTS
TOW SPEED	-	-	6.2	-	KNOTS

B-1

CRAFT PARAMETERS

CRAFT TYPE	PLANING CRAFT
UISPLACEMENT	96 TONS
LENGTH	100 FEET
DESIGN SPEED	40 KNOTS
FUEL FRACTION	0.50

VISIBILITY DISTRIBUTION NO. 2 IOW DISTRIBUTION NO. 1 UEPTH DISTRIBUTION NO. 1 SEA STATE DISTRIBUTION NO. 6 (AVERAGE SEA STATE=3.0)

TASK	CARGO	URAFT	MANEUV	SEA	TOW
CODE	CPCTY			STATE	

CC	DF	MN	LS	TW

ON SCENE:

OCCINC.				
BRD	 1.00	0.93	0.90	 BOARD
FFF	 1.00	0.93	0.86	 FIGHT FIRE FROM CG VESSEL
FFO	 		0.95	 FIGHT FIRE ON ANOTHER VESSEL
GAS	 1.00	0.93	0.94	 GENERAL ASSISTANCE
INS	 		0.95	 INSPECTION
LEO	 1.00	0.93	0.86	 LOAD EQUIPMENT
LOI	 		0.95	 LOITER
LSB	 1.00	0.95	0.86	 LAUNCH SMALL BOAT
MAC	 1.00	0.93	0.95	 MONITOR ACTIVITIES
MUS	 1.00	0.93	0.95	 MONITOR GIL SPILL
OBA	 		0.95	 ON BOARD ASSISTANCE
OSC	 		0.95	 ON SCENE COMMANDER (GENERAL)
RBP	 1.00	0.95	0.90	 RETRIEVE BOARDING PARTY
ROB	 1.00	0.93	0.86	 RETRIEVE OBJECTS
RPE	 1.00	0.93	0.86	 RESCUE PEOPLE
RSB	 1.00	0.93	0.86	 RETRIEVE SMALL BOAT
SSI	 1.00	0.93	0.95	 STAKEOUT SPECIAL INTEREST VESSEL
SZE	 		0.95	 SEIZE
TWS	 1.00	0.93	0.86	 TAKE WATER SAMPLE
ULO	 1.00	0.93	0.86	 UNLOAD EQUIPMENT
WUB	 		0.95	 WORK EQUIPMENT FROM SMALL BOAT
WOD	 1.00		0.86	 WORK EQUIPMENT & DRIFT
WOF	 1.00	0.93	0.86	 WORK EQUIPMENT & FIXED POSITION

TASK PRUBABILITIES OF SUCCESS

	CRA	FT TYPE	PLANING CRAFT
	DIS	PLACEMENT	96 TONS
	LEN	GTH	100 FEET
	DES	IGN SPLED	40 KNOTS
	FUE	L FRACIION	0.50
		VISIBILITY	DISTRIBUTION NO. 2
		TOW DISTRIB	SUTION NO. 1
		DEPTH UISTR	IBUTION NO. 1
		SEA STATE D	ISTRIBUTION NO. 6
		LAVERAGE SE	A STATE=3.0)
	TASK	TASK PROB.	TASK
	CODE	OF SUCCESS	TASK
ON	SCENE:		
	ASST	0.875	ASSIST
	BORD	0.841	BOARD
	MNAC	0.887	MUNITOR ACTIVITIES
	RIRV	0.801	RETRIEVE
	WAIT	0.950	WAIT
	WEOD	0.859	WORK EQUIPMENT & DRIFT
	WEOP	0.801	WORK EQUIPMENT & POSITION
RED	UCLD SP	EED:	
	SDIU	0.926*	SEARCH FOR DISTRESSED UNIT
	SESC	0.950	SLOW ESCORT
	SPAT	0.950	SLOW PATROL
	SPEO	0.926*	SEARCH FOR PEOPLE
	TOWS	0.926	TOWS
CRL	ISE SPE		
	ESCT	0.950	ESCORT
	IUNT	0.517	IDENTIFY
	PATL	0.950	PATROL
	SIGI	0.517*	SEARCH FOR TARGET
	TRPT	*****	TRANSPORT
	TRST	0.950	TRANSIT
FLA	ANK SPEE	D:	
	RSPD		RESPOND

* THIS IS THE P.O.S. OF THE ABILITY TO SEARCH. CRAFT'S SUCCESS IN FINDING THE OBJECT OF THE SEARCH IS DEPENDENT UPON SCENARIO (E.G., SEARCH AREA)

***** DEPENDENT UPON SCENARIO (E.G., FOOTPRINT AND WEIGHT OF CARGO)

--- B-3---

ELT SCENARIO 4 Sortie Number 5

OPERATIONAL REQUIREMENTS:	S	ELECTED	CRAFT:	
MAXIMUM DURATION 24.0 HOL Range Fraction 0.90 VISIBILITY GOOD Average sea state 3.0	0			
GROUP TASK NAME NAME	LOCATION CODE	TASK TIME (HRS)	TASK FUEL (GALS)	TASK POS
STEAM *INTERDICI	1 150201 150204 150202	5.3	2184	0.95
SENSOR SEARCH *SEARCH FUR SHIP : FOUND	4 130101 130102	2.0	734	0.52
IDENTIFY *IDENTIFY CRAFT	7 40201 40203 40202	0.5	200	0.52
INSPECT *LAUNCH SMALL BOAT *INSPECTION *RETRIEVE SMALL BOAT	10 50201 50203 50204 50202	U.3 2.0 0.3	5 46 5	0.80 0.95 0.80
SEIZE *SEIZE *ESCORT	12 120201 120203 120202 2	1.0 6.0	23 2203	0.95 0.95

TIME	TO COMPLE	TE	SORTIE	(HRS)	17.4	
FUEL	CONSUMED	IN	SORTIE	(GALS)		5404

SORTIE	PROBABILITY OF SUCCESS	0.4829
SORTIE	FREQUENCY OF OCCURRENCE	0.0056

B-4

ELT SCENARIO 4

OPERATIONAL REQUIREMENTS: SELECTED CRAFT:

MAXIMUM DURATION 24.0 HOURS	PLANING CRAFT
RANGE FRACTION 0.90	DISPLACEMENT 96 TONS
VISIBILITY GOOD	DESIGN SPEED 40 KNOTS
AVERAGE SEA STATE 3.0	FUEL FRACTION 0.50

FRACTION OF SCENARIO COMPLETED 0.5955

SORTIE NO.	SORTIL	SURTIE	FREQUENCY	SORTIE Probability	SORTIE
	(HRS)	(GALS)	OCCURRENCE	OF SUCCESS	OCCURRENCE
1	17.8	5480	0.0720	0.4829	0.0348
2	16.8	5457	0.4536	0.4829	0.2191
3	17.6	5475	0.0080	0.4829	0.0039
4	16.6	5452	0.0504	0.4829	0.0243
5	17.4	5404	0.0056	0.4829	0.0027
6	16.4	5381	0.0059	0.4829	0.0028

ELT SCENARIO 4

OPERATIONAL REQUIREMENTS: SELECTED CRAFT:

MAXIMUM DURATION 24.0 HOURS	PLANING CRAFT
RANGE FRACTION 0.90	DISPLACEMENT 96 TUNS
VISIBILITY GOOD	DESIGN SPEED 40 KNOTS
AVERAGE SEA STATE 3.0	FUEL FRACTION 0.50

PERCENT OF SCENARIO CON LTED 59.6 PROBABILITY OF SUCCESSFULLY COMPLETING SCENARIO 0.29

SPECIFICATIONS OF THE AVERAGE SORTIE:

TIME TO COMPLETE AVERAGE SORTIE 16.9 HRS FUEL CONSUMED IN AVERAGE SORTIE 5458.4 GALS

TASK COMPOSITION IN AVERAGE SORTIE:

TASK	.MES	TASK
CODE	COMPLETED	NAME

ON SCENE:

BRD	0.03	BOARD
INS	0.29	INSPECTION
LSE	0.26	LAUNCH SMALL BOAT
RBP	0.03	RETRIEVE BOARDING PARTY
RSB	0.26	RETRIEVE SMALL BOAT
SZE	0.04	SEIZE

REDUCED SPEED: NO TASKS

CRUISE SPEED: ESC 0.04 ESCORT IDC 0.01 IDENTIFY CRAFT 0.28 IDENTIFY FLEET IDF 0.28 SEARCH FOR FLEET SFL SEARCH FOR SHIP: FOUND SSH 0.01 TRANSIT TRA 0.53

FLANK SPEED: INT 0.01

0.01 INTERDICT

ELT SCENARIO 4

OPERATIONAL REQUIREMENTS:

SELECTED CRAFT:

MAXIMUM DURATION 24.0 HOURS Range Fraction 0.90 VISIBILITY GOOD Average Sea State 3.0 PLANING CRAFT DISPLACEMENT 96 TONS Design speed 40 knots Fuel fraction 0.50

IMPORTANT TASKS COMPLETED IN 50 DAYS OF OPERATION

TASK TIMES TASK CODE COMPLETED NAME

ON SCENE: INS 14 INSPECTION SZE 2 SEIZE

REDUCED SPEED: NO IMPORTANT TASKS SPECIFIED

CRUISE SPEED: IDC 0 IDENTIFY CRAFT

IDF	14	IDENTIFY	FLEET

FLANK SPEED:

NO IMPORTANT TASKS SPECIFIED

☆ U. S. GOVERNMENT PRINTING OFFICE: 1977--701-793--209