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Generalization of the Statistical Theory of Strength for the Case

of the Nonuniformly Stressed State

T.A. Kontorova and 0.A. Timoshenko

Introduction

At one time one of the authors [1,2,3,4,5] developed a
statistical theory of technical cohesive strength for solids

for the case of a uniformly stressed state of a material.

Since the influence of the scale factor is observed experiment-
ally not only in the case of extension and compression of specimens,
but also in bending tests, it is of interest to extend this theory

to the more common case of the nonuniformly stressed state.

This paper represents an attempt at such a generalization of

the theory undertaken by us on the suggestion of N.N. Davidenkova. .

1. The Case of the Uniformly Stressed State

Let us briefly recall the main postulates of the previous

theory.

It is assumed that the experimentally observed influence of the
dimensions of specimens on the strength of a material (the so-called
"scale effect") is due to the fact that in each of the specimens
is contained a set of defects with different "hazard" levels. It is
further assumed that responsibility for failure of a specimen at
any time is borne by only one--the most hazardous--defect present

in this specimen.




As the parameter characterizing the "“hazard" level of a
defect it is convenient to select the value of technical cohesive
strength F , which the specimen would possess if this defect

were the source of its failure.

The possible "assortment" of defects in a material can be
characterized by series of successive values of parameter F ,

which we arrange in increasing order:

Bl o FoFen o Ol R, 1)
where Fl and F2 are respectively the lower and upper limits of
the "range'" of possible values of F, and F0 is the value of F

corresponding to the most frequently encountered defects in the

material in question (defects of a 'middle" hazard level).

Since only the most hazardous defects are considered responsible
for failure of the specimens, in determining the technical cohesive
strength of the material we will be interested only in values of
F lower than FO -
If it is assumed that deviation of values of F around the

magnitude of F, follows the ordinary law of "errors,' then the

0
probability, p(Fi) , of the defect's encountering parameter F

lying within the range of F, to Fi+-dF is determined by the

i
Gaussian function:
. P(F)dF=Ce" 1= dF ]
S 1 .. & A2
where C= V;,; a'—mﬁf:ﬁ? ; P q

'
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and the probability, W(F)dF , of the fact that in a specimen of
volume V the most hazardous defect will have a parameter of F
to F + dF 4is written in the following form (more precisely,
cf. [2]):




W(F)df—nvp(mzml“‘df‘ IR |

whére l (F)= [P (F) dF ¥

and n is the average number of defects per unit of volume.

The most probable value, F*¥ , of the technical cohesive
strength of specimens of a specific volume of V is determined

from the condition of the maximum of function W(F):

s =aW (F) : |

oo~

"A distinct form of relationship between strength F* and
the volume of specimens V , was found previously only for the
specific case of sufficiently high values of V . 1In seeking
this relationship the authors of [2] were guided by the following
ideas. In specimens of great volume it is natural to assume the
presence of a great assortment of defects; this means that the
magnitude of parameter F characterizing the most hazardous defect
responsible for failure must be much smaller than FO J
With high values of difference (F0 - F), equation (4) gives
(cf. [2)): ;
E*_:_F,—v‘A_lgV:B“ \ g |
where ";A—_ B——ngV' Ex

The nature of the relationship between F* and the volume
of specimens can also be determined for another specific case--
for specimens of small volume V , if we assume that small possible

values of difference (1‘-‘0 - F) correspond to small V . It is natural

R
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to assume that a reduction in the dimensions of specimens must be
accompanied by a reduction in the assortment of defects present
in them; the smaller the dimensions of the specimen, the less

frequently are defects encountered in it for which parameter F
is much smaller than the magnitude of Fol.

1f difference (F0 - F) is small, then interval I(F) equals
approximately

- I(F)=++ C(F,— F),

and equation (4) results in the following relationship between the

most probable strength, F* , and the volume of the specimens, V:

Y » F‘Eztzq—%; : | D :
\ g g - “ s ("E p & : 6 "
st i

2van
The dependence of F* on V , as we shall see, proves in
this case to be more critical than for specimens of large volume

(cf. (5)).

This fact is in agreement with experimental observations--
as we know, the scale factor is much more important the smaller

the dimensions of the specimens studied.
2. Experimental Verification of the Theory

It would be quite interesting to verify the correctness of
formulas (5) and (6) on the basis of experimental data. Unfortunately,
the possibilities in this regard are still exceedingly limited.

We found quantitative data on the influence of the scale factor
during extension only in the study by Muller [6], who measured the

tensile strength of NaCl specimens of different cross section.2

sriey v e o e e 2 overaires
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In the following table Miiller's data (third column) are
compared with strength values computed from theoretical formula
(6) (fourth column). Points used to compute constants a and b

in formula (6) are marked with an asterisk in the second column.

{
F(l (2) 3)Mpouncers (4 i'lpo-mocrb '
)
Ce‘e)n!:'i?spasua' OGbe" ‘V' Cll“ wecn. o FMP. = + —b
} x xrjcM?
b !
6X6 - 1.26° ; 40
4X4 0.56 .42
“3X3"° 0315 . | 47
L 255¢ 257 0.22 : 56
2% 2 0.14 g R
15X 1.5 0.084 - 89
11 4 0035 ¥ 200
0.7 X 0.7 0.017 350
0.5 X 0.5 0.008 600

Note: *The length of specimens in all experiments remained constant
and equaled 35 mm.

Key:
1. Cross section of 3. Strength Fexp’ kg/cmz
specimen, mm i
2. Volume V , cm 4. Strength F = a+ (b/v),
kg/cm

Agreement between experimental and theoretical results can
be considered totally satisfactory, in our opinion. Formula (5)
results in considerably worse agreement with experimental values
in this case, and this is not surprising in view of the small size
of the specimens studied by Muller.

But formula (5), which is correct only for specimens of
rather large volume, has also received experimental confirmation.

In Nature [7] a curve is given, expressing the relationship between

alia o
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the magnitude of (F0 - F)2 and log V, plotted from Brown's data

for specimens of hard coal of different size.

Experimental points are positioned quite well on the theoretical

line, which proves the correctness of rule (5).
3. Taking into Account the Spatial Distribution of Defects

The method developed above, as we will see, proves to be
totally suitable for considering the question of the role of the
scale factor in the case of the uniformly stressed state. But, ﬁ

in attempting to apply this method to solving the analogous problem

for the nonuniformly stressed state we encounter quite considerable

difficulty.

The key feature of the nonuniformly stressed state is
unevenness of distribution of stresses over the cross section
of the specimen. It is obvious that in this case the '"hazard"

of any defect is determined not only by its intrinsic 'qualities"

(e.g., its dimensions or the F parameter introduced above), but

also by the position of this defect in the specimen.

Because of this it becomes necessary to take into account

- s T —

the spatial distribution of defects in the material of the specimen.

A method of solving this problem was suggested by Prof. Ya.I.
Frenkel'.

T

If we assume that the defects do not "interact" with one
another, then the problem is completely analagous to the familiar f
problem of distribution of particles of an ideal gas in a certain :

volume.




Let us consider a group of specimens of the same volume V.
If it is possible to count the number of defects in each of these
specimens, then in going from one specimen to the other we would

certainly find that this number is not constant.

Only on average can the number of defects in specimens of a
certain volume V , be considered constant and proportional to V;
the true number of defects N , in each specimen individually will

differ from the mean value of this number N .

The probability, P , of encountering a certain specific fluctu-
ation in the number of defects, AN = N - N , just as in the case
of the gas problem, can be determined approximately with a function
of the type:

)
1

PN~ Wy @)

N we will in this case consider proportional to the volume of the

specimen, V, .
N=nV, b A R

where n is the average number of defects present per unit of volume.

Function (7) in combination with equation (8) describes the
distribution of defects over the volume of the material which

interests us.

It should be emphasized that approximation (7) is suitable

at any level, both for high and as low values of V as possible.

4, "Quality" of Defects

As previously, we will characterize the "quality" of defects

by parameter F , as defined previously.




Equations (7) and (8) can be written for each sort of defect

present in the material.

For example, the probability of encountering in a specimen of
volume V a number, Ni , of defects of a certain specific i-th

sort, i.e., defects which correspond to a specific value of parameter

F equaling Fi’ will be:

G PR N S e Gt E T
et P AN =rpnres e Ll o R @

.

e i

-

e I
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where Hi is the average number of defects of this sort per unit

of volume.

As far as the distribution of defects by ''quality'" is concerned,
p 4 = By the possible values of parameter F , we will assume, as

before, that it obeys the Gauss law, i.e., that

r

o _5 _n,..='Ke—'m_f')‘ ]., e o s (9)
‘¢ ionere x AK=ON :
where n is the average value of the total number of defects per

unit of volume, and C, o , and Fo are as previously defined (cf.

(2)).

As always, in considering the question of possible values of
the material's strength we will be interested only in parameters

characterizing defects of the worst grade.

In this connection let us determine the probability of the
fact that in a specific volume under consideration a defect of
the worst '"quality" is a defect characterized by some specific value

of parameter F equaling Fs v




If Fs is the lowest of all values of parameter F present
in this volume, then this means that:

1) There are no defects in this volume for which F < Fs.

2) There is 3 defect present with parameter F equaling FS.

3) Defects for which F > Fs can be present in any amount.

The probability, ¢i , of the absence in this volume of defects
of some specific, e.g., i-th sort we will find by making Ni in
formula (7') equal to zero:

10

The probability, ws , of the presence of a defect for which
F = FS is equal, accordingly, to

¥

“f‘.;é.i(«,’\/.=l)=7\/,-e"_v"-' (11)

The probability, X5 o of the fact that defects of some specific

i-th sort are present in any'amount is

(ig)-ﬂf

And, finally, the probability which interests us, Ws , of the
fact that in this volume a defect of the worst 'quality" is

characterized by a parameter F equal to FS is equal to (cf. (1)):

-
o ——

Te 1y

w. 2 u wte [ . (13}

A i=s41
e S X
The dependence of factors ¢i and ws on the volume V , and

parameters Fi and FS is then determined by equations (8') and (9).




5. Correlation Between Dimensions of the Specimen and Possible

Amounts of Fluctuation in Parameter F

It has been mentioned more than once that in considering the
question of the strength of a material we are interested only in
defects of the worst quality, i.e., in values of parameter F which

are the smallest possible.

We assumed above in para. 1 that in the case of specimens of
rather large volume the assortment of defects present in them is
quite varied, as the result of which the values of parameter F
corresponding to defects of the worst quality are much smaller than

the magnitude of F characterizing the defects most frequently

0
encountered in the material.

In the case of specimens of small volume, on the other hand,
we considered that fluctuations of F from its most probable value,
F0 , can not take on large values, since in this case the assortment

of defects can not be sufficiently varied.
The qualitative ideas can now be substantiated quantitatively.

Employing equations (7'), (8'), and (9), let us write the
probability, wi , of encountering a defect of the i-th sort in
volume V: it e T . .

P D (N ) = K Ve el T

Let us first assume that fluctuation |Fi -F is great,

ol
and let us explain how the probability will vary of encountering
some specific value of this great fluctuation when changing the

dimensions of the specimens.

10




If we are dealing with specimens of different volume V1 and

V2’ then the ratio of the respective values of probabilities

(wi)vl and (wi)V2 equals:

: : i3 N’.")y, : Vi —K« V;— V) e—2 (Fi= Fa) i
Rﬁ<,*1¢7 == € : e ;
WAy T LR ‘ o

If |Fi - F0| is sufficiently great, then

() v~ .V,
(‘Lv’)p’,., s V‘_’» - i

Hence it follows that high values of fluctuation \Fi - Fo\

are encountered in specimens

frequently than in specimens

Let us now consider the

ﬁ What values can fluctuations

To answer this question

write log byt

g, Mg(KV) - a(F,— Fof — KVe™

-

wi when varying the magnitude of difference (Fi - F

of great volume actually more

of small volume.

case of specimens of small volume.

of parameter F take on with small V ?

let us study the behavior of probability

0). Let us

If V is sufficiently small, then

gl = —a(F,— F)

11
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Hence it follows that the greater the fluctuation in (Fi - Fo),
the less the probability, wi , of encountering it in the small

volume considered, V.

This means that in the case of specimens of small volume the

fluctuation in parameter F can be assumed to be slight.
6. Tensile Strength

: Before considering the question of the possible values of
the technical cohesive strength of a material in the nonuniformly
stressed state, we will use the notions described above to analyze
the simpler case, and one studied by us earlier, of failure of

specimens under extension.

As before, we will assume that in the uniformly stressed state
of the material the hazard leQel of each of the defects does not
depend on its position in the specimen. In this case the only
magnitude characterizing the "hazard" of defects is parameter F ,
and the probability, WS (cf. (13)), of the fact that in a specimen
of a certain volume V , a defect of the worst quality corresponds
to some specific value of F equaling FS , is at the same time
the probability that when this specimen is extended its technical

cohesive strength is equal to FS .

12




The problem of determining the most probable magnitude of
technical cohesive strength as a result boils down to finding
a value of Fs equaling FS* , whereby probability WS has a

maximum.

As follows from (13), WS is a function of s , i.e., a
function of the number of the sort of defect which is assumed

to be the source of the specimen's failure.

It is not difficult to demonstrate that the condition

for the maximum of WS equaling f(s) results in the equation

B err = Yoyt . B M
Substituting values ¢s’ ws’ ws+l’ and Xgt+1 in this
equation, we arrive at the equation:
1_\‘/,=N,+, et (15)

Let us recall that (cf. (8') and (9)):

N=n, V=KVe s, ' (16)
N."-"‘ =Ry, V=KVe"* (Fog1 — FoF - (16"

Here Fs+1 is the magnitude of parameter F next to F = Fs

in the "range'" of possible values of F .
If the "assortment'" of defects in our specimens is sufficiently

varied, then it is natural to assume that

13




where AF 1is slight.

In this case, disregarding the square of AF in the exponent
in (16'), we have
.I—Vl+l = I_Vo e_” (=% AF- (1 6”)

After substituting (16) and (16'") and logarithmization,

equation (15) acquires the form of

20 (F* — FYAF -+ KV ™ (=A== (=ropr g a7

The solution to this equation should give us the relationship
sought, of the most probable value of technical cohesive strength,

Fs* , versus the volume of the specimens V.
a) Specimens of Large Volume

It was demonstrated above in para. 5 that for specimens of
sufficiently large volume we have the right to consider difference
IFO - FS*I which appears in equation (17) great, and for specimens

of small volume, small.

Let us first study the case when V is rather great. Log-

arithmizing (17) and disregarding terms log [2a(F0—Fs*) AF] and

14

Rl i
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2a(Fs* - Fo) AF as compared with magnitude a(FS*-Fo)z, we have

approximately:
b Fr=F,—VAlgV+B : 3

As we shall see, this relationship between Fs* and V agrees
with accuracy as great as a constant with formula (5) found by us
earlier, which determines the most probable values of the technical

cohesive strength of specimens of great size when tensile testing.

b) Specimens of Small Volume

For specimens of small volume. i.e., with sufficiently low
values of difference (FO-FS*), the exponential factor in the second

term of equation (17) can be conveniently expanded into a series.

This brings us to a quadratic equation for (FO—FS*); solving

it and disregarding the term containing (AF)2, we get approximately




—

Comparing (19) and (6) we become convinced that in this
case--with specimens of small volume--we get precisely the same
dependence of the most probable value of technical cohesive strength,
FS* , on V , as when using the previous method of solving the

problem.

7. Case of a Sufficiently Small Unit of Volume

Let us now proceed to solving our main problem--determining
the possible values of the technical cohesive strength of a

material in the nonuniformly stressed state.

In this case, unlike in the previous one, the "hazard" of
each of the defects is determined not only by the corresponding
values of parameter F , but also by the position of this defect

in the specimen.

We will assume that the volume of the specimen as a whole can
be divided into sufficiently small units of volume, so that the
stress acting in each of these units can be considered approximately

constant.

In this case function ws which we discussed above (cf. (13)),

being written for one of these units, will give us the probability

16




that the technical cohesive strength of this unit will be

equal to Fs .

Let us write Ws more precisely, substituting in (13) the

values of factors ¢i, ws’ and Xy determined from equations

(10) to (12).

This gives

Here (cf. (8")): =0 :

where gV 1is the unit of volume which we selected.

If 6V 1is sufficiently small, then

L T G S—

= —Iri:" X - : ot g -\
W,=ne V=n, (l;sVzn,)SV, _-

(]
] =1

. - di ¥

or, if we disregard magnitudes of the second order of triviality:

L wE=adv.

" |

Employing equation (9), which determines the dependence of
the average number of defects in a unit of volume, E; , On parameter
Fs ,» we have finally
17
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As is obvious, in the case of a very small unit of volume,
6V , the probability of encountering some specific value of strength,
Fé » boils down essentially to the apriori probability of encountering

in this volume a defect characterized by parameter Fs .
This result it totally intelligible from the qualitative
viewpoint. It can also be arrived at easily within the scope of

our previous theory, from equation (3) (cf. para. 1).

8. Formulation of the Problem of Bending Strength

As a specific problem relating to the strength of a material i
in the nonuniformly stressed state let us first consider the

problem of failure while bending.

If it is a question of specimens of rectangular cross section
it is natural to select unit volumes, 8V , in the form of thin
layers positioned parallel to the neutral line of the specimen: ;
V=S . dz , where S is the area of the specimen's base and

dz is the height of the layer.

18




In the layer located at distance 2z from the neutral line,

as we know, a stress acts which is equal to

- RES———. E
- =, \
Toz g
C———9 o 4 '
4 ]

where 9 is the stress at the surface and h 1is the half height

of the specimen,

If the value of g is equal here to the technical cohesive

strength of the 1layer in which it acts, then the layer fails.

Let us recall that function Ws in the form of (20) is the
probability that the technical cohesive strength of a certain

unit of volume &V 1is equal to FS

Consequently, if in (20) we make

F=9%, -

then we get the probability that one of the layers of our specimen--
the layer with coordinate z - will fail under the influence of the

stress acting in it:

WA i R A m)i!




For precisely this layer to be the source of failure for
the specimen as a whole it is necessary that all the remaining
layers do not fail under the influence of the stresses acting in
them. The probability that a certain layer with coordinate z;

will not fail with the presence of a stress of OOZi/h in it

is determined by the expression (1-wi), where

The probability, Ps , that the source of failure for the

specimen as a whole is a layer with coordinate z will then be
A=W, Hu W)= ];[(w LN

In view of the triviality of unit of volume 6V, we set, ;

approximately

H(1+W‘);1—2W¢=1 —"KSf‘e_'(,‘.‘-""")'dz. Ly |
[ é [} ik »ig

Function (21) is rewritten accordingly in the form

P= l—KSI(c,,, h)] j.
BT

where

20




It makes no difference to us in exactly which layer of
our specimen the process of failure begins. The probability, P ,
of failure of the specimen as a whole with a stress of oy on its
surface (without indicating the focus of failure) we will find
by adding the probability, Ps , for all layers, or, what is the
same thing, by integrating equation (21') with respect to coordinate

z from O to h . This will give us

P;}:P,—='|1 ;k;SI(co,h)]ElZ~W iy
: R - C(22)]
=[1—KSl(s, K} S W, =[1 —KSI(s,, k) KSI(c, h).

The most probable value of stress 90 (we will designate it

by go*) we will find from the usual condition

=0.

(5%)
— \dg, Gp=0o* f

Differentiating (22) with respect to og » e arrive finally at i

the equation f

iKSI(c.“, h)-;-—]' ' : S (29) 4 t

the solution to which will give us the unknown value of stress 00*.




9. Bending Strength

Let us convert integral I(o*, h) which enters equation (23)

to a form more convenient for integration.

Substituting /EYFO - oﬁz/h) = x , we get

ks P ' : ke
—?
Ve | =1 @)
|

Generally an explicit form of the dependence of stress 00*
on the dimensions of specimens, which interests us, can not be
found from this equation. As before we are limited, for this

reason, to studying two specific cases--specimens of large and

of small volume.
a) Specimens of Large Volume

For specimens of large volume difference (F0 - 00*), as we

know (para. 5), can be considered sufficiently great, and integral

vaFe
‘ L gt |
g = j e dx
- VE(Fe—oy®) |

can be computed approximately as




@ @ =
‘ | —, : —a (R—oe®P —aFp -
Io= -J.>e 'dx— [ e "dx_:_. :l‘ g . "o »_"-.
Vati-o® et e et RN Fe—al) - 2VaFe

Substituting this value of 'IO in equation (23') and
substituting Sh = V/2, after uncomplicated mathematical transforms

we arrive at the approximate relationship between d’(‘) and V sought:

GO*EFO“—\IAlg V+Bb .
(24)

o o s o T
A_u~’ Bb——a lg?‘/TTGFo j > k3

-

b) Specimens of Small Volume

For specimens of small volume, employing the triviality of

difference (Fo - co*), we have approximately

ver, B () e ©
A= I e “dx= Je—" dx — f e_f’dx—-f e Tdx=
Va(Fo—og®) 0 0 ‘ VaF,

~V;l - e—'",
=— —Vo (Fy—6g¥) ———.
, —Va(Fo—oy VR,

Substituting this value of I, in (23') and substitL;ting

0

Sh = V/2, solving the equation for oo* obtained thereby, and

2
disregarding the small values of (1/2)V n/a and e oo /2/@-‘0

in comparison with Fo , we find approximately




* ~ F"'V’
%~—1~lﬁ 2
: S ; 4 KV A
‘yhere,(cg. (9) and (2))‘{—_21!5 £ £
b va 7

Furthermore, 1/KV will always be a proper fraction, since
for specimens of finite size KV = /g;V//;'is certainly greater
than unity (let us recall that oV  is the average value of the

total number of defects in a specimen of volume V, and a =

= /2 (F)?  (cf. (2)).

10. Torsional Strength

Let us now consider the question of the influence of
dimensions of specimens on strength in another specific case of
the nonuniformly stressed state--twisting of specimens of cylindrical

form.

In this case as unit volumes, §V , it is convenient to choose
sufficiently thin hollow cylinders positioned coaxially with
respect to the axis of the specimen, where &V = 27Lrdr, where
r 1is the distance of the unit cylinder from the axis, dr is its

thickness, and L 4is the height of the specimen.

24




In each of these units, 6V , a shearing stress acts:

.
— ”
T=ToR's
[

Here R 1is the radius of the specimen and is the stress on

To

its surface.

As soon as 1 1is equal to the technical cohesive strength

of the unit of volume under consideration the latter fails.

Consequently, function

' £ 5 W. Ret Ke_u (F.—l’.ha vV

/

(cf. (20)) where f:::ro%%
will represent the probability of failure of a unit of volume ¢V
found at a distance of ro from the axis of the cylinder, under

the influence of a stress of t acting in it:

)

W,=Ke V.

The probability, P , of failure of the specimen as a whole

is determined by the expression

: T e S e A% )
P=[1—K2rLI(x, R)] }_ =i
=(1—K2sLI(s R K 26LI (o R) | : 26).

: wherf e (h%_".),

s I(r;.,R)-=j‘e ,
. ¥ A o

i~

rdr - -
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As in the problem considered above, relating to bending

strength, the most probable value of the shear breaking point,

Ty ™ TO* » can be found from the condition (Z)P/E)ro)T & =0
*
which results in the equation g B
5o (v. —-—F.) B =
B e j rdr=1. @)

Assuming that /E[TO*(r/R)-FO] = x , we have

o4 4'LKR=. Sl . 7 =
™ g el O
VeGP £y [ e dx+— _‘ ~ xdx =l » ( q-

Ve (Fo—s W <(Fo—u®) i ' g

s 3

We are restricted here to considering the dependence of TO*
on the dimensions of specimens for the specific case of twisting
specimens of sufficiently large volume, when difference (FO-TO*)

can be considered great. Integral

var, - :
—Jerdr
Ya (Fo—°)

for this case was computed in para. 9; and integral
. VR, '
I‘= : e—‘XdX‘

Ya(%—)

can be computed directly.

Substituting values I1 and I2 in equation (27'), after
some uncomplicated computations we get the dependence of TO* on

the volume of the specimens, V = WRZL , which we are interested in:

= F,— VAlg V+ B, a,; |
where 4 . (28) .
A=:’ B’i‘.:— lg Vry : P 11
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11. Influence of the Scale Factor on Strength in the Nonuniformly

Stressed State
a) Scale Factor in Bending

It foilows from equations (24) and (25) that both for specimens
of large and small volume the probable values of technical cohesive

strength while bending, o.* , must be reduced with an increase in

0
the volume of the specimens, V .

Furthermore, as in the case of extension, the dependence of
00* on V proves to be more critical for specimens of small
volume. Comparing (24) with formulas (5) and (18) obtained by
us earlier for technical cohesive strength during extension, we
come to the conclusion that in the case of specimens of large
volume the dependence of technical cohesive strength on V is of
the same nature both when bending and during extension: The change
in strength accompanying a change in V 1is proportional to the

square root of the logarithm of V .

Let us write equation (25), determining technical cohesive

strength while bending for specimens of small volume, in the form

* - @)
o (s ' ' |

=B =A 1)

(in view of the triviality of - 1/KV , we are limited to the first
two terms of the expansion of oo* into a series).
Comparing (25') with (6), we become convinced that in the case
of specimens of small volume the nature of the dependence of technical
cohesive strength on V during extension and during bending is

practically the same.
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It would be highly desirable, of course, to be able to

subject equations (24) and (25), which describe the influence
of the scale factor on the technical cohesive strength of a material

when bending, to experimental verification.

However, we have not found appropriate experimental data in
the literature. We know of only one study [8] in which values
of technical cohesive strength while bending were measured for {

specimens of different dimensions. The numerical data presented

in this study, which concerns only three different values of V ,
unfortunately, however, is insufficient for verification of theoretical

formula (24), which contains three unknown constants (F,, A, and Bb)'

0’
We know that, all other experimental conditions being equal,

the technical cohesive strength of a material while bending is

usually greater than its technical cohesive strength measured

during extension.

Let us attempt to compare from this viewpoint the possible

values of 00* and Fo* determined from formulas (24) and (18),

respectively.

Constants FO and A are identical in both cases, but i

constants B and Bb are different. Actually,

B e :
B=—lg°— : ;
Sle =, ‘
L. n
B =— —
b cngVnuFo, !
Loy M i 2 ' *

B=B—1lg2F,
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Substituting this value of Bb in (24) and substituting
a = 1/2(KF)2 (cf. (2)), we have

.o‘."'Fo_\/Alg V+B, ]
— b (29)
*=F,—\/AlgV Flg 10
\/ g V-+B—2(AF)lg =% (AF)

Hence it follows that with a specific value of V , 00* is
actually greater than FO* . It is obvious further that ratio
00*/F0* must not be much greater than unity, since term

2 (AFZ) log [FO/(AFZ)] can not be great.

It is natural to expect that the mean value of the square
of the flauctuation in strength, (AF)2 , will be less the more uniform
the material. Consequently, ratio oo*/FO* is a function of
the "quality" of the material; it should be closer to unity, the
more uniform the material studied. This conclusion, as we know,

agrees with experimental observations.
b) Scale Factor When Twisting

From equation (28), which determines the dependence of technical
cohesive strength of a material when twisting, TO* , on the
volume of specimens V , it follows that also when twisting an increase
in the volume of the specimens should be accompanied by a reduction

in the values of technical cohesive strength observed.

Furthermore, in the case of twisting specimens of sufficiently
great volume considered by us the nature of the dependence of
strength ro* on V 1is precisely the same as in the case of
extension and bending: The change in To* is proportional to the
square root of the logarithm of V . Constant Bt which enters
(28) is different, however, from the corresponding constants B
and Bb in equations (18) and (24), which determine technical

cohesive strength during extension (Fo*) and bending (00*).
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Actually,

AR

R R ESe R

o R
By=B—lg2:F =B~ Ig8F,

Hence it follows that
B>B>B, (31)-
This means that, with other experimental conditions being

equal (for specimens of the same material and identical volume),
e e

Thus, technical cohesive strength while bending, 00* 5
should be greater than technical cohesive strength while twisting,

T,* , which in turn should be greater than technical cohesive

0
strength during extension, FO* .

As we know, this conclusion agrees well with experimental data.

Substituting in (28) value Bt in the form of (30) and

substituting o = 1/2(AF)2 , we have

2, =Fy *—\/A lg V+ 8—2(AF)2 I; 4 7

1 S .

(8F)2
Hence it follows that, just as in the case of bending (cf.

(29)), the ratio of technical cohesive strength when twisting to

technical cohesive strength during extension, ro*/Fo* , should be

somewhat greater than unity.
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Actually, according to Kuntze's data [9], for specimens of
gypsum To*/FO* = 1.47; let us recall that according to the data
of the same author the ratio of oo*/Fo* for the same material

proved to be equal to 1.83.

Let us note in conclusion that it is possible to assume that
the numerical value of ratio to*/Po* (just as with 00*/F0*)

should be closer to unity, the more uniform the material studied.
Conclusion

The theory presented above does not in any way pretend toward
universality. It is only one of many possible variants of a
statistical description of the role of different types of defects
present in real materials. This variant seems to us, however,
one of the most sensible, since as the distribution function choice
is made of the Gaussian function, which has recommended itself so

well in considering a number of allied questions.

In view of the almost total lack of quantitative experimental
data regarding the influence of the scale factor on technical
cohesive strength in the nonuniformly stressed state of a material,
we are unfortunately for the time being deprived of the opportunity

of subjecting our theory to direct experimental verification.

Equations (5) and (6), however, concerning the case of the
uniformly stressed state, do not agree too badly with experimental
data; qualitative conclusions which it proved possible to make in
analyzing the question of technical cohesive strength during bending

and extension also agree with experimental data.
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This gives us the right to hope that the ideas expounded above
can turn out to be not without use in studying the influence of the

scale factor on the mechanical characteristics of solids.

"In conclusion we would like to express our sincere gratitude
to Prof. Ya. I. Frenkel', corresponding member of the USSR Academy
of Sciences, for a number of valuable pointers and for discussing

the problem.
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!Subsequently, (§ 5) we will provide strict proof of the validity
of the assumption that large values of the difference (FO-F)

correspond to samples of large volume and small values of this
difference - to samples y small volume.

2The tremendous test material which pertains to the study of the
increased strength of thin filaments cannot be used to check
formulas (5) and (6); we have absolutely different regularities

for filament-like samples which also receive a satisfactory explana-
tion within the framework of statistical theory of strength (See

C41).
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