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Generalization of the Statistical Theory of Strength for the Case

of the Nonuniformly Stressed State

T.A. Kontorova and O.A. Ti.moshenko

Introduction

At one time one of the authors [1,2,3,4,5] developed a

statistical theory of technical cohesive strength f or solids

for the case of a uniformly stressed state of a material.

Since the influence of the scale factor is observed experiment-

ally not only in the case of extension and compression of specimens,

but also i’~ bending tests, it is of interest to extend this theory

to the more common case of the nonuniformly stressed state.

This paper represents an attempt at such a generalization of

the theory undertaken by us on the suggestion of N.N. Davidenkova~.

1. The Case of the Uniformly Stressed State

Let us briefly recall the main postulates of the previous

theory.

It is assumed that the experimentally observed influence of the

dimensions of specimens on the strength of a material (the so—called

“scale effect”) is due to the fact that in each of the specimens

is contained a set of defects with different “hazard” levels. It is

further assumed that responsibility for failure of a specimen at

any time is borne by only one——the most hazardous——defect present

in this specimen.
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As the parameter characterizing the “hazard” level of a

defect it is convenient to select the value of technical cohesive

strength F , which the specimen would possess if this defect

were the source of its failure.

The possible “assortment” of defects in a material can be

characterized by series of successive values of parameter F

which we arrange in increasing order:

F 1, Fe .. .  F,~~, F,, F.~1. . .  F0. . .  F,, (1)

where F~ and F~ are respectively the lower and upper limits of
the “range” of possible values of F , and F0 is the value of F
corresponding to the most frequently encountered defects in the

material in question (defects of a “middle” hazard level) .

Since only the most hazardous defects are considered responsible

for failure of the specimens, in determining the technical cohesive

strength of the material we will be interested only in values of

F lower than F0

If it is assumed that deviation of values of F around the

magnitude of F
0 

follows the ordinary law of “errors,” then the

probability , p(Fi
) , of the defect ’s encountering parameter F

lying within the range of F
i 

to F
i+dF is determined by the

Gaussian function:

_____  

,. (2)’’
where ~~~~~~~~~~~~~~~~~~

and the probability, W (F)dF , of the fact  that in a specimen of
volume V the most hazardous defect will have a parameter of F

to F + dY is written in the following f orm (more precisely,

ef. 12]):
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W(F)dF = a V.p(~~[1(F)j ~~ ’ di
(3)’

where W~ =JP ~F~óF

and n is the average number of defects per unit of volume.

The most probable value, F* , of the technical cohesive

strength of specimens of a specific volume of V is determined

from the condition of the maximum of function W(F):

iàW( Ff l  — 0 (4)’L oF J F ~~FS

A distinct form of relationship between strength F* and

the volume of specimens V , was found previously only for the

specific case of sufficiently high values of “J . In seeking

this relationship the authors of [2] were guided by the following

ideas. In specimens of great volume it is natural to assume the

presence of a great assortment of defects; this means that the

magnitude of parameter F characterizing the most hazardous defect

responsible for failure must be much smaller than F
0

With high values of difference (F
0 

— F) ,  equation (4) gives

(cf. [2)):
- .

F*~~ Fo _ VA Lg V~i~B •
~~
.

I ~~1 .~~where A B ~~~~ Igj ~~

The nature of the relationship between F* and the volume

of specimens can also be determined for another specific case——

for specimens of small volume V , if we assume that small possible

values of difference (F
0 

— F) correspond to small V . It is natural3



to assume that a reduction in the dimensions of specimens must be

accompanied by a reduction in the assortment of defects present

in them; the smaller the dimensions of the specimen, the less

frequently are defects encountered in it for which parameter F

is much smaller than the magnitude of F
0
1
.

If difference (F
0 

— F) is small, then interval 1(F) equals

app roximately 
. . • • . • -

-

and equation ( 4 )  results in the f o l l owing r elationship between the

most probable strength, F* , and the volume of the specimens, V:

— 6
• V .

— . (6)
where ‘a = 

~~~~~~~~~ 
—

~, b = 
____ • 

.2vu . .
• 

-
~. ‘

S — 
S

The dependence of ~* on V , as we shall see, proves in

this case to be more critical than for specimens of large volume

(cf. (5)).

This fact is in agreement with experimental observations——

as we know, the scale factor is much more important the smaller

the dimensions of the specimens studied .

2. Experimental Verification of the Theory

It would be quite interesting to verify the correctness of

formulas (5) and (6) on the basis of experimental data. Unfortunately,

the possibilities in this regard are still exceedingly limited.

We found quantitative data on the influence of the scale factor

during extension only in the study by MUller [6], who measured the
tensile strength of NaC1 specimens of different cross section.
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In the following table MUller ’s data (third column) are

compared with strength values computed from theoretical formula

(6) (fourth column). Points used to compute constants a and b

in formula (6) are marked with an asterisk in the second column.

(1~ (2) (3)flpo~uoem C4j11)o~
focTh

Ce~ nx e o6paa~ a. O6beM V. c& ~~~~ F,,1,, = a .4-

—
~~ xr lc$- ‘

6 X 6  , I.26 40 40 , .
4 X 4  0.56 , 42 ~~~44.3” .

‘ 3 X 3 “ 0.315 47 ~- 503~
2.sx7.~ 0.22’ 56 ~~i6~~’ ~2 X 2  k . 0.14 72 — . t68 •:~

-.‘ -
~~

13 X 1.5 0.084 89 ‘ 
.~

1 ic 1 4 0.03c ‘ 200 i623~0.7’X O.7 0.017 3~0 -2965 ’  . -‘ :~0.5 >( 0.5 0.008 600 588 ’

Note: *The length of specimens in all experiments remained constant

and equaled 35 mm.

Key:

1. Cross section of 3. Strength F , kg/cm2
2 expspecimen, nun

3 4. Strength F = a + (b/v),2. Volume V , cm theor.
kg/cm

Agreement between experimental and theoretical results can

be considered totally satisfactory, in our opinion. Formula (5)

results in considerably worse agreement with experimental values

in this case, and this is not surprising in view of the small size

of the specimens studied by MUller.

But formula (5), which is correct only for specimens of

rather large volume, has also received experimental confirmation.

In Nature [7] a curve is given, expressing the relationship between

5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ~~~~~~~ -~~~~~ ---—-‘•~~~~ flr • fl -V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the magnitude of (F
0 

— F) 2 and log V , plotted from Brown’s data

for specimens of hard coal of different size.

Experimental points are positioned quite well on the theoretical

line, which proves the correctness of rule (5).

3. Taking into Account the Spatial Distribution of Defects

The method developed above, as we will see, proves to be

totally suitable for considering the question of the role of the

scale factor in the case of the uniformly stressed state. But,

in attempting to apply this method to solving the analogous problem

for the nonuniformly stressed state we encounter quite considerable

difficulty.

The key feature of the nonuniformly stressed state is

unevenness of distribution of stresses over the cross section

of the specimen. It is obvious that in this case the “hazard”

of any defect is determined not only by its intrinsic “qualities”

(e.g., its dimensions or the F parameter introduced above), but

also by the position of this defect in the specimen.

Because of this it becomes necessary to take into account

the spatial distribution of defects in the material of the specimen .

A method of solving this problem was suggested by Prof. Ya.I.

Frenkel’.

If we assume that the defects do not “interact” with one

another, then the problem is completely analagous to the familiar

problem of distribution of particles of an ideal gas in a certain

volume.

6 
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Let us consider a group of specimens of the same volume V.

If it is possible to count the number of defects in each of these

specimens, then in going from one specimen to the other we would

certainly find that this number is not constant.

Only on average can the number of defects in specimens of a

certain volume V , be considered constant and proportional to V;

the true number of defects N , in each specimen individually will

differ from the me in value of this number N

The probability , P , of encountering a certain specific fluctu-

ation in the number of defects , ~N = N — N , just as in the case

of the gas problem, can be determined approximately with a function

of the type:

- Ny ~~ N

P ( N )  e (  ) (7)

N we will in this case consider proportional to the volume of the

specimen, V , 
- .

N = n V, 
‘ 

-

where n is the average number of defects present per unit of volume.

Function (7) in combination with equation (8) describes the

di str ibution of defects over the volume of the mater ial which

interests us.

It should be emphasized that approximation (7) is suitable

at any level, both for high and as low values of V as possible.

4. “Quality” of Defects

As previously, we will characterize the “quality” of defects

by parameter F , as defined previously.

7
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Equations (7) and (8) can be written for each sort of defect

present In the material.

For example, the probability of encountering in a specimen of

volume V a number, Ni , 
of defects of a certain specific i—th

sort, i.e., defects which correspond to a specific value of parameter

F equaling F1, will be:
- t -  ‘~~~~~~ “‘ ‘ ‘ -. r . -

-. - r . e Ni W~ - - - 
‘ 

‘

(N ~) I ‘

_, 
.-

— 
t S. 

— 
— — ..

wher~by N =~~ V, 
- ~~~~

.. ~8 )
- 

_ .‘,-1 • . . •- - -
-S - ‘ 

• t’~~~
S •

, ... -.

where is the average number of defects of this sort per unit

of volume.

As far as the distribution of defects by “quality” is concerned ,

i.e., iy the possible values of parameter F , we will assume, as

before, that it obeys the Gauss law, i.e., that

— ?~)‘ (9)
where -~~~~~~~~ 

Il 
• -

~~ 
- 

_
‘ 

- -

where n is the average value of the total number of defects per

unit of volume, and C, ~ , and F
0 

are as previously defined (cf.

(2)).

As always, in considering the question of possible values of

the material’s strength we will be interested only in parameters

characterizing defects of the worst grade.

In thI s connection let us determine the probability of the

fact that in a specific volume under consideration a defect of

the worst “quality” is a defect characterized by some specific value

of parameter F equaling F9

8
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If F is the lowest of all values of parameter F present

in this volume, then this means that:

1) There are no defects in this volume for which F < F .

2) There is ~ defect present with parameter F equaling F
6
.

3) Defects for which F > F can be present in any amount.

The probability, 
~~ 

, of the absence in this volume of defects

of some specific, e.g., i—th sort we will find by making N~ in

formula (7’) equal to zero:

~~ , ~~~ (N = 0) = e~~
1’ 

- 

(10)

The probability , 
~~ 

, of the presence of a defect for which

F = is equal, accordingly, to

(11) 
-

The probability, x1 , of the fac t tha t defec ts of some specific
i—th sort are present in any’ amount is

- -

- 
-
~~~~~~

• 

- 

(l2) ’~~
Njrr O

• - - 
— - . ‘ S — -

And , finally,  the probability which interests us, W , of the

fact that in this volume a defect of the worst “quali ty” is

cha racterized by a parameter F equal to F is equal to (cf .  (1)) :

: w.=fl p 4~,j
’J i~ 

- 

(13)

The dependence of factors $.~ and on the volume V , and
parameters F

1 
and F is then determined by equations (8’) and 

(9).9
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5. Correlation Between Dimensions of the Specimen and Possible

Amounts of Fluctuation in Parameter F

It has been mentioned more than once that in considering the

question of the streng th of a material we are interested only in
defects of the worst quality, i.e., in values of parame ter F which
are the smallest possible .

We assumed above in para . 1 that in the case of specimens of

rather large volume the assortment of defects present in them is

quite varied , as the result of which the values of parame ter F
corresponding to defects of the worst quality are much smaller than

the magnitude of F
0 

charac ter izing the defec ts most frequen tly
encountered in the material.

In the case of specimens of small volume , on the other hand ,
we considered that fluctuations of F from its most probable value,

F
0 , 

can not take on large values , since in this case the assortment

of defects can not be sufficiently varied .

The quali ta tive ideas can now be subs tan tia ted quantitatively.

Employing equations (7’), (8’), and (9) , let us write the
probability,  

~~~

. , of encountering a defect of the i—th sort in
volume V: • , ‘ • ‘ .

Let us f i rs t  assume that f luc tuat ion  I F 1 — F
0! is great ,

and let us explain how the probability will vary of encountering

some specific va l ue of this great f luctuat ion when changing the

dimensions of the specimens.

10
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If we are dealing with specimens of d i f ferent  volume V1 and

V2, then the ratio of the respective values of probabilities

and (*~
)
~ 

equals:

- - V, — 
V1 —K (I’,— V,) , (F1— F.,)’ 

-

—

If IF . — F
0! is sufficiently grea t, then

(~;~j 1. _ ‘V, -

~~~ 1’

Hence it follows that high values of fluctuation I~1 — F
0!

are encountered in specimens of grea t volume actually more

freq uently than in specimens of small volume.

Let us now consider the case of specimens of small volume.

Wha t values can f l uctuations of parameter F take on with small V ?

To answer this question let us stud y the behavior of probabili ty

when varying the magnitude of difference (F
i 

— F
0
). Let us

write log ~~

~~ Ig~~~ 1g(KI’) — ~ (F , —F 0)’ ---KV~~~ F 1~~~’ 
-

I f V is suff ic ient ly small , then

11
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Hence it follows that the greater the fluctuation in (F1 
— F0) ,

the less the probability , p
~ , 

of encountering it in the small

volume considered , V.

This means that in the case of specimens of small volume the

f luctuation in parameter F can be assumed to be slight .

6. Tensile Strength

Bef ore considering the question of the possible values of

the technical cohesive strength of a material in the nonuniform ly

stressed state, we will use the notions described above to analyze

the simpler case , and one studied by us ea r lier , of fa i lure of

specimens under extension.

As before, we will assume that in the uniformly stressed state

of the material the hazard level of each of the defects does not

depend on its position in the specimen . In this case the only

magnitude characterizing the “hazard” of defects is parameter F

and the probability, W (c f .  (13)), of the fa ct that in a specimen

of a certain volume V , a defect of the worst quality corresponds

to some specific value of F equaling F , is at the same t ime

the probability that when this specimen is extended its technical

cohesive strength is equal to F9

12
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The problem of determining the. mc’st probable magnitude of

technical cohesive strength as a result boils down to finding

a value of F equa ling F *  , whereby probability V5 has a

maximum.

As follows from (13), W is a func tion of s , i.e., a

function of the number of the sort of defect which is assumed

to be the source of the specimen ’s failure.

It is not difficult to demonstrate that the condition

for the maximum of W~ equaling f(s) results in the equation

+1+1 = ~~~~ - 

- (1~4)

Subs tituting values 
~~~
‘ 

~~~~~
‘ 

~~~~~~~~~~~ 

and x5~1 
in this

equa tion , we arrive at the equation :

- ~~~~~ - (15)

Let us recall that (c f .  (8’)  and ( 9 ) ) :

N=~, V=KVi’(Fs_F.)’, - • 

• 

(16)

1V,~ a,.,.1 V= KVe~ 
(F,~ — 

- 
(16’ -

Here F941 is the magnitude of parameter F next to F = F
9

in the “range ” of possible values of F .

If the “assortment” of defects in our specimens is sufficiently

varied , then it is natural to assume that

13
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F, ~+- &P, 
- 

.

where è~F is slight.

In this case, disregarding the square of L~F in the exponent

in (16’), we have

(16”) 
-

After substituting (16) and (16”) and logarithinization,

equation (15) acquires the form of

2~ (F,* F0)~tF-i— KVe ’ (F•_P0)t_~ (F. o)a~~~j  (17)

The solution to this equation should give us the relationship

sought, of the most probable value of technical cohesive strength,

F *  , versus the volume of the specimens V.

a) Specimens of Large Volume

It was demonstrated above in para. 5 that for specimens of

sufficiently large volume we have the right to consider difference

I F 0 
— F9*I which appears in equation (17) great, and for specimens

of small volume , small.

Let us first study the case when V is rather great. Log—

arithmizing (17) and disregarding terms log [2n(F0
_F
~
*) ~F ] and

14
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~

2n(F * — F0
) AF as compared with magnitude cg(F5

*_F
0
)2, we have

approximately :

i~,~~~F,—~/A 1g V-i- B
where -

- 
-

‘
- • 

.
- -• - -

A=!, B= !1gK = !1g~~ ~
. 

• 

-

S 
• ‘

•
~~~~~ 

a a

As we shall see, this relationship between F *  and V agrees

with accuracy as great as a constant with formula (5) found by us

earlier, which determines the most probable values of the technical

cohesive strength of specimens of great size when tensile testing.

b) Specimens of Small Volume

For specimens of small volume. i.e., with sufficiently low

values of difference (F
0
_F
9
*), the exponential factor in the second S

term of equation (17) can be conveniently expanded into a series.

This brings us to a quadratic equation for (F
0
_F
5
*); solving

it and disregarding the term containing (AF)2, we get approximately

• 

- ‘ 

~: , ~~~~ ~~~~~~~~~~ - 
- I . -

‘ 
-

-~~~~ where 
- 

~~ ~ , .  - (19)
1, AF ‘hAF I - ;. •

a F ,— — ,  b — ~~~———— -I • -

- K - vu;~
- -J

15 
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Comparing (19) and (6) we become convinced that in this

case——with specimens of small volume——we get precisely the same

dependence of the most probable value of technical cohesive strength,

on V , as when using the previous method of solving the

problem.

• 7. Case of a Sufficiently Small Unit of Volume

Let us now proceed to solving our main problem——determining

the possible values of the technical cohesive strength of a

material in the nonuniformly stressed state.

In this case, unlike in the previous one, the “hazard” of

each of the defects is determined not only by the corresponding

values of parameter F , but also by the position of this defect

In the specimen .

We will assume that the volume of the specimen as a whole can

be divided into sufficiently small units of volume, so that the

stress acting in each of these units can be considered approximately

constant.

In this case function W which we discussed above (cf .  ( 13)),

being written for one of these units, will give us the probability

16 
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that the technical cohesive strength of this unit will be

equal to F

Let us write W more precisely, substituting in (13) the

values of factors 4~~, i p ,  and x~~, determined from equations

(10) to (12).

This gives -

- a
- —~~~~~i(_ -

Here (cf. (8’)): 
. -

- 
N~==n~ V, =n,~ V, -

where ,~V is the unit of volume which we selected .

If SV is sufficiently small, then

- . - 
,~ 

~.
S - - ‘

~~~~~:- ;  -~ -

- — -. - 5 ..
—Ir

~~ :ls,- . • —.

W,==~~ e ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
~

or , if we disregard magnitudes of the second order of triviality:

- 

W•~~ R•~ V. .- :  ~~- -~~~~ 

- •

~

Employing equation (9), which determines the dependence of

the average number of defects in a unit of volume, n5 , on parameter

F9 , we have finally

17
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As is obvious, in the case of a very small unit of volume,

6V , the probability of encountering some specific value of strength,

F5 , boils down essentially to the apriori probability of encountering

in this volume a defect characterized by parameter F

This result it totally intelligible from the qualitative

viewpoint. It can also be arrived at easily within the scope of

our previous theory, from equation (3) (cf. para. 1).

8. Formulation of the Problem of Bending Strength

As a specific problem relating to the strength of a material

in the nonuniformly stressed state let us first consider the

problem of failure while bending.

If it is a question of specimens of rectangular cross section

it is natural to select unit volumes, SV , in the form of thin

layers positioned parallel to the neutral line of the specimen:

= S • dz , where S is the area of the specimen~s base and

dz is the height of the layer.

18 
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In the layer located at distance z from the neutral line ,

as we know, a stress acts which is equal to

-
~~

~~~~* ‘ . ~~~~~~~~~

where is the stress at the surface and h is the half height

of the specimen..

If the value of ~ is equal here to the technical cohesive

strength of the layer in which it acts, then the layer fails.

Let us recall that function W in the form of (20) is the

probability that the technical cohesive strength of a certain

unit of volume 5V is equal to F

Consequently, if in (20) we make

- 
F_ ~~0z, - 

‘ 
-

- “ - ‘S

then we get the probability that one of the layers of our specimen——

the layer with coordinate z — —  will fail under the influence of the

stress acting in it: - —

— e a  ~ _ 
- 

- -  • :-~- - _s ( ~ _ !_ ;) - -
~~~

W,=Ke . h 
-

~~ -

19 
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For precisely this layer to be the source of failure for

the specimen as a whole it is necessary that all the remaining

layers do not fail under the influence of the stresses acting in

them. Tile probability that a certain layer with coordinate z
1

will not fail with the presence of a stress of a
0
z1/h in it

is determined by the expression (1_W i
), where

S ‘ 

- _
~.(!!i’

_
~.r -

‘

- S 

- - A

The probability , P , that the source of failure for the

specimen as a whole is a layer with coordinate z will then be

P.=w U(1
~~~~
) 1~~wJJ (i

w
~
r). -

- 

(21)

In view of the triviality of unit of volume 6V , we set,

approximately -

JJ(i _ W~)~~~1~~~~~ W~~~i ~~KS (e~~~
T
~~
’4dz.

Function (21) is rewritten accordingly in the form

1~,=~[1 —KSI(50, /i)] ~~~where 
•

- : ‘ ‘ .
‘ ‘4- - 

- -

: - ‘ - ‘ -~~~~~
‘

~~~~~ 
h __ u ( !~!_~~,)e • (21) 1- —: 1(s,, h) Je dz - 

- -
‘

- __.•,
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It makes no difference to us in exactly which layer of

our specimen the process of failure begins. The probability , P

of failure of the specimen as a whole with a stress of GO 
on its

surface (without indicating the focus of failure) we will find

by adding the probability , P , for all layers, or, what is the

same thing , by integrating equation (21’) with respect to coordinate

z from 0 to h . This will give us

-

- 
-) - 

- 
- - 2 2 1

11 — KSI(~ , ~,] ~ = El — KS!(s0, /z)] KS!(e0, /z) .

The most probable value of stress Go (we will designate it

by 0~~*) we will find from the usual condition

Iop~— 

~~ ;Jq._~=cI. 
—0.

Differentiating (22) with respect to GO 
we arrive finally at

the equation

2KS!(e,’, h) 1, 
- 

- 

- (23)

the solution to which will give us the unknown value of stress 00

21
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9. Bending Strength

Let us convert integral I(a~ , h) which enters equation (23)

to a form more convenient for integration .

Substituting ~‘(F0 
— a~z/h) = x , we get

‘cpa
-

~~~~~~~~

- J i~~dx=1.
- 

~~~~F,_.,)

Generally an explicit form of the dependence of stress a~*

on the dimensions of specimens, which interests us, can no t be

found from this equation . As before we are limited , for this

reason , to studying two specific cases——specimens of large and

of small volume .

a) Specimens of Large Volume

For specimens of large volume difference (F0 
— 00*), as we

know (para. 5), can be considered sufficiently great , and integral

- sc~’.
P - , t• .—~~~~~

, -
s0= j e ax

- 
,~~(P —S.a,~) 

. -

can be computed approximately as

22
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- , ‘r —~~~ r —~~ 
- j~~~5’~~ - - . S

= - j  -e dx — e dx - — — -— . - -

- 

‘/ F , - 2 Va (F~ — ao’) 2 VaF0 
-

Substituting this value of in equation (23’) and

substituting Sh = V/2 , after uncomplicated mathematical transforms

we arrive at the approximate relationship between and V sought:

- 
- 

~ F~, —VA Ig V—i- Bb ‘

- 
1 1 ~ 

(24)
A =— , ~~~~~~~~~ - 

- S

b) Specimens of Small Volume

For specimens of small volume , emp loying the triviality of

difference (F
0 

— a
o*), 

we have approximately

- S 
- 

~~~~~~~~~~~~

I~= f e~~ dx= J e~~’ dx — f e~~’dx__f e~~’d.r~~
•f

~~~~~ _•••
•) 0 0

— e~~~~” - 
-

• =—~~ V~(F0 --— G0~)—— --—=-— .
• 2 

~ 2~~ F~

Substituting this value of 1
0 in (23’) and substituting

Sh = V/ 2 , solving the equation for a~* obtained thereby , and

disregarding the small values of (1/2)1 n/ct and e~~~
’
0 /2

~
/
~
l
~o

in comparison with F
0 , 

we find approximately

23
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- - where, (cf. (9) and 
~~~~~~~ 

- - - 
- 

- 
-

• 5 5 5 •
-‘

~~~~~~~~~
‘-

Fur thermore , 1/KV will always be a proper frac tion , since

for specimens of finite size 1W = v’Tnv//~ is cer tainly grea ter

than unity (let us recall that nV is the average value of the

total number of defec ts in a specimen of volume V , and n =

= (1/2) (AF)2 (cf. (2)).

10. Torsional Strength

Let us now consider the question f the influence of

dimensions of specimens on strength in another specific case of

the nonuniformly stressed state——twisting of specimens of cylindrical

form.

In this case as unit volumes , ~V , it is convenient to choose

sufficiently thin hollow cylinders positioned coaxially with

respect to the axis of the specimen , where 6V = 27TLrdr , where

r is the distance of the unit cylinder from the axis , dr is its

thickness, and L is the height of the specimen .

24
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In each of these units , ~W , a shearing st ress acts :

- - 

-
• ~~~~~~~o~~

’

Here R is the radius of the specimen and -r0 
is the stress on

its surface.

As soon as -r is equal to the technical cohesive strength

of the unit of volume under consideration the latter fails.

Consequently,  function

t - 

, 
- 

- 
- 

- -

‘ 

W, = Ke ’ ~~~~~~~~

(cf. (20)) where F,=-r 0 --~- 
-

will represen t the probabil ity of fa ilure of a un it of volume ~V

found at a distance of r from the axi s of the cylinder , under

S the influence of a stress of ac ting in it:

I r—a — — F.)
W,,=Ke “ 

~V. 
-

The probability , P , of failure of the specimen as a whole

is determined by the expression

• ‘l  

- 

P~~ [1— K2~L!(To, R)]~~~ ~~~~

- 

~~~~ —K2~Lftr0,R)1K
2,d.J(’r,, R) 

- 

• -‘ 
(26) .

- 
where S - - , - r 

- 

‘ 
- 

. 
-

I (r 0, R)= fe  ~~ • 
•~ I
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As in the problem considered above , relating to bending

strength , the most probable value of the shear breaking point ,
can be found from the condition (~P/~t~ ) — 

0
which results in the equation

B I a ~
I -- - —* it.•— — F.i 

- 
-4vLK fe  ‘ ~ ‘nir 1. 

— 

‘ 

- (27)
-0 - • • ,

‘
:-

Assuming that pc[r0
*(r/R)_F

0
] = x , we have

- 
- 

- 

• r - 

-. sc,, -~- 

~~~~~ 
F, (  e~~ dx-f.-~~- 5 e ”xdx 

11=1. (27~
L “~ (1,_t,’~ a’~(F,_~,)  

~~ 
. 

- 

-
. 

-

We are restricted here to considering the dependence of TO
on the dimensions of specimens for the specific case of twis ting
specimens of sufficiently large volume , when difference (F

0
_r
0
*)

can be considered great. Integral

- ~~. . S

r —~~hl j e  dr

for this case was computed in para . 9; and integral

‘cpa- r  —.4= ~j e xax ’
acr—~.’)

can be compu ted direc tly.

Subs ti tu ting values I~ and 1
2 

in equation (27’), after
some uncomplicated computations we get the dependence of on
the volume of the specimens, V = 7i-R

2
L , which we are interested in:

~~~~~~~~~~~~~~~~
where - 

I 2~

26



ss 
5- ” ‘ T

11. Influence of the Scale Factor on Strength in the Nonuniformly

Stressed State

a) Scale Factor in Bending

It follows from equations (24) and (25) that both for specimens

of large and small volume the probable values of technical cohesive

strength while bending, ac~* , 
must be reduced with an increase in

the volume of the specimens, V

Furthermore, as in the case of extension, the dependence of

on V proves to be more critical for specimens of small

volume. Comparing (24) with formulas (5) and (18) obtained by

us earlier for technical cohesive strength during extension , we

come to the conclusion that in the case of specimens of large

volume the dependence of technical cohesive strength on V is of

the same nature both when bending and during extension : The change

in strength accompanying a change in V is proportional to the

square root of the logarithm of V

Let us write equation (25), determining technical cohesive

strength while bending for specimens of small volume , in the form

— 

_ _ _  

~~ (~ ~~~~~~~~~~~ 

T - -

_ S. r K v _
_ S

~_ 
~~ - 

/

(in view of the triviality of - 1/KV , we are limited to the first
two terms of the expansion of 00* into a series).

Comparing (25’) with (6), we become convinced that in the case

of specimens of small volume the nature of the dependence of technical

cohesive strength on V during extension and during bending is

practically the same.

27
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It would be highly desirable , of course, to be able to

subject equations (24) and (25), which describe the influence

of the scale factor on the technical cohesive strength of a material

when bending, to experimental verification.

However, we have not found appropriate experimental data in

the literature. We know of only one study [8] in which values
I 

of technical cohesive strength while bending were measured for

specimens of different dimensions. The numerical data presented

in this study, which concerns only three different values of V

unfortunately, however , is insufficient for verification of theoretical

formula (24), which contains three unknown constants (F0, A, and Bb).

We know that , all other experimental conditions being equal,

the technical cohesive strength of a material while bending is

usually greater than its technical cohesive strength measured

during extension .

Let us attempt to compare from this viewpoint the possible

values of ci~~* and F
0
* determined from formulas (24) and (18),

respectively.

Constants F0 and A are identical in both cases, but

constants B and Bb are different . Actually,

- ~, i ~~~~~~~~~~~~~
- - .

- / D — I g-~--- , 
-

- ,~ I 
_ _ _- 

~~~~=— J g- 
5—

- 

b a 2 v,raF0
i.e., -

, 5 

- - -

- Bb
B_

~~ Ig2zFfl. -
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Substituting this value of B in (24) and substituting
— 2  b

a = l/2(AF) (cf. (2)), we have

- F0~~~ F0 — VA Ig V-i-~~ , - 
- 

- - 
- 

-

ao*~~ Fo_ \/A g V~i-B_2(AFj~1g~~~~

Hence it follows that with a specific value of V , a~* is

actually greater than F
0* 

. It is obvious further that ratio

must not be much greater than unity , since term

2 (AF 2) log [F
0/ (AF 2)] can not be great.

It is natural to expect that the mean value of the square

of the fluctuation in strength, (AF) 2 , will be less the more uniform
the material. Consequently, ratio 00*/F0* is a function of

the “quality” of the material; it should be closer to unity, the

more uniform the material studied . This conclusion, as we know,

agrees with experimental observations.

b) Scale Factor When Twisting

From equation (28), which determines the dependence of technical S

cohesive strength of a material when twisting, T~~* , on the
volume of specimens V , it follows that also when twisting an increase
in the volume of the specimens should be accompanied by a reduction

in the values of technical cohesive strength observed.

Furthermore, in the case of twisting specimens of sufficiently

great volume considered by us the nature of the dependence of

strength t~~* on V is precisely the same as in the case of

extension and bending: The change in -r0* is proportional to the

square root of the logarithm of V . Constant which enters

(28) is different, however , from the corresponding constants B

and Bb in equations (18) and (24), which determine technical

cohesive strength during extension (F0*) 
and bending (00*).

29
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Actually,

- 

B— 1 ’ “ B— 11 2..z I - -
- — — i g--~~--, t~~~ a ~~~~~~~ D~~~~~lg 2~~~~~ 

S

i.e., - - - -
-I u - ~~ - ~- -

- 
--

B~~~ B_~~.I g 1 
- 

I 
(3~~-- Bb B g2z~~=B~s._~~ 1g 8F0 }  

-

Hence it follows that

B>Bt>Bb. 
: -  - 

- - 

(31) -

This means that, with other experimental conditions being

equal (for specimens of the same material and identical volume),

• - F ~ < T0*< ~~~~ a:-- 
- 

(32)-.

Thus, technical cohesive strength while bending , a~*

should be greater than technical cohesive strength while twisting,

which in turn should be greater than technical cohesive

strength during extension, F0*

As we know, this conclusion agrees well with experimental data.

Substituting in (28) value B
~ 

in the form of (30) and

substituting a = l/2(AF)2 , we have -

- 

-:,~ - F,, 
__
~/A Ig V-.- B—2~~ Ig 

4(Kp)2 
- 

(~~~ - S

Hence it follows that, just as in the case of bending (cf.

(29)), the ratio of technical cohesive strength when twisting to

technical cohesive strength during extension, 5r
0*/F0* , shot.ld be

somewhat greater than unity.

30
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Actually, according to Kuntze ’s data [9], for specimens of
gypsum ~r0*/F0* = 1.47; let us recall that according to the data

of the same author the ratio of 0
0*/F0

* for the same material

proved to be equal to 1.83.

Let us note in conclusion that it is possible to assume that

the numerical value of ratio -t
0
*/P

0
* (just as with

should be closer to unity, the more uniform the material studied .

Conclusion -

The theory presented above does not in any may pretend toward

universality. It is only one of many possible variants of a

statistical description of the role of different types of defects

present in real materials. This variant seems to us, however ,

one of the most sensible, since as the distribution function choice

is made of the Gaussian function, which has recommended itself so

well in considering a number of allied questions.

In view of the almost total lack of quantitative experimental

data regarding the influence of the scale factor on technical

cohesive strength in the nonuniformly stressed state of a material,

we are unfortunately for the time being deprived of the opportunity

of subjecting our theory to direct experimental verification.

Equations (5) and (6), however, concerning the case of the

uniformly stressed state, do not agree too badly with experimental

data; qualitative conclusions which it proved possible to make in

analyzing the question of technical cohesive strength during bending

and extension also agree with experimental data.
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This gives us the right to hope that the ideas expounded above

can turn out to be not without use in studying the influence of the

scale factor on the mechanical characteristics of solids.

- 

In conclusion we would like to express our sincere gratitude

to Prof. Ya. I. Frenkel ’, corresponding member of the USSR Academy

of Sciences, for a number of valuable pointers and for discussing

the problem.
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‘Subsequently , (~ 5) we will provide strict proof of the validity
of the assumption that large values of the difference (F

0—F)

correspond to samples of large volume and small values of this
difference — to samples y small volume .

2The tremendous test material which pertains to the study of the
increased strength of thin filaments cannot be used to check
formulas (5) and (6 ) ;  we have absolutely different regularities
for filament—like samples which also receive a satisfactory explana-
tion within the framework of statistical theory of strength (See
[‘~J ) .
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