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Nonlinear Theory of a Bearing Surface of Arbitrary Extent
by A. N. Panchenkov

(Institute of Hydromechanics, Academy of Sciences, UkSSR)

The nonlinear problem of a wing of small extent in liquid
and gas is one of the difficult problems of fluid mechanics.
These difficulties are primarily related to the complexity of
the phenomena arising in a fluid when the motion of a wing of
small extent moves with a large angle of attack, The formation
of strong turbulent eddies at the leading and lateral wing edges,
the large stream angle of taper, the formation of a turbulent
region beyong the wing--all result in the hydromechanical character-
istics of the wing being nonlinear with respect to the angle of
attack so that the nonlinearity, with its attendant increase in
the 1ift on the wing, is substantial even at small angles of
attack. This severely handicaps the mathematical analysis of the
phenomenonkince the fundamental set of assumptions in the linear
theory of a bearing surface are not even applicable here.

In conjunction with the mathematical difficulties, the
well-known results from the nonlinear theory of a wing of small
extent are obtained on the basis of certain physical pictures of
the flow, based on experigﬁ%tal facts. Many investigators have
assumed various flow models and have obtained, within the frame-
work of thelr models, results in agreement with experiment
(?, 3, 8, 9, 1f} . These results are definitely of interest

from the point of view of a basic explanation of the phenomena
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involved, the pattern of these phenomena, and many technical
applications. However, a lag in mathematical investigations has
lead to a restriction in the class of problems studied and to a
lack of rigor and consistency in our concepts.

The purpose of this article is to get theoretical results
from the nonlinear theory of a bearing surface by mathematical ana-
lysis. In [7]are formulated two conditions for the "complete"
approximation of a certain boundary-value problem by means of a
new, different boundary-value problem. Now it is easy to show
that the linear problem of a bearing surface, derived from the
nonlinear problem by the classical perturbation technique, does
not yield a uniformly convdrgent approximation. It is know that
where a bearing surface moves in a fluid a semi-infinite region
i1s formed beyong it, in which the velocity potential and its
derivatives possess discontinuities. If B, is the boundary of
this region, then

0B
a—; =Q@) x> —o),

where g 1s some avergaed stream taper angle at a point at infinity
beyond the wing.
In all known linear theories(see, for example,‘g\ ,\5} )

the turbulent reglon is reckoned from the surface and

but then for the metric in R>space we have
dBiB) =0@|xl (1)

and the condition in 7] for large |x| is not fulfilled. The

stream taper angle of the wing has the following asymptotic values:
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p=Q(%) (A - o); 2

B=Q@ (-0,
where ¢ is the wing angle of attack and A is the relative span
of the wing.

In this problem, it is sufficient to consider the region
x€[+o=+C] where C is some constant and then, for e 1;. and %((1
the classical linear theories give a uniformly convergent approximation.

It must be noted that perturbation theory gives an "incomplete"
approximation. In the well-known linear theories, the operator
P = 1 and the operator T =T, The "complete" approximation has
a supplementary freedom of cholce in the operators P and T, and
can yield a better solution. In this sense, the method of
Poincare-Lighthill-Go f10)is quite interesting since it 1is based
on the idea of a "complete" approximation.

Let us consider the motion of a bearing surface of arbitrary
extent with a constant velocity v in an unbounded fluid. Lﬂet
X,¥, and z be the Cartesian space coordinats. The Ox axis is
aligned in the direction opposite to the stream flow. For the
velocity potential of the perturbed motion, the boundary-value

problem can be formulated in the fo}lowing form:
Ap=0; Q €\ D;
. ) (3)
Pn = Upsina Qe€sy;
4
(q)—# 0) : ?21 & Ql\s]: ( )
g, (5)

Here s, is the surface of the bearing wing and Q- is the infinite

region in the R e space,




The velocity potential @ cannot be a continuous function

throughout the region outside s, since there will exist beyond the
13 in which the velocity
potential and some of its derivatives will undergo discontinuities.

bearing wing a semi-infinite region

Indeed, the presence of a semi-infinite region QA determines all

the difficulties in this problem. 1In the region the velocity

s
potential will even satisfy the Poisson equation (;) but with an
unknown density p. To get a solution with the required properties,
we need supplementary conditions determining the flow structure in
the region Qk' As one such condition, we can take the physical
condition of pressure continuity in the transition of any surface
to @ . As examples of such surfaces we can take surfaces Sy, on

which the density p is constant.

Ef P, is a tangential derivative of the potential, then the
condition of pressure continuity during transition of surface Sy
can be written in the form

%

(P+‘—(Ps—=0; Qes,- (6)

Moreover, the solution of the problem must satisfy the supplementary
conaitions related to satisfying the Zhukovskiy-Chaplygin postulate
wnich can be written as:

¢+—09-=0 QEL, (7)

where L is the equation for the trailing edge of the wing.

The difficulties of the problem formulated are clear. The
region “A is not known beforehand and also unknown is the density
in the Poisson equation (5). The region Q,, in dimensionless
coordinates such that the wing span is equal to 1, has a thickness

a
5"0(3) and thus we obtain one of the required conditions for the

linearization of the problem:

T (8)




Under condition (8), the region Q, can be approximately replaced

by a certain surface s,. Well known linear theories [4, 5] start
out from the assumption that the surface Sy is inclined only slightly
from the xOy plane and condition (7), having the form:

‘P:+ = ‘Px" = 0'
is satisfied on the plane spA lying in the xOy plane.

We shall solve the problem posed by using the idea of a
"complete" approximation. Let us introduce a new three-dimensional
space R% with coordinates X15 Y9 29 We take the relation

3 3

between the coordinates in the R~ and Rl space in the following

form:
x=x,+ Fy(x;; g 21
y=u+ F.(x; ;2 (9)
2=2z+F3(x3; y1; 2)),

where the functions FJ belong to the class F;e CXQ). Let the norms
of the functions Fj and their first and second derivatives in the

class 02 have the values:
| Fille = 0 (o), (10)

where € is some small parameter in the problem. Then, when the
conditions (10) are fulfilled, the potentials ¢ and space
coordinates can be written as a series:

P = Qo (X1, 1, 21) + €y (X1, 41, 21) + 2, (X3, 1, 2)) + -
x’ A x‘; + ex; (xl' yl’ zl) 4 B,X;"(xl, yp z]);

H=EX =Y =2

In the zero'th approximation in the R% space, the potential Sq

will also satisfy the Laplace equation. In the usual formalism,
the problems for the functions @, n, %), can also be treated,
wherein they will even satisfy the Poisson equation. Since it 1s
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clear from the physical nature of the problem considered that the
greatest influence on the wing characteristic will be exerted by
the presence of the stream taper angle at infinity beyond the wing,
we shall limit ourselves in what follows to the problem involving
deformation of only the y coordinate. Thus, we shall set:

X =x;
y=1y + ey:(x|-y|'z|)+82yf(x|vy|!zl); (ll)
Z=2,.

In this method, there is a freedom of choice of the functions
(p(,,(g,n,g),‘ which should be so chosen that they meet the approximation
conditions. According to the second approximation condition (b)

in reference [7]:

c=z+fq>;dz (12)
)
and to a first approximation:
b=z + | oqer (13)
0
Let us introduce into consideration the function Q=-—-¢po=. For the

function © 1in the R% space we have the following problem:

ABG = 0;

O, = Pi(g); & €sm
8->0;, x— + oo (14)
6+—6_=0 Ha L;;

6= 0; glele-

————

Let us take the solution of the problem to be in the form:

Qe = {v@K . g dg. (15)




T T ]

where K(p, g) is the fundamental solution of problem (14) correspon-
ding to a dipole.

In the linear theory, in (15) they take slp instead of 8., .

1518
In this theory we are developing, it is sufficient to 1limit
ourselves to the approximation

Q) = SY (&) K (p,&1) 481;
, ;

p
K(@pg)=Klx—t): @—n; @—70) (16)
Ky(pg) = Klx—&) y—m) —5&) + FE).

where slp is the projection of the bearing surface onto the leyl

plane. Continuing on, we have

Qu=Q.=Pi(g); & € su (Gl
Q(p)=jvx(gx)a%|711_-adgp (18)
slp

Going over to the potential ¢, and carrying out the computations,

we get from condition (17) the following integral equation for
the problem:

1 0 —_ i
‘Pml=4—nj"Yg1@';{(y_n)2+Fz(§)“‘
slp
_[,_' [ — ) + (6 — B + 27 @) ]}dg
=BV Y=+ =8+ F ) g

(L5)

For further work it is convenient to switch to dimensionless
coordinates

- e
' Y=B M=z

et LT
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where C(n) is the wing's semi-chord in cross section n and B
is the wing's semi-span. Then

%2 4n A(m) dy G-— ﬁ)2+ (%):
Ul

‘lp

1 Mm@y —n+ (x —EP 4 2F2 (})
= g — ——— = dg. 20
=D Vremy—n+ G-+ FE “ i

Equation (20) solves the problem of the motion of the bearing
surface of any arbitrary shape for average attack angles a.

The function F() is determined by the nature of the transformation
in (12) in the region of the bearing surface. For F(E) =0, equation
(20 yields well known results. The function F{}) from the point

of view of the flow mechanics determines the distance of the
vortices from the bearing surface at any point Slp

Since the nonlinear effects are most substantial on wings of
small extent, we shall study more closely the problem of a wing
of small extent. For A>0, equation (20) takes on the following
correct limiting form:

+1

1 O, (x)(y—mn
¢.=—2ux(x)§ F@® 5 dn; (21)
—n)2 i
‘ @ m+\MB)

1 "
Py (1) = (v, € .

Let us consider a solution for the function F(§):

FE&=E—NBm). (22

Fulfilling condition (4) on the trailing edge of the wing, we
have, for the function o, the equation




+I

I o"(y_.") dn = sin a. (23)
) g+ (ﬁf‘—‘)z
st

Function F(). in the form (22) and equation (23) encompass a
large group of nonlinear physical theories. In connection with
thlis, we note one important fact related to the choice of angle
B. It is easy to show that for the angle B, the correct asymptotic

value is:

=0  (x>0). (24)

The value in (24) is obtained from equation (23) under the condi-
tion that the norm of @ is bounded as A>0. If [|®|ph=o=M (where M
is some number), then x=0.5. In all known theories [2, 3, 5, 7,
10], the angle B is taken as finite. In a series of works on this
problem, it is taken as equal to half the flow taper angle and;

in other works, various other means are employed for its computa-
tion. Of course, it is basic that for finite values of the angle

B (A»0), the results of the theory must give infinite values for
the 1ift on the wing — a prediction which does not agree with
experimentally observed results.

Equation (21) makes it possible to obtain detailed information
on wings of small extent of arbitrary shape. The determination of
the funetion FE), 1s gulite impoertant. Since 1t is not evidently
possible to completely describe, within the framework of the theory
of an ideal fluid, the physical phenomena during motion of a wing
of small extent, the function F() makes possible a more precise
reckoning of the influence of viscosity, if in determining this
function certain supplemental hypothesis are introduced concerning
the flow pattern. However, in this regard it must be noted that
even without the attraction of supplementary data on the influence
of viscosity within the framework of an ideal fluid results are

obtained agreeing satisfactorily with experimental data. To get




further results, let us take the angle 8 in the form
p=a—a;, (25)

where oy is the flow taper angle at infinity beyond the wing.

In connection with definition (25) and the evaluation in (24),
still one more important assumption must be noted: formulas (24)
and (25) assumed the presence of more information than that given
by the linear theory for a wing of small extent. The basic result
of the theory of a wing of small extent (Namely that the flow
taper angle equals the angle of attack) leads to the result that

B=0 whereas we need information of the type in (24).

If we make the Laidlow approximation for a wing of arbitrary
extent (11) and determine the flow taper angle from the theory

with arbitrary extension, then we get

B oG +20C () — 1),
TR IO ESTR

1
el(k)=cz(—;‘).

(26)

where Cl(A) can be determined from the work of Nishiyama:

A
C‘("’=1_VT‘—‘V74‘4; ' (27)
for A+0, we have:
p~ 202 (28)

The results in (28) coincides with the value in (24) for x=0.5.
Equations (21) and (23) can be solved by known techniques [5].

10




To get finite results for the 1ift coeffiecient, the solution

to equation (23) is obtained via a variational approximation.

1lift coefficient is obtained in the form:

A (29)

W
-2 5 (k)

=2 \e dk.

The function q% is calculated in the form:

W, = 0,5t +0,25t4 + 0, 06255 + 0, 0469t 1
++0,023770 4 0,018872 + 0, 09817,%;

Ta=]/(%)z+l—%. (30)

In conclusion, let us consider the problem of a wing of
arbitrary extent. In this problem, we shall introduce into
equation (20) the approximation:

A% (y) (y — ) + (x — ) + 2F* (E)) ~
VAW Y—m?+@x—8*+ F2 ) o
n

y—m)?+ (m)

~C, (A |x — & + C; (M) A () sign |ly—) A -3

Then equation (20) goes over into the following form:

anj"\’(gﬂ dg (y —m)

® =—% dn
2 7 e Fiey 2=
e (Mn))
_=¢ @y v(g) A ) v(g)
e aJSu —p Mt GH 5 f( e

Ll

The
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The approximation equation (32) is significantly simpler
than equation (20) and can be effectively solved. The following
step is a transition from equation (32) to an equation of the

Prandtl type:

+1
e a, Cs () "(m)y—m
Fa = rmeml 9 — 5 S F )zdﬂ » (33)

el (x @

where
CAM=1+C (M)

: .
F=F(=1; Tm=5 (v@d

For F=0 and C2(A)=C3(A)=l, equation (33) becomes the well-known
Praddtl equation for a wing of large relative span.

The functions Cl(A) and CQ(A) should be selected from the
condition of best approximation in (31). Equation (33) makes
it possible to study a wide class of problems posed by the
Prandtl equation in linear theory.

As a first result we obtained formulas for the 1lift force and

parasitic drag of a wing with an elliptic circulation distribution:

Gy = T % (34)
) ll + C‘”(;m qr,]

2
g, - C\P (35)

As follows from (35), the wing's parasitic drag, obtained
from the nonlinear theory, has turned out to be less than that
obtained from the linear theory. Formulas (34) and (35) are exact
in the linear theory, but in the theory being considered they

il
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are obtained via a variational approximation, since an elliptical

distribution does not even allow an exact solution of equation (33).

As is known from experiments [11l], for large attack angles,
some flow regimes for a wing of small extension are possible
depending on the shape of the ieading and lateral edges of
the wing. For a wing with rounded edges, there is observed a more
uniform distribution of the rising vortices along the wing
surfaces, while for sharp edges there is observed strong concen-
trated vortices at the lateral edge, with the result that the
1lift in the latter case is significantly higher than that for a
wing with rounded edges. Function F(g) from (22) and angle B
from (26) and (28) correspond to a wing with rounded edges.

Fore the second regime, one must take another distribution for
the function F(&, n) along the wing surface. From experiment it
is known [11] that the 1lift with sharp edges is approximately two
times larger than that for a wing with rounded edges. To a first
approximation, we shall characterize this regime by the angle:

_aVi
B = i (36)

Calculation of the functions ¥, and Cy from formulas (29),
(30), and (34) with angle B from (36) gives good correspondence
with known experimental data [8, 11].




10'

11.
12.
13.

Bisplinghoff, R. L., Ashley, H., Halfman, R. L. Aeroelasticity,
Foreign Languages Publishing House, Moscow, 1958.

Golubev, V. V. 1In the book: "Works on Aerodynamics." GITTL,
Moscow-Leningrad, 1957.
Karafoli, Ye. Aerodynamics of an Aircraft Wing. Academy of
Sciences USSR Publishing House, Moscow, 1956.

Kochin, N. Ye. Collection of Works, Vol. II. Academy of
Sciences USSR Publishing House, Moscow, 1949.

Panchenkov, A. N. Hydrodynamics of a Hydrofoil. Naukova
dumka, Kiev, 1965.

Panchenkov, A. N. 1In the book: "Studies on Applied Hydro-
dynamics." Naukova dumka. Kiev, 1965.

Panchenkov, A. N. Articles in this collection.
Sears, W. In the book: Collection of Translations and Surveys
of Foreign Periodical Literature, 1 (41), Foreign Languages
Publishing House, Moscow, 1957.

Fedyayevskiy, K. K., Sobolev, G. V. Controllability of a Ship.
Subpromgiz, Leningrad, 1963.

Tsien Hsueh-sen. In the book: Problems in Mechanics, 2.
Collection of articles under the editorship of H. Dryden and
T. Karman. Foreign Languages Publishing House, Moscow, 1959.
Gersten, K. In the book: Engineering Archives, 30, 1961.
Hushiyama, T. Journal of Ship Research, 8, 4. March, 1965.
Hummer Dietrich. L. Flugwiss, 19, 5, 1965.




DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION

A205
A210
53LL
cok3
C509
C510

€513
€535

€591
C619
D008
H300
PO05
PO55

DMATC

DMAAC

1 _A/RDS-3C

USAMIIA

BALLISTIC RES LABS

ATR MOBILITY R&D
LAB/FIO

PICATINNY ARSENAL

AVIATION SYS COMD

FSTC

MIA REDSTONE
NISC

USAICE (USAREUR)
ERDA
CIA/CRS/ADD/SD

NAVORDSTA (50L)

NASA/KSI

AFIT/LD

FTD-ID(RS)T-1567-77

MICROFICHE

FRRERRPORRRE PR RoDE

(==}

ORGANIZATION
E053 AF/INAKA
E017 AF/ RDXTR-W
E404 AEDC
E408 AFWL
E410 ADTC
E413 ESD
FTD
CCN
ETID
NIA/PHS
NICD

MICROFICHE

N

VW




