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Nonlinear Theory of a Bearing Surface of Arbitrary Extent

by A. N. Panchenkov

(Institute of Hydromechanics, Academy of Sciences, UkSSR)

The nonlinear problem of a wing of small extent in liquid

and gas is one of the difficult problems of fluid mechanics.

These difficulties are primarily related to the complexity of

the phenomena arising in a fluid when the motion of a wing of

small extent moves with a large angle of attack. The formation

of strong turbulent eddies at the leading and lateral wing edges,

the large stream angle of taper, the formation of a turbulent

region beyong the wing—-all result in the hydroniechanical character-

istics of the wing being nonlinear with respect to the angle of

attack so that the nonlinearity, with its attendant increase in

the lift on the wing, is substantial even at small angles of

attack. This severely handicaps the mathematical analysis of the

phenomenonjsince the fundamental set of assunipt ions in the linear

theory of a bearing surface are not even applicable here.

In conjunction with the mathematical difficulties, the

well—known results from the nonlinear theory of a wing of small

extent are obtained on the basis of certain physical pictures of

the flow, based on experi~~~tal facts. Many investigators have

assumed various flow models and have obtained, within the frame—

work of their models, results in agreement with experiment

12, 3, 8, 9, 11~ . These results are definitely of interest

from the point of view of a basic explanation of the pbenomena 
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involved , the pattern of these phenomena, and many technical

applications. However, a lag in mathematical investigations has

lead to a restriction in the class of problems studied and to a

lack of rigor and consistency in our concepts.

The purpose of this article is to get theoretical results

from the nonlinear theory of a bearing surface by mathematical ana-

lysis. In 17] are formulated two conditions for the “complete”
approximation of a certain boundary-value problem by means of a

new, different boundary—value problem. Now it is easy to show

that the linear problem of a bearing surface, derived from the

nonlinear problem by the classical perturbation technique, does

not yield a uniformly convdrgent approximation. It is know that

where a bearing surface moves in a fluid a semi—infinite region

is formed beyong it, in which the velocity potential and its

derivatives possess discontinuities. If B,. is the boundary of

this region, then

~~~~Q (P)

where is some avergaed stream taper angle at a point at infinity

beyond the wing.

In all known linear theories(see, for example,Sj\ ~~~~~ 
)

the turbulent region is reckoned from the surface and
ÔB,.

= 0 (x -~~ —

but then for the metric in R~spaoe we have
d (B0; ~~ 

= 0 (~) x (1)

and the condition in r73 for large lx i is not fulfilled. The

stream taper angle of the wing has the following asymptotic values:

-Q-
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(~~-~ oo);
( 2 )

~ =Q(a) (X. -.’~0),

where a is the wing angle of attack and ?. is the relative span

of the wing.

In this problem, it is sufficient to consider the region Q,,

xEI+oo ÷CJ where C is some constant and then, for a<<!;. and -~-<<1

the classical linear theories give a uniformly convergent approximation.

It must be noted that perturbation theory gives an “incomplete”

approximation . In the well—kn own linear theories, the operator

P 1 and the operator T=T0. The “complete ” approximation has

a supplementary freedom of choice in the operators P and 7’0 and

can yield a better solution . In this sense , the method of

Poincare—Ltghthill—Go f io\is quite interesting since it is based

on the idea of a “complete ” approximation .

Let us consider the motion of a bearing surface of arbitrary

extent with a constant velocity v in an unbounded fluid. L~et

x,y, and z be the Cartesian space coordinats. The Ox axis is

aligned in the direction opposite to the stream flow. For the

velocity potential of the perturbed motion, the boundary—value

problem can be formulated in the following form:
=0; Q E Q~.\Q~;

%=v0sin u QES1;

(p—. 0) 
= Q. \s~;(x-+ oO) ( )

~q,=4~~; 
QEQ,..

Here s~ is t}~e surface of the bearing wing and ~~ is the infinite

region in the E space.
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The velocity potential q~ cannot be a cont inuous funct ion
throughout the region outside s, since there will exist beyond the

bearing wing a semi—infinite region 
~~~~~~
, in which the velocity

potential and some of its derivatives will undergo discontinuities.

Indeed , the presence of a semi—infinite region ~~ determines all

tne difficulties in tnls problem. In tne region ~~~~~~, the velocity

potential will even satisfy the Poisson equation (5) but with an

U unknown density p. To get a solution with the required properties ,
we need supplementary conditions determining the flow structure in

the region 
~~~~ 

As one such condition , we can take the physical

condition of pressure continuity in the transition of any surface

to ~~ As examples of such surfaces we can take surfaces s~~, on
which the density p is constant .

If is a tangential derivative of the potential , then the

condition of pressure continuity during transition of surface S
j

can be written in the form

p ÷—ç . . . =O; QEs ,. (6 )

More over , the solution of the problem must satisfy the supplementary
conaitions related to satisfying the Zhukovskly—Chaplygin postulate

wnich can be written as:

Q E L . (7 )

where L is the equation for the trailing edge of the wing.

The difficulties of the problem formulated are clear . The

region £~ is not known beforehand and also unknown is the density

in the Poisson equation (5). The region Q~ , In dimensionless

coordinates such that the wing span Is equal to 1, has a thickness

and thus we obtain one of the required conditions for the

linearization of the problem :

(8)

14
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Under condit ion (8), the region ~~ can be approximately replaced

by a cer tain surfac e sA . Well known linear theories [14, 5] start
out from the assumption that the surface is inclined only slightly U

from t he xOy plane and condit ion (7), havIng the form :

U 
is satisfied on the plane s~~ lying in the xOy plane .

We shall solve the problem posed by using the Idea of a

“complete ” approximation . Let us introduce a new three—dimensional

space R~ with coordinates x1, y1, z1. We take the relation

U between the coordinates in the R3 and R~ space in the following

form :
x= .~1+F1(x1; y~; ;) ;

= v~ + F2 (x1; y~; z~); ( 9 )
z = z1 + F3 (x1; yi; zr),

where the funct ions F~ belong to the class F,E C2(Q). Let the norms

of the functions F and their first and second derivatives in the
2class C have the values:

II FAk = 0~ ). ( 10)

where e is some small parameter in the problem . Then, when the

conditions (10) are fulfilled , the potentials ~ and spac e
coor dinates can be wr it ten as a ser ies:

= ~0(x2, y~. 
z1) + eç1(x1, Yi’ z,) + Etç, (x 1, Yi. z1) + ...;

x1 = x~ + ex (x 1, ~~ 
z,) + e’x~(x1, y~

, z,);
= x; y, = y; x, = z.

In the zero ’th approximation in the R~ space , the potential s0
will also satisfy the Laplace equation . In the usual formalism ,

the problems for the functions q’1(~,’~,~ ), can also be trea ted ,
wherein they will even satisfy the Poisson equation . Since it is

- ~~~~. - . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~
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clear from the physical nature of the problem considered that the

greatest influence on the wing characteristic will be exerted by

the presence of the stream taper angle at infinity beyond the wing,

we shall limit ourselves in what follows to the problem involving

deformation of only the y coordinate. Thus , we shall set:

y= y1 + ey (x1, y1,z,)+e2y~(x,,y1, z,); (11)

2 = 21.

In this method , there is a freedom of choice of the functions

which should be so chosen that they meet the approximation

conditions. According to the second approximation condition (b)

in reference [7]:

(12) U

and to a first approximation :

~=z+~~q~ dt. (13)

Let us introduce into consideration the function Q=—ip1,~. For the

function e in the R~ space we have the following problem :

e~1 =P1(g1); g1Es11;
O-+ 0; x-++co; (l~4)
e+
_e....=O ~a L1;

e=o; g1ES,.1.

Let us take the solution of the prob lem to be in the form :

Q(p)=~~ v (g)K(p~g)dg. (15)
‘I,

6 
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where K(p, g) is the fundamental solution of problem (114) correspon— 
U

ding to a dipole .

In the linear theory , in (15) they take instead of S
11.

In this theory we are developing, it is sufficient to limit 
U

ourselves to the approximation

Q (p) (g1) ~ ~~~ 
d~ ;

K (p1g1) = IC L(x~ — 

~
); (y~ — ti); (z1 — t) ) ; (16)

I(~ (p1g1) = K E(x~~~1)(y—t~)(z—~1) + F(~1)j.

where 51p is the projec t ion  of the bearing surface onto the x1Qy 1
plane . Continuing on, we have

Q~1~~Q=P1(g1); g,Es11; (17)

= S ~~‘ ~~~~ 
~~~ ~~~~~~~~ 

dg1. (18)
81p

Going over to the potential q~ and carrying out the computations ,

we get from condition (17) the following integral equation for

the problem :

1 
~ 

a y—~i 
-

~ j  
yg1 

~~~ 
(y — ~ )2 + F2 (~

)
SIP

F 1 
- 

E(y~ 
— ~ )2 + (x~ — ~)2 + 2F2 (~)1 1 d (19)

~
. ~~~~~~~~~~~~~~~~~~~~~~~ + F2(~~~~j 

g1.

For further work it is conven ient to switc h to dimen sionless
coor dinat es

— x — 
~~~~~ ~~~~~~~~ B

C(i1) ’ ~~~~~~~~~~~~~~~ ‘L’
_

~~~i)~

7 
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where C(~~) is the wing ’s semi—chord in cross section ri and B

is the wing ’s semi—span . Then

___  _ _ _ _ _ _ _ _ _ _ _  
F

— 

~ (i-i) ay 
~~~ 

)2 + ~~~\ [ —

‘~ 
~~X(i~))

— 
1 (~~2 (~) (y 

_~~ )t + (~ 
— ~~)2 ± 2P ~~ 1 d

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 
g• (20)

Equation (20) solves the problem of the motion of the bearing

surface of any arbitrary shape for average attack angles a.

The func tion 
~~

) is determined by the nature of the transformation

in (12) in the region of the bearing surface. For F(~) =0 , equation 
U

(20 yields well known results. The function F~) from the point

of view of the flow mechanics determines the distance of the

vortices from the bearing surface at any point s1~~.

Since the nonlinear effects are most substantial on wings of

small extent , we shall study more closely the problem of a wing
of small extent . For X-”O , equation (20) takes on the following U

correct limiting form :

-‘-I

i r a~ (x)(y— -q) 
-

‘F x  2 dtl, (21)
J (y~~~~~~)2~~~ ~JJ)

q~ (x) = S ~~~ ~

Let us consider a solution for the function F(~):

(22)

F u l f i l l i n g  condi t ion ( 1 4 )  on the t ra i l ing  edge of the wing , we

have , for the function aj , the equation

8

~ 
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+1

I (‘ ~~~~ .g— i~)

~ ,~~~~~÷(2
~())T

d1 _ sIn a. (23)

Function F(~). in the form (22) and equation (23) encompass a

large group of nonlinear physical theories. In connection with

this, we note one important fact related to the choice of angle

~~. It is easy to show that for the angle ~~~, the correct asymptotic

value is:

- ~=0(X’~) (x)’O). (24)

The value in (24) is obtained from equation (23) under the condi-

tion that the norm of a.i~ is bounded as X-”O. If II~DII,....o=M (where M

is some number), then x=0.5. In all known theories [2 , 3, 5, 7,
10], the angle ~3 is taken as finite. In a series of works on this

problem , it is taken as equal to half the flow taper angle and ;
in other works , various other means are employed for its computa-

tion . Of course , it is basic that for finite values of the angle

~ (A-”O), the results of the theory must give infinite values for

the lift on the wing — a prediction which does not agree with

experimentally observed results.

Equation (21) makes it possible to obtain detailed information

on wings of small extent of arbitrary shape. The determination of

the function F(~) is quite important . Since it is not evidently 
U

possible to completely describe , within the framework of the theory

of an ideal fluid , the physical phenomena during motion of a wing

of small extent , the function F(~) makes possible a more precise

reckoning of the influence of viscosity, if in determining this

function certain supplemental hypothesis are introduced concerning

the flow pattern . However , in this regard it must be noted that

even without the attraction of supplementary data on the influence

of viscosity within the framework of an ideal fluid results are

obtained agreeing satisfactorily with experimental data. To get

9 
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further results , let us take the angle ~3 in the form

(25)

where is the flow taper angle at infinity beyond the w i n g .

In connection with definition (25) and the e v a l — ~a t i~~r~ ~n ( 2 L ~) ,
s t i l l  one more important  assumpt ion must  be n o t e u :  for~~ 1as (2-.)

and (25) assumed the presence of more information than t:.~~~~~. giver.

by the linear theory for a wing of small extent . The Las2~ r~~s~ i.

of the theory of a wing of small extent (Namely that the ~~~~~~~

taper angle equals the angle of attack) leads to the re.~uit that

~=0 whereas we need information of the type in (24).

If we make the Laidlow approximation for a wing of arbitrary

extent (ii) and determine the flow taper angle from t h e  theory

wi th  a rb i t ra ry  ex tens ion , then we get

(2 6 )— 
XC2 (~

) + 2 [C1 (X) + 1]

C1 (?~) = c2 (-i),
where C1(A ) can be determined from the work of hi shiyama :

C1(X)=1— 4 _ _ _  ; (27)

U for X-- 0 , we have :

(28)
21’T

Ine results in (28) coincides with the value in (24) for x 0.5.

Equations (21) and (23) can be solved by known techniques [5] .

10
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To get finite results for the lift coefficient , the solution

to equation (23) is obtained via a variational approximation. The

lift coefficient is obtained in the form :

Cu = 2 w .  ~29)

= 2 Se I~(k) dk.

The function is calculated in the form :

= 0, 5’r~ + 0, 25v~ + 0, 0625’r~ + 0, 0469r~ +
+ 0. 0237t~ + 0, 0188~~ + 0,0981’r

4;

(3 0)

In conclusion , let us consider the problem of a wing of

arbitrary extent . In this problem , we shall introduce into

equation (20) the approximation :

~
2()
~ (y ~-~)2 + (x _~)2 ± 2F2 (~)]

V?~
2 (y) (y — ~~)2 + (x — ~ )2 + FI (~

)
(y

U)~)l~~~~~ 

(

~~~~~~~

)

2

__ C1 (X) Ix — 
~ + C2 (~

) 
~ (‘i) sign jy—ill — 

- . (3 1)

Then equation (20) goes over into the following form :

+1 I

~~ ~~~(g1) d~ ( y_ ~)
— 

C1 (X) 
~ _ _ _ _ _ _ _ _ _ _ _— 2~ (L, — ~~)2 + (P2 ~~ 

)

2 dt’% —

— 
(I —

~~~~
J ~ S ~ di-~ + C2 (X) 

~ 
d~. (32)

11 
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The approximation equation (32) is significantly simpler

U 
than equation (20) and can be effectively solved. The following

step is a transition from equation (32) to an equation of the

Prandtl type:

= 2X (y)C2Q~)1 
a(y) _ C ç r ’ (~)(Y~~~~ 2d~ J . (33)

I.. ~~I 
~~~~~1~)) ]

where

- 
C,~b )=1+Cl(~);

F=F(— I);

For F=O and C2 ( X ) C
3

( X ) l, equation (33) becomes the well—known
Praddtl equation for a wing of large relative span .

The functions C1 ( X )  and C2(X) should be selected from the
condition of best approximation in (31). Equation (33) makes
it possible to study a wide class of problems posed by the
Prandtl equation in linear theory .

As a first result we obtained formulas for the lift force and

parasitic drag of a wing with an elliptic circulation distribution:

C~= C 
~ 

~~~ (314)
C2Q~)[1 +C(~~~~

1?
~}

c —

,~ ~~

.

As follows from ( 3 5 ) ,  the wing ’s parasitic drag, obtained

from the nonlinear theory , has turned out to be less than that

obtainea from the linear theory . Formulas (314) and (35 )  are exact 
U

in the linear theory , but in the theory being considered they

12
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U 
are obtained via a variational approximation , since an elliptical

distribution does not even allow an exact solution of equation (33).

As is known from experiments [11], for large attack angles ,

some flow regimes for a wi’-ig of emall extension are possible

depending on the shape of the .Leadi ng and lateral edges of

the wing . For a -wing with rounded edges , there is observed a more

uniform distribution of the rising vortices along the wing

surfaces , while for sharp edges there is observed strong concen-
trated vortices at the lateral edge , with tne result that the

lift in the latter case is significantly higher than that for a

wing with rounded edges. Function F(~~) from (22) and angle ~
from (26) and (28) correspond to a wing with rounded edges.

Fore the second regime, one must take another distribution for

the function F(~~, ri) along the wing surface. From experiment it

is known [11] that the lift with sharp edges is approximately two

times larger than that for a wing with rounded edges. To a first

approximation , we shall characterize this regime by the angle:

6
~ l/2

Calculation of the functions ~~~ and C from formulas (29),y
(30), and (314 ) with angle ~ from (3u) gives good correspondence

with known experimental data [ci , 11].

13
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