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I. Introduction

A. Origin of Problem

H Suppose there come into your possession one or more

“black boxes” and the infc~:mation that these are linear . Why

would you want to determine their impulse responses , and how

would you go about it?

A fairly literal case would be that you had purchased

the systems “impulsively” at a surplus shop, and discovered

that the innards were potted so as to make direct inspection

impossible. It would then be desirable to measure the impulse

response or the transfer function (its Fourier transform) of

each system to determine how it could be utilized .

In a ballistic missile defense (BMD) context the linear

systems in question may model how projectiles of interest to the

defense, re—entry vehicles CRy ’s), decoys, chaff particles , etc.

respond in time to the voltage waveform transmitted by a radar .

One of the defense functions is discrimination - the task of

determining which targets must be acted against and which are

there to confuse or saturate the defense. One of the methods

for doing this is to utilize differences in the size or shape

of the targets. Direct inspection is again impossible, so the

received radar waveform is used. Sizing a target along the

radar line of sight amounts to explicitly or implicitly

determining and then further operating on the impulse response

H 1



of a linear system. If the processing t€chnique extracts an

estimate of the target extent along the line of sight it is

referred to as “ length measurement.” If the processing makes

more implicit use of the impulse response it is a particular

application of a technique called “pattern recognition .” If

sizing is also carried out in the cross-range direction using

Doppler processing the technique is referred to as “imaging .”

We will restrict ourselves in what follows to the one-dimensional

case.

B. Deterministic Signal Approach

Having decided that you want to determine an impulse

response , how do you proceed? The basic procedure is to drive

the system with a test signal, observe the response and process

it, the processing depending on the test signal. The most

obvious approach is to “pulse” the system. A deterministic

pulse narrow with respect to the system response time (wideb9d

with respect to the system bandwidth) is applied , and the

resulting output signal is taken as an estimate of the impulse

response, albeit somewhat smeared and distorted . Choosing an

appropriate pulse bandwidth requires prior knowledge about the

system or a trial and error procedure.

In principle, the effects of finite pulse bandwidth and

detailed pulse-shape can be removed either in the time or

2
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frequency domains, yielding the “true” impulse response. In

practice the degree to which this can be done is limited by

interfering noise, and while the effect of interfering noise is

the main subject of this report, it is assumed that this pro—

cessing refinement is not involved .

In the frequency domain the unknown transfer function

could be traced out by applying a sinusoid to the system and

varying its frequency. The use of a pulse waveform can be

thought of as a way of simultaneously applying frequency

components to the system. This report will deal with the time

domain version of the problem.

What if we allow the simple pulse to be less simple?

That is, what if we employ a signal having the desired bandwidth

but a time-bandwidth product greater than unity? The basic

reasons for employing such a waveform in radar practice are: H

(i) the presence of interfering noise originating within the

radar receiver and possibly also from electronic countermeasures

(ECM), external jamming sources employed by the offense to screen

targets from the radar (ii) that the achievable signal-to-noise

ratio or radar sensitivity depends on how much energy can be

packed into the radar signal (iii) and that radar transmitters

operate under a peak power level constraint.

Thus a modulation such as linear frequency modulation

(LFM), or binary phase shift coding is utilized to increase the

3
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signal duration and hence energy while maintaining the bandwidth

needed for resolution . The receiver processing must now change

from a simple observation of the returned pulse shape for two

reasons.

Firstly, this pulse-shape no longer looks almost like

the test impulse response , due to the longer signal duration .

To correct this the signal bandwidth must be utilized to achieve

its inherent time resolution . The conventional way of doing this

is to convert the radar signal into a signal having a unity

time-bandwidth product by matc}Led filtering , i.e., by convolving

the received signal with a time—reversed replica of the trans-

mitted signal. It is well known that matched filtering generates

the autocorrelation function of the signal in question , which in

fact has a central “spike” whose time duration is the reciprocal

of the signal bandwidth . The overall effect is that of having

transmitted a “narrow pulse ,” the autocorrelation function of

the signal , and taken the response of the unknown system to this

waveform as an estimate of its impulse response.

Secondly, the receiver processing must take into account

the interfering noise which dictated the use of a time extended

modulated signal from an energy standpoint. Basically the

receiver will reject noise outside the signal bandwidth , and

secondarily it will employ an optimized passband shape to

maximize the signal—to-noise ratio. In other words , it will

4



employ the same matched filter that was required to achieve the

desired resolution from the radar signal.

The above paragraphs have described how a conventional

pulse compression radar would be used to measure an impulse

response . In the analysis to be described in Section II, a

scalar or baseband (rather than complex or bandpass) model is

used for the time domain signals and systems. Thus in the

pulsed case the details of a phase modulated pulse compression

radar are not modeled . Rather the transmitted signal is

thought of as a “narrow” pulse whose time—bandwidth product is

approximately unity, and the receiver as employing a filter

matched to that signal. This simplification in no way compromises

the applicability of the results to a “ real” radar system .

C. Random Signal Approach

Let us now shift to a consideration of random si~ na1s

and their possible application to impulse response determina ’. f l .

As we have noted , the use of a pulse signal can be thought of

as a way of simultaneously applying many frequency components to

trace out the unknown transfer function . Can a random process

be used to perform this function , and if so why would it be

desirable to use one? The familiar stationary “whitish”

Gaussian process so often employed in radar analysis can be

assigned a power spectrum which extends considerably beyond the

5



passband of the unknown transfer function and is relatively flat

within the passband . Thus in an ensemble sense the random

process can apply frequency components to trace out the transfer

function .

The power spectrum of the output process is a tracing

of the magnitude squared of the unknown transfer function . This

would be sufficient to determine a real , even impulse response ,

which has a real (and even) Fourier transform. A more arbitrary

real impulse response with both odd and even c ompon ents  w i l l

correspond to a complex valued transfe r f unc tion whose magnitude

and phase must be traced out . The appropria te trac ing is the

cross power spectral dens i ty  between input and output. Since

this  func t ion  is the produc t of the in put power spectrum and the

unknown transfer  function , the use of a ran dom signal wi th a

whitish power spectrum will produce a cross-spectrum which

essentially replicates the transfer function in magnitude and

phase.

The corresponding relationship in the time domain is

that the cross—correlation function between input and output of

the impulse response is equal to the input autocor relation

function convolved with the impulse response. This provides

the basis in an ensemble sense for determining the impulse

response using a random signal. If the autocorrelation funct ion

of the random signal is narrow relative to the impulse response

6
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“dura tion” the cross-correlation function is a slig h t l y  smeared

tracing of the impulse response.

In practice , what would be ava ilable fo r impulse

response determination is a finite time segment of a particular

sample function of the random process. Operationally , an

“ ergodic ” assumption would be made , and the time cross—correlation

function between the available segments of the input and output

sample functions would be treated as the impulse response

estimate .

D. Relationship of Approaches

We can now note a striking similarity with the use of

the deterministic signal. In either case the received signa l

is cross—correlated with a replica of the transmitted signal.

The resulting waveform is then the desired impu lse response

smeared by the auto—correlation function of the transmitted

signal .  So what then is the d i f f e r e n c e  between using determin—

istic and random signals? In our view , there real ly isn ’t any ,

and there are several ways of looking at it.

Suppose f i r st that a given segment of random process

sample function , once generated , is utilized over and over

again every time the radar attempts an impulse response

determination . In this case the fact that the radar signal was

originally generated by a random process becomes irrelevant.7
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It is now a deterministic signal. In practice its ~ime duration

would be long relative to its correlation time , and the operation

of correlating it against a replica of itself would “pulse

compress” it to a narrow spike whose width was the correlation

time , riding above a sidelobe structure . The whole operation

would closely para l le l  how th ings would go with a signal that

had been obtained by deterministic means. A biflary phase-coded

pulse compression signal for example is really just a stylized

ve rsion of a sample f unct ion of a continuous random process in

wh ich the process can change states abrupt ly af ter ~vory

“correlation interval” rather than continuously . The fact that

such signals are often referred to as “pseudo—random ” or “noise—

like ” reinforces the comparison .

The othe r possibi l i ty  is that a segment of a new sample

func tion is ut i lized each time the radar makes an impulse

response determination . There would now be some variability

due to the s ignal  itself , but not a variability that seems

significant. Stated differently , “most” samp le f unct ion

segments are equivalent if their time durations are long

relative to the correlation time. That is, most samp le f u n c t ions,

when correlated against themselves , will produce an essent ial ly

identical correlation function . There will be minute differences

in the exact shape of the central spike and the details of the

sidelobes , but in most cases the resulting impulse response

8
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estimate will be essentially unaffected.

If this line of heuristic reasoning seems at all

convincing , one must ask why the notion has persisted that

the use of a random signal has an ~dvantage in impulse response

determination. The answer is basically as follows . In the

random signal  case the operation was explicitly recognized as

a cross-correlation operation . This led to the idea that any

interfe rence which was “uricorrelated” wi th the random signal

would be suppressed when the signal and interference were

(*)
cross-correl ated. The textbook by Y. W. Lee popularized

this notion as f a r  back as 1960 . There are several problems

with his discussion of th is topic. For emost is the f act that

he apparently did not recogni ze that the conventional” or

determinis tic signal method was reall y just as much of a cross-

correlation method as the ‘ novel’ or random signal method .

Second ly,  he did not really deal with the fact that an uncorre-

lated disturbance will not completely vanish when subjected to

a finite-time cross-correlation . The degree to which the

in te r f erence would be suppressed was no t examined and a

compar ison wi th  the “old” method was not made.

*Y. W. Lee, Statistical Theory of Communicat ion
(John Wiley and Sons, New Y6~k, 1960).
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The purpose of this introduction has been to engender

an expectation that if the two methods were compared on the

basis of equal utilization of resources such as energy

and bandwidth , they would have essentially the same performance.

A comparison has been carried out analytically, described in the

following sections , which bears out this expectation .

II. Analysis

A. Framework

1. Performance Measure

Before proceeding with an analysis of each method and

a comparison between them, we must establish a performance

measure which will be the basis for comparison . Using either

method , the impulse response estimate at any point on the true

impulse response will be a random variable. In the deterministic

signal method this is due to the interfering noise process, and

in the random signal method it is due both to the interference

and to the randomness of the signal itself. Thus the most

general description of the estimators would be their multi-

dimensional probability density functions at n points along the

impulse response. If the ultimate goal is to describe how some

10
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discriminant which operates on the estimated impulse response

performs , the number and location of the points at which the nth

order density functions are evaluated would depend on the

particular discriminant. For a length measurement , a few points

near the f ron t  and back of each vehicle class might suf f i c e  if

the signal/interference ratio were above a certain value. For

a pattern recognition approach , points spread across the f u l l

extent of each impulse response might be necessary .

We do not want to consider specific discriminants in

this study . To avoid doing so, we choose as a performance

measure the normalized variance of the impulse response

estimates at any point along the response. The notion is that

any discriminant will benefit if this measure is small. We

are saying that we want “most” of the random estimates produced

by a given estimator to lie in a “narrow ” ( i n  a percentage

error sense) band about the true impulse response pattern. We

don ’t particularly care whether an estimated pattern looks as

shown in Figure la, wherein the estimation errors quickly

decorrelate across the pattern , or as shown in Figure lb,

wherein the errors are highly correlated across the pattern.

Thus our performance measure is a first order statistic.

11 
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ST ED IMPU LS E

( b )  ESTIMATION ERRORS WITH “ SLOW ” DECORRELATION

Fig. 1. Extremes of estimation error time behavior.
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2. Model Considerations

In what follows, expressions are simplified if we

calculate the normalized variance at certain “ typical” points

on the pattern , although the calculation can be made at any

desired point. Simplification is also gained if the impulse

response is assumed to have even symmetry. Again the restriction

is made just for convenience. The analysis has been carried

out for continuous impulse responses described by any one of a

number of unimodal shapes. These include Gaussian , sin x/x ,

cusped exponential, and rectangular . The same shapes were

used to describe the deterministic measurement signal and the

auto—correlation function of the random measurement signal.

The functional form of the results does not depend on the

shape chosen in the operating regime of interest (see below).

Only form factors such as rr ,V7, etc. change. The specific

results in this report will correspond to the Gaussian shape

assumption , and the typical point at which they are evaluated

is the peak of the impulse response so shaped .

In addition to the basic results for an impulse

response described by a smooth curve , some results are

presented for an impulse response described by either one or a

pair of impulses. The single impulse case corresponds to a

point target model , and the results provide some insight in the

continuous case. The impulse pair model, for which results

13 
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are s imi lar , corresponds to a situation in which resolution can

be achieved between target features in an operational sense, but

the bandwidth of the received signal is still determined by the

transmitted signal bandwidth, not the target bandwidth . Such a

model applies to a vehicle which generates radar returns

primarily from a tip and a base such that the “rise time” of

the signal is unaffected by the target at any signal bandwidth

being considered . The typical point selected in the point target

case is the location of the single impulse. In the impulse pair

model two typical point s are selected , one at an impulse

location and one midway between impulses. Figure 2 illustrates

the three cases.

3. Op erating Regime

The results which follow below correspond to a certain

operating regime for some of the basic time and bandwidth

parameters involved . This regime is defined by the requirements

that:

(i) the resolution of the estimate be somewhat finer
than the time scale of the impulse response

( i i )  the estimate be generated over a s ignif icant
portion of the impulse response extent.

In our basic case of a continuous impulse response the

f i r s t  requirement amounts to saying that the signa l bandwidth

14
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Fig. 2. Basic impulse response forms .
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must be somewhat larger than the bandwidth of the system being

measured. If we denote suitably defined signal and system

bandwidths by W and Wh respectively (subscript “h”  for impulse

response h ( t ) ) ,  then we require that W > > W h ,  where a reasonable

operataonal definition of >>W
h is >10 Wh. Rather than describing

the system by a bandwidth Wh, we can descr ibe it by a su itably

defined impulse response extent Th, where WhTh 1. The

requirement then becomes WTh>>l. In our impulse pair model ,

the system bandwidth Wh is infinite but Th is still meaningful

and the requirement to cleanly resolve the pair of impulses is

again expressible as WTh >> ~

The second requirement concerns the amount of data that

must be processed and is most easily described from the viewpoint

of the random signal method . Imagine the time origin to be

centered under the impulse response. The estimate of h (o) is

then the cross—correlation between the transmitted and received

waveforms at zero shift (propagation delays having been removed) .

To generate the estimate a distance Th from the origin requires

shifting the data by Th. If the signal is transmitted and the

data sample collected over +T, estimates can be generated only

out to +T along the impulse response. Thus at the very least,

T=Th. Further , unless the time window is somewhat longer than

this the data falloff will be excessive and the window function

wil l  unduly a f f ec t  the estimate at shifts  approaching Th . It

is clea rly desirable to require that T > > T h ,  or WhT > > l .

16
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It then follows from the first requirement that WT >> l  will also

characterize the operating regime. The estimation accuracy

expressions that result from an analysis taken to these limits

on the parameters will show that desirable parameter settings

from an accuracy viewpoint are consistent with the regime

described here.

B~ Random Signal Method

The random signal method can be described up to a point

without specific reference to the form of the impulse response. 
-

The transmitted signal is a finite time segment of a sample

function x(t) of a real zero mean Gaussian random process. The

signal exists for $t~ < T, and a d i f fe ren t  sample f unction is

used each time the radar makes a transmission . The power

spectrum of x(t) is assumed to be

S
~~
(f) = N

~ 
exp[—(f2/2W2)1 (1)

with peak spectral height 
~~~ 

The bandwidth parameter W has

been chosen as the “standard deviation” of the Gaussian shape

of the spectrum . The corresponding autocorrelation function of

x ( t )  (Fourier transform of S~~( f ) )  is

E[x(t)x(t+-t)] = R~~~
(r )  = ~‘7~~ WN X ex p ( — ( 2 - 1 T 2W 2 -t 2 ) ]  (2 )

17

--—
~~~~~~~~~~~~ -~~



where E [-] denotes expectation . For large W , x(t) approaches

white noise of spectral height N~ and

R ( T )  -
~ 

N xU0 ( T )  (3 )

where u0(.) is the unit impulse. The average power in the

process x(t) is

R~~~
(o) = ,/2i WN x (4 )

so that the average energy in a segment of x(t) 2T seconds

long is

= 2 ,/~~ WTNx (
~

)

a relation that wil l  be used later

The reflected signal y ( t )  is the segment of x ( t )

convolved with the unknown impulse response h ( t ) :

y ( t )  = f  x(~ ) h(t -~~) d~ ( 6 )

The received signal is

z ( t )  = y ( t )  + n ( t )  (7 )

18 
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where n(t) is the interfering noise process, assumed to have

the same statistics as x(t), to have spectral height N~ rather

than N~ , and to be statistically independent of x(t) so that

E[xk(t) n~~(t+T)] = E [xk(t)] E1n 3 (t+t)], any k,j,T (8)

The estimator of h(t), found by cross-correlating

z(t) with the transmitted segment of x(t) is

~~( r )  = 2TN f  x ( t )  z ( t + t )  dt ( 9)

where propagation delay to and from the target has been taken as

zero. To calculate the mean and standard deviation of h(T) we

must make some assumptions about h ( r ) .

1. Continuous Impulse Response

Assume that h(T) is a smooth curve qualitatively

described by an effective time duration Th and corresponding

bandwidth Wh, where

1 ( 10)

19
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Then using Equations (6) through (9) one can show th?t

E[h(r) J = f f R
~~~

(v ) h (v + T )  dv d~ (11)
x 

~=-T

If we then assume that Rxx is narrow with respect to h, i.e.,

that

WTh = W/Wh >> 1 (12)

then (3) can be used to obtain

E[h(t)] h(t) (13)

so tha t ~ is an unbiased estimator of h.

The variance of h is

V a r [ h ( T ) ] = E [ ( h ( T )  - ~~( T ) ) 2 ] (14)

One proceeds by plugging (9) and (11) into (14). Appendix A

describes what comes next. It involves such things as recognizing

that a product of two multiple integrals can be written as a

higher order integral by introducing additional dummy variables ,

the use of (8), and the use of the “moment theorem for Gaussian

variables ,” which allows one to express the expected value of

a product of three or more variables as a sum of expectations

20 
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of products of two variables at a time. The result is that the

desired var iance can be wr i t ten  as:

Var[h(T)] = Varx [h(r) } + Var [h(T) J ( 15)

The Var~ term depends only on Rxx (T) and h(t). It

represents the variability in the estimate due to the randomness

of the transmitted signal , and persists even if ithere is no

interference whatsoever. The Var~ term depends only on Rxx (T)

and R~~~(T)~ the autocorrelations of the signal and the interfer-

ence. It corresponds to the fact that when the interference

is cross-correlated against the transmitted process for a f i n i t e

time the result has an expected value of zero, but a non-zero

variance . The two terms are described in more detail below.

a. Vary Term

If we again set ~~‘h > > l , as sume for convenience that  h ( T )

is even , and evaluate the variance at the typical point T=O , we

obtain

T T-~
Var~~[h(o)] = 

2~ 2 f f h2N,) dv d~ (16)
v=-T-~

Next assume that h ( T )  is also Gaussian shaped and write it as

h(i) = h0 exp[_ (2rrWh-r) 21 (17)

21
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W ith this  convention , the power transfer function of the target

(magn itude squared of Fourier trans form of h ( T ) )  is

= H
0
2 exp[_ (f2/2Wh

2) ] ,

( 18)
2h

H0
2 

= 

4 1Tw
:

2

A comparison with (1) shows that the bandwidth parameters W and

W
h 
have been defined consistently . That is, the random pro-

cesses x ( t )  and n ( t )  can be thought of as white  noise passed

through a f i l t e r  with a Gaussian shaped passband H~~,
n ( f )  2

whose “var iance parameter” is W2, while the target  is a f ilter

with Gaussian shaped passband IH(f) 2 whose “variance parameter ”

is Wh
2. The generic parameter Th used above can be though t of

as — l/W h* Using (17) in (16) and setting WhT>> 1 results in

a normalized variance given by

Var [h(o)] 1 1X 
= ( 19)

h 2 (o) 2 v ~~~ W
hT

22
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where the f i r s t  factor  would vary if the def in i tion of bandwid th

or th’~ shape assumed for h (i) changed , and the second factor

expresses the fundamental dependence involved. Equation (19)

has an interesting interpretation that will be deferred to

Section 3-2 below .

b. Var~ Term

This term results when the procedure described just

before Equation (15) is carried out. It corresponds to the

expecta t ion

~ ~ [2TN ~ J x (t)n(t+T)dt ]2~

= E1 2 2 If X ( t ) X ( ~~) n ( t + T ) n ( ~~+ T )  dtd~1 ( 2 0 )
L4T NX -T j

If the expectation of the integrand is taken , the independence

of x and n invoked, and the variable p=~-t introduced , the

result is

Var [h(-r)) 1 
T T-t

h 2 (o) 
= 

h0
2 4T 2N x

2 
t=-T p=-T-t 

Rxx (
~~

) R nn (
~~)d~ dt

- 
(21 )
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If ( 2 )  is then applied and the result evaluated for WT >> 1 we

a r r i v e  at the normalized variance

Var n [h ( o ) 3 /~ W N
2 

= — — ( 2 2 )
h ( o ) 2 T N~

where we have let h0 1. This entails no loss of generality if

we think of N~ as represent ing the transmitted power level

modi f ied  by radar range equation factors, one of which is

target cross—section level, i.e., h0. Finally , if we apply

( 5 )  , the result can be wr i t ten

Var [h ( o ) ] 
= ( 2 3 )

h 2 ( o) Ex /N

These results can be interpreted readily for either form (22) or

(2 3) .  To understand (22) one can go back to (20) and th ink  of

the integral as a sum of independent random variables, 4TW in

number , spaced by in time, each being the product of a

sample of x, a sample of n, and the spacing factor 1/2W.

Squaring the sum, taking the expectation , and using (8) results

in a new summation in which each term contains the expected value

of the square of a sample of x times the square of a sample of n.

Apply ing (4) then results in

24
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Var ’ = ~~ - ( 2 4 )

which agrees wi th  (2 2 )  to wi th in  a fac tor  of /~ , the difference

corresponding to the fac t  that the in tegral  form is evaluated

for the actual Gaussian shape of the correlation functions while

the summation form uses a rectangle approximation . If we then

wr i t e  the factor W/T as W 2 /TW we see that  Var~ is d i rec t ly

proportional to W 2 , inversely proportional to TW , and inversely

proportional to Nx/N~~. These factors are respectively the

bandwidth dependence of the variance of each term in the

or ig ina l  sum , the dependence of the number of independent

samples on time and bandwidth , and the power ratio of the

“ signal” and interference samples. These iden t i f i ca t ions

constitute our interpretation of (2 2 ) .

Regarding form (23 ) , the inverse dependence on a “ signal

energy to noise power density” ratio is not surpr is ing since we

are dealing wi th  the normalized variance of a s ignature  ampli tude .

The increase of variance as W 2 results from the fact  that we are

operating with W>>Wh to achieve resolution . One factor of W

corresponds to a loss of energy outside the nominal target

ba ndwidth Wh . The other factor of W corresponds to a mismatch

loss at the receiver because the receiver must  operate with

bandwidth W to achieve the resolution while the power bandwidth

25
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of the received s igna l  is e s sen t i a l ly Wh . Th i s  exp lana t ion  is

repeated more thoroughly in Section II C-l below .

2. Impulsive Impulse Response

In this section we no longer think of h(t) as being a

smooth curve but rather assume that it is composed of e i ther  one

or two impulses. As discussed in Section II A-2 , the single

impu lse represents an idea l ized po int  target , an d provides a

comparison with the continuous case. The two impulse model is

Quite similar , and represen ts a target that returns from a “tip”

and a “base ” wi th  essentia lly no broaden ing of either return at

any operating ban dwid th being considered. The two models are

shown in Figure 3a. For simplicity the two impulses are

assumed to have equal areas and to sit symmetrically about the

time origin.

Equa t ions ( 1) th roug h ( 9 )  and (11) still  app ly.

Study ing (11) indicates tha t in the po in t targe t case the

expected value of the estimate follows the shape Rxx (T) , which

is a “narrow” continuous pulse with width inversely proportional

to W ra ther  than a spike . In the two impulse case , E [ h ( - r ) ]

looks essent ia l ly  like a pair  of o f f s e t  repl icas  of R xx ( T ) .

If l/W is small  compared to the impulse spacing , i . e . ,  if WT h > > l ,

the two peaks are well resolved and E (h(-r)} looks l ike  a pair

26



of “ narrow ” continuous peaks. Figure 3b shows these curves.

If we proceed from (11) using (2) and assume that WTh >> 1

and WT >> l , we obtain

E [h(T)] = ,/~~ Who, T at an impulse location

(25)

E[h(T) 1 = 0, T “far” from an impulse location

where h0 is the area of each impulse. The first of these

values will be used to normalize the variance terms to follow .

a. Var
~ 
Term

Equation (15) still applies, stating that the variance

of the estimate is the sum of a Var~ and a Varn term. However ,

the Vary term is no longer given by (16). The problem must be

reworked starting with (11) and (14) as in Appendix A. If this

is done utilizing (2) and the model of Figure 3a , assuming that

WTh and WT are >> 1, and letting h0 be unity , we obtain in the

point target case

Var
~~
(h(t)] 1

2 = — at impulse location
(E[h(o)]) 2v1~WT

(2 6 )

= “ f a r ” from impulse

27
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Fig. 3. True and expected impulse response shape s
for impulsive case.
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In the two impulse case we obtain

Var
~~

[ h ( T ) ] 3
2 = at impulse locations

(E[h(T1)]) 4V ’~ WT

(27)

= Y9~WT be tween impulses

The slight differences in the numerical coefficients can be

explained but we will not digress to do so here. The interesting

thing to observe is the inverse dependence on time-bandwidth

product. The product WT is proportional to the number of

independent samples of the transmitted process x(t) in the time

interval (—T,T). Since an impulsive impulse response does not

limit the bandwidth of the reflected signal y(t), the product

x(t)y(t) is essentially proportional to x2(t) and still has

on the order of WT independent samples. Equations (7) and (9)

indicate that Var
~ 

is the estimate variance with the noise

n(t) set to zero, which is proportional to the variance of

essentially an average of a set of samples of x2(t). In

normalized form this varies inversely with the number of

independent samples involved , i.e., WT. The result can be

verified by approximating the integral in (9) by a sum of

independent samples, as we did in Section II B-l-b above.
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Now compare these results with those for the continuous

impulse response, Equation (19). We see that basically where W

appears in the impulsive result, W11 appears in the continuous

result. What is happening is this. In the continuous case ,

under the assumption that W >>W h, the bandwidth of the reflected

signal y(t) is limited to Wh by the frequency response of the

target. Thus the number of independent samples of y(t) available

is proportional to WhT, not WT, and this change carries through

to the result (19). Again , this inverse WhT dependence can be

verified by a discrete summation approach , although it is

slightly more complicated than verifying the WT dependence in

the impulsive case.

b. Var~ Term

Sine the Var~ term comes about from cross-correlating

n(t) with a replica of x(t), it does not depend on h(t), and

hence in un—normalized form is unchanged from the continuous

case. However , the normalized form , which is what counts, will

change in accordance with (25), and becomes , using (22) and (25),

Var [h(-r)] 1 1 Nn 
= — — —

~~~ (28 )
4v’~ WT Nx
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which , us ing ( 5 ) , can be wr i t ten

Var [h(-r)J 
~ ( 2 9 )

(E[f~(T)])
2 2 Es/N

where r0 represents the location of an impulse in h(T).

Comparing (29 )  with (23 )  we see that the growth of

variance with bandwidth no longer occurs in the impulsive case.

This is because the target frequency response no longer limits

the bandwidth of the reflected signal and causes energy loss

and mismatch at the receiver . Again , this point will be made

more explicitly in Section II C-2 below.

C. Deterministic Signal Method

The basis for the deterministic signal method is

shown in Figure 4. The transmitted signal s(t) is to be

thought of as a real “narrow” pulse with energy E given by

E = f  s2 (t ) dt (30)

To remain consistent with Section B, the signal will be assigned

the Gaussian shape

s(t )  = s0 ex p [— ( 2 r r Wt) 2 1 (31)
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Fig. 4. Deterministic signal method.
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with Fourier transform

S ( f )  = S0 exp[— (f/2W)
2] (32)

where one can show that

s0
2 

= 4 -IT W 2S 2 
= /~~ EW ( 3 3)

The fact that the signal extends to infinity and that the

convolutions to follow are carried out with infinite limits is

not significant. The same analysis has been carried out with

signals and filters having finite time extent , rectan gular

shapes for example, with no change in the basic dependences ,

merely form factor variations. Truncating the Gaussian shapes

used here would change the results negligibly while introducing

much nuisance value into the analysis.

The reflected signal y ( t )  is s ( t )  convolved w ith h (t ) ,

or

y ( t )  = 

f 
s(~~)h(t-~~) d~ (34)

which will henceforth be denoted by s(t) ®h(t). The received

signal  is

z ( t )  = y ( t )  + n ( t )  ( 3 5 )
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which is then passed through a receiver filter whose impulse

response is hR (t) resulting in a waveform which acts as the

es tima te of h ( t) . Thus ,

h (t) = z(t) ®hR
(t )  = s ( t )  ®h (t )  ®h R (t )  + n(t) ®hR

(t)

m(t)

- 
( 3 6 )

The in ter fe rence  n ( t) is as assumed in Sect ion B, wi th Gaussian

shaped spectrum S~~(f) and autocorrelation R~~~(-i-). Equations

(1) through (3) apply wi th Nn replacing N
~~
. The receiver filter

i~ taken to be a filter matched to s(t), and therefore  has an

impulse response proportional to s(-t). Thus we can write

hR
( t) = hRo exp [-(2-iiwt)

2
1

HR ( f )  = HRQ exp[-(f/2W)
2] (37)

2 2 2hRo = 4 ir W HR0

We can now calculate the mean and variance of h(t) for the

continuous and impulsive impulse response models.

1. Continuous Impulse Response

Assume again that the target impulse response is

34



Gaussian shaped with bandwidth parameter W h , as described by

Equat ions  (17) and (18). From (36) we can write

E [ h ( t) ]  = s ( t )  ®h ( t )  ®h R (t )  = s ( t )  ®h R (t )  ® h ( t )  ( 3 8 )

From ( 31) ,  ( 32 ) ,  and (37) we can write

s(t) ®hR
( t )  = /~~ WSOHRO exp [~~(/ ~~TTct )

2
1 (39)

For large W ,

s(t) ®hR
(t )  -

~ 
S H R0

U
0

(t ) (4 0)

Thus , if W >
~
Wh ,  we can write using (38) and (4 0) ,

E[h (t)1 = SoH Roh ( t )  (41)

Using (36) we can write

Var (h(tfl = E[m2(t)1 = Rmm (O) = f  S
m

( f ) d f  (4 2)

where m(t) is the noise at the output of the receiver filter ,

Rmm (T) is its autocorrelation and Sm (f) is its power spectrum.

Therefore
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Varfh(t) J = f  S (f) jHR
(f ) 1

2 df (43)

This evaluates to

V a r [ h( t ) ] “~ ~Th~n
I1
~ o~

and using ( 3 3 )  and (4 1) , let t ing h0~~l , and W > ) W h ,  we can w r i t e

V a r [ h ( o ) 1 = ~ w
2 

( 4 5 )
( E [~~ (o ) } ) 2 E/N~

To unders tand  th i s  result , consider the “ narrowband”

l imi t  W < < W 1~. In this  case the only e f f e c t  of convolving

( s ( t )  ®h R (t ) ) w i t h  h ( t )  is to mul t iply ( s ( t )  ®h R ( t ) )  by the

ampli tude of the target f requency respon se at zero freq uency ,

namely H0. Thus from (38) and (39) we can write

E [ h ( o ) ] = /
~~~

WSOHROHO ( 4 6 )

and using ( 4 4 )  , ( 4 6) , (33 )  , and (18) , an d lett ing h
0=l , we

cbtain the normalized result

Var [h(o)] 
= 

2V2 -TrWh
2 

( 4 7 )
(E[h(o)J) 2 E/N~
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Thus the ratio of the norma lized var iances in the wideband and

narrowband limits is

VarWb 1 ~ 
2

Varflb 
= 

~ 
(
~
) (4 8)

Two e f f e c t s  cont r ibute  to this resul t .  In the narrowband case

the  receiver is matched to the ref lec ted  signal  y ( t ) . In the

wideband case the bandwidth of the ref lected s ignal  has been

limited by the target , while the receiver operates wi deband to

match the transmitted signal. Thus excess noise enters the

receiver relative to the matched case , the e f f e c t  be ing

propor tional to W/Wh. The other effect is that the target

re jects most of the transmitted energy outside its nominal

bandwid th Wh. Ene :gy must be transmitted “out of band” in

order for the expected pattern of the estimate to contain the

desired detail or resolution, bu t most of this energy is lost

f rom the standpoint of the variability of the estimate . This

e f f e c t  is also proportional to W/Wh.

We see then that  “ too much” bandwi dth is a bad thing ,

using either the deterministic or the random signal. If you

ask for more resolution or detail  than you really need , a

noisier estimate resul ts .

37

___ - - -



2. Impulsive Impulse Response

Assume again that the target impulse response is no t

a continuous curve , but contains impulses.  For s impl ic i ty, the

single impulse or point target model w i l l  be treated . Thus

h ( t) is taken to be

h ( t )  = h0u0(t )  (4 9)

Then from ( 38 ) we can wri te

E [h ( t ) ] = h0s(t) ®hR
(t )  ( 5 0)

which says that the expected shape of the estimate, ideally an

impulse , is the shape of the pulse at the ou tpu t of the receiver

f i l t e r .  App lying ( 39) and (3 3 ) we get

(E[h(o)J) 2 = 2~ W 2SO
2H RO

2hO
2 

= 
~~~ 

EWH~0
2
h0

2 (51)

The un-normalized variance is still given by ( 4 4 ) , and the

resulting normalized expression is

V a r [ h ( o ) ] 
= 

/~ 1 ( 5 2 )
( E [ h ( o ) ] )  2 E/N

38
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II I .  Conclusions

In Section I we addressed heu ristical ly  the quest ion

of whether the use of random rather than deterministic signals

had any advantage for  impulse response es t imat ion .  In Section

II we def ined  an objective basis for making the comparison ,

carr ied the comparison out , and developed some insight in to the

resul ts .  In this section we will summarize  wha t has been

learned and b r ie f ly comment on it.

The basic performance expressions derived are brought

together in Table 1 below.

TABLE 1

NORMALIZED VARIANCE OF IMPULSE RESPONS E
ESTIMATE

CONTINUOUS IMPULSE RESPONSE IMPULSIVE IMPULSE RESPONSE

VARIANCE DUE VARIANCE DUE VARIANCE DU~ VARIANCE DUE
TO TO

TO SIGNAL INTE RFERENCE TO SIGNAL INT ERFERENCE

RANDOM 1 1 -- W2 1 1 ~/Y 1

SIGNAL 2 ~~~ 
/2 ~ 2~~ ~~ 2 E /N~

DETERMINISTIC NONE ~~~ 
NONE 2 E/N~

SIGNAL fl
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These results app ly in the limits on time and bandwidth pre-

viously discussed , and the numerical  coeff icients correspond

to the Gaussian shape assumptions and definition of bandwidth

made. The important point is that bandwidth has been defined

consistently in the sense that a given value of W implies

exa ctly the same resolution or detail in the e~çpected estimate

in either the deterministic or the random case.

The table shows clearly what the answer is regarding

the central  ques tion addressed in this repor t, namely the

relative ability of the two methods to suppress uncorrelated

interference. Their performance is identical for either type

of impulse response model when they employ equal resources such

as bandwidth , average energy consumption , etc .

As described , the random signal method experiences an

additional variance component , although this can be reduced to

a desired level by ad jus t ing  the parameters.  Al te rna te ly  one

can select a particular realization of the random process and

use it repeatedly as a radar signal just like any other

deterministic signal, e.g., LFM, binary phase coded, etc.

Finally , we have pointed out that with either type of

signal the use of “ excessive” bandwidth carries with it the

penalty of a more variable estimate. This should be kept in

mind in discrimination applications where achieving fine resolution

on the shortest targets in question may in fact be unnecessary or

even undesirable .
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APPENDIX

The purpose of the appendix is to describe in somewhat

more detail than was appropriate in Section II how some of the

variance expressions are arrived at. In the random signal case

we start with equation (14) giving the definition of the

estimator variance as

Va r [ h ( T ) ]  = E [ (h ( T )  — f~( ) ) 2 I (A l )

Using the definition of h (T) from Equation (9),

~~ ( T )  = 
1 f  x(t)z(t+T) dt (A 2)

2TN x -T

the expression given in (11) for the expected value of h ( T ) ,

E [ h ( r ) ]  = f f R~~~
( v ) h ( v + T ) d v  d~ (A 3 )

and the signa l relation~hins from (6) and (7),

z ( t )  = y (t )  + n ( t )  (A4)

and y ( t )  = f  x ( ~~) h( t -~~) d~ (A5 )
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we can write

h(T) - ~~( r )  = 2T~ f f [x ( ~~)x(~ +v) -

~=-T v=-T-F~

(A6 ) 
- 

-

+ 
~~~~~ 

x ( p ) n ( p + T) d P

Think of the first (double) integral as a term “A” and the

second integral as a term “B” . Then the square of the left

side of (A6 )  is equal to (A+B) 2 which equals A2 + 2AB + B 2 .

The “A2” term is the square of the double integral and can

therefore be wri t ten

A2 = 

4T 2N 2 f f f f
x ~=-T v=-T-~ t=-T p=-T-t

(A7 )

[x ( t ) x ( t + p ) - R ~~~( p ) 1 h(v+t)h(p+T) d~dvdtd p

The “B 2” term is the square of the single integral and can

therefore be written

T

B 2 
= 

1 _f J ’ x (p )x(t)n (p+T)n(t-4- -r)d pdt (A8)
4 T N X — T
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The cross term “ 2AB ” is the product of the sing le and double

integrals, which can be written

2AB = 

2T 2N 2 f f fX 
~=-T v=-T-~ p=—T

(A 9 )

x ( p ) n ( p + T ) h ( v + T )  d p d v d E ~

The expressions (A7 ) through CM ) comprise the quantity

[h(T) — E(h (-r)]2. The variance of h ( T )  is then the sum of

their expected values. In each case , the expectation is moved

inside the integral. The first thing we note is that because of

the independence of x and n, the ent i re  integrand in (A9 ) is

proportional to E [n(p+T)] which is zero (see Equation (8), Section

II B). Thus (A9) contributes nothing , and we have only (A7)

and (A8) to consider .

The expected value of (A8) is the Var~ term . If we make

the change of variables ~~= p-t , we can rewrite (A8 ) as

Var~~[h(T)] = 

4T2N 2 f f E[x(t)x(t+~ )n(t+T)n(t+T+~ )1

x t=—T E~=—T-t (Al O)

d~dt
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Again using (8) because x and n are independent , we arrive at

var [h(i)J = 

4T 2N 2 f f R ( ~~) R ( ~~) d~dt (Al l)
X t=-T ~=-T-t

This is the basic result for Var . If we substitute the

particular Gaussian shapes assumed in Section II for Rxx and

~~~~ the integration can be carried out in closed form , resulting

in an expression involving the error function “erf.” When

this expression is evaluated for large WT, expression (22) for

Var~ results.

The expected va lue of (A7) is the Var x term . The pro-

cedure is as follows. The expectation is moved inside the inte-

gral and the integrand is multiplied out. Three of the four

terms that result are of the form R
~~~

(v)R
~~~

(p)h(v+T)h(p+T). The

fourth term is of the form E {x (~~) x ( ~ +v) x ( t ) x ( t + p ) ] h ( v + T ) h ( p + T ) .

The expectation can be calculated by apply ing the “moment theorem ”

for Ga ussian variables” , which can be stated in the form

E [a~ y S ]  = E [ c z~~] E[yS] + E [ a -y ]  E [~~c5} + E [ a ó ]  E [ 8y 1
(A12)
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where a,8,-y, and ô are real zero mean Gaussian random variables .

If (A l2 )  is applied , one of the three terms tha t results again

contains the factor Rxx ( v ) Rxx (P), and just cancels the previous

terms containing that factor . Thus all tha t remains are the

other two terms that result from applying (Al2), and we ar r ive

at

Varx[h (T)1 = 

4T2N
~
2 

~~~T vLT_~ ~/T r-7~~~t

E R x~~
(
~~

_ t ) Rx~~
( F

~
_t + v _ p )  + Rx~~

(t+
~~~~

) R xx L+v t)J (Al 3)

h(v+T)h(p+- r)dpdtdvd~ -

‘-I

This is the basic result for Varx, and it is not very i n fo rma t ive

as it stands. It remains to turn it into a more usefu l  form

in both the continuous and impulsive impulse response cases.

In the continuous case the assumption that 
~~~ 

is

narrow relative to h,(WTh >> 1), allows us to make the substitution

R
~~~
(.) -

~~ N
~
u0
(.) in (A13). If we do this and then integrate

first over p and then over t, the result is

Var
~~

Eh(T )1 = 

~ 
f J h(v+i) [h(v+T) + h(T-v)] dvd~

(A l 4 )
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and if we assume for convenience that h is even and evaluate

at the typical point T 0, the result becomes

T T-~
Var

~~
[ h ( o ) ]  = —

~~

-

~~~ f f h 2 ( v ) d v  (Al S)

~=-T ‘~=-T-r

which is Equation (16) of Section II.

In the impulsive case , we have by assumption that h is

impulsive relative to 
~xx’ 

whereas in the continuous case we

treated 
~~~ 

as impulsive relative to h in the limit of interest.

If we return to (Al3), integrate first on v , then on p , and

assume here for simplicity the point target model h(T) =

h0u0(T), we obtain

2 T
Var [h(i)] = 2 2  R~~~

(t T ) R xx (t
~~

+ T )  d~ dt (A l6)

If we evaluate at the typical point T=O , and change variables

we arrive at

Var
~~

Ef
~

( o) ]  = 

4T2NX
2 

lIT ~ 
R 2(~~) dnd~ (A 17)

This can be evaluated just like (All), and Equation (26) results.
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