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SUMMARY

Th is research is devoted to investiga ting how Bayesian sta-

tistical analysis di ffers from classical statistical analy sis in the

context of operational testin g. The spec i fi c aspects of operational

test ing which are considered are the power resulting from a hypothesis

test ~md the expected loss , or risk , resulting from a decision .

Fi rst I t is shown that it is quite difficult to develop a

mean i ngful measure of compari son between Bayesian and class i cal

analysis i n the framework of hypothes i s testing. Us i ng the power of

the hypothesis tes t as a measure of comparison , i t is shown that under

certain conditions classical statistical procedure s lead to more power-

ful tests than Bayesian procedures . It is then shown that Bayesian

stati stical procedures are su perior to classical procedures in the

framework of minimizing expected los s or risk.
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CHAPTER I

INTRODUCTION

Bacj~~ ound

Th is study was prompted by the desire of the U. S. Army Opera-

tional Test and Evaluation Agency (OTEA) to compare Bayesian to classi-

cal statist i cal procedures for determ i n i ng sample si zes for actual

tests which have been conducted by OTEA. The objective of the

• comparison is to determi ne i f smaller sample sizes can be obtained

through the use of Bayesian procedures which yield inferences compar-

able to those drawn from classical procedures. To understand the pro-

cedures to be util ized in th i s study, one must be fam i liar w i th the

nature of operational testing as performed by OTEA .

The purpose of operational testing is to provide data upon which

to esti mate a prospect i ve system ’ s m ilitary utility, operati onal effec-

• tiveness and suitability , an d need for any modifications [2]. This data

is obtained through a sequence of three operational tests (referred to

• as OT I , 01 II , and 01 III). Each test must be completed and analyzed

prior to beginning the next test to determine if there is a need for

the next test in the sequence. When possibl e the new system is tested

alongsi de the existing system during each phase of testing to acquire

data from both systems under identical conditions. At the end of each

test, the data is collected and analyzed , an d a decision is made to

conduct the next test or to reject the new system ~l 1 . 

- -•-~ ~~~~ ‘. t W ’±SSt.&~~~~~ f ... ..~~~_ — .~~~~~~~. —•-~~.---~~~-- -~~ • •  
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The overall assessment procedure consists of identifying certain

measures of effectiveness (MOE) which are critical to the system under

consideration , such as , percent of target hits , mean miss distance ,

mean time between failure , and so on. Once identified , these MOE are

incorporated into a test design which will provide for a side—by -side

comparison of the competing systems with respect to each MOE. After

all MOE of interest have been tested , the overall desirability of the

system is then evaluated .

For a given test design , the problem at hand is one of determin-

ing the minimum number of replicates (sample size) required for each

set of experimental conditions to achieve a specified level of confi-

dence in the inference made as a result of the experiment . Th is sample

size is currently being determi ned by classica l statistical procedures

[18]. As an example , suppose the random variable of interest is assumed

to follow a nornial distribution with unknown mean and variance , and the

decision maker is interested in determining the expected value or mean

of the random variable. In the class ical sense , the mean i s consi dered

an unknown constan t. The power of the test, or the probability of

rejectin g the hypothes ized value of the mean , when the hypothesized

value is inaccurate , is determined from the operating characteristic

curves for the type of test conducted . The above theory of classical

statistics wi ll be im portant when compared to the Bayesi an theory i nves-

tigated in this study.

Ob~ec Li ves of Research

The objectives of this research are twofold. The firs t objective

- 

~~~~~~~~~~~~~~ —— ~~~~ — ~~~~~~~~~ - —‘~~~~~~ -~~~ - ~~~~~~~~~~~~~~~~~~~~~~ —
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is to determine whether or not Bayesian methodology can be effectively

applied to operational testing. As noted earlier , operational testing

is conducted in three phases , and many times the same measures of effec-

• tiveness are examined in more than one phase. The current procedures

used by OTEA consider each test in the sequence independentl y; i.e.,

the inferences made at the end of e~~h test are based on the data

obtained during that specific test onl y [18]. There is no attempt made

to combine the data on a specific MOE measured in 01 I and 01 II. ~

example , to obtain a better estimate for the MOE from which bettor

inferences can be made. Chapter III is devoted to developing a

methodology which will apply Bayesian techniques to the combination of

data from two phases of testing to determ i ne the power of a hypothesis

test for any specified sample size .

The second objective of this research is to determine under what

conditions the Bayesian methodology will produce a “better ” test than
F

the class i cal methodolo gy when cons i deri ng the same sample si ze for

both methods. Chapters III and IV are devoted to comparing the above

methodolo gi es i n the context of- an actual test conduc ted by OTEA .

Fundame n tals of Bay~~~~~~~~ly~~s

The discussion presented here will compa re classical statistical

theory to Bayesian statistical theory to demonstrate how OTEA ’s presen t

concepts of testing would have to be altered to app ly Bayes i an tech-

n iques to operational testing. Presently, i f OTEA is considering a

data genera ti ng process whic h may be modeled by the normal process with

un know n mean and variance , th’ n the probabili ty density function
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d ~1)t 1 at ,t ’d w i t h the pro ( ( “  S i S t t i t ’  norma I dens i ty, wit h mean , ~~, and

vari an ce , “ . lhes ’ p,~rameters would be view ed as unknown coli  St dii t 5

b t he . las  ic,i l st at 1s t  i t  ia n.  Th ese const  ,iiit s are tjeiie r~i1ly i’st .iiiiated

by swnp l I no from the da t a  qenerat I nq roct ’ss and us i nq the Saml)1 e
• )

L t i  t 1 - , t I t ’ -, X and s ’ to es t j iii ~~f t ’ 
~ 

arid ‘~ i- t ’spi ’ct i ve l y .  I f  one is

intere st i’d in , the mean ot f l i t ’  -oi ’sc , X and s ’ ou ld In’ used to

cons trut t a c o n f i d e n c e  interv a l on p . I or ex,implt ’ . i t  ( 1 - 

~) is the

• di’qrev of conf idenc e di’s i red , t hen I 1? I

- P I X  - (t •, ) ( s / ~ n) - p X i (t )(s/~n) I (1-1 )
~/ ,  ,n-l —- ~/2 ,ii- I

w here n i ‘, the s,inipl e s i .’ e and ~~~~~~~~~ n— s t he percent dip’ ~X) i l it of the

ct ’i i t ral t —di s tribution with n—i deqrees of f reedom su ch  t ha t

P ( t • 

~~ n . lii is con ~ i deuce interval  on ii wo o 1(1 be f t i ter—

pro t 0(1 U) t he ri’ 1~i t i vi’ freque ncy 5(’?l . That. 1 , i t  repea ted sampl es

of s i ;o ii wer e ta ken , eac h t inie ( - oniput inq new va lues of X and s , and

1 1 0111 idence i n t e r v a l  on p was (o i ls  truct ed a f t e r  eat h sample was ta ken .

Iit’II I t wo uld t ie expec ted th i  t 100(1 — t )~ 
u t  the (.00 I li’1i (? j u t  t’) V(l I ~

so t) I is t. ru( te(1 woo ld coo t  a in t he ‘ ‘t rue ’’ va I iie of 1 ~ I . The Raye s ian

ana l y s t W On 1 d it i t s  or i t i  -. t ’V e ra  1 w ay ’~ . I le won ld coiis I der t he on known

par~imet ers , and “ , as random va r iab les . ( “ T i  1 di’s ” w i l l  he usu ’d t o

ind i a t  u’ random var iab les  t hrouqbout t h i s  study .) ‘— inco point est ima t es

of random va r i ab l e s  a cc ’ ii a ’ loss • he woo l d is i l l  be t o t hem a probab i l i t y

di st r ibut ion i n s t e i d . I t prior s,uiipl iI1~ informa l 1011 iS lin t ~lV ,I i lable ,

he ana lys t  iiiiis t u sc ’ lii’. sub .j ‘ t i ye i iowl i’dtie of the process to ass e ss

a f ’ robat ) i l l  t y  ~Ii fr i but 1 OIl t or t hi’ IOI u t  i t t  t ili’I’ i’Ilt 0 0 t ii dud ‘ . I Ii is
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prior di str ib ut i on can then be combi ned with sam ple i nfo rmat ion to

produce new di stri buti ons for the unknown parameters , as wil l  be

demonstrated below . The conceptual differences between the classical

an d the Bayes i an analyst p lay important roles i n i nter p ret i ng the

resul ts of a test [361.

The combination of a prior probability distribution of a ran-

dom varia b le with sam ple i nformat i on is ac hi eve d by use of Bayes ’

theorem . For a continuous random variable , ö , Bayes ’ theorem may be

written as

f”(e~y) = f ’ ( ° ) f (~I o) 
~~~~~~~~~~~ ( 1-2 )

f f’(e)f(yjo)do

where a sin gle prime superscript (‘) denotes a prior distribution or

parameter , a double prime superscript (“) denotes a posterior distri-

but ion or parameter , an d no su perscr ipt denotes a sam pl i n g d i s t r i but i on

on parameter.* Therefore , in equation (1-2), f’(o) is the prior dis-

t rib uti on of ö representin g the anal yst’s beliefs regarding O pr ior

to sampling , f(y~o) represents the likelihood function chosen to

• describe the sampling process , and f” (OJy ) is the posterior distribution

of ~ representing the analyst ’s bel iefs regar d ing ö after sam pli ng [36 ].

The theorem can also be a pp li ed to di screte random var i ab les by su b-

stituting probability mass functions for probability density func ti ons

and a sunination sign for the integra l sign. Winkler [36] g i ves a 

- --- - - - ----~~ ------ -—-—-_ _

Appendix 1 presents a detailed explanation of all notation in this
study.
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der ivation of Bayes ’ theorem from conditional probabilit y formulas .

In applying Bayes ’ theorem, the major diffi culties lie in assessing

the prior distri bution and likel i hood function and in evaluating the

integra l in the denominator of the formula. Baker [4) has suggested

• methods for handling these difficulties which are discussed in the

nex t cha pter and wh ich w i ll be used in this study . 

—-—--- - - , A
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CHAPTER II

- BAYESIAN DISTRIBUTION THEORY

In his thes i s , Baker [4] cons id ered a prob lem similar to the

one addressed in Chapter I. He has propose d a metho dolo gy for com bi n-

ing data relative to a single MOE taken from one pha se of testing with

sam p le informa ti on on the same MOE taken i n a la ter phase of testin g.

This procedure produces an estimate of the MOE for use in making

decisions. The methodology applies to an operationa l test in which

a proposed system is being tested side-by-side with the system it has

been desi gned to rep lace , and a single MOE is under considerat ion .

In general , th is methodology uses the theory of selecting a prior dis-

t r ibut ion from the natural conjugate fami ly of d is t r ibut ions which ,

when combined with the likelihood function in Bayes ’ theorem , produces

a posterior distribution that will be of the same form as the prior.

This will reduce the computational burden considerably in the sequen-

tial analysis used in this study. (For a complete discussion of

natural conjugate distributions , see Ra i ffa and Schlaiffer [29],

Chapter 3.

In th is study , the results of an actual operational test are

suppli ed by OTEA . When considering a single MOE , OTEA assumes the un i-

var iate norma l distribution with unknown mean and variance as the basic

model for sample size determination for both measurement and attribute 

— -- — - - —p- 
~~ — — — — — — —
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data 1181 . The same function will , therefore , be used i n t hi s stu dy

as the likel ihood function for the random variable under considera-

tion .

The si de-by-side nature of the operational tests under con-

• sideration suggests that inferences be drawn from the difference of

• performance characteristics of the systems rather than from the actual

per formance c haracterist i cs of a sin g le system . Thus , if and

represent the same MOE for systems one and two , respectively,

b = - will represent the difference between the MOE of the two

systems . Since and are assumed to follow the norma l distribution

w it h unknown mean and variance , ~~~, which is just a linear combination

of two independent , normally distributed random variables , can also be

assumed to follow a normal distribution [121 with unknown mean and

var iance , say ~ and ~
2, res pectivel y. The varia ble of interest in this

study wi l l  be j~, the mean difference between the two systems .

In the classica l sense p ,  the mean of the distribution of O, is

cons i dered to be an unknown constan t, and inferences are drawn from

tests of hypothesized values of p. Consequently, if p can be shown to

be equal to zero, one can conclude that there is no d if ference between

the competing systems , whereas i f p i s not equal to zero , then one can

conclude that one system is better than the other.

• In the Bayesian sense , s ince ~ is cons idered as a random vari-

ab le , tests on whether or not ~ takes on a spec ifi c value are mean-

in gless. One must consider tests where ~ can take on a range of

values ; e.g., ~ ~~~~~~ 
or one can cons ider a test on specific values of ~T, 

-
~-—— -- --- ;-~~~~~~ ~~~~~-- -
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the mean of ~~~. If ~ can be shown to be equal to zero , one could reason-

abl y conclude that there is no difference between competing systems ,

and if ~ � 0, there is a difference.

It has been shown [291 that when ~ is considered as a random

varia ble , the d i stri bution of ~ i s the Student ’s t d istribution , rep-

resented by the dens i ty

f(~ I uii,v ,n,v ) = f5(~ Im ,n/v ,v), (2-1)

where (m,v ,n ,v) is the statistic resulting from a sample of size n

and is given by

D. (2-2)

v = 
~
L
i~~

y ( D
~ 

- m) 2

v = n - l .

The parameters (m,n/v ,v) in the argumen t of f5 on the right side of

equation (2-1) indicate the degree of non centrality of the distribu-

tion . The centra l or standard Student ’ s t distribution woul d be given

by fs(~~
O,l i v). The distribution given in equation (2-1) can be

standardized so that cumulative t tabl es can be used in computing prob-

abilities as follows :

P(~ p lm ,v ,n ,v) = F5*([u—m]V
’
~i7~ Iv),

where the subscript S~ indicates the standard Student’ s t distribution.

It has also been shown (29 1 that the mean and variance of ~ are given by
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E(ji l n i ,v ,n,v) = m v > 1 (2—3 )

V(iTi~m ,v ,n ,v) = 
~~

- — -
~~~~

- 

~ > 2

The objective of this methodology is then to determine the minimum

sample size which will produce a posterior distribution of ~ that will

enable the decision maker to achieve a specified level of confidence in

the inference drawn concerning j.

Since the Department of the Army has imposed on OTEA the require-

inent that operation al testing be independent of all other testing [21 ,

it has been assumed that prior to 01 I the state of know l edge concerning

can be represented by a diffuse distribution for the normal-gamma

family, as developed in Winkler [361. Thus , when the prior d istribu-

tion is combined with the sample information from 01 I the result ing

posterior distribution will also be normal-gamma [361. When a measure

of effectiveness that was considered in OT I is being reconsidered in

UT II, it must be assumed that the posterior standard deviation of

~~, /~ “ , determined in ot I was too large to reach a meaningfu l conclusion

about ~~~. The sequential nature of the testing then presents the oppor-

tun i ty to use the posterior distribution determined from 01 I regarding ~
as the prior state of knowl edge of ~ for UT II. The methodology now

conc entrates on developing a sample size for 01 II which will produce a

• posterior standard dev i ation for ~ equal to some fraction of the prior

standard deviation; i.e., /~~“ = ~~~~~~~~~~~ where 0 < s < 1.

Baker [41 has shown that a sample of size

n = (—7- - l)n ’ , 0 S < 1
S 

-
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where n ’ represents the sample size of the prior distribution , can be

expected to reduce the prior standard deviation of ~ by a factor s.

He approximated E( /~i”) with

E( /~~Im ’ ,v ’ ,n ’ ,u ’ ; n ,v) (2-4)

Due to the approximations used in his formulation , Baker [4] has intro-

duced an error into the expected posterior standard deviation which can

be written as

% error = 1 - exp ~~~~~~~~~~~ ( (
~~

-
~~~~

- 
~v

•+n-2~~’ 
(2-5)

If this error is determi ned by the decision maker to be too large , then

equation (2-4) cannot be used , and a more complex formula must be used

to determine the sampl e size , n , which will produce a desired expected

posterior standard deviation of ~i. This equation is

E[~~~ Im ’ ,v ’ ,n ’ ,u ’ ;n ,v) = /(n’/n ”)~ ’ exp [~~
( (

~~~~~) (~T~~~ ))1,(2-6)

where n ” = n ’+n.

Although equation (2-6) cannot be solved explicitly for n , given

• a desired value of E(f~~), it can be sol ved i teratively. Baker has sug-

gested a starting value of n to be that found by solving equation (2-4)

for n.

Once a sample size has been determined and a sample has been

taken , the statistic (m” ,v ” ,n ”,v ”) is determined [291 as follows :

__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •- ______
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n rn ’ +nnim = 
~~~~~~~~~ (2-7)

n ” = n ’ + n

— [v ’v ’ -4-n ’(nI ’)2] + (vv+nm 2) 
-

v - t 1
~6X~

1)Y
~ [ v  ~~~(n)]- 6(n )

v ’ = [v ’ + 6(n’)l + [~ + 6(n)] —

where 6(~ )= fO if~u = O

11 if Y 0

The mean an d variance of the posterior distribution of ~ are then

E(~ ”) ~ “ = rn ’ (2—8)

— ~ ,, V ~)
= 
~“(v”—2)

In the case where the pri or di stri but i on is d i ffuse , as in 01 I ,

n ’ = v ’ = 0, and the posterior parameter (m” ,v ” ,n ” ,v ”) equals the

• sam ple statistic (m,v ,n ,v) [29].

The above develo pment is directed at producing a value of the

posterior standard dev i ation of ~ which will make the distribution of

~ “tight” enough to enable the deci sion maker to make h i s decision con-

• cerning 1 with a specified degree of confidence . However , the value of

,/~~“ wh i ch satisfies the above criterion is subjective in nature . The

problem of determining va l ues of /~~ “ which meet certain criteria wi ll

be discussed in Chapter III. 

~~~~~ - - - • - • • - • - • - --- - -~~~~~~----—~~~~---~~~~- -—-—- - --- ••
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CHAPTER III

CLASSICAL VS . BAYESIAN HYPOTHESIS TEST ING

In troduct i on

In this cha pter an attempt will be made to compare Bayesian and

classical statistical methods in the context of hypothesis testing.

One commonly accepted measure of comparison between methods of testing

hypotheses is the power of each test. We shall define the power of a

test as the probability of rejecting the null hypothesis when it is

fa l se, or, equivalently, the probability of not comm i tting a type II

error . The power of the test is an appropriate measure of comparison

for this study because of the consequences of the decisions resulting

when type II errors are made. In the case of operational testing, con-

sider the null hypothesis: there is no difference between the standard

equipment and its proposed replacement versus the alternate hypothesis:

the proposed replacement is better than the standard . If the decision

maker makes a type II error (i.e., the new equ i pmen t is better but it

will not be purchased), he is denying the army the use of a better piece

of equipmen t and thereby keeping the l evel of mission accomplishment

l ower than it could be.

In the case of a type I error , however , where the decision maker

rejects the null hypothesis when it is true (i.e., there is no differ-

ence in equipment but the new equipment is purchased), the consequence

would be that a probably more expensive piece of equipment would be



__________________________ 
- - -- ~~~~~— - - ~~--~~~~- — -- • --——- ---- - - - - - - - - -  - ------.-—_-•-- - -- -___*-- ‘--.-- _— ,-~~~

-----•--

14

purc hased w hi ch woul d not i mprove the m i ssion accom p l i shmen t of the

a rmy . A better piece of equipment would not hav2 been overlooked ,

however .

In this example , a type II error could be more harmful to the

army than a type I error. For th i s reason , the probability of not

committing a type II error, or the power of the test, i s consi dered of

prime importance in this study.

The Two-ta iled Hypothes i s Test

To compare classical versus Bayesian tests in term s of power , the

hypotheses of i nterest in both tests must be considere d. In the class i-

cal two-tailed test , H0: p = 0 vs H1 : p ~ 0 (p is considered a constant),

the type I error can be fixed at any des i red level , and the type II

error can be determined for any given sample size by use of the appro-

priate operating characteristic curves. However , since the Bayesian

considers p to be a continuous random variable , the probability that

= 0 wi ll always be zero . In fact , Winkler [361 has stated that there

is no logical Bayesian equivalent to the classical two-tailed test. Two

modified Bayesian hypotheses will , therefore , be considered i n th i s

study . The first tests whether or not the mean of ~i , ~I, equals zero ;

i.e ., H0: T~ = 0 vs H1 : ~ ~ 0. Since the variance of ~ decreases as

n increases , an inf i nite sample would yield exact knowledge of

the true j . In the i nfi n i te sample case, the mean of ~ would be the

exact value of p when the variance of ~ is zero . It is , therefore ,

lo gical to compa re the value of i~ in the Bayesian test to the value of

~i in the classical test. This will be done in the next section .

- —  — •- - — - —-~~~~~~~~ -~~~~~~~ -— •~~~~~~~~~ - • • - •  ~~~-
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The second modifi ed Bayesian hypothesis tests whether or not ii

l ies in some interval about zero ; i.e. H0: -a 
< < a vs H 1 : -a >

or a < 
~~, a > 0. Since the cl assical decision maker is really more

interested in knowing whether p is in some small interval about zero

rather than if p is exactly equal to zero , thi s Bayesian hypothesis

woul d also serve as a valid comparative to the classical two-tailed

test. This compari son will be discussed in connection with the one-

tailed test later in this chapter .

Solu tion Us i ng Bayesian Prediction Interval

In this section , the hypotheses H0: ~ 
= 0 vs H1 : ~T ~ 0 i n the

Bayesian context will be compa red with the hypotheses, H0: p 
= 0 vs

H1 : p ~ 0 in the cl assical context . The measure of comparison will

be the power of the test. As stated in Chapter II , D, the difference

between the same MOE of two competing systems , is assumed to follow a

norma l distribution with unknow n mean , jj, and unknown variance , In

the classica l test, a sample size can be determined which will yield a

specified power for the test for any fixed type I error , ci. The rejec-

tion criteria for H0, established from the ci l evel desired , is [121:

reject H0 if tt 0~ 
> t

ci/2,n_ l~

t = test statistic =

v//~i~

1 n
m = sample mean = 

~~
- 

~~ D.
i=1 ~‘

v = sampl e variance = ~.L1_ ~~(D~-m)2
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~~~~~~~ 
= value o f t  such that P( It l > t ci/2 n..l

) rr ci/ 2

The power of the test for various sample sizes and departures of p from

0 are gi ven by the app ropri ate operatin g charac teri sti c curves for the

2-tailed t test in [12].

Before defi nin g the power of the Bayes ian test , some d i scuss i on

• of a Bayesian prediction interval is needed . A Bayesian prediction

interva l (BPI) is an interval having a stated probability , e.g., (l— -~- ),

of containing the variable of interest. In Figure 1 , ~~~ i s the mean of

the posterior distribution of ~~, a is the lower predi ction l i m i t , b is

the upper prediction limit , and the shaded area is the probability that

a ~~
“ b.

Figure 1. Generalized Bayesian Interval on

If the i nterva l i s centered on ~~
“ , the leng th of the interval , d” , is

given by (12]

d” = 2t
~Y/ 2 v ” ~~~~~ (3-1)

When consider ing the Bayesian hypotheses , H0: ~i 
= 0 vs H1 : ~ ~ 0, the

rejection criteria to be used in this section will be: reject H0 
if

zero does not fall in the (l-y) BPI on c” . The type I error ,~ , is 

- - -~~~~~ • ---
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= P ( reject ing H0 ,.

• which can be restated as

= P(O is not in ( l — u ) B P 1 • = 0;. (3—2)

The p~wer of the test is defined as

Power = P (rejecting El i ; ; = c ~ 0),

which can be restated as

Power = P (0 is not in (l— y )BPI~ T = c). (3-3)

Using d” from equation (3-1), the power becomes

Power = P (0 is not in interval [~~~
“ - d” /2, ~J”+d” /2flp c). (3-3)

Si nce ~~
“ = rn’ (defined by equation (2-7)), equation (3-4) becomes

Power = P (0 is not i n i nterva l [rn ’ - d”/2 , rn ’ + d” /2 1 ~~~
= c). (3-5)

Prior to sampling , rn ’ and d ’  are random var iables , denoted rn” and d’ ,

which lead to

Power = P (0 is not in interval [th” - d”/2 ,u~” + d”/2] ~iT c). (3—6)

Since zero w i l l  not be in the BPI only if the end points of the BPI

have the saiuie sign ,

Power = P (th” - d/2 < 0 and th” + ~“/2 < 0~~ 
= c )  + (3-7 )

P(th ” - cl”/2 0 and th’ + d ”/2 ~
- ~~~ c)

• —~~~~~~~• — -• - 
~~~~~~~~-~~~~•~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~—- - - —~~~
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Power = P(~ ~
- 

~~~~

--

~~~~~~~~~~~~

-- I~ 
= c) + P(i~ < Q~~~~

_ 
I ~~~

= C) (3-14)

= 1 P(~i < 
~~~~

—
~~~

---
~~
-

~~~~
-- p c )  + P (iiu< T 

~~~~~~~~~~~ . (3-15)

It has been shown [291 tha t the distribution of m is given by

D( ~~jm ’ ,v ’ ,n ’ ,v ’ ;n ,v) = fs~~
1m0 ’ ,n

~
/v ’ ,v ’ ), (3—16)

n ’ nwhere n =

Strictly speaking , the Bayesian anal yst does not cons id er p to be an

unknown constant with some true value. Rather , he cons id ers p to be a

randoni variable also. However , in order to use Bayesian procedures to

fo rmu la te a test wh i ch ca n be com pared to the c l a s s i cal hypothe s i s tes t ,

it has been assumed that there is some tru e value for ~~~. W i t h  t h is

assumption , the expected value of the sample mean , E(th) ,  would then he

equal to u. Cumulative probabilities for th would then be couiiputed as

given below.

P(rii a~~,n ,v ’ ,v ’) F5* (fa- ~1~n /v~ N”) (3-17)

Using equation (3-17) with ~ c, equation (3-15) can be rewritten as

Power = 1 - Fs*( kfl ii ’ n ’ - CI1 I~~, I
) + r S *( 

lil ’
~i •

’~~ C~i~~~~) (3-18)
n,v ’/ n n~ v /ui

U U

Summarizing the method for determining the power of the Bayesian test

for a given sample size and a prior statistic (m’ ,v ’ ,n ’ .~ ’):

• - • -~~~~~~~~-- -~~~~ - - — - •  - ••
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1 . Calculate E (i~~~’) t ronu equation (2-4).

E 
r~ ) = 

t•ZIPI~

~ n -I- n

2. Calculate •
~~
“ and n from equations (1-5) and (3-16).

•~“ = n ’ + n — l

- n ’ nnu 
- n-I- n ’

3. Calculate ~ = t 112~~
4. Calculate power from equation (3-la) for any value of c .

I11ustratth~ the_Procedure

In this section , the solution procedu re described above will be

illustrated in the context of an actual operational test conducted by

OTEA. The test selected was an UT II for the Lig htwei ght Company Mortar

System (LWCMS) ,  which is being cons idered as a replacement for the 81 mm

mortar currently bein q used by the army . The purpose of the test was to

prov i de data for a side-by-side coiuuparison of the two mortars to assess

the relative operational performance and military utility of the LWCMS

1201. One of the MOE which was considered in both OT I and UT II was

the time required for an individual to complete the gunner ’ s examina-

tion , which is a test designed to determine how quickly an individual

can perform critical operations in preparing a mortar to fire . In 01 I

a sample size 14 was used to determine the distri bution of times to per-

form the gunner ’s test. The res u l ts of th i s  tes t are con ta i ned in

A ppendix 2. If and X 2 represent the tinies to perform the test on the

--

~

- • ~~~~~~~~~~ —-_ • • • •- • --- • • - - — • • -• -_ •- •~~~ •_ • -• • • - • ••• • •‘—rn•- - - ~~~~ 
_ _ • -_ -_ • • • ••
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ol d system and the new system , respectively, then D = - is the

var iable described in Chapter II. The mean of b , ~~~, is the variable

of interest in this study .

Us i n g a d i f fuse p rior di str ib ut ion , Baker [4] determine d the

parameters of the posterior di stri but i on of ~ for OT I from equat i on

• (2—7) to be

= m = 17.6 sec

n ” = n = l 4

v ” = 2040.5 sec2

• v ” = 13

• Since the same MOE was also tested in UT II , the above values will be

used in the prior distribution of ~ for 01 II. The value of the prior

variance of ~ for UT II is computed from equation (2-3).

• = 
~Y (v ’—2) 

= 
1~1T~Y 

= 1 72.25 sec2

In 01 II , OTEA used a sample of 30 individuals , each of whom per-

forme d the gunner ’s test twice on each of the competing systems. The

average times for each individual on each system are given in Append ix

3. The power curve for the classical two-tailed test with n = 30 will

be compared to the power curve for the Bayesian test with n = 30. The

step-by-step procedure for calculating the power using the statistic

(m’ ,v ’ ,n ’ ,v ’) = (17.6, 2040 .5, 14 ,13), n = 30 , and a 95~ Bayesian predic-

tion interval ( ‘  = .05) is given below.
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1 . E(~~~~) = 
(172.25)(14) 

= 7.40 sec

2. v” 1 4 + 3 0 - l = 4 3

- 30(14) - g 55
• ‘

~u 30+14

3. k = t 025 43 E(~~~~) = 2.02(7.40) = 14.95

4. Power = 1- F ( l 4 .9 5 ) (4 4 ) - ( 17 . 6 ) ( 14 ) - 3 0 c  
131S 3U/ 4O~~7~7~S

+ F *[
(14.95

~~
44)
~ 
(17.6)(l4)-3Qc~F 131

30/2040.5/9.55

The cumula tive distribution for the standard Student ’ s t dis t r ib ut i on

is given in Biometrika Tables for Statisticians, Volume 1 , by Pearson

• • an d Hartley [22]. The power for c = 20 i s calcul ated to be

Power = 1 - F5* (— .2113) + F5~
(_ 3.9jl3)

= 1 - .42 + .0009

= .58

The power for other values of c i s calcula ted i n a sim i lar manner . Since

the value of Y in the (l—v ) BPI is not the type I error for this test ,

the type I error mus t also be calcula ted for each value of n . The type

I error , c~, is given by

Cl = P (rejecting H0~~= 0)

= P(O is not in (1-y)BPI j~ = 0) 

~~~~ - — - —-~~~~~—~~~~ - - -
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Thi s formula is the same as the formula for the power wi th ~T = c = U.

Therefore,

ci = 1 — F * [  (14 .95) (44) — (17.6) ( l
~ )il3]S 30/2040.5/9.55

+ F * [  
(-l4.95)(44)-kl7

~6)(l4~L~131S 30/2040. 5/9T~~

= 1 - F5* (.94113) + F5~(2 .lll 3)

= 1 - ( .82 ) + 03 = .21

In order to fix • z  at a certain level , as is done i n the class i cal case ,

the width of the (1-i) BPI must be changed with each value of n; i.e.,

Y must change with each n to keep ci fixed . To calculate the value of -y

wh ich produces a given ci, consider eq. (3-18) with c = U.

1, I I

- r-.n — m n  , - ‘¼fl - m n
• c~. 

- 1 — Fs* (  v )  + Fs* (  _____ 
v ) 3-19

n/
~
’/nu n/v ’/n

For posi tive m ’ , the last term in equation (3—19) is ins ignificant.

Therefore, le tti ng ~ = .05 and drop pi ng the last term yiel ds

.95 = Fs*( 
kfl~~ r n n  

1 13) . (3-20)
n/v ‘In

The value of the argument in the right side of equation (3-20) which

yields a probability of .95 is 1.8 [22]. Thus

- -- ~~~--‘~-= 1.8
nv~~7~~

L • • •~~~~~~~ •~~~~~~~~~~~ . ••
•
~~~~~~~~~~~~~~~~~~~~~ •~~~~~~ - ~~~~~~~~~~~~~~~~ •~~~~~~~~ •
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Equivalently,

1.8 n/~~7~~ ~ m n ’
k = 

~~~~~~~~~~~~~~~~~~~~~ 

u (3-21)

For n 3U,

k = 
l .8(3O)/2 O4O .57~T~~ + ( 1 7 . 6 ) ( l 4 )

30 + 14

= 23 .54 -

Since k = ~~~~~~ E( /~“) by definition ,

- k 23.54
• ty/2 43 ,—  

— 

7.40 3.18

E( /~ “)

T hus , y .005, or a 99.5” BPI wi l l  produce a type I erro r of .05. Ta b le

1 li s ts the values of k needed to produce ~ = .05 for various values of

• n .

Table 1. Sample Size versus k, ci = .05

_____ 
Sample S ize  k 

_______

2 23 .08

4 23.93

7 24.28

10 24.30

15 24 .13

20 23 .91

30 23.54

40 23.27

_ _ _  ~ -~~~•• • • - _ -~~•-•---• -- • ~—-••~~~~~~~-•_• • •------ ---- -- --- -~~~--- • -
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W ith the type I error fixed at .05, the power curves for the Bayesian

and classical tests for n = 30 and n = 4 have been plotted in Figures

2 and 3, res pect ivel y. From the f ig u res i t can be seen tha t for n = 4 ,

the Bayesian test is slightly more powerfu l but for n = 30 the classi-

cal test i s mu ch more power ful . Plo ts of th e power versus sam p le size

for each test for c i = 20 and c i = 40 are shown in Figure s 4 and 5,

res pec ti vel y. There it i s ev i dent tha t the c lass i cal tes t i s su per i or

to the Bayesian test in detecting both smal l  and l a r ge va lues  of c l ,

• particularly when large values for the power are required .

We will now investigate the behavior of the power curves if v

in the (1 - y)  BPI is held constant at y = .05. In this case , the type

I error w ill not remain fixed as it did in the previous calcul ati ons.

• The type I error can be computed from equation (3-19) for various sampl e

si zes. The results of the calculations are given in Table 2.

Table 2. Type I Error Versus Sample Size

Sample Size Type I Error

2 .01

4 .04

H 
10 :~-S 15 .14

20 .16

30 .21

_________ 
40 

____ 
.25
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Fi gure 2. Power Curves , n = 30 , ci = .05. 
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Figure 3. Power Curves , n = 4, c~ 
= .05.
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Figure 4. Power vs. Samp le Size , ci = 20, = .05.
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Fi gure 5. Power vs. Sample Size , ci = 40, ci = .05.
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Plots of the power versus sample size for the two tests for c i  = 20,

30 , an d 40 are gi ven in  Fi gu res 6 , 7, an d 8, respectively. There it

can be seen tha t as ci increases , the difference between the two curves

decreases. However , as seen in Table 2 , the type I error for the

Bayesian test is greater than that for the classical test (.05) for

sample s izes greater than four. Once again , the c lass ica l  test appears

to be superior , particularly when high values of the power are required .

In the forego i ng example , a 95 BPI was ut lized in computing

the powe r for the Bayesian test.  If a larger interval is used , both

the power and the type I error will decrease. This is obvious from equa-

tions (3-3) and (3—2). If the lengt h of the BPI is increased , the

probability that the BPI will include zero must increase. Therefore ,

the probability that the BPI will not include zero (or power) must

decrease. Similarly, decrea s i ng the len gth of the BPI w i ll i ncrease t he

power and the type I error. Thus , var i ous power and type I error com-

binations can be achieved by va rying the width of the BPI.

In the above example , the var iabi l i ty  of ~i was affected by 
~~

as defined in equation (3—16). In Table 3 below , the difference between

n an d n0 can be seen to increase as n increases . The parameter , n
~
.

takes into effect the variability of riu ’ in calculating the variability

of m , which is given by [29]

V (~i im ’ ,v ’ ,n ,v ’) = 
~~

- 
~~
- -

~ 
. (3-22)

where nu ~~

_ _ _ _ _ _ _ _ _ _  _  _ - - - - • • - - - - - • -• • -• • -

~~~~~
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Table 3. Sample Size Versus nu

Sample S i ze nu

2 1 .75

4 3.11

7 4.67

10 5.83

20 8.24

30 9.55

40 10. 37 
___

Since we are considering the true value of iT to be a constant, w h ich i s

the expected value of ñi, we shall next investigate how the power of the

Bayesian test is affected if the variability of iii’ i s not consi dere d i n

the variance of rh; i .e., nu w ill be replaced by n in equation (3-18).

S o l u t i o n  tJ~J~g Al terna te Metho d

Replacing nu w ith n in equation (3—18) yields

Power = 1 - F ( kn ” - m ’n ’ - cn 
‘)F  ~~~~~~~~~~~~~~~~~ (3-23)S n/~7~ ~ n/~’7~

The type I error for this test is obtained from equation (3—23 ) with

C -
~ 0.

kn ’’ — r u n ’ , — kn ’’ — m ’n ’
= 1 — F~*( 

-  - v ) + F~*( -~~~~~~~~~~~~~~~~~~~~~~
- -‘, ) 3— 2

~ n/~~7~ ~ n/~’7~
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Illus trati ng the Procedure

Us i ng the same sample data as i n the prev i ous secti ons , the

values of k requ i red to keep ~ = .05 are obtained from equation (3-21 )

w i th n = n and are shown below .u

Table 4. Sample Size Versus k , c~ 
= .05

Sample Size 
____ ____

2 22.59

4 22.72

7 21 .98
4

10 20 .98

15 19.36

20 17 .94

30 15.72

____ ____ 
40 

_____ 
14.09

With the type I error fixed at .05, the power curves for n = 30 and

• n = 4 for c i = 20 are plotted in Figures 9 and 10 , respectively. It

can be seen that for n = 4 the Bayesian test is more powerfu l and for

n = 30, the class ical test is marginally more powerful. The plots of

power versus sample size for id = 20 and ci 40 are given in Figure s

11 and 12, res pec t ive l y. From these curves , i t can be seen that there

is l i ttle dif ference between the two tests in terms of power . Thus, when

the variability of iii ’ is not considered in the variability of th, there

is no significant difference in the power of the two tests. There has

been no evidence so far to justify using Bayesian instead of classical

_ _  - -~~~~ —- - -—- - -— --- - -



‘- - -n----~~- —- - -
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

36

Power
1.0 - • - 

Classical

.8 ‘-  - -

- ‘  
Bayes ian

.6 • -

.4 • -   - - - - - --=- - - - - -— •  -- - - -

.2 • - - - - - - -~~~ -- - - -- -~~~

it 
•

0 ‘ - 
~~ - • - -—- - - -- - • - -~~~ - - - - - -

0 10 20 30 40

Ici
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procedures in the case of the two-tailed hypothesis test. Another

method of treating the two-tailed test w ill be discussed in connec-

tion with the one—tailed test in the next section .

The One-Tailed Hypothesis Test

If the decision maker is interested in the c lassical  one -tai led

test, H0: p 0 vs H1 : ~ > U, there i s an equ i valen t Bayesi an test ;

name ly, H0: 
j U vs H1 : ~i > U. In fact , an al ternate method for test- - •

ing the two- tailed hypothesis also falls into this category . Rather than

test I-1
~
: 
~ 

= U vs H1 : ~ t U, cons id er H0: -a < < a vs H1 : ~ < -a or

-. a , a > 0. This really tests whether ~ is in some i nterva l about zero

and can be treated as a special case of the one-tailed test discussed

below .

As in the two—tailed test , the type I and type II errors for ’- the

cl assical one-tailed test can be determined for any distribution of the

random var i able of interest. However, i n the Bayes i an test once a

poster i or d is tr ib ut ion  for ~ has been determined , the probab il i t i es of

H0 an d H 1 being true can be determined ; i.e. ,

0
Oisamp le data ) = f f(~ )di .

If the dens i ty function of ~ i s known , the above integral can be com-

puted . Additionally,

> Oisample data ) = 1 — P(~ Oisam ple data).

Equi valentl y, [36]

P(H1 is true) = 1 - P(H is true).

--- ‘••~ • - - - -~~~ -~~-- —- _ -- -._ - -- - -• • — •-— - - ~~~~--
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If one cons id ers

ci = P(rejecting H01H 0 is true),

and one knows the probability that H0 i s t rue , it is difficult to

justify any rejection criteria for H0 wh ich would lead to a meaningful

calcu la tion of ~ . Winkler [36] suggests that the significance l evel

of t he tes t can be determ i ned by measur i ng how “u n u s u a l ” the sam p le

result obtained is , given that the null hypothesis is true. Equiva-

l e n t l y , one could determine the chance of obtaining a sample result more

“extreme ” than the one observed , given H0 is true. In the test consid-

ered in the previous section , for example, if ~ = 0, how “u n u s u a l ” i s

the sam p le resul t of m = 72 .95 sec? (See data in Appendix 3.) The

standardized value corresponding to m = 72.95 is

= 
ni-U 

= 
72.95 

= 1 0 26
° s/,/~ 38.961/30

S i nce H 1 is one-tailed to the right , the si gn i fi cance level i s equal to

the P (t0 
-
‘ 10.26), wh i ch is less than .0001 . The smaller the signifi-

cance l evel , the less likely the sam ple result i s, given that H0 is

true [361. It can be seen , then , tha t the si gn i f i cance l evel as

defined above cannot be fixed as in the classical test since it depends

on the sample res,ilt. Add itionally, there is no clea r met hod for deter-

m ininq a power for the Bayesian test. As stated earlier in this section ,

the modif ied two-tailed test can be considered a special case of the one-

tailed test. ~f the hypotheses of interest are H0: -a a and

H1 : ~ -a or — a , a -. U, then the probability that H0 is true IS
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P(H is true isamp le data) = f f(~ )d~~.

When the poster ior  d i str i but ion  o f ~ is determi ned , the above integral

can be computed . Obviously,

P(H1 i s true sam ple data) = 1 - P(H is true sample data).

The arguments given for determini ng the significance level and power

for the one-ta iled test apply as wel l for the mod i fied two-tailed test.

Since there is no meaningful definition of power available for

the Bayesian one-tailed test, i t i s  necessar y to determ i ne a di f feren t

measure of comparison between the classic al and Bayesian statistical

procedures. The concept of minimum loss will , therefore , be considered

i n Cha pter IV as the basis for comparison .

_ , _  
~~~~~~ ~~~~~~~~~~~~~~ - - • - - - 



_ _
~~~~~~~~

_
~~~~j~~~

_ _ _
~~~~

43

CHAPTER IV

CLASSICAL VS.  BAYESIAN ANALYSIS WITH LINEAR LOSS FUNCTIONS

I n t r o d u c t i o n

In this chapter , a linear loss function wi l l  be uti l ized to

com pare the conse quences of the dec i s i ons ma de unde r Ba yes i an and

-

• 
classical analyses of the same problem . In all real world problems ,

there are certain payoffs or losses associated wi th decisions made

under uncertai nty . When the decision maker is not sure of the value

of a certain quantity , such as ~ in  the anal ys is  in the last chapter ,

he is subject to mak ing a deci sion wh ich is based on the assumption of

the wrong value of p. For exam ple , if the null hypothesis , H0: p <  0,

were arcepted , caus ing the decision maker to reject the new equipment,

when i n fact the true Ti i s greater than U, a certain “opportunity ” loss

i s experience d. The army would be penalized , i n that it woul d not have

the opportunity to use a better piece of equipment. Even though it is

not always possible to attach a monetary figure to the opportunity loss ,

some type of loss function must be considered by the class i cal dec i si on

maker , at least subj ect ively.  When the decision maker determines maxi-

mum acceptable levels for the type I and type II errors for a test, he

is indicating the relative importance of each type of error. For exanu-

p le , if .05 and .1 0 are the maximum levels for the type I and type II

errors , respectively, the decision maker could be indicating that he

cons iders the loss associated with a type I error to be twice as great

-

~

- --•• - - •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



- - --~~~~~~~~~~~~~~~~~~~ — - - -  -~--~~~~~~~~~~~~~~~

44

• as the loss assoc iated with a type II error. In the c lass ica l  anal ys i s

of a problem , however , a decision is based on the outco me of a hypothe-

s i s  tes t  on some centra l MOE , ra ther than on the possible losses result-

ing from each possible decision. Many times the type I error ~s

arbitrari ly set as some low value , say .05 or .01 , and the L ower of the

test is made as high as necessary by increasing the sample size. How-

ever , in considering actual loss functions formally, the decisions

r resulting froni the classical and Bayesian approaches to the problem may

differ considerably. The linear loss function will be considered in

this chapter.

Linea r Payoff Function

Before considering the linea r loss function , a brief discussion

of the linear payoff function is needed . In considering the two action

problem of concern in this study , let a1 denote the action of rejecting

the new equipment in favor of the old , and le t a2 denote the action of

purchasing the new equipment. Define linear payoff functions as in [36],

say

R(a1 , ~~~~ 
= r1 + 5

1
p (4 — 1)

R(a2, p ) = r2 + 5
2 T ’

where r1 
and S .  are constants and 

~2 
>

W i t h  these functions , the decision maker would conside r the

payoff of a certain action linear with respect to the actual state of

the world , p.  In th is case a c t i o n  a 1 would he optimal if

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- 

~ • • 
~~

— —~~~~~~~~~~~~ •— ~~~~~~~ — •
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• E [ R( a 1 )] - E [ R(a 2 ) ]  (4-2)

E(r 1 + s1~.) > E(r 2 + 52d1 )

r 1 s 1 E (~~) > r2 + s 2 E(i~) .

Subtracting r2 and s 1 E( ~ ) from both s ides we get

r1 
- r2 E( )(s2 

- s1 ).

Since 
~2 

> S 1.  div id ing by 
~2 

— 

~l gives

r1 - r~
> E(~ ). (4-3)s2 - s l

There fore , if equation (4_3 ’r is satisfied , act i on a 1 is optimal. If

the inequality is reversed , action a2 is optimal . For t h i s  d e c i s i o n

making problem , Ti b is called the breakeven value of ~:

= (4 4 )
2 1

Figure 13 displays b pictorially.

If the expected value of is less than °b’ act ion a 1 is optimal ;

if it is greater than action a2 is optimal; if it is equal to b’

the payoffs are equal, and the decision maker should be indifferent

toward each action.

The L inear Loss Function

If act ion a 1 is chosen and the tru e value of p is really greater

than Tib ’ then an opportunity loss has been suffered by not having chosen 

- ~~~~~~~ - _ ~m~~~~- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —a--—- • ---s -- rn ___-s
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opportunity loss would be 0. If a2 were chosen an d the true v a l ue of

is greater than °b’ the opportunity loss is also 0. The loss functions

for a1 an d a2 are summarized below :

( 0 if 
~
i <

L(a 1 , 4 c )  = b (4 9 )
(,(r 2-r 1 )+(s2-51 )p if “ h

((r  — r )+(s -s )p i f  41 - - P
L(a2,41 ) = ~ (4-10)

(. 0 if

The relation ship between the payoff and loss functions is shown in

- - Figure 14 .

Payoff

R (a ~~, p)

R(a 2 , o)

Loss if a2
i s chosen J I
and ~i p1 Loss if a 1 is chosen

and ~ = 1 2

Fi gure 14 . Payoff and Loss vs. p .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- 
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The loss func ti ons , L (a1,p ) and L(a2,41 ) are shown in Figures 15 and 16.

I t i s obv i ous from th ese fi gures that the loss func ti on s are rela ted

to the value of the breakeven point as given in equation (4 -4 ) .  If

:~.

(r _r l )L(a1,p ) = (r2-r 1 )+ (52-5 1
)p 

~~~~~ 
~~~~~~~~~~~~~~~~ +

= 

~~~~~~~~~~ 
+ (s2-51 )p

= (52—5 1 )(T’ ~
‘b~

Similarly, for p Tib

L (a2,p) (5
2

_ s
l

) ( T 1 b
_ n )

Therefore , the loss func t ions  can now be wr itt en

0
L(a ,p)  = (4—11)

~~~~ 
~ 

4 ! ‘

(s -S
1

) ( 4 1  - p )  
~ 

< 4 1

L(a 
~~~~ 

2 b - b (4-12)
0

The expected value of each loss function depends on the distribution of

~
i and is given by [36]

EL (a1 ) 
= 

~~~~~ 
I 

(11 -T t
b
)f(41)dT (4-13)

EL(a2) 
= (s2—s 1 ) I ~~~~~~ 

) f ( 4 1 )d1 ( 4 — 1 4 )

-- ~~-• - - -  - - --- - - -- - - _  -~~~~~~~~~~~~~~~ - - - -
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Loss

L(a1,p)

Fi gure 15. Loss vs. p for Action a1 .

Loss

L(a2,p)

c i

Figure 16. Loss vs . p for Action a2. 

- - -- A
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The i ntegrals in equati ons (4-13) and (4-14) are called right hand

and left hand linear loss integrals , respectively. Formulas for

tabulation of the above integrals are given in [361 for various conju-

gate distributions. The loss functions given in equations (4-11) and

(4-12) are val id for both the classical and Bayesian analyses . The

difference in the two approaches arises from the differing decision

criteria in each analysis .

Compari son of Deci sions

In the classical analys i s, acti on a1 (reject new equipment) is

taken i f the null hypothesis , H0: p < 0, is accepted , while act ion a2

(purchase new equipment ) is taken if the null hypothesis is rejected .

No formal cons ideration is given to the value of Tib or to the loss

function. In the Bayesian analysis , however , act i on a1 is taken if the

expected loss due to a1 is less than the expected loss due to a2, and

a2 i s taken if the ex pected loss due to a2 is less than that due to a1 ;

i .e., expected loss is minimized [361. Consider Figure 17 , where two

typical linea r loss functions are graphed.

In the case where the classical analyst accepted the null hypothe-

sis , resul ti ng in  ac ti on a 1, if Tib < 0, then the loss gi ven by L(a1 p)

would still be incurred for values of p between 0 and Tib ’ even though

H0 is true. If H0 were actuall y false , and the true p is greater than 0

(i.e. a type II error), then the losses are even grea ter. If, however ,

> 0, then a loss is i ncurred by choos i ng a1 onl y if the true u is

greater than Tib~ 
Th is would also be a type II error. Thus , the class i cal

anal yst may incur a loss L(a 1,p ) by accepting H0
, if he has made a type
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hi

Loss

L(a2p)

Fi gure 17. Loss vs. p.

II error or no erro r at all , in ter ms of hypothesis testing.

Sim i l a r l y, i f the class i cal analyst rejected the null hypothesis ,

he woul d choose ac ti on a2. If Tib < 0, the loss given by L(a2,p) would

be incurred if the true value of p is less than Tib (a type I error). If

~
‘b < U then a loss given by L(a2,p) is incurred for values of p between

U and 41 b even though he correct ly rejected H0 . Thus , a loss gi ven by

L(a2,p) may be incurred by making a type I error or no error at all.

The above discussion points out that by not considering the break-

even poin t or loss func ti on i n h i s ana lysis , the class i cal anal yst i s

very likely to incur higher losses , even when he chooses the hypothesis

whi ch is true , than the Bayes i an who chooses the action with the least

expected loss .

The LWCMS UT II problem will again be used to demonstrate the

above procedures .
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Illustrat ing the Procedure

Consid er the payoff functions gi ven by

R(a 1,p ) = -100 - 20 p

R(a 2 ,p) = —250 + 10 p

A reasonable explanation of such payoff function s could be as follows .

Act i on a1 corresponds to rejecti ng the new equi pmen t. If test i ng the

eq u ipment costs 100 u n i t s  and the decis i on maker cons id ers a penal ty

cost of 20 un i ts for each un it of p above U , he woul d be express i ng the

• im portance he attaches to the actual mean difference , p, between the

MOE of the competing systems. As p becomes more positive , the new pi ece

of equi pment becomes much better than the old and the more costly

(negative payoff) becomes the decision of having chosen action a1.

Action a2 i nd ica tes that the new system has been chosen . The cost

of sampling plus purchase is equal to 2S0 units , and the dec i s i on ma ker

a ttaches a payoff of 10 u n i t s  per un i t of p .

Using equation (4-4),

= 

r1 -r2 - -100 - (-250) - - (4-15)11 b s2-s 1 
— 

10- (-20) 
— 

30 
—

From equations (4-11) and (4-12)

U 4 i 5 5
L(a1,p) = 

-- (4 l6 )
30 (u-5) p ‘ 5
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13 U(5-p )  p < S
L(a2,p) = 

— 

(4-17)
t o

From equations (4-13) and (4—14)

EL(a 1 ) 
= 30 f ( p-5 ) f ( p )d p  (4-18)

5
EL(a 2) = 30 f ( 5- p ) f ( p ) dp  (4-19)

It has been shown [29] that if ~ follows the student density , as i t

does in thi s exam p le , then

f (z
~
p)f

~
(zim ,n/v ,v)dz = Ls* ( t l v ) v ~~~ 

(4 2o)

• an d f (p-z)f S ( z j m ,n/v ,v)dz L5*( t iv )~~~~ , (4 21)

where

t = (p-m)/ ~7V

2
Ls* (tiv) ~~~~~~

+_ 

~~~~~ 
- tGs* (tiv)

G5* (tiv ) 
= 1 - Fs* (tiv) .

Values of f5* (tlv ) are given in 1291 Table I .

The expected losses given in equations (4-18) and (4-19) could

be computed from either the prior or posterior distributions for iTi.

Since the decision will be made in the classical case after the sample

has been taken , the posterior distribution will be used .
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As given in Chapter III the prior distribut ion of ~ before test-

ing in UT II has parameters

(m ’,v’ ,n ’ ,v ’) = (17.6, 2040.5, 14, 13)

The sample data given in Appendix 3 for 01 II produced the statistic

(m,v ,n ,v) = (72.95 , 1517.9 , 30 , 29). Thus the parameters of the poster-

i or d i str ibut i on of ~~, as given by equation (2-7), are

= 
n ’m’ +nm = 

(14)(l7.6)+ (3U)(72.95’ 55 34
n + n ’ 3 0+14

n” = n + n ’ = 30 + 14 = 44

,, 
— 
[v’v’ +n ’(m’)2] + (vv + nm2 )— n ”(m”)2

V — 

[vv ’ + 6(n~ )] + [ v +  6(n)] — S(n ”)

= 
(l3)(2U40 .5)+(14)(17.6)

2 + (29 ) ( l5 l7 .9~+(3O )~L2.95j
~~~~

j (55
~~~L

2

13 + 1 + 29 + 1 - 1

= 2320.5

= [~~~
‘ + 6(n ’)] + [

~~~ 
+ 6(n)] - 6(n )

= 13 + 1 + 29 + 1 - 1 = 43

(U x O
where 6(x) =

(1 x > O

Thus (m” ,v” ,n ” ,v”) (55.34, 2320.5, 44 , 43).

To evaluate the linear loss integrals in equations (4-18) and

(4-19), 

_~~ - - - - -
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= 

~~L’ 
m ”)/~?7~ ’1 = (5- 55.34)~/44/2320.5 = -6.9

Gs*(tl v ”) 
= 1 - Fs* (tiv ”) = 1 — F5*(-6.9143) 

= 1

Gs*( t Iv ”) = 1 — F~*(_t~~”) = 1 — Fs*(6.9143) U

2
Ls*(t i v ”) 

= 

~: u l  fs*(tl~
”) t G~* ( t iv ” )

43) = 
43+(~6.9)

2 
f5~ 6.9j43) - (6.9)G 5~(6.9l43)

= (2.16)(- .00000015) + (6.9)1

= 6.9 (4-22)

Ls*(tIv ”) = Ls*(6.9143)

= 
42 f5~(6.9i43) 

- 6.9 G5~(6.9i43)

= (2.l6)(.00000015) - 6.9(0)

Ls*(6.9i43) U (4-23)

Using the L5~ calculated in (4-22) and (4—23)

f (p- 5)f(p)dp = Ls*(6.9i43)
~~~~5

= 6.9 /2320.5/44

= 50.1

5
f ( 5 —  p) f ( p) dp  L5*(6.9j43)vV~

TTh”

= 0
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Thus , from equations (4-18) and (4-19)

EL(a 1 ) = 30(50.1) = 1500.3

EL(a2) = 30(0) = 0

The Bayesian would , therefo re , choos e action a2 and buy the new equip-

ment.

In the classical analys i s , using H :  p < 0 vs H1 : 
p > 0, the

stat is t ic  to 
= would be computed and the null hypothesis would be

s//h
rejected if to > tcx n..-j [12]. In this example ,

t = 
72.95 ~~ = 10.26

~ 38.96//~~

t 05 29 
= 1 .697 .

Therefore, the classical anal yst would reject the null hypothes i s and

also choose action a2. Since the data for this particular problem has a

unean so much greater than 0, one s houl d ex pec t bot h metho d s to reach the

same decision. A better compar ison would result from a samp le wi th a

mean closer to zero . Consider the case where the sample results in a

mea n of ~ = 10, with the same sample variance. Now, the classical .

anal ys t woul d not rejec t H since t = ~~
— - -

~~
- = = 1 .41 , which

° s//7f 38.96//~~
is less than t 05 29 

= 1.697 . The dlas L ,ica l anal yst woul d then c hoose

ac ti on a 1 and reject the new equipment . Un the other hand , the Bayesian

would recompute EL(a 1 ) and EL(a2). The new parameters of the posterior

distribution of T~ are
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rn ’ = 
(l4)(l7. 6) + (3U)(l0) 

= 1230 +14

n ’ = 44

- 
(13)(2040.5)+(l4)(17.6)2 + (29)(1 5l7 .9)+(3O)(l0)2 - (44)(l2 .42)2v 43

= 1 653.37

v ” = 43

The t value in equations (4—18) and (4-19) is

t = (5 — l2.42)f44/l653.37 = —1 ,21

Gs* (_l .2l 4
~ ) = 1 — F5* (_ l . 21 143 ) = .8814

Gs* (1.21143) 
= 1 — Fs* (l.21143) = .1186

Ls*( 1.2l 1 43) = 
43+ (~ 1. 2l)2 fs*( 2ll43

~~~~~~
2 1
~~s* . 2U43)

= 1.059 (- .19) + l.21(.88l4)

= .865

L5*(1.21 j 43) = ~ L~ fl fs* (l.2l143) (l.2l)G s* (1.2l143)

= (l .059)(.19) - l .2l (.1l86)

= .058

EL(a 1 ) 
= 30 f (p-5)f(4i)dp

5

= 30 Ls*(_l.2lI43)/F653.37/43

= 30(.865)(/i~~ 3.37/43 )

= 160.91

-

~

- — — - - - •~~~~--~~~~~~~~~~--- - - - - - - - -- -
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5
EL(a2) 

= 30 J (5-p)f(p)d;

= 30 Ls* (l.21 !43)/i~~
i.37/43

= 30 (.058)/f .3774~

= 10.79

Since EL(a 2) < EL(a 1 ), the Bayesian would choose action a2 and buy the

new equipment. In this exam ple , the classical analyst chose the decision

which had the higher expected loss. This resulted from considering only

the true value of p and not the effect of the value of p on the loss

which could be incurred from each decision .

Although this example considers only the linear loss function ,

the conclus i ons resul ti n g from the exam p le ar e val id for al l  loss func-

tions. Since the decision maker is ultimately concerned with choosing

the action which will minimize his losses (or maximize his payoffs), it

is imperative for him to formall y assess his loss or payoff function .

Once this is done , he can base his decision on the action which has the

least expected loss or greatest expected payoff , rather than on the true

value of some statistic.

It can be seen from equations (4—18) through (4—21 ) that there is

a relationship between the sauuple size and the expected loss froni each

action. The sample size affects both the degrees of freedon , v , and the

value of t, as well as the values of the inteqr al s in equat ions (4- ~ O ’~

and (4—21). It is possible that a sample size could ~~ ‘ Ic t ernu ined w h i c h

would m in imiz 2 the expected loss of each action , hit such a d t  t’c -- i ui a t ion

is beyond the scope of this study .

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- •& . r— , nr.r—,- .- -
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CHA P 1ER V

CONCLUSIONS A~ L) REC C~’1ME~ DAT IONS

Conclusions

The conclusions of this study must be considered from two dis-

tinct viewpoints. The first is tha t of hypothesis testing. If the

decision maker is interested pu rely in testing one hypothesis against

ano ther , such as H :  ~ = 0 vs H 1 : ~ ~ 0, there  are several  di sa dv an-

tages to utilizing Bayesian statistical procedures.

The hypotheses of interest may not be meaning ful from a Bayesian

viewpoint , particularly for the two—ta iled test. In fact, to utilize

Bayesian statistical procedures , the decision maker must alter his con-

ception of the m ean and variance of a distribution of a random variable

as discussed in Chapter I. With the Bayesian conception of a random

variable in mind , the decision maker must formulate a new hypothesis to

be tested which he feels will provide hini with information equivalent to

that which he would have obtained from the classical hypothesis test.

An exam p le of th i s was gi ven i n Cha pter III w ith H0: p 0 vs H1 : p ~ 0.

Onc e the al ternate hypot heses have been formulate d , they can be tested

u s i n g Ba yes i an sta ti sti cal proced ures . However , it was shown in Chapter

III that when the probability of a type I error was held constant, the

Bayesian test was less powerful than the classical in the meanin gful

range of values for the power. When the BPI was kept cou istant , the

Bayesian test was also les s powerfu l than the classical test for large -

~~ 

-

~~~~ 

-
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pu -ocedures . However , if he is interested in mmmaking a decis ion which

has the least expected loss , he should use Bayesian statistical proce-

dures .

Recommimendati oti s

In  Cha pter It it w a s stated that one of the ob ject ives of the

Bayesian ummethodo l ogy was to det ermn i tie the ii i n i munm sa mm mpl e si ze fro m wh i cli

umeanin y ful probability stateumient s could be nmade regardin g ~~~. In this

study an attem um pt was mimade to determine the sample s ize which would pro—

• duce a desired power. It is r-eco mmmmended that soimie other mu measure of a

‘mu m eanumi gfu l pro babil i ty statemen t ” be iu ivestigated to reduce the sammmp le

si:e now being used by OTESA .

It is also recomimmended that the Bayesian methodology presented in

Ch ipte m - IV be investigated to determine the effect of sample size on the

dec i s i on  to be made.

Fin a ll y , it is recomi.imended that Bayesian statistical procedure s he

• app l ied t.o a problem in which more than one MOE is unde r investigation

- 

s i n c e  the procedures in this stud y apply to a situ ation in which onl y

-
• ) IIC M O E is be I m c i  cons i dered

1: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
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APPENDIX I

EXPLANATION OF NOTATION

mean of normal densit y func ti on

var i ance of norma l densi ty func ti on

X sam p le mean

s2 sam p le var i an ce

f’(o) prior distribution of ~i

‘9 f(yjo) l i kel i hood func tion for gi ven a

f” (ojy) posterior distribution of ö

Chapte r II

• f5(m t I m ,n1’~’
,\) density function for Student ’ s t—distribution

rn ’ ,v ’ ,n ’ , u ’ pr ior  parame ters for Stu dent ’s t-density function

(these are interpreted on page 10)

Iui ” ,v ’ ,n ” ,-v” poster i or parame ters for Studen t ’s t-density function

(these are defined mathematically on page 9

mn ,v ,n,- parameters of a norma l sanmp linq distribution (these are

defined mathematical ly on page 1 1)

Fs*(~ 
I v )  left tail cumulative distribution function for standard

Student ’ s density function with v degrees of freedom

expected value of

var i ance of ~
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prior variance of c’

prior standard dev i at i on of ~

prior mean of ji

posterior standard deviation of

s rati o of ex pected posterior standa rd devi at ion of ~ to

prior standard deviation of ~

pos ter ior var iance  of ~

c ’ posteri or mean value of ~

~~ p~~~jII

n n ’ n
u n+n ’

type I error

type II error

to test statistic for classical hypothesis test

d” length of a (1 - -y ) Bayesian predict ion interval on the

posterior distribution of ~

R(a 1,p) payoff function of the decision , 
~~ 

and the true va l ue

of ~~, ~

b breakdown va lue of ~

L(a 1 , m i ) loss function of the decision , a 1, and the true value of

m l , p

EL(a 1 ) expected loss if action a 1 i s chosen

G5*(~ j~’) right tail cumulative distribution function for the

standard Studeu it ’ s density function with v deqrees o~

freedom
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f
5~
(. Iv) standard Student density function with v degrees of

freedom

Ls*(~ Iv) part i al evaluation of l i near loss i ntegral for standardi zed

Student density func ti on wi th v degrees of freedom 

- - - ~~~~~~~~~~~ -~~~~~~~~~~~~ -
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APPENDIX II

LIGHTWEIGHT COMPANY MORTAR SYSTEM OT I TEST DATA

Gunner ’ s Examination Times 1191

--
_~y~~~n

Test 81 mnm LWCMS Difference in
Part icip~~~ ___ ( sec)  Performance

1 358.0 303.4 54.6

2 367.0 350.8 16 .2

3 299.0 330.0 -31 .0

4 261.0 147.5 113.5

F 

5 380.0 313.0 67.0

6 226.8 250.0 -23.2

7 272 .0 247.0 25.0

8 239.8 273.0 —33.2

9 235.0 258.0 -23.0

ij  1 0 247.5 244.8 2.7

11 279.1 24: .7 36.4

12 303.0 234.2 h~.8

13 240.9 250.7 -°.8

14 2 ‘(1 .0 ~~~~ 
q — 17.
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APPENDIX III

LIGHTWEIGHT COMPANY MORTAR SYSTEM OT II TEST DATA

• Gunner ’s Examination Times [201

- 
Systems 

— ______

Test 81 nm LWCMS Di fference i n
Participant (sec) 

_____ 
(sec) Performance_ -

321.5 225.5 96.0
2 310.0 194.5 115 .5
3 314.0 248.0 66.0
4 293.0 272.5 20.5
5 304.5 259.0 45.5
6 256.0 173.0 83.0
7 321.5 224.0 97.5
8 397.5 256.0 141 .5
9 297.5 282.0 15.5

10 254.5 220.0 34.5
11 258.0 262.0 -4.0
12 294.5 177.5 117.0
13 279.0 255.0 24.0
14 316.0 186.0 130.0
15 288.0 216.0 72.0
1 6 317.5 - 204.5 l13.C
17 325.0 245.0 80.0
18 326.0 289.5 36.5
19 321.5 269.5 52.0
20 308.5 205.5 103 .0
21 311.5 211.0 100.5
22 322.0 213.5 108.5
23 297.0 200.0 97.0
24 316.0 272.5 43.5
25 261.0 208.5 52.5
26 335.0 208.5 126.5
27 274.5 243.5 31 .5
28 270.0 200.0 70.0
29 342.5 257.5 85.0
30 314.5 280.5 34.5 

-- • ~~~~~~~~~~~~~~~~~~~~~~~~ 
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Sample mean = 
~~~~~ ~ 

D1 
= m = 72.95 sec

Sample variance = 
~~ 

(D~ - rn)
2 = 1517 .88 sec 2
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