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SUMMARY

This research is devoted to investigating how Bayesian sta-
tistical analysis differs from classical statistical analysis in the
context of operational testing. The specific aspects of operational
testing which are considered are the power resulting from a hypothesis
test and the expected loss, or risk, resulting from a decision.

First it is shewn that it is quite difficult to develop a
meaningful measure of comparison between Bayesian and classical
analysis in the framework of hypothesis testing. Using the power of
the hypothesis test as a measure of comparison, it is shown that under
certain conditions classical statistical procedures lead to more power-
ful tests than Bayesian procedures. It is then shown that Bayesian
statistical procedures are superior to classical procedures in the

framework of minimizing expected 10ss or risk.
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CHAPTER 1

INTRODUCT ION

Background
This study was prompted by the desire of the U. S. Army Opera-

tional Test and Evaluation Agency (OTEA) to compare Bayesian to classi-
cal statistical procedures for determining sample sizes for actual
tests which have been conducted by OTEA. The objective of the
comparison is to determine if smaller sample sizes can be obtained
through the use of Bayesian procedures which yield inferences compar-
able to those drawn from classical procedures. To understand the pro-
cedures to be utilized in this study, one must be familiar with the
nature of operational testing as performed by OTEA.

The purpose of operational testing is to provide data upon which
to estimate a prospective system's military utility, operational effec-
tiveness and suitability, and need for any modifications [2]. This data
is obtained through a sequence of three operational tests (referred to
as OT I, OT II, and OT III). Each test must be completed and analyzed
prior to beginning the next test to determine if there is a need for
the next test in the sequence. When possible the new system is tested
alongside the existing system during each phase of testing to acquire
data from both systems under identical conditions. At the end of each
test, the data is collected and analyzed, and a decision is made to

conduct the next test or to reject the new system [1].




The overall assessment procedure consists of identifying certain

measures of effectiveness (MOE) which are critical to the system under
consideration, such as, percent of target hits, mean miss distance,
mean time between failure, and so on. Once identified, these MOE are
incorporated into a test design which will provide for a side-by-side
comparison of the competing systems with respect to each MOE. After
all MOE of interest have been tested, the overall desirability of the
system is then evaluated.

For a given test design, the problem at hand is one of determin-
ing the minimum number of replicates (sample size) required for each
set of experimental conditions to achieve a specified level of confi-
dence in the inference made as a result of the experiment. This sample
size is currently being determined by classical statistical procedures
[18]. As an example, suppose the random variable of interest is assumed
to follow a normal distribution with unknown mean and variance, and the
decision maker is interested in determining the expected value or mean
of the random variable. In the classical sense, the mean is considered
an unknown constant. The power of the test, or the probability of
rejecting the hypothesized value of the mean, when the hypothesized
value is inaccurate, is determined from the operating characteristic
curves for the type of test conducted. The above theory of classical
statistics will be important when compared to the Bayesian theory inves-

tigated in this study.

Objectives of Research

The objectives of this research are twofold. The first objective




is to determine whether or not Bayesian methodology can be effectively

applied to operational testing. As noted earlier, operational testing
is conducted in three phases, and many times the same measures of effec-
tiveness are examined in more than one phase. The current procedures
used by OTEA consider each test in the sequence independently; i.e.,
the inferences made at the end of each test are based on the data
obtained during that specific test only (18]. There is no attempt made
to combine the data on a specific MOE measured in OT I and OT II. far
example, to obtain a better estimate for the MOE from which better
inferences can be made. Chapter III is devoted to developing a
methodology which will apply Bayesijan techniques to the combination of
data from two phases of testing to determine the power of a hypothesis
test for any specified sample size.

The second objective of this research is to determine under what
conditions the Bayesian methodology will produce a "better" test than
the classical methodology when considering the same sample size for
both methods. ChaptersIII and IV are devoted to comparing the above

methodologies in the context of- an actual test conducted by OTEA.

Fundamentals of Bayesian Analysis

The discussion presented here will compare classical statistical
theory to Bayesian statistical theory to demonstrate how OTEA's present
concepts of testing would have to be altered to apply Bayesian tech-
niques to operational testing. Presently, if OTEA is considering a
data generating process which may be modeled by the normal process with

unknown mean and variance, then the probability density function
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associated with the process is the normal density, with mean, u, and
variance, o’. These parameters would be viewed as unknown constants

by the classical statistician. These constants are generally estimated
by sampling from the data generating process and using the sample
statistics X and s? to estimate p and u?. respectively. If one is
interested in yu, the mean of the process, X and 52 could be used to
construct a confidence interval on . For example, if (1-«) is the

degree of confidence desired, then (121
=~ o /. /
1 - « = P[X - (t“/z‘n_])(s/vn) < wos K e (t“/2‘n_])(5/bn)| (]—])

where n is the sample size and ty/2.n-1 is the percentage point of the
central t-distribution with n-1 degrees of freedom such that

P(t a/2. This confidence interval on i would be inter-

: Lu/Z‘n—l)
preted in the relative frequency sensc. That is, if repeated samples

5
of size n were taken, each time comput ing new values of X and s°, and
a confidence interval on u was constructed after each sample was taken,
then it would be expected that 100(1 - «)% of the confidence intervals
s0 constructed would contain the "true" value of u [12]1. The Bayesian
analyst would differ in several ways. He would consider the unknown
parameters, u and h?. as random variables. ("Tildes" will be used to
indicate random variables throughout this study.) Since point estimates
of random variables are useless, he would ascribe to them a probability
distribution instead. [If prior sampling information is not available,
the analyst must use his subjective knowledge of the process to assess

)

a probability distribution for the joint occurrence of  and «°. This
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prior distribution can then be combined with sample information to
produce new distributions for the unknown parameters, as will be
demonstrated below. The conceptual differences between the classical
and the Bayesian analyst play important roles in interpreting the
results of a test [36].

The combination of a prior probability distribution of a ran-
dom variable with sample information is achieved by use of Bayes'
theorem. For a continuous random variable, &, Bayes' theorem may be

written as

e(oly) = ELMGR) (1-2)
[ f'(e)f(yle)de

where a single prime superscript (') denotes a prior distribution or
parameter, a double prime superscript (") denotes a posterior distri-
bution or parameter, and no superscript denotes a sampling distribution
on parameter.” Therefore, in equation (1-2), f'(8) is the prior dis-
tribution of & representing the analyst's beliefs regarding & prior

to sampling, f(y|e) represents the Tikelihood function chosen to
describe the sampling process, and f"(0]y) is the posterior distribution
of 6 representing the analyst's beliefs regarding 6 after sampling [36].
The theorem can also be applied to discrete random variables by sub-
stituting probability mass functions for probability density functions

and a summation sign for the integral sign. Winkler [36] gives a

- -
Appendix 1 presents a detailed explanation of all notation in this
study.




derivation of Bayes' theorem from conditional-probabi]ity formulas.
In applying Bayes' theorem, the major difficulties lie in assessing
the prior distribution and likelihood function and in evaluating the
integral in the denominator of the formula. Baker [4] has suggested
methods for handling these difficulties which are discussed in the

next chapter and which will be used in this study.

SEERSENPTEN



CHAPTER 11

BAYESIAN DISTRIBUTION THEORY

In his thesis, Baker [4] considered a problem similar to the
one addressed in Chapter I. He has proposed a methodology for combin-
ing data relative to a single MOE taken from one phase of testing with
sample information on the same MOE taken in a later phase of testing.
This procedure produces an estimate of the MOE for use in making
decisions. The methodology applies to an operational test in which
a proposed system is being tested side-by-side with the system it has
been designed to replace, and a single MOE is under consideration.
In general, this methodology uses the theory of selecting a prior dis-
tribution from the natural conjugate family of distributions which,
when combined with the 1ikelihood function in Bayes' theorem, produces
a posterior distribution that will be of the same form as the prior.
This will reduce the computational burden considerably in the sequen-
tial analysis used in this study. (For a complete discussion of
natural conjugate distributions, see Raiffa and Schlaiffer [29],
Chapter 3.)

In this study, the results of an actual operational test are
supplied by OTEA. When considering a single MOE, OTEA assumes the uni-
variate normal distribution with unknown mean and variance as the basic

model for sample size determination for both measurement and attribute




e e Lo i i =

-~ ,.,.._‘

data [18]. The same function will, therefore, be used in this study
as the likelihood function for the random variable under considera-
tion.

The side-by-side nature of the operational tests under con-
sideration suggests that inferences be drawn from the difference of
performance characteristics of the systems rather than from the actual
per formance characteristics of a single system. Thus, if X] and Xz
represent the same MOE for systems one and two, respectively,

D = X,-X, will represent the difference between the MOE of the two

U2

systems. Since X] and X2 are assumed to follow the normal distribution
with unknown mean and variance, D, which is just a linear combination
of two independent, normally distributed random variables, can also be |
assumed to follow a normal distribution [12] with unknown mean and ]
variance, say u and 82, respectively. The variable of interest in this
study will be i, the mean difference between the two systems.

In the classical sense u, the mean of the distribution of D, is 1

considered to be an unknown constant, and inferences are drawn from

tests of hypothesized values of u. Consequently, if u can be shown to

be equal to zero, one can conclude that there is no difference between
the competing systems, whereas if u is not equal to zero, then one can
conclude that one system is better than the other.

In the Bayesian sense, since u is considered as a random vari-
able, tests on whether or not ;i takes on a specific value are mean-

ingless. One must consider tests where ;i can take on a range of

values; e.g., u < uge Or one can consider a test on specific values of u,




the mean of . If u can be shown to be equal to zero, one could reason-

ably conclude that there is no difference between competing systems,
and if u # 0, there is a difference.

It has been shown [29] that when ;1 is considered as a random
variable, the distribution of j is the Student's t distribution, rep-

resented by the density
f(ﬁ[m,v,n,v) = fs(a|m9n/vo\))s (2-])

where (m,v,n,v) is the statistic resulting from a sample of size n

and is given by

n
} D, (2-2)

<
"

>
1

—_—

The parameters (m,n/v,v) in the argument of fS on the right side of
equation (2-1) indicate the degree of non centrality of the distribu-
tion. The central or standard Student's t distribution would be given
by fs(ﬁlo,l,v). The distribution given in equation (2-1) can be
standardized so that cumulative t tables can be used in computing prob-

abilities as follows:
P(h < ulm,v,yn,v) = FS*([u-m]/n/v|v),

where the subscript S* indicates the standard Student's t distribution.

[t has also been shown [29] that the mean and variance of j are given by

il




E(ilmyv,nav) ==m v > 1 (2-3)

=
I

V(u|m,v,n,v) =

<
1
S|<

The objective of this methodology is then to determine the minimum
sample size which will produce a posterior distribution of u that will
enable the decision maker to achieve a specified level of confidence in
the inference drawn concerning .

Since the Department of the Army has imposed on OTEA the require-
ment that operaticnal testing be independent of all other testing [2],
it has been assumed that prior to OT I the state of knowledge concerning
i can be represented by a diffuse distribution for the normal-gamma
family, as developed in Winkler [36]. Thus, when the prior distribu-
tion is combined with the sample information from OT I the resulting
posterior distribution will also be normal-gamma [36]. When a measure
of effectiveness that was considered in OT I is being reconsidered in
OT II, it must be assumed that the posterior standard deviation of
My /&:: determined in OT I was too large to reach a meaningful conclusion
about u. The sequential nature of the testing then presents the oppor-
tunity to use the posterior distribution determined from OT I regarding u
as the prior state of knowledge of i for OT II. The methodology now
concentrates on developing a sample size for OT II which will produce a
posterior standard deviation for . equal to some fraction of the prior
standard deviation; i.e., /1" = s/gT, where 0 < s < 1.

Baker [4] has shown that a sample of size

n= (Jf -Im', O0<s <1

S




where n' represents the sample size of the prior distribution, can be
expected to reduce the prior standard deviation of u by a factor s.

He approximated E( /") with

EC/T" Im vt ant vt n,v) =,/;*“+ = (2-4)

Due to the approximations used in his formulation, Baker [4] has intro-
duced an error into the expected posterior standard deviation which can

be written as

% error = 1 - exp [-3/4 ((vJ-Z)' (V.Jn_z))]. (2-5)

If this error is determined by the decision maker to be too large, then
equation (2-4) cannot be used, and a more complex formula must be used
to determine the sample size, n, which will produce a desired expected

posterior standard deviation of ji. This equation is

EL/B" [m'v' vt sn,0] = An /e exp -[3{(ig) - (Lrig))s (2-6)

where n" = n'+n.

Although equation (2-6) cannot be solved explicitly for n, given
a desired value of E@/EF), it can be solved iteratively. Baker has sug-
gested a starting value of n to be that found by solving equation (2-4)
for n.

Once a sample size has been determined and a sample has been

taken, the statistic (m",v",n",v") is determined [29] as follows:




n'm'+nm

m" = n'+n (2'7)
e = Rt
Y = [v'v'+n'(m')2] + (vv+nm2) - n"(m" 2
L+s(n)T + Tv + 6(n)T - &6(n™)
vt = [v' +68(n')] + [v +s(n)] - 8(n"),
where §(y) = (0 if vy =0
T ifoe =000
The mean and variance of the posterior distribution of §i are then
E(I:i") = Ju - mu (2_8)
i i e V"\)"
V(U = H nu TUED,

In the case where the prior distribution is diffuse, as in OT I,
n' = v' =0, and the posterior parameter (m",v",n",v") equals the
sample statistic (m,v,n,v) [29].

The above development is directed at producing a value of the
posterior standard deviation of u which will make the distribution of
u "tight" enough to enable the decision maker to make his decision con- ;
cerning p with a specified degree of confidence. However, the value of
/ﬁ“ which satisfies the above criterion is subjective in nature. The
problem of determining values of v’ﬁw which meet certain criteria will

be discussed in Chapter III.
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CHAPTER 111

CLASSICAL VS. BAYESIAN HYPOTHESIS TESTING

Introduction

In this chapter an attempt will be made to compare Bayesian and
classical statistical methods in the context of hypothesis testing.
One commonly accepted measure of comparison between methods of testing
hypotheses is the power of each test. We shall define the power of a
test as the probability of rejecting the null hypothesis when it is
false, or, equivalently, the probability of not committing a type II
error. The power of the test is an appropriate measure of comparison
for this study because of the consequences of the decisions resulting
when type II errors are made. In the case of operational testing, con-
sider the null hypothesis: there is no difference between the standard
equipment and its proposed replacement versus the alternate hypothesis:
the proposed replacement is better than the standard. If the decision
maker makes a type II error (i.e., the new equipment is better but it
will not be purchased), he is denying the army the use of a better piece
of equipment and thereby keeping the level of mission accomplishment
lower than it could be.

In the case of a type I error, however, where the decision maker
rejects the null hypothesis when it is true (i.e., there is no differ-
ence in equipment but the new equipment is purchased), ithe consequence

would be that a probably more expensive piece of equipment would be
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purchased which would not improve the mission accomplishment of the
army. A better piece of equipment would not have been overlooked,
however.

In this example, a type II error could be more harmful to the
army than a type I error. For this reason, the probability of not
committing a type II error, or the power of the test, is considered of

prime importance in this study.

The Two-tailed Hypothesis Test

To compare classical versus Bayesian tests in terms of power, the
hypotheses of interest in both tests must be considered. In the classi-
cal two-tailed test, HO: u=0vs H]: w# 0 (u is considered a constant),
the type I error can be fixed at any desired level, and the type II
error can be determined for any given sample size by use of the appro-
priate operating characteristic curves. However, since the Bayesian
considers u to be a continuous random variable, the probability that
uw =0 will always be zero. In fact, Winkler [36] has stated that there
is no logical Bayesian equivalent to the classical two-tailed test. Two
modified Bayesian hypotheses will, therefore, be considered in this

study. The first tests whether or not the mean of ., u, equals zero;

f.0.5 Ho:'ﬂ = 0 vs H;: w# 0. Since the variance of u decreases as

n increases, an infinite sample would yield exact knowledge o f

the true j. In the infinite sample case, the mean of 1 would be the
exact value of u when the variance of u is zero. It is, therefore,
logical to compare the value of i in the Bayesian test to the value of

uw in the classical test. This will be done in the next section.
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The second modified Bayesian hypothesis tests whether or not u
lies in some interval about zero; i.e. HO: -a <y <awvs H]: -a >y
or a <y, a > 0. Since the classical decision maker is really more
interested in knowing whether . is in some small interval about zero
rather than if u is exactly equal to zero, this Bayesian hypothesis
would also serve as a valid comparative to the classical two-tailed
test. This comparison will be discussed in connection with the one-

tailed test later in this chapter.

Solution Using Bayesian Prediction Interval

In this section, the hypotheses HO:.E'= 0 vs Hy: U #0idn the
Bayesian context will be compared with the hypotheses, Ho: u =0 vs
H]: w# 0 in the classical context. The measure of comparison will
be the power of the test. As stated in Chapter II, D, the difference
between the same MOE of two competing systems, is assumed to follow a

. : » ! - s 2
normal distribution with unknown mean, u, and unknown variance, o .

In
the classical test, a sample size can be determined which will yield a
specified power for the test for any fixed type I error, a«. The rejec-
tion criteria for Ho, established from the a level desired, is [12]:

reject H if Itol > %

a/2,n-1°

t, = test statistic = oL

v//n

;N
m = sample mean = — ) D,
g : _1 0 2
v = sample variance = ) (D;-m)
i=]

i i A iAo 0 0 .5 it 3 k0 il
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= value of t such that P([t] >t )=a/2

t/2.n-1 «/2,n-1

The power of the test for various sample sizes and departures of u from

0 are given by the appropriate operating characteristic curves for the

2-tailed t test in [12].

Before defining the power of the Bayesian test, some discussion
of a Bayesian prediction interval is needed. A Bayesian prediction
interval (BPI) js an interval having a stated probability, e.g., (1-y),
of containing the variable of interest. In Figure 1, u" is the mean of
the posterior distribution of p, a is the lower prediction Timit, b is
the upper prediction 1imit, and the shaded area is the probability that

a < p" <b.

Figure 1. Generalized Bayesian Interval on n".

If the interval is centered on u", the length of the interval, d", is

given by [12]

d* = B 0 AT . (3-1)

; When considering the Bayesian hypotheses, H : = 0VvsS H,: u # 0, the

| o -l:

rejection criteria to be used in this section will be: reject H0 if

zero does not fall in the (1-y) BPI on u". The type I error,a, is
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a = P (rejecting H0 .
which can be restated as
a = P(0 is not in (1-v)BPI|yu = 0). (3-2)
The power of the test is defined as
Power = P (rejecting Holﬁ'= c#0),
which can be restated as
Power = P (0 is not in (1-Y)BPI|u = c). (3-3)
Using d" from equation (3-1), the power becomes
Power = P (0 is not in interval (y"-d"/2, W'+d"/21|u=c). (3-4)
Since u" = m" (defined by equation (2-7)), equation (3-4) becomes
Power = P (0 is not in intervallm"-d"/2, m"+d"/2]1|u=c). (3-5)

Prior to sampling, m" and d" are random variables, denoted m" and a™

which lead to
Power = P (0 is not in interval[m"-d"/2,m"+d"/2]|u=c). (3-6)

Since zero will not be in the BPI only if the end points of the BPI

have the same sign,

Power = P (f"-4d"/2 < 0 and m"+d"/2 < O|w = ¢) + (3-7)

P(m"-d"/2 > 0 and m"+d"/2 > O|u=c) .
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Lquation (3-7) is equivalent to
Power = P(|m"| -~ d"/2]u = ¢). (3-8)
3 Substituting the value of d" given in equation (3-1),
:’
3 ) r—
Power = P(|m"| > t_,, wi"|u = c). (3-9)
Y/2 v
j
,, s 7T
i Since v " is always greater than 0,
| : i :
; Power = P(|m"|/V %" > t_,, u|u=c). (3-10)
3 Y/2 v
i
i It has been shown [29] that m" follows a non central t distribution and
1

vt follows an inverted beta 1 distribution. It is, theretfore, very
difficult to calculate the power of the test from the expression given
: 3 . : 2 A
in equation (3-10). To simplity the calculations, v " will be replaced
by its expected value, as given in equation (2-4), and the resulting
power computation is considered to be an approximation to the power in

[ - )
equation (3-10). After replacing v " with its expected value as qgiven
4 ) - ’ et g
in equation (2-4) and letting k ty/q o E( v %), equation (3-9)

&4V

becomes
Power = P(|m"| ~ k|u = ¢) (3-11)
P(m" ~ k|p = ¢) + P(m" « -k|u=c) (3-12)
Using m" as given in equation (2-7), equation (3-12) becomes

[ : n'tm n'n' +m .
v! Power P (NI n"., g} > l‘lu (T) + P (' ""n n' -'\[ll (') (‘{—l.\)

fquivalently,




Power
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Vv
|
{

|u'= c) + P(m < ———%——*-- u=c) (3-14)

1= (i < K2 (s o) 4 p(i e KM, o (3415)

i

It has been shown [29] that the distribution of m is given by

D(m|m',v',n',v';n,v) = fs(mlm',nu/v‘,v'), (3-16)

=)

‘n

where nu ¥ Rt

=

F Strictly speaking, the Bayesian analyst does not consider ;i to be an
unknown constant with some true value. Rather, he considers y to be a
random variable also. However, in order to use Bayesian procedures to
formulate a test which can be compared to the classical hypothesis test,
it has been assumed that there is some true value for u. With this
assumption, the expected value of the sample mean, E(m), would then be
equal to u. Cumulative probabilities for m would then be computed as

given below.

P(m < alh;nu,v',v') = FS*([a- H]/ﬁh7?’1v') (3-17)
Using equation (3-17) with u = ¢, equation (3-15) can be rewritten as
Power = 1 - Fox( ED~41P[IL—1§p|v') + FS*(IEILa:Fln~»TPDWv‘y (3-18)

ey e e
nvv'/n nv'/n
v'/ ¥ vv'/ b

Summarizing the method for determining the power of the Bayesian test

for a given sample size and a prior statistic (m',v',n',v'):




D
U

from equation (2-4).

(i) - fn

2. Calculate v" and n, from equations (1-5) and (3-16).

1. Calculate E(v

v =n' +n -1
&
"W © n#n’
= ~||
3. Calculate k =t ,» E(/ B").

4. Calculate power from equation (3-18) for any value of c.

[Tlustrating the Procedure

In this section, the solution procedure described above will be
illustrated in the context of an actual operational test conducted by
OTEA. The test selected was an OT II for the Lightweight Company Mortar
System (LWCMS), which is being considered as a replacement for the 81 mm
mortar currently being used by the army. The purpose of the test was to
provide data for a side-by-side comparison of the two mortars to assess
the relative operational performance and military utility of the LWCMS
[20]. One of the MOE which was considered in both OT I and OT II was
the time required for an individual to complete the gunner's examina-
tion, which is a test designed to determine how quickly an individual
can perform critical operations in preparing a mortar to fire. In OT I
a sample size 14 was used to determine the distribution of times to per-
form the gunner's test. The results of this test are contained in

Appendix 2. If i] and XZ represent the times to perform the test on the
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old system and the new system, respectively, then D = X] - X2 is the
variable described in Chapter II. The mean of D, ., is the variable
of interest in this study.

Using a diffuse prior distribution, Baker [4] determined the

parameters of the posterior distribution of 1 for OT I from equation

'(2—7) to be
m" =m= 17.6 sec
n" =n-= 14
o 2
v" = 2040.5 sec
v' = 13

Since the same MOE was also tested in OT II, the above values will be
used in the prior distribution of . for OT II. The value of the prior
variance of u for OT II is computed from equation (2-3).

. v'  _ (2040.5)(13)

0, 8 . " 2
H = nl (\)I_Z) (]4)(1]) ]72.25 sec

In OT II, OTEA used a sample of 30 individuals, each of whom per-
formed the gunner's test twice on each of the competing systems. The
average times for each individual on each system are given in Appendix
3. The power curve for the classical two-tailed test with n = 30 will
be compared to the power curve for the Bayesian test with n = 30. The
step-by-step procedure for calculating the power using the statistic
(m',v'yn',v') = (17.6, 2040.5, 14,13), n = 30, and a 95% Bayesian predic-

tion interval (Y = .05) is given below.




o o

ol o st i

g Y

S s g it e

22

1. B (172.28)(04) - 7,40 sec

2. v' =14 +30 -1 =43
_ 30(14)
n, 30+ 14 9.55
3. k= t-025,43 E(/ = 2.02(7.40) = 14.95

(14.95)(44) - (17.6)(14)-30c
30v2040.5/9.55

4. Power = 1-F

lm

b Foxp (714:950(44) - (17.6)(14) - 30c

(13]
30/2040.5/9.55

The cumulative distribution for the standard Student's t distribution

is given in Biometrika Tables for Statisticians, Volume 1, by Pearson
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