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‘\ SUMMARY

\

g
This research develops a multistage decision process designed to

obtain the maximum amount of information from the evaluation of a factorial
design while minimizing the amount éf resources used in obtaining the
information. The use of screening experiments in building the factorial
design is investigated in order to maximize the amount of information
gained. The use of sequential analysis procedures to terminate experi-
mentation at the earliest possible time is investigated in order to mini-
mize the amount of resources used. The research is limited to;_2n ﬁfctorial
designs involving univariate response models assumed to come from :’n;;m;l\
population; however, the procedure can be easily extended to any factorial
design.

The approach is demonstrated for an operational test involving a 26
factorial design and the results are compared to'“Elassical"fprocedures.
The sensitivity of the required input parameters is investigated and related
applications are discussed.

The proposed approach is found to be a viable method of designing,

conducting, and evaluating an operational test involving a factorial

experiment.
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CHAPTER I

INTRODUCTION

Background

The goal of any type of experimentation is to obtain information
about the system under investigation. Naturally, the more information
that can be obtained the better. Unfortunately, obtaining more informa-
tion often requires increased experimentation and the resources available
may become a limiting factor. The shortage of any necessary resource,
whether it be time, money or materials can greatly hinder the conduct of
the experiment and even preclude obtaining the desired amount of informa-
tion from the experimentation.

Much effort has been devoted to the problem of how to best utilize
the experimental resources available in order to gain the most information
from them. The development of systematic experiments such as factorial
experiments and procedures for fractional factorial experiments have done
much to improve the use of available resources. Screening experiments
have aided by eliminating needless experimentation invelving unimportant
factors. Also, sequential experiments have helped to obtain the desired
information from less resources.

The problem of gaining the most information from limited resources
can be found everywhere. From agriculture to industry to the defense

establishment, everyone is intérested in getting the most for their money.

AR —




Material Acquisition Process

The requirement to maintain a modern, well-equipped Army requires
constant evaluation and reevaluation of existing Army equipment to insure
that it is adequate to fulfill operational requirements. Based on the ever
changing nature of these requirements, the Army is involved in a continuous
process of upgrading its current equipment and procuring new items of
equipment. Basically, the Army satisfies its needs for new equipment in
three ways: buying equipment already developed, evolutionary development
of current standard equipment, and initiation of new material development
programs. All of these procurement methods can be extremely costly in
terms of time, material, and money. As a result, both the Department of
Defense and the Department of the Army have highly structured material pro-
curement policies [7, 181 whose objectives are to minimize the costs in-
curred in acquiring material systems while insuring that the performance
of those systems is adequate to meet operational requirements.

Once the requirement for a new or updated system has been formalized,
the proposed system will go through three phases of development: conceptual
development, validation, and full scale development, before the system
receives approval for full production and purchase by the Department of
Defense.

At the end of each phase, the Defense Systems Acquisition Review
Council (DSARC) meets to provide information and recommendations to the
Secretary of Defense. Based on these recommendations, the Secretary of
Defense may decide to cancel further consideration of the system, require
further system evaluation prior to proceeding on to the next stage, or

permit the system to pass on to the next stage of development.




At Department of the Army level, there is a similar advisory body,

the Army Systems Acquisition Review Council (ASARC), whose principal func-

tion is to provide the DSARC with the Army's recommendations concerning

the item of equipment in question.

Testing

To aid the ASARC in its recommendations, testing is conducted to
demonstrate how well the material system meets its technical and opera-
tional requirements; provide data to assess developmental and operational
risks for decision making; verify that the technical, operational, and
support problems identified in previous testing have been corrected; and
to insure that all critical issues to be resolved by testing have been
adequately considered. Two types of testing, Developmental Testing (DT)
and Operational Testing (OT) are conducted. DT is conducted to demon-
strate that the engineering design and development process is complete,
that design risks have been minimized, and that the system will meet
required specifications. It is performed by the material developer who
then forwards the results to the ASARC.

OT is conducted to estimate the system's military utility, opera-
tional effectiveness, operational suitability, and the need for any
modifications. OT can also provide data on organization, personnel
requirements, doctrine and tactics for the new system. OT is performed
under the supervision of the U.S. Army Operational Test and Evaluation
Agency (OTEA) by operational and support personnel of the type and
qualifications expected to use and maintain the system once it is
deployed.

As a safeguard and as a further validation measure, DT and OT test
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designs are prepared and the test results are evaluated independently.
The actual testing of the item of equipment under DT and OT may, however,
be conducted concurrently to reduce delays and system acquisition costs.
The relationship between the conduct of the different phases of testing

and the meeting of the Acquisition Review Councils is shown in Figure 1.

Operational Testing

OTEA serves the following major functions:
A. 1Insures user testing is effectively planned, conducted, and evaluated
with emphasis on adequacy, quality, and credibility of all user testing.
B. Actively participate in the conduct of and provide independent evalua-
tions of operational tests conducted on selected items of equipment.
C. Develop and recommend policy on user testing.
D. Develop and promulgate user test and evaluation methodology.
E. Develop measures of effectiveness and provide estimates on amount
of resources (sample size) necessary to detect differences in military
utility, operational effectiveness, and operational suitability with
a specified confidence level.

Generally three phases of Operational Testing are conducted, one
phase prior to each meeting of the ASARC. OT will compare the performance
characteristics of the new system against the current system if it is
designed as a replacement item, against a higher level system if it is
designed as a component of some larger system, or against a set of perform-
ance standards if the item is totally new to the Army inventory. Due to
the nature of the items being tested, such as missile systems or high value
items that require destructive type testing, OTEA is often limited in the

number of experimental runs that can be made on an item of equipment. As
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a result, OTEA is very much interested in developing a methodology for
designing, planning, and evaluating operational tests for a limited
sample size while, at the same time, maximizing the information gained

from the test.

Problem, Objective, Scope

This problem was motivated by a task requirement presented by

OTEA:

Obtaining maximum information from minimum sample size is an in-
herent and recurring problem in operational testing and has signifi-
cant impact on final evaluations. In designing and conducting
operational tests, resource restrictions often dictate a test having
an extremely small sample size but a number of influencing factors
of two or more conditions. This results in a relatively large num-
ber of combinations, especially considering the number of observa-
tions to be obtained. This study is to investigate the feasibility
of developing a method for maximizing the information gained from
a test.

A related problem, that of designing, planning, and evaluating
operational tests of limited sample size has already been addressed by
Russ (48). 1In his research, he developed an algorithm for determining
the optimum constrained sample size for a full factorial experiment based
on a specified amount of information required by the test evaluator.

The objective of this study will be to develop a sequential method of
designing and conducting an operational test in order to gain equivalent
information from an even smaller sample size.

The scope of this research will be limited in the following areas:

A. All factors in the factorial design will appear at only two levcls

and will be considered as fixed factors. The extension of the problem
to cases where the factors appear at other than two levels will pose

no problems for anyone familiar with the analysis of factorial
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. experiments.

B. Only univariate response models are considered.

C. The measured response is assumed to come from a normal population
with mean, u, and variance, 02. This would appear to be a valid
assumption in light of the frequency with which it occurs in every-
day situations.

D. The hypotheses to be tested are assumed to be of the form HO: u=ul
vs. le M=y > d, This assumption is based on the fact that Opera-
tional Testing is generally performed to test the performance charac-
teristics of one system against another system or against a set of
standards. The decision to accept or reject the new system is based
on whether or not the performance characteristics of the new system
exceed the old system by a specified margin, d, or not.

The research will consist of a review of full and fractional facto-
rial design construction and analysis and sequential analysis methodology.
A proposed sequential method for building a factorial design is then
developed and applied to a previously performed operational test to demon-

strate its use in obtaining the same information from a reduced sample

size.




CHAPTER II

REVIEW OF OTHER APPROACHES AND RELATED TECHNIQUES

This chapter will present a review of the construction and analysis
of a factorial experiment and will review other approaches to the sequen-
tial analysis problem. Both the case where the variance is known and the
case where the variance is unknown are examined in the sequential analy-

sis review.

Factorial Experiments

Full Factorials

A factorial experiment is the term used to denote the experimental
design in which all levels of a given factor are combined with all levels
of every other factor in the experiment. In the case where each of the
n factors can be measured at the same number of levels, say m, the experi-
ment is referred to as an mn factorial. For example, in a 2n factorial,
each of the n factors would appear at two levels so there are 2" differ-
ent treatment combinations. In a 2n, the levels of the factors are arbi-
trarily denoted as the high and low levels. Generally accepted notation
is to represent the various factors using capital letters, A, B, C, etc.,
and to denote the various treatment combinations using lower case letters,
a, b, c, etc. The letters present in the treatment combination indicate
those factors appearing at their high level and the letters absent indi-
cate those factors appearing at their low level. For example, the treat-

ment combination a denotes factor A at its high level and all other




factors at their low levels and cd denotes factors C and D at their high
levels and all other factors present in the experiment at their low levels.
The notation (1) is used to represent the treatment combination where all
factors appear at their low levels.

The common representation for the univariate response model for

the 22 factorial design is:

yﬁk=11+a1+8j+ aﬁ-+eﬁk (2-1)
where
th th
yijk = the k  observation at the i level of factor A and the
jth level of factor B.
U = the population mean of the observations.
ai = effect of factor A at level i, 1=1,2.
Bj = effect of factor B at level j, j=1,2.
aiBj = interaction effect of factor A at level i and factor B at
level j.
eijk = error associated with observation yijk'
The restriction ZZnijai §§ 11 j = 0 where nij number of observations

in the 1jth cell also applies. This model can easily be extended to n

factors by the addition of appropriate terms.

In the case where nij = 1 for all i and j, there is no separate
estimate for error and, in general, higher order interactions are assumed
to be negligible and are pooled to estimate the error. The most desirable

situation is the case where there is more than one observation per cell

and where the number of observations in each cell is the same.




The effect due to a factor is defined to be the change in the
response produced by a change in the level of that factor. Interaction
between factors exist when a change in one factor produces a different
change in the response variable at one level of another factor than at
the other level of that factor.

All of the treatment combinations present in a factorial experiment
can be expressed in standard order. The simplest method of writing the
treatment combinations in standard order is the method of signs as demon-
strated in Montgomery (42). This method consists of listing all n factors
as column headings. The first column consists of a total of 2" alternat-
ing minus and plus signs starting with a minus sign. The second column
consists of alternating pairs of minus and plus signs starting with two
minus signs. The third column consists of alternating sets of four minus
and plus signs. In general, the column for the nth factor will consist

: minus and plus signs always beginning with

of alternating sets of 2"
a set of minus signs until there are a total of 2" entries in that column.
The combinations of minus and plus signs in each row are the treatment
combination represented by that row where the minus sign indicates a

factor at its low level and a plus sign indicates a factor at its high

level. This procedure is illustrated for a 24 factorial experiment in

Table 1.

Blocking

In experimental designs involving a large number of trials, it may
be impossible to perform the entire experiment under homogeneous
conditions. In this case, the experimenter may have to perform the

experiment in blocks. In order to separate the full factorial into
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Method of Signs for a 24 Factorial

Table 1.
Treatment
Factor A Factor B Factor C Factor D Combination
- - - - ¢h)
+ & - - a
- + - - b
+ + - - ab
- - + - c
+ - + - ac
- + + - be
+ + + - abc
- - = + d
+ - - + ad
- + - + bd
+ + - + abd
- - + + cd
+ - + + acd
- + + + bed
+ + + + abed
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blocks, the experimenter must decide which effect (S) he is not interested
in or can assume to be negligible. Usually, this is the highest order
interaction or interactions present. Once this decision is made, a defin-
ing contrast, an expression stating which effects are to be confounded
(not estimable) with blocks, is established. Hicks [25] and Kempthorne
[36] demonstrate several methods for separating the treatment combinations
into blocks. Each block should contain a number of treatment combinations
no greater than the number of experimental trials that can be performed

at one time.

Regular Fractional Factorials

In the case of a large number of treatment combinations present in
an experiment, it may not be either physically or economically possible
for the experimenter to obtain an observation at every treatment combi-
nation. However, it is possible to run only a fraction of the experiments
and still obtain the same information as if the entire experiment had been
performed. The general procedure is known as fractional replication.

Box and Hunter [29] list the following as major uses of fractional
factorial designs:

A. When certain interactions can be assumed non-significant from prior
knowledge, these interactions can be used as generators in the sepa-
ration of treatment combinations into their respective fractions in
such a way as to make efficient use of the analysis of the fractional
design.

B. In screening experiments where it is expected that the effects of all
but a few of the variables studied will be negligible, the use of

fractional factorials as a screening experiment will enable the
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experimenter to determine which factors are important and which are
not without performing costly and unnecessary experimentation. The
insignificant factors may then be set at standard levels and the
significant factors explored more comprehensively during further
experimentation using a smaller, less costly factorial design.

c. Where groups of experiments are run in sequence and ambiguities
remaining at a given stage of experimentation can be resolved by
later groups of experiments, the full factorial can be fractionated
so that the fractional experiment performed yields information on
only the factors in question.

d. Where certain major variables, which may interact, are to be studied
simultaneously with other minor variables whose influence, if any,

can be described by main effects only, the fractional design can be

established so as to confound the major variable main effects with
only two factor interactions of the minor variables but these inter-

actions are assumed to be negligible so they have no effect on the

main factors.

In order to separate the full factorial into fractiocms, it is
necessary for the experimenter to determine which effects he wishes an
estimate for and which effects he is willing to assume as negligible.
Fractional factorial designs can be classified in the following manner
for convenience:

a. Resolution II designs: main effects are not confounded with each
other but are confounded with two factor interactions and two factor
interactions are confounded with each other. The smallest possible

resolution IIT design is the 23-1 design which can be generated
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using either I = ABC or I = -ABC as the defining relationship. This
design can be easily generated by the method of signs. First, a full
22 design using - and + signs is written down. The signs in the
third column are generated as the product of the signs in the first
two columns multiplied by +1 if I = ABC is the generator used and by
-1 if I = -ABC is the generator used. This is equivalent to equating
the third factor, ¢, to the product of the first two (C = AB) or to
the negative product of the first two (C = -AB). This procedure is

illustrated in Table 2.

Table 2. 23_1 Resolution III Design

Full 22

A B

+ -~

- +

+ +

Treatment Treatment

A _B _C Combination A B _C Combination
- - + c ~ - - (1)
+ = = a + - + ac
= + = b ~ + + be
+ + + abc + + - ab
b. Resolution IV designs: main effects are not confounded with each

other or with two factor interactions but two factor inter:ictions

are confounded with each other. The smallest resolution IV design




S

is the 2(‘.1 which can be generated in the same manner as in the previous

example by starting with a full 23

. pa%?

I = ABCE and I = ABDF as the generators is shown in Table 3.

Resolution IV design with

Table 3. ng Design, I = ABCE and I = ABDF

Factor Factor Factor Factor Treatment
A : B C D =ABC  F+ABD Combination

- - - - - - [6))

+ ~ - - + + aef

- + - - + + bef

+ + - - - - ab

- = + = + - ce

+ - + = - + acf

= + + = - + bef

+ + + - + - abce

= = = + - + df

+ - - + + - ade

= + - + + - bde

+ + - + - + abdf

- - + + + + cdef

+ - + + - - acd

- + + + - - bed

+ + + + + - abcdef
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c. Resolution V designs: no main effects or two factor interaction is
confounded with any other main effect or two factor interaction, but
two factor interactions are confounded with three factor interactions.
The smallest Resolution V design is the 25_1 which can also be con-
structed in the same manner as the Resolution III and IV designs
previously described.

In general, the resolution of a design is equal to the smallest
number of characters in any word appearing in the defining relation. The
words in the defining relation consist of the generators initially chosen
and all of their generalized interactions (products mod 2 on exponents).
For the design shown in Table 3, the complete defining relation is
I = ABCE = ABDF = CDEF.

One problem that will arise in fractionating a full factorial is
that two or more effects may have the same numerical value. In this case,
the effects are known as aliases and the experimenter must be sure that
factors believed to be significant are not aliased with each other. The
aliases of any factor can be generated by multiplying that factor by all
of the words in the defining relation, mod 2 on exponents. The alias
structure for the 26—2 Resolution IV design with defining relation
I = ABCE = ABDF = CDEF is shown in Table 4. For a 2" P fractional fac-
torial design, each effect will have ZP—l aliases.

When estimating the effect of a factor for a fractional factorial
design, we are really estimating the effect due to that factor and all
of its aliases. Therefore, the effect of A is really a measure of the

effect due to A + BCE + BDF + ACDEF. If, as in the general case, inter-

actions of third order or higher are assumed to be negligible, then
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Table 4. Alias Structure for 2?;2 Design,

I = ABCE = ABDF = CDEF

g0 ABCE ABDF CDEF
A BCE BDF ACDEF
B ACE ADF BCDEF
C ABE ABCDF DEF
D ABCDE ABF CEF
E ABC ABDEF CDF
F ABCEF ABD CDE
AB CE DF ABCDEF
AC BE BCDF ADEF
AD BCDE BF ACEF
AE BC BDEF ACDF
AF BCEF BD ACDE
CD ABDE ABCF EF
CF ABEF ABCD DE
ACD BDE BCF AEF
ADE BCD BEF ACF

this response will provide a good estimate of the effect due to factor A.
The analysis of this effect will be discussed in a later section.
I1f, as in the case of a large number of factors present in the
experiment, a one-half fraction still leaves too many observations to be
P

taken, it is possible to use a smaller fraction. To run a Zn- frac-

tional factorial design requires the choice of P independent generators




(no chosen generator {s a generalized interaction of the others).
Irregular Fractional Factorfals
In many cases, especially in an experiment involving a large num-
: . . SN ST=B
ber of variables, the running of a regular fraction of a 2, a 2 say,
may not be economical. For example, suppose the experiment in question

nil o " ;
fs a 2 and the experimenter can afford to perform 50 trials of the

experiment. If he wishes clear estimates of all main effects and two fac-

X li
tor interaction, a 1/2 replicate of the 2° will provide them but it re-

quires 64 trials, more than the allotted number. A 1/4 replicate of the
27 requires only 32 trials but "there does not exist a 1/4 replicate of
the 27 experiment which allows uncorrelated estimates of all main effects
and two factor interactions.'" (1) The logical question that arises s
whether or not a plan can be constructed using close to but not move than
50 trials that will yield clear estimates of the main effects and two
factor interactions. Addelman [1] and John [33] both propose slightly
different solutions to the development of this design.

Addelman defines his irregular fraction as a K/2P fraction of a
2" factorial. He builds his irregular traction by combining the treatment
combinations in K distinct l/ZP replicates of the 2" In Addelman's
irregular fraction pla, no main effect or interaction need be completely
confounded with the mean if K > P 4+ 1 but it K =P = ju, =20, 1, 2,...,
then u + 1 effects or interactions and their generalized interactions
will be completely confounded with the mean. 1t this should happen,
however, most of the time it will be possible to construct the {rregular
fraction so that the effects which are completely confounded with the

mean will contain at least five factors. In the instances where this
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irregular fraction cannot be constructed, some two factor interactions
will not be estimable. Addelman shows that the yield of the treatment
combinations in his irregular fraction can be expressed in terms of the

main effects and two factor interactions in the following manner:

yijk...= Wk Lz'At %Bt l’éAB ‘!‘ZC + !.2 AC, etc. + error (2.2)

where the sign

on A is - if i=0 and + if i=1

on B is - if j=0 and + if j=1

on AB is - if the product of the signs on A and B is - and is +

if the product of the signs on A and B is +, and so on.
In this case, 0 and 1 would indicate the presence of that factor at its
low and high levels in the treatment combination in question. In the
appendix to his paper, Addelman gives several common and useful irregular
fractions with the identity relationship and assumptions required to
generate them. One such example is the 3/8 fraction of the 27 which
would be useful in the situation described at the beginning of this
section. Using the identity relationship I = ABCDE = ABF = CDEF = AEG =
BCDG = BEFG = ACDFG, the 27 can be fractionated into eight blocks of 16
runs each. The experimenter could then pick three of these blo ks,
yielding 48 experimental trials.

John approaches the problem of irregular fractions by subtracting
treatment combinations from the full factorial or by adding treatment
combinations to a 1/2 replicate of the full factorial. He defines his
designs in terms of the relationship used to generate the missing fraction.

John {illustrates how the combination of fractions in a certain manner
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will form overlapping fractions. Estimates for the effects due to vari-
ous treatment combinations are then obtained by combining the estimates
obtained from the appropriate overlapping fractions.

Analysis of Factorial Experiments

Once the experiment has been performed, the results must be ana-
lyzed to determine the significance or insignificance of the various
factors and interactions or to perform tests on the various hypotheses
concerning the factors. The most commonly used method of analysis is
the analysis of variance (ANOVA).

ANOVA makes use of the fact that the ratio of two chi-square ran-
dom variables divided by their respective degrees of freedom follows an
F distribution. Hicks [25] and Hines and Montgomery [26] provide the
general format for an ANOVA table for a 2" factorial experiment with r
replications per cell shown in Table 5. The F, statistic is found by

0

forming the ratio of ms for the effect in question to ms Comparing

B’
this value to the value of the F statistic with 1 and Zn(r-l) degrees
of freedom will give a test on the significance of an effect.

The easiest method for computing the sum of squares for a 2" fac-
torial is the Yates Method [57] which consists of arranging the treatment
combinations in standard order and then adding and subtracting the
observed response values in pairs a total of n times to obtain an esti-

mate of the contrast due to a treatment combination. The effect due to

that treatment combination is then obtained from
EFFECT = (2) (CONTRAST) /r.2" (2.3)

where r = number of replications per cell. This will usually be one for




Table 5.

ANOVA for 2" with r Replications Per Cell
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Sum of Mean
Source of Variation Squares Degrees of Freedom| Square fb
Main Effects--A SSA 1 SSA/l
B SSB j 3 SSB/l
n
(i SSC i SSC/l
2 Factor Interactions--AB SSAB 1 SSAB/l
AC SSAC 1 SSAC/l
c(n,2) =
BC SS 1 SS
AC sta-1) AC/1
2
1 3 Factor Interactions--ABC SSABC 1
; ABD SSABD 1 c(n,3) =
'i BCD SSBCD 1 n(n-1) (n-2)
{ 6
i
4 Factor Interactions, Etc.
Sum of all Treatment o
Combinations SS 2 -1
T n SSE
Residual or Error SS 2 (r-1) —
n
2 (r-1)
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purposes of this paper. The sum of squares for any effect is then

obtained from
2 n
SS = (CONTRAST) “/re2 (2.4)

Because of its simplicity, the Yates method is easily programmed for
computer application.

The Yates method can also be used in obtaining the sums of squares
from a Zn_P fractional factorial by considering the data as having come
from a full factorial in n-P variables. The treatment combinations for
the full factorial are written in standard order and a letter or letters
is added in parentheses to the end of these treatment combinations to
represent the treatment combinations actually run. The effect estimated
in this manner will then be the effect associated with the treatment
combination shown plus all of its aliases. An example of the Yates
method for a 24-1 with I = ABCD as the defining relationship is shown in
Table 6.

The values in column (1) are obtained by first adding the respon-
ses in pairs and then subtracting them in pairs. For example,

82 95 + 133 and

74 + 108, 222 = 92 + 130, 173 = 68 + 105, 228

34 133 - 95. The values

108 - 74, 38 = 130 - 92, 37 = 105 - 68 and 38
in columns (2) and (3) are obtained by performing the same operations
on the values in columns (1) and (2) respectively. It is necessary to
perform these operations three times since, in this case, n - P =

4 -1 =3,




23

Table 6. Yates Algorithm for 24_l with I = ABCD [42]

Estimate
Treatment of Effect SS
Combination Response (1) (2) (3) Effect  2x(3)/2% (3)2/2n

(1) 74 182 404 805 -

a(d) 108 222 401 147  A+BCD 36.75 2701.125
b(d) 92 Er3 72 95 B+ACD 23.75 1128.125
ab 130 228 75 5 AB+CD 1.25 3.125
c(d) 68 34 40 -3  C+ABD -0.75 125
ac 105 38 55 3  AC+BD 0.75 1.125
be 95 37 4 15 BCHAD 3.75 28.125
abc(d) 133 38 1 -3 ABC+D -0.75 1.125

Sequential Procedures

Introduction

Until recently, commonly accepted statistical procedures involved
presenting the data from an already conducted experiment to the statisti-
cian and expecting him to provide reasonable conclusions based on an
analysis of the data. Seldom was the statistician consulted concerning
the methods of collecting the data either prior to or during the
experimentation. Lately, however, much more emphasis has been placed
on obtaining the advice of a statistician prior to the performance of
an experiment and during the actual running of the experiment. This has
allowed the statistician to play an important role in designing and moni-

toring the conduct of experiments. 1In addition, more emphasis has been
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placed on obtaining meaningful results from a reduced number of trials

of an experiment due to the rapidly increasing costs associated with

experimentation. Fractionating a factorial design is one way of accom-

plishing this goal. A second useful method is through sequential analy-
sis procedures.

Sequential analysis can best be described as "any statistical
procedure in which the final pattern (including the number ) of observa-
tions is not determined a priori but depends, in some way or other, on
the values observed in the course of the work" [34]. During the course
of an experiment testing one hypothesis against another, the results are
examined after each trial. A decision is then made to either accept
one or the other of the hypotheses or to continue sampling based on the
results to date. The decision making process of sequential analysis will
require three basic rules to define the procedure:

A. The stopping rule will let the experimenter know when the experimen-
tation may be terminated.

B. The terminal decision rule will let the experimenter know which
hypothesis to decide in favor of once experimentation has been
terminated.

C. The experimentation rule will let the experimenter known which experi- |
ment should be performed next should he still be required to continue

experimentation.

Curtailed Sampling

Although Wald [52] is generally credited with originating sequen-
tial analysis procedures in the mid 1940's, there were some heuristic
approaches made to this area prior to Wald. One such approach is known

as curtailed sampling and is used in determining whether to accept or
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as curtailed sampling and is used in determining whether to accept or
reject a lot of some item. 'Classical" sampling procedures would call
for a fixed sample of size n to be inspected and the decision to accept
or reject the entire lot would be based on the number of defective items
found in that sample. Curtailed sampling procedures would stop sampling
as soon as it was obvious which decision would have to be made. For
example, if the fixed size test called for rejecting a lot if more than
two defective items were found in a sample of size ten, curtailed samp-
ling would call for termination of sampling as soon as:

A. Three defective items were found,

B. Nine items had been inspected and only one defective item was found, or
C. Eight items had been inspected and no defective items were found.

Tests on the Mean of a Normal Distribution with Known Variance

Sequential Probability Ratio Test. Wald's Sequential Probability

Ratio Test (SPRT) is designed to test one simple hypothesis against
another. If a random variable, x, has distribution f(x,6), the SPRT will

test Ho:e = 90 vs. le 6 = 61 and will decide in favor of either Ho or

Hl based on a series of observations of x(xl, Xps res xn) and on pre-

selected probabilities of type I (reject H, when it is true) and type II

0

(accept H, when it is false) errors. If these probabilities are denoted

0
as o and B respectively, there are four possible outcomes as shown in
Table 7.

For a fixed sample size, n, Neyman and Pearson, as explained in

Hoel, Port and Stone [28], have shown that the most powerful test (that

test giving the smallest ) depends on the likelihood ratio:
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n
! f(xi,el)

by (3) - i=1 (2.5)
Lo(x) ; oS
f(x,,
isg & O

where f(xi, 91) = probability of observing Xy given that 81 is true.

This test will decide in favor of H. A if Ll(x)/LO(x) is less than some

0

constant, k, and will decide against H_ if Ll(x)/Lo(x) is greater than

0
k. The value of k can be chosen to insure the desired a value for the

test and the number of observations, n, can be chosen to insure the

desired power, 1 - B, for the test.

Table 7. Outcomes and Probabilities of SPRT

Required
Outcome Probability
90 is true and test decides in favor of 90 1 -a
60 is true and test decides in favor of 61 a
81 is true and test decides in favor of 61 1l -8
91 is true and test decides in favor of 90 B

The SPRT is similar to this procedure and incorporates the follow-
ing decision rules:

A. Stop sampling and decide in favor of H, as soon as Ll(x)/Lo(x) is

0
less than some constant, B.
B. Stop sampling and decide in favor of Hl as soon as Ll(x)/Lo(x) is

greater than some constant, A > B.




C.

and B are:

Since a and B are generally taken to be less than .5, the following

relationship will hold:

that make it very useful when testing a simple hypothesis against a simple
alternative.

A.

27

Continue sampling as long as B < Ll(x)/Lo(x) < A.

Wald [52] has proven that good approximations for the constants A

A= (1-B)/a (2.6)

B = B/(1-a) (2.7)

B <B< ¥ <A (2.8)

The Sequential Probability Ratio Test possesses many properties

Wald and Wolfowitz [53] have shown that for all sequential tests
having the same a and B probabilities of Type I and Type II error, the
SPRT will require the fewest number of observations when 6 has true

value equal to 60 or 81.

Should the true value of 6 lie somewhere between 90 and 61, Wetherill
[56] has shown that the expected number of observations may be much
larger than the fixed sample size plan with the same a and B errors.
Wald has proposed truncating the SPRT at some fixed value, no, should
this occur. This will change the probabilities of Type I and Type II

errors so the problem is to make n, large enough so as to have a

0
negligible effect on these probabilities. By denoting Pi(nO) as the

probability of a sample of size n, rejecting H1 under the truncated

0

process and accepting H, under the non-truncated process, Wald derives

i




28
upper bounds for these two probabilities and uses them to determine
upper bounds for the new a and B errors respectively. The upper
bounds for Po(no) and Pl(no) are
Po(no) = 6(u,) - C(ul) and Pl(no) = G(ua) - G(u3) (2.9)
where i -nOEO(z) log B-nOEl(z)

ul_F u3=/_
n Oo(z) n, Ol(z)
(2.10)
log A-nOEO(z) -nOEl(z)
u, = e
/Ha Oo(z) /Eg 1(z)

G(u) = probability that a N(0,1) variable takes on a value < u.

is true i - 0,1

7
o~ %)

Oi(z) = standard deviation of z when Hi

2

G -3
EO(Z) = - 5(90 - 0.) El(z) = 5(8

1

The value of n, must be sufficiently large to insure zq ar RS Zn ~ N
0

with mean equal to nOEi(z) and standard deviation equal to /Ha Oi(z)
when Hi is true, i = 0,1. The upper bounds for the a and P errors are

then given by:

a(no)

| A

a + Eo(no) (2.11)

B(ny) < B + El(no) (2.12)

Modifications to SPRT

As was stated earlier, Wald's SPRT will require a smaller average
number of observations than any other sequential test of one simple hypo-

thesis against another when the true value of 6 is either 06 or 81. This,

0
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is not always the case. Read [47] and Anderson [2] have proposed modifi-

cations to the SPRT in case the true value of 6 lies between 90 and 81.
Read's Partial Sequential Probability Ratio Test (PSPRT) uses the

same initial boundaries, A and B, as Wald's test. Initially, a fixed

number, n, of observations is taken. At the end of these n observations,

the quantities:

PAD
B! = B -2 (2.13)
and
p n
AY = kD (2.14)
n P

where Py = joint likelihood of the first n observations under hi’ i=0,1

are computed. If the inequality
<8 <1<A (2.15)
n n

does not hold, a decision is made at this point. If Aé < 1, then H1 is

accepted and if B; > 1 then H, is accepted. If (2.15) holds, then

0

sampling is continued as in the SPRT and the following decision rules
are used:

A. Stop sampling and decide in favor of H, as soon as pl(xn+l,...,xn,)/

0

A}
pO(xn+1,...,xn,) becomes less than Bn'

X )/

B. Stop sampling and decide in favor of Hl as soon as pl(xn+1"' g

'
po(xn+l,...,xn,) becomes greater than An'
]
C. Continue sampling as long as Bn < pl(xn+l’""xn')/po(xn+l""’xn')
< A'.
n
Where p1 (xn+1,""xn') is the joint likelihood of observations X4l to
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*n'>n under Hyy 1= 0,1,

Read shows that his PSPRT will require, on the average, more obser-
vations than the SPRT when the true value of 6 is 60 or 81 but may require
substantially fewer observations when the true value of 6 is between 60
and 01, say 0 = 5(80 + 81). In both cases, Read's Average Sample Number
(ASN) 1is lower than the fixed sample size. Read's procedure is most use-
ful when it is desirable to take n initial observations for some reason
such as to provide the experimenter with an estimate of the sampling costs.

Anderson's modification to the SPRT applies only to densities of
the Koopman-Darmois (exponential) form and he presents specific examples
for a normal distribution with unknown mean and known variance. Since
many random variables follow a normal distribution, or do so approximately,
this is a reasonable approach.

In the SPRT, the continuation region boundaries, A and B, can be
thought of as describing two parallel lines, y = A and y = B, where the
decision is made as soon as the value of y, in this case the likelihood
ratio, crosses one of the lines. Anderson proposes replacing the paral-
lel lines with a set of converging lines y = ¢ % dln and y = ¢y + dzn
with truncation of the sequential procedure at some value N. To avoid
intersection of the lines before n = N, it is necessary that c, + dz(N-l)

£ e dl(N-l). It is also desirable that the lines converge, so it is

1

necessary that d1 <0< d2.

For a normal distribution, as described here, Hoel, Part and Stone

[28] have shown that the likelihood ratio can be replaced by the quantity
n

D) X, with appropriate modifications to the boundaries of the continuation
i=1
region. Making this substitution, the decision process for Anderson's
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SPRT becomes:

n
A. Stop sampling and decide in favor of HO as soon as L X_ becomes less
i=1
than <y & d2n.
n
B. Stop sampling and decide in favor of H, as soon as L Xy becomes
i=1
greater than ¢y + dln.
n
S i + < X + -
C Continue sampling as long as <, d2n izl i = dln

Andersor's calculations of the ASN for his modification is extremely
complicated and involve use of the Wiener stochastic process. However,
his ASN for intermediate values of 6, between 60 and 81, is lower than
the ASN for Read's PSPRT. Naturally, due to its optimum property, Wald's

SPRT has a lower ASN at 6=60, and 6==61.

0

Testing Other Than Simple Hypotheses

The SPRT can only be used to test a simple hypothesis against a
simple alternative so there are many real life situations in which it is
not applicable. For example, to test whether a new product is better than
an already existing product it is designed to replace would involve test-

ing H,:0 = 0 _ vs. H1:6 > 0 _ and the SPRT would not apply. In this case,

0 0 0
it is possible to modify the alternate hypothesis so that the SPRT could
be used. Assuming that the new product would not replace the old one un-
less there was a significant difference in some performance characteristic,
the alternate hypothesis can be written as H1:8-81 = d where d is the
required margin of difference between the new and old products. Now the
alternate hypothesis is in simple form and the SPRT may be applied.

Another special case is when the decision to be made is of the form:

product x is inferior to product y or there is no difference between pro-

ducts x and y or product x is superior to product y. This is equivalent
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to testing H_l=9 < 8; vs. Hy:b, < 0 < 63 vs. H_:

- g "
< 64. In the region 6 < 81 it is desirable to decide that product X

6 > 04 where Gl < 92 < 93
is inferior to product y; in the region [82, 83] there is no difference
between the products; and in the region 6 > 64 product x is superior to
product y. Sobel and Wald [50] and Armitage [6] have both described
methods of solving this problem.

Sobel and Wald define their three-decision problem as deciding be-

. & . . i
tween hypotheses H_l.e ars Ho.al < B < a, and Hl.e > a,. This defini

tion leads to a division of the parameter space into five regions. Around

a; there is a region (61, 62) where there is no strong preference between

H-l and HO but where it is strongly desired to reject Hl. Around a,

there is a region (63, 64) where there is no strong preference between

HO and Hl but where it is strongly desired to reject H-l' For 6 < 61,

the desirable decision is to accept H_l; for 62 s 63, the desirable

decision is to accept HO; and for 6 3_84, the desirable decision is to

accept H Given this formulation, a wrong decision can be made in the

1
following manner:

A. Acceptance of Ho or Hl for @ < 61.

B. Acceptance of Hl for 81 <0 < 62.

C. Acceptance of H-l or Hl for 62 <8< 63.
D. Acceptance of H_1 for 93 < @< 64.

E. Acceptance of H—l or Ho for 6 > 94.

Sobel and Wald then consider the case where:
A. Probability of a wrong decision < Yy for O < 81.
B. Probability of a wrong decision i.Yz for 6, < 6 < 9&'

C. Probability of a wrong decision < Y3 for 6 > 64.
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And the special case where Yl='Y2 =Y, =Y for all values of 6.

3
Their procedure consists of conducting two concurrent sequential
probability ratio tests, R1 and R2. R1 is used to test the hypotheses

Q: = = = -
01 vs. 0 62 and R2 tests 0 93 Va. 6 84. Their decision pro
cedure consists of the following:

A. Both Rland R, are computed after each trial until

2
B. Either: one ratio leads to a decision to stop. Then this ratio is
no longer computed but the-other one is until it also leads to a

decision to stop.
C. Or: both ratios lead to a decision to stop at the same stage.
The final decision, R, can be made from the results shown in Table 8.
Sobel and Wald give a proof that the case where R1 accepts 61 and R2
accepts 64 can never occur. In order to properly define the SPRT's
Ry and R, it is necessary to either be given values A, B, A, and B
which form the boundaries of the critical regions or to approximate them

based on the upper bounds for the respective probabilities of making a

wrong decision. These approximations are shown to be:

A= (1~v)M, (2.16)
B = YZ/(l - yl) (2.17)
A= (1~ Y3)/y2 (2.18)
B =Yg/ (1 -, (2.19)

The special case Y1=‘Y2 = Y3 =y is easily handled by substituting in the

above approximations.

Armitage's method is similar except that it involves using three
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Table 8. Decision Process for Testing Multiple Hypotheses

R1 R2 R
1f Accepts 6 and Accepts 83 then Accepts H_l
1
1f Accepts 62 and Accepts 83 then Accepts HO
If Accepts 02 and Accepts 64 then Accepts H.

SPRT's concurrently so that all possible combinations of the three alter-
native hypotheses taken two at a time are tested. Armitage's decision
procedure is as follows:

A. All three SPRT's are examined after each trial.

B. Sampling is continued until the results indicate that one hypothesis

is preferred over both of the other two hypotheses based on the SPRT's
involving those hypotheses and the preferred one.
C. The decision is then made in favor of the preferred hypothesis.
i Armitage's procedure has one decided advantage over that of Sobel
and Wald. By requiring that all three SPRT's be examined until completion,
a definite decision in favor of one of the hypotheses will be reached.
Using Sobel and Wald's procedure, it is possible to terminate sampling
before a definite decision point has been reached. This situation is
shown in Figure 2. For the path, OT, shown in the figure, test R is
terminated as soon as line AB is crossed with the decision being made in
favor of H.. R, is not calculated again even though the path may go back

5 0 1

across the line. Test R2 is terminated as soon as line AC is crossed with,

| once again, the decision being made in favor of Ho.

Based on Table 8,

L N— e e— w
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ACCEPT Hl

0 7
X
ACCEPT H_ 1

Figure 2. Testing Multiple Hypotheses.

, ————— | v



36

the terminal decision would be in favor of H, but, as can be seen from

0

the figure, the shaded region, HO’ was never reached.

Tests on Mean of a Normal Distribution with Unknown Variance

Sequential T-Test. Once again, the problem is to test the hypo-

thesis H.:0= 6 _ vs. lee :~61 > Since the standard deviation,

0 0 0’

o = /rET, will always be a positive number, the alternate hypothesis can

be expressed as Hl:G a 61 = 80 + 80 where § is some positive number. This

can be rewritten as Hl:e - 90 = 80. Since the value of 0 is unknown, the 4

bk

problem is to find a procedure that does not depend on 0. A random vari-
able defined as the ratio of a N(0,1) variable to the square root of a
chi-square random variable divided by its degrees of freedom follows the
t-distribution and the formation of such a random variable will eliminate
the unknown variance. Govindarojulu [23] has formulated a sequential pro-

cedure based on the statistic:

i .- (2.20)
B (n) (xn 90)/8n
X n
where x_ = sample mean =( I x,)/n
n A i
i-1
n 7 "
- M sample standard deviation = ( & (xi - x)°/(n-1))?
i=1

His procedure is as follows:

A. After each trial, compute tn as shown in (2.20).

B. Continue sampling as long as Bn < tn < An' |

C. Stop sampling and decide in favor of HO if tn < Bn.

D. Stop sampling and decide in favor of H, if tn > & -

1 n

The boundaries An and Bn are arbitrary with the only requirement

being that they be chosen so that the procedure terminates finitely. David
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and Kruskal [17] have shown that this will occur when An and Bn are

obtained by equating the ratio of a non-central t distribution to a cen-
tral t distribution to the constants A and B from Wald's SPRT. This t-
test can easily be modified to test HO:B = 80 vs. H1:|0-60|
A 00 by using the region B < ltnl < A as the

> 80 which
is equivalent to H1
region in which sampling is continued.

Two Stage T-Test. Several people have proposed modifications to

the t-test that require an initial number, Ny, of observations.
Govindarajulu's [36] Minimum Probability Ratio Test (MPRT) is equivalent
to Anderson's modification to the SPRT only for the case where the vari-
ance is unknown. For the case where a = B, Govindarajulu defines

-2/(n

CnO = (no - [(2a)

~13

T (2.21)

His procedure consists of the following:
A. Take n, initial observations and compute Sﬁ as defined in (2.20).
0

B. For each observation n > Ny after observing the response X stop

sampling as soon as

2 2 - SO
§| T (x; - 6/2)|/s, >cC - n8°/4s , n>ng (2.22)
i=1 I "0
n
C. Decide in favor of H. if ¥ (x, - &§/2) < 0.
0 i
i=1
n
D. Decide in favor of H, of ¥ (x, - &§/2) > 0.
1 g 2 |

n
E. Continue sampling if §| I (xi - 6/2)|/S2 - néz/ésﬁ "
1=1 "0 0

In the case where o # B, the procedure may still be used by replacing

2¢ with a + B in (2.21). Govindarajulu's procedure could be further

vt o i et i
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modified by computing Cn and Si after each observation.
0 0
Baker (9) as modified by Hall (24) has proposed another two stage

procedure that will be discussed further in the next chapter.
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CHAPTER III

DEVELOPMENT OF METHODOLOGY

Introduction
This chapter will present a formalized procedure for building a
factorial experiment with the goal of reducing the required sample size

without reducing the amount of information obtained from the experimen-

tation. This information may include data about the significance of the
various factors, the levels of significance, or the probabilities of
making a type I or type II error. The method developed by Russ involves
minimizing the expected additional system cost (EASC) given by

N

i EASC=C,+ L C,+aC_ +BC
| 0 i=11 a
i

8 (3.1)

where C fixed cost of testing. This can be considered a fixed cost
| independent of the design structure.

N = total number of observations taken.

Ci = sampling cost of ith observation. This cost will be assumed to
; be a constant, Cs’ for each sample taken so the term 121 C1 can
1 be rewritten as NCS.
gi Ca = penalty cost for a Type I error. Assumed fixed for a given

Operational Test.
i a = probability of a Type I error. Set at an acceptable level by
! the test designer.

CB = penalty cost for a Type II error. Assumed fixed for a given

" =
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Operational Test.
B = probability of a Type II error. Set at an acceptable level by

the test designer.

For a given operational test all of the costs in the EASC equation
can be considered as fixed so the equation can be minimized simply by

minimizing the number of observations required to obtain the desired

information.

Basic Assumptions

Since Operational Testing is designed to test one proposed system

against another or against some standard for comparison, the hypothesis

to be tested is of the form:

Ho: B e (3.2)
le T uo
where § = standard for comparison.

Mo population mean for the item being tested.
Operational testing will require that the prototype item exceed the stan-
dard for comparison by a certain margin before the decision to accept the

item is made so (3.2) can be rewritten as:

HO: H - uo =0
le M= U= d €3.3)
where d is the required margin of difference.

Since d will be some positive number, it can be expressed as some constant

multiple of the population standard deviation, also a positive number, and

(3.3) can be rewritten as:




H,: 4 - u. = 60 (3.4)

Given the nature of operational testing, the assumption is also

made that the observed responses will come from a normal population with

unknown mean U and variance 02. The value of 02 may or may not be known
and each case will be treated separately. If 02 is known, the problem
is greatly simplified. If it is not known, a sequential procedure can
be developed but an alternate solution is to obtain some estimate of 02
as soon as possible. This estimate may be obtained from any prior test-
ing done on the system, from comparison with a similar type system, or
from the results obtained in OT I and then used throughout the remaining

operational tests.

Variance Known

If the variance is known, the sequential probability ratio test
can be employed to make a decision to either accept the null or alternate
hypothesis or to continue sampling. Since (3.4) is in the form of a
simple null hypothesis against a simple alternate hypothesis, the likeli-
hood ratio test:

AL
n

n
on i
i=

n
b
i=1 (3.5)
F(x,[0,)

1 i'" 0

can be used as a basis for making this decision. The sequential procedure
should include a region for accepting Ho, a region for accepting Hl, and

a region in which the decision to continue sampling is made. For a normal

population:
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" o By 1 2
L= 1 exp (-%( - )2) = 5 n/2 exp(- e z (xi ~u)") €3.6)
i=1 /21 o (2mo®) 20° i=1
and therefore
n
1 i . 2
T exp(- — & (X.-ul) )
in (2mc7) 207 i=1
1 1 . (3.7)
onE expl- = "3 (=, -1.)")
(ZTroz)n/2 202 i=1 0
which reduces to
L M ~H, N (%)
AR = exp L0y 2 (3.8)
on g 4= = 20
The decision rule for the sequential procedure will then reduce to:
1) Stop sampling and accept HO if (3.8) < B
2) Stop sampling and accept H; 1EN@E 8 > A (3.9)
%) Continue sampling if B < (3.8) < A
As stated in Chapter I1I, values of
B -
B=7__"and A = i=p (3.10)
1-a o'

will result in a sequential test with the lesired probabilities of error,
a and B.

Substituting (3.10) into (3.9), taking logarithms, and simplifying
yields the following sequential procedure for a normal population with
known variance:

2 8 n(u1+u0)

log ;1093 + s > in

1) Stop sampling and accept HO if
B

L.-'-"-'-.-.‘-‘ﬂ-‘-.-'-ﬁ-I-I-H-ﬂihilﬁiﬁlliiiﬁnﬁ-n SST——
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2) Stop sampling and accept H, if log — # —=—— < Ix.
1 H17Hg o 2 i
3) Continue sampling if
2 n(u,+ud 2 WL+
b e e el
L i B
where “0 is as hypothesized in (3.4) and ul = UO + 8o

Variance Unknown

If the variance of the normal population is unknown, the problem
is considerably more difficult since the likelihood ratio (3.8) will
depend on the value of the unknown variance. If a reasonable approxima-
tion to the variance can be obtained, a sequential probability ratio test
can be performed that will closely approximate the test for the variance
known case. In most cases, this approximation will not be available. Use
can then be made of the fact that a random variable formed as the ratio
of a N(0,1) variable to the square root of a chi-square variable divided
by its degrees of freedom follows a t distribution.

Under the assumption that the response variable, Xi’ comes from a
N(u.ﬂz) population, the sum of n observed responses will follow a

N(u.noz) distribution and the statistic
Z=(X-wlo//n (3.11)

will follow a N(0,1) distribution. A chi-square random variable with n
degrees of freedom is the sum of the squares of n independent N(0,1)

variables so the quantity
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M B

((X1 - u)/o)2 (3.32)

i=1

will be distributed as chi-square with n degrees of freedom and the t-

statistic proposed by Govindarajulu in (2.20) can be formed.

The procedure of Baker [9] as modified by Hall [24] incorporates

the required margin of difference, §, in the formulation of the test

statistic

n
r(S) = (85 (x, - 6/2)/S.  (a>np) (3.13)
e i o %

in the proposed two stage procedure. Baker develops the following as

appropriate upper and lower bounds to the sampling region:

—2/n0—1
a = %(no-l)(a

-1) (3.14)
0

—Z/no—l
- _!, = -
bn = z(no 1) (B 1) (3-15)

0

The sequential procedure for the variance unknown case then

reduces to:

A. Observe the first no observations of the response variable, X{sXys

“ s %

=
B. Computg the quantities:
- no
xn0= 151 xi/n0 (3.16)
and
si = ;O (e, = % )2/(n0—1) (3.17)
0 i=1 0
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C. For each observation n = no, after observing Xn:

1. Stop sampling and decide in favor of HO ) i I

n )<bn

0 0
2. Stop sampling and decide in favor of H, if r (S" ) > a_ .
1 n 0 N,

SNND N

3. Continue sampling if b < r (82 Jo< a .
n, nng n,

The modification of recomputing S2 s 2 and b after each obser-
"o "o %o
vation may be easily incorporated into the procedure. This test would
2
then be equivalent to the SPRT (0 known) with wider boundaries to

2 .
account for the fact that 0 is unknown but the boundaries would converge

to the SPRT boundaries as n becomes large.

Solution Procedure

The proposed solution algorithm combines the sequential procedures
just developed with a plan for systematically building a factorial experi-
ment in order to obtain as much information as possible from the experi-
ment in as few observations as poséible. Use is made of screening
experiments in building the full factorial in order to eliminate unneces-
sary control variables from future experimentation.

The first step, once the requirement to conduct operational testing
is received, is to determine which variables can be expected to affect the
response to be measured and how much they can be controlled. This will
set the size of the full experiment. Once the number of observations
that can be developed by assuming that higher order interactions are
negligible in order to fractionate the full factorial. Once the first
fraction is run, a sequential analysis is performed to determine if fur-
ther experimentation is necessary. If it is, the second fraction, with

all signs reversed, is run and the sequential procedure is repeated. In




ianh b, $95. o b AN

»
46
§ addition, analysiz of the effects due to the various factors is pertormed
to determine probable significance of effects. From this point on, ecach
i successive fraction is examined based on changing signs for appropriate
i
¥ tactors in order to isolate those tactors of interest. In case there
i are no factors or interactions of specfal intervest, a heuristic approach
:
| would he to change the aigns for the major factors proven to be signifi-
4
1 cant to obtain as much information about them and their two factor
interactions,  Experimentation is terminated as soon as one of the sequen-
i tial boundaries is crossed and a decision is made to accept one or another

of the hypotheses. At this time, an analysis of varviance can be pertformed
to determine which effects are or are not signiticant.
The tormalized algorithm is as follows:
1) Determine the variables of interest and the levels each are to be
examined at,
2) Determine the number of observatfons that can be made under homogencous
conditions,
D Determine the generating relationship to tractionate the full factorial
expetiment =o that the number of observations in a block, NGy is less
than or equal to the number determined in ) above,
4 Determine requived input data and parameters:
a)  Acceptable levels of type 1 and tvpe 11 errors, o and (.
B Required difterence margin, o,
: ¢)  Actual value of an estimate for varfance of the response varfable
it possible,

d)  Hypotheses to be tested.,

M) Plek one of the blocks at random and perform the experfmentation.
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6)

7)

8)

9

10)

11)

12)

13)

14)

15)
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If the value of the variance is unknown or if there is no reasonable
estimate for the variance, go to 8. Otherwise continue.

Perform sequential analysis using the sequential probability ratio
test since the variance is known. If the SPRT results in a decision
to stop sampling, go to 1l4; otherwise, go to 9.

Perform sequential analysis using the sequential t test since the
variance is unknown. If the sequential t test results in a decision
to stop sampling, go to 14; otherwise, continue.

Perform the next block of experiments with all signs in the first
block reversed. If the variance is known, go to 10. If the variance
is not known, go to 11.

Perform sequential analysis using the SPRT. If the decision is to
stop sampling, go to 14. If not, go to 12.

Perform sequential analysis using the sequential t test. If the
decision is to stop sampling, go to 1l4. If not, continue.

Perform a screening analysis of the effects due to the main factors
in order to determine relative significance of main factors and
combinations of two-factor interactions.

Determine factors and interactions of interest and perform the next
block of experiments found by switching the signs in the column for
the factor of interest. If the variance is known, go to 10. If the
variance is not known, go to 11.

Perform an ANOVA to determine the level of significance of all factors
of interest. Eliminate non-significant factors from further testing
by setting them at some common level.

If sequential analysis does not result in a decision in favor of one
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hypothesis or another, stop sampling and perform an ANOVA after one
observation has been made at each treatment combination.
The proposed methodology will be illustrated in the next chapter
by means of an example based on an actual operational test and the

sensitivity of the input parameters demonstrated.

i
3
£
§
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CHAPTER 1V

DEMONSTRATION OF THE APPROACH

Introduction
This chapter will present an example of the methodology developed
in the previous chapter. Hypothetical results from an Operational Test
are presented and analyzed in the classical manner currently employed.
Then the proposed methodology is applied to the same results with a
reduction in the sample size required to gain the same information from
the data. Sensitivity analysis of the input parameters and basic assump-

tions are also performed to demonstrate the robustness of the procedure.

Background

The Commander, U.S. Army Operational Test and Evaluation Agency
(OTEA) has been given the requirement to conduct Operational testing to
evaluate the overall effectiveness of the new Artillery Locating Radar,
AN-TPQ-37, designed as a replacement for the system currently in use.

The test plan calls for testing several different performance
aspects of the Artillery Locating Radar (ALR), one of which is its ability
to detect hostile artillery fire. Since the radar cannot locate hostile
artillery unless it first detects it, the most critical issue for this
test is the percentage of hostile artillery rounds detected. The manu-
facturer has determined that five factors should influence the performance
of the radar. They are the threat array employed by the enemy, the use

of electronic counter measures (ECM) by the enemy, the rate of hostile

SR —
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fire, the range from the ALR to the enemy threat, and the sector the ALR
is searchir ;. All of these factors can be set at two levels except for
the threat array. That can be set at one of four levels to represent

the typical composition of enemy artillery units that the ALR is likely

to be deployed against. Since four is a multiple of two, the threat

array factor can be represented as two pseudo-factors each with two levels
and the entire experiment can be represented as a 26 factorial experiment.

The six factors and the levels of each factor are shown in Table 9.

Table 9. Factors in 26 Factorial Experiments

Factor Low Level High Level

A - ECM Not Employed Employed

B - Rate of Fire Slow Fast

C - Range Short < 10,000 KM Long > 10,000 KM

D - Sector Narrow (* 15° of center Wide (15-45° of center)

E - Threat Array I I1

F - Threat Array DL AL b Vet e s o S e,

Where THREAT ARRAY I 1 enemy battery

II = 2 enemy batteries
ITI = 1 enemy battalion
IV = 2 enemy battalions

The Commander, OTEA, has stated that the ALR be tested by deter-
mining the percentage of hostile artillery round detected from firings

taken at each of the 64 possible treatment combinations. The analysis
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method used will be Analysis of Variance (ANOVA) with all third order
and higher interactions assumed to be negligible and pooled to form an
estimate of the error. The standard for comparison is the current
system which is detecting 50% of all hostile artillery rounds. The
measure of effectiveness employed will be the percentage of rounds
located. The principle purpose of the test will be to determine whether
or not the mean percentage of rounds detected by the ALR exceeds the
current system by some multiple of the standard deviation. It is assumed
that the percentage of rounds detected comes from a normal distribution
with unknown mean, u, and variance, 02. Therefore, the testing will
consist of a test of H.:u = u. vs. H,:u = UO + 80, where § is some

0 0 1

positive constant.

Classical Methods

OTEA conducted test firings at all 64 treatment combinations and
determined the percentage of rounds detected from each firing. Time limi-
tations precluded any more than eight test firings per day so a 26_3
resolution IIT design with I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF
as the generating relationship was used to fractionate the design and
then the eight different blocks were fired in random order. The results,
percentage of rounds detected, and the ANOVA for the entire experiment
are shown in the appendices. The results of the ANOVA indicate that only

the factors relating to ECM, rate of fire, and sector of search are sig-

nificant so OT IT should be conducted using only those factors.

Proposed Methodology

Using the same data and restrictions as in the actual OT I, the
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following example will illustrate the proposed sequential procedure.
The first eight observations are obtained from the block gene-
rated by I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF and consists of
treatment combinations def (37), af (36) be (40), abd (87), cd (61),
ace (34), bef (46) and abcdef (89) where the values in parentheses
represent the observed response for that treatment combination. Based
on these observed responses, § = 1, a = .10, and f = .10, the following

computations are performed:

y = 430/8 = 53.75 (4.1)

52 = 3635.5/7 = 519.35 (4.2)

Ag = L7y 172721y = 3.26 (4.3)

By = -5 (.17/71) = -3.26 (4.4)

rg(5e) = 8(I(x; - 8/2))/s5 = 426/519.35 = .82 (4.5)

Since 88 < r8(S§) < AS’ the decision is made to continue sampling.

The alias structure for this 26-3 resolution ITII design is shown
in Table 10. Assuming that all third order and higher interactions are
negligible, each major factor is aliased with two two-factor interactions.
In order to separate the main effects from their aliased two-factor inter-
actions, the next block run will be the same as the first but with all
signs reversed. The defining relationship for this block will then be
I = -ABD = -ACE = -BCF = BCDE = ACDF = ABEF = -DEF. The block consists
of the following treatment combinations and their observed responses:

abe (69), bede (56), acdf (67), cef (10), abef (69), bdf (56), ade (75),
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Table 10. Alias Structure for ZIII Design
Factor ALIASES
I ABD ACE BCF BCDE ACDF ABEF DEF
A BD CE ABCF ABCDE CDF BEF ADEF
B AD ABCE CF CDE ABCDF AEF BDEF
C ABCD AE . BF BDE ADF ABCEF CDEF
D AB ACDE BCDF BCE ACF ABDEF EF
E ABDE AC BCEF BCD ACDEF ABF DF
F ABDF ACEF BC BCDEF ACD ABE DE
AF BDF CEF ABC ABCDEF CD BE ADE
1
!
E and (1) (24). Sequential caiculations result in the following:
!
j v = 856/16 = 53.5 (4.6)
; s = 502.4 4.7)
j 516 . (.
Al6 = 2.69% , B16 = -2.695 (4.8)
r. (%) = 848/502.4 = 1.69 4.9)
16°16 bt Vs
| Since B,, < r (92 ) < A the decision is made to continue sampling
1 16 16 16 16° : s i
! Before the next block is run, however, an analysis of the results
obtained so far is performed. The results are shown in the appendices.
‘ Based on the relative magnitude of the effects, it would appear that
factors A, B, and D were significant while factors C, E. and F were not.
Since the largest interaction term is due to BD and CE, it is also

N— —
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possible that the BD interaction is significant. Since the decision has
already been made to continue sampling, the next block run will be the
same as the first block except that all of the signs in the column for
factor B will be reversed. This will isolate factor B and all of its two
factor interactions and will provide a better estimate of whether or not
the BD interaction is significant.

The third block then consists of the following treatment combina-
tions and their observed responses: bdef (67), abf (74), e (*™, ad (66),
bed (67), abce (72), cf (11), acdef (75). The sequential calculations

result in the following:

y = 1298/24 = 54.08 (4.10)
s2 = 563.99 (4.11)
24
Ay = 2.55 Bag = =2.55 (4.12)
rza(s;) = 1286/563.99 = 2.28 (4.13)

Since B24 < rza(Sga) < A24’ the decision is made to continue sampling.

An analysis of the results of the data from the third block is shown in
the appendices. Once again, factors A, B, and D appear to be significant
while the BD interaction is still in doubt. After the second block, the
effect in question was due to the BD and CE interactions so it is possible
that this was due to the CE rather than the BD interaction. Since the
decision has been made to continue sampling, the next block run will
change the signs in the column for factor c¢ to isolate factor c¢ and its
two factor interactions. This block contains the following treatment

combinations and observed responses: cdef (48), acf (41), bce (30),
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abed (95), d (57), ae (46), bf (31), and abdef (86). The sequential
calculations result in the following:

y = 1732/32 = 54.125 (4.14)
52 = 550.31 {(&.15)
32 3 4
A32 = 2.48 - B32 = -2.48 (4.16)
2

r32(832) = 1716/550.31 = 3.12 (4.17)

Since r32(S§2) > A32g the decision is made to stop sampling and accept

Hl:u =¥, + 80 = 50 + 0. This means that the ALR has performed better

to date than the current system. The analysis of the data from the
fourth block is shown in the appendices. Once again factors A, B, and
D appear to be significant while the CE interaction does not. Since the
decision has been made to stop sampling, the recommendation made at this
point would be to perform OT II using only the factors for ECM, rate of
fire, and sector. The other factors would be set at some acceptable
standard level and left there.

An interesting sidelight illustrated by this example is the
process of collapsing a design in k variables to a smaller design in
p < k variables by eliminating non-significant variables from
consideration. To illustrate this procedure, the experimenter was
relatively sure that the variables C, E, and F were not significant after
the second block of eight experiments had been performed and the screening
analysis conducted. Had the decision been made to eliminate those vari-

ables from further consideration at that point by setting them at some




standard level, the next blocks of eight experiments performed would
consist of a replicated 1/2 fraction of a 23
cant variables A, B, and D. This is shown in the table of plus and
minus signs in Table 11. 1In addition,

replicated full factorial in the three factors A, B, and D.

Table 11. Collapsed Design in Three Variables

factorial in the signifi-

the two blocks combined form a

This section will demonstrate how the conclusions reached in the

BLOCK 3

Treatment Treatment

Combination A B D Combination B D
bdef - + + cdef = F
abf + + _ . acf = =
e = = =R bce + =
ad * = + abced - > +
bed - + + d - +
abce + & — ae = =
cf = = = + =
acdef H = +  abdef + +

Sensitivity

sequential analysis would vary should any of the input parameters be

changed.

o and B

Table 12 shows the different decisions made if the probabilities

of Type I (a) and Type IT (B) errors are changed.

appear to be intuitively correct.

These results would

As the values for a and || are increased
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the boundaries for making a decision come closer together since the
experimenter is more willing to make an error while for smaller values
of @ and B, the boundaries are farther apart because the experimenter is

willing to make an error.

Table 12. Sensitivity of a and B Errors

a,B n = no. of Observations AN’BN rn(Si) Decision
.05 8 4.74 -4.74 .82  Continue
16 3.68 -3.68 1.69 Continue
24 3.42 -3.42 2.28 Continue
32 3.30 -3.30 3.12 Continue
.15 8 2.52 =2.52 .82 Continue
16 2.1§ -2.16 1.69 Continue
24 2.06 -2.06 2,28 Stop-Accept Hl
32 2.02 -2.02 3.12 N/A
.20 8 2.04 -2.04 .82 Continue
16 1.80 -1.80 1.69 Continue
24 173 =L.73 2028 Stop-Accept Hl
32 1.70 -1.70 3.12 N/A

Sequential Parameters

The sequential procedure employed involves recomputing An s Bn s

0 o
and Sﬁ after each block of observations. Table 13 shows the change
0
in the results if this modification is not employed by using the values
AS = 3.20, 88 = =3.26 and Sg = 519.35 throughout the sequential analysis




Table 13. Sensitivity of Input Parameters

2

mw Sn rn(SS) Decision rn(Sn) Decision
8 519.35 .82 Continue <82 Continue
16 502.4 1.63 Continue 1.69 Continue
24 563.99 2.48 Continue 2.28 Continue
32 550.31 3.30 Stop-Accept H 3.12 Continue

1

or is only partially employed by using the values for A8 and B8 through-
out but recomputing Si after each block. Eliminating the convergence of
the boundaries as more samples are taken results in the decision to con-
tinue sampling after 32 samples have been taken but would result in the
decision to stop sampling and accept Hl after the next block of eight
for a total of 40 samples.

Improvement Required (&)

This example was run with the new system required to outperform the
old system by a factor of one standard deviation. This value was arbi-
trarily selected by the test designer. Table 14 shows the changes in

the decision making procedure as a result of changing the value of &.

Variance Known

The preceding example illustrated the sequential analysis procedure
when the observations were assumed to have come from a normal population
with unknown mean and variance. In many real life cases, there may be
some prior data available so that a good estimate for the variance may

be obtained. Assuming that the previous testing had been conducted, the
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Table 14. Sensitivity of §
: 2
i
! n 8 rn(Sn) Decision
: 8 5 L41 Continue
* 1.5 1.22 Continue
,E 2.0 1.63 Continue
P 16 .5 .85 Continue
i 1.5 2.52 Continue
i
% 2.0 3.34 Stop-Accept
E!
24 o9 e [t Continue
1.5 3.40 Stop-Accept
Hl
32 5] 157, Continue
MSError = 52.35 could be used as an estimate of the variance for future
testing. The problem then resolves to testing HO:U = 50 vs. Hl:u =50
+ 10 = 57.2 and the Sequential Probability Ratio Test can be employed.
ix Using o = B = .10, the boundaries for the SPRT become:
B 1
= = —= 4.
B Io 9 14 (4.18)
O G
0 1 9 (4.19)

As shown in Chapter II1I, the SPRT consists of the following:




o0

1Y Continue sampling as long as

]
o nQ! 4\1” p n(p,H )

log B : % % ¥, log A 4
(B . 2 i - '
s Wla Lot Tl

which reduces to

52. 3! 3 o2 . 3¢ 3e 07.2
v’ "\ log .11 4 ll(l(‘/ ) < 3 .i ’ \/ ‘\ n(l )

=16.05 + 53.6n < 3 \'i < 15.98 4+ 53.6n.

J) 0 sStop sampling and accept "l) RE 8 Yy ~16.05 + 53.6n.

1) Stop sampling and accept H‘ £k % \" > 15,98 + 53.6n.
Applving the SPRT to the data tvom the previous example results

in the tollowing:

1) After eight observations:

) vy < 430 (4..20)
““i = =16.05 + (53.6)(8) = §12.75 (4.21)
/\‘q = 15.98 4+ (53.6)(8) = 444.78 (4.22)
Since “.‘i €2 \" < 1\3, the decisfon to cont fnue sampling is made.

2 AMMter sixteen observat{ions:

P \’l = 8506 (4.23)

"“ = «-16.05 + (53.6)(16) = 841,55 (..24)
)

:\“‘ = 873,58 (4.2

Since B._< L y, < A the decision to cont inue sampling {s made.
1o ! 16




3) After 24 observations:

z s 1298 (4.26)

Bz4 = (-16.05) + (53.6)(24) = 1270.35 (4.27)

A24 = 15.98 + (53.6)(24) = 1302.38 (4.28)

Since B24 <O Y4 < A24’ the decision to continue sampling is made.

4) After 32 observations:

T y; = 1732 (4.29)
By, = =16.05 + (53.6)(32) = 1699.15 (4.30)
By, = 15.98 + (53.6)(32) = 1731.18 (4.31) |

Since ¥ vy > A32, the decision to stop sampling and accept Hl is
made. The Sequential Probability Ratio Test resulted in the same deci-
sion after the same number of observations as the sequential t-test.

An explanation for the fact that the test did not terminate sooner when
the variance was assumed known can be found in the fact that the mean

of the 64 observations used was 53.25 which is close to half-way between
the two hypothetical values of 50 and 57.2 and the SPRT performs best at
values near the hypothesized values and worse at values close to the
mid-point of the hypothesized values. 1In spite of this fact, the SPRT

still terminated in half the number of observations required by the

classical methods currently employed.
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CHAPTER V
RELATED APPLICATTIONS

Introduction
The proposed methodology developed in Chapter III was applied to
a specific situation in Chapter IV. The situation described in Chapter
IV, although specific in nature, was really taken from a general class
of problems, 7= factorials, to which the methodology may be applied.
This chapter will present several highly specific procedures which may
be combined with the proposed methodology in certain situations to gain

even more benefits from the procedure.

Major and Minor Variables

In many situations, prior knowledge of the system or of a similar
system may allow the experimenter to determine which factors will defi-
nitely make a significant contribution prior to the start of experimen-
tation. There may be several other factors about whose contribution the
experimenter is unsure and, therefore desires further information. By
classifying the a priori significant variables as major variables and
the remainder as minor variables, use can be made of the properties of
blocking a factorial experiment to gain more information from the
experiment. Generally, the experimenter will desire an estimate of the
main effect and all interactions for the major variables but he will be

willing to assume that all interactions involving minor variables are

negligible so will only want an estimate of the main effect for the minor
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variable. The procedure involving major and minor variables is sbecific
in that it requires a resolution IV design blocked into a number of
blocks equal to the number of major variables. By associating each
major variable with a block and the minor variables with the experi-
mental variables, significance of a block effect will indicate signifi-
cance of a major variable and an effect due to an interaction between
blocks will indicate an interaction between major variables. It may be
that an estimate for an effect will involve a combination of a major
variable and some number of minor variable interactions but this situation
poses no problem since the experimenter has assumed that all order inter-
actions involving minor variables are negligible. A specific example of
the use of major and minor variables is the 28-4 resolution IV design
which can be used to investigate eight minor and three major variables.
Since the design contains 16 points, the first step in constructing the
design matrix is to write down a full 24 factorial design in four of the
minor variables. The remaining four minor variables are then expressed
as three factor interactions of the first four variables and the major

or blocking variables are expressed as two factor interactions of some
pair of minor variables. The design matrix for this design is shown in
Table 15. The design is then separated into eight blocks of two runs
each by combining the treatment combinations that have the same signs on
B

and B,, i.e., the sets (-,-,-), (+,-,-), (=,+,-), (+,+,-),

) e BZ’ 3’
(-,-,4), (+,-,4), (-,+,+), and (+,+,+), to form the eight blocks. One

interesting thing to note when the treatment combinations are paired in

this manner is that the two treatment combinations in the same block

have opposite signs for every factor.
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Table 15. Design Matrix for Major and Minor Variables
Minor Variables ) Major Variables :
A B C D E-ABC F=ABD G=ACD H=BCD B,=AB B,=AC B,=AD :
- - - - - - - - + + +
+ - - = + + + - - - -
- + - - + + - + - + +
+ 4 - - - = + + + - -
LR S + - + + + - +
1
+ - + - - + = + - + -
; - + + - - - + - - - + f
| + + + - + = = - + + - '
: - - - + - + + + + + -
|
i + - - + + - - + - - +
- + - + + - + - - + -
+ + - + - + - - + - 4
it - - + + + + - - + - -
+ - + + - - + - - + +
- + + + - - - + - - -
+ + + + + + + + + 4 +

Sequential Factorial Estimation

In certain cases, the experimenter may desire further information
about the model that represents the system under investigation. For an

experiment involving P variables and assuming that all third order and

higher interactions are negligible, the general model can be written as:
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P P
El¥y) B+ % 6. % +% I B, . x X, (5.1)
0 i=1 2 1> j=i 3 4 3
Least squares estimates of all of the coefficients, R's, in the model

can be obtained from

B = (x'x)-lx'y (5.2}

r—'A ey

B9
where B = Bl X=14§1 D

BP
812
Bp-l p

b et

D = design matrix of experiment and y = column vector of observations
as long as the number of observations is greater than or equal to the
number of coefficients for which an estimate is desired. On the high
speed computers available today, equation (5.2) can be evaluated quickly
and easily.

Hunter [31] has developed a similar method where the computations
may be made easily on a hand calculator in case the experimenter does
not have ready access to a computer. His method requires that:

1) The model contain no more than q < N coefficients and an experimental
design containing N experiments has. been completed.
2) The estimates provided by prior blocks must be mutually orthogonal

O

with variance equal to N




3) The added row vectors must be row-wise orthogonal (r

Conditions 2

q = N.

Once

mates of the

on, Hunter's

mates of the

where:

*
B =
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Irj = 0 for i#j).
and 3 above are satisfied by a Zk_p factorial design if

an initial block of N runs has been obtained, initial esti-

coefficients can be obtained from equation (5.2). From then
Predictor-Corrector equation can be used to update the esti-

coefficients after each run. The P-C equation is given by:

5 m

P o= Brohe a0 5.3

(q X 1) vector of revised estimates.

(q < 1) vector of estimates provided by prior block(s).

number of runs in a block.

n = number of runs completed in current block.

q = number of coefficients in the model.

m = number of blocks of N runs completed.

13
£, = (1 X q) row vector in matrix of independent variables
associated with ith experiment i = 1,2,...,n < N.
s
Yy = new observation associated with ri.
A T th
Yy = %y B = predicted response for i experiment.
Once the initial estimates, B, have been obtained, they are used

*
throughout the next block. The revised estimates B are computed after

each experimental run using the B computed after the previous block. The

estimates, B, are updated after each complete block is finished and the

updated estimates are then used throughout the entire next block. The

variance of each revised estimate can be obtained from:

* i n &
V(b ) = N (L = l_n-ﬁ;a](’ (5.4)




where 02 is the population variance and m, N, n, q are as defined
previously. The procedure requires computing the inverse of a matrix
only after the initial block of N observations have been made.

This procedure is particularly useful when, for some reason, it
becomes impossible to complete the experimentation. The change (increase)

in the sum of squares due to error (deviation) for each experimental run

can be computed from

mN

ASSD = {5::5)
m

so that the analysis of variance table can be updated at the completion
of each run. This provides the experimenter with a valid ANOVA table in
the event that a complete block of N experiments cannot be completed.

The complete ANOVA after m blocks of N experiments is:

Source Ss DF
mN 2

SSY = Crude SS LY, mN
i=1 *
mN

SSR = Regression SS b3 §? q (5.6)

i

i=1
= 2

SSD = Error SS I (yi - 3.) mN-q
i=1 5

To satisfy the requirement that q = N it may be necessary to
introduce some slack variables. The easiest way to do this is to pick
some higher order interaction(s) that may be of interest and include
them in the regression model so that an estimate of their coefficients

will also be obtained. An example applying this procedure to the data




from the example in Chapter IV is shown in the appendices.

Blocking Fractional Factorials

In the example illustrated in Chapter IV, each set of eight experi-

ments consisted of a 1/8 fraction of the full 26 factorial. After two

sets of eight experiments had been performed, the experimenter had, in
effect, performed a 1/4 fraction of the 26 in two blocks and the experi-
ment could be analyzed as such at this point.

To illustrate this procedure, consider the first two sets of eight
experiments performed in the example in Chapter IV. They now form a 1/4
fraction of the 26 or a 26_2 with generating relation I = BCDE
ABEF. The alias structure for this design is shown in Table 16. Since
there are two alias sets containing only three factor interactions, one
of these is confounded with the two blocks run. In this case, the inter-
action ABD and its aliases were confounded with blocks. The eight treat-
ment combinations in the first block performed all contain an odd number
of letters in common with ABD and the eight treatment combinations in
the second block performed all contain an even number of letters in com-
mon with ABD. The experimenter, in performing an Analysis of Variance at
this point could then extract one degree of freedom for blocks. An
analysis of the effect due to blocking could provide the experimenter

with some idea of a training or learning process or an effect such as

weather that may be having an effect from block to block.




Alias Structure for 26-2

with T = ABEF
I BCDE ACDF ABEF
A ABCDE CDF BEF
B CDE ABCDF AEF
C BDE ADF ABCEF
D BCE ACF ABDEF
E BCD ACDEF ABF
F BCDEF ACD ABE
AB ACDE BCDF EF
AC ABDE DF BCEF
z AD ABCE CF BDEF
é AE ABCD CDEF BF
g AF ABCDEF CD BE
| BC DE ABDF ACEF
BD CE ABCF ADEF
ABC ADE BDF CEF

'} ABD ACE BCF DEF
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Limitations of the Research

This research is limited in application to univariate response
models. It is assumed that the response comes from a normal population
with unknown mean, i, and variance, 02, which may or may not be known.
The approach is demonstrated only fcr a & factorial experiment that is
fractionated into a Resolution III design but is easily extended into
a factorial experiment where the factors take on any number of levels
as long as the full factorial can be fractionated into a Resolution III

or higher design.

Conclusions
This research accomplished three objectives:

A. An approach to systematically building a factorial experiment through
the use of screening experiments was demonstrated. This allows tae
experimenter to obtain as much information as possible from a fixed
set of resources.

B. A method of sequentially analyzing the data from a fractionated
factorial experiment was demonstrated. This allows the experimenter
to obtain a fixed amount of information from a reduced set of resources.

C. The proposed methodology combined the above two methods to systemati-
cally build a factorial experiment while conducting a sequential
analysis of the data at the end of each block of the factorial

experiment. This allows the experimenter to gain the maximum amount
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of information from a minimum amount of resources.

Recommendations

Although this research considers only a univariate response model,
operational testing often involves the testing of several Measures of
Effectiveness (MOE). Therefore, it is recommended that future research
in this area be directed at the development of a methodology to handle
the case of multiple response models.

This research also was demonstrated only for a 2" factorial
experiment. Future work in the area should be directed at applying the
methodology to experiments in which the factors appear at other than two
levels or to other than factorial experimental designs.

As the results of more operational tests become available, it is
recommended that the U.S. Army Operational Test and Evaluation Agency
apply the proposed methodology to the completed test data as a further
test of its validity and worth as a viable analysis method for their

eventual adoption.
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APPENDIX A

DATA FROM THE FULL 26 FACTORIAL EXPERTMENT AND

ANALYSIS OF VARIANCE TABLE

This appendix contains the data from the full 26 factorial experi-

ment and an Analysis of Variance Table for the entire data set.

Data from the Full 26 Factorial Experiment

(1) 24 e 10 f 18 ef 18
a 38 ae 46 af 36 aef 34

b 33 be 40 bf 3L bef 32
ab 56 abe 74 abf 74 abef 69
c 15 ce 3 cf 11 cef 10
ac 42 ace 34 acf 41 acef 43
be 34 bce 30 bef 46 bcef 39
abc 69 abce 7.2 abef 47 abcef 44
d 57 de 53 df 45 def 37
ad 66 ade 75 adf 66 adef 60
bd 79 bde 70 bd f 56 bdef 67
abd 67 abde 83 abdf 88 abdef 86
cd 61 cde 49 cdf 47 cdef 48
acd 78 acde 72 acdf 67 acdef 75
bed 67 becde 56 bedf 65 bedef 70
abed 95 abcede 89 abedf 82 abedef 89




14
Analysis of Variance Table for the Entire Data Set

ANOVA
pource 88 DF . _«F0<_7
ECM 8695. 56 I 8695. 56 180. 5**
Rate of Fire 6201.56 1 6201.56 128, 7%%
Range 1.00 1 1.00 SO
Sector 14460. 06 1 14460. 06 300. 2%*
Threat Array* 286.375 3 95.46 1.98
Error 2697 .445 56 48.16
Total 23342. 63
* +

SS = S§S s S

SThreat Array E k'QF * SgEF

Kk
Significant at 1% level.




APPENDIX B
SCREENING ANALYSIS

This appendix contains an analysis of the results after each
block of eight experiments was run and a comparison of the effects to
determine relative significance.

A. Block 1: B. Block 2:
A + BD + CE 62/3 = 20.67 i -A + BD

A
B + AD + CF 31233 lé -B + AD
C + AE + BF 10.00 Ré =G + AR
D + AB + EF 39.33 26 -D + AB
E + AC + DF = -10.00 lé -E + AC 2.00
F + BC + DE ~4.67 Zé -F + BC + DE 733

CD + BE + AF = 4.00 QéD = CD + BE + AF = 18.67

€. Block 1t G«  Block 2

i ' = L
Z(Qi + 21 (Ki Qi)

BD + CE 12.00
AD + CF 333
AE + BF 8.67
AB + EF 6.00
AC + DF = -4.00

BC + DE L33
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00

00

3533

D. Block 3:

Q: = A - BD + CE = 44.00
Q; = -B + AD + CF = -39.33
iy = C + AE - BF = 2.

z; =D - AB + EF = 36.00
Q; = E 4+ AC + DF = 2.

Q; = F - BC + DE = 4.

22D = CD = BE + AF =

D. Blocks 1 and 3:

L. A1)
St i

A + CE = 32.34

AD + CF = -4.00

C + AE = 6.34
D + EF = 37.67
F + DE = -.34

CD + AF = 3.67

E. Block 4:

QA = A+ BD - CE = 34.00
Ré = B+ AD - CF = 16.67
lé = -C + AE + BF = 2.00
QB =D+ AB + EF = 46.00
Qé = E - AC + DF = -4.67
' = F - BC + DE = -7.33

F

' = -
QCD CD + BE + AF

-2.00

BF

AB

BC

BE

]

-11.67

35383

367

1,67

-4.34

.34

76




AE + BF =

o i At G S

AR S o A b i e 2SI

i
i

F. Block 1:

'
e Qi

= 27.34

24.00

6.00

+ EF = 42.67

-7.34

-6.00

1.00

C = 4.00

H. 0. TERMS
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APPENDIX C

SEQUENTIAL FACTORIAL ESTIMATION

This appendix applies the sequential factorial estimation procedure

LGt it

discussed in Chapter V to the data from the example used in Chapter IV in
i order to demonstrate its use.
A. After the first block of eight observations is made, estimates for

i the coefficients in the model:

: y = b0 + blA + sz N b3C or b4D + bSE et b6F 45 b24BD (G 1)

can be obtained from the equation

é = (x'x)_lx'y (C.2)

For the first block of eight observations,

!-_1-—1 A {fet S i : r--3;-1
1 1 L LA R, 36
X = = 1 G | I =L =i . y =| 40 (C.3)
1 R SR (e 1 R R § 87
e 1 L=t =l =l 61
1 I =1 1 -1 L =l L 34
L=l 1 Ero=L =l 1 -1 46
1 1 1 1 11 il I ¢ 89

Resulting in




g

w>
[}

14.

so the fitted model is:

¥ = 53.75 + 7.75A + 11.758 + 3.

25

11.

.75

D

D

S

75

75

75C + 14.75D - 3.75E

- 1.75F + 7.75B

= ; : : =1
Since the variance-covariance matrix, (x'x) is

e
1/8
1/8
1/8
(x'x)"L =
0

1/8
1/8

1/8

1/8

9

(C.4)

(C.5)

(C.6)

all of the coefficients in (C.5) have variance equal to 02/8 and co-

variances zero. The column vector, B, given by C.4 now becomes B as

in equation (5.3) and is used throughout the entire next block.




= e . o

——

80

The ninth observation is taken at treatment combination abc with an
observed response of 69 so the required data for equation (5.3) is
N=8n=1q=8 mn=1, rg = [1,1,1,1,-1,-1,-1,-1], yg = 69,

g o5 B = 60, and B as given in (C.4).

This results in

[57.5 ]

11.5
B = 155 (G 73
T
8.5
0

2.0

11'EJ

so the fitted model after nine observations is

v = 57.5 + 11.5A + 15.5B + 7.5C + 18.5D + 2.0F + 11.5 BD (C.8)

and the variance of the coefficients in (C.8) as obtained from (5.4)
is 15/128 02 but the covariances are no longer zero because the
columns of the design matrix are no longer orthogonal. The co-
variances can be obtained from the approximate entry in the
variance-covariance matrix, (x'x)_l. This procedure would be con-
tinued through the 16th observation. The B* obtained after applying

(5.3) to the 16th observation would become the values of B used

throughout the third block of eight observations.
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