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SUMMARY

This research develops a multistage decision process designed to

obtain the maximum amount of information from the evaluation of a factorial

design while minimizing the amount of resources used in obtaining the

information. The usc of screening experiments in building the factorial

design is investigated in order to maximize the amount of information

gained. The use of sequential analysis procedures to terminate experi—

mentation at the earliest possible time is investigated in order to mini—

mize the amount of resources used. The research is limited to 2
1
~ factorial

- -

designs involving univariate response models assumed to come from a normal

population; however, the procedure can be easily extended to any factorial

design.

The approach is demonstrated for an operational test involving a 2~

factorial design and the results are compared to ~~lassicaI”
4 
procedures. 

- •

The sensitivity of the required input parameters is investigated and related

applications are discussed.

The proposed approach is found to be a viable method of designing,

conducting, and evaluating an operational test involving a factorial

experiment.

d.
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CHAPTER I

INTRODUCTI ON

Background

The goal o f any type of experimen tation is to obtain in fo rmation

about the syst~m under investigation. Naturally, the more information

that  ca n be obtained the better.  Unfortunately, obtaining more inforina—

tion often requires Increased experimentation and the resources available

may become a limiting factor. The shortage of any necessary resource,

whether it be time, money or materials can greatly hinder the conduct of

the experiment and even preclude obtaining the desired amount of informa—

tlon from the experimentation.

Much effort has been devoted to the problem of how to best utilize

the experimental resources available In order to gain the most information

from them. The development of systematic experiments such as factorial

experiments and procedures f or fractional factorial experiments have done

much to improve the use of available resources. Screening experiments

have aided by eliminating needless experimentation involving unimportant

factors. Also, sequential experiments have helped to obtain the desired

information from less resources.

The problem of gaining the most information from limited resources

can be found everywhere. From agriculture to industry to the defense

establishment, everyone is interested in getting the most for their money. 
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Material Acquisition Process

The requirement to maintain a modern , well—equipped Army requires

constant evaluation and reevaluation of existing Army equipment to insure

that it is adequate to fulfill operational requirements. Based on the ever

changing nature of these requirements, the Army is involved in a cOntinuous

process of upgrading its current equipment and procuring new items of

equipment. Basically, the Army satisfies its needs for new equipment in

three ways: buying equipment already developed , evolutionary development

of current standard equipment, and initiation of new material development

programs. All of these procurement methods can be extremely costly in

terms of time, material, and money. As a result, both the Department of

Defense and the Department of the Army have highly structured material pro—

curement policies [7, 181 whose objectives are to min imize the costs in-

cu rred in acquiring material systems while insuring that the performance

• of those systems is adequate to meet operational requirements.

Once the requirement for a new or updated system has been formalized,

the proposed system will go through three phases of development: conceptual

development, validation, and full scale development, before the system

receives approval for full production and purchase by the Department of

Defense.

At the end of each phase, the Defense Systems Acquisition Review

Council (DSARC) meets to provide information and recotmnendations to the

Secretary of Defense. Based on these recommendations, the Secretary of

Defense may decide to cancel further consideration of the system, require

further system evaluation prior to proceeding on to the next stage, or

permit the system to pass on to the next stage of development.



________________ 
~~~~ ‘~~~~~~~~-~- - ~~~_ -- - • - - ~~~~~~~~~~~~~~~~~ - 

-~ - • -

3
/

A t Depar tmen t of the Arm y level, there is a similar adv isory bod y,

the Army Systems Acquisition Review Council (ASARC), whose pr incipal func-

tion is to provide the DSARC with the Army ’s rec ommenda tions concerning

the item of equipment in question .

Testing

To aid the ASARC in its recommenda tions , tes t ing is conducted to

demonstrate how well the material system meets its technical and opera-

tional requirements; provide data to assess developmental and operational

risks for decision making; verify that the technical , opera tional , and

• support problems identified in previous testing have been corrected ; and

to insure that all critical issues to be resolved by testing have been

adequately considered . Two types of testing, Developmen tal Tes ting (DT)

and Operational Testing COT) are conducted . DT is conducted to demon-

strate that the engineering design and development process is comple te ,

tha t des ign risks have been m inim ized , and tha t the system will meet

required specifications. It is performed by the material developer who

then forwards the results to the ASARC .

OT is conducted to estimate the system ’s military utility , opera-

tional e f f e c t iveness, opera tional sui tability, and the need for  any

modifications. OT can also provide data on organization , personnel

requiremen ts, doctrine and tactics for the new system. OT is performed

under the supervision of the U.S. Army Operational Test and Evaluation

• Agency (OTEA) by operational and support personnel of the type and

qualifications expected to use and maintain the system once it is

dep loyed .

As a safeguard and as a fur ther valida tion measure , DT and OT test
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des igns a re prepared and the tes t resul ts are evalua ted independen tly.

The ac tual testing of the item of equipment under DT and OT may, however ,

be conducted concurrently to reduce delays and system acquisition costs.

The rela t ionsh ip be tween the conduc t of the d i f f e r en t phases of test ing

and the mee ting of the Acq uisition Rev iew Councils is shown in Figure 1.

Operational Testing

OTEA serves the following major functions:

A. Insures user testing is effectively p lanned , conduc ted , and evaluated

with emphasis on adequacy, quality, and credibility of all user testing .

B. Ac tively participate in the conduct of and provide independent evalua-

tions of operational tests conducted on selected items of equipmen t .

C. Develop and recommend policy on user testing.

D. Develop and promulgate user test and evaluation methodology.

E. Develop measures of effectiveness and provide estimates on amount

of resources (sample size) necessary to detect differences in military

utility, opera tional e f f ec t iveness , and operational suitability with

a specified confidence level.

Generall y three phases of Opera tional Tes ting are conducted , one

phase prior to each meeting of the ASARC . OT will compare the performance

characteristics of the new system against the current system if it is

designed as a rep lacemen t item , aga ins t a higher level system if it is

designed as a componen t of some larger sys tem , or against a set of perform-

ance standards If the item is totally new to the Army inventory. Due to

the nature of the Items being tested , such as miss i le sys tems or h igh value

items that require destructive type testing, OTEA is often limited in the

number of experimental runs that can be made on an item of equipment. As

_ _ _ _  --~~~ _ -~~~~~~~--~~~~--
_
~~~~ _ -_ _ _ _ _ _ _ - _ _ _ - _ _ _ _ -
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a result , OTEA is very much interes ted in develop ing a methodology for

designing, planning, and evaluating operational tests for a limited

samp le size while , at the same t ime , maximizing the information gained

from the test.

Problem, Objective, Scope

This problem was motivated by a task req uirement presen ted by

OTEA :

Obtaining maximum information from min imum samp le size is an in-
herent and recurring problem in operational testing and has signifi-
cant impact on final evaluations. In designing and conducting
opera tional tests, resource restrictions often dictate a test having
an ex tremely small sample size bu t a number of influencing fac tors
of two or more conditions. This results in a relatively large num-
ber of combina tions , especially considering the number of observa-
tions to be obtained . This study is to investigate the feasibility
of develop ing a method for maximizing the information gained from
a test.

A rela ted problem , tha t of designing , p lanning , and evaluating

opera tional tests of limi ted sample size has alread y been addressed by

Russ (48). In his research, he developed an algorithm for de termining

the optimum constrained sample size for a fu l l  fac torial experimen t based

on a specified amount of information required by the test evaluator .

The objective of this study will be to develop a sequential method of

designing and conducting an operational test in order to gain equivalent

information from an even smaller sample size.

The scope of this research will be limited in the following areas:

A. All factors in the factorial design will appear at only two 1ev - Is

and will be considered as fixed factors. The extension of the problem

to ca ses where the factors  appear at other than two levels will pose

no problems for anyone familiar with the analysis of factorial 

_ --.- -~~~-~~-~~~~~~~~~~ - - - - 5 • • - • •- ”” —•-~~~ 
••
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expe riments.

B. Only univariate response models are considered .

C. The measured response is assumed to come from a normal popula t ion

wi th mean , ii , and variance, ~
2 This would appear to be a valid

assumption in light of the frequency with which it occurs in every-

day situations.

D. The hypotheses to be tested are assumed to be of the form H
0
: 

~~~~

vs. H
1
: j i — i

1 
> d , This assumption is based on the fact that Opera-

tional Testing is generally performed to test the performance charac-

teristics of one system against another system or against a set of

standards. The decision to accept or reject the new system is based

on whe ther or no t the performance charac terist ics of the new system

exceed the old system by a specif ied margin , d, or not.

The research will consist of a review of full and fractional facto—

rial design construction and analysis and sequential analysis methodology.

A proposed sequential method for building a factorial design Is then

developed and app lied to a previously performed operational test to demon-

strate its use in obtaining the same information from a reduced sample

size.

•—• - - • ~_f l__•__ • ••
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CHAPTER II

REVIEW OF OTHER APPROACHES AND RELATED TECHN IQUES

This chapter will present a review of the construction and analysis

of a factorial experiment and will review other approaches to the sequen-

tial analysis problem. Both the case where the variance is known and the

case where the variance is unknown are examined in the sequential analy-

sis review.

Factorial Experiments

Full Factorials

A factorial experiment is the term used to denote the exper imental

design in which all levels of a given f actor ar e combined with all levels

of every other factor in the experiment. In the case where each of the

n factors can be measured at the same number of levels, say m, the experi-

ment is referred to as an m
n 

factorial. For example, in a 2~
’ factorial,

each of the n factors would appear at two levels so there are 2
r~ differ-

ent treatment combinations. In a 2~
I
, the levels of the factors are arbi-

trarily denoted as the high and low levels. Generally accepted notation

is to represent the various factors using capital letters, A, B, C, etc.,

and to denote the various treatment combinations using lower case letters,

a, b, c, etc. The letters present in the treatment combination indicate

those factors appearing at their high level and the letters absent m di—

cate those factors appearing at their low level. For examp le, the treat-

ment combination a denotes factor A at its high level and all other 

~~~~ - • _ — - — -
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factors at their low levels and cd denotes factors C and D at their high

levels and all other factors present in the experiment at their low levels.

The notation (1) is used to represent the treatment combination where all

factors appear at their low levels.

The common representation for the univariate response model for

2
the 2 factorial design is:

~
‘ijk 

= u + + + + Cijk (2—1)

where

~ijk 
= the k

th 
observation at the i

th level of factor A and the

j level of factor B.

= the population mean of the observations.

= effect of factor A at level 1, 1=1,2.

= effect of factor B at level j ,  j 1,2.

= interaction effect of factor A at level i and factor B at

level j.

Ejik 
= error associated with observation

The restriction ~En1~
c~ = = 0 where n .,. number of observations

in the ij cell also applies. This model can easily be extended to n

factors by the addition of appropriate terms.

In the case where njj 
= 1 for all i and j, there is no separate

estimate for error and, in general, higher order interactions are assumed

to be negligible and are pooled to estimate the error. The most desirable

situation is the case where there is more than one observation per cell

and where the number of observations in each cell is the same.

_ _
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The effect due to a factor is defined to be the change in the

response produced by a change in the level of that factor. Interaction

between factors exist when a change in one factor produces a different

change in the response variable at one level of another factor than at

the other level of that factor.

All of the treatment combinations present in a factorial experiment

can be expressed in standard order. The simplest method of writing the

treatment combinations in standard order is the method of signs as demon-

strated in Montgomery (42). This method consists of listing all n factors

as column headings. The first column consists of a total of 2
n alternat-

ing minus and plus signs starting with a minus sign. The second column

consists of alternating pairs of minus and plus signs starting with two

minus signs. The third column consists of alternating sets of four minus

• and plus signs. In general, the column for the ~
th factor will consist

of alternating sets of ~~~ minus and plus signs always beginning with

a set of minus signs until there are a total of entries in that column.

The combinations of minus and plus signs in each row are the treatment

combination represented by that row where the minus sign indicates a

factor at its low level and a plus sign indicates a factor at its high

level. This procedure is illustrated for a 2~ factorial experiment in

Table 1.

• Blocking

In experimental designs involving a large number of trials, It may

be impossible to perform the entire experiment under homogeneous

conditions. In this case, the experimenter may have to perform the

experiment in blocks. In order to separate the full factorial into
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Table 1. Method of Signs for a 2~ Factorial

Treatment
Factor A Factor B Factor C Factor D Combination

— — — — (1)

+ - - - a

- + — - b

+ + - -

— — + — C

• + - + - ac

— + + - bc

+ + + - abc

- - - + d

• + - - + ad

- + - + bd

+ + — + abd

- - + + cd

+ - + + acd

- + + + bcd

+ + + + abcd

IL~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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blocks, the experimenter must decide which effect (5) he is not interested

in or can assume to be negligible. Usually, this is the highest order

interac tion or interactions present. Once this decision is made, a def in—

ing contrast, an expression stating which effects are to be confounded

(not estimable) with blocks, is established . Ricks [251 and Kempthorne

[361 demonstrate several methods for separating the treatment combinations

into blocks. Each block should contain a number of treatment combinations

no greater than the number of experimental trials that can be performed

at on~ time.

Regular Fractional Factorials

In the case of a large number of treatment combinations present in

an experiment, it may not be either physically or economically possible

for the experimenter to obtain an observation at every treatment combi-

nation. However, it is possible to run only a fraction of the experiments

and still obtain the same information as if the entire experiment had been

performed . The general procedure is known as fractional replication.

Box and Hunter [29] list the following as major uses of fractional

factorial designs:

• A. When certain interactions can be assumed non—significant from prior

knowledge, these interactions can be used as generators in the sepa—

ration of treatment combinations into their respective fractions in

such a way as to make efficient use of the analysis of the fractional

design.

B. In screening experiments where it is expected that the effects of all

but a few of the variables studied will be negligible , the use of

fractional factorials as a screening experiment will enable the
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experimenter to determine which factors are important and which are

not without performing costly and unnecessary experimentation. The

insignificant factors may then be set at standard levels and the

significant factors explored more comprehensively during further

experimentation using a smaller, less costly factorial design.

c. Where groups of experiments are run in sequence and ambiguities

remaining at a given stage of experimentation can be resolved by

later groups of experiments, the full factorial can be fractionated

so that the fractional experiment performed yields information on

only the factors in question.

d. Where certain major variables, which may interact, are to be studied

simultaneously with other minor variables whose influence, if any,

can be described by main effects only, the fractional design can be

established so as to confound the major variable main effects with

only two factor interactions of the minor variables but these inter—

actions are assumed to be negligible so they have no effect on the

main factors.

In order to separate the full factorial into fractions , it ic

necessary for the experimenter to determine which effects he wishes an

estimate for and which effects he is willing to assume as negligible.

Fractional factorial designs can be classified in the following manner

for convenience:

a. Resolution II designs: main effects are not confounded with each

other but are confounded with two factor interactions and two factor

interactions are confounded with each other . The smallest possible

resolution I I I  design is the 2
3_i 

design which can be generated 

•—-- --5-- - - - -
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using either I = ABC or I = —ABC as the defining relationship. This

design can be easily generated by the method of signs. First, a full

2
2 
design using — and + signs is written down. The signs in the

third column are generated as the product of the signs in the first

two columns multiplied by +1 if I ABC is the generator used and by

—i if I = —ABC is the generator used. This is equivalent to equating

the third factor, c, to the product of the first two (C = AB) or to

the negative product of the first two (C = —AB). This procedure is

illustrated in Table 2.

Table 2. 2
3_i 

Resolution III Design

Full 22

A B

+ S

- +
+ 4

Treatment Treatment
A B C Combination A B C Combination

— — + c — — — (1)

+ - - a + - + ac
- + - b - + + be

+ + + abc + + -

b. Resolution IV designs: main effects are not confounded with each

other or with two factor interactions but two factor interactions

are confounded with each other. The smallest resolution IV design
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is the 2
41 

which can be generated in the same manner as in the previous

example by starting with a full 2~ . A 2
6_2 

Resolution IV design with

I = ABCE and I = ABDF as the generators is shown in Table 3.

Table 3. 2
~v

2 
Design, I = ABCE and I = ABDF

Factor Factor Factor Factor Treatment
A 

• 
B C D E=ABC F+ABD Combination

— — — — _ — (1)

+ - - - + + aef

- + - - + + bef

+ + - - - - ab

- - + - + - ce

+ - + - - + acf

- + + - - + bcf

+ + + - + - abce

- - - + - + df

+ - - + + - ade

- + - + + - bde

+ + - + - + abdf

- - + + + + cdef

+ - + + - - acd

H — + + + — — bed

+ + + + + + abcdef
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c. Resolution V designs: no main effects or two factor interaction is

confounded with any other main effect or two factor Interaction , but

two factor interactions are confounded with three factor interactions.

The smallest Resolution V design is the 2
5_i 

which can also be con—

structed in the same manner as the Resolution III and IV designs

previously described.

In general, the resolution of a design is equal to the smallest

number of characters in any word appearing in the defining relation. The

words in the defining relation consist of the generators initially chosen

and all of their generalized interactions (products mod 2 on exponents).

For the design shown in Table 3, the complete defining relation is

I=ABCE=AB DF = CDEF.

One problem that will arise in fractionating a full factorial is

• that two or more effects may have the same numerical value. In this case,

the effects are known as aliases and the experimenter must be sure that

factors believed to be significant are not aliased with each other. The

aliases of any factor can be generated by multiplying that factor by all

of the words in the defining relation, mod 2 on exponents. The alias

structure for the Resolution IV design with defining relation

I = ABCE = ABDF = CDEF is shown in Table 4. For a ~~~ fractional fac—

Pton al design, each effect will have 2 —l aliases.

When estimating the effect of a factor for a fractional factorial

design , we are really estimating the effect due to that factor and all

of its aliases. Therefore , the e f fec t  of A is really a measure of the

ef fec t  due to A + BCE + BDF + ACDEF. If, as in the general case inter—

actions of third order or higher are assumed to be negligible, then



Table 4. Alias Structure for 2
~~

2 Design,

I = ABCE = ABDF = CDEF

I ABCE ABDF CDEF

A ~CE BDF ACDEF

B ACE ADF BCDEF

C ABE ABCDF DEF

• D ABCDE ABF CEF

E ABC ABDEF CDF

F ABCEF ABD CDE

AB CE DF ABCDEF

AC BE BCDF ADEF

AD BCDE BF ACEF

AE BC BDEF ACDF

- 
- AF BCEF BD ACDE

CD ABDE ABCF EF

CF ABEF ABCD DE

ACD BDE BCF AEF

BCD BEF ACF

this response will provide a good estimate of the effect due to factor A.

The analysis of this effect will be discussed in a later section .

If, as in the case of a large number of factors present in the

experiment , a one—half fraction still leaves too many observations to be

taken, it is possible to use a smaller fraction . To run a 2
n P  frac—

tional factorial design requires the choice of P independent generators

-— • • - • ~~~~~~~~~~~~~~~~~~~~~~~~~
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irregular fraction cannot be constructed , some two fa ctor in terac t ions

will not be estimable. Addelman shows that the y ield of the treatment

combinations in his Irregular fraction can be expressed in terms of the

main effects and two factor interactions in the following manner:

~ijk... 
~ 2~~~~ ~~B ‘2 AB ~2 C  + ~ AC , e t c .  + error ( 2 . 2 )

where the sign

on A is — if i=O and + If 1=1

on B is — if  j 0  and + if j l

on AB is — if t he  product  of the signs on A and B is — and is +

if the product  of the signs on A and B is + , and so on.

• In t h i s  case , 0 and 1 would indicate the presence of that factor at its

low and hig h levels in the treatment combination in question. In the

append ix to his paper , Addelman gives several common and useful irregular

fractions with the identity relationship and assumptions required to

generate them. One such example is the 3/8 fraction of the 2~ which

would be useful in the situation described at the beg inning of this

section . Using the identity relationship I = ABCDE = ABF = CDEF = AEG

BCDC = BEFG = ACDFG , the  2~ can be fractionated into eight blocks of 16

runs each. The experimenter could then pick three of these blo cks,

yielding 48 experimental trials.

John approaches the problem of irregular fractions by subtracting

treatment combination s from the full factorial or by adding treatment

combinations to a 1/2 replicate of the full factorial. He defines h i s

designs in terms of the relationship used to generate the missing fraction.

John illustrates how the combination of fractions in a certain manner

• _ _- •------ ------ - - - 5 -
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will forts overlapping fractions. Estimates for the effects due to vari-

ous treatment combinations are then obtained by combining the estimates

obtained from the appropriate overlapping fractions.

Analysis of Factorial Experiments

Once the experiment has been performed , the results must be ana-

lyzed to determine the significance or insignificance of the various

fa ct ors and interac t ions or to perform tes ts on the various hypo theses

concerning the factors. The most commonly used method of analysis Is

the analysis of variance (AN OVA).

ANOVA makes use of the fact that the ratio of two chi—square ran-

dom variables divided by their respective degrees of freedom follows an

F distribution. Hicks [25] and Hines and Montgomery [261 provide the

general format for an ANOVA table for a 2n factorial experiment with r

replica tions per cell shown in Table 5. The F
0 

statist ic is found by

forming the ratio of ms for the effect in question to msE
. Comparing

this value to the value of the F statistic with 1 and 2
n(r_l) degrees

of freedom will give a test on the significance of an effect.

The easiest method for computing the sum of squares for a fac-

torial is the Yates Method [571 which consists of arranging the treatment

combinations in standard order and then adding and subtracting the

observed response values in pairs a total of n times to obtain an esti-

mate of the contrast due to a treatment combination . The effect due to

that treatment combination is then obtained from

EFFECT = (2 ) ( C O N T R A S T) / r .2~
i (2 . 1)

where r = number of replications per cell. This will usually be one for
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Table 5. ANOVA for with r Replications Per Cell

F Sum of Mean
Source of Variation 

— 
Squares Degrees of Freedom Square ~~

Main Effects——A SS
A 

1 SS
A/l

B SS8 
1 SSB/l

c SS
C 

1 SSC/l

2 Factor Interactions——AB SSAB 1 SSAB/l

AC SSAC 1 SSAC/l
c (n , 2) ~

BC SS
AC 

1 SSAC/l
n(n-l)

2

3 Factor Interactions——AB C SSABC 1

ABD SSABD 
1 c(n ,3) =

BCD SSBCD 1 n(n—l)(n—2)
6

4 Factor In terac t ions,  Etc.

Sum of all Trea tmen t

• Combinations SS 2
n

1

Residual or Error ssT 2
n
(1) 

SSE 
—

2 (r—l)

Total SS1 
r(2~)—l

- - — - - -5 - - - - - -  - - - - -- -5- •~~ - - - - - ---
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purposes of this paper. The sum of squares for any effect is then

obtained from

SS = (CONTRAST) 2/r~2
’
~ ( 2 .4)

Because of its simplicity, the Yates method is easily programmed for

computer application.

The Yates method can also be used in obtaining the sums of squares

from a fractional factorial by considering the data as having come

from a full factorial in n—P variables. The treatment combinations for

the full factorial are written in standard order and a letter or letters

is added in parentheses to the end of these treatment combinations to

represent the treatment combinations actually run. The effect estimated

in this manner will then be the effect associated with the treatment

combination shown plus all of its aliases. An example of the Yates

method for a 241 with I = ABCD as the defining relationship is shown in

Table 6.

The values in column (1) are obtained by first adding the respon-

ses in pairs and then subtracting them in pairs. For example ,

82 = 74 + 108, 222 = 92 + 130, 173 = 68 + 105, 228 = 95 + 133 and

34 = 108 — 74, 38 130 — 92, 37 = 105 — 68 and 38 = 133 — 95. The values

in columns (2) and (3) are obtained by performing the same operations

on the values in columns (1) and (2) respectively. It Is necessary to

perform these operations three times since, in this case, n — P =

4 — 1 = 3.

~ ~~~ ~~~~~~~~~~~~~ .
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Table 6. Yates Algorithm for 24—1 with I = ABCD [42]

Estimate
Treatment of Eff~.ct SS
Combination Response (1) (2) (3) Effect 2x(3)/2n (3)2/2 n

(1) 74 182 404 805 —

a(d) 108 222 401 147 A+BCD 36.75 2701.125

b(d) 92 173 72 95 B+ACD 23.75 1128.125

ab 130 228 75 5 AB+CD 1.25 3.125

c(d) 68 34 40 —3 C+ABD —0.75 1.125

ac 105 38 55 3 AC+BD 0.75 1.125

bc 95 37 4 15 BC+AD 3.75 28. 125

abc (d) 133 38 1 —3 ABC+D —0.75 1.125

Sequential Procedures

Introduction

Until recently, commonly accepted statistical procedures involved

presenting the data from an already conducted experiment to the statisti—

- • cian and expecting him to provide reasonable conclusions based on an

analysis of the data. Seldom was the statistician consulted concerning

the methods of collecting the data either prior to or during the

experimentation. Lately, however, much more emphasis has been placed

on obtaining the advice of a statistician prior to the performance of

an experiment and during the actual running of the experiment. This has

allowed the statistician to play an important role in designing and moni—

toring the conduct of experiments. In addition , more emphasis has been

- - 5  - - - - -  - - 5 -  - -  - ----- •--• • - •----- ---
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placed on obtaining meaningful results from a reduced number of trials

of an experiment due to the rapidly increasing costs associated with

experimentation. Fractionating a factorial design is one way of accom-

plishing this goal. A second useful method is through sequential analy-

sis procedures.

Sequential analysis can best be described as “any statistical

procedure in which the final pattern (including the number ) of observa—

t ions is not de termined a priori bu t depends , in some way or other , on

the values observed in the course of the work” [34]. During the course

of an experiment testing one hypothesis against another , the results are

examined after each trial. A decision is then made to either accept

one or the ot her of the hypotheses or to continue sampling based on the

P results to date. The decision making process of sequential analysis will

require three basic rules to define the procedure :

A. The stopping rule will let the experimenter know when the experimen—

tation may be terminated .

B. The terminal decision rule will let the experimenter know which

hypothesis to decide in favor of once experimentation has been

terminated .

C. The experimentation rule will let the experimenter known which experi—

ment should be performed next should he still be required to continue

experimentation.

Curtailed Sampling

Although Wald [521 is generally credited with originating sequen-

tial analysis procedures In the mid 1940’s, there were some heuristic

approaches made to this area prior to Wald . One such approach is known

— as curtailed sampling and is used in determining whether to accept or 

- - - -~~~~~~~~~~~~ - - - - --- - - - - -~~~~~- - -
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as curtailed sampling and is used in determining whether to accept or

reject a lot of some item. “Classical” sampling procedures would call

for a fixed sample of size n to be inspected and the decision to accept

or reject the entire lot would be based on the number of defective items

found In that sample. Curtailed sampling procedures would stop sampling

as soon as it was obvious which decision would have to be made. For

example , if the fixed size test called for rejecting a lot if more than

two defective items were found in a sample of size ten, curtailed samp-

ling would call for termination of sampling as soon as:

A. Three defective items were found ,

P B. Nine items had been inspected and only one defective item was found , or

C. Eight items had been inspected and no defective items were found .

Tests on the Mean of a Normal Distribution with Known Variance

• Sequen tial Probabili ty Ratio Test. Wald’s Sequential Probability

Ratio Test (SPRT) is designed to test one simple hypothesis against

another. If a random variable, x, has distribution f(x,O), the SPRT will

test H
0
:O = vs. H

1
: 8 = 8

1 
and will decide in favor of either H

0 
or

H
1 
based on a series of observations of x(x1, x2, . . .,  x )  and on pre-

selected probabilities of type I (reject H
0 
when it is true) and type II

(accept H0 
when it is false) errors. If these probabilities are denoted

as ct and ~ respectively, there are four possible outcomes as shown in

Table 7.

For a fixed sample size, n, Neyman and Pearson, as explained in

Hoel, Port and Stone [281, have shown that the most powerful test (that

test giving the smallest 8) depend s on the likelihood ratio: 
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n
IT f ( x  ,0,)L (x) I

1 = 1—1 (2 .5 )
L0 (x) n

H f ( x  ,0~ )
1=1

where f(x1
, 0~) = probability of observing x~ given tha t 0

~ 
is true.

This test will decide in favor of H
0 

if L
1
(x)/L

0
(x) is less than some

constant , k , and will decide against H~ if L1(x) / L 0 (x) is greater than

k. The value of k can be chosen to insure the desired a value for the

test and the number of observations, n, can be chosen to insure the

desired power, 1 — B,  for the test.

Table 7. Outcomes and Probabilities of SPRT

Required
Outcome Probability

8
0 
is true and test decides in favor of 8

0 
1 —cc

00 is true and test decides in favor of 01 
cc

0
1 
is true and test decides in favor of 0

1 
1 — 8

81 
is true and test decides in favor of 0

0 
6

The SPRT is similar to this procedure and incorporates the follow-

ing decision rules:

A. Stop sampling and decide in favor of H
0 
as soon as L

1
(x)/L

0
(x) is

less than some cons tan t , B.

B. Stop sampling and decide in favor of as soon as L1
(x ) /L

0
(x)  is

greater than some constant , A > B.

-5--—- ~~~~~
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C. Continue sampling as long as B < L1(x ) / L 0 (x) < A.

Wald [521 has proven that good approximations for the constants A

and B are:

A ~~
- (1—6)/a (2.6)

B ~ 61 (1-c c)  ( 2 . 7 )

Since c and B are generally taken to be less than .5 , the fol lowing

relationship will hold :

U < B < 1 < A (2.8)

The Sequential Probability Ratio Test possesses many properties

that make it very useful when testing a simple hypothesis against a simple

alternative .

A. Wald and Wolfow itz [53] have shown that for all sequential tests

having the same a and B probabilities of Type I and Type II error , the

SPRT will require the fewest number of observations when 0 has true

value equal to 00 
or 0

~
.

B. Should the true value of 0 lie somewhere between P0 
and 0

~~
, We ther i l l

[56] has shown that the expected number of observations may he much

larger than the fixed sample size plan with the same cc and B e r r or s .

C. Wald has proposed truncating the SPRT at some fixed value , n0, should

this occur . This will change the probabilities of Type I and Type II

errors so the problem is to make n0 
large enough so as to have a

neglig ible effect on these probabilities. By denoting P1
(n
0
) as the

probability of a sample of size n0 
rejecting H

1 
under the t runca ted

process and accepting H
1 
under the non—truncated process, Wald der ives
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upper bounds for these two probabilities and uses them to determine

upper bounds for the new cc and B errors respectively. The upper

bounds for P
0
(n
0
) and P

1
(n
0
) are

P
0

(n
0
) = G(u

2
) — G( u

1
) and ~1

(n
0

) = G( u
4

) — G( u
3
) (2.9)

where —n 0
E
0
(z) log B—n

0
E
1

(z)
U
i 

= u
3 

= 

~,r— o~ (z)

(2.10)

log A—n
0
E
0
(z) —n

0
E
1

(z)
u
2 

= 

~~~~~ 0
0

( z )  
= 

~~~~~~ 1
(z)

G(u) = probability that a N(0,1) variable takes on a value < u.

c7
1

(z )  = standard devia tion of z when H
1 
is true i — 0, 1

E
0

(z) = - 

~
(0 o - 0

1
)
2 

E
1

(z) 
~
(0o - 0

1
)

The value of n
0 
must be sufficiently large to insure z1 

+ ... + Z Nno
with mean equal to n

0
E
1
(z) and standard deviation equal to o.(z)

when H. is true, i = 0,1. The upper bounds for the a and B errors are

then given by:

< a + 
~~
(n
~
) (2.11)

13 (ib o
) < B + p

1
(n
0

) (2 .12)

Modifications to SPRT

As was stated earlier , Wald ’s SPRT will require a smaller average

number of observations than any other sequential test of one simple hypo—

thesis against another when the true value of 0 is either 0
0 
or 0

1
. This, 

--~~~---- - ---~~~~~~~-----~~~~ -
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is not always the case. Read [47] and Anderson [2] have proposed modif i—

cations to the SPRT in case the true value of 0 lies between O
o 

and

Read ’s Partial Sequential Probability Ratio Test (PSPRT) uses the

same ini tial boundar ies, A and B, as Wald ’s test. Initially, a fixed

number , n, of observations is taken. At the end of these n observations,

the quan tities:

p n
B’ = B ~~~ (2.13)n p

1
n

and
p n

A ’ = A —p— (2.14)n p
1
fl

where p~ 
= joint likelihood of the first n observations under h

1
, 1=0,1

are computed. If the inequality

o < B’ < 1 < A’ (2.15)
n n

does not hold , a decision is made at this point. If A ’ < 1, then H
1 

is

accep ted and if B ’ > 1 then H~ is accepted . If (2.15) holds, then

sampling is continued as in the SPRT and the following decision rules

are used :

A. Stop sampling and decide in favor of H
0 
as soon as Pl

(Xn+i~~ . . ,x , ) /

p
o

(x ÷i,. . . ,x ,)  becomes less than B ’.

B. Stop sampling and decide in favor of H1 as soon as pi
(X +1,.. ,x ,)/

p0
(x

÷i
,. . . ,x ,) becomes greater than A ’.

C. Continue sampling as long as B’ < p1(x~+1~
. ..,x ,)/p0(x +1,. 

.

< A’ .
n

Where i~ 
(x
~÷i

.. . ,x )  is the joint likelihood of observations Xn+1 to

• -
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XSV )n under H
ii i = 0,1.

Read shows that his PSPRT will require , on the average , more obser—

vations than the SPRT when the true value of 0 is 0
0 

or 0
1 

but may require

substant ially fewer observations when the true value of 8 is between 0
~

and 0~~, say = 

~~
0o + In both cases , Read ’s Average Sample Number

(ASN) is lower than the fixed sample size. Read ’s procedure is most use-

ful when it is desirable to take n initial observations for some reason

such as to prov ide the exper imen ter with an es tima te of the sampling cos ts.

Anderson ’s modif ication to the SPRT applies only to dens it ies of

the Koopman—Darmois (exponential) form and he presents specific examp les

f or a normal d istribution with unknown mean and known variance. Since

many random variables follow a norma l dis tr ibut ion , or do so approx imately,

this is a reasonable approach.

In the SPRT, the con tinuation reg ion boundaries, A and B, can be

thought of as describing two parallel lines, y = A and y = B, where the

decision is made as soon as the value of y, in this case the likelihood

ratio , crosses one of the lines. Anderson proposes replacing the paral-

lel lines with a set of converging lines y = c1 + d
1
n and y = c

2 
+ d

2
n

wi th trunca tion of the sequen tial procedure at some value N. To avoid

intersection of the lines before n = N, it is necessary that c2 + d

2

(N — l )

< c
1 

+ d
1
(N—l). It is also desirable that the lines converge , so it is

necessary tha t d
1 

< 0 < d
2
.

For a normal distribu tion , as descr ibed here , Hoel , Part and Stone

[281 have shown that the likelihood ratio can be replaced by the quantity
n
) x 1 with appropriate modification s to the boundaries of the 

(-on tinuation
1=1
region. Making this substitution , the decision process for Anderson ’s

- — — _ - •- -t _ _, , — • - • — -—
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SPRT becomes:
n

A. Stop sampling and decide in favor of H
0 
as soon as ~ x . becomes less

i=1 1

than c , + d2
n .

n
B. Stop samp ling and decide in favor of H, as soon as E x1 

becomes
i= 1

greatet than c
1 

+ d
1
n.

C. Continue sampling as long as c
2 

+ d
2

n < E x~ < c
1 
+ d

1
n.

Anderso~’’s calculations of the ASN for his modification is extremely

complicated and involve use of the Wiener stochastic process. However ,

his ASN for intermediate values of 8, be tween 0
0 

and 0
~~
, is lower than

the ASN for Read ’s PSPRT. Naturally ,  due to its optimum property, Wald ’s

SPRT has a lower ASN at 0=0
o 

and 0 = 0
l~

Testing Other Than Simp le Hypo theses

The SPRT can only be used to tes t a simple hypothesis against a

simple alternative so there are many real life situations in which it is

not applicable. For example , to test whether a new product is better than

an already existing product it is designed to replace would involve test-

ing H
0

:0 = 0
0 
vs. H1 :0 > 0~ and the SPRT would not apply. In this case ,

it is possible to modify the alternate hypothesis so that the SPRT could

he used . Assuming that the new product would not replace the old one un-

less there was a sign if ican t d if f e r ence  in some performance charac teristic ,

the alternate hypothesis can be written as H1
:e— 8

1 
d where d is the

requ ired margin of difference between the new and old produc ts. Now the

al terna te hypo thesis is in simp le form and the SPRT may be app lied .

Another spec ial case is when the decision to be made is of the form :

prod uct x is inferior to product y or there is no difference between pro—

d uc ts x and y or product x is superior to product y. This is equivalent 

--.a -.__ _ _
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to testing H
1

:8 < 0~ VS~ H

0

:0
2 

< 0 < 0
3 

vs. H
1
: E) > )

4 where 0
1 

< 0
2 

< 
3

< 0~~. In the region 0 < 8
1 

it is desirable to decide that product X

is inferior to product y; in the region [82, 03
] there is no difference

between the products; and in the region 0 > 0
4 

product x is superior to

product y. Sobel and Wald [50] and Armitage [6] have both described

methods of solving this problem.

Sobel and Wald define their three—decision problem as decid ing be-

tween hypo theses H
1

:0 < a1, H
0

:a
1 

< 0 < a2 and H
1

:0 > a
2
. This defini—

tion leads to a division of the parameter space into five regions. Around

a
1 

there is a region (0
l~ 

0
2

) where there is no strong preference be tween

H_1 and H
0 

but where it is strongly desired to rejec t H
1
. Around a

2

there is a region (8
3~ 

0
4
) where there is no strong preference between

H
0 

and H
1 

but where it is strongly desired to reject H
1
. For 0 <

the desirable dec ision is to accep t H_1; for 02 < 0 < 0
3~ 

the des irable

deci sion is to accep t H
0
; and for 0 > 8

4~ 
the des irable dec ision is to

accep t H
1
. Given this formulation , a wrong decision can be made in the

following manner:

A. Accep tance of H
0 

or H
1 

for  0 < 0~~.

B. Accep tance of H
1 

for  0
1 

< 0 <

C. Acceptance of H
1 
or l-1

~ 
for 0

2 ~ 
0 < 8

3~

D. Acceptance of H
1 

for  0
3 

< 8 < 8
4
~~

E. Acceptance of il
l 
or H

0 
for  e >

Sobel and Wald then consider the case where:

A. Probabilit-y of a wrong decision 
~ 

for 0 
~

B. Probability of a wrong decision 
~ ~2 

for O
i 

< 0 <

C. Pr obab il ity of a wrong decis ion < for 0 > 0
4~

-— ~~~~~~~~~ =-_ ~- — • _ -~~-~ -- • • • — - •  -- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - r_,__p — ——— • — — •  ----- --
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And the spec ial case where 
~l~~~ 2 

y
3 

= y for all values of 0.

Their procedure consists of conducting two concurren t sequen tial

probability ratio tests , R1 
and R2. R

1 
is used to test the hypo theses

= vs. 0 = 0
2 

and R
2 

tests 0 = 0
3 
vs. 0 = 84~ 

Their decision pro-

cedure consists of the following :

A. Both R~1
and R2 are computed after each trial until

B. Either: one ratio leads to a decision to stop . Then this ratio is

no longer computed but the-other one is until it also leads to a

decision to stop.

C. Or: both ratios lead to a decision to stop at the same stage.

The f ina l  dec ision , R, can be made from the results shown in Table 8.

Sobel and Wald give a proof that the case where R1 
accepts 0

1 
and R

2

accepts  0
4 

can never occur. In order to properly define the SPRT’s

and R
2
, it is necessary to either be given values A , B, A , and B

which form the boundaries of the critical regions or to approximate them

based on the upper bounds for the respective probabilities of making a

wrong decision. These approximations are shown to be:

A = (1 — y
2

) /y
1 

(2.16)

B = 
~2

/’(1 — 

~~ 
(2.17)

= (1 ‘
~3~~~2 

(2.18)

= ‘f3
/ ( l  - 

~~~ 
(2.19)

The specia l case = y 3 y Is easily handled by substituting in the

above approximations.

Armi tage ’s method is similar except that It Involves using three 

-~~~-- - - - - -  ---- - - 5 -
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Table 8. DecisIon Process for Testing Multiple Hypotheses

R1 
R2 R

If Accepts 8 and Accepts 0
3 

then Accepts H 1
1

If Accepts 8
2 

and Accepts 0
3 

then Accepts H
0

If Accep ts 0
2 

and Accepts 0
4 

then Accepts H.

SPRT’s concurrently so that all possible combinations of the three alter-

native hypotheses taken two at a time are tested . Armitage’s decision

procedure is as follows:

A. All three SPRT’s are examined after each trial.

B. Sampling is cont inued until the resul ts indica te tha t one hypo thesis

is preferred over bo th of the other two hypotheses based on the SPRT’s

involving those hypotheses and the preferred one.

C. The decision is then made in favor of the preferred hypothesis.

Arm itage ’s procedure has one decided advantage over that of Sobel

and Wald. By requiring that all three SPRT’s be examined until completion ,

a definite decision in favor of one of the hypotheses will be reached .

Using Sobel and Wald ’s procedure , it is possible to terminate sampling

before a definite decision point has been reached . This situation is

shown in Figure 2. For the path , OT, shown in the figure , test R is

terminated as soon as line AB is crossed with the decision being made in

favor of H0
. R

1 
is not calculated again even though the path may go back

across the line. Test R2 
is terminated as soon as line AC is crossed with ,

once again , the decision being made in favor of H0. Based on Table 8,

~
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y

ACCEPT H
1

ACCEPT H
\

— ----.. A

T

~~~~~~ 
/

/
/

0 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ACCE~~~~~ l

Figure 2. Testing Multiple Hypotheses.
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the terminal decision would be in favor of H
0 

but , as can be seen from

the figure, the shaded region , H0, was never reached .

Tests on Mean of a Normal Distribution with Unknown Variance

Sequential T—Test. Once again, the problem is to tes t the hypo-

thesis H
0
:0= 8~ vs. H1

:0 > 0~ > 0
0. Since the standard deviation ,

= ~~~~ will always be a positive number , the al terna te hypo thesis can

be expressed as H
1

:0 > 8~ = 8
0 
+ &~ where ~ is some positive number. This

can be rewri tten as H
1

:0 — > 6c~. Since the value of a is unknown, the

problem is to find a procedure that does not depend on a. A random van —

able defined as the ratio of a N(O,1) variable to the square root of a

chi—square random variable divided by its degrees of freedom follows the

t—distribution and the formation of such a random variable will eliminate

the unknown variance. Govlndarojulu [23] has formulated a sequential pro—

cedure based on the statistic :

½ —  (2 .20)
t = (n) (x — 0 )/S
n n 0 n

n
where x

n 
= sample mean ( ~~ x1)/ni—i

n 
2

S = sample standard deviation = ( E (x
i 

— 
~~~~

i= 1

His procedure is as follows:

A. After each trial, compute tn 
as shown in (2.20).

B. Con tinue sampling as long as B < t < A
n n n

C. Stop sampling and decide in favor of H
0 

if t
n 

< B .

D. Stop sampling and decide in favor of H
1 

If t > A~ .

The boundaries A and B are arbitrary with the only requirement

being that they be chosen so that the procedure terminates finitely. David 

—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ — — • - — — — — — — —  —~~~~~~~~~~~~~ • -5- -
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and Kruskal [17] have shown that this will occur when A and B are
n n

obtained by equating the ratio of a non—central t distribution to a cen-

tral t distribution to the constants A and B from Wald ’s SPRT. This t—

test can easily be modified to test H
~
:0 = 0

0 
vs. H

1
:I 0— 0

01 > 60 which

is equivalent to H1:0 ~ 
0~ by using the reg ion B

n 
< t i  < A as the

region in wh ich sampling is continued.

Two Stage T—Test. Several peop le have proposed modifica tions to

the t—test that require an initial number , n0, of observations.

Covindarajulu ’s [36] Minimum Probability Ratio Test (MPRT) is equivalent

to Anderson ’s modification to the SPRT only for the case where the vari-

ance is unknown. For the case where a = B, Govindarajulu defines

—2/
C = (n — l)[(2a) —1] (2.21)n o 0

His procedure consists of the following :

A. Take n
0 

initial observations and compute ~
2 

as defined in (2.20).no
B. For each observation n > n0, after observing the response x , stop

samp ling as soon as

• 6 1 E (x . - 6/2)j/S

2 
> C - n62/4 S2 , n > n (2.22)

1=1 
1 fl

0
— n

0 
n
0 

— 0

n
C. Decide in favor of H0 

if 
~~ 

(x . — 6/2)  < 0.
~~~~~ 

1

n
D. Decide in favor of H1 

of E (x
i 

— 6/ 2)  > 0.
i= 1

n 2 2 2
E. Continue sampling if 61 Y~ (x~ — 6/ 2 )1/ S  

— n6 /4S~
1=1 0 0

In the case where cc ~ B, the procedure may still be used by replacing

2c with cc + ~ in (2.21). Govindarajulti ’s proc edure cou ld be further

—--5— - - 5  _ - -  —-5- - -— ~~~~~~~~
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modified by computing C and ~2 after each observation .

Baker (9) as modified by Hall (24) has proposed another two stage

procedure that will be discussed further in the next chapter.



_ _ _  
- ___________________ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CHAPTER III

DEVELOPMENT OF METHODOLOGY

In trod uc t ion

This chapter will present a formalized procedure for building a

factorial experiment with the goal of reducing the required sample size

without reducing the amount of information obtained from the experimen-

tation . This information may include data about the significance of the

various factors, the levels of significance, or the probabilities of

making a type I or type II error. The method developed by Russ involves

minimizing the expected additional system cost (EASC) given by

N
E A S C = C  + E C . + ct C + B C  (3.1)

0 . i a B

where C
0 

fixed cost of testing. This can be considered a fixed cost

Independent of the design structure.

N = total number of observations taken.

C
1 

= samp ling cost of ith observation. This cost will be assumed to

be a cons tan t, C , for each sample taken so the term E C~ can
S i=1

be rewritten as NC
5

C = penalty cost for a Type I error . Assumed fixed for a given

Operational Test.

= probability of a Type I error. Set at an acceptable level by

the test designer.

C~ = penalty cost for a Type II error. Assumed fixed for a given 

— -5- —- _ _ _ __-5 _ • _ _ _ _ _ _ _ _ ~~~~~ ._ ’ -_,_~ -___ ~ _ _ _ _ __
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Operational Test.

B = probability of a Type II error. Set at an acceptable level by

the test designer.

For a given operational test all of the costs in the EASC equation

can be considered as fixed so the equation can be minimized simply by

minim izing the number of observations required to obtain the desired

information.

Basic Assumptions

Since Operational Testing is designed to test one proposed system

against another or against some standard for comparison , the hypothesis

to be tested is of the form:

H
0
: ~i = p 0 ( 3 .2 )

H1
: u >

where p = standard for comparison.

= population mean for the item being tested .

Operational testing will require that the prototype item exceed the stan-

dard for comparison by a certain margin before the decision to accept the

item is made so (3.2) can be rewritten as:

H
0
: p - p

0
= O

H
1
: p — p

0 
= d (3.3)

where d is the required margin of difference.

Since d will be some positive number , it can be expressed as some constant

multip le of the population standard deviation , also a positive number , and

(3.3) can be rewritten as:

—-5- - 5 —  —-5— - — - — ——- 5 -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - 5 — — -—— - - —  — -—-—-——,——-_ — -—— ———
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H
0
: p — p

0 0

H
1
: p — p

0 
= 6o (3.4)

Given the nature of operational testing, the assumption is also

made that the observed responses will come from a normal population with

unknown mean p and variance ~
2 

The value of ~
2 may or may not be known

and each case will be treated separately. If ~
2 

is known, the problem

is grea tly simplified. If it is not known, a sequential procedure can

be developed but an alternate solution Is to obtain some estimate of

as soon as possible. This estimate may be obtained from any prior test-

ing done on the system, from comparison with a similar type system , or

from the results obtained in OT I and then used throughout the remaining

operational tests.

Variance Known

If the variance is known, the sequential probability ratio test

can be employed to make a decision to either accept the null or alternate

hypothesis or to con t inue sampling. Since (3.4) is in the form of a

simple null hypothesis against a simple alternate hypothesis, the likeli-

hood ratio test:

E F(x 0
1
)

1
~in 

— 
1=1 (3 5)

L fl
on II F(x

1 
001=1

can be used as a basis for making this decision. The sequential procedure

should include a region for accepting H0, a region for accepting H1, and

a region in which the decision to continue sampling is made. For a normal

population :
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I’ 1 1 2
L = ii  exp ~~~~~~~~~~~~~~~~ = 

2 
n/2 exp (— —i ~ (x~ — u) ) (3 .6 )

i=l I~ a (2iro ) 2o i=l

and therefore

1 1 2
L 2 n /2  exp(— —i ~. (x.—~i 1

) )
in — 

(2ir o ) 2o i=1
L 1 1 ~‘ 2
on 2 n/2 exp(— 

—i- ~ (x .—p~ ) )
(2-rra ) 2o 1=1

which red uces to

= exp 
~~ 

+ 
n(~~ -~~ ) 

] 

(3.8)

The decision rule for the sequential procedure will then reduce to:

1) Stop sampling and accept H
0 

if (3.8) < B

2) Stop sampling and accept H1 
if (3.8) > A (3 .9)

~) Con tinue samp ling if B < (3.8) < A

As stated in Chapter II, values of

B = and A = -
~~
---

~~ 
(3. 10)

will result in a sequential test with the lesired probabilities of error ,

‘~~and B. 
-

•

Substituting (3.10) into (3.9), taking logarithms , and simp lif ying

yields the following seqw’ntial procedure for a normal population with

known variance:
~ n(1i

1
+p
0
)

1) Stop sampling and accept H0 
it —

~~
-—--

~-- log i— + ., 
—- -

p
1 

i.
~~ 

-5
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2 
1—B 

n (p
1
+p
0
)

2) Stop sampling and accept 11
1 

if 
— 

log ÷ 
2 Ex .p

i
p
0 

1

3) Con tinue samp ling if

2 n(p -4-pd 2 p
log —p--- + 1 

< E x < log -
~
----

~~ + n (  ~ 0
)

1—cc 2 i -~~ 2

where p
0 

is as hypoth sized in (3.4) and p
1 

= p
0 + 6o

Varian ce Unkn own

If the variance of the normal population is unknown, the problem

is c~ nsiderably more difficult since the likelihood ratio (3.8) will

depend on the value of the unknown variance. If a reasonable approxima-

tion to the variance can be obtained , a sequential probability ratio test

can be performed that will closely approximate the test for the variance

known case . In mos t cases , this approximation will not be available. Use

can then be made of the fact that a random variable formed as the ratio

of a N(O ,l) var iable to the square root of a chi—square variable divided

by its degrees of freedom follows a t distribution.

Under the assump tion tha t the response variable , X ., comes f rom a

population , the sum of n observed responses will follow a

N(p,nc
2
) distribution and the statistic

Z = (K — p)/a/v”~ (3.11)

will follow a N(O,1) distribution . A chi—square random variable with n

degrees of freedom is the sum of the squares of n independent N(O,l)

variables .so the quantity

_ _ _  
_ _  _  _  j£-5———-’—-’=~~~ s—-=r~~ .-— — ~~~~~~~~~~~~~~~~~~~ — ,, •
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n
E ( (x

i 
— p )/ a )  (3.12)

i= 1

will be distributed as chi—square with n degrees of freedom and the t—

statistic proposed by Govindarajulu in (2.20) can be formed .

The procedure of Baker [9] as modified by Hall [24] incorporates

the required marg in of d if f e renc e, 6, in the formulation of the test

statistic

it n
r (S

2 
) = (6 E (x. - 6/2))/s

2 (n > n ) (3.13)
n n

0 
n~ 

— 0

in the proposed two stage procedure. Baker develops the following as

appr opr ia te upper and lower bounds to the samp ling region :

—2/n —l
a ½ (n

0
—1)(a ~ 1) (3.14)

—2/n —i
b = -~~(n -1)(B -1) (3.15)

0

The sequential procedure for the variance unknown case then

reduces to:

A. Observe the first n
0 

observa tions of the response variable , x1,x2,

,x

B. Compute the quantities:

n
o

x = E x ./n (3.16)no i=i 
1 0

and

s
2 

= (x - x ) 2/ ( n  -1) (3.17~
1=1 ~ n

0 0
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C. For each observation n > n
o
, af ter ob serv ing x :

1. Stop sampling and decide in favor of H
0 

if r (S 2 ) <
• n f l 0 0

2. Stop sampling and decide in favor of H
1 

if r (S~ ) > a

2 
n n~

3. Continue sampling if b < r (S ) < a
n
o 

n n
o 

n
o

The modification of recomputing S
2 

, a and b after each obser—
n
o 

n
0 

n
0

vation may be easily incorpora ted into the procedure. This test would

— 
then be equivalen t to the SPRT (0

2 
known) with wider boundaries to

account for the fact tha t ~
2 

is unknown but the boundaries would converge

to the SPRT boundaries as n becomes large .

Solution Proced ure

The proposed solution algori thm comb ines the sequen tial proc edure s

just developed with a plan for systematically building a factorial experi—

ment in order to obtain as much information as possible from the experi-

ment in as few observations as possible. Use is made of screening

experiments in build ing the full factorial in order to eliminate unneces-

sary control variables from future experimentation .

The f i r st step, once the requirement to conduct operational testing

Is received , is to de termine wh ich var iables can be exp ec ted to a f f e c t the

response to be measured and how much they can be controlled . This will

set the size of the full experiment . Once the number of observations

tha t can he developed by assuming that higher order in terac t ions are

negligible in order to fractionate the full factorial. Once the first

fraction is run , a sequen tial anal ysis is performed to determine if fur-

ther experimentation is necessary. If it is, the second fraction , with

all s igns reversed , is run  and the sequential procedure is repeated . in

-a----- - , —- tSt_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘ - L



“ 

~~~~~~~~~ 

“
_, ‘ _“‘ - ‘-

~~~~~

“

~~

‘ -- -

~~~~~~~ 

—‘ - ——‘

;i,ld ft 4* •,,. .ui.’i I v -  I ~- .. f  t lie i- I  I .‘ ‘t  .l,,*’ t o t lie \‘:li j .’ti . f i t  ol  I 1; t I l l  no.1

0 - I O %’lfl ~~ 1’ p I I  ‘t’i 1’ I r I S.’I1 f t I * ‘ :l 1104 ’ 01 - I I (‘Ot - I I ‘Ill ( Ii I f~(~ t il t Oil • .h II

-iii. .‘ o — ~~;f v i - t I :iot 4 & ’ I I  I - ;  i-~~.- i t n t i i , — ,I ll.% (’~f 011 .‘ f 1 : i l l ) ’ I l l~. : t t ~ii; I ot  : lf ’j ’ l  ‘~
‘i t :it o

I i I ‘i . Iii I f r I  t • I 1:i t i’ I lo . - I i ’ I ‘I 0 h I t  01 • — I . Iii i - - I IIO I

.110 lh’ I .1- I 01 11 t o t  ol :lot %011:. of  .z j . .- .- I ;  I fill (-I i - - : t  
• I u ’iii l o t  i t  : ir I . I  o . i o I i

wou ld I’o I.’ 11; 111. - i I In’ :1 .‘iio l o t  t lie’ l11.- l .
~ 1 I i - I  01 - p1 ov I ll t o  1’O 0 I~-~Ii  i t  i

• . ; i , t  I o of ’t  .;lu - i . mite It I of  ‘1 11:1 I I ot i :%l ’oi i t  I tioiii .- i i i. I I in’ Ii I h ’  I i .  t oi

j il t  i~ i .1, 1 10110 . I’xp. -i Pio-ii f :it lou j t e t m h , i : , t o.l .;o -~~~on :o: ~n . - o f  t he

i - i l  1’oii,i.l:i , i . .  I , oooof .- iiid :; .li ’.’ I b i t  i ni:;.li - to .‘ i ’ ept olie 01 . 4 1 1 0 1  lii ’,

l iv~ ’o li~~ . - ~t t l i t  I I l1ii~ • :111 ~1i1:I I vol of \ : l  I I : i ; i . ’ 0 0:411 I.e p o t  I oi’nn ’d

I .‘ to I oliti I I*i~ wli t o t ’  ol I et 0 :41 0 0* : 4 1  0 ll ’l 01 s~lI I I I. :4111

I~ll(’ t O l lli.11 t 0,I :iI~~’t it l,,it I: ; i -  t ol l o w o :

Pet ri tu t tle t h o  \ ; i i ’ j . i I~ 1oo ‘I lot  i i  e : - t  •iii~I I Ito 1,- v o l  o; io l t  i i i  I o l’o

l \ . i l l i b t l — 1  i t —

-
. ‘I I i ~~ i i  i i ,  1114 ’ 1 I tO  t i * i i i i f ’ t ’ t of  .tl~ z, -i ~~ l t  I •‘it - - I II:I I 0 : 4 1 1  ‘i iii:~ l i ’ liil,hi’t It. ’ . t ’ i t ’ o t t  0

0 ottif i t  i - ‘ii - — -

fl l1 r leiiiijtuo tI ~ ’ .~t ul e 1 : l I  t tt ~~ I -1:it I . ’t i t l I i . I ’  l i t  I i o~ 4 . i I o t in - l u l l  I n  t o t  i . t f

- ‘. f l ( ’l j tili’ll I I l~ i I I Iii ’ ,t*itnl~i — 1 .‘l of- - . • - t v - i t  I ‘ it - . Iii i 1’ I * ~~
‘ Is . i i  . - - 1 ’ - :

li _ itt I i i  (‘(1t1 4 I I 0 t Ito ti *inihs ’i •l. - t (- I Ill I i i i  b i t  —
,

fl o f  l l1IIll. ’ i i ’ . p i b  • 1  Iii jntl d. - i t  ;* :;it* l p.;~ :ltlli I i~1 0

. t ~ \ o - * j - t .- t h i r 1i -v. -I - . ol I vpi I .tinl I v j - i - I I  o t t  oi o . .1 itn l

I’ ~rqu I i  i - I  d l  I I 0 4  *0 1 0 0  111:1 1 s l i t . -

‘
~~ .-\* ‘tti.iI ~‘:iItto of :4 * 1 rot I tui: *te l o t  V ; *t  t.it ~~ o ol t li.- I * ‘ o f o ’ l l o v.11 h i t - jo

I t  p - :  I h  I. - -

d ~ Il~- ‘.—I 11001 ”. I~~I to I ( ‘0  I i * I

I’ I - k o u r  - ‘I I 1~~ P ho - Is ~i :t I I ;%iiil ~I m .i i i  
~~~~ 

4 , , ~~~~ I fu • - 
~ — i  - I Inn - i~ t i f  I

— —  - ‘ .— -- —_ - ‘  -5 ’~~~~~~~~~~~~_&%~ - , —- - . - -5 - a ——— - - —-



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

47

6) If the value of the var iance is unknown or if ther e is no reasonable

est ima te for  the variance , go to 8. Otherwise continue.

7) Perform sequential analysis using the sequential probability ratio

test since the variance is known. If the SPRT results in a decision

to stop sampling, go to 14; otherwise , go to 9.

8) Perf orm sequen tial analysis using the sequential t test since the

variance is unknown. ‘If the sequential t test results in a decision

to stop sampling , go to 14; otherwise , continue.

9) Perform the next block of experiments with all signs in the first

block reversed . If the variance is known, go to 10. If the variance

is no t known , go to 11.

10) Perform sequen tial analysis using the SPRT. If the decision is to

stop sampling, go to 14. If not , go to 12.

11) Perform sequential analysis using the sequential t test. if the

-~~~ decision is to stop sampling, go to 14. If not , continue.

12) Perform a screen ing analysis of the effects due to the main factors

in order to determine relative significance of main factors and

comb inations of two—factor interactions.

13) Determine factors and interactions of interest and perform the next

[ 

block of experiments found by switching the signs in the column for

the factor of interest. If the variance is known, go to 10. If the

variance is not known, go to 11.

14) Perform an ANOVA to determine the leve l of significance of all factors

of interest. Eliminate non—significant factors from further testing

by setting them at some common level.

IS) It sequential analysis does not result in a decision in favor ol one

_ -5- - -~~~~~~~~~ - - -5  --5 - - 5 - -  - - -- - --5
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hypothesis or another , stop samp ling and perform an AItIOVA after one

observation has been made at each treatment combination.

The proposed methodology will be illustrated in the next chapter

by means of an example based on an actual operational test and the

sensitivity of the input parameters demonstrated .

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~~~~ ._ _ _
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CHAPTER IV

DEMONSTRATION OF THE APPROACH

Introduction

This chapter will presen t an examp le of the me thodology dev eloped

in the previous chapter . Hypothetical results from an Opera tional Test

are presented and analyzed in the classical manner curren tly emp loyed .

Then the propo sed me thod ology is app lied to the same results with a

reduction in the sample size required to ga in the same informa t ion f rom

the data . Sensitivity analysis of the input parameters and basic assump-

tions are also performed to demonstrate the robustness of the procedure.

Back gro und

The Commander , U.S. Army Operational Test and Evaluation Agency

(OTEA) has been given the requirement to conduc t Operational testing to

evaluate the overall effectiveness of the new Artillery Locat ing Radar ,

AN—TPQ—37 , designed as a rep lacemen t for  the system cur r ent ly in use.

The test plan calls for  testing several d if f e r en t performance

aspects of the Artillery Loca ting Radar (ALR), one of which is its ability

to detec t hostile artillery fire. Since the radar cannot locate hostile

artillery unless it first detects it , the most critical issue for this

test is the percentage of hostile artillery rounds detected . The manu—

fac tu rer has de termined tha t f ive  fac tor s should in f l uen ce the p e r f o rma nce

of the radar. They are the threat array emp loyed by the enemy , the tiso

of elec t ronic coun ter measures ( ECM) by the enemy , the r:ite of hostile

-5 - -5- - -5 - - 5  --5— - - -5



fire , the range from the ALR to the enemy threat , and the sector the ALR

is searchir - . All of these factors can be set at two levels except for

the threat array. That can be set at one of four levels to represent

the typical composition of enemy artillery units that the ALR is likely

to be deployed against. Since four is a multiple of two , the threat

a r r ay  factor can be represented as two pseudo—factors each with two levels

and the ent ire exper imen t can be represented as a 26 factorial experiment.

The six factors and the levels of each factor are shown in Table 9.

Table 9. Factors in 2
6 
Factorial Experiments

Fac tor Low Level High Level

A — ECM No t Emp loyed Emp loyed

B - Rate of Fire Slow Fast

C — Range Shor t < 10,000 KM Long > 10,000 KM

D — Sector Narrow (~~ 
15° of center Wide (15—45° of cen ter)

E — Threa t Arr ay I II

F - Threa t Array I II  IV

Where THREAT ARRAY I = 1 enemy ba ttery

II = 2 enemy ba tteries

III  = 1 enemy ba ttal ion

IV = 2 enemy ba ttal ions

The Commander , OTEA , has stated that the ALR be tested by de ter-

m ining the percentage of hostile artillery round detected from firings

taken at each of the 64 possible treatment combinations. The analysis

--- - - -  - . - - -  -_ -5 --- _ -_- - 5 - ’  - - -



~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~ WW~~~~~~~~

51

method used will be Analysis of Variance (ANOVA) with all third order

-and higher interactions assumed to be negligible and pooled to form an

estimate of the error. The standard for comparison is the current

system which is detecting 50% of all hostile artillery rounds. The

measure of effectiveness employed will be the percentage of rounds

located . The principle purpose of the test will be to determine whether

or not the mean percentage of rounds detected by the ALR exceeds the

current system by some multiple of the standard deviation . It is assumed

tha t the percentage of rounds detected comes from a normal distribution

with unknown mean , p, and variance , ~
2 Therefor e, the testing will

consist of a test of H
0
:p = vs. H

1
:~i = + óo, where  ~ is some

positive constant.

Classical Me thods

OTEA conducted test firings at all 64 treatment combinations and

determined the percentage of rounds detected front each firing. Time limi—

tations precluded any more than eigh t test f i r ings per day so a 2
6_3

resolution III design with I = ABD = ACE = BCF = BCDE ACDF ABEF = DEF

as the generating relationship was used to fractionate the design and

then the eight different blocks were fired in random order. The results,

percentage of rounds de tec ted , and the ANOVA for  the en ti re exper imen t

are shown in the append ices. The results of the ANOVA indicate that only

the fac tors relating to ECM, ra te of f i r e , and sector of search are sig-

n ifican t so OT II should be conducted using only those factors.

Proposed Met hodolo

Using the same data and restrictions as In the actual OT I , the

L ~~~~~~~- ~~~~~~~~~ - -
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following examp le will illustrate the proposed sequential procedure .

The first eight observations are obtained from the block gene-

ra ted by I = ABD = ACE = BCE = BCDE = ACDF = ABEF = DEF and consists of

treatment combinations def (37), af (36) be (40), abd (87) ,  cd (61),

ace (34) ,  bcf (46) and abcdef (89) where the values in parentheses

represent the observed response for that treatment combination . Based

on these observed responses, 5 = 1., n = .10, and ~ .10 , the fo l lowing

comp utat ions are performed:

430/8 53.75 (4.1)

= 3 6 3 5 . 5 / 7  = 519.35 (4.2)

A
8 

= ~(7)(.1
_2/7

_l) = 3.26 (4.3)

B
8 

= 
~½ (7)(.l 

2/ 7 _i) = -3.26 (4.4)

r
8

(S~ ) = 
~~~~~~~ 

- ó/ 2 ) ) / S~ = 426/519 .35 = .82 ( 4 . 5)

2Since B
8 

< r
8

(S
8
) < A8, the decision is made to continue sampling .

The alias struc ture for  th is 2
6_3 

resolution III design is shown

in Table 10. Assuming that all third order and higher interactions are

negligible, each major factor is aliased with two two—factor interactions.

In order to separate the main effects from their aliased two—factor inter—

actions, the nex t block run will be the same as the first but with all

signs reversed . The defining relationship for this block will then be

I = -ARD = —ACE = -BCE = BCDE = ACDF = ABEF = -DEF . The block consists

of the fol low ing t rea tmen t comb inat ion s and their  observed responses:

abc (69), bcde (56), acdf (67), cef ( 10) , abef (69) , bdf (56), ade (75),

L
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Table 10. Alias Structure for ~~~~ Des ign

Fa ctor A L I A S E S

I ABD ACE BCF BCDE ACDF ABEF DEF

A BD CE ABCF ABCDE CDF BEF ADEF

B AD ABCE CF CDE ABCDF AEF BDEF

C ABCD AE BE BDE ADF ABCEF CDEF

0 AB ACDE BCDF BCE ACF ABDEF EF

E ABDE AC BCEF BCD ACDEF ABF DF

F ABDF ACEF BC BCDEF ACD ABE DE

AF BDF CEF ABC ABCDEF CD BE ADE

and (l)(24). Sequent i i i  cai5ulation s result in the following:

856/16 53 .5 (4.6)

s
16 

= 502.4 (•.7)

= 2.695 , B~~ = -2.695 (4.8)

r
16

(S~ 6) 
= 848/502.4 = 1.69 (4.9)

Since B
16 

< r
16

(S~6
) < A 16, the decision is made to continue samp ling.

Before the next block is run , however , an an alysis of the results

obtained so far is performed . The results are shown in the appendices.

Based on the relative magnitude of the effects , it would appear tha t

factors A , B, and 0 were si gnificant wh i le factors C, E. and F were not .

Since the largest Interaction term is due to BD and CE, it is also

- -

~
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possible that the BD interaction is significant. Since the decision has

already been made to con tinue samp ling, the next block run will be the

same as the first block except that all of the signs in the column for

factor B will be reversed . This will isolate factor B and all of its two

fac tor interactions and will provide a better estimate of whether or not

the BD interaction is significant.

The third block then consists of the following treatn~ent combina-

tions and their observed responses: bdef (67), abf (74), e (‘“~, 
ad (66),

bcd (67), abce (72), cf (11), acdef (75). The sequential calculations

— 

resul t in the fol lowing:

y = 1298/24 = 54.08 (4.10)

S~4 
= 563.99 (4.11)

A24 
= 2.55 B24 

= —2.55 (4.12)

r24(S~ 4) = 1286/563. 99 = 2 .28  (4.13)

Since 
~24 < r24 (S~ 4) < A24, the decision is made to continue sampling .

An analysis of the results of the data from the third block is shown in

the appendices. Once again , fac tors A, B, and D appear to be significant

while the SD interaction is still in doubt. After the second block , the

effect in question was due to the SD and CE interactions so it is possible

that this was due to the CE rather than the BD interaction . Since the

decision has been made to continue sampling,  the nex t block run will

change the signs in the column for factor c to isolate factor c and its

two factor interactions. This block contains the following treatment

combinations and observed responses: cdef (48), acf (41), bce (30) , 

- -5 -5-- -5-.--- - -5 - -- ;- - -  - 5 -  -~~~ -5 —-5-__-5- -
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abcd (95) , d ( 57 ) ,  ae (46), bf (31) , and abdef (86). The sequential

calculations result in the following:

y = 1732/32 = 54.125 (4.14)

~32 
= 550.31 (4.15)

A32 2.48 , B32 = —2 .48 (4.16)

r32 (S~ 2) = 1716/550.31 = 3.12 (4 .17)

Since r 32 (S~ 2) > A~2 the decision is made to stop sampling and accep t

H
1
:p = p

0 + iSo 
= 50 + o. This means that the ALR has performed better

to date than the current system. The analysis of the data from the

fourth block is shown in the appendices. Once again factors A , B, and

D appear to be significant while the CE interaction does not. Since the

decision has been made to stop sampling , the recommendation made at this

poin t would be to perform UT II using only the factors for ECH, rate of

f ire , and sector. The other factors would be set at some acceptable

standard level and left there.

An in teres t ing sideligh t illustra ted by this example is the

process of collapsing a design in k variables to a smaller design in

p < k variables by elimina ting non—signif ican t variables from

consideration . To illustrate this procedure , the experimenter was

relatively sure that the variables C, H, and F were not significant after

the second block of eight exper imen ts had been performed and the screeni ng

analysis conducted . Had the decision been made to eliminate those vari-

ables from further consideration at that poin t by setting them at some

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  --
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standard level , the nex t blocks of eig ht experiments performed would

consist of a rep lica ted 1/2 f ra ct ion of a 2~ fac torial in the signifi-

cant variables A, B, and D. This is shown in the table of plus and

minus signs in Table 11. In addition , the two blocks comb ined form a

replicated full factorial in the three factors A , B, and 0.

Table 11. Collapsed Design in Three Variables

BLOCK 3 BLOCK 4
Trea tment Trea tmen t
Combination A B D Combination A B D

bdef — + + cdef - — +

abf + + — acf + - -

e — - - bce — + -

ad + - + abcd + + +

bcd - + + d - - +

abee + + — ae + - -

cf - — - bf — + -

acd ef + - ÷ abdef + + +

Sensit ivi ty

This section will demonstrate how the conc lusions ceached in the

sequential analysis would vary should any of the input parameters be

changed .

~ and ~

Table 12 shows the different decisions made if the probabil ities

of Type I (~~) and Type II (~~~) errors are changed. These results would

appear to be in tuit ively correc t. As the values for ~ and ~ are increased
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the boundar ies for  mak ing a decision come closer toge ther sin ce the

exper imenter is mor e will ing to make an error while for  smaller val ues

of i and 3, the boundaries are farther apart because the experimenter is

willing to make an error.

Table 12. Sensitivity of c~ and ~ Errors

~~~~~~~ n = no. of Observations ~~
,BN 

r ( S 2
) Dec ision

.05 8 4.74 —4 .74 .82 Continue

16 3.68 —3.68 1.69 Continue

24 3.42 —3.42 2.28 Continue

32 3.30 —3.30 3.12 Continue

.15 8 2.52 -2.52 .82 Continue

16 2.16 —2.16 1.69 Continue

24 2.06 —2.06 2.28 Stop—Accept H
1

32 2.02 —2.02 3.12 N/A

.20 8 2.04 —2.04 .82 Continue

16 1.80 —1 .80 1.69 Continue

24 1.73 —1.73 2.28 Stop—Accept H1

32 1.70 —1.70 3.12 N/A

~~quential Parameters

The sequential procedure employed involves recomputing An 
, B
0 o

and S’ after each block of observations. Table 13 shows the change
n

o
In the results if this modification is not employed by using the values

A
8 

= 3.26, B8 
= —3.26 and S~ = 519.35 throughout the sequential ana lysis
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Table 13. Sensitivity of Inpu t Parameters

s
2 r ( S )  - r ( S )  - -— n n n 8 Decision a a Decision

8 519.35 .82 Continue .82 Continue

16 502.4 1.63 Continue 1.69 Cont inue

24 563.99 2.48 Continue 2.28 Continue

32 550.31 3.30 Stop—Accept H
1 

3.12 Continue

—-5-

or is only partially emp loyed by using the values for A
8 

and B
8 

through-

out but recomputing S
2 
after each block. Eliminating the convergence of

the boundaries as more samples are taken results in the decision to con-

tinue sampling after 32 samples have been taken but would result in the

decision to stop sampl ing and accep t H
i 

after the next block of eight

for a total of 40 samples.

Improvement Required (6)

This example was run with the new system required to outperform the

old system by a factor of one standard deviation . This value was arbi-

trarily selec ted by the test designer. Table 14 shows the changes in

the decision making procedure as a result of changing the value of 6.

Variance Known

The preced ing exa mple illustrated the sequential analys is proced u r e

when the observations were assumed to have come from a normal population

with unknown mean and variance. In many real life cases, there may be

some prior data available so that a good estimate for the variance may

be obtained . Assuming that the previous testing had been conducted , t he

—

~
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Table 14. Sensitivity of ~

2r ( S ) - .n iS n n Decision

8 .5 .41 Continue

1.5 1.22 Continue

2.0 1.63 Continue

16 .5 .85 Continue

1.5 2.52 Continue

2.0 3.34 Stop—Accept
H
1

24 .5 1.14 Continue

1.5 3.40 Stop—Accept
H
1

32 .5 1.57 Continue

MS = 52.35 could be used as an estimate of the variance for future
Err or

testing . The problem then resolves to testing H
0
:p = 50 vs. H

1
:p =50

+ lo 57.2 and the Sequential Probability Ratio Test can be employed .

Using ct = = .10, the boundaries for the SPRT become :

~~~~~~~~~~~~ .11 (4.18)

A = = -
~~ = 9 (4.19)

As shown in Chapter III , the SPRT consists of the following:

- 
_ _ _  
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3) After 24 observations:

E y. = 1298 (4.26)

B = (—16.05) + (53.6)(24) = 1270.35 (4.27)

A 24 = 15.98 + (53.6) (24) = 1302.38 (~~.28)

Since B24 < 

~~ 

y. < A~~ , the decision to con t inue  samp ling is made.

4) Aft er 32 observations:

~ y. 
= 1732 (4.29)

B32 = -16.05 + (53.u)(32) = 1699.15 (4.30)

B32 = 15.98 + (53.6) (32) = 1731.18 (4.31)

- 

- 

Since E y. > A32, the decision to stop sampling and accept H
1 

is

made. The Sequential Probability Ratio Test resulted in the same deci-

sion after thc same number of observations as the sequential t—test .

An explanation for the fact that the test did not terminate sooner when

the varianc e was assumed known can be found in the fact that the mean

of the 64 observations used was 53.25 which is close to half—wa y between

the two hypothetical values of SO and 57.2 and the SPRT performs best at

values near the hypothesized values and worse at values close to the

mid—po int of the hypothesized values. In spite of this fact , the SPRT

still terminated in half the number of observations required by the

classical methods currently employed .
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CHAPTER V

4
RELATED APPLICATIONS

Introduction

The proposed me thodology developed in Chapter I I I  was applied to

a specific situation in Chapter IV. The situation described in Chapter

IV , al though specif ic in na ture , was really taken f rom a general class

of problem s, 2n fac torials, to which the methodology may be applied .

Th is chap ter will presen t several highl y spec if ic procedures wh ich may

be combined wi th the proposed me thodology in certain situations to gain

even more benefits from the procedure.

Major and Minor Variables

In many si tua tions , prior knowledge of the system or of a similar

system may allow the experimenter to determine which factors will defi-

nitely make a significant contribution prior to the start of experimen-

tation. There may be several other factors about whose contribution the

experimenter is unsure and , therefore desires further information . By

classif ying the a priori significant variables as major variables and

the remainder as minor variables , use can be made of the proper ties of

blocking a fac torial experimen t to ga in more informa t ion f ro m the

experiment. Generally,  the experimenter will desire an estimate of thc

main effect and all interactions for the major variables but he will be

willing to assume that all interactions involving minor variables are

negli gible so will onl y want an estimate of the main effect for the minor

______________________________ 
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variable. The procedure involving major and minor variables is specific

in that it requires a resolution IV design blocked into a number of

blocks equal to the number of major variables. By associating each

major variable with a block and the minor variables with the experi-

men tal variables, significance of a block effect will indicate signifi-

cance of a major variable and an effect due to an interaction between

blocks will indicate an interaction between major variables. It may be

that an estimate for an effect will involve a combination of a major

variable and some number of minor variable interactions but this situation

poses no problem since the experimenter has assumed that all order inter-

act ions involving minor variables are negligible. A specific example of

the use of major and minor variables is the 2
8_4 

resolution iv design

wh ich can be used to inves tiga te eight minor and three major variables .

Sinc e the design con tains 16 poin ts, the first step in constructing the

design matrix is to write down a full 2~ fac torial des ign in f our of the

minor var iables. The remaining four  m inor variables are then exp ressed

as t hre e fac tor interac tions of the f irs t four variables and the major

or blocking variables are expressed as two factor interactions of some

pair of minor variables. The design matrix for this design is shown in

Table 15. The design is then separated into eight blocks of two runs

each by combining the treatment combinations that have the same signs on

B1, B2, and B3, i.e., the sets (— ,— ,— ), (+ ,
— ,— ) ,  (— ,+,— ) ,  (+ ,+,— ) ,

(— ,— ,+) ,  (+ ,— ,÷), (— ,+,+) ,  and (+ ,+ ,+) .  to form the eight blocks . One

interesting thing to note when the treatment combinations are paired in

this manner i s  tha t the two treatment combinations in the same block

have oppo sit e signs for  every factor.

- 
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Table 15. Design Matrix for Major and Minor Variables

- Minor Var iables Maj or Var iables 
—

A B C D E=ABC F=ABD G=ACD H=BCD -~ l---~~ ~~~~~ ~~~~~~~~~

- - - - - - - - + + +

+ - - - + + + - -

- + - - + + - + - + +

+ + - - - - + + +

- - + - + - + + + - +

+ - + - - + - + - +

- ÷ ÷ - - + + - - - +

+ + + - + - - - + +

- - - + - + + + + +

+ - - + + - - + - - +

- + - + + - + - - +

+ + - + - + - - + - +

- - + + + + - - +

+ - + + - - + - - + +

- + + + - - - + -

+ + + + + + + + + + +

Sequential Factorial Estimation

In cer ta in cases , the experim~nter may desire further information

about the model tha t represents the system under investigation . For an

experimen t involving P variables and assuming that all iit itd ordt~i and

hi gher in terac t ions are neg lig ible , the general model cart be writt en as:

- - - -5 - 5 -  -5 -5 - -
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P P
E (y)  = S + E S x + ~ ~ 5.. x~ x . (5.1)

0 i=l 
i 1 •~ j=1 13 1 :J

Least squares estimates of all of the coefficients , I~’s, in the model

can be ob tained from

(x’x)
1
x ’y (5.2)

whereB= X =  
ED]

~l2

S S
p— i p

D = design ma tr ix of exper imen t and y = column vector of observations

as long as the number of observations is greater than or equal to the

number of coeffic ients for which an estimate is desired . On the high

speed computers available today,  equation (5.2) can be evaluated quickl y

and easily.

Hunter [31] has developed a similar method where the computations

may he made eas ily on a hand calculator in case the experimenter does

not have read y access to a comp ute r . His method requires that:

1) The model contain no more than q < N coefficients and an experimental

design containing N experiments has been comp leted .

2) The estima tes provided by pr ior bl ocks must he mutuall y orthogonal

with variance equal to —— .
mN

-- 5 - -~~~~ -5-- -- - - 5 -- -5 -5
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T - -3) The added row vectors must be row—wise orthogonal (r.r
j 

= 0 f or i’,’j ) .

Conditions 2 and 3 above are satisfied by a 2
k—p 

factorial design if

q = N. Once an initial block of N runs has been obtained , initial esti-

mates of the coefficients can be obtained from equation (5.2). From then

on , Hunter ’s Pred ictor—Corrector equation ca be used to update the esti-

mates of the coefficients after each run. The P—C equation is given by :

* 
tn

B = B + —j-

~
— J 1(y . —~ 1) r . (5. 3)

*
where : B = (q x 1) vector of revised estimates.

B = (q < 1) vector of estimates provided by prior block(s).

N = number of runs in a block.

n = number of runs completed in current block.

q = number of coeffic ients in the model.

in = number of blocks of N runs completed .

T
r . = (1 x q) row vector in matrix of independent variables

th -assoc iated with i experiment i = 1,2,... ,n s N.

y. = new observation associated with r ..
1 i

T . .th
y. = r . B = predicted response for i experiment.

Once the initial estimates, B, have been obtain ed , they are used
*

throug hout the next block. The revised estimates B are computed after

each exper imental run using the B computed after the previous block. The

estimates , B, are upda ted af ter each comp le te block is f in ished and the

up dat ed es t ima tes ar e then used throug hout the entire next block. The

variance of each revised estimate can be obtained from :

* 1 n 2
V(h ) = —h [1 —

— — - - - 5--



- --‘-5-- -- - -- - - 5 — - - - —

67

where ~
2 

is the popula tion varianc e and m , N, n, q are as def ined

previously. The procedure requires computing the inverse of a matrix

only after the initial block of N observations have been made.

Th is proced ure is par ticu larly usef ul when, for some reason , it

becomes impossible to complete the experimentation . The change (increase)

in the sum of squares due to error (deviation) for each experimental run

can he computed from

ASSD = 
mN 

(y. — -5.. ) 2 (5 . 5)

so that the analysis of var iance table can be updated at the completion

of each run. This provides the experimenter with a valid ANOVA table in

the event tha t a complete block of N experiments cannot be completed .

The complete ANOVA after in blocks of N experiments is:

Sourc e SS DF

inN 
2SSY = Cr ude SS ~ y. inN

i=l

inN 2
SSR = Regression SS Y y . q (5.6)

i=l

2SSD = Er ro r SS ~ (y. — 9 , )  mN—q
1=1 1 i

To satisfy the requirement tha t q N it may be n&’cessarv to

introduce some slack variables. The easiest way to  do this is to p ick

some higher order interaction(s) that may he of interest and inc l ude

them in the regression model so tha t an estimate of their coe fticients

will also he obtained . An examp le app lying this procedure to the d a t i

- -- -5 - -—- -~~~~- ----- --- - -------- --- --- - --- -5 - - -  --5-— - -- 5 - - -
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from the example in Chapter IV is shown in the appendices.

Blo cking Fra ct ional Fac tor ials

In the examp le illustrated in Chapter IV , each set of eight experi-

ments consisted of a 1/8 fraction of the full 2
6 

factorial. After two

sets of eight experiments had been performed , the exper imen ter had , in

effect , performed a 1/4 f rac tion of the 26 in two blocks and the experi-

ment could be analyzed as such at this point.

To illustr ate this procedure , consider the first two sets of eight

exper imen ts performed in the examp le in Chap ter IV . They now for m a 1/4

f rac tion of the 26 or a 2 6 2  
witll generating relation I = BCDE = ACDF =

ABEF. The alias structure for this design is shown in Table 16. Since

ther e are two al ias sets con taining only three factor interactions , one

of these is confounded with the two blocks run . In this case , the inter—

action ABD and its aliases were confounded with blocks. The eight treat—

ment combinations in the first block performed all contain an odd number

of letters in common with ABD and the eight treatment combinations in

the second block performed all contain an even number of letters in corn—

mon with ABD. The experimenter , in performing an Ana lysis of Variance at

th is point could then extract one degree of freedom for blocks. An

analysis of the effect due to blocking could provide the experimenter

wi th some idea of a training or learning process or an effect such as

weather that may be having an effect from block to block.

_____________________________________________ __________ -5- -. - - ~~~ -5
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Table 16. Alias Structure for 2
6 2  wi th I = BCDE = ACDF = ABEF

I BCDE ACDF ABEF

A ABCDE CDF BEF

B CDE ABCDF AEF

C BDE ADF ABCEF

D BCE ACF ABDEF

E BCD ACDEF ABF

F BCDEF ACD ABE

AB ACDE BCDF EF

AC ABDE DF BCEF

AD ABCE CF BDEF

AE ABCD CDEF BF

AF ABCDEF CD BE

BC DE ABDF ACEF

BD CE ABCF ADEF

ABC ADE BDF CEF

ABD ACE BCF DEF
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CHAPTER V I

CONCLUSIONS AND RECOMMENDATIONS

Limitations of the Research

This research is limited in app lication to tinivariate response

models. It is assumed that the response comes from a normal population

with unknown mean , p, and var iance , ~
2 

which may or may not be known .

The approach is demonstrated only fcr a factorial experiment tha t is

fractionated into a Resolution III design but is easily extended into

a factorial experiment where the factors take on any number of levels

as long as the full factorial can be fractionated into a Resolution III

or higher design .

Conclus ions

This research accomplished three objectives:

A. An approach to systematically building a factorial experiment through

the use of screening experiments was demonstrated . This allows t i . ~

exper imenter to ob tain as much informa t ion as possibl e f r o m  a f i xed

set of resources.

B. A method of sequentially analyzing the data from a fractionated

factorial experiment was demonstrated . This allows the experimenter

to obtain a fixed amount of information from a reduced set of resources.

(~~. The proposed methodology combined the above two methods to svstemati-

cally build a factorial experiment while conducting a sequential

analysis of the d a t i  at the end of each block ol the factorial

experiment. This allows the experimenter to gain the maximum am o u n t

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —-5--- - -~~~~~~~~
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of information from a minimum amount of resources.

Recommendations

Although this research considers onl y a univariate response model ,

operationa l testing often involves the testing of several Measures of

Effect iveness (MOE). Therefore, it is recommended that future research

in this area be directed at the development of a methodology to handle

the case of multiple response models.

This research also was demonstrated only for a factorial

experiment. Future work in the area should be directed at app lying the

methodology to experiments in which the factors appear at other than two

levels or to other than factorial experimental designs.

As the results of more operational tests become available , it is

recommended that the U.S. Army Operational Test and Evaluation Agency

app ly the proposed methodology to the completed test data as a further

test of its validity and worth as a viable analysis method for their

eventual adoption.
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APPENDIX A

DATA FROM THE FULL 26 FACTORIAL EXPERIMEN T AND

ANALYSIS OF VARIANCE TABLE

This appendix contains the data from the full 2
6 

factorial experi-

ment and an Analysis of Variance Table for the entire data set.

Da ta from the Full 26 Factorial Experiment

(1) 24 e 10 f 18 ef 18

a 38 ae 46 af 36 aef 34

b 33 be 40 bf 31 bef 32

ab 56 abe 74 abf 74 abef 69

c 15 ce 13 cf 11 cef 10

ac 42 ace 34 acf 41 acef 43

bc 34 bce 30 bcf 46 beef 39

abc 69 abce 72 abcf 47 abcef 44

d 57 de 53 df 45 def 37

ad 66 ade 75 adf 66 adef 60

bd 79 bde 70 bdf 56 bdef 67

ahd 67 abde 83 abd f 88 abd ef 86

cd 61 cde 49 cdf 47 edef 48

acd 78 acde 72 acdf 67 acdef 75

bcd 67 bcde 56 bcdf 65 bcdef 70

abcd 95 abcde 89 abcdf  82 abcde f  89

—---5— --5— - - _ ____~a__& _ - ---5-.- -- - --5— - ~~~~~~~~~~~~~~~~~ - —-~~.
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APPENDIX B

SCREENING ANALYSTS

This appendix contains an analysis of the results after each

block of eight experiments was run and a comparison of the effects to

determine relative significance.

A . Block 1: B. Block 2:

= A + BD + CE = 62/3 = 20.67 = -A + BD + CE = -44.67

= B + AD + CF = 31.33 = —B + AD + CF = —24.67

~~~~~C + A E + BF 10.00 
~
!
~~
=
~~

C + A E + B F= 7 .3 3

f
0

= D + A B + EF = 39.33 f~~ = —D + AB + EF = —27.33

= E + AC + DF = —10.00 = —E + AC + DF = 2.00

= F + BC + DE = —4.67 Z~, = —F + BC + DE = 7.33

~CD CD + BE + AF = 4.00 
~~D 

= CD + BE + AF = 18.67

C. Block 1: C. Block 2

+ il~ ‘2(~ . —
i 1 1 1

BD + CE = 12.00 A = 32.67

AD + CF = 3.33 B = 28.00

AE + BE = 8.67 C = 1.33

AB + EF=6.OO D=33.33

AC + DF = -4.00 E = —6.00

BC + DE = 1.33 F = —6.00

—t’.-t..--—’— - - -=:—--- - ---- - - -
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D. Block 3:

*
= A —  BD + CE = 44.00

= -B + AD + CF = —39.33

Q
C

C +
~~~~~~~~~~~

2 .67
*

I = D — A B + E F = 36.00

= E + AC + DF = 2.00

F 
= F — BC + DE = 4.00

~CD 
= CD = BE + AF = 3.33

D. Blocks 1 and 3:

* *
2 (~~~ j  

÷ 
~~~) 

~~~~~~ 

—

A + CE = 32.34 BD = —11.67

A D + C F = —4.OO B = 3 5 . 3 3

C + A E = 6.34 BF= 3 .67

D + EF = 37 .67  AB = 1.67

F + D E — .34 BC=—4.34

CD + AF = 3 .67  B E =  .34

E . Block 4:

= A + BD — CE = 34.00

= B + Al) — CF = 16.67

= —C + AE + BF = 2.00

= D + AB 4- EF = 46.00

E — A C + DF -4.67

= F — BC + DE = — 7 . 3 3

~CD 
= —CD + BE + AF = —2.00

hiiiiui.uiiiiiiiiiiriiiij ititiiiw.i1uiiii- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- -- - _ _ -_~~ -5--- -~~~~~~~- — —--—-- - - - - - - -- , ~~~~~~~~~~ -
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F. Block 1: F. Block 4:

~2(f . + ~ ‘~( f . — 2~’)1 1 1 i

A + BD = 27.34 CE = —6.67

B + AD = 24.00 CF = 7.33

AE + B F = 6 . O O  C 4.OO

D + AB + EF = 42.67 H. 0. TERM S = —3.33

E ÷ D F = —7.34 AC —2 .67

F + DE = -6.00 BC = 1.33

AF + BC = 1.00 CD = 3.00

— ‘-5- —‘-5————-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——- --5———-.— — — — 
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APPENDIX C

SEQUENTIAL FACTORIAL ESTIMATION

Th is appendix app lies the sequential factorial estimation procedure

discussed in Chapter V to the data f r m  the examp 1t~ used in Chapter IV in

order to demonstrate its use.

A. Af ter the first block of eight observations is made , estimates for

the coefficients in the model:

y b
0 
÷ b

1
A + b

2
B + b

3
C + b

4
D + b

5
E + b

6
F + b 24 BD (C .l)

can he obtained from the equation

(x ’x) 1
x ’y (C.2)

For the first block of eight observations ,

1 —1 — l — 1 1 1 1 —l 37

1 1 —l — 1 — l — l 1 1 36

X = 1 —l 1 — l — l 1 —l — l , y = 40 (C. 3)

1 1 1 —1 1 —l —l 1 87

1 —l —l 1 1 —l — l —1 61

1 1 — 1  1 — 1  1 — 1  1 34

1 —1 1 1 —l — l 1 — 1 46

1 1 1 1 1 1 1 1 89

Resulting in
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53.75

7 . 7 5

= 11.75 (C.4)

3.75

14.75

—3.75

-1.75

7 .75

so the fitted model is:

- y = 53.75 + 7.75A + 11.75B + 3.75C ÷ 14.75D — 3.75E

— l .75F + 7 .75B (C.5)

Since the variance—covariance matrix , (x ’x)~~ is

1/8

1/8
0

1/8

1 1/8
(x ’x )  = ( C.6 )

1/8 -
:

1/8
0

1/8

1/8

a ll of the coef f i c i ents in (C.5) have variance equal to o
2
/8 and co—

variances zero. The column vector , ~~, given by C.4 now becomes B as

In equation (5.3) and is used throughout the entir e next block.
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B. The ninth observation is taken at treatment combination abc with an

observed response of 69 so the required data for equation (5.3) is

N = 8, n = 1, q = 8, m = 1, r~ [1,l,l,1,-l ,—l ,—1 ,—l l , y9 
= 69 ,

= r~ B = 60 , and B as given in (C.4).

This results in

57.5

* 

11.5

B = 15.5 ( C .7 )

F 7. 5

18.5

0

2.0

11.5

so the f itted model af ter nine observa tions is

y = 57.5 + ll.5A + 15.5B + 7.5C + l8.5D + 2.OF + 11.5 BD (C.8)

and the variance of the coefficients in (C.8) as obtained from (5.4)

is 15/128 ~2 but the covar iances are no longer zero because the

columns of the des ign matrix are no longer orthogonal. The co—

variances can be ob tained f r o m the appr ox imate en t ry in the

variance—covariance matrix , (x ’x) 1
. This procedure would be con—

th *

tinued through the 16 observation. The B obtained after app lying

(5.3) to the 16th observation would become the values of B used

throughout the third block of eight observations. 

-— - ~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~~~~~~~ ‘-~~~~~~ —~~~~.-- -- - - _ _ _
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