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ABSTRACT

Flutter Analysis of a Cascade of Staggered Blades in

Subsonic Fl ow . ( December 1977)

Louis Kronenberger , Jr., B.S., Texas A&M University

Co-Chairme n of Advisory Comittee: Dr. Bal usu M. Rao
Dr. Leland A. Carl son

N

The purpose of this report is to utilize a numerical lifting

surface theory developed by Rao and Jones to predict the unsteady air-

loads on an infinite cascade of staggered blades in subsonic comp ress-

ible flow. An investigation is conducted to determi ne the effect on the

unsteady airloads when parameters such as reduced frequency , interbiade

stagger angle , interbiade spacing , and interbiade phase lag are varied

over a specifi c range of values . Once the unsteady airloads have been

determi ned , they are used to perform an aeroelasti c analysis of the

staggered cascade for a single degree of freedom in torsion and a two

degree of freedom system in bending and torsion .

Resul ts of the single degree of freedom analysis yields flutter

boundaries.4.ti~~e are compared to results obtained by Whitehead who

used a different~techni~ ue for calculating the unsteady airloads on a

finite cascade .-~A new general flutter program is developed for the two

degree of freedom system.~~~ \~irloads are used as forcing functions in

the resul ting two Lagrangean eq~~~ ons of motion representing the bend-

ing and torsional degrees of freedc~~~The iterati ve procedure of the

flutter program yields the flutter frequency and speed of the cascade

refe rence airfoil as a function of the cascade parameters .
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NOMENCLATURE

a = s peed of sound , ft/sec .

aCm ) = term in exponential series

A = infl uence coefficient

B = half-width of airfoil segment

c = 2i~ = blade chord length , ft.

C,~ = complex translational unsteady lift coefficient

C~ = compl ex pitching unsteady lift coeffi c ient

Cmz 
= comp lex translational unsteady moment coefficient

C~~ = complex pi tching unsteady moment coefficient

d = horizontal component of cascade interblade spacing

D = d /2 ,

F = general ized force term

h = vertical component of cascade interblade spacing;
= ~z = flapped displacement

H =~~h/ 9.

H(2 )  
= Hankel function of second kind and zeroth order

H~
2) 

= Hankel function of second kind and fi rst order

I = imaginary part of unsteady aerodynami c derivatives;
blade mass moment of inertia about the elastic axis

K = 

~~upper - 

~lower~ 
discontinuity in modified velocity

potential be tween upper and lower surfaces of an airfo i l;
complex doublet intensity in transfo rmed coordinates

= bending stiffness coefficient

K = torsional stiffness coefficient
a
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NOMENCLATURE (CONT’D.)

= reference length (semi-chord), ft.

= li ft per unit chord per un i t span

L = lift with reterence to mid-chord

m = blades of the cascade; terms in exponential series

M = local Mach number; nose-up pitching moment about mid -
chor d ax i s; bla de mass per uni t s pan

N = segment of airfoil

p = point on the reference airfoil; blade frequency , rad/sec.

P1 ,P2 = roots of the quad ra tic equat ion for the real par t of ~hefl utter determi nant

P3 sol ution to the linear equation for the imag inary part of
the flutte r determi nant

Q = velocity , ft / sec.

r = distance from axis of rotation along blade axis

R = real part of unstead y aerodynami c deri vat ives

s = cascade interbiade spacing

S = s/I. = (D2 + H2y~; bla de static moment about elastic axis

S0 
= exponential series term

S1 
= ~So/~X

t = t ime , sec .

T = kinetic energy per unit span of airfoil

u = ~~/~x = perturbation veloc ity component alon g x a d s

U = local velocity , ft/sec.; blade potentia l energy

w = 
~~/~z perturbation velocity component along z axis

w complex downwash velocity in transforme d coordinates

w = com p lex downwas h veloci t y at a point p on the reference
bla de

- -
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NOMENCLATURE ( CONT ’ 0.)

(x ,z,t) = Cartesian coord i nates and time

(X ,Z,T) = transformed coordinates and time

(X ,Z) = transformed coordinates at a point p

z amplitude in flapping motion

Greek Symbols

a = ampl i tude in pitching or torsional motion

= (l_M2 )½ = compressibility factor

= (a +

c =

n = percent blade chord ; b la de axis position

K = Mu,/~
2

A = casca de inter b la de stag ger an g le , deg.

p =

= (w + ~
) =

9
= cascade stagger angle as defi ned by Whitehead

d isplacement for fla pped bla de i n transforma tion of ax i s

p = air mass density ; slug/ft 3 .

• a = cascade interbia de phase lag

= veloci ty ~otent i al , ft 2/sec.; phase lag as defi ned by
F W hitehead

= velocity potential at a point p

= transformed velocity potential

= pI./U = reduced frequency

= critical frequency

- (K
~
/M)2 = blade bending natural frequency 
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NOMENCLATURE (CONT ’D.)

= (K /I)½ = blade torsional natural frequency

V = gradient operator in Cartesian coordinates

Superscripts

= indicates non-dimensional ization with respect to the
blade semi-chord

— = indicates transformation to axis other than mid-chord

= d( )/dt = fi rst derivative wi th respect to time

= d2( )/dt2 = second derivative with respect to time

Subscr ipts

le = blade leading edge

te = blade trailing edge
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INTRODUCTION

Many researchers have devoted considerable effort towards predicting

the flow characteristics through the mul tiple stages of blades that exist

in axial flow compressors . The research efforts have been concentrated on

obtaining the aerodynami c loads utilized in the design of more efficient

blades . in addition to the need for informa tion about blade aerodynami c

loading, flutter characteristics also need to be determi ned.

Assuming two—dimensiona lity , the fl ow through a sin gle row of blades

is mathematically equivalent to the flow through a staggered cascade of

infinitely many ai rfoils. A staggered cascade is shown in Fi g. 1 , where

x is interb l ade stagger angle , ~. is blade semi-chord length , U is free-

stream velocity , and s is interblade s pacin g.
1 2

Earl y researchers like Wh i tehead , Kemp and Sears , and Sc horr and
3

Reddy , assumed incompressi~-:le flow and developed aerodynami c theories

and computational schemes for predicting the unstead y airloads on the

blades for oscillatory freestream flow and /or oscillatin 9 blades .
2

An example is the wo rk of Kemp and Sears who studied the problem

of the unsteady lift generated on a re ference airfo~l of a cascade . In

their approach , they used an oscillatory freestream flow. Their study

considered the steady interact ion between blades but neg lected the un-

steady interaction and therefore , the effects of cascade spacing. Their

approach was to express the unsteady lift as a function o~ the desiyn

parameters , such as the ratio of the airfoil chord and the disturbance

wa velen gth , thus ena bling a desi gner to optimi ze the performance of a

The format of this thesis follows that of the AIM Journal .

IL 
_
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turbomachine desi gn instead of analyzing one particular blade arrange-

ment.
3

In another study , Schorr and Reddy treated the flow through a

staggered cascade of airfoils in which the effect of unsteady upstream

disturbances were included as in the case of unsteady or distorted inlet

flow conditions in an axial flow compressor. Their problem was also

formulated under the assumption of incompressible potential flow and

numerical results were obta ined for oscillatory flow using an approxi mate

solu tion developed from the integral equations invol ved . In addition ,

their solution yielded unsteady lift coefficients for the airfoils as a

function of the frequency of the oscillations and for different val ues

of stagger ang le and solidi ty of the cascade .

In an i ndependent study , Jones and Moore studied the incompressible

flow about a cascade of oscillating airfoils at zero mean incidence . In

order to obtain a sol ution , they utilized a unique numerical l ifting

surface technique which di ffers from all other methods in that it makes

use of the velocity potential instead of acceleration potential doublet

distributions . A major advantage of this method is that it leads to a
5

• sim pler set of linear equations. Rao and Jones l ater applied this tech-

ni que to the oscillatory flow about an airfoil of a staggered cascade .

Ai rload results were obtained for several val ues of high frequency ,

in terblade stagger ang le, and inter blade spacing and showed excellent
3

agreement with the results of Schorr and Reddy . Resul ts were also

obtained for one comb i nation of interblade stagger angle and interblade

spacing at several interbiade phase lag angles and frequencies.
3 6

In a technique similar to that used by Schorr and Reddy , Flee ter



4

used oscil lating inflow and considered the effects of compressibility on

both the fl uctuating lift and fl uctuating moment coeffi cients for cas-

caded airfoils having an upstream non-unifo rmi ty . A solution was obtained

for the time-dependent , two-dimensional , partial diffe rential equations

which describe the perturbation velocity potential through an application

of Fourier transform theory . The resulting integral solution equation

was evaluated numerically by a matri x inversion technique . The fl uct-

uating lift and moment coeffi cient variations were computed and repre-

sented as a function of Mach number , cascade solidity , cascade stagger

ang le , interbiade phase lag, and reduced frequency .

Jones and Moore extended the velocity potential formulation to

oscillating two-dimensional airfoils in compressible flow . In their

numerical method they replaced the series of Hankel functions by a rapid-

ly convergent exponential series . They studied the effects of varying

airfoil spacing , frequency , Mach number , and phase di fference between

adj acent blades . Variations in the aerodynami c damping can become zero

but never negative at certain discrete frequencies . This is a desirable

characteristi c with respect to flutter due to bending. The resul ts also

indicated that the pitching moment aerodynami c damping relative to the

blade quarter-chord axis , while also bein g zero at the critical fre-

quencies , coul d be negative at the higher Mach numbers over a wide range

of frequencies of interest in flutter analysis . This is an undesirable

characteristic from the standpo int that it increases the area of insta-

bil i ty for torsiona l flutter . In a recent paper , Rao and Jones utilized

the theory developed in Ref. 7 to determi ne the airload and moment

coefficients on a typical airfoil of a staggered cascade of airfoils in
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subsonic flow . Circumferential distortion due to inflow conditions was

expressed as an interblade phase lag. The separate conditions for oscil-

latory inflow and oscillatin g blades were considered . Results were

obta ined for several val ues of frequency , Mach number , interhlade spacing,

interblade stagger ang le , and interbla de phase la g. The osc i llato ry in-

flow resul ts compared well with those of Fleeter.
9

In his study utilizin g compressible flow , Whitehead presented

calculations for the torsional flutter of a cascade of unstalled blades

at zero mean deflect ion and subsonic Mach numbers . Whitehead found that

the effect of increasing Mach number was favorable and tended to sup-

press the flutter that was predicted by i ncompressible theory .

In this report , a numerical lift ing surface theory developed by
8

Rao and Jones is used to predict the unsteady airloads on an infinite

cascade of staggered bla des in subsonic compressible flow . The effect of

the geometri c and flow parameters on the airloads is investigated by

varyi ng them over a practi cal range of values.

Additionally, an investi gation is conducted for a single degree of

freedom system in torsion . The effect of the flow and geometri c para-

meters is evaluated in establishing flutter boundaries and these resul ts
9

are compared with those of Whitehead who used a completely different

computational procedure for calculating the aerodynami c deri vat ives.

Finally, a general flutter program is develo ped for a two degree of

freedom (bendin g- torsion), staggered cascade in subsonic flow.The geo-

metric portions of the equations of the bla de motion are derived usin g
10

Lagrange ’s equation of motion . The unsteady airl oads are used as

forcing functions in the resulting two Lagrangean equations of motion

-4
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6

representing the bending and torsiona l degrees of freedom. By utilizing

an i terative procedure wh i ch permits frequency variation , the flutter

frequency and flutter speed of the reference airfoil are obtained as a

function of the cascade parameters . 

----~ —~~~~~~~~~~~ - - - - - -  



AERODYNAMIC THEORY

General

The governing equat~o~ for the un str~-~dy, compressible , two—

~itr ;ynsional 4 1 0 W  Of ~an isentropi c , inv isc i I, i rr~)tatl c~nal flu~d i~
11

~i .’~n in ter~s of its ~elucity po tc- nti~ l by,

- 
1~ [ d

(Q2 ) 4 = 0 ( 1)

where ~ is the pert urbat ion veloc i ty and

= (U+u)i + wL . (~)

F rcestrcam velocity is given as U. The r~~pectiv e pertu rbation velocity

c~~perie rits along the x and z axes are , u(=~~- ) and

Assuming that u and w are very small compared to U , Eqs. (1) and

(2) are combined to yield ,

(l—M)2 ~~~ + 
~~~ 

= ~ + 
2M 

~~4 (3
~~ ~~ a2 ~~ a ~xat

w he re M is the freestr eani Mach number and a is the speed of sound.

Jones used a non -dimensional coordinate transformation such that ,

X = ~~~, L = - , T = ~~~ (4)

dod

~(x ,z,t) Uz~ (X ,Z)e~~~~~
T
~ (~)

where 2. is a reference length for blade sem i-chord and ~ (1-fr ’ 2 ) 2 .

Also ,

= = ~~-~~~~ - , and ~ = ~( X , Z) . (6)

—~~~~~~~~~~~~~~~~ -~~ — -~~~~~~~~~~~~~~~~~ - •~~~~~-~~~-- -
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When Eq. (3) is combined with Eq. (5), it reduces to a two-d imensional

Helmholtz equation for the perturbation ve loc i ty  in the transformed co-

ordinate system ,

v24 + ~~~ = (7)

where ~ -
For a flow problem , the boundary conditions are usuall y prescribed.

For an isolated airfoil in compressible , unstead y flow , the solution of
12

Eq. (7) can be derive d by the application of Green ’s Theorem . A rela-

tion for the velocity potential at a given point , is g iven in terms

of velocity potent i al d istr ibution over the lif ti ng su rfa ce and it s

wake . Treating the lifting surface as a thin airfoil • the discontinuity

in the veloc ity potential between the upper and l ower surfaces is ex-

pressed as a doublet distribution , K(= 
~upper Hower~ 

One such solu-

tion for an isolated airfoil is given in Ref. 7. The rel a tion between

the dowowash at any point p on a thin re ference blade on a staggered

cascade in subsonic flow and the modified doublet distribution K(X), is

gi ven as ,
a,

2nW~ = ~f K(X)~~~ S0 (X~ -X~Z
2~

D .H~a) dX (8)

-l

where ,

S0 = 

~~~~:

im (0
~~

0) H~2)(K [(Xp~X+m D)2 +(mH~Z p )2]½) (9)

and D = , H = ~~
-
~~

- , and a is the interbla de phase lag. The blades of

the cascade are numbered m , with m = 0 as the reference airfoi l .  S i nce

S0 in Eq. (9) satisfies the wave equation in the form ,

~

:-

~



+ + 2~ = 0 (10)

an d in the limit as Z -
~ 0, Eq. (10) may be rewritten in the form ,

2~W(X ~ ) =J K(X)(~~~ + ~7So) 
dX (11)

where , -1

Sl 
= ~~~~~~~ = 

~~~~t~
im(o +ED) L~~~~ 1~i .(12)

[(Xp~
X+mD)2+m2H21~

The series involving Hankel functions (S0,S1 ) in Eqs. (9) and (12) have

very poor convergence charac teristics . Therefore , these are replaced

by an exponential series as shown in Refs . 13 and 14. However , it is

important to understand that this transfo rmation fro m Ha nkel function

series to exponential series is valid onl y for an infini te cascade .

Hence , it cannot be applied to a finite cascade . The convergence of the

exponential series is so good , that the requi red computa t io nal t ime is

less than for a cascade when compared to a two-dimensional isolated

airfoil in subsonic flow where i t is required to use Hankel functions.

The transformed relations as given in Ref . 7 are ,

_ 2 n a ( m ) I X  -XI/S
l~ 

p
s0 - -

~~~~~~~~~~~
- -—

~~~~~ ~-- (13)

m~-~ 
[(~~_ m)2 _ p 2]2

and ,

a, -2~a(m)IX -X~/S
= ~~~ a(m)e _~~~~~~ L — , for X > or < X , (14)

~~~~~~~~~~ [(6_m 2_ p 2]12 
p

where ,



r
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a(rn ) = [(~_m )2_p2]½ ~~- ± i (cs—m) ~~
- , for X~ > or < X , (15)

and ,

= 
a+cD 

, p = , and S = (D2+H2)½ . (16)

The exponential form of the series S~ and S 1 not only converge

rapidly , but also provides directly the values for critical frequencies

as shown in Ref. 7. The Eqs. (13) and (14) will diverge whenever one of

the denomi nators vanishes and no solution of Eq. (11) would be possible.

The cri tical values of the parameter p for which the analy sis fails are

given by,

p = 6 , 1 ± 6 , 2 ± 6 , etc .

This phenomenon corresponds to a resonance condition at critical fre-

quencies which constitute an infinite set of values of a parameter

depending on flow and confi guration characteri s tics a t which the aero-

dynami c func tion becomes infini te everywhere . Resonance conditions , as

shown in App . A , are functions of Mach number , frequency , interbiade

spacing, phase lag , stagger angle , and acoustic velocity . They repre-

sent the conditi on at which self- i nduced aerodynami c forces are zero

and the blades act effecti vely as if they were in a vacuum.

Boundary Conditions

The downwash w(=w 1 e1
~~) can be expressed in terms of ~(X ,Z) by

using Eq. (5 ) ,

w = = 8uei~~
X
~~

T) 
~~~~~ . (17)

Downwash can now be non-dirnensionalized to give , 

--•--• -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ :-~~~~~~~ ---~~- ••--- ~~ --
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Rao and Jones studied the effects of unsteady airloads on a cas-

cade of staggered blades in subsonic flow for both oscillatory inflow

and oscillating blades . For the oscillato ry infl ow condit ion , Rao ind

Jones ~~sume d a sinusoida l gust loading such that the downwash boundary

conditions on the airfoi l were ,

w~ = a
’
e~~~i (19)

where i = 1 ,2 N. For the osci l la ting blades with flapping and

pitching motions about the mid —chor d posi t ion as shown in Fig. 2 , the

dow nwash bounda ry condition is defined as ,

w~ U~iwz + ( l+ iw X j )~1]  (20)

where z and are the amplitudes in flappir !g and pi tching respec-

t ivel y. Since periodic motions were assumed , z 1~nd ~ are defined as ,

Z = z e~~
t 

= ? e ~~
T (21a )

ipt ‘ iwl
~~= a e  = u e  (2lb)

• The Kn ’ s are normally comp lex and de pend on z ’ 
and ~ for any

particular values of and M. A typical K0 wi ll have the form ,

Kn = a z  + b~~ (22)

where an and b~ are complex quant i t ies and depend on frequency , M~ich

number, interb lade spac ing, interbiade stagger ang le , and interb lade

phase lag. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Numerical F roci Jure

The numerical l i f t ing sur face method as developed in Ref. 7 is

uti 1 i zed . The ~•iake boundary Condi ti on is qi yen by,

K (X ) = Kt e
~~~~~~~ 

(23 )

where K
te 

is the doublet strength at the t ra i l ing  ed ge ( X = l ) .  Wh en [qs.

(11 )  and (23) are comb i ned , they can be expressed in the form ,

2n = fKx)~~~
1 + ~2 S~~dY + Kt I (24)

where , 
— l

~ 
= re~

i
~

(x
~

1) KLe(~
1 

+ K 2S~~dX

= —S 1~ 
— i\S~~ - ~

2 ( l- - M~’ ) P (25)

~~ s -2~a ( m ) ( l - X  )/S
= - ---

~~
-
~

- - ~~~~~ - - -.- (26)

m=~ [ a ~m~+ i s ~ [(M)2 1 2 1 2

lI- H Dand a C m ) = [(o_m)~
_
~2j - i (6-rn ) ~ . The symbols S0~ and S1~ repr esint

- 

• S0 an d S 1 respecti vely at the trailin g ed ge.

The air fo il is div ided into N equal ~trips and K is assumed te be

a constant over the nth str ip, where n = 1 ,2 N. Let 2B be the

width of edch stri p and Xn denote the center of the nth str ip .  In Eq.

(24), and W are rep laced by X~ and W 1 respectively, where i re~ers

to the ith strip. Hence , Eq. (24) will then be given approximately by,

2r; W~ =~~~~~ K [S1 (X.~ X~~B) - S1 (X. -X +B) 4 2~ 
2BS o (X i~ Xn)]

il: I

_ _ _ _ _ _  - - - -
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+ Kt I (X
~
) , where i = 1 ,2 . N . (27)

When X~ = Xn~ 
S0 is eva luated by in teg rat i nq the e>pon e nt ia l form of S0

over the interval X — B  < X < X n I B• ror other interva ls , X~ ~ X and S0

can either be found by integrat ion or be t a ken as the iea n value of S0

uver the interval . K
te 

can be exp ressed as a fun cti on of K~ by using t i e

wake condit i on . This relation is given by,

K
K = ----- .- - - —  . (28)te (2ivB+e 1

~~ )

For a gi ven geometry and flow conditions , the numer ical ter ms in

Eq. (27) can he evaluated by usin q Eqs. (13), (l~ ), (25), u nd (26). For

c~ know n set of W 1 
‘ s , Eq. (27) rtJu c~s to a system of N equ ations with N

unknowns , K1 , K2 KN, when it is combined with i~ . (23). it is

assumed that W . is known over the airfoil. In Eq. (27), this I resents

a set of linear algebraic eouations given by,

• 
2r~{W~} = ~A1{K} . (29)

Therefore , knowing the values of {W ~ } and [A] a l lows for the determi na-

tion of the doublet d is t r ibut ion , { K}

Aerodynamic Den va ti yes

Euler ’ s equat i on of motion is given as ,

+ = - ~ . (30)
~t ~x p ~x

In terms of the upper arid lower ve locity potential and pressure on the

airfo il , Eq. (30) can be shown to be , 

_ ui .~ - —— _ _ ~~ ~~~~~~~_ _ - — - -
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~~~~
+ 

~~~~~~
= 

~~~~~~~ 
(31 )

where k (x )  = (t ~ —~~). Since lift per unit chord per unit span is

~(x) = 

~~~~~~~~~ 
Eq. (31) becomes,

p 
(~~~~~~ 

+ ~~~~~~~~~~ 
= ~(x) . (32)

Now from Eq. (5) ,

k(x)  = 

~u~~z 
= U2.(~ u~~~)e i(cX+

~
T) (33a)

k ( x )  = U2.K(X)e +~T) (33b )

where K(X) = ( c
~ u

_
~~ 2.

) .  Equations (32) and (33) are combined to yield ,

~(X) = PU2 [iVK(X) + ~~~~~~~~~~~~ (34 )

where v = w /~~
2 . Equation (34) is val id on the airfoil surface ,

-l ~ X ~ 1. In the wake region , no pressure d isconti nuitiL- s are al lowed

to exist and hence ,

i v K(X)  + ~K~~) = 0 (35)

must be satisf ied when X 1 .

When val ues of Kn hav e been obtained , the local lif t , c , at a

point X is given by Eq. (34) .  If V is subs titu te d for Ke 1C thr’r

~~

-

~

-

~~~~

- = (i~V + 
_K )e h

~
)T (36a)

= (j~~ + ~f)e~~
t (36 b )

The l ift L t = L e 1Pt ) and the nose-up pitching moment about the mi d-

chord -~~i .c ~ ~~
‘e1Pt ) are given by,
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L = V + i w  IV dX = C z + C a (37)
- d 

te j
— l

= V + 1~ dX - j w  IxV dXte J
— 1 —1

= C1~~z + C 11.~~ (38)

where C , C , C , and C are the aerodynami c derivatives. These are£z 2.a niz ma

usually complex and depend Oil the geometry and flow characteristic s.

Equations of Motion

Flutter can be def i ned as the dynami c instability of an elastic

body in an airstream. A dynami c system i s assu med to f lut ter a t a s peed

where the net damp i ng for ces are equal to ze ro . There exists a frequency

at whic h flutter occurs . This is termed the flutter frequency . Consider

the spring supported airfoil gi ven in Fi g. 3 where K
~ 

and K are st i f f-

ness in bending and torsion , respecti vely. The blade segment is permi t-

ted freedom to execute small perio di c vert i cal di s p la cements ,

• Ez(=iz eiPt ), and an gular dis p lacem ents , ~~( c x  eiPt ), where U is free-

stream velocity and an oscillation frequency of p rad/sec. The cascade

parameters associated with a staggered row of thin oscillating blades

are presented in Fi g. 1.

For the reference airfoil , the expression for the kinetic energy

per unit span for a mass element din undergoing this motion , that is at a

distance r fruni the rotation point is ,

dl = ~-(~i+r~ )2 dm (39)

•

~ 

“ -  - - -•~
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- 1.0 0 1.0

U ).. 
~- 

) (— ----— 2.

_ _ _ _  _______  - --—--—-—-- > x
.J ci

~~~~~~ 
K
~

—

z

Fig. 3 Two Degree of Freedom Airfoil.
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where z and a are nondimensior ial coordinates . By integrating Eq. (39),

the kinetic energy per uni t s pan of the airf oil is given by,

+ r&)2dm (40)

T = Mz 2±2 + ~~~ + I~~ (41)

where ,

M =Jdm = blade mass per unit span.

S Jr dm = blade static moment about elastic axis.

I Jr
2 dni = blade mass moment of inertia about elastic axis.

The potential energy ex pression for the blade is gi ven by,

= ~1_ K ~2z2 4 K a2 
. (42)2 z  2 a

The bending ari d to rsiona l sti f fness coeff ic ients are related to the

respective natural frequencies , 
~ 

and ~~~~~, by the relations ,

= (43a)

K = I~ 2 . (43b)

Flutter is a self—excit ing aeroelastic phe nomenon in volv i ng the inter-

ac tion between the inertial , elast ic , and aero dynami c forces. The

s tructural damping of the blade can be neglected compared to the aero-

dynami c dam ping terms associated wi th the forcing function. Neglecting

the structural damping, La grange ’s equations of motion can be expressed

as ,

~ ~ 
) - 

~ k 
+ 

~ k 
= F k (44)
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where Fk and are generalized forces and coordinat es . The aerodynami c

forcing funct ions are obtained from the two-d i m ens iona l  unsteady air-

loads pre di ct i on metho d an d are given in the form ,

F = - pU2 (C2.,z + C
~a

a) (45a)

F = PU2 c2(CII1Z
Z + C1 . a) (45b)

where C2.~ , C~~, ~~~ 
and Cm are the complex aerod ynami c der ivat ives

re ferred to the el astic a x i s and are given in real an d imag inary terms
as ,

C2. Cj7R + iC 2 . 1  (46a)

C = C + iC (46b)2.a Sa R

C1~ 
Cfl1ZR + iC

~~j (46c)

C = C -f i C . (4 6d )
11*1 rn~R rwx I

Now Eqs. (41), (42), and (45) are combined with Eq. (44 ) to obtain ,

M~i + SN + K Q z  — eU2~
(C QZ z + C~~u) (47a)

S~ f + IN + Kcict 
pU2 c2 (C111~

z -i C~~a) . (47h)

The solut ions of Eqs. (47) are assumed to have periodic motion given by,

ipt /z z e  ~48a

a = a
’
e~~

Pt . (48b)

Substitution of Eqs. (48) into Eqs . (47) and combining terms ,

(2.K
~ 

— M~p
2 + 1U 2 2.C~2)z + (pU 22.C2. — Si -

~~
-’ = 0 (49a)

_ (PU2 9
~
2Cmz + S2. p2 ) z + (K — 0U2 c 2C — 1p 2)cz = 0 (49b)

L. - . 
_ _  _ _ _ _ _ _  _ _
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Equations (49) are a set of two simult aneous , linear , homogeneous ,

al gebraic equations in z ’ and a .  For this system to have a non-tr iv ial

solution , the coefficient dete rminan t of z a nd a mus t be equal to

Zero .

(zK
~ 

- 

~~
p2 + PU 22.CtZ) (0U 2 cC - Sp

0 (50)
_ (C

~2 
pU22.2 + S2.p2) (Ka - pU22.2C - 1 p2)

This determinant is re ferred to as the flutter determinant and the

sol ution gives the flutter frequency . However , a direct solution cannot

be obtained since the aerodynami c deri vatives arL functions of w (=p~/U).

The aerodynami c derivatives are comp lex quantities ari d thus the flutter

determinant can be exp ress ed i n two par ts , real and i ma ginary . After

expanding the flutter determi nant and substituting appropriate ‘,‘alues of

Eqs. (46), the real part becomes ,

[2.KK ]~~ - [~
K
~
(I + 

~~~~ 
Cm R ) + K (Mz - 

~~
-
~~~~

- CZZR )]P +

[(M2.I — S22.) - P~~(Ic R - M2.2C I1I R + SiCIflZ R - S2.C
~~R

)

- 

~~~~
(C 2.ZR C

~~R - C2.~ 1
C ~ + C2. 1C10~1 

- C2. RCI zR~ 
= (51)

and the imag inary part become s ,

[Kct C 2.zi - £ 2K
~

C
~~iJ~ 

+ [SQC 2. ~ 
- IC ,71 + M~

2C
~~1 - S2.C 1

+ P4(C2. ~C ~ 
+ C2. 1 C R 

- C
~~R

C J 
- C

~~IC R )] = 0 (52)

where ~~ 
= . If the real and ima ginary parts are set equal to zero ,

p2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ -~~~~~~~ - --_ ~~~- - - -
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solut ions P1 and P2 can be obtained for the real part and P3 for the

ima ginary part. For an ~ssurne d value of ~~, if one of the solutions , P1

or P2 , of the rea l part is equal to the solution P3 of the imaginary

part , then this w corresponds to the flutter frequency. The main objec-

t ive is to find the flutte r speed . However , the aerodynamic derivat ives

are functions of the Mach number and the reduced frequency . The f lutter

prob lem can on ly be sol ved after the aerodynami c deri vat ives are eval-

uated. It is necessary to assume a Mach number and a reduced frequency

and test whether flutter occurs at these values . If the test resul ts are

negative , then it is necessary to iterate on reduced frequency until a

flutter speed is obtained for the assumed Mach number. If the two speeds

are jiot equal , then it is necessary to iterate on Mach number until the

flutter Mach number is equal to the assume d Mach number. A computational

example is illustrated in App. B.

The reference airfoil as illustra ted in Fig. 3, wi th  its center at

the orig in of coordinates , is assumed to be describin g plung ing and

pitching osci l lat ions of frequency p rad/ sec.,  defi ned by z and a. For a

sing le degree of freedom of flapping reference blade , the equation of

motion is given by,

~2 + K
~

z = L2 z (53)

where z is defined for periodic motion as ,

Z z e ~~
t

z ’ ipe lPt 
= ipz . ( 55)

L2 is a comp lex quanti ty wi th real and imaginary components . 

--
~~-- - -~~~~~~~~~~~~~~~~~~ -- ..~~~~~-~~~~~~~~~~~~~~~~~~~~~~~ ---~~~-- - --
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L
~ 

= L ZR + i L 1 (56 )

Now Eqs. (55) and (56) will give ,

ZL ZR + izL 1 
= Z L R + 

~ 
L~ 1 (57)

and Eq. (53) now becomes ,

- 

~ 
L~ 1 + (K

~ 
- LZR )z = 0 . (58)

when li ke terms of Eq. (58) ere compa red to ,

M~ + C L~ 
+ Kz = 0 . (5 9)

The damping constant , C L~ 
become s a function of the imag inary part of

the li ft coeff i cien t in clapp ing.

L
C L =

~~ ~~~~
- (60)

In a simi lar manner , if a single degree of Ireedom in pitching is

considered , the equation of not ion is given by,

(61)
a ci

where ,

ipt
= a e (62a)

a ipe t 
= ipu (62b)

and considering the fact that M is also a complex quanti ty given as ,

M = M + iM . (63)
t riR al

It can be shown that ,

Ia - 

~ 
M 1 + 

~
x ( K a 

- M R ) = 0 (64)
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and the damp ing constant , CM~ is a function of the im ag inary part of the

moment in pi tching.

CM
_ 

~~ (65) 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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RESULTS AN [) DISCUSSION

- Convergence Studies and Variation of Parameters

A con ver gence stu dy was conducted uti li ~ ing a program developed by

B.M. Rao . This program used the numerical lifting surface technique

to der ive the aerod ynami c der iva t ives for a cascade of staggered blades .

In the anal ysis , the downwash induced at the re fe rence airfoi l  by the

doublet d istr i bution , K(X) , over each osc i l la t ing bl ade of the casca de

is represented by a series of Hankel functions denoted by 
~~~~~~

. This

series , i n the form presen ted , is poorl y convergent. However , it has

been shown in Refs . 13 and 14 that it can be rep laced by a rapidly con-

ver gent series of exponential terms . The problem was eval uated using

the al ternat ive exponential iorm of S~ and its der ivat ive form of

S1
(=~S0/ax).

An infl uencing parameter in the convergence of the exponential

function is the number of terms that are i nclu ded in the series befo re

it conver ges to an acceptable value . While the value of the exponential

series is dependent on the sum of the number of terms cons i dere d , a

change of 1x l0 5 was established as a constra int cri terion between

two consecutive terms for convergence or until a prescr ibed limit on

the number of terms incl uded in the series was reached. In the program ,

NNN( 2L+1 , where L i s any integer from 1 to =) was th e con trol pa ra-

meter that was varied in order to determine the maximu m limi t of terms

that coul d be summe d in the series. Naturally, the greater number of

terms would tend to converge on a more accurate value for the series .
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However , in the interest of program ef f ic iency , a co~ rulilise value for

NNN had to be determi ned and accepted. Table 1 shows typical resul ts

obtained for various v alues of NNN while varying w from 0.10 to 0.40,

di~ id irIn the reference blade into 16 segments , with an irterblade stag-

ger ang le of 5 degrees , Mach number of 0.60 , interbl~ de ha re lag of

90 degrees, and a blade to semi-chord m ace ratio of 2.0. As is shown jr

the table , the infl uence of NNN on the ae rodynanii c deri vati ves when it

is greater than 100 becomes insi gnifi cant. There fo re , a value o f NNN

equal to 100 was chosen for com putational purposes .

An additional program parameter that was considered in the con-

vergence study was that of the number of segments on a typic al airf cfl .

Const-der the two-dimensional airfoil as shown in Fig. 4. The b lade is

divided into N segments with the coordinate axi s located at the rid-

chord of the blade and a collocation point , X~ , located at the center of

each segment ( where i = 1 ,2 ,N). The doublet distr ib ution , K (X),

over each segment is assume d to be constant.

X~ = Coll ocation points

-l k +  
Fi g. 4 Segmentc~ blade for N 4 
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Table 1 Lffect ~f Parw~- ter V a r i a t i - r i  on
Acre Jynami c her v i t  i V~~S

NNN

50 100 150

= 0. 10
C . O.2 b95 + O. 625 9 i O. ?~-95 -+ 0.62601 0.2895 + 0.6?SOi

C 6.4762 - 2.64601 6.4i6~ - 2.6467i 6.4766 — 2.64671

C 0.2356 + 0.28l1j 0.2357 + O.2 8l1i 0.2357 + 0.28lli

C 2 .9262 - 2.443li 2.9263 — 2.4439 1 2.9263 - 2.44 39i
Ifl~i

= 0.20
0.5423 + 1.03121 0.5425 + l.0312i 0.5425 + l.03l2i

C 5.5959 - 2.32891 5.5963 - 2.3298i 5.5964 - 2.3299iLa
Cmz 0.4771 + 0.4295i 0.4773 + 0.4295i 0.4773 + 0.4295i

Cm 2.3739 - 2 .63141 2.3739 - 2.6322 1 2.3 7 39 - 2. €3231

~~ 0.6376 + l .336li 0.6378 + l.3362i 0.6379 + 1.3362 1

C 5~O769 - 1 .6554i 5.0774 - 1 .6S~-3i 5.0 774 - 1.65651

C 0.6689 + 0.52331 0.6691 + 0.52331 0.6691 + 0.52331
‘liz

C 2.0558 - 2.6647i 2.0558 - 2.66561 2.0558 - 2.665/i
_ _ _  ____  ----—- -__

~~~~
= 0.40

C
~~ 

0 .5794 + 1. 65061 0.5798 + l.6508i 0.5799 -
~ l.6508i

C 4.9109 - 0.8886i 4.9117 - 0.8896i 4.9118 - 0.~ 90~iLa
C 0~ 0 .8300 + 0.61971 0.8303 + 0.6197 1 0.8304 + 0 619/i

C 1.9325 - 2.70851 1.9325 - 2.7096i 1.9325 - 2.7093i 

- - -- - - - *_-— - -—-_- - - - -
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The number of seg m ents chosen directly influences the val ue of the

i m ~~egral evaluated to determ ine the downwash at each co l loca t ion  pou t .

Since a larger number of segmerts w i l l  cor,ve r m: tc an increasingl y miiore

accurate value , a s tudy w a s u nd ec t e d to de te rmi ne the most Si gni fir i rt

mlumber of se ame nt s along th~ b lade to be used. W h i l e  a iii nim um of four

segments could be used , the ~icg ree ~f comìf i  demis e is ~ie d~w mis ~~h v a l  ue~

increases for segments g reater than ~ 10 . The pro -~sar evaluates the

doonwash inte qral using a Simp son ’ s th n rc - e i~ Lths rule scheme . iddit ion-

ally , the fi rst and last  hal f -s egr ; i~m it are eval nated y using the tra~ a-

zoidal rule. This requires mul tip les of N(= 3L+l , where L is an integer)

segments to be used. Table 2 shows the typical in f luesc e that varying

N has on the acrodyna~rii c deriv ati ~ s. Wh i le ~ = 16 provi des rea r rn a b le

accuracy , N = 22 was chosen to he used throu~~rut the prcg ram cos ipu—

tations. The oret icall y , t- he Nreat- r the number of senn~ents ch es en , the

greater the accuracy of the ae rndv r~ami c cisri vati ve c ~o~-~~ve r , because

of the way the sol ution techn i quc is em ployed , it is poss ible that

nu:~eri cal instabi l i t ies could be present. for ~‘a1 ues when N becomes

mush greater than twenty-fi ve .

For f lutter studi es , the aer mdvn ani i c d~ri vat i  yes C - and C

provide meaning ful information and are shown for several s t s  of the

geo m etric and f low parameters . Figures 5 thru 12 show the out-of-phase

- omponents , (C~2 . and C~~~) ,  of C L and Cm which represents the damp-

ing terms in pure translational and pitching motions , res pect ively .

The sign convention used is such that the negat iv~’ values of C

represen t the positive d amp ing cons tant and the pos i t ive  values of
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~able 2 Ef fect  of Blade Seam ent V an  ut ion un
Aero d~ nam mii c Der ivd t i ves

1 N

10 11 22

= 0.10
- - — 

C~~ 0. 4527 + 0.7 4 91 1 0.~~ ?b ~ O .7456 i  0.451w + 0. 74 ~hi

C 7 .8321 - 4 .2 9~(i 7.~- - nb~ - 4 .276 6 i  7. 7898 - 4 .7u94i
C 0.3850 + 0.28381 0.3796 + 0.2 7 351 0 .3764 + 0.2736i

mz
C 3.0517 — 4.0351 1 2.9508 - 3.98351 2.9015 — 3.9533i

= 0.20

~~ 
0.8705 + 1.15/l i 0.3637 + 1. 1 5041 0.8604 + l.1 46u1

C 6 .4617 - 4 .0992i 6.4~27 - 4.04651 6.4265 — 4.0220i

C 
- 

0 . 7 5 7 9  + 0.32551 O.~ 453 + 0.3 1151 0.1381 + 0.30531l i z
c , 1. 8926 - 4 .301 1 1 1. 8251 - 4.2449i 1 .7945 — 4 .2109 1

= 0.30
C L7 1 .127 1 + l . 4 7 h G i  1.1133 + l.4 llb i 1.1062 + 1. 46121

C 5.894 7 - 3. 5670i 5 .8968 - 3. 4960 1 5 .8398 - 3.4613i

C 1 .0689 + 0.264/ i  1.0540 + 0.25051 1.0454 + 3 .245 11mz
C 1 .1571 - 4.469li 1. 1128 - 4 .4 309i 1 0261 - 1.4050 1

= 0.40
C 1.3239 + l . 8643i 1 .3358 -

~ 1.86381 1.2248 + 1. 8613 1
22

C , 5.9616 - 3.2626i 5.0357 - 3.18351 5.9389 - 3 .14 32 1
C 1 .3968 + 0.131 31 1.384 3 + 0 . 1 14 5 1  1 .3/ 68  + 0.l094iniz
C 0 . 5 0 7 4  - 4.86491 0.4686 - 4.85201 0.4579 - 4.8383i

= 0.50
1.6 653 + 2.34491 1.6111 + 2 . $5 l Ui 1. 632 1 + 2.3522i

C 6.3849 - 3.65l2i 6.4326 - 3.57 19 i 6.4488 - 3.52d4i
La

Cmz 1.7879 — 0.2 l37i  1. 7789 - 0 .2393 1 1. 7742 - 0.24631

-0.5799 — 5.51621 -0.632~ - 5.5249i  -0.6457 - 5.52441

hLk. - - - - . —_  -



- -  ~~
-

-~~~~~~~~~~~~~ - — -  ~~-- - --~~~~--- 
.

- - - . - - - - - -- .~~~~~~~ --— ~—~~~~~--—

29

C~~1 
represent positive translational stability .

Figur er 5 and 6 show the com npre s siL i lity effects (M = 0 . 3 , 0.5 ,

0.7 , and 0.8) on C~ and ~~ when s = 2 % , A = 45
0

, s . d  o = 180° as w i s

va ni zd from 0.1 to 0.5. The absolute v a lue s  of C 2~ 
are shown to increase

as w increases for Mach numbers less than N = 0.7 and un dergoes rapid

changes for N = 0.8. For the para me te rs  considered at M 0.8 in Fig. 5 ,

there is a rapi d change for values be tween ~ = 0.40 and w = 0.51. The

lowest critical frequency occurs at cA~ 0.51. Figure 6 shows a tendency

toward larger changes at the hi gher M = 0.8 value . As the Mach number

i ncreases , the maximum value of da mnp ing also i nc rease s. This i nd i cates

a stabilizing infl uence in damping as Mach number increases .

Figures 7 and 8 show the effect of i iterb lade spacing (s = 1.6 % . ,

2.0% , and 2 . 4 % ) on C %.z J  and C~~ 1. respectivel y when ~1 = 0.8, 45 0,

and o = 180° as ü’ is varied from 0.1 to 0.5. For the parameters and ~he

range of frequencies considered , the crit ic al fre q uenc ies are for

s = 1 . 6 % ,  = 0.64; s = 2 . Oz , w
~ 

u.5l ; and for s = 2. 4 % , c = 0.42.

Both fi gures indicate that as the interblade spacing increases , the

- 
- lowest cri tical frequency decreases . P~s A increases , the damp ing

decreases ra p idly to zero at w = and then increases again as w is

increased without becoming negati ve . Below the first critical frequency ,

the damping decreases when the spacing between the blades is increased.

Fi gures 9 and 10 show the ef fect of b la de sta gger an gle (A 0
0
,

45°, and 60°) on C%ZI and Cm i v  res pec tivel y when M = 0.8 , S = 2.0 % ,

am i d o = 1800 , as w is varied from 0.1 to 0.5. For the parameters and

the range of frequency va lues considered , the cr i t ica l  frequency va lues

_  _ _  _ _ _  -~~~~~~~~~~~~~~ -.—~~~- --
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are for A = 0° , 
~c 

= 1.18; A 45 ° ~ 0.51 ; and A = £0°, =c = 0 .44 .

As tue stagger dng le increases , the ie w e~~t cii tic al frequency decri uses

A ll the coef f i c ien ts  are presented w i th  respect to the reference axis at

mid-chord . In Ref. 7 , Jones has shob~In that it is possible to incit e pure

pitching oscillation in the airfoils in cascade when ~ = 0° and 0. 73

0.98 with a re ference axis for~,dru of the ni d-ciiord . However , since

the va lues given in Fi g. 9 on ly consider th e pract ica l  rdnge of values

for 0. 1 < w < 0.5 , the translat ional  damping coeff ic ient  C r71 remains

pos i t ive indicating that there is no pure translational instability .

Figures 11 and 12 show the effect of interb lade phase lag (~ = 0° ,

900, and 180
0
) on C%zI and C, , 11 , respectively when N = 0 . 8 , s = 2. 0k ,

and A = 450 as is varied from 0.1 to 0.5. For the paramir eters and the

range of frequency val ues considered , the cr1 tical frequency for o = 1800

IS W c = 0.51 . The t ranslat ional  and p i tch ing  damping co nstants remain

positive throug hout the range of frequency values considered . However ,

as a is incre as ed wi th i nureasi ng w , the damping decr eases rapi dly for

o = 180° until it equals zero at o = i~~.

Sing le f leuree of Freedom

A s ing le degree of  freedom anal y s i s  for torsion was performed on

a cascade of blades using the ii ft in u surface theory developed by Jones

and Rao. After ob tul ni eq the resu lts  , a io~~pr r i  son ~~ trade to the
9

resul ts  obtai  ned by khi tehead who emp loyed a t& ’c h r  que devel op ed by
17

Smith to obta i n the Ale rod ynami c for m r  and 0 :10 m i t  . ~ di i te h rs  4 di s —

t i  nguis hed a reg ion of flutt er that  I~e ~o r ; ; o d  a s sub—cr i  ti a1 f l u t t e r , 

- 
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which occurs in a regime where any acoustic waves generated cannot pro-

pa gate upstream and downstream. Fi gure 13 shows resul ts that Whi tehe.d

obtained for a space -to-chord ratio of 1.0 , a stagger angle of 45

deg rees , a pos i t i on  of the tors i on al ax i s at 58.8 percen t c~iord , and an

interb lade phase ang le of 60 degrees . The imaginary part of the moment

coefficient is plotted against the reduced frequency parameter . Also

shown in Fig. 13 is a plot of the imaginary part of the moment coeffici-

ent as obta ine d by utilizing the Jores/Rao technique. As can be seen ,

when given the same con d itions , the results obtained wrien using the

Jones/ Rao lift in~ surface technique agree closely with the results

obtained by Wh i tehead . As shown previousl y, the imaginary part of the

momnent coefficient is capable of adding energy w he n it is negative .

Assumi ng that there is no mechanical darir ping invo l ved , fl u tter w i l l

occur as a net resul t of energy being added to the system. Howeve r’, in

repor t in g h i s resul ts , Wh i tehea d found that he had significant mec liani-

cal damping and had to al low for an average va l ue as a flutter limit.

This limi t is shown in Fig. 13. If the val ue of the imaginary cart -of

the moment coeffi cient is below this line , then flutter is predicted.

The point where it is just possible for the ~lu ’ter to exist is referred

to as a flutter boundary . Whitehead observed that as the Mach nurs.ber’ is

increase d , the points at which flutter is just possible rove to pro-

gressively l ower val ues of the frequency parameter. This corresponds to

higher fluid velocities or to lower blad e sti ffness. The effect of Mach

number is therefore highl y si gnifi cant.

Figure 14 shows the frequency pur i’ ieter below ~hich torsional

flutter is just possible and has been plotted d j t l O S t
, blade axis

-
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position. Once again , a com pa r i son  is ma de by utilizing the Jorres/Rao

techn iq ue an d the Whitehead / Sinith technique . The recults are in cl ose

aqreemnent and concur with Whitehead ’s observation that increasing thF

Mach number is favorable and that the worst posi tion for the torsional

axis is around fifty to seventy percent chord .

Two Degrees of Fr ’e~do’

A num erical investigation for two degrees of freedom was conductea

using the program for unsteady airload prediction and interfacing it

wi th the program developed for flutter analysis. The geometrical and

st ruc tur al properties of the cascade reference airfoil used in thi s

analysis were calcula ted form da ta obtained from Refs . 18 , 19 , and 20.

These p ro per t ies  are given in App . B. To obtain thc flutter speed and

frequency , the program was executed for the given ca s cade according to

the procedure as outlined in the block diagram of Fi g. G- ’
~ in A po . B.

Figure 15 represents the results obtain ed for the flutter anal ys i s

for various values of interblade spacing (s = 1. 0.., 1.l~~, l .2~ , and

l .3.Q ) while the interbiade stagger angle was varied f rets 44 deqrces to

60 degrees . Ove ’ the range of values considered , it c to d~ seen Irnis

Fi g. 15 that as the inter hiade stugger dn qle is ir L r el sed , the f lutter

~-1ach number also increases . This indic a tm s f iat an i r ’ c r e c se  ~ li the

interbiade stagger ang le would be her.~ ficia l in preve nting f l utter at

tha l ower Mach nu - ibers . This trend Is in ~:a rera l agr~ etse t w ith a re-

port by White and Rao in v~:’ich a cascade of helicopter rotor bl ades

was studied at var ious sta gge r ang les and t er u lade s s a d  rq s .

Fi gere 16 shows the effect c f  varying the in t~’rb1ade spacing for

- - --——.—--‘--—---‘--
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various interblade stagger ang les ( A  = 46°, 52°, 560, and 60°). The

~. nd of the curves shows that as the interbiade spacing increases for a

given i nter b la cle s ta gger angle , the flutter Mach speed decreases . This

in dicates that increasing the interblade spacing will have a destabiliz-

ing effect on the cascade of blades. This same trend was also observed

by White and Rao in their work wi th helicopter rotor blades.

A summary of the results of the two degree of freedom flutter

analysis is presented in Table 3 .

r=~~~~~~~~~~~_~~~~~_ , , - - ‘ “ -
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Table ~ Summary of Two Degree of
Freedom rl utter Anal ysis

Interb lade Interblade Flutter Flutter InterL lade
Stagger Spacing Mach Reduced Phase
Angle Number Frequency Lag

A s M
(Degrees) 

___________ __________ ____________ —_

(Degrees )

44 1.0 % 0.4087 0.4539 -30
46 l .C~ 0.5028 0.367 1 -30
48 l .O z 0.5497 0 .3347 -30
50 1.02. 0.5676 0 .3234 -30
54 1.0% 0.6109 0.2988 -30
55 1.0 % 0.6216 0.2935 -30
56 1.02. 0.6300 0.2888 -30
60 l.O z 0.6445 0.2809 —30
46 l.l~. 0.3783 0.4907 -30
52 1.1 2. 0.5561 0.3301 -30
56 1.12. 0 .5843 0.3128 —30
58 1 .1% 0.5818 0.3138 -30
60 1.1 2. 0.6058 0.3001 -30
50 1.2 % 0.4300 0. 4305 -30
52 1.2 % 0.4809 0 .3837 -30
56 l .2~ 0 .5336 0.3440 —30
58 1 .2 % 0.5406 0 .3390 -30
60 l.2~ 0.5501 si.3325 -30
52 1.3% 0.4045 0.4580 -30
56 1.3 % 0 .4715 0 .39 11 -30
58 1 .3 % 0 .4757 0.3872 -30
60 1. 3% 0. 4990 0 .3682 -30 

~~~~~~~~~~~~~~~~
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CONCLUSIONS AND RECOMMENDATIONS

A unique velocity potential lifting surface technique has been used

to dctermine the unsteady a i rloa ds for an Infi nit e casca de of staggere d

bla des in subsonic flow . The unsteady airloads were then utilized in a

FORTRA N program to perform a flutter analysis for a single degree of

freedom system in tors i on and for a two degree of freedom syste m mm in

bending and torsion.

Several geometric and flow parameters of a staggered cascade were

varied over a specif ic range of values and were found to infl uonce the

cascade in the following manner:

1. If Mach number is i ncreased , it w i ll have an increase d dampi ng

effect on the stability of the cascade in pi tching motions.

2. If interblade spacing is increased , the damping decreases whi le

still below the fi rst critical frequency and is equa l to zero

at the fi rst critical frequency .

3. As i nterblade stagger angle increases , the lowes t cr iti cal

frequency decreases .

4. As interb l ade phase lag is incre ased with increasing reduced

frequency , the damping wil l  decrease rapidl y to ze ro for an

interb lade phase lag o~ 180 degrees.

When the cascade was analyze d for a single degree of freedom sy t ern

in torsion , results were found to cor pare favorably with the results
9

obtained by D.S. Whitehead for flutter bound aries . A com par i son  o f th e
B

li fting surface technique employed by Rao and Jone s and a di ffer ent

techni que utilized by Whitehead in determi ning torsional flutter , were 
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shown to be in agreement in indicating that increasing Mach nunter is a

desirable condition .
16 21

By utilizing work performed by Rao and White and Rao , a FORTRA N

program was develo ped that is capable of determining the flutter speed

amid frequency of a staggered cascade of blades in unsteady subsonic flow .

This program is val id for a two degree of freedom system in bending and

torsion. It was determi ned that increasing interbla de stagger angle

would be beneficial in preventing flutter at low Mach numbers while an

increase i n interb lade spacing woul d be a des tabi lizing i n f l uence on the

casca de of blades .

Wh ile a new flutter program was developed to determi ne the cascade

flu tter speed and frequency , only a l im it ed ran ge o f values were anal yzed

when varying cascade param rieters . This was due primarily to the iterative

scheme that was invol ved and the associated expense o f computer com pu-

tationa l time . Even thou gh cost effictiveness was considered as a criter-

ion i n the develo pment of th i s pro gram , the p rogram stil l remains as

being a reasonably efficient techn ique to be used in determining the un-

steady aerod ynami c derivat ives , the f lutter speed , and the flutter fre-

quency for a given cascade . By way of examp le , the run time associated

with determinin g the flutter speed and frequency for the examp le given in

App. 8, uti l i z d less than twel ve seconds of CPU execution time on the

AMDAHL 470V/6 compu ’er at Texas A&M University . However , further improve-

‘ i ents could be m ade in the overall efficiency of the program and the i ter-

ative procedure it utilizes. Additionally, investi gation should also be

conducted over . larger ran ge of cascade parameter values to determi ne

their e ffec t on the cascade flutter speeds and frequencies .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  rn-- -~~~~~~~~
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APPENDIX ‘\

Phys ica l Interpretat ion of Resonance Condi t ions

Consider the airfoi l as given below in Fi g. A-I ,

‘1
‘I

A ~

~ 

S cos A

u ——-- —

~~ 

j  Reference Ai r fo i l

H s sin~.

Fi g. R— l Resona nce Model

where A is stagger angle , s is the distance between the leadin g ed ge of
consecutive airfoils , and U is freestream veloci ty . The infl uence

cre ated by the unstead y mot ion of the a ir fo i l  will propagate and influ-

ence the reference airfoil after ti rT e- t. This gi ves ,

[u5t]2 [s(sinA ) — ut]:~ + [s(cos~ )12 (Al)

U~t
2 = 52 (sin 2x) — 2Uts (sinA ) + U2t2 + s2(cos~ >,) (A2 )

- U2]t2 + [2Us(sinA)j t - s 2 0 (A3)

solvin g for t gives ,

t = - ~~~~~~~~ ±~J ~~i
2
~ I~~~: 

U_~_~_

1 

(A4)(U~ - U2) (u~ — u2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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g iven  th at ~ = [1 - M2]½ and M~ = , Eq. (A4 ) becomes ,

= - ~~- -~j-(sinA) -~~---~~~~- /sin2 A + (~
i_ 

- 1)
1
. (AS)

62 
~~

I

From Ref. 7, i t is  shown that ,

pt ± a = 0, 2~ , etc., (A6)

where p(=~~-) is the frequency of blade oscillation in rad/sec , and a is

phase lag. Now Eq. (AS) becomes ,

M2 2 /
-o = - ~-~~S(s in~ ) ± ~-- wS /sin 2A + (± - 1 )  ( A l )

6 2 6 2 V M2

where s(~~) is space to blade semi-chord ratio. After consolidating

terms , Eq. (A7) becomes ,

= ±F_ cos 2 . - sin~ . (A8)

The cr i tical or reson ance fre qu ency is then given as,

= 
[±  ~/I~ cos 2A - Si n . (A9 ) 

---~~~~~~~~,
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APP NDI X B

Exanrp l e Prohi ~in for Two D e g r c ~.: of F ~~duu Flutt er

A numerical test case for cascaded airfoil fl jtt .-r ~r;alysis was

con~ uted using a f l u t te r  inal ys i s F0 RT~f.N pro gru ’: u t  rfaced c~i th the

unsteady ai rload predict ion program. The geo c etr i  cal and structural

properties of the reference air foi l  used in this anal ysis are ca lcu la ted

from data obtained from Refs . 18 , 19 , and 20 , and are given below .

Stat ic moment about
the e last ic  axis = 5.35x l0 s lu g - - f t .

Moment of inertia
about elastic axis I = 6.3l6x10 slug—f Y .

~ass per un it span
of blade M = 0.02 14 s l u g s / f t .

Bending natura l
frequency = 1000 rad/sec.

Torsional natural
frequency w = 2000 rad/sec.

The cascade parameters used are ,

Bla de semi-chord
• length = 0.0833 ft.

In terblade spacing s = 1.2i

Interb lade ohase
lag = -0.0835

Interblade stagger
ang le = 52 deg.

To obtain the flutter speed and fr oqu rncy , the program was exec ut ed

for the given cascade according to the procedure as given ~n the block

diagram of Fig. B- l .  Afte r the in~ut para rnet Lrs are read into the pro-

gram and initial vd lues are assu med for toe Mach nurmiber and the reduced
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[ R ~~d in  flow I
and geometri c

[ _ parameters

Assume a Muc h
number~~ ~~j

Assume a reduced
frequenc y ~

Call unstea dy airloa ds
p rogram to calcula te

aerodynami r deri vatives

Transform aerodynami c 1
F I deriva ti ves to elast ic

axis and solve for
L P1, P2 , and P3 J

Yes

No

T Yes

Calculate flutter
Mach number

L Sto p

Fi g. B-i Pro ’~ram Flowchar t

— -

~

--

~

-•--

~

-.-—---- _
f - . - - -
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frequency , the program cal cul ates the urs t~ u~ y a -~dynami c r~ ri vat i  yes

that aro to he used as the forc ing furcc ion s in Laq r~’ge ’ S eguat  ions of

motion. The ae:n d yn om~ic den v t i  v r s  that are m l t  a]  ly u r t a i  ned are

m c  f-~rred to the blade rn d—~ hurd axi s .  S i n c e  it is ee cee ~ ury t o r  the

aerod yn am ic dcr i vat i  V t S  t o  be re fer r d to the e l a s t i c  a~ s , a c uu rO i r ’ a te

tran sforiraLi on is perfur :~~d as exp i oi n - d  in A p~ . C . Af t  nr the co urd

tra nsfo m - ;r~t ion , the f lutter duter n-ina nt is sol ved. This y ie lds P1 and P2

~s so] utions to the quadratic equation of the real p~c rt  of the fl utter

Ueiorudn ant and P3 as a solution to the linear equ ation of the irna g iua - y

part of the fl utter determinant. Since an iterative scheme is in~oL’ed

i n  obtai fl in g the flutter speed and frequency, initial values of Mi 1;

number a m -id reduced f r et uency are as s umeJ . The i ri tial val ues of Muc h

number are 0.500 and 0 .5 100 . Several values uf w are th er- c a l c o l a t e c  for

eac h Mach number and the ris e ~cti ye val ui- s of P1 , P2 , and P3 are fo nd.

These values a -c then plotted as shown in ri g. B— 2. Fiuu r~ B- 2  ind ic a t e s

that P2 is equal to P3 when w 0.3600 for M = 0 . 5 0 0  and F ig .  B-3  sho is

that P2 is equal to P3 when w 0.3486 for H = 0.510. TLi~ e val ues

re~ne c ~ nt possible flutter frequencies if th e  a~sure d Mach n r u h-~r is

equal to the fl utter Mach num be r. When the assumed ~- c h  number is euua i

to 0.500, Fig. B— 2 shows P2 = P3 = 2293 at = 0. 3 d)1~. If these v a lues

are used in the fo l lowi ng equat ion ,

M = 
~~~~

-

where a 1037 .26 f t / se c . , therm thu flutter Marh rwnhcr should to

equa l to 0. 5ll~ . However , since this is not equal to ~f ie  assu red  H-rich

nu~Jser ot 0.500, an other  i t e r a t i o n  mus t he performed.  Thu next i t~ it _ ion

for an assu red Mach number of 0.510 is shown in Fin . P-3 . Fle e it can

~

— -- • - - - • -  -
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P2 , P3

2400

P

2203

~~~~~~~~~~~~~
—- 4 --

~~~~ 
_ _ _

0.32 O.~ 4 0.36 0.38 0.40
LA)

- Fig. B-2 First !te ci t~ c’n , H c h  = 0.500

P2 , P3

2400

~ 8

2200

—4—- -÷--
~~~

- - -

0.32 0.34 0.3it~: 0.36 0.38 0.40
LA)

Fiq. 8-3 SLro nd i te ra t ion , H i h  0.510
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be seen that P2 P3 2290 at w = 0.3466 . A gain , using Eq. (81), the

f lutter Mach number is ca l c e i a t e d  to be 0 .5276 .  Once again , the ca t cu-

l a t e d  Mach number is  not equal to the assumed Mach number , so a f lutter

speed stil ~ has not been determined. For the next V c h  iteration , Fi g.

B—4 will provide the assumed Mach number. the 
~ 
ravious ~s s u tir d Mach

numbers am - c p lotted versus the ca l cu la t e d  f l a t t e r  M~ch numbers , jt

be seen from Fig. 8-4 that an extrapolated val u e of V 0.480 shou l° be

used for the next assumed Mach iteration . If this is don e , then P2 F3~

2297 at ~ = 0.3837. Using Eq. (Bi), a cal culate d flu tter ~ach nu nn er

va lue  of N = 0 .4809 is obtained . Since this value is essent ial l y the

same as the assumed Mach number , it is there fore considered a valid

flutter apeed at a flutter frequency of i
f 

= 0.3837. 

-~~~-----~~——- - 
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Assume d
Flutter

Mach

0.52

:: 
. . .
/

0.49

0.48

-I I
0.48 0.49 0 .53  0.51

Calculated Flutter Nb~ch

Fig. 8-4 Assumed Flutter Mach Prediction
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APPENDIX C

Change of Reference A ’~is

12• Jones has given a convenient axis transfcrmation . In Fi g. C-l

let the reference axis be moved from mid-chord to a point 0 , at a dis-

tance ht for.~ard of mid-chord.

0 0

- 

~~~~~~~~~ 
A)

_ _ _ _ _  -

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Fig. C— l Blade Reference Axi s

When referred to the or ig inal coordinates z and mx . the di s p lacemen t

of a point. p, downwards is ,

z = ~z + + 9. (z  + ~~~~~~ (Cl )

and for the new coordina tes ~ and mx refer red to 0

z = ~.z + Q.(~ + h)~ (C2)

hence.

z = + hi (C3a)

a a . (1Th )

~ 

• - - • - —- - • -- --~~~~~~~~~~ -- - - - ~~~ =-
~~~~~
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If L and M re the l i f t  and : iu ien t  rc f e r ;ed to 0 (ml d—chord ) und

L amd ~ are the corresponding fo r- r u and ;tini ent referred to U , it can be

shown tha t the re lat io n ex i s t s  as shrrwn in Fi g. P —2 .

~~~~~~ :~~~~~~~~~~~~~~

Fi g. C-2 Force and Moment Ori entation

From Fi g. C-2 ,

L =  L (64i)

M M •- hv L (C4hj

where N and ~ are posit ive in the clockwise direction . it can be shown

that ,

= = (c
~ zR + ii~C + (c~~ + j C ~~ 1 ) mx (C5a)

= (C
~~R 

+ iwC~ j ) (
~~ 

f h~) + (C2 R  + lwC t•ct i)
~ 

(C5b)

= 

~~~ 
+ iw~~~1

)F + 
~~~~ 

+ iA)~~~1 )~i . (C5c)

Sim ilarly,

~~~ ~~mzR + mz I-~
’
~~ ~~m-L R + 1

~
1C m i ~~ 

. (c6 )
p U’9.

From Eqs. (C5c) and (C6), the ex pressions for the new aerodynami c

derivat ives are given in terms of the ori ginal ones referred to the

mid-chord . These equations are given as ,

-— ~~—-— -- - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ———---
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= C~~ 4-~ (C7a )

C -. = C , ~L I hj
~ .I ~~

= C . ~ 
— hC

~~ p (6 7c)

C~~~ - (C ld )

= C .~ 4 hC Z R (C /c )

C g2I = Cmzj + hC ç 1  (c i f ~
CnL~R 

= C mT m R 
- h(C IOZ R - C R ) 

- h2 C LZR ~C7 g)

= C 1 — h(C~17~ — C~~~~~
1

) - h
2

C~~~ ,1  
(L7h)

The eq uations in (C7) are a l inear co rb c  na t ion of the on ,i nal

der ivat ives referred to the mi d-chord. Tbes . e equations apply -‘hen t h e

reference ax is  is moved aft of the mid-chord a d i s t nce h~ tow~ :ds the

trai l ing edge.

—

~
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