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ABSTRACT

In this paper we develop time-domain state space
models for lossless layered media which are des-
cribed by the wave equation and boundary conditions.
Our models are for non-equal one-way travel times;
hence,they are more general than existing models of
layered media which are usually for layers of equal
one-way travel times. Full state models,which in-
volve 2K states for a K-layer media system,as well
as half-state models,which involve only K states
are developed and related. Certain transfer func-
tions,which appear in the geophysics literature in
connection with models of layered media with equal
travel times,ars generalized to the situation of non-
equal trave! times.Our state space models represent a
new class of equations,causal functional equations,
some of whose properties and approaches to simulation
are discussed.

t. INTRQOUCT!ON

We are interested in lossless layered media which
are described by the wave equation and boundary con-
ditions. Specific applications of such media are:
(1) horizontally stratified nonabsorptive earthwith
vertically traveling plane compressional waves,and
(2) interconnection of lossless,not necessarily
matched,transmission iines. Other applications can
be found in acoustics,optical thin coatings,EMprob=
lems,etc. Because our interest is presently in the
seismic area,our discussions will be in the context
of such models.

A system of K layered media is depicted in Fig.1.We
adopt the convention of calling the layer below lay~
er K the basement. The basement is assumed to act
like an energy sink; i.e.,no energy is returned from
the basenent into the K layers. Each layer is char-
acterized by its one way travel time,Ty, velocity,vy,
and normal incidence reflection coefficient r; (i=
1,2,...,K). Additionally interface~0 denotes the
surface and is characterized by reflection coeffi-
cient rq. In Fig.1,m(t) and y(t) denote the Input
(e.g.,seismic source signature from dynamite,airgun,
etc.) to the layered media system which is applied
at interface-0, znd the output (i.e.,ideal seismo-
gram) of the system which is observed at the surface,
respectively.*

We shall present state space models for the Fig.1
system. These modeis,as we shall describe more fully

*In a marine environment,layer 1 can be taken to be
water; but,in that case m(t) is applied and y(t) is
observed in the water layer. It is relatively
straightforward to extend the results of thispaper
to that case.

below,are quite different from those which have
appeared in the Geophysics literature (Refs.i-4,
for example). One big difference is that our models
are for non-equal one-way travel times.

An important use of a modei of a K-layer media sys-
tem is to generate synthetic seismograms; i.e.,to
generate y(t) for a given m(t). This synthetic
data can then be used for preliminary testing and
evaluation of signal processing techniques (e.g.,
deconvolution). These modeis may also be useful
for identifying important parameters,such as re-
flection coefficients and one-way travel times.**

As in Refs.2 and 3,we shall find it convenient to
draw ray diagrams with time displacement along the
horizontal axis, so that the rays appear to be at
non-normal incidence and so do not overlap one an-
other. Figure 2 depicts primary and muitiple re-
flections for a 2-layer media system,and illus-
trates the very complicated internal behavior of
even a 2-layer system. Our state space models can
not only be used to compute y(t),but can aiso be
used to compute the internal behavior of a layered
media system. They are based on ray theory,which
gives exact results for lossless,horizintallystra-
tified media.

The starting paint for our developments is the Fig.
3 ray diagram. Symbols u, and d; denote the upgo-
ing and downgoing waves in the kth layer,respec-
tively; and,we adopt the convention that waves at
the top of a layer occur at present time,t. That
each layer is characterized by two signals travei-
ing in opposite directions follows directly from
the solution of a lossless wave equation. Geophys-
icists will recognize that Fig.3 is also the start-
ing point for the models which appear in Refs.1
through &,for example. We shall return to this
point shortly.

As stated by Robinson (Ref.3), ''the solution of the
wave equation at each interface leads to the defi-
nition of a reflection coefficient r; associated
with that interface. ...the reflection coefficient
ry,which must satisfy |r,| < 1,has these properties.
A downgoing wave of amplitude A in layer j,upon
strlEing interface j, is both reflected and trans-
mitted. The reflected portion is an upgoing wave of
amplitude r;A in layer j,so r; represents the re-
flection coefficient. The transmitted portion is a

#*The reader interested in elements of the seismic
prospecting method and the seismic reflection
technique should see Ref.5,Chs.1 and 3,and Refs.
6, 7, and 8.
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downgoing wave of amplitude (l*r:)A in layer j+1,s0
1+r, represents the transmission coefficient. An

upgoing wave of amplitudeB in layer j+1 is both re-
fiected and transmitted when it strikes interface j.
The reflected portion is a downgoing wave of ampli-
tude -r,8 in layer j+1, and the transmitted portion
is an upgoing wave of amplitude (1-r,)B. Hence-r,

and (1-r,) represent, respectively,the reflection
coefficient and transmission coefficient for the
upgoing wave. These properties are summarized in

Table 1 (2)."

Table 1. Reflected and Transmitted Portions

Reflected Transmitted
Portion Portion
Downgoing wave Upgoing wave Downgoing wave
A r,A (I+r:)A
in layer j in layer ] in layer j+1
Upgoing wave Downgoing wave Upgoing wave
-r,8 (I-r})a
in layer j+1 in layer j+1 in layer j

Waveform u (t+tr,) (Figure 3) is made up of two
parts,nmry the part due to the reflected portion
of dy(t-t,) and the part due to the transmitted
portion of uy,, (t). It satisfies the equation

u(trr) = rdi(e=t ) + (1=r )y, (t). (1)

In a similar manner,waveform d¢,, (t) satisfies the
equation

digy(8) = (erddp(tet)) = Py L (0). (2)

We refer to Eqs. (1) and (2) as the interface ;gua-
tions. These equations are the starting point for

transfer function models,which are very popular in
the Geophysics literature (Ref.2),and,they are alsc

our starting point for the development of time-
domain state space modeis (see Fig.4).

In the Geophysics literature, the assumption of
equal one-way travel times,T,,is usually made. Lay~
ers of different travel times are built up by in-
serting layers whose reflection coefficients are
zero. Transfer functions which relate the upgoing
and downgoing signals from one layer to the next
have been obtained. Because of the equal one-way
travel time assumption,some very clever recursive
equations have been developed (Refs.3,4,and9, for
example) which simplify the calculations of the
transfer functions relating layers. These transfer
functions are often presented in terms of z-trans-
forms,which is again a consequence of the equal
travel time assumption. From the transfer functions
reiating layers,it is possibie to obtain the so-
called reflection transfer function, Y(s)/M(s) [or
Y(z)/M(ZV],which |s used to generate synthetic seis-
mogram data (Refs.3,b,and9, for example). Addition-
ally,Robinson (Ref.10) has presented a very simple
technique for computing Y(z)/M(z) in a layer-recur-
sive manner. Inverse problems of reconstructing .the
reflection coefficients from knowledge of y(t) and
m(t) have been extensively studied. Their solutions
(Refs.3,4,and 11, for example) are again quite
strongly dependent on the equal travel time assump-
tion,and use z-transform relationships.

As is well known,there is a vast literature associ-

ated with systems which are described by time-~
domain state space models. Most recent results in
estimation and identification theory,for example,
require a state space model. In fact,our ultimate
objective is to apply those theories to the layered
media problem; but,to do so,of course requires
state space models. One might argue that it should
be possible to go directly from the transfer func-
tions,already developed,to equivalent state space
models. In most cases,this is not practical since
closed-form expressions for the reflection trans-
fer function are not available; that transfer func-
tion must be computed from a set of equations which
are solved in a recirsive manner. Additionally,the
transfer function results which appear in the Geo-
physics literature are limited by the equal travel-
time assumption.

In this paper,we develop (see Fig.4) a variety of
state models for the Fig.1 system. Full-state mo-
dels,which are of dimension 2K (i.e.,two states
per layer),are described in Sections !! and V.A.
Half-state models,which are of dimension K (i.e.,
one state per layer),are described in Sections IV
and V.B. A number of useful transfer function re-
lationships are described in Section (i1!. Those re-
lationships are obtained directly from state equa-
tions,and,not only serve to connmect our results
with the transfer functions found in the Geophys-
ics literature,but also represent generaiizations
of those results to the non-equal travel time case.
Our state equations are continuous time equations
with multiple time-delays,and,are referred to as
causal functional equations. Some preliminary dis-
cussions on simulation of such equations is given
in Section VI. Some new resuits which have been
obtained using our state space models, as well as
directions for future research,are given in Sec~
tion VII.

11. A STATE EQUATION MODEL

A state equation model for our K layer media sys-
tem is obtained directly from Eqs.(1) and (2),
which are applicable for k=1,2,...,K-1, and com=
parable equations at the surface and Kth interface.
At the surface (Fig.5a),we obtain

y(_z) = rgn(t) + (1=rglu, (t) (3)

di(t) = (1+rg) m(e) = rou, (t); (&)
and,at the Kth interface, we assume* that u,,, (t)=
0,to obtain (Fig.5b)

ug(tery) = rede(tt,) (5)

dgaq (8) = (1+r)dp(tety) . (6)

Signal y(t) in Eq.(3) is the measurable systemout-
put. Signal di,, (t) is also a system output; but,

since it cannot be measured,we shall ignore it in
following analyses.

It is convenient to group Eqs.(1),(2),(k),and (5)
in a layer ordering,as follows:

*This assumption is a boundary condition which is
compatible with what is meant by the ''basement.'

i,




N (t)--r u (:)0(l+r )m(t)
up(eee dor di (=t )+ (1=r Dy, (¢)
dl

Yy (et ) mry qug ()
s ORI L S e },-.z,3,...,x-l
j("‘ )-r d! (g.rl)+(l-r )uj”(t)

(e)=(1+r

‘x“)'(""x-t) k-1 (8 Taq) "o (0)

' -
UK(tﬂK)-rKdK(t tK) . (7)
This system of 2K equations is not in a useful
state equation format, yet, since signals in its
left-hand side occur at t and deiayed times,andsig-
nals on the right-hand side occur at t, t=-T,_, and

t=t,. In order to put Eq.(7) into a useful state
equation format, let

4;(t) 4 4} (e=r)) (8)

for all j=1,2,...,K. Observe,from Fig.3, that the
downgoing states d,(t) occur at the bottom of a
layer. Equation (7) becomes

d‘(wr‘)--rouI(t)#(!*ro)m(t)
uy (ter, )-r d (t)*(l-r )u (¢)
d (tﬁ.’ )-(M' ) j- -{t)- fi- '}(t)

}j-!.}.....x-l
Y (:#r )-r 4 (t)’(l . )uj,' t)

"K(“"x)'("'x-!) k=1 (8 =g (8)

u (st )er dy(t) (9)

3y means of transformation (8) each pair of equa-
tions in (7) now only involves two time points,

t+t, and t. Equations (9) and (3) together repre-
sent the state equation model for the output y(t).

This model is referred to as the layer-ordered
(L-0) full-state model in the scquc‘.
Equations (9) and (3) can be expressed in more com-

pact notation by introducing the following 2K x 2K
matrix operator*:

2 g diaq(z1,z‘.xz,zz.....zK,zK), (10)
where 2, is a scalar operator used to denote a T,
sec. time delay (i.e.,z,f(t) = f(t-1,)). Let
&(t)'col(u‘(t).d‘(t).uz(t).dz(t).....ux(t).dK(t));
(1)
then,Eqs.(9) and (3) can be written,as

27 x(t) = Ag(t) + bm(t) (12)
y(t) = g'x(t) + rym(e) (13)

where the explicit structures of A, b, and ¢ can be
deduced directly from the former cquatlous. “Because
we do not need this information at this point,and
because other versions of Eqs.(12) and (13),which
we discuss in Section V-A,have more easily remem-

*This idea was first suggested to us by Mr.Michael
Steinberger,a graduate student in the Electrical
Engineering Department,at the University of
Southern California.

bered A, b, and ¢ matrices, we do not giveexplicit
A, b, and ¢ structures here for Eqs.(12) and (13).
From Eqs.(T2) and (13), we see that

x(t)=@ "4 bm(t) = (1-28) "2pm(r)  (14)

and
7€) A e glmte)mtet (1387 v e
(15)

These equations provide us (conceptually, at least)
with the solution of the state equation and with
the output as a function of the input. The trans-
fer function of the K layer media system is ob~-

tained directly from Eq.(15), as
%H.. e G A ey = gt (138 e (16)

where 5 is obtained from 2 by setting

“st;
z, "e - (17) %

At this point,some comments on the nature of state
equation (12) are in order. In the special case
when T;®T;a---wr, A 7,2 = 2|,where z denotes the
T sec time delay and | is the 2Kx 2K identity ma-
trix; and,Eq.(12) can be written,as

x(tet) = Ax(e) + bm(t) . (18)

This equation can be reduced to a vector finite-
difference equation by choosing t=kt,and,when m(t)
only has values at t=kr. Then,all of the usual
techniques associated with such equations can be
used to analyze our K-layer media system. We donot
choose to follow this uniform travel time/sampled
data path,because these assumptions seem too re-
strictive.

State Equation (12) is a dynamical equation with
multiple time delays. It is not a differential
equation,nor is it a finite-difference equation.
We shall refer to it as a causal functional equa-
tion. It is linear and time-invariant,and,as is the
case with delay-time systems,requires initial val-
uve information over initial intervals of time.
Equation (16) suggests a straightforward way to
compute y(t) for an arbitrary m(t). First compute
the system's impulse response,H(s),where,obviously

H(s) = g‘(l-ﬁk)"ﬁl_:_wo (19)
then,convoive h(t) with m(t) to obtain y(t). It is
interesting to note that h(t) is a sequence of im-
ulse functions,since the right-hand side of Eq.
ilﬂ Ts an n’n?fait. series each of whose terms

Jooks 1ike ae 3P, and,2~{ae~%8} = ad(t-g).

Since our K layer media system is one with time

delays,its state space is infinite-dimensional;but
interestingly enough,only a finite number of states
(i.e.,2K) are needed to describe the trajectories

**The right-hand side of Eq.(17) is the Laplace
transform of a delay effect. Associating z, with
a delay is common in the Geophysics' and time=~
series’ literatures. In the control's literature,
on the other hand,z, is usually associated with

s
an advance in which case z,=e X Clearly,our 2z,
is simply the inverse of z, in the control's lit-
erature.




in that state space.

The important system theoretic concepts of observa-
dility,controllability,and identifiability can be
defined in a variety of ways,as for differential-
delay equations,and will be discussed eisewhere.

The L-0 full-state mode! was first presented by
Nahi and Mende! in Ref.12.

111, SOME TRANSFER FUNCTIONS

while Eq.(16) is the transfer function for our K-
layer media system,it is not at all a useful form
for computing that quantity. In this section we pre-
sent two alternatives to Eq.(16) ,both of which are
recursive in nature and are of interest in their
own right.

A. Layer Transfer Functions

Let X, (s) denote a 2x 1 Laplace transformed vector,
defined for the kth layer, as

lk(’) = col[uk(s).bk(s)] . . (20)
In Appendix A, we show that
1
X (s) = :Ek[u;'(s)c,(s)]n(s) (21)
and
%{%} = (1-r) (1,008 ()6, (s) ey (22)

where W, (s) is a 2%2 matrix which is solved in a
backwards recursive manner from the following algor-
ithm:

Wels) = F (s)
W, (s) = F {s)-H (s)v‘ﬁ 1+1(9) (23)
i - K-I,K-l....,
where
F (s) ( o (24)
Fre1%i
(1=r )z,
M. (s)= ( (25)
G,(s) -( (26)
(1er, )z,
and
G, (s)= ” (27)
(H-r )z

In practice,it is not necessary to compute the four
elements of Wil, (s),due to the sparse nature of

H, (s) and Gy, (s). Only the 1-2 element of H Wi Gi.,
is non-zero, and that element depends only on the
1-2 element of Wil(s).

During the development of Eq.(21)we obtain X (s) as
a function of X ... (s): | .

(s)G (s)X,

X (s) =W, 4.

-J ( ’ J‘q.}-“"K

: (28)

X (s) = H (S)G (s)M(s)

Matrix U"(s)G (s) is the Lxcr transfer function
matrix which relates layers j-1 and . Equation
(28Y is similar to the recursive algorithms which
appear in the Geophysics literature (Refs.3,4 and
9,for example),except that it is a generalization
of those algorithms to non-equal trave! times.

We conclude this paragraph with an example which
illustrates the calculation of Y(s)/M(s) for K=2.
In that case,

; 1 =r,z
W, F, = 22 (29a)
2 2 r.2 1
1%2
r.z
v;l(1,2) « =22 (29b)
1+r1r222
' (r +rzzz)z
14r,.r,2z
W.eF ~H WG s (29¢)
e e Y, T :
0%
-1 {r "'2‘2"1
S ’"1'2? To™* %"’0'2 f i
and
Y(s) . - =t
s r°¢(! ro)z‘\l‘ (1,2)
i g
. Mo*oN 2‘ 2y ¥rTy3s
- §:  w
baad ' z " b

" A
For the special case where T,=7;,s0 that z;=2;=2,
Eq.(30) simplifies to

4
Y(s) . r°¢(r +r°rlr2)z +r,2 -

M(s
l#(ror'",rz)z +r

o"2*
which is precisely the same result derived by
Robinson in Ref.3.

B. Recursive Reflection Transfer Function
) AR ———

Relationship
For a K-layer media system,states u,(t) and d,(t)
have been defined at the top and at tho bottom re-
spectively, of the jth layer (see Fig.3). Let R_(s)
denote the transfer function between u, and d, at

the jth interface; i.e.,
2{u, (t+1.)} sT. U, (s)
R;(s) "zt‘!;(?ﬁ_" JB-J!-m ¢

When j=0,we obtain the reflection transfer func-
tion between output y(t) and source m(t); i.e.,




_u.(s)
$To 0 Y(s
Ro(l) = e .Wé ’-‘H ’ (33)

since Ty=0.

We shall now develop a simple recursive relation-
ship between R,(s) and R,, (s). Consider our ear-
lier state equations for u, and dy,:

uj(t*tj) - "jdj(')’“"j)“jﬂ(') (34)
4 (e0tyy) = (‘"j)‘](‘)"j“jﬂ(‘) . (35)
From the Laplace transform of Eq.(34),we find

RJ(s) - rj¢(l~rj)u (s)/oj(s) (36)

i+
Laplace transform Eq.(35) and solve for D,(s),to
show that

T4
DJ(S) - [rjujﬂ(s)*o Dj“(s)]/(ltrj) (37)

Substitute Eq.(37) into Eq.(36), and re-arrange
some terms in the resulting expression to see that
r+2% R, (s)

R;(s) = W Ld (jo=k=1,K-2,...,1,0) (38)
197,25 1R (8
which is the desired result.

Equation (38) can be used to compute the output of
a K-layer media system in a recursive manner, be-
ginning with a one layer system (i.e.,one layer on
top of a basement layer) for which we set j=K-1.
We then iterate Eq.(38) backwards,setting j=K-2,
K-3,...,1,0. In order to compute R,_{s) we need

Re (s); but,Re(s) can be obtained directly from the
very last state equation in (9),u (t+r )=r.d,(t),
as

RK(S) .y (39)

In the special,but widely studied case of equal
travel times,Eqs.(38) and (39) simplify to

roriR ()
aj(s)- , jeK=1,K=2,...,1,0

1+r.2"R,

rz J,‘(s) (o)

RK(S) . e
where z=e ST, Equation (40) (or its discrete-time
counterpart,in which Laplace transfer functions are
replaced by z-transform transfer functions) is a
well-known result which can be derived by widely
different methods (Refs.10 and 13,for example). Ad-
ditionally,these recursive relationships occur (Ref.
14) in electric kernal functions, magnetotelluric
input impedence functions,and electromagnetic modi-
fied kernal functions.

That Eq.(40) generalizes to Eq.(38) for non-equal
travel times is believed to be a new result.

To illustrate the use of Eqs.(38) and (39),we re-
compute Y(s)/M(s) =Rq(s) for K=2. In that case,
R2(s) =r;,and

2
5. (e) » Ltd (41a)
JE0%- % Ny , :
l#r‘rzzz
and

'°”§R| (s)

1erziR, (s)

Ro(s) -

2. 22
1*72%

e e r.r z*f z 2 Zz
! (41b)

0" 0 1"2%2""
"'1'2‘%"0'1‘?"0'2‘?‘2

It is much easier to compute the reflection trans-
fer function by the recursive reflection transfer
function relationship of this paragraph than by the
layer transfer functions of the preceding para-
graph; however, detailed information about the up-
going and downgoing states cannot be recovered
from the relationships in this paragraph,whereas
they can be recovered from Eq.(21) in the preced-
ing paragraph.

IV. A RECURSIVE HALF-STATE MODEL

Observe,from Eq.(38),that operator z,,, appears
only as 22, in R,(s). This suggests that a state
space model ,which requires only K states,can be
developed from that equation. We refer to this mo-
del as a recursive half-state model,since it is
obtained from the recursive reflection transfer
function relationship.

Theorem 1. For the K-layer media system depicted
in Fig.l,l.t

x(t) = col(x, (t),x,(t),...,x (¢)), (42)
l= dlag(z‘.zz.....z (43)

T= (2K'£K-|""'!-|) (4&)
where e, is the j-th unit vector,and is Kx 1. Then

) ’
and K

127 2Tx(t) = Ax(t)+bm(t) (45)
y(t) = c'x(t)+rym(t) (46)
where
b= col(rK,rK_‘.....r') (47)
& = 01(0,0,...,0,(1-r3)) (48)
and
A=

-r.r -r,r

Rk-1 Tk"k-2 Tk"k-3 7 Tk k"o

2 a it “
(1=rer) “Pret1ke2 “"k=1"%=3""""Tk-1"1 “Tk-1"0
2 5 — i
0 (=ryp) “Fraafk-3’ T2 TTk-2T0
2 S %
0 0 “.'K-B) eeree3ty “Tx-3%0

- ..: _'z : :
0 (1 ) "1

(49)
The proof of this theorem, which contains a recur-




sive version of Eqs.(45) and (46),is given in Ap-
pendix 8. @

The left-hand side of Eq.(45) is a reversedouble-
delay operator; i.e.,

12 21x(t) =col Oy (€427, g (€427, )4 ooy (£427)).

(50)
Additionally,matrix T is a special permutation ma-
trix,with the property T"'wT; hence,’q.(45) can
aiso be written,as

x(2) = TZ8TAx()+T2%Tbm(t) . (s1)

In the special case of equal travel times,Z=zl,and
£q.(51) reduces to

x(t) = Ax(t-27)+bm(t-21) . (52)

Finally,whereas the recursive half-state modei re-
Quires only K states,we at present can give no
physical meaning to those states. In Section V.8,
however,we relate the x-states to the upgoing
states "l(t)'"z(t)"""‘l((‘)‘

V. EQUIVALENT MODELS

Inthis section we present alternative,but equival-
ent,full-state and half-state models. The alterna-
tive full-state models are useful because they have
much more revealing structures than the L-0 full-
state model, and one of these models — the skew
model — leads quite naturally to a skew haif-state
model. That half-state model ,whose states are some
of the upgoing and some of the downgoing states
from the L-0 full-state model,can be related to the
Section IV recursive half-state model. In this way,
we give physical meanings to the states in the re~
cursive half-state model.

A. Full-State Models
1. D=U Model

The 0-U full-state model is obtained from the L-0
full-state model by reordering the latter's equa-
tions in such a manner that all downgoing states
are grouped together and all upgoing states are
grouped together. Let

4(e) = col(d,(t).dy(t),...,d,(t)) (53)

and
u(t) = col(ul(t),uz(t),...,ux(t)) . (54)

Equations (9) and (3) can be written,in partitioned
form as:

27'4(c) = A d(c)+A,u(t) +gm(c) (55a)
-1
o Z u(t) = Ajd(e)+ALu(t) (55b)
y(t) = h'u(t)erm(t) (56)
where
(] 0 0 0 0
(u-r‘) 0 0 soe 0 0
A M B B L 0
0 ] (14r.) .. 0 ]
. . . 3 . .
I T R

(57a)

A, = ~diag(rg,r ,....r ) (57b)
A3 - diag(rl.rz,....rx) (57¢)
0 (l-r‘) 0 0 0
0o o (1-ry) 0
A, 0o 0 0 (1=rg) »-- 0
0 0 0 y (l-r;(_‘)
0 0 y 0
(57d)
= col(14r,,0,0,...,0) (58)
and £ %
n - col("l'a.o.o.---.()) . (59)

Matrices A),Az,Ay,and Ay are KX K,and matrix oper-
ator Z is defined in Eq.(43).

Equations (55a),(55b),and (56) comprise the D-U
model. Matrices A;,Az,A3,A, are easily remembered
for this modeli. The 0-U model has found appilica-
tion in Mendel's Bremmer series decomposition of
output y(t) (Ref.15). That decompasition is dis-
cussed in Section VII.

2. Skew Model =

The skew full-state model is also obtained fromthe
L-0 full-state model by a reordering or equations.
Let x,(t) and x ,{t) both be KX 1 vectors, where

= 5,1“) = col(u.l(t) .dz(t).us(t),...) (60)

x,,(t) = col(d,(t).uz(t).dj(t)..-.)- (61)

When K is even the last elements of x ,(t) and
X,q9(t) are d (t) and u,(t),respectively; whereas,
when K is odd, those elements are u,(t) and d (t).
Equations (9) and (3) can be expressed in terms of
%,,(t) and x,{t),as

2-1551“) = Gﬁsz(t) (62a)
-1
e Z x,,(t) = Hx (t)+gm(t) (62b)
(t) = h'x_,(t)+r m(t) (63)
where ¥ —55] "a
K= 1 2 3 4 3
Y [ 1-r' 0 0
5o e 0 0
G- (64)
0 0 ry 1-r 5 >
0 0 lﬁ'l ry .




K= 4
; )
& 0
i )
He (65)
0
"y

and g and h are defined in Eqs.(58) and (59),re-
sepctively. Matrices G and H are both Kx K,and are
given above as functions of K.

Equations (62a),(62b),and (63) comprise the skew
model. It is called a skew mode! because onlycross
coupling terms appear on the right~hand side of the
state equations; i.e.,the rather unusual ordering
of our 2K states in x,{t) and x,s(t) leads to a par-
titioned state equation with blocks of zeros along
the main diagonal.

8. Half-State Models
1.Skew Model

Observe, froa Eqs.(63) and (62) that y(t) depends
only on x,,(t),and that x,y(t) can easily be elimin-
ated from the state equations to give the follow-
ing half-state state equation for x, (t):

2, (t) = ZGZHx_, (t)+2GZgm(t) . (66)

Equations (66) and (63) constitute our skew half-
state model. Half-state vector x.(t) can be com-
puted from Eq.(62b} once x,,(t) has been computed.

It is interesting to compare Eq.(66) and (51). Ob-
serve that the right-hand sides of these state
equations involve matrix operators 2GZ and TZ®T,
respectively. If a physical element existed for
implementing a delay operator matrix,then the skew
half-state model would need two such elements,
whereas the recursive half-state model would only
need one such element [for Z2]. This suggests that
the recursive half-state model is minimal in terms
of "hardware'' requirements.

In the special case of equal travel times,whereZ=
zi,Eq.(68) reduces to

xg,(t) = GHx_, (£-27)+Ggm(t-21) (67)

which is comparable to Eq.(52). We see,therefore,
that only in the case of equal travel times doboth
the skew and recursive half-state models have the
same ''hardware'' requirements,in that they both re-
quire a double delay element,2T.

2. Upgoing States
Observe from Eq.(56) that y(t) depends only on
u(t). While it is possible to eliminate d(t) from
£qs. (55a) and (55b) to obtain a half-state model
for u(t),that model is not terribly useful ,due to
its apparent complexity.*
It is useful to obtain a direct relationship be-
tween u(t) and x,,(t). In Appendix C,we show that

tu(t) =z (A, oAy (1-2A)) 28 Ju(e) o2, (1-28,) "' 2Bm(e)

ule) = (L AL, 0, () (68)

where L, and L, are permutation matrices which de-
pend on whether K is even or odd. These matrices
are also defined in Appendix C.

From Eqs.(68) and (66),0ne can develop a different
half-state equation for u(t); but,that equation
also does not appear to be terribly useful,so we
shall omit it here. Clearly,we can compute u(t) by
first computing x,,(t) and then using Eq.(68).

It is also possible to relate u(t) to x(t). Wash-
burn (Ref.16) has proven the following:

Theorem 2. Let

je1
L I (l#r|) (69)
i=0
and
2o =it
T() = ] Ty oo g S0. (70)
i=Q
Then,

1 Y
xK,,_j(t) 'ﬁ“](“‘ﬂ”,’ y Jm12.5.05K . (70

Proof: The proof of this theroem is inductive in
nature and algebraically lengthy. The general idea
is to show :ﬁ.; g(t)=col (5, (t),5e.,(t),.5.,8068)),
where Cgo (t) = Uen  (t+T(K=j))/y,.,,satisfies the
recursive half-state equation (45); i.e.,to show
that for g(t) as just defined,T273Tg(t)=Ag(t)+
bm(t). By uniqueness,then,;(t)=x(t). Details can
be found in Washburn (Ref.16). g

it is useful to express £q.(71) in operator nota-
tion. Let

T = diag(yy,Ye_qse-2sYy) (72)
i K Yk-1 1
K=-1
0 0 0 -+ 0 nz,
j=1 !
K-2
8 8 s Bog 0
N- I-! (73)
6 0 zz, o ]
BT Rl 0
[ R R 0

then,Eq.(71) can be written as

x(t) = I 'ha(e) . (74)

Theorem 2 is a very useful result; for,not only

does it give us another way to compute u(t) [i.e.,
u(t)=N-'Tx(t)],but it also provides us with mean-
ng for the mathematically defined half-state vec~
tor,x(t),in terms of the physical half-state,u(t).

There is an interesting pictorial description of
the relationships between xg.,.; (t) and u,(t) (j=
1,2,...,K). It is obtained by writing Eq.(71) as

u;(t) = *j"xu-j("ﬂm b JN2yeeuik (T78)

and is shown in Fig.6,for Ksk. On that figure,we




J-1
use the fact that '(j- Ji¢ t;.where t; is the ith
i=0
transmission coefficient (see Table 1). States x;(t)
through x,(t) are located at the surface of the 4-
layer media system,as well they should be since
they are associated with an input-output model. The
dashed lines denote a fictitious ray path linking
Xgarei(t) and ¢ (t); and,of course,we know where
the u',(t) states are located,since they are physi-
cal states.The relationship between u, and x,;.,
is one from ray theory. If, for example, x2(t) is
applied at the surface then,following the direct
transmission path between x,;(t) and us(t),it fol=-
lows,from ray theory,that uj(t)=totitaxz(t-T;-7,).

In retrospect,Fig.6 provides a heuristic proof of
Theorem 2.

3. Dounﬁlng States
Suppose we desire information about downgaing
states d(t). It is straightforward to show,that

dle) = (LiL #iL Z6)x o (2) . (76)

A procedure for computing d(t) is: (1) compute
x,(t) using Eq.(66); (2) compute x,3(t) from Eq.
Tglb); and (3) compute d(t) from Egq.(76).

Vi. COMPUTATION

Our full-state and half-state models are causal
functional equations, a class of equations about
which we have not been able to find very much
either in the system's or mathematics's literature.
In this section we give some brief preliminary
thoughts on simulation of causal functional equa-
tions.

A. Full-State Model

Qur discussions in this paragraph are directed at
simulation of the L-0 full-state model. They are
applicable, with modifications, to the D-U and skew
full-state models.

A brute force approach to digital simulation is to:
discretize time (our independent variable), map
each T, in some unique manner into a quantum zone
along the discretized time-axis, and then solve the
resulting discrete-time system by means of finite-
difference equation techniques. Appreciable errors
may be introduced in the T,-mapping step, unless a
very fine quantization is used. To-date, we have
not tried this approach; but,we have not written it
off either,since it is quite simple to implement.

A second approach,which we have begun to study in -
some detail,is one in which the system's impuise
response is computed by* a branching process/table
look=up procedure. Output,y(t),is then computed via
convolution between m(t) and h(t) [see Section I1].
The branching process/table look-up procedure is
based on the observation that the basic operations
required to compute the impulse response are shift-
ing and adding of two non-uniform sequences of im=

*This procedure has been developed by Mr. Michael
Chan,a graduate student in the Electrical En-
gineering Department at the University of Southern
California,and is reported on in more detail in
Ref. 17.

pulses. An alternate way of viewing Egs.(3) and (9)
is to consider what happens to d,(t) and u;(t). A
careful study of these equations leads to the fol-
lowing transformation rules:

rodo(t) - y(t) j=0
dj(t) fjdj(t) = uj(wrj) S o LR 3
(1+rj)dj(t) - dw(m-jﬂ) j=0,1,...,K=1
(77a)
(I-ro)u‘(t) + y(t) j=1
uj(t) (l-rj_‘)uj(t) - ul_'(:«rj_') j=2,3,...,K
-rj_luj(t) - dj(:ﬂj) j=1,2,...,K

(77v)

We search along the time axis for a time at which
an event (i.e.,an impulse) has occurred. At that
time point,we map all d, and u, states according to
Eqs.(77a) and (77b). Since the right-hand sides of
these equations involve two time shifts, a single
event branches into two events, We proceed
along the time axis looking up values of d, and u,
at event points, until we have covered the domain’
of interest. To eliminate costly computation,we set
a3 lower bound on state amplitudes,below which we
assume it to be zero. Additionally,if two events
occur within a prespecified tolerance,we combine
results for those events. The errors introduced by
these approximations,as well as storage require-
ments are currently under investigation.

B. Half-State Models

Based on very preliminary resuits,it appears that
the recursive half-state model is computationally
more attractive than the skew half-state model.
Coding the skew model is difficult because we must
expand ZGZH and 2GZg in Eq.(66). We do not know
general formulas for these complicated operator ma-
trices. The recursive model,on the other hand,can be
coded directly from Eqs.(45) and (46),making use of
the very simple nature of TZ 2Tx(t),as given by Eq.
(50). Either of the two approaches,described above
in Paragraph A can be used to simulate the recur-
sive model. We are presently studying such ap-
proaches.

VII. CONCLUSIONS

We have developed state space models for lossless
layered media which are described by the wave equa-
tion and boundary conditions. OQur models are for
non-equal one-way travel times,and are therefore
more general than traditional transfer function
models,which are usually for layers of equal one-
way travel times. Our state cpace models represent
a new class of equations,which we call causal func-
tional equations. These equations are linear,time-
invariant,continuous-time equations with mulitiple
time delays. The impulse response of our system is
a sequence of unequally spaced impulse functions.

We have developed full-state models,which require
2K states for a K-layer media system,and,have also
developed half-state models,which require only K
states. Additionally,we have generalized certain
transfer functions,which appear in the geophysics




literature,from layered media with equal travel
times to layered media with unequal travel times.

Now that we have developed state space models for a
K-layer media system,much work remains before us.
Since we have been led to a new class of equations,
causal functional equations,they must be studied
not only from a simulation point of view,but also
from a system theoretic point of view. Efficient
computational methods must be developed,and notions
such as observability,controllability,and identifi-
ability must be expanded to this new class of equa-
tions. Work is presently underway in these areas.

Additional areas of study,which are also underway,
all deal with what can be done with the state space
models. These studies include: (1) extending the
mode! to include absorption and non-normal inci-
dence effects; (2) identifying reflection coeffici~
ents and travel times using a recursive layer-
stripping procedure; and (3) developing minimum-
variance state estimators.

In closing,~e wish to summarize a very interesting
decomposition of output,y(t),which was developed by
Mende| (Ref.15),but is originally due to Bremmer
(Ref.18). This decomposition was very easy to de-
velop using our state space models. The decomposi-
tion,which we refer to as a canonical Bremmer
Series degomposition,is: the complete output,y(t),
from a K-layer media system,which is comprised of
the superposition of primaries,secondaries* terti-
aries,etc.,can be obtained from a single state
space model of order 2K — the complete model — or
from an infinite number of models,each of order 2K,
the output of the first of which is just the pri-
maries,the output of the second of which is just
the secondaries,etc.

By thinking of y(t) as the superposition of its
constituents — primaries,secondaries,etc.,— we
can write it as

y(e) = I y(o) . (78)
j=1d

Equation (78) is the Bremmer Series decomposition
of y(t). Bremmer shows how to compute the constitu-
ents,y ,(t),from integral equations which relate
y}(:) to y,.,.(t). Mendel,on the other hand,shows how
to compute the y,(t) as depicted in Fig.7. Input
m(t) drives a state space primaries model,whose up-
going states drive a state space secondaries model,
etc. The 0-U full-state model is most appropriate
for characterizing the Bremmer Series decomposition.
Further details on the structure of the n-aries mo-
del as well as a proof of validity of the decompo-
sition are given in Ref.15.
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APPENDIX A. Derivation of Layer Transfer Functions

We direct our attention at the upgoing and downgo-
‘ng states in each layer [Eq.(9)]. It is straight-
forward to show that the compiete set of 2K Laplace
transformed state equations can be written,as

Flly = Rk,
Faky = GX X,

Knl e (A=1)

Fr-12k-1 = Sk-12k-2"x-1 %

Pk = Sk | .
where explicit dependence of all quantities on s
has been omitted for notational! simplicity. Ma-
trices F, ,H ,and G, are defined in Eqs.(24),(25),
and (26) and (27),respectively. From the last equa-
tion in (A-1),we see that

-' é -‘ . 2
Bg = Py Gt ® Y Sx-y - (a-2)

Substitute this equation into the next to the last
equation in (A-1),to show that

-1 -1
Xg-1 k-1 Hk-1"k O OgaiXgz (A3)

which can also be written,as

-(F

AR R ll S (A=4)
where

4 < ot .
k-1 * F-1"Mx-1% Ok - (A-5)
Proceeding in a similar manner,it is easily shown
that Eq.(A=1) can be expressed in terms of matrix
Wy ,as

A
LI V‘ GIM

(A-6)

where W, is defined in Eq.(23).

In order to obtain the state transfer function in
Eq.(21),substitute X; into Xz,Xz into Xs,..., and
Xy into X,. In order to obtain the reflection
transfer function Eq.(22),first express Y(s),from
Eq.(3),in temms of Xi(s),as

Y(s) = (1-rg) (1,0)X, (s)+rgh(s) , (A-7)

and then substitute X;, from Eq.(A-6),into Eq.(A-7).

APPENDIX B. Derivation of Recursive Half-State Model

For the purposes of deriving the recursive half-
state model,it is convenient to use a recursive
transfer function comparable to Eq.(38) which iter-
ates in a forward direction instead of a backwards
direction. In this way,a one-layer system will be
associated with subscripted ''one'' quantities rather
than subscripted "K' quantities,etc., Consider Eq.
(38) for j=0:

|




2
ro*Z Ry (s)

R (s) = Sy ———
@ lwoz‘R‘(s)

(8-1)

Renumber the layers of our K-layer media system as
depicted in Fig.8b,in which the top layer is now
the Kth layer. Making the transformations ro~ry,
z,+2¢,Re (s) *Re(s),and Ry (s) ~Re_(s),.Eq.(B~1) can
be written as
oo
r +z R _ (s)
R () » 5L (8-2)
14, 2 R, (3)

Reflection transfer function R¢(s) can be obtained
in a recursive manner from

= r.uzﬁ.q(s)

R (s) = TR e
Hrjzji'j-‘(s) (8-3)

i‘o(s) =ry -

We prove Theorem 1 by first stating and proving the
truth of a recursive half-state mode! for the
layer-reversed system in Fig.8b,and then transform-
ing variables from that model to the Fig.B8a situa-
tion.

Theorem 3. For the K-layer media system depicted
in Fig.8b,let

©(2) = ol (x, (8) 1y (8] ,unn . (£)) (8-4)
and J
Zj - diag(z'.zz.....zj) (8-5)
where j=i,2,...,K. Then,
2% (0) = add (0)stdm (o) (8-6)
A = gdd (©erm (o) (8-7)

where m,(t) and y<(t) denote the input and output,
respectively,at the surface of a j~layer media
system,and

o't
b! = r, (8-8)
(8-9)
j=1
b
e [ =— (8-10)
rj_‘
and :
= col(o.o.....o,(t-rﬁ)) (8-11)

=

I..i""""l"l'llilili1!!llllIlllllllIlIlIll;Illlillllll;llllillllllll| - | -

Proaf: Our proof,which is by induction,is based
on the block diagram decomposition of Eq.(B-3),de-
picted in Fig.9. To begin,we develop the initiali-
zation in Eq.(B-8); then,we demonstrate the truth
of the theorem for j=2; and,f.nally,assuming the
truth of the theorem for j~1,we demonstrate its
truth for j. Because the steps for j=2 and j are
so similar in nature,we omit the j=2 proof.

(1) Initializations (j=1)
From Fig.9,we find,for j=1,that [Ro(s) = ro]

212)(‘(() - -ror‘x‘(t)dvrom‘(t) (8=12)

and

') = (0-rdx () er m (2) (8-13)
Comparing Eqs.(B-12) and (B-13) with Eqs.(8-6) and
(B-7) ,respectively,it is clear that A',b’,and ¢!
are as defined in Eq.(B-R).

(2) Inductive Step

Observe that the model of the (j~1)~layer media
system {s embedded in the forward path of the
feedback loop in the model for the j-layer media
system. We have labeled the input and output
points of the E-x(’) block as H}_‘(s) and Yi-i(s),
respectively. Observe,that

275 (1) =y

] (B=14)

but,by assumption,y!-¥t) satisfies Eq.(B-7); hence

25 (0) = eI e e (0) L (8-15)
from Fig.3,however
miy (€)= m(e)=r e (2) (8-16)

whereupon Eq.(B-15) becomes
=2 o il Sl J
z. £} c X t)=r.r. x’(t)+r._ .m.(t
Jx()_ _()JJ_'() _'J()
(8=17)
which is our state equation for x‘.

Next, we must combine EQ.(B-17) with our assumed
state equation for x‘~}Eq.(B-6); but,we must re-
place m_;(t) in the latter equation by Eq.(B-16).
The equation for x~! is

Z;E‘gj-‘(t) - Al (:)-rjgj"xj (t)+gj-‘mj(:)
(8-18)

Clearly now,Egs.(B=18) and (B-17) can be combined
and expressed as in Eq.(B-6),where A! and b are
given by Eqs.(B-9) and (B-10),respectively.

Finally,from Fig.6,we see that
y"(t) - (l-ri)xj(t)wjmj(t) (8-19)
J

and,this can be expressed as in Eq.(B~7),where c-
is defined in Eq.(8=11). ®

While Egs.(B~9)and (B-10) are interesting in their
own right,they do not reveal the intrinsic detailed
structures of A' and b’. It is a straightforward
matter to iterate these two equations,using their
starting values from Eq.(8-8),to show that




gj = golle r iove,rr o) (8-22)
and Lk 3
FU
fof1 “fo™2 "o'3 Tt TTo%j-1 fof)
2
(1=r}) =ryry Ry MR Y
-rdy . s =
0 (1 rz) 273 PUR 2%
25 s e -
0 6 - Q r,) 31 T3
] 0 0 v (terd) -r ¢
j=1 Jmt ]

(8-21)

Proof of Theorem 1: From Fig.8,we see that the
state space model for the desired system,Fig.8a,
can be obtained from the state space mode! for the
layer-reversed system,Fig.8b,by means of the fol-
lowing transformation of variables:

j=1,2,...,k - (8-22)

L I S Y

F1 " ket
In order to abtain A,b,and c in Egs.(49),(47),and
(48) ,respectively,apply Eq.(8-23) to Eqs.(B-21),
(8-20) ,and (B-11),and,then set =K. in arder to
obtain the left-hand side of Eq.(45),apply Eq.(B-22)
to 27? [in Eq.(B=6)] and then set j=K. It is,of
course understood that quantities in Theorem 3
which are superscripted or subscripted "K' [l.e.,
x*(t)] are the same as those unsuperscripted or un-
subscripted quantities in Theorem 1.

and
i=0,1,...,K . (8-23)

APPENDIX C. Derivation of Relationships between
2y, (t) and uft)

Here,we shall show that there exist permutation
matrices L, and L,,whose dimensions and structures
depend on whether K is even or odd,such that

ule) = Lk (e) el x o (t) . (c-1)
Substitute Eq.(62b),for x,{t),into Eq.(C-1) to
show that

a(t) = (LU +LiL ZH) X (e) +LL, Zgm(e) . (C-2)
It is straightforward to show,by direct substitu-

tion of the defining equations for L,,Z,and g,that
LyLyZg = 0; hence,

ult) = (L L+l ZH)x , (¢) (c-3)
which is the desired result.

Now we return to the decomposition of u(t) in Eq.
(C-1). Let x%,(t) and xJ;(t) denote rearranged x,,(t)
and x,{t) vectors. For K even,

x4, (0)8col (uy (Ehuy(e), iy (€) [dy (0D, dy ()

wcol (ur () [d*, (¢)) d (Cc-4)

and
x5 (00801 (uy (0,0 (£), .. u(€) [, (€)oo udy ., (0)

-col(y,;z(t)lggz(t)) . (c-5)

It is straightforward to show that

e ur (6) = Lx (e) (c-6)
ut (6) = Lx ) (6) (c-7)
where L, and L, are both K/2 XK matrices,and
o L. L (21'0'22'0""'2K/2'.0.) (c'e)
Lb " (_o_vl‘ vg.vzzo-'-v_o_’lez) . (C-g)
For K odd,
1 (t)8eol (uy(ehug(e), ... udt) [dfe)d(eh ... dy_(6))
-col(gh(t)fd_:‘(t)) (C-1a)
and
xe 610t (ulehuylel, .. up_ (6) [ (e)de),. .. a0))
-col(g;i(tHg;z(t)) 5 (c-11)

Equations (C-6) and (C~7) are applicable in this
case aiso; but,now L, is ['%—‘-}xx and Ly is {%-‘-} %
K,and

L. - (!.‘ .2.22.9_--“.&2‘“‘) (C-IZ)
and T

Lb o (gv!" .2‘!1'."'!*_'1'1) . (C‘U)

2
In Egs.(C-8) and (C-9).gJ are %xl unit vectors;
but,in Eq.(C-12), -.-J are %‘-ll.md.ln Eq.(C-13),
K=1

!j are S—x1.

Regardiess of whether K is even or odd, one can
show that

u(t) = Louk, (e)+Liuk, (2) . (C-14)

Substitute Eqs.(C-6) and (C-~7) into Eg.(C-14) to
abtain the assumed decomposition for g(t) in Eq.
(c=1).
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Figure 2. Two Layer Example
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Figure 3. Reflected and Transmitted Waves at
Interface k. From Eq.(8),
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Figure 5. Reflected and Transmitted Waves

at (a) Surface and (b) Inter-
face K.
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Figure 6. Relationship between x(t) and u(t).
Upgoing states are located (circles)
at top of each layer. Dashed lines
denote transmission paths for x
states. States are separated along
the horizontal axis for purposes of

clari ty.
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Figure 7. Canonical Bremmer Series decompo-
sition of a seismogram signail,y(t).

Vector u denotes the collection

of K upgoing states from the n-
aries model.
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Figure 8. System of K layered media:

(a) first layer is Layer 1 and
the last layer is Layer K;
(b) first layer is Layer K and
the last layer is Layer 1.
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