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Abs tract

A new quadrilaterial finite element for the problem of bending of a

uniform, homogeneous, isotropic, flat plate having an arbitrary number of

nodal points and allowing an arbitrary level of refinement is developed

from solution functions to the governing differential equation. Interelement

continuity to the appropriate level of normal derivatives is provided in

least error fashion by the use of spline functions for the edge displacement

quantities and minimization by the Galerkin technique. Even for general

quadrilateral domains no numerical quadrature is required for developing

this finite element since all required integrals are taken over straight

boundary edges and can be evaluated explicitly. With this new type of element,

an improvement in accuracy is expected to result when large quadrilateral regions

are modeled by a single element with an appropriate number of edge nodal

points, because the error of this finite element approximation is associated

with the boundary region of the elements. The force vector corresponding

to the transverse pressure is derived from a series solution to the inhomo-

geneous differential equation, so that the effect of the forcing function

in the element interior can be evaluated to any degree of accuracy desired.
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1. Introduction

The vast majority of boundary value problems do not lend themselves

to solution by an exact method. Analysts therefore resort to approximate

methods that reduce the continuum problem to the problem of finding a finite

number of parameters that characterize the solution. The most versatile

approximation method to date for solving linear boundary value problems is

the finite element method (FEM). This method is fully automatible and pro-

duces in general sparcely populated matrices which lend themselves to inversion

by techniques that are both economic in storage and saving in computer time,

thus permitting application to large systems. Although the FEM has initially

been developed by structural analysts and most of its vocabulary is derived

from structural mechanics, its versatility has been recognized and its appli-

cation has spread to other fields of continuum mechanics.

The FEM is still a subject of vigorous research by both engineers and

mathematicians alike. Efforts are going on to enlarge the field of applica-

tion of the FEM, to give information about the error in the solution, and

to improve upon existing finite element approximations to continuum problems.

These efforts include reformulating the coefficient matrix, which in finite

element nomenclature is called stiffness matrix, in such a manner as to

achieve reduced computer time, refined representation of the boundary, and

improved accuracy. This work is part of that effort. The point of depart-

ure for this present work is the extended field method (EXFM), a method

of analysis that exhibits remarkable convergence but lacks the flexibility

of application of the FEM. In this report (dissertation), the EXFM is used

to formulate a new finite element stiffness matrix and the associated force

vector for the problem of plate bending.
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In brief, this new formulation employs solution functions in the interior of

the finite element and finds some best £ it along the element boundary.

Inter-element compatibility in the sense of P ian (ref. 1 .) is achieved

by using a Galerkin-type error reduction along the boundary. rnstead of

deriving the force vector that corresponds to the forcing function acting

over the interior of the element from work equivalence, as is customary

in standard finite element formulations, the force vector is here derived

from exact solutions to the inhomogeneous differential equation. The

stiffness kernel is obtained from virtual work considerations that require

integration of. the stress resultants along the element boundary. There

is no need for integration over the domain of the finite element, since

all displacement functions employed in this formulation satisfy the

differential equation exactly. This amounts to an equilibrii~ formu-

lation. Choosing for the solution functions certain series whose

recurrence relation is simply determined by an integer that multiplies the

argument, this new finite element can be easily refined by increasing both

the number of displacement functions and the number of nodal points along

the element boundary. This process can be automated. This flexibility in

the number of nodal points per element permits the analyst to use a suf 2 i-

ciently refined element of this type instead of an equivalent substructure

consisting of a number of finite elements. Instead of progressive partioning

the researcher can use the process of progressive element refinement

for demonstrating convergence. It is noted, that for an equivalent refinement of the

customary finite element solution the growth of degrees of freedom of the system

is roughly proportional to the square of the number of edge partitions per

element edge of the original element size in the case of progressive par-

titioning, while for element refinement, as is possible for this new formu-

lation, the number of degrees of freedom grows proportional to the partitioning3



of the circumference. (Starting with a four node element, the proportionality fac-

tors are i) for progressive partitioning: S~ ~4 5~~ ~~~~~~, 5~ 25
N>3 and ii) for element refinement: ).

2. The Plate Bending Finite Element Derived by the Direct Technigue
2.1 The direct technique for the plate bending finite element

While the techniques now generally employed for the fornulation of finite

element stiffness matrices are based upon the method of variational calculus (Ref’s

2,3,4), the approach taken here is the direct technique, or as it is tenm~din some

literature the equilibrium technique. The general approach of the equilibrium tech-

nique is to obtain exact solutions to the governing differential equation that are

expressed in terms of displacement quantities at the nodal points, equate the boun-

dary nodal point displacement quantities of the adjacent elements and enforce equili-

brium of the force quantities at the nodal points. For one-dimensional continua such

as rods and beams this procedure is simple to apply, as the total boundary consists

of two discrete points and the stress resultants are already discretized quantities.

In the case of two dimensional problems, such as the plate bending problem, proper

continuity of the primary variable across the entire element boundary cannot always

be achieved and equilibrium can only be achieved in some average sense. The method

described in detail later in this report allows discontinuities of the primary van -

able across element boundaries but minimizes these discontinuities in the Galerkin

sense, and enforces equilibrium in an average sense by appeal to the priniciple of

virtual work.

To develop this approach for the case of a plate bending finite element, con-

sider the transverse displacementWc%Jrhe transverse displacement satisfies

Dvw —

where ~(X) , the forcing function, is the transverse pressure and D is the bending
rigidity of the uniform plate. The transverse displacement may be expressed

as the sum of a solution to the inhoinogeneous equation, W,(~), satisfying

come convenient boundary condition and a solution of the homogeneous equation,

with adjustable coefficients that make it possible to achievew 
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any boundary displacement within the bounds of some required accuracy. Summing

these components the transverse displacement is given by

W ( %)  W~(x) + Wh (X ) 
. 

(2)

The solution to the homogeneous equation includes, of course, both elastic

as well as rigid body displacements.

The developnent of the equilibrium finite element requires a finite

number of displacement functions that are dependent upon undeten~ined para-

meters. Truncated series solutions are selected for the displacement

functions, and they may be written in the form

Wh (X)~~~~ k1’~( E h 4 and W~(%)~~ Z i~(X)p ,4 .1

where the are Enown pressure parameters that are derived from the forcing

function and the h 4 are the undetermined parameters. The displacement

boundary conditions for the plate bending problem are the prescription of

W(~ ) , the displacement, and of ~~~ the rotation normal to the boundary,

where ~ is a boundary coordinate. The corresponding nodal degrees of free-

doin at a given point ~~ onthe boundary are

q~
q3.1 W,~(44 )

q~ w,1(e,~)
Here the coi~vna behind the variable followed by an index quantity that is a

spatial variable represents partial differentiation of the dependent variable

with respect to that spatial variable and n is the local normal at the boundary.

A transformation from the nodal degrees of freedom, the q,,to the con-

tinuous parameters, the h4 ,must be obtained so that the displacement functions
5
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can be expressed in terms of nodal quantities. One possible approach is

to obtain the inverse transformation by simply evaluating the nodal dis-

placement quantities in terms of the displacement functions:

q 1 — w (&) ~ J~~
) h~j

W,~~~) ~~ 
+ ~~

‘

q3 T ~~~~~ L +

= W,~(&J ~ Jf~ ~
) h~ + ~

where k f~/3
In matrix form the above can be written as

(3)

For the purpose of obtaining the h4 in terms of ~~ it is required that N 1~
so that B is a square matrix. This transformation enforces continuity

of the displacement quantities at the nodal points but says nothing about

inter-element continuity of the displacement quantities along the element

boundary away from the nodal points. For this work a more complex approach

is taken that improves upon the match of the displacement quantities of

adjacent elements along their common edges. The edge displacement quanti-

ties W(~) and W,~(~) are expressed directly in terms of the nodal degrees

of freedom

W (~ ) — 
~~ , S~~)q.

in such a maimer that the nodal displacement quantities on a common edge of

two adjacent elements determine the same displacement and rotation of this

edge for both elements. The discrepancy between this exterior representation

of the displacements and rotation and the representation of these quantities

by the solution functions for the element interior is then minimized.

6
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Thus, interelement compatibility in the sense of Pian (ref.l) is

achieved. Perhaps the most useful edge displacement functions

and F(~ are cubic splines for the transverse displacements of the
edge and linear splines for the edge rotation. Such an element would

be interelement compatible with some of the finite elements currently

in use, such as the QUAD4 element of NASTRAN or the NASTRAN beam element,

which have this displacement pattern. These boundary displacement

functions would also allow assemblies of finite elements where a corner

nodal point of one element coincides with a mid-edge nodal point of

another without violating the interelement compatibility requirement.

The transformation from the nodal degrees of freedom, the c~.i , to the

distributed parameters, the h1 , is then obtained by requiring that the

discrepancies of the displacement quantities between the exterior and the

interior representation be orthogonal to some set of independent test

functions. With the{4~~)J being such a set of test functions arid the dis-

crepancies given by

error Ew (~~ 
—

error [W,n(~)) ~~~~ 
— ?(~ )

the transformation obtained from the orthogonality requirement

~~error (*)~~(~) d~ 
= 0

is given by the matrix equation
(4)

The upper index limits must be chosen so that the coefficient matrix

7
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of the distributed parameters will be square. The inversion proper-

ties of the coefficient matrix ~ depend strongly upon the choice of

the set of test functions . In particular none of the test functions

may be orthogonal to the set of component functions of the error. Similarly

none of the component functions of the error may be orthogonal to the

set of test functions . If is a set of test functions satisf ying

these criteria , then the inverse of the coeffic ient matrix exists.

To minimize the error that results from numerical inversion it is

furthermore desirable that thef~~ be an orthogonal set rather than

merely being linearly independent. The choice of this set of ortho-

gonal test functions is di scussed further in sections 2. 3 and 2 .4a.
Having obtained the transformation from nodal degrees of freedom to the

parameters of the solution function by multiplying equation (4) with ~

hi = — Btp , (5)

it is now required to obtain the stiffness kernel, In a variational

approach it would be necessary to integrate the strain energy inte-

gral over the two-dimensional domain. For the general quadrilateral

element this would require numerical quadrature . In the equili-

brium approach the displacement functions chosen already satisfy

the differential equation , therefore there is no need to apply

the Principel of the Stationary Total Potential . Instead it is

required to enforce equilibrium at the boundary . An error orthogonali-

zation scheme similar to the one used for the displacement functions,

where the discrete force quantities at the nodal points are treated in

the distribu tional sense will in general not work if the set of test

functions is an orthogonal set. This becomes evident if one considers

an element where all nodal points are located at the zeros of one of

8
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the test functions. The corresponding integral would yield a row of zeros

for the coefficient matrix and render it singular. Using a set of merely

independent test funct.. ns that would circumvent this problem is deemed

not satisfactory when primarily accuracy is sought.

A rational approach is to employ the Principle of Virtual Work to

obtain a relation between the generalized nodal forces and the stress

resultants along the boundary of the finite element. Briefly stated, write

(6)

Here (ref .5) K

1)h ” + Vn Swd~ 
— + t4~ iw,~ d~ +~ ( M M ~ Jwk (7)

kit

is the vir tual work done by the stress resultants and corner forces

while going through the boundary edge virtual displacement and

q 4S~F (8)

is the virtual wcrk done by the generalized nodal forces while going

through the nodal virtual displacements. The quantities and V,1
in equation ( 7 ) ,  i .e. the normal moment, the twisting moment and the

Kirchhoff shear respectively at the plate edge are l inear combina tions

of partial derivatives with respect to the local edge coordina tes (ref S)

Using appropria te transformation coefficients these quantities can

be expressed in terms of the reference coordinates (x,y).

Thus, from Fig. (5)

w,II =
~~

w,X ~~~~~

= — 0 ( [(~~ )~i- P(~~) i  w,,~ 
— 2 i— 4~~)w,~, 

+ ~~~~ 
p~)’J w,~}

= — D I I(~ -’- (2_p~~)~~)t i w,~ 2± I (I—2~)~ t~p — 2 —  ~)~Vi w,~19~
9
~

— L (I—2~X~f(~V (2—v)(~)3J w,9ç ~~~~~~~~~~~~~ ~~~
9
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which when substituted into the virtual work expression give for

the polygonal plate, (Fig. I )

éq~ F ~ 
= 

~ 
f t~ . 

~
(
~~

) -w11(X ~)J ~
+ ‘fZk W,z~(X~,J ~

+ W,~~~
) Jw~) d~

+± 4 k j ~ ~~~~~~~~~ d~

~ ~~~~ ~~K~) d~

L ~ w ,~~
) ~~~

) d~ (10)

+ ‘~7k ~~ W, ~~~ c~W,~(~
) d~

+ .t~ W,~ (~
) ~W,1(~)d~

+~ J ~~~~~~~~

+ t~k ~ ~~~~~

+ 
~
, ~~~~~~ c~\I,~

(
~

) d~
+ j w,~(~) ~~~ d~ J 

~~~~~-- -~~~~~~~
,
~~~~~~~~~~~~~~
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where

— — D ( l— U) L~Vk(~~
)k 

—

— E~ (t-~’) 
[(
~~~t 

—

— D I ~~~ ~i- (2- t)) 
~~~~~~~~~

— D [ ( i— z~X~~~~— (2— ~)~~
)]

— D L ~~~~~~~~~~~~~
— D [(

~~~k 
+ (2— L)) (

~~ )h.~~~): 
:i

D (C~~~ +

48k 
— D 2 ( I — P ) )~~)

= D L (~5)k(~)k + ~

— D t(
~

)R(~
) + t

~~~~~~~~ D 2t’ :— ~
) 
~~~

fI2R 
= 

— D [(~
) +

Substituting for V~/ and ~W , the virtual work expression may be cast

in matrix form

~ TIF = J~ {h +R~D} 
(11)

Substituting the transformation equation, eq. (5) into the virtual work

expression, eq. (11) gives

~~~~~~~~~~~~~ 3~ -AT(~~tR)p}
I

I’ 

~~~~~~~ 
-.- —-—-  
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Quadrilatera l Plate

Fig.l

which holds for arbitrary , so that the equilibrium equation

takes the form

I ~~~~~~
where

1K (12)

and

F 
T(~BT R)

12
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The required coefficient matrices in the case of a quadrilateral plate

bend ing finite element are developed in the sequel. The components of

the matrices and are the corresponding coefficients in equa-

tions (2~a) and (2Cb) section 2.4a and the vectors fl), ~ and are

defined in section 2.4b below. The components of the vector IF corres-

pond to those of the vector q in the sense that their inner product

is work. As a result of substituting the series representations of the

~.~isplacement function into equation (10) the matrices ~13 and R are each

linear combinations of matrices defined by equation (23) in section 2.4b

below.

2.2 The Displacement Functions for the Plate Bending Finite Element

An obvious choice for the solution function ~‘V~
(%) for the

inhomogeneous equation is provided by the Navier-solution which

satisfies simply supported boundary conditions at the edges of a

rect angular reference field. For the homogeneous biharmonic equation

the complementary solution could be chosen to be a polynomial

consisting of a complete set of linearly independent polynomial

terms up to a given order that satisfy the homogeneous equation

identically . Such a set of solution functions up to the 6th order is

I
x

,ti

,~—5z~ ,q~—5x~
x’ — 15 x~i~ + Z 

~~ 
3x~ z~~, 3 x~(—5z’y~ ~

‘— 15x ’ij ’÷Z x’

IS
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It is not difficult to show that for the subset of purely ~th

order polynomial terms there exist at most four linearly independent

solutions to and if n ~ 3 there exist exactly four.

Considering the simpler transformation equation, eq. ( 3 ) ,  zid a

polynomial series of solution functions to the homogeneous biharmonic

equation, one will find it impossible to construct a truly

interelement compatible finite element from this set of solution functions

without resorting to subdomain techniques (Tocher, lie Veubeke, ref ‘s 6,7)

Moreover, obtaining interelement compatibility in Pian’s sense (ref 1 )

is not dependent upon polynomial representation in the interior.

Furthermore, there exists no recursion formula that allows finding in

an expedient manner successive terms of the series of independent

polynomial solution functions to the homogeneous biharmonic equation.

Therefore, such a series is not particularly well suited for the develop-

ment of a family of finite elements with an arbitrary number of nodal points.

Furthermore, it is generally accepted that polynomial series representations

of general continuous functions in the majority of cases show poor con-

vergence when compared with trigonometric representations of the same

func tior~. In other words, a smaller number of parameters is needed for a

given maximum error when a smooth function is represented by a tri-

gonometric representation as opposed to a polynomial representation.

Since it is required to find the inverse of the matrix ~ (eq.4),it is

desirable to keep the size of this array as small as possible for a

given refinement of the finite element. This speaks clearly in favor of

trigonometric representation of the displacement function. Any savings

in computer time in the inversion process will , however, be considerably 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S- - —— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--~~- -——--. --
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Fig. 2. 1st term of the Levy series solution W1

Fig. 3. Nodal point degrees of freedom
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Fif . 4. Stress resultants

Fig. S. Base vectors of the edge coordinates and edge
displacement function
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n~duced since the evaluation of each trigonometric and exponential term

performed on a digital computer itself involves evaluation of truncated

polynomial series. Foregoing remarks indicate that the best choice of

the functional representation of the transverse displacement of the plate

for the equilibrium finite element with a large number of degrees of

freedom is not obvious. The set of solution functions to the biharmonic

equation that is chosen here are the Le’~ry series solutions for the refer-

ence field with various boundary conditions. Donaldson et al (refs.8 thru 12)

superimpose the Navier solution and Le’~y solutions for the dynamic

plate bending equation for the purpose of finding the response to

harmonic excitation and for finding the eigenvalues for the rectangular

trapezoidal, and triangular plates for various boundary conditions.

This method, the Extended Field Method, embeds the plate to be

analyzed (the actual plate) in a larger rectangular plate (the extended

plate). The Le’~y solutions W4~ ),~iz~,4 ,chosen are those that satisfy
simply supported boundary conditions on all but the ~

th edge. The

arbitrary transverse displacements and rotations of the ~
th edge of

W1 (%) are determined by the free parameters of the series.

The boundary conditions of the actual plate are then enforced

in an approximate sense by requiring the error to be orthogonal to

a set of test functions. This is precisely the technique proposed

here , (eq.4), for finding the coordinate transformation for a displacement

compatible finite element.

However, the Navier and L&vy series solutions to be used

to produce a finite element stiffness matrix and the associated

force vector are those that satisfy the static equation. The

17 
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appropriate Navier solution is given in ref.5 and below. The

appropriate Le~vy series solutions are derived in the sequel. It

~~y be noted here, that it is customary in finite element solutions

of dynamic problems to use mass matrices that are based on a smaller

number of inertia references than displacement coordinates used for

developing the structural stiffness matrix . The stiffness matrix is

then condensed and the solution of the dynamic problem is found from

the reduced system of equations. This is justified by the fact that

the solution of the dynamic problem is more sensitive to the ref m e-

ment of its elastic references than to the corresponding refinement

of its inertial references.

In order to produce a finite element stiffness matrix it is

necessary that the displacement function used contains components

that permit elastic corner displacements and rigid body displacements. This

can be achieved by the use o a few polynomial terms. The completeness

requirement for the plate bending element requires for the set of poly-

nomial terms that at least all terms up to the second order are present

in the displacement function. This means that in addition to all rigid

body displacements, all constant strains should be included . The elastic

corner displacements can be represented by the polynomial function

W0(
~) -  c (i-~)t ~ C,(I -~~) ( I - ~ ) ~ C3 ~ (I ~~~) ~~~ ~ (13)

It is observed that in addition, these functions are able to represent

all rigid body displacements and constant twist. Unless the number of

Le*y series terms employed is sufficiently large to approximate constant

bending strain well enough, it will be necessary to include in W0(%)

18
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the functions

and C~(~)~
The solution for the inhomogeneous biharmonic equation

V” w —~ p(~)
subjected to simply supported boundary conditions at the edges

x — O , , i.j=o ,

of the reference field (the extended plate) is given by

~~ 
S ifl SItl

where

= Ln~+~tn~J} ~ 
sin ~-~sin ~~ d~ . ~l4)

The Levy-series solution for the extended plate with a simply supported boundary

along all edges except for example the edge X u Q can be found by choosing for

the displacement function the &evy series

W 3 (~ ) 
~~ 

X~~z SIfl~ - 
(15)

The index 3 indentifies the edge of the extended field at which arbitrary

displacements and rotations are prescribed (Fig. ) .  This series satisfies

the boundary conditions at the edges u~=O and k b automatically. Substitu-

tion of this displacement function into the homogeneous differential equation

and observat ion of the orthogonality of S~fl~~ over the interval (O,b) yields the

ordinary differential equation
— z~’~ x: ÷ ~f x~ o

whose solution is subject to the boundary conditions X~(O) X. ’ (O) 0,
tI I V ’
A~(a)  — ri~ and A~ (CO — 

Ku . Substitution of the exponential function e
into the equation and cancellation of the co~mi~on factor gives then the char-

S 1Tt~ ~ r’~acteristic equation r 
— 

2(~-) r+ (~ ) 0
which has the double roots r~±~F The solution of this differential

19
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equation is therefore

X~z + .. ,.

or equivalently

4~coth A,,x ÷B~sinhA~x ‘-C~ A~c.osh A.~x+ D~A~x sinh~x
i _ n T

where /\ ,, . Ai~~l~c~tion of the boundary conditions yields

1 0 0 0 ~~oJ
1 0 0 2 B~~ O/

cash ~a s~h~ a A~ocoshA~a A~a~nh~a 
=

srnh A~a co3h A~o ~~~~~~~~ sinhA~a~-A~acoshA~a ~ ~J .
Solving this matrix equation , the coefficients are

AI_ Il - n

~~u(~~~) 
{ -hn (cosh A,a +X1osinhA1Q) ÷~ c~wsh X~a }

and

C~ ~(~) { h~coshA~ci 
— -~ s~nhA~o .1

where

~
(
~~

= [%, a — sinh A~ cosh ?~a J
’

Substitution into the expression for~4~,, eq. C 15 ),gives

W x — ~~~ . ~~~~~~~~~~~~~~~~~~ +cosh A.a - A.1x cosh Air ]
mci b

+ A~ci co~hA,QsinhA~z — ~(nh A~.a• A ,x cosh A~ ~ }
Similar solutions can be found for WA , i = 1, 2 and 4.

At this instant it should be noted that is a constant for

given n and ordered side ratio. Since there is no need to attach a specific

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- - - _
~~~ - _ . - ----.------ 

~~~--~‘~~~~ - ~~~~~~~~~~ -~ - - - -

meaning to the parameters h~ and k~ , convenient scaling factors may

be chosen that simplify the algorithm to be developed and avoid difficulties
2nT

that might arise from computing large numbers of the form e
In previous work on the EXFH ~which dealt strictly with the dynamic

plate equation the corresponding factors 7~(~) had singularities for certain
side ratios and n . Therefore such simplifications ~iere not possible.

Thus let,

~j (X,Y;A,B) e
_ 2

~~ sin~ jy

[cosh M ~A3Xcosh ~X 1 cosh kA +A~A5in~ A~AJ5inh~~i
and

X~(X,Y;A,8) = e
_2

~~~ nA1Y tio)
— 5iflh ~~ - A~X co.~Ji A~X + ?

~
A co~h A~A ~c~hA~X J ,

where

?~
With this definition, the displacement functions ~~~ that correspond to simply

supported boundary conditions along all edges of the extended plate, but the

.th .
i edge, where arbitrary displacements are prescribed, become

— ~ (a -x ,~~ a,b) — ~ k~jj X~(a—x ,t~;cl,b)
W2(X) ~ ~~( i~,z; b,a ) + k~1K1( y,

~ 
;b,~ ) ~l7)

W~~
) = f h~ ~ 

( x,i.; a,b)  + ~~
W~(X) — h~ ~t~(b-~,x; b1Q) —

~~~~~ k~Kj(b-~1X; b,a) .
The transverse displacement of the plate can thus be expressed by

W (%) W 0 (%) 1- W~~
) + (18)

4~ I

To obtain the displacement of the plate edge in terms of the displacement

parameters for the plate interior it is simply required to evaluate the

displacement at the edge points. Using edgewise boundary coordinates, the

transformation from boundary coordinates to reference coordinates is given

21
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by (~~~,
i
~~) 

— 
~~~~~~~~~~~ , +

~~)~~) , ~~~~~~~~~ ,~ i” t ,4 ,

where ~~~~~~~ are the coordinates of the corner nodal point i and the ratios

and 
~~~ 

give the directions of the straight edge boundary segment 1.

For representation of the total boundary by one continuous parameter this

transformation becomes 
-

~~~ (
~~~~~~~~~

(
~~~~~)A

(
~~~

— L
~~~~~) , ‘ ( ~~)A (~~ 1t J ) )

where L~ O
To obtain the edge rotation, it is necessary to first take the derivative in

the direction of the outside normal and then evaluate this derivative at the

edge points.

The transverse displacement and rotation at the plate edge thus expressed

in terms of the parameters of the interior representation, it remains to

express these displacement quantities in terms of the nodal degrees of free-

dom. The transverse displacement and rotation of the finite element bound-

ary have been c}~osen (sect. 2.1) to be splines in terms of the nodal degrees

of freedom. For the edge displacements of edge j the cubic spline is

~~~~~~~ ~~~~~
‘ 

~~ L th~-~ ) -  
~~ 4~~l - ) ]

, 
(19)

where
— L±’A (

~~~~~ •~~~~~
)

b~~~~~~~~~ (g~ )t~ I I W~

÷[~ ~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :i ~~~~~

.

+f~~(E_ ~A)
9 _± .(~~~~

)tJ 641.l-

with 4, ~~~~~~~~~~~~~ ~~~~~~

and — (
~

)
~ 

6ç +(~~~~~
J 

(34 ,i-;i J1~~ 4 and W. uefincd by figure 3.

Herej(~) is the ileavyside-Unit step function and ~~ the edge coordinate

at nodal point 4 , m~ the nodal point number corresponding to the corner node

22

- - -— - - .- - - 
.. - - 

I
. —

~~~~
-———— 

. — 
- 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- . — --- - 
— - r ~~~~~~ —



p 
- -

~
-------— - - . — -

~~~
_- .. — ---- ------- -- - .—. -- — --- -  -.- — --, — -. - - - -  —‘-

~~~ 
- - - - -

~~~~
-. .

- .
~~

------
~~~~~

-
~ 

of corner

The linear spline for the edge rotation at edge 3 is given by
— 

~ ~~~ I ~~~ 
) — 

~L(~~~u.i )] 
~ (20)

where

L i  ±~
(
~-~~)1~ + 

~~~~ ~~
) 

~~ i,u

with

- —

2.3 The Rectangular Plate Bending Finite Element

The experiences gained in references (9,10,11 ) can be applied to the pre-

sent task of developing a rectangular finite element for plate bending via

tnis equilibrium approach. First of all , there is little reason to have the

actual rectangular finite element smaller than the rectangular extended plate.

Secondly computational advantages are gained if the error of the displacement

and rotation is required to be orthogonal to a set of test functions for each

edge separately. That is , instead of equation ( 4 ) the boundary error

reduction is given by ~~~~~~~~~~~ k=I ,~~) 4 I~2,.. .  The total

number of such equations must again equal the number of parameters in the

displacement functions for the plate so that the coefficients matrix associated

with these parameters is square and nonsingular. Also some simplification

in the equations for the force quantities are noted. It would be quite simple

to derive the Force-matching conditions directly in terms of derivatives in

the ~~ and ~ directions , the reference coordinates , without reference to edge

coordinates which require transformation coefficients. However, to maintain

clarity and uniformity the structure of the development is retained and the

23 
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simplification of the transformations are merely noted. The transformation

coefficients , and vanish identically and the rema ining

coefficients are given in table I

Transformation coefficients 
~~~ for the edge coordinates for the rec-

tangular plate.

1 2 3

2 Ni—~)(-2) D (— ~)(2) D ( i — ~)(—2) D I —~)(2)
3 D 0 -L~ 0

• 0 D 2 - ~
) 0

5 D(z-~ —i) 0 Dz — ~ 0
0 -E 0 D

7 -D 0 D 0
9 -D~ 0 0
10 0 -Di.’ 0
(2 0  -D 0 D

Table 1

2~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

~~~

- --

~~~~~~~~~ 
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~~~~~
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~~~~~~~~~~~~
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2.4 The Quadrilateral Plate Bending Finite Element

To obtain the transformation matrix , equation 5, from the field

displacement coordinates to the nodal degrees of freedom one may require

the displacement discrepancy to be orthogonal to a set of test functions

for each edge separately or for the closed boundary. In either case the

total number of resulting equations must equal the number ofti araneters of

the displacement function. The alternative procedure preferred by Donald-

son and Chander, (refs. 8,9), in which the intervals over i~ ich the error

is made orthogonal to the set of test functions, extend to the edges of

the extended plate is certainly attractive for the case of (determined)

homogeneous boundary conditions since computational advantages arise .

- 
- For the purpose of developing a stiffness matrix for a finite element

where the boundary conditions on the finite element remain undetermined,

extension of the intervals for the orthogonalization process would add

arbitrariness to the process and with it an additional source for error.

Chander also observed deterioration of convergence as the extended

field becomes larger in comparison to the actual field. One should there-

fore choose the extended rectangular plate such that the area of the con-

vex quadrilateral plate is as near as possible in size to the area of the

extended plate.

2.4a The Coordinate Transformation for the Quadrilateral Plate Bending

Finite Element

The transformation (eq. 5) that relates the nodal degrees of freedom,

the 
~~ , to the parameters h1 of the displacement functions for the plate

25 
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interior results from matrix operations on equation (4). This latter

equation is obtained by demanding that the discrepancy in the external

and internal representation of the same edge displacement quantitites

be orthogonal to some set of test functions. Care must be taken in

selecting this set of test functions so that the matrix in equation (5)

is square and invertable. For each of the four edges the discrepancies in

the transverse displacement and in the rotation are both required to be

orthogonal to an orthogonal set of functions. A convenient orthogonal set

is given by ~~) 5Ifl~~~ for each edge kH , L~ . The resultant set of

simultaneous equations is given by

1~, ~~~~~~ stn~~ d~ 0 ~ i1Nu ; k~’ 1,4

10 LW,~~)-?(~)1 s~n’~ d~ 0 ~- i ,N~ ; k - 1 ,4 
(2 1)

Substitution of the displacement functions into these equations gives the

four sets for the edge displacement

~~~i f Xm~
+(
~~
)k~~)J[ mk+~~

)
~~)J ~in 4~t~

~ C~ t L 1-
~

(x M
~+ 
~~~ ~~~~~~ 

si$d~

~~ ~~~ 

~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~

+ C5 [ L~ ~~ ~~~~~~~~~~~~~~~~~~~~~~ 
stn*?c~

+ c5 (x ~ + ) ~~

26
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~~~~~~~~~~~~i

) Sin

+ I h.4 I 
~~~ a-xM k-(~

)k~ , ; a ,b ) sin fe d~
K1

k~4 ~ 
X a— x M h- ~~~~~~~~~~ ci,b ) sin~~ d~

hz~ ~L( 
~~~~~~~~~~~~~~ 

x4e )b,a) SIri~~ d~

~ k~ 1~ }C.~ ( (
~

m (
~~~

)k~~ ) ~~~5)k~ ; b , 0) sui d~
H..• 
~L 

h~ ~ ~~ 
( ~~~~~~~~ k~~)~~’

b )  ~in~~~ d~

~ k~ ~ X~ ( X~ +(~ )~~, ~ M~~~~~~~)k~~ , a , b) sin ~j~
’

b4A L~~~~ A ( bm ~~
(
~~~ k~~ , ~~~~~~~~ ;b,~ 

)

k;~ b -~~
- (

~~~~ ,
x
~~~~~

)k~~; 
b ,a )

I sIr -~)~~) 
~~~~~~~~~~~~~~

‘t,l

Wmk L t ~~, 
— i.) ~n ~ d~,

+ 
~~~~~~~~~~~~~~ ~~~~ 1 ’~~
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~ i~ m~
i.t ~ ~~~ ~ ¶ [_ ~~ 

~~~~~~3 ( ) t ] sinrd~
API -

~~~~~ 
- 

~~~~
- 

~ + I J sin ‘~~ d~, 

-

+ {&4(~~~ )k ~~~~~i(~~~)k~~~ ~~~~ ~~~~~~~~~~~~ ~~~

~~ 
~~ ~~~~~ ~~.( ~~

-
~~~~~~

+ (~~~
.) ~~~~~ d’,] }

+ w,~ ~~~
[— 

~~~ 
ç~f + (

~~
- 

~~~~~ ~ I sin ~~ d ~,

+ [~~rk,I(~~
) -i- ~~~ Lu~

_1u~ ~~n ’  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
1S~n TII~~ ,

1_ i ,,. ; ~~~~ 
(22a)

where •

4 14% 7j

and the four sets for edge rotation

C~ {~~!~ k ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
5tO~~~ d~

~ds~k ~~~~
[1—

~~~~~
xm

~
+ ) ~~ sin4~d~ ~j

+C2 ~~~~~~II 
S ( )Lf~ (i~m k~1 ~i~

’1
1 d~

— (~
)j[i—~ 

(x ,,~÷(~ )k~ )I (.. . )  s~n ~ d~ ~
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+ C?3 ~~~~~ 
(~) ~~~ 

-

~~ ~~~~~~~ ) ~ d ~

-ç
~~

)
~ {~ 

(
~~~-(~~~~ )] (— -b) ~in~~ d~~

+ ~ { ~~ 
~
, E~ ~ 

( sin d ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Sifl~~~ d~}

~~~~~~ ~
(
~4 (z +~~~k~

) ~~~~~

+ c~ K~
)k ~ (~~) (i~,2~~ 

(
~

)
~

) ~rn Q d ~,
+ h1~ (

~~,)k ~~ ~~~~~ , ~~~~~~~~ ~~b) sin

- 

ç~~~ 
[ C a-zM -~~;, ~~~~~k~~

0,b) s~n
- - 

~ k~ { ~~~ k 1 (a -Xm~-(~ls)k~ , a,b) 5 in~ d ~ 3

— [ f J(a k~~~~~~~~~ ) ~~~~~~~~~~~~~~~~~~~~~~~~ 
a, b) sin ~ d~J }

+ 
~~h,.~{~~~

)k L J J~°( ~~~~~~~~~ X~~~
(
~~
)k~~ 

b)O) ~,n ‘
~~~~~ d~I

— (g~ [ J.~ ~C ÷ ~) X$.~
1
~ c~k~ ; bp) s~n d~1
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÷~: 
k~4! ~ ~ [& ~~ ~ , xmc+-(

~~
)i~ ~

- ;  b, a) sin ~ c1~I

- 

~~~~~~ ~ S J(~ ~ ~~~ +
~~~ ~ 

b,a) sin ~~

+~ h34{ ~~~ 1. ~f4
’ ( x11~+ 

~~ ~ a, b) sin d~1

— 
(~~~~~~~ )k L ~~~ ~~~~~~~ 

L
~.u k+(

~~
)k~ ~, ~, b) ~~~~~~~

A l  
k~ { (~ )J J~ 3( ~ ~ ~ s~~+ 

~ ; 
0)b) sin ~ d~

• — (
~ )k 1 1~ KA ( 

~~~~~~~~~~~~~~~~~~~~~~~~

i’~~~ ~~~~~~~~~~ , ~~~~~~~~~~~~~~ ~ b,a)ssri~~ d~J

- 

~~~~~~~~~~~ ~ ( b- ~~~~~ 
~~~~~ ~~~ ~ b 1a) SIfl ~~ d~]}

-

~~~~~~ k~ ~ (~) L ~ ~ - 
~~~~~ ~~~~~~~~~ 

b ,Q) 
~in

— (~ fl— ~~~~~~~~~~~~~~ ,
b,a) ~‘n ’~ d~, ~

~ 
{ (~~ )k ~ L05 ~~~~~~~~~~~~~~~~~~~r’ ,~‘

— ~~ sin (~~+1~~~~
) co5~~(u~4~~ )~) Sln~~ d~
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- 1~~ 
(
~~ ~~, ~~~ 

- 
~~~

-
~~
) I s~ ~~ d~

+ I [ 6~4~) k — ~~ i { 1~
’ 

&-~ ~ 
— 

~~~ sin

d~ }

+ ~ 
— 

~~~ ~~~~~~ I)  ~~~~

jw i,.. ; k = i , )1. 
. (22b)

1o,1!~ 19 11
Jf~,J\. means differentiation of the functionsdl. and.)\ respectively with

respect to the first argument, whileX,X means differentiation of the

functions~1 and respectively with respect to the second argument.
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2.4b Virtual Work and the Stress Resultant-Nodal Force Relation

The transformation from the nodal degrees of freedom to the para-

meters of the displacement functions for the plate interior is given by

the simultaneous set of equations, equations (2 2a) and ( 22b) , of the

previous section. It remains to obtain the elements of the stiffness

kernel and the coefficient matrix of the loading parameters in the

expression for virtual work . The virtual work expression (eq.l0)can be

written in the form

c~ 
~ T 

J~ ~~~ I ~ ~ ~~ )] d ~
i~ i k=i (23)

12 ’l fir 
~Z)

• 

~~~~~~~~~~~~~ Iq 

‘
~ik ~~~ t [~~~~~f~~Z~ P ,)J di., q

where are here (generically) the displacement functions , i.e. the

polynomials representing rig id body displacements , elastic corner displacements

and constant strains as well as the hyperbolic-trigonometric functions that

represent the remaining elastic solution functions of the homogeneous equation .

The are the displacement functions corresponding to the inhomogeneous

equation , the QU ,
~ 

- represent the appropriate partial differential operators

in equation (23)
CI) (‘1

A = 1 , , = 
~~~ 7,9

, i = l O ,12

2~
2
~ ~ 

~~~(2) 

/
7~l.2) ~ _____ 7~) 

~~
‘ 

7~t.2) ~~~
81’ d~JM CU, ~~~ , oUo

- 
(2) ~~ 

-
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and the vectors,hj , ~ and are given by

C ~~~
.

Pu

- ~
h i =  

~~~~~. 

- 

~~ii

l(JK.

I P~p Mp

To economize an abbreviated notation is introduced that reduces the poly-

nomial solution functions to a single form and the hyperbolic solution

functions to a single form with four different sets of arguments. This

gives for the polynomial terms

W 0 (X )  ~~. + 01 X + + O X
t ÷ O~ X~~-i- ~~~~~~~~~~~~~~ 

(24)
A 1

i~there the appropriate coefficients of the polyn
omial terms are collected

in table 2

The coefficients for the polynomial solution functions

0 I 2 3 L~. 5

_ ..L
1 0 0 0 U ab

a b U ob

•1 I
J LI 0 U

4 0 0 0 0 th~ 0

‘5 0 0 0 0 0
6 0 0 0 Q

Table 2
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For the hyperbolic-trigonometric functions , A ,B )~airnd JKfX~’1;A,
B)

the new notat ion is

d’g ( x ,Y ; A 3~~; r ~S)
where the integer parameters r and s are to be interpreted as follows :

r - I
and ~~~ ~X r - z
and the integer s matches the first subscript of the distributed parameters

h~ and ~ with the additional meaning that if r = 2 and s = 1 or

s = 4 the negative of the functionX should be taken.

Thus,

~ ~< ,Y 1 A 1B;r 15) ~~~~~~~~~~~~~~~~~~~~~~~~~

where A~ 
n.i j ll/B

and A C05h )~A , B -[cosh1~A +?~A sinhA~A] wht~n r~I , s~ I, ~

4 ~ stnh A~4 , J3 ~A wsh?~A when r— z s [ i ,Lf}

4 - sin(i ?~A , A~A cosh A~A ¶:hen r=2 S 42,31
It is convenient to define

b~ - a~ ÷ 
~~~ aZy~k ÷ a~x . 

± a~x~~ta;y~
b~ 

— ÷ + 2a~~)~ + a~
[x
~~

)k+ ~m~~Q +

b~ + °~ ~d5~&Js
t
~k + ~ (26)

b~ a~ + 2 a~x~ + a~i~~
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~
‘
~
‘1

b~~
— 2Q~~~

)k +

b~ 
- + ~~~ + ~~~

b~- a~~
)k +

so that

4 k

~~~ ~~~~~ 
— ‘
~b0 CA

Wo ,u(
~~~

) Wo ,xx(~)’ Z, 2 ~ CA

Wo Wo ,~)4 ~~ C1

WD W~ ,9
(E.)~ ~~ 

a~ C4

W0 (a,) =~
( b ’

~ + b~ 
k
&, -i- b k 

~~~
• ~1I~w0.,~

) =
~~(b~~-’- b1~~

) C.~

and w0 ~~ C ~~~~~~~~ ~ b~
’
~) C4

Using these definitions a few typical coefficients of the matrices

= 
~ tk

and I ~~ I = I [
t~ 

) ( ~
j

(Z)~~~~~ d~ ~ 
Ak

are worked out and a general scheme is provided in the appendix.

Of course , the stiffness kernel and the matrix IR in equation (11) are

given by
Ak

~~~~~~~ ~Ak !H
45% kw l

and J~? ~~ 4Ak P .
4.) ~~%
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3. “ppendix-- Matrix coefficients for the Stress Resultant-Nodal Force

Relation. 
-

Components of the matrices [~f~T
k
and I Pp~l4k :

The typical components are of the form

- (~~~ ?,) d~

(
~~~~) d~ ~~ 

; ~~~~~~~~~~

where the 0L1~ are the differential operators defined in section 2.4b ,the

c1~ n and are the solution functions for the complimentary and particular

solution of the differential equation respectively.The index I~1 in èt’n

ranges from I to o t ( ~~). In the subranges of fl : ~ I , , 6 1 ,
17, , 6+H1 I , 17+ 1-i ,, ,6+H,+K1 j- , - • {7~-L,(H~-K~)~H4, ,
the function ~fru takes different forms.The definition of for the

different subranges is given below in table Al . The required derivatives

of the polynomial functions are given in section 2 .4b , those for the hyper-

bolic- trigonometric function 8 are

1’ A~ e 2 ~ sn ~Y I ~ E’cosh ~X -‘- 1Vsinh ?~X ~ 
+ ~~~~

- cosb A~X I
A1 e 2 2%~A 

~~~ { .~~~~ A,X cosh A~ X 8~ sirih X~X I
= A e 2~,A sin )t~Y {~~ t2sinh k,X÷A~Xcosh~X I + 

~ sin
2 )~ e 2 ~A crd’& ~Y ~~ [cosh A~ t ~X sinh ?~Xl + ~ c05h A~X800 A~ e

2
~~ ~ri ?t~Y f~ A4 X cosM A~X ÷% sinhA~X

— A~ e 2~~A sin A,Y I 4~ [3co hA~X+~Xsinh~Xl +

N e 2
~A COSAA Y {4~L2stnh A~X +kX cothA~X I ÷B~ sinhM

~ e’2 ~
t” sin2t~Y I .d~1cosh ~J X’ + 2t,Xsin? i.,X 1 + 

~ coshA~X I
i’°~’ —~~~~~~ e 2M cos A,1 I ~ A,Xc oski ?~X -

~ B~sinhA~X I
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Range of ri Furidiori Range of index j

to 6 ~~~~~~~~~~~~~~~~ j= I, •,6
7 to &~H. ~(a-x ,i~;a,b; I,!) j 1 ,• . ,H,

to 6+ H1~K, ~-(a—z,~;0b ;2, I)  1’ I,., K
7÷H1+k to 6+IH4 tK, 

~ lJ,z)b,~~) 1,2) 
~ 

I,. . ,H2
74}{+~ to o÷~j I{tK~ ~f~

( 
~,z; b1O; 2 ,2) 3 I,•~ ,k’~

to o+~çH~t~)t H3 ~fj ( ;~;o,b ;2 ,3) j i,_ • ~
7-~-f (~4lQ+H~ to ~KA) •~

( x,~~;o1b;2 ,3) j~~ I,~ ,K~7÷Z(It~K~
) to 6+~ afk~-H1~ ~

( b-i~,x ;b,a; 1 ,4)  j~ I~. . ,H~74(R~+IQ+fi, to 6+~ (H ,, +1~) 4(b-~,~;b,o ~2,4) = , ,

i~.(X)Y;A,B; r,s) ~ e~~ s~~Y(~ A~X c~thA~X -4-~sInhA~X)
where j lf/&

~nd ~~= cosh A~A , — — [ cosh ~A +AAs,nh?~A~ when , r 1, ~
5Ir)~1 2t~A , — — ~A cos~i 1~A r=2 ,

~~ ?~jA cosh~ A
Ihe con5i~nfs a ~re ~Lver1 in table 2 of se~tion Z~4 ~

Table Al
Solution Functions
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With these definitions and those for the coefficients b~,1in section 2.-~b
1 4k

it is a simple matter to write out the coefficients~ fp~of the matrix

Exainplç l

The elements of the matrix IH ’
~ierive from the term

[ W ,~~(X~
) — W,~ (X~) I Jw(x~

)
of equation (10 sect. 2.1).

Thus for p ,q =

J~~= 2 ( a  -~~) b:~
in particular for 3 , q = 2

a
or for p~~~~3 , q = 5

i~ 
_ Z  I

dl ~~~~~~ c~ 
( a XI~u’ ob ~~M)

for Z ,6 + H  q= S

12 ~~~~~~O~p5 a x M k, tfrk ;a,~ ; i,i)
— 

~ ?‘°sinA ,~,Jco5h ~ Q ~A~(a-x,1)~cosh A~a-~,.)
— [ c osh A a+X~asinhA1a1sinh 1~a-x.1) } 

,~~~
= i,~R

~-;ith “J J b

Exanple 2
II 1sk

The elements of the matrix fl derive from the term

~~~~~ d~I(~ d~,
of equation ( 10 sect. 2.1 )
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For p,q~~1,,6

~~pq 0
For p J ,,ó and q= 7+ H 1,,o+H1 +K~

~f ~= ~~~~~~~~~ ~~~~~~~ 
o,b; 2,’)( b~b~+b~t)d~, ~

= — 
u~~ ~~ ~inhA~a ~~~~~~~~~~~~~~~~~
Stu b A~~~m~~~)~~o cosh?~o ~inh A~ (a-~~~~i1 Cb~+b~÷~~) d~,

where Pt
J %_/ ,

‘ Ispecializing further to 
~~~ 

then c~ 0 except ~~~~ so that

~~÷ b~+b~
2 

= (~~~~k)~~ + +

Example 3
IZ

The elements of the matrix derive from the term

J W,~~
(
~ ) ~cw,~~) d~

of equation (10 sect. 2.1 )

For p 7, , 6 + H and q = 7 +~~(H~ K) , , 6 -i-~ (H, +K 3) + ~

~ Xm ?~ e~
2 (~...b +A50 ) J0 J~1~ ~~~~~~ x.,,-f(~~)~; b,a ; I, Li. )

‘ o-z~-(~~,~ ; ~~~~~~ ; o,b; ‘,t ) d~, /

~ miT ~ niT
where and “~~~ b

m I, , H~ and fl t, ,H,
The coefficients of the matrices are obtained in similar manner , here

the index runs from I to M0 ’~ N0 .The function in equation (Z ?3 ) has

the form

~i~~~
) — stn 

mlf~c Stn
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where following correspondence between the index q and the index pair

(m ,n) is set up

_q - m ,n
I 1 , 1

1 , 1

1. ~1 O 7 I

I , z

M0 , 2
2M0~I I , 3
tvl.x N . M. , Ni.

- 
• Example 4

The elements of the matrix P derive as in example 2 from the term

1k[ W,ii*z (4)CiW (~ ) d~
For p 6 and 5M0+3

— (~)~ J cos ¶~ 
sin 1

~{~-~ ”f+ 2y~~~~ +

40 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~-- — --- - - - - - - -- -



- -

4. Appendix- - Sun~nery of the Extended Field Method of Analysis

as applied to Unifo rm Thin Plates.

The governing differential equation for the harmonic response of thin

uniform pla tes is

DV ’
~w p(x~) sin c1)’t ,

where W (X ,’t) W(X)5lflG)’~ is the time dependent transverse displacement

of the plate, D is the bending rigidity,C*) is the excitation frequency

and ~(X) is the spatial distribution of the transverse pressure , and

is the mass per unit area. The amplitude of the transverse displace-

ment can be expressed as the sum of the solution to the inhomogeneous

biharmonic equation

Dv4w — =

for a rectangular reference field (the extended plate) with all edges

simply supported (the Navier-solution) which is

-
~‘V5(X) 

~~~ 

p sul ~fl Dt~ 
~~~~~

- 

~~ 

d~th

and the four Levy-series solutions , .i—i,1~- , for the same extended

plate with simply supported boundary conditions on all but the ~th edge

which undergoes arbitrary displacements that are characterized by the para-

meters h
1 

and .For example the Levy-series solution for the 1ST edge

is given by

W,~) = I h~
[
~co&1~s,a s’nhç o-x; — P COStiçcI £Ifl(J7)S~(a-x) 1

+ [ sin~s~-o sinh~ Ca-a) — .~tnh ~a sInUVS1(a-x) 1 1 5lfl~~where

[; sinh i~a ws )~o — ~ th t~ci sin(h) ;a

4?

~~~
_i__ _•_ _

~ —-— —— -~~~~ -~~~~~~~~~~~~~~~~~~~~~ - 
~~~~::- -~~ - -—-~ - ~~~~~~~~~~~~~~ - 

-
• 

• 

~~~~~~~~~~~~~~



N~
• V ~~~~~~~~~ ~~~~~~~~~~~ --- - -~- - ~ —

r -— -

with

= I 4)’ t ~, ~~ I ~
- [ 

~~ 
- (4li~ I 

~ 
•1

~~
= L~~ )i _~~(~)

l~]~
t

Here

r ~and

s
~ith) ~~ 

5I1’I ~

sinh ;
~

cos(.Fi) ;x CO~ S~X I ~
• wsh ;x

The total displacement of the plate can then be written

W (X,t) = s~ic~ ,~~~ ~N~(x)
The solution to the harmonic excitation problem of an arbitrary quadri-

lateral (convex region ) plate that lies within the extended plate with

any combination of clamped and simply supported edges and perhaps a single

- 
free edge is then obtained by approximately enforcing the desired boundary

conditions at the edges of this embedded actual plate. In the case of a

free corner , i .e. two adjacent free edges , the solution function must

be augmented by a corner solution which , for example , for the edges 2

and 4 being free is given by

C 1. 5IflF1~ (o-x)SIflh
~
(b-V) +Sin~(a-z)sin~(b-i~)} 4~

. c~ (j~)~
The edge numbering corresponds to that of figure 1 of section 2.1

lit j



The solution to more complex structures such as beam stringer supported

plate systems can be obtained by approximately enforcing the matching

conditions along con~non boundaries (ref. S ) .  The set of simultaneous equa-

tions that determine the parameters and is obtained by requiring the

error at the boundary edge or matching edge to be orthogonal to some set of

independent test functions . The EXR4 has also been successfully employed in

finding the eigenfrequencies for uniform quadrilateral plates with various

boundary conditions. Chander employed the method of false positioning to

extract the eigenvalues CO~, which appear in a transcendental manner in the

matrix equations that result from the process of error orthogonalization.
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