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Abstract

A new quadrilaterial finite element for the problem of bending of a
uniform, homogeneous, isotropic, flat plate having an arbitrary number of
nodal points and allowing an arbitrary level of refinement is developed
from solution functions to the governing differential equation. Interelement
continuity to the appropriate level of normal derivatives is provided in
least error fashion by the use of spline functions for the edge displacement
quantities and minimization by the Galerkin technique. Even for general
quadrilateral domains no numerical quadrature is required for developing
this finite element since all required integrals are taken over straight
boundary edges and can be evaluated explicitly. With this new type of element,
an improvement in accuracy is expected to result when large quadrilateral regions
are modeled by a single element with an appropriate number of edge nodal
points, because the error of this finite element approximation is associated

with the boundary region of the elements. The force vector corresponding

to the transverse pressure is derived from a series solution to the inhomo-
genreous differential equation, so that the effect of the forcing function

in the element interior can be evaluated to any degree of accuracy desired.
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1. Introduction

The vast majority of boundary value problems do not lend themselves
to solution by an exact method. Analysts therefore resort to approximate
methods that reduce the continuum problem to the problem of finding a finite
number of parameters that characterize the solution. The most versatile
approximation method to date for solving linear boundary value problems is
the finite element method (FEM). This method is fully automatible and pro-
duces in general sparcely populated matrices which lend themselves to inversion
by techniques that are both economic in storage and saving in computer time,
thus permitting application to large systems. Although the FEM has initially
been developed by structural analysts and most of its vocabulary is derived
from structural mechanics, its versatility has been recognized and its appli-
cation has spread to other fields of continuum mechanics.

The FEM is still a subject of vigorous research by both engineers and
mathematicians alike. Efforts are going on to enlarge the field of applica-
tion of the FEM, to give information about the error in the solution, and
to improve upon existing finite element approximations to continuum problems.
These efforts include reformulating the coefficient matrix, which in finite
element nomenclature is called stiffness matrix, in such a manner as to
achieve reduced computer time, refined representation of the boundary, and
improved accuracy. This work is part of that effort. The point of depart-
ure for this present work is the extended field method (EXFM), a method
of analysis that exhibits remarkable convergence but lacks the flexibility
of application of the FEM. In this report (dissertation), the EXPM is used
to formulate a new finite element stiffness matrix and the associated force

vector for the problem of plate bending.




In brief, this new formulation employs solution functions in the interior of

the finite element and finds some best fit along the element boundary.
Inter-element compatibility in the sense of Pian (ref. 1.) is achieved
by using a Galerkin-type error reduction along the boundary. Instead of
deriving the force vector that corresponds to the forcing function acting
over the interior of the element from work equivalence, as is customary
in standard finite element formulations, the force vector is here derived
from exact solutions to the inhomogeneous differential equation. The
stiffness kernel is obtained from virtual work considerations that require
integration of the stress resultants along the element boundary. There
is no need for integration over the domain of the finite element, since
all displacement functionsemployed in this formulation satisfy the
differential equation exactly. This amounts to an equilibrium formu-
lation. Choosing for the solution functions certain series whose
recurrence relation is simply determined by an integer that multiplies the

argument, this new finite element can be easily refined by increasing both

the number of displacement functions and the number of nodal points along

the element boundary. This process can be automated. This flexibility in
the number of nodal points per element permits the analyst to use a suffi-
ciently refined element of this type instead of an equivalent substructure
consisting of a number of finite elements. Instead of progressive partioning
the researcher can use the process of progressive element refinement |

for demonstrating convergence. It is noted, that for an equivalent refinement of the

customary finite element solution the growth of degrees of freedom of the system
is roughly proportional to the square of the number of edge partitions per
element edge of the original element size in the case of progressive par-

titioning, while for element refinement, as is possible for this new formu-

lation, the number of degrees of freedom grows proportional to the partitioning
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of the circumference. (Starting with a four node element, the proportionality fac-
tors are i) fo; progressive partitioning: S, =4 , S5,=9,6 5 =25
|
& . +
§'3,.,+16'§ j+821 , N>3 and ii) for element refinement: 5_=Z. y.
i i

2. The Plate Bending Finite Element Derived by the Direct Technique
2.1 The direct technique for the plate bending finite element

While the techniques now generally employed for the formulation of finite
element stiffness matrices are based upon the method of variational calculus (Ref's
2,3,4), the approach taken here is the direct technique, or as it is termedin some
literature the equilibrium technique. The general approach of the equilibrium tech-
nique is to obtain exact solutions to the governing differential equation that are
expressed in terms of displacement quantities at the nodal points, equate the boun-
dary nodal point displacement quantities of the adjacent elements and enforce equili-
brium of the force quantities at the nodal points. For one-dimensional continua such |

as rods and beams this procedure is simple to apply, as the total boundary consists
of two discrete points and the stress resultants are already discretized quantities.
In the case of two dimensional problems, such as the plate bending problem, proper
continuity of the primary variable across the entire element boundary cannot always
. be achieved and equilibrium can only be achieved in some average sense. The method
described in detail later in this report allows discontinuities of the primary vari-

able across element boundaries but minimizes these discontinuities in the Galerkin

sense, and enforces equilibrium in an average sense by appeal to the priniciple of

virtual work.
To develop this approach for the case of a plate bending finite element, con-

sider the transverse displacementW(¥JThe transverse displacement satisfies

4
Dv'w = pwo,

where p(x) , the forcing function, is the transverse pressure and D is the bending
rigidity of the uniform plate. The transverse displacement may be expressed

as the sum of a solution to the inhomogeneous equation, W'(x), satisfying

come convenient boundary condition and a solution of the homogeneous equation,

W, (X) , with adjustable coefficients that make it possible to achieve




any boundary displacement within the bounds of some required accuracy. Summing

these components the transverse displacement is given by
W(X) = Wp(X) + W,(X) (2)

The solution to the homogeneous equation includes, of course, both elastic
as well as rigid body displacements.

The development of the equilibrium finite element requires a finite
number of displacement functions that are dependent upon undetermined para-
meters. Truncated series solutions are selected for the displacement

functions, and they may be written in the form ’

N W
W,(X) = Z H,x h; and We (X) =Z B(X) P
im

inf

where the p,,' are known pressure parameters that are derived from the forcing

function and the h4' are the undetermined parameters. The displacement

boundary conditions for the plate bending problem are the prescription of
W(f,) , the displacement, and of W,n(e,) the rotation normal to the boundary,
where & is a boundary coordinate. The corresponding nodal degrees of free-
dom at a given point &4 onthe boundary are

g = wi(&))

an - w:z(en')

Qe = WylE) .
Here the comma behind the variable followed by an index quantity that is a
spatial variable represents partial differentiation of the dependent variable
with respect to that spatial variable and n is the local normal at the boundary.

A transformation from the nodal degrees of freedom, the Q;sto the con-

tinuous parameters, the h; ymust be obtained so that the displacement functions

J




can be expressed in terms of nodal quantities. One possible approach is
to obtain the inverse transformation by simply evaluating the nodal dis-

placement quantities in terms of the displacement functions:

q,=wi(s) =L Lerh; + f_‘ R
q, = Wa@) = 2 HifShi + ;‘ P )
g, Wyt~ £, Hiy@h; + £ Bye)

: N
G = Wye)= 2 My €N + L By |
where Kk = N/3 .
In matrix form the above can be written as
q=Bh+Cp : 3
For the purpose of obtaining the h; in terms of Q. it is required that N=N
so that B is a square matrix. This transformation enforces continuity
of the displacement quantities at the nodal points but says nothing about
inter-element continuity of the displacement quantities along the element
boundary away from the nodal points. For this work a more complex approach
is taken that improves upon the match of the displacement quantities of
adjacent elements along their common edges. The edge displacement quanti-
ties W(E) and W,,(8) are expressed directly in terms of the nodal degrees
of freedom 2
WiE) = W(E) = £ Si(8)q:
wie) = (&) = & Ri(€) q.
in such a manner that the nodal displacement quantities on a common edge of
two adjacent elements determine the same displacement and rotation of this
edge for both elements. The discrepancy between this exterior representation
of the displacements and rotation and the representation of these quantities

by the solution functions for the element interior is then minimized.

6




Thus, interelement compatibility in the sense of Pian (ref.l) is

achieved. Perhaps the most useful edge displacement functions NG

and f@® are cubic splines for the transverse displacements of the

edge and linear splines for the edge rotation. Such an element would

be interelement compatible with some of the finite elements currently

in use, such as the QUAD4 element of NASTRAN or the NASTRAN beam element,
which have this displacement pattern. These boundary displacement
functions would also allow assemblies of finite elements where a corner
nodal point of one element coincides with a mid-edge nodal point of
another without violating the interelement compatibility requirement.

The transformation from the nodal degrees of freedom, the (24 , to the
distributed parameters, the hj , is then obtained by requiring that the
discrepancies of the displacement quantities between the exterior and the
interior representation be orthogonal to some set of independent test
functions. With the{4%@ﬂ}being such a set of test functions and the dis-

crepancies given by

error [W&)] = wW(&)-W(e)
error (Wa8)] = W,.(8)- (&) <

the transformation obtained from the orthogonality requirement

Perror(e) He)de =0

is given by the matrix equation
Ag=Bh +Cp .

The upper index limits must be chosen so that the coefficient matrix EB

(4)

A e e




of the distributed parameters will be square. The inversion proper-

ties of the coefficient matrix EB depend strongly upon the choice of

the set of test functions. In particular none of the test functions

may be orthogonal to the set of component functions of the error. Similarly
none of the component functions of the error may be orthogonal to the

set of test functions. Ifﬁ&(g)}is a set of test functions satisfying
these criteria, then the inverse of the coefficient matrix EB exists.

To minimize the error that results from numerical inversion it is
furthermore desirable that the{d%}be an orthogonal set rather than

merely being linearly independent. The choice of this set of ortho-

gonal test functions is discussed further in sections 2.3 and 2.4a.
Having obtained the transformation from nodal degrees of freedom to the

parameters of the solution function by multiplying equation (4) with Bﬂ
h - BAq -B'Cp , ®)
it is now required to obtain the stiffness kernel, In a variational
approach it would be necessary to integrate the strain energy inte-
gral over the two-dimensional domain. For the general quadrilateral
element this would require numerical quadrature. In the equili-
brium approach the displacement functions chosen already satisfy
the differential equation, therefore there is no need to apply
the Principel of the Stationary Total Potential . Instead it is
required to enforce equilibrium at the boundary. An error orthogonali-
zation scheme similar to the one used for the displacement functions,
where the discrete force quantities at the nodal points are treated in
the distributional sense will in general not work if the set of test
functions is an orthogonal set. This becomes evident if one considers

an element where all nodal points are located at the zeros of one of

: ’ Mg
mx* S e T S




the test functions. The corresponding integral would yield a row of zeros
for the coefficient matrix and render it singular. Using a set of merely
independent test funct..ns that would circumvent this problem is deemed
not satisfactory when primarily accuracy is sought.

A rational approach is to employ the Principle of Virtual Work to
obtain a relation between the generalized nodal forces and the stress

resultants along the boundary of the finite element. Briefly stated, write

g,th - J?JJQ a b
Here (ref.5)
(gwh- 4’ Vn JW dE, & Mn AW:\ dg +Z. M Mn;)éw. (7)

is the virtual work done by the stress resultants and corner forces
while going throgfh the boundary edge virtual displacement and
i

is the virtual wrrk done by the generalized nodal forces while going

(8)

through the nodal virtual displacements. The quantities Nh,hdn;and V;

in equation ( 7 ), i.e. the normal moment, the twisting moment and the
Kirchhoff shear respectively at the plate edge are linear combinations
of partial derivatives with respect to the local edge coordinates (refS)
Using appropriate transformation coefficients these quantities can

be expressed in terms of the reference coordinates (X,y).

Thus, from Fig. (5)

=W - Fwy
Mo = =D {1+ p2 T = 20 100Gy * [T+ DG Ty
Vo = =D {140 -0 Tt [ (120G - (2= 00 Ty
(120082 ~C-0) G T LT+ 20V ] Wy




M, == D (= (A (o + LA Twey |

which when substituted into the virtual work expression give for

the polygonal plate, (Fig. 1)

g K
fi Fi = g {t,.,- [ WaXom) =Wy (Kim)] 0 W(Xim)

!

+ ot Wog(Xem) GWOXy

R

+ t,h-f
+ b f

'Htsh' iﬁ
I
i

W& dwee) de
W eg(8) SCE) dE
gy &) dWCE) A
W,q8) &) A2
W, o (6) OW,<(8) 08
Wiy (8) () dE
W,g4 (8) W, (8) 08

W,xz(Z) AW)?(&) d!‘

Wy (@) dWe) d
Le
W,y (E) OW,(E) 0 }

(10)




where

| ta= -Da-nlEE, - @LE)

| tu= D (-0 [P, - @Bl
: e @ﬁ* Z'D@%)ﬁ%u
)tr’ -D [0-29 @ - -vgil
‘ = -D [ (-2 @G- (2-nE]
| e ~D L@ + (2-0)( dsn@g
A tn= D (Y + w1 |
% . b L D 2¢i-») (g'g)n(g'g): 1
| {%= D [EErds) + v Gkl |
- -D A+ vl

{"k D 2(. —v) &L,

1 tp= ~D () + v(gZ 1G4h]

Substituting for W and AW, the virtual work expression may be cast

in matrix form

SF = S {Gh +Rp} (11)

Substituting the transformation equation, eq. (5) into the virtual work

expression, eq. (11) gives

§gF = sg(AB'CFAq -ABTGBER)p)




K=4
Quadrilateral Plate
Fig.1

F -Kq -F |
K - ABGBA (12
E -ABIGBCR)p .

takes the form

where

and




The required coefficient matrices in the case of a quadrilateral plate
bending finite element are developed in the sequel. The components of
the matrices A& )EB and O: are the corresponding coefficients in equa-
tions (22a) and (22b) section 2.4a and the vectors Pn, ﬂ] and FD are
defined in section 2.4b below. The components of the vector W. corres-
pond to those of the vector 0} in the sense that their inner product

is work. As a result of substituting the series representations of the
Jisplacement function into equation (10) the matrices 43 and FR are each
linear combinations of matrices defined by equation (23) in section 2.4b

below.

2.2 The Displacement Functions for the Plate Bending Finite Element

An obvious choice for the solution function Wp(X) for the
inhomogeneous equation is provided by the Navier-solution which
satisfies simply supported boundary conditions at the edges of a
rectangular reference field. For the homogeneous biharmonic equation
the complementary solution could be chosen to be a polynomial
consisting of a complete set of linearly independent polynomial
terms up to a given order that satisfy the homogeneous equation

identically. Such a set of solution functions up to the 6th order is

N e

Y
) ,I!} "F
'S XY XY 4
3y Xy XY Y-37§
o5y xSy - ¢y -9y
K-y 2y, 3y-52¢ 3 x-S,y -9y + 22

b

(3

ol S AU k:;“:ﬁ-ﬁ..mh.n.nh.nm“—.ﬁ




It is not difficult to show that for the subset of purely nth

order polynomial terms there exist at most four linearly independent
solutions to VuW‘O and if n 2 3 there exist exactly four.

Considering the simpler transformation equation, eq. ( 3 ), and a
polynomial series of solution functions to the homogeneous biharmonic
equation, one will find it impossible to construct a truly

interelement compatible finite element from this set of solution functions
without resorting to subdomain techniques (Tocher, De Veubeke, ref's 6,7)
Moreover, obtaining interelement compatibility in Pian's sense (ref 1 )
is not dependent upon polynomial representation in the interior.
Furthermore, there exists no recursion formula that allows finding in

an expedient manner successive terms of the series of independent
polynomial solution functions to the homogeneous biharmonic equation.
Therefore, such a series is not particularly well suited for the develop-
ment of a family of finite elements with an arbitrary number of nodal points.
Furthermore, it is generally accepted that polynomial series representations
of general continuous functions in the majority of cases show poor con-
vergence when compared with trigonometric representations of the same
functions. In other words, a smaller number of parameters is nceded for a
given maximum error when a smooth function is represented by a tri-
gonometric representation as opposed to a polynomial representation.

Since it is required to find the inverse of the matrix EB (eq.4),it is
desirable to keep the size of this array as small as possible for a

given refinement of the finite element. This speaks clearly in favor of
trigonometric representation of the displacement function. Any savings

in computer time in the inversion process will, however, be considerably




Fig. 2. 1st term of the Lévy series solution W,

Fig. 3. Nodal point degrees of freedom




Fic. 4. Stress resultants

Fig. 5. Base vectors of the edge coordinates and edge

displacement function




reduced since the evaluation of each trigonometric and exponential term
performed on a digital computer itself involves evaluation of truncated
polynomial series. Foregoing remarks indicate that the best choice of
the functional representation of the transverse displacement of the plate
for the equilibrium finite element with a large number of degrees of
freedom is not obvious. The set of solution functions to the biharmonic
equation that is chosen here are the Levy series solutions for the refer-
ence field with various boundary conditions. Donaldson et al (refs.8 thru 12)
superimpose the Navier solution and Levy solutions for the dynamic

plate bending equation for the purpose of finding the response to
harmonic excitation and for finding the eigenvalues for the rectangular
trapezoidal, and triangular plates for various boundary conditions.

This method, the Extended Field Method, embeds the plate to be

analyzed (the actual plate) in a larger rectangular plate (the extended
plate). The LeVy solutions W,&),4=1 4 ,chosen are those that satisfy
simply supported boundary conditions on all but the ith edge. The
arbitrary transverse displacements and rotations of the ith edge of

W, (X) are determined by the free parameters of the series.

The boundary conditions of the actual plate are then enforced

in an approximate sense by requiring the error to be orthogonal to
a set of test functions. This is precisely the technique proposed
here, (eq.4), for finding the coordinate transformation for a displacement
compatible finite element. .

However, the Navier and Lévy series solutions to be used

to produce a finite element stiffness matrix and the associated

force vector are those that satisfy the static equation. The
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appropriate Navier solution is given in ref.5 and below. The
appropriate Levy series solutions are derived in the sequel. It
may be noted here, that it is customary in finite element solutions
of dynamic problems to use mass matrices that are based on a smaller
nunber of inertia references than displacement coordinates used for
developing the structural stiffness matrix. The stiffness matrix is
then condensed and the solution of the dynamic problem is found from
the reduced system of equations. This is justified by the fact that
the solution of the dynamic problem is more sensitive to the refine- ;
ment of its elastic references than to the corresponding refinement
of its inertial references.

In order to produce a finite element stiffness matrix it is
necessary that the displacement function used contains components
that permit elastic corner displacements and rigid body displacements. This
can be achieved by the use 0. a few polynomial terms. The completeness
requirement for the plate bending element requires for the set of poly- 1
nomial terms that at least all terms up to the second order are present
in the displacement function. This means that in addition to all rigid
body displacements, all constant strains should be included. The elastic

corner displacements can be represented by the polynomial function

wWo(%) = C(I-8) ¢ +« C,(1-3)(1-#) +C 2(I-$)+C, 3 ¢ . (13)

It is observed that in addition, these functions are able to represent
all rigid body displacements and constant twist. Unless the number of
Levy series terms employed is sufficiently large to approximate constant

bending strain well enough, it will be necessary to include in Wo(X)




the functions

CE  aa @)

The solution for the inhomogeneous biharmonic equation
v'w - [—'5 px)
subjected to simply supported boundary conditions at the edges
g2, K=o A=, gD
of the reference field (the extended plate) is given by
Wpx) = L %.l Daa SIN mlx gjn 2y

where

{DQ. [m*+G fn] abr[pox )sin ”f"sm dx 14)
The Lévy-serles solution for the extended plate with a simply supported boundary
along all edges except for example the edge X=Q can be found by choosing for
the displacement function the evy series

W, (X) = g Xot) sin" - (15)
The index 3 indentifies the edge of the extended field at which arbitrary
displacements and rotations are prescribed (Fig. 2 ). This series satisfies
the boundary conditions at the edges Lkao and l*-b automatically. Substitu-
tion of this displacement function into the homogeneous differential equation
and observation of the orthogonality of .S‘m—gover the interval (0,b) vyields the
ordinary differential equation
y 2("")X +”EX - 0
whose solution is subject to the boundary conditions X.(0)= X, (0= 0,
X.(a)=h, and X.‘. a)= Ke. substitution of the exponential function e

into the equation and cancellation of the common factor gives then the char-

acteristic equation r - 2("&r)tr‘+ (Ug]')" =0
1

which has the double roots i‘g The solution of this differential

19




equation is therefore

X, = Ae** + Be** + x(CeM + Dem*)

or equivalently

X. @0 = A, cosh Ax +BosinhAx +C, Axcosh A+ DA x simh A

_nll
where /\,, 33 'b‘ « Ap:licuation of the boundary conditions yields

1 D 0 0 A
1 g 2 S8
wsh A sinhdaa AnacoshAua MwasinhAna ﬁCn
sihAa cosh A cosiAa+ Anrsintideg SnhAnG+AsacoshAlD

Solving this matrix equation, the coefficients are
An b Dn =9
Br = W) { -hofosh ha + Asmhra) +% AawshAa |

and
= ],(%){ ha coshAn0 —'—%usmhi\..a }’

where

],(%)= [Aa - sithAd oshhal™

Substitution into the expression forW,, eq. ( 15 ),gives

W = % T sindy{hul-(cosh ha+ Aasinh A ) sinh A +cost A X wosh Aux ]
v (Lo ushhosihdx - sihha-Axcshdxl}

Similar solutions can be found for W, , i = 1,2 and 4.

At this instant it should be noted that }.. (%) is a constant for

given n and ordered side ratio. Since there is no need to attach a specific

20




meaning to the parameters hn and k, , convenient scaling factors may
be chosen that simplify the algorithm to be developed and avoid difficulties
that might arise from computing large numbers of the form ez'm- .

In previous work on the EXFM ,which dealt strictly with the dynamic
plate equation the corresponding factors ],(%) had singularities for certain
side ratios % and n . Therefore such simplifications were not possible.
Thus let,

Boyam = e™snay -

Lcosh A -AXash AX = [ cosh AA + AiAsinh A 1sinhAX ]

and

}(;(X,Y;A,B) - g sinAY - i

{ -sinh AA - AX coshAX + A cosh AA sinhAiX }

where

A = T/B
With this definition, the displacement functions W;(X) that correspond to simply
supported boundary conditions along all edges of the exfended plate, but the

ith edge, where arbitrary displacements are prescribed, become

W,(X) = ?.. hy ¥ (a-x,4;0,0) - Z ki Kita-x4;0a,b)
W) = 2 by KO oy ba) 2 kK yaiba) (17)
W = 2 b Ko xy;ab) +§“ ki Ki( 2,45 0,0)

M) = 2 hy ®(b-y,x; ba) —Jz': kg Kitb-y,%; ba)

The transverse displacement of the plate can thus be expressed by

W) = Wo(X) =+ lW,-()K) + Wp(X). (18)

q=

To obtain the displacement of the plate edge in terms of the displacement
parameters for the plate interior it is simply required to evaluate the
displacement at the edge points. Using edgewise boundary coordinates, the

transformation from boundary coordinates to reference coordinates is given

2l




by (x,4) = (X"‘#*'Gg}a‘% ) Y +6i)‘!) ’ 0&=< L 14-|)4 ’

where (% are the coordinates of the corner nodal point i and the ratios

me s 4m.)
(ﬁi)" and (3—'&)4 give the directions of the straight edge boundary segment 4.

For representation of the total boundary by one continuous parameter this

transformation becomes _ :
o A=l ‘i‘l

(x)lj) i (xm4+(%é)ﬁ(€-"zl°[j ) ) tj““' +(dE)A(e lﬂ,zjl ) ) )
where L?-O .
To obtain the edge rotation, it is necessary to first take the derivative in
the direction of the outside normal and then evaluate this derivative at the
edge points.
The transverse displacement and rotation at the plate edge thus expressed

in terms of the parameters of the interior representation, it remains to

express these displacement quantities in terms of the nodal degrees of free-

dom. The transverse displacement and rotation of the finite element bound-
ary have been chosen (sect. 2.1) to be splines in terms of the nodal degrees
of freedom. For the edge displacements of edge j the cubic spline is
N Miei |
e =2 Le [1E-£)-1E-€.0] (19)
12wy

where

f(g)= (& &er-2(g-gr+1] @
H[x (-2 - F.&-8) +(&-5)]§,
thhe-er+Re-81 A,
+[7;(E-8)°- 5,(6-6)'] i
with 4;= &, -8,
and % (3—;)1 &, +(§-'§')J-(3: nich @, B, and W, efined by figure 3.
Here 1.( t) is the Heavyside-Unit step function and £,; the edge coordinate

at nodal point‘f 3 mj» the nodal point number corresponding to the corner node

22




of corner j.

The linear ;g;line for the edge rotation at edge j is given by

?‘”(E) - —‘Z-Jm, g,-,(&) [ 'l(é.’&,') & i(ﬁ_édu).] ’ (20)
where

gi(&) = [ 1-7(&-6)14: + 4.(8-€) Gan
with

- GyE - B

2.3 The Rectangular Plate Bending Finite Element

The experiences gained in references (9,10,11)can be applied to the pre-
sent task of developing a rectangular finite element for plate bending via
tnis equilibrium approach. First of all, there is little reason to have the
actual rectangular finite element smaller than the rectangular extended plate.
Secondly computational advantages are gained if the error of the displacement
and rotation is required tc be orthogonal to a set of test functions for each
edge sep:rately. That is, Enstead of equation ( 4 ) the boundary error
reduction is given by Ierror(&)ct)(&)dg=0, k=|,4)4=’,2,.. . The total
number of such equationsmust again equal the number of parameters in the

displacement functions for the plate sothat the coefficients matrix associated

with these parameters is square and nonsingular. Also some simplification

in the equations for the force quantities are noted. It would be quite simple
to derive the Force-matching conditions directly in terms of derivatives in
the x and Y directions, the reference coordinates, without reference to edge
coordinates which require transformation coefficients. However, to maintain

clarity and uniformity the structure of the development is retained and the

&3




simplification of the transformations are merely noted. The transformation

coefficients {Il ,Afhg and Zun vanish identically and the remaining

coefficients are given in table 1

Transformation coefficients tik for the edge coordinates for the rec-

tangular plate.

N\ 1 2 3 4
2 D(1-»)(-2) D-m(2) Da-»2) Du-v)(2)
: D 0 -D 0

4 0 D(2-v) 0 D(2-v)(-)
5 D(2-n)=1) 0 D(2-v) 0

6 0 -D 0

D

-D 0 D 0
0 Dv 0
D

D

~O> ~
\

-

<

-Dv 0 D
0 -D 0

N O
S

Table 1
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2.4 The Quadrilateral Plate Bending Finite Element

To obtain the transformation matrix, equation 5, from the field
displacement coordinates to the nodal degrees of freedom one may require
the displacement discrepancy to be orthogonal to a set of test functions
for each edge separately or for the closed boundary. In either case the
total number of resulting equations must equal the mumber of the parameters of
the displacement function. The alternative procedure preferred by Donald-
son and Chander, (refs. 8,9), in which the intervals over which the error
is made orthogonal to the set of test functions, extend to the edges of
the extended plate is certainly attractive for the case of (determined)
homogeneous boundary conditions since computational advantages arise.

For the purpose of developing a stiffness matrix for a finite element
where the boundary conditions on the finite element remain undetermined,
extension of the intervals for the orthogonalization process would add
arbitrariness to the process and with it an additional source for error.

Chander also observed deterioration of convergence as the extended
field becomes larger in comparison to the actual field. One should there-
fore choose the extended rectangular plate such that the area of the con-
vex quadrilateral plate is as near as possible in size to the area of the

extended plate.

2.4a The Coordinate Transformation for the Quadrilateral Plate Bending

Finite Element

The transformation (eq. 5) that relates the nodal degrees of freedom,

the (q, , to the parameters hj of the displacement functions for the plate
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interior results from matrix operations on equation (4). This latter

equation is obtained by demanding that the discrepancy in the external

and internal representation of the same edge displacement quantitites

be orthogonal to some set of test functions. Care must be taken in
selecting this set of test functions so that the matrix Eﬁ in equation (5)
is square and invertable. For each of the four edges the discrepancies in
the transverse displacement and in the rotation are both required to be
orthogonal tohan orthogonal set of functions. A convenient orthogonal set
is given by @(&FSIH%@ for each edge K=1, . The resultant set of

simultaneous equations is given by

e
L [w (&) - Ng)] smlzs de, =0 j=iNw ; k=1L4

(21)
L [W,n(&) -T(&)] sm"f de =0 j'l,Nzk ; k=14

Substitution of the displacement functions into these equations gives the

four sets for the edge displacement

I
Ci L[i’é(xm,ﬂj'g)kg)][ %(‘émﬁﬁg)ﬁ)] sin 4%3 d&

+E Lu-gm“ 31 - b(qm+(a§)e sin Edg

e
+Cy L [& (tme+ G2 &) 1-Hynt @) 0)] sinf,"de
b

+ Gy [[a' (%, +(33) &)H"E,(quﬂgg) el sin‘l& de

+Cs)‘a) Im«+2xm¢(d1)kg+(ds)§ ) sin gdq
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&
+Ce i(-'a ) (yn, + 2y G & +~ (G4€) Sm dg

+ 42_1 hii [}f(a xm—(jl)g Ym+ Qg).‘& sm{—edg
Ki &

"L ki | Kito-xer@he, yn 8 50.0) smf de
Ha A

: o Z hzi L }{4( Ym,* (%‘Sl k%, x'"*Hds & ba ) Sm d&

i b
+AZ“ h'ﬁ l }{/l ( X"‘I:Hg—sx-)ké ) HW&'*'(g?)kg ) a b 5‘” d&
B L

+Z k;,.' L-KA ( ka+((%)kg, tj,.,_+(‘j-§)ka;a,b) Sm%gd%
i I

+i| % [, £, (b-gm.—(g‘é)ka, K+ @,8 0,0) 50 fdﬁ

-, ki i}( b- ~Um- (a?)g X orH S)kg,b,a)s.lnltdé

(1
i’g Pry [ sin a(x.mds)ka) SN b(ljm."'ﬁ%) sml

P g 3
Emyti 4
= Wm. L [ﬁ‘m“(&—&m‘?‘- i‘tmfé.'%m)"-t- i ] N !%r'f d!,

g"‘i" 3 2 |
e O+ il 1 | T A8 e en ] de




Meai=| g4 i
) {W | [ Ar"‘ s )+A:(|g—;4._‘)‘1 sm%'fda

i=m)

j%,.. e Tt -—E.&)+ilsm ™ de,
vl BSA TR

%

+[& (ds)h"'g (dq) X[L‘E'A‘:(‘% & .) JA“(‘E, ¢ )] smjf*‘de,
o 3 2 2 ﬂ\\_g ]
+| T e hiear g 1 snl de
h 3 2 'W&,
W, L,. !‘- ﬁn(a ) +%1W<e-e,"km> 1 sin', de,

P b !
+[&m""(d5) -+ @)mk %2 ]S%m-\[ A""x (& E,m i) (E-ﬁmk-‘) lsin ngg ]

1":-- J =1, 4 (22a)
where Aé - g‘.“_ g‘. "

and the four sets for edge rotation

{(ds “" b Yn, %9)& é»m’—e de

e
-(%f),‘l [{- (xm;k%f) &)\(b) sm‘ﬁ de K

be ;
+Ca {(dg)k i (--') [1- lb(tdm%)k&] Sin ﬂ% de

ki Lm0 B s L b g}




l

+Gy {%3 & (a) _B Hds ka)} Sm %

@[ 1 +<3-’é>.ﬁ>]<-‘g)sm’—f de |
+6y {(‘j?)k[, ) [g¢ ..:r(g—i)km] S %edg

@1) [Qi[g Xm+kd3)ﬁ)](“b) sin 1‘1pr:q dg}
+ G @), L & ) (2 @B,8) sin'p’ gdg

JfC‘HdSk g (g,,ﬂdgkﬁ sin ‘> lk

i hii Kd‘“ a s dsk% Yo Ag**)_g,ob sml—%dg

=l

'&3"“”59{(0—1 e, lamﬂgﬁ.‘é,ab)sme e}
{‘3?) J< (a0, gt 0,0) sl e ]
- @0 J< (a-xa- G, il 0, b) s de
+%,h;4{(a‘59).‘l J £ YnIFAE ; Ko +(g§>k€-,b,a) s>mﬂlg de]
UL L g ro Bieiba n T de]




b, .
+; ku'{ gﬂ[ [ K. ( g,:%?)he, M;%%Lg ;0.a) sin ‘;'rg de]
d
- (@), [ S K.« g...ﬁ@%)g, K +{%)ke b0) sin - A dg]}
» €,, s
+§ hd ((%M Hﬁ( Xngt 35)6 Un +(§l§)e ,0,0) snn de

- @A f]{’( 1@ 4ot Be 5 0,0) sin I e

+ZKI . @ r X x..,+g%)k€, m.+(g§).é-o,b)sm{r§da]
- (gé [, Kot ta+ C&) gt @hie;a,0) stf ole]}
+Z h { G [[%I(b 0, g%kg,x+d3)ué, b,a) sint7Sde]
=@ f}f (b-y. —(ds,g,xmk-*gg)g-,b,a suan—kdg}

T kel @ [ Koo @, nrire 0,0 sn i}

- (‘j%()[ § Hi(b- ~ U @3)@,%, *‘ds)ﬁ b a)sm de, l}
M N L T
+Z Z Py {(ﬁﬁ)k %Ir[cos %‘U(x,,,;@%)é) snn%(td,ﬂ%“ég)sm‘f de,

1 l
& %E)u % Lsin %]TT(XM.“%L@) COS%(‘J*'T(%&)%) o de
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Cag! .
= LG 9~ B, @51 [ T4~ L ie-glsn JE de,

0,7 LA :
v 2 18.E0-Bgn{ | A e-sasm T e

giﬂ ‘e
+ L,- [1-Z (E-&)] sm%{* de }
y i
* [ &"k+\§_§)|‘— B\"\u%%)k] J:m émk;\(e'—é“kﬁ') Smiz-ug dg ?

fot, s k=14

b
}F,}( means differentiation of the functions}f and}< respectively with

o (-]
respect to the first argument, while}f ,:K means differentiation of the

[/
functions 31 and}’(respectively with respect to the second argument.

(22b)




2.4b Virtual Work and the Stress Resultant-Nodal Force Relation

The transformation from the nodal degrees of freedom to the para-
meters of the displacement functions for the plate interior is given by
the simultaneous set of equations, equations (22a) and (22b), of the
previous section. It remains to obtain the elements of the stiffness
kernel and the coefficient matrix of the loading parameters in the
expression for virtual work. The virtual work expression (eq.10)can be

written in the form

SqF = zi 2 mlm"z}rxﬂ”af )] de

1=| k=1 (23)

+ZZ ’hk sh [ [(@:)pr)@%? -,)} de g ,

1=l k

where RP are here (generically) the displacement functions, i.e. the
polynomials representing rigid body displacements, elastic corner displacements
and constant strains as well as the hyperbolic-trigonometric functions that

represent the remaining elastic solution functions of the homogeneous equation.

The \CJ% are the displacement functions corresponding to the inhomogeneous
)
equation, the (D 4 represent the appropriate partial differential operators

in equation (23)

Hi=1  i=s ,o@u - % ,4=109

: -
D= & D-d a%r =&
Dl - o 00D BTy
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and the vectors,h} y q and p are given by

¢ Q- ) ¢ gp 1 rp“
C‘ 6: pn

hn me

h] . Jhm. § q " * ’ p - JP"‘ r .

l_@. &

ki Lg?,
H m ]

ki, ) L Pue e

To economize an abbreviated notation is introduced that reduces the poly-

nomial solution functions to a single form and the hyperbolic solution
functions to a single form with four different sets of arguments. This
gives for the polynomlal terms

Wox) =2 0+ ax+ Gy + aix+axy+ a3y (20)

A=|
where the appropriate coefficients of the polynomial terms are collected

in table 2 .

The coefficients Q for the polynomial solution functions

N
(@ V]
B
(@)}

o R |
4

Q- = s By

QDOO

O O © o g~ O
0

arr OO O 9D O




For the hyperbolic-trigonometric functions K,-(X,Y ;A LB )and J‘(}X,Y;A,B)
the new notation is
C/j (x,Y; A,B;r,s)
where the integer parameters r and s are to be interpreted as follows:
= & r=|
and g = K r=2

and the integer s matches the first subscript of the distributed parameters
hsj and ksj with the additional meaning that if r = 2 and s = 1 or
s = 4 the negative of the functionK should be taken.

Thus,

£ ¢, ; A ,B;r,s) = e Msn AY (A AXash AX+ Bsnh AX), 2s)
where A ={T/B
ma A = cosh M, B =-lashM+AAsrhAA] e =l 5= 1,k
A < sinh MA B = -XjAwshAA when F=2 §={l4}
A =-sinh AA |, B= LA csh AA chen =2 5={2,3}

It is convenient to define
alk ’ 3 2 2 1 : A
b= 0 + QiZn + Qi+ 03X 04 el t O Yn

b= 0l + oigd, +20i5, + aier @) + 20i,

bi'- @l + adhgh + dldw

ak ] ] A
b-n = 01. + ZO,Kmh - a'blé”‘u

(26)

34




b = 2033, + Al

<k

boy= Qi + ik + 20sin,

b= aidl) +20i@d,
so that
6 .y
wo(x,‘)-,zﬂbo G :
We i Xg)= o ,u<a)=§2 o, c
o )= Wo (€45 205 Ci

6 .
Wo ,x’(xnk)" Wo ,ma(e.)’ 2 Ot‘o C ey

Wo (£) ﬁ( b"‘+ bi'e, + 0" gM)c,,

At'

Wo &) EhebienE

Al

and  We () =,Z_ﬂ(bw+b:1€)cx ‘
Using these definitions a few typical coefficients of the matrices
ak
(%] - [/(@"’Jf)o@"’Jf’) o]
wi (D] - [[(DRNTP) ]

ak

are worked out and a general scheme is provided in the appendix.

Of course, the stiffness kernel and the matrix ”2 in equation (11) are

(D'fi A'l(’Hd.k
and R gi )tAk ‘k.

4ul kel

given by
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3. _ Appendix-- Matrix coefficients for the Stress Resultant - Nodal Force

Relation. " :
] 4
Components of the matrices [}qu] and [?ﬂ] :

The typical components are of the form

b 0 ® 3
Jf’,,c, - TQT8) (@28, de
oo
[(ﬁ J() )de ; A1,02 5 k=LE
m 1 e Lioa
where the & are the differential operators defined in section 2.4b,the
Jf n and ?\ are the solution functions for the complimentary and particular
solution of the d1fferent1a1 equation respectively.The index N in J{n
ranges from | to 6+Z H"'I\,) In the subranges of NN : {l, ,6} ;
(7, , 6401, (7eH, ,6+HAK ], (2oL (k) +H,, , 6+5(Hi#K)
the function Hn takes different forms.The definition of Ha for the
different subranges is given below in table Al . The required derivatives

of the polynomial functions are given in section 2.4b , those for the hyper-

bolic-trigonometric function f are

P7= N e P sindY (o Loosh AX+AXsmhAX ) + Bcosh AX |
7= A e‘zucos”{aﬁ A:Xcosh A.X +Bsmh?\X}
£7 = & e R snAY {4 [2simhAX+AXcoshaX ] +% an AX t
- N e‘“Acole{d cosh AX+AXsmhAX] + @coshA]Xf
el ot sm?\Y{d AXcosh A;X +8 smha:X i
7= K e NP anay 4[3cosmjm,xsmm,x] + 8, oshAX |
" X e A Y {ﬂ_,'IZSmh AX+ Ak coshAX] + B, snhA
f""--?x. e" M Gnh Y { & loosh A X + AXsmAX 1 + 3B coshA,X T
-)y e M osAY { A AXoshAX + B sinhAX |

=
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Range of n Function Range of index j
: |
l to 6 Pix= af+afx+afq+a:x‘+aizgraiq' f=1,.,6
7 to b+ H. dax,y;0,651,1) i=1_ LR
7+H. to &+H, §ia-2,y;0,0;2,1) =1,.,K
7+H+K to 6+;ﬂ;+K. ;f;'( y,z/-b/a,'l,ﬂ 1= 1,..,H,
7+$,H.-+K to o+§(+¢ng fit y,x00;2,2) =1, K
7+§l(H;+K;) to 6+‘Z‘_{H.~+K;)+H. J’J( %Y;0,0 ;2,3) = 1, ,H,
Z«Z(H#KM to 6t2(k) | 4( xy;ab;2,3) "k 8
PEAK)  to GHI(HeKMA oy xsba; 1, i) j=1, . ,H
74 (Ha+ K+ to 5+:2:(H.~+K‘) §tb-y,x;6,0;2,4) 1=1,..,K,
~2AA

Fix,Y;A,B;r,8) = e
)\3' = {ll/8

where

and

HA= wosh A4, B =~ [osh AA+AAsInhAAL when ,r=(, 5=l
A= sthAA | B;=- hAcshAA
A=-smhXA, B;= KA coshAA

sin},Y(s AX coshA X +BsinhAX)

the constants Q) are qwen in iable 2 of section ZU4 b

Table Al

Solution Functions
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ok
With these definitions and those for the coefficients b.., in section 2.4b

3
it is a simple matter to write out the coefficients}(”of the matrix \H

Example 1

'k
The elements of the matrix IH derive from the term

[ W,xz(X,..) - W,W(Xm\)] JW(XM;)

of equation (10 sect. 2.1).
Thus for p,Qq = 1,,6

qu‘ 2(01 ‘G:)b:k

in particular for p" 3 e =2

Yo Ui =0
or for P=3 ,q=5

- - r Ak
}fs,s— a (Gx'“-_élt_) Ko, Yo ) ’

for = Z ,6%H " g* 23
yps g éﬂg(a-xmk,qu;a,b; 1)
= & ™%\ Josh A Ao Cosh A(a-X)
-[coshAa+AasrhAal smhh@-t) | =1, A
with 7\‘,' g j%.

E_~xa_£r21e 4
sk
The elements of the matrix derive from the term
(7

[ W (&) OW(E) de,

of equation (10 sect. 2.1 )
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For p,q"!,,b

il

For p=1,,6 and g= 7+ M., ,6+H+K,
l
Hp;: - 1 :ﬁ(a‘Xm:eshg ’ 'ﬂmr(g%)kg) Olb; 2,')( b::bl"é+b:k&‘) de; 2 1 5 I) )K'
=~ Nyt fEmA;(qm.«S—‘g).m-{ sithA0 BmshA;(a-zm:@?),é)+)\,-(o-r,$§§).ﬁ)

sinh Aj(a-x,-.d?ﬁ)—?\ja coshAa sinhA; (a-x.;(g—f).e)} ( b’f+6,§+t£§') de
where 7\1‘ = j’g'r :

’
S ¢ ¢ |
specializing further to p=6 then G,,,‘O except 0;-'5‘ so that

b be+tie = (96—"0‘ +2 gm,{;g?)g & é @g)‘g’ :
Example 3

2k
The elements of the matrix ‘H derive from the term
A

| Wy&) dnye) de
of equation (10 sect. 2.1 )

For p=17 ,6+H and Q= 7+§_‘(H,~+K.~), ; 6+§(H.+K,)+H..
'ﬁ Am]
P | 70y caue, 7808 b ; 14)

“$ o2 @85 Yo B 0051, ) de,
)\ o f_an n1l
" a

T e—

where and " b

m=l, ,Hu and na\, )H.

ik : ’ 3o
The coefficients of the matrices p are obtained in similar manner, here

the index Q runs from | to Mo"No .The function (Pﬁ in equation (23 ) has

the form

Py = sin M g 1Y
L,(x) sin X sin &N




where following correspondence between the index Q and the index pair

(n,n) is set up

q - m,n
| g
2 g 7y
M, M
i
M M, , 2
T I S

MxN, M., N

Example 4

3k
The elements of the matrix P derive as in example 2 from the term
h

[ W,.eE)dW (&) de,
For p=6 and Q= SM.t3

be el
?F.c, - = (Qgrp [ ¢0S %Tg sin %T—Taf (w‘ig-)Jngm,Jg(g‘g)g +%<§§)g]d§



4. Appendix-- Summery of the Extended Field Method of Analysis

as applied to Uniform Thin Plates.

The governing differential equation for the harmonic response of thin

uniform plates is

' .
DViw = gfw = prsinat
where W(x,1) '=W(X)Sinaﬁt is the time dependent transverse displacement
of the plate, [) is the bending rigidity,C is the excitation frequency
and P(X) is the spatial distribution of the transverse pressure , and Q
is the mass per unit area. The amplitude VVO() of the transverse displace-
ment can be expressed as the sum of the solution to the inhomogeneous

biharmonic equation

4
Dvw - eV = poo

for a rectangular reference field (the extended plate) with all edges
simply supported (the Navier-solution) which is
" o mlz 1l ab e
, Sin“5° sin"p _ 'S milz ¢ iy
W<X) "Zi’ Pen 27 0 Pan™ ”p(r,g)sm—- an - dt}dx
5 N g abl a b
n=nag D{[’(moﬂ.)* +(ngr) Jz_ggg}
and the four Levy-series solutions VVxe g 4-!,# , for the same extended

plate with simply supported boundary conditions on all but the ith edge

which undergoes arbitrary displacements that are characterized by the para-
meters hﬁ and k;d .For example the Levy-series solution for the Yﬁ edge
is given by
W) =2 3,- { hylsicosthisa smhgca-x) - reoshra simfysia-x) |
: + K, [sm(Ns,o sinhr, (a-x) = sinhra sm(h)s,-(a-z)] }sm’%" 3

where

]4-- [5; smhga cosbls;a = v, oshna s sa |
4

R B R L A s ud




with

L= [ (“‘) ) (‘&)&

h 9(9"(‘5” §<1
0 Bfragbl o gag
Here
)
and

ainch) s;x ={ Sin- s j<f

snh 2 421
COS(h) sz < C0% S"K 1<ff
wsh gx 1=4

The total displacement of the plate can then be written

5
W, d) = sinawt - 2 Wix)

The solution to the harmonic excitation problem of an arbitrary quadri-
lateral (convex region ) plate that lies within the extended plate with
any combination of clamped and simply supported edges and perhaps a single
free edge is then obtained by approximately enforcing the desired boundary
conditions at the edges of this embedded actual plate. In the case of a
free corner , i.e. two adjacent free edges , the solution function must
be augmented by a corner solution which , for example , for the edges 2

and 4 being free is given by

W.x) = ¢ [ snh@a-»snhdib-y +snda-nsindbo-y] , ¢+ "(Agb)m.

The edge numbering corresponds to that of figure 1 of section 2.1

b2




The solution to more complex structures such as beam stringer supported

plate systems can be obtained by approximately enforcing the matching
conditions along common boundaries (ref. 8 ). The set of simultaneous equa-
tions that determine the parameters hq and kg is obtained by requiring the
error at the boundary edge or matching edge to be orthogonal to some set of
independent test functions. The EXFM has also been successfully employed in
finding the eigenfrequencies for uniform quadrilateral plates with various
boundary conditions. Chander employed the method of false positioning to
extract the eigenvalues @, which appear in a transcendental manner in the

matrix equations that result from the process of error orthogonalization.
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\ Abstract
)

““A new quadrilaterial finite element for the problem of benaing of a

N

\

uniform, homogeneous, isotropic, flat plate having an arbitrary number of
nodal points and allowing an arbitrary level of refinement is developed

from solution functions to the governing differential equation. Interelement
continuity to the appropriate lcvel of normal derivatives is provided in

least error fashion by the use of spline functions for the edge displacement
quantities and minimization by the Galerkin technique. Even for general
quadrilateral domains no numerical quadrature is required for developing

this finite element since all required integrals are taken over straight
boundary edges and can be evaluated explicitly. With this new type of element,
an improvement in accuracy is expected to result when large quadrilateral regions
are modeled by a single element with an appropriate number of edge nodal
points, because the error of this finite element approximation is associated
with the boundary region of the elements. The force vector corresponding

to the transverse pressure is derived from a series solution to the inhomo-
geneous differential equation, so that the effect of the forcing function

in the element interior can be evaluated to any degree of accuracy desired.\
A\
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