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ABSTRAC

A new energy based finite difference analytical technique is introduced.

The method incorporates certain energy concepts and the ability to use arbi-

trary, irregular meshes within the framework of the Finite Difference Method.

This formulation reduces any governing partial differential equations to a set

of difference equations containing partial derivatives up to and including the

second order. Further, certain strong simularities with the popular Finite

Element Method are shown and the ability to solve problems with irregular

boundaries is discussed . To demonstrate the Finite Difference Energy Method

several plate bending problems are solved.

INTROWCTION

The paper presents a new analytical method for two dimensional problems

with irregular boundaries. The ability to handle any shaped boundaries and

1Research reported here partially fulfilled Ph.D. requirements at Catholic
University by first author.

2V. Pavlin , Research Associate in Aerospace Engineering Depart~nent , University
of Maryland , College Park , Maryland ; Assistant Prof. , University of Sarajevo,
Yugoslavia.

3N. Perrone , Director Structural Mechanics Program Office of Naval Research , also
Mjw~ct Professor of Mechanical Eng. , Catholic University, Washington, D.C. 
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utilize arbitrary meshes is a direct result of this Finite Difference Energy

MethOd. This method offers a promising , new approach to the solution of

problems in applied mechanics.

The finite difference method approximates continuous derivatives by alge-

braic expressions relating discrete points in a domain; hence, governing re-

lations may be formulated as a series of algebraic equations which are related

to some finite difference mesh. A critical requirement in finite difference

techniques is an accurate algebraic represenatation of derivatives . For the

usual finite difference method with regularly spaced grids , these representations

are satisfactory but results are generally quite sensitive to the grid size.

For problems involving arbitrary meshes the question of a der ivative accuracy

becomes an essential problem. A major disadvantage of using the finite differ-

ence method as opposed to using finite element method is that one is usually

required to use regular meshes wi th the f ormer.

Recently there have been a n~.mtber of research efforts directed at removing

this restriction. These investigations progressed in two directions: The

first, more usual one , focused on solving structural problems by using governing

differential equations; the second more recent approach is based on an energy

variational principle.

A finite difference approach for arbitrary meshes dealing with direct

solution of governing differential equations was developed by Perrone and Kao

[11*. The accuracy of finite difference derivatives was addressed and a

method for obtaining accurate approximations for derivatives up to the second

order including mixed derivatives was presented. Fayed [21 introduced a so

*N,JpJ,ers in square brackets denote references which are collected at the end
of the paper. 

— - - ~~~~~~~~~~~~~~~~~~ .. -,-.~-—--- -—- - - - - - -



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-3-

called variant finite-difference mesh and applied it to the solution of a pro-

blem with a complicated geometry. Other attempts have been made to develop

finite difference techniques which used generalized or variable grids [3,4,5].

Using in part the approach for the calculation of derivatives described in

Reference (1], Liszka and Orkisz [6] developed basic equations by minimization

of derivative errors. They expressed the opinion that the finite difference

method for arbitrary meshes is well enough developed to be competitive with the

finite element method, especially in nonlinear cases.

A variational energy formulation has recently been used by Bushnell [7].

He demonstrated the usefulness of this approach and obtained some results which

are very competitive with the finite element method. In Reference [7], he discusses

recent applications of the finite difference energy method to stress, buckling

and vibration problems. A two dimensional finite difference energy formulation

for arbitrary meshes was introduced by Pavlin ( 8 J .  In his dissertation research

he applied the method to solution of plate, membrane and shell problems.

Since the theory in this present effort is based on a variational energy

approach, it might be useful to cite similarities with the Rayleigh-Ritz and

finite element method. Unlike the usual Rayleigh-Ritz method, the entire

domain of the treated structure is subdivided into finite difference type

elements . Taylor series “displacement functions” are used to cover the

domain of each finite difference element separately. As in the finite element

method, one might interpret the Taylor series expressions used to determine

derivative approximations as a sort of shape function. Similarities between

the finite difference energy method and the finite element method were discussed

in the paper of Key and Krieg [9].

_______________ —.-—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-———- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ .—~~-—. —_
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The basic theory for the plate problem is presented in matrix form in

the next section. Subsequently,finite difference approximation of the deriva-

tives as well as nodal point arrangements for arbitrary meshes are discussed.

Connection of the general finite difference procedure to a variational approach

is treated in next section. Detailed mathematical conditions which must be

enforced for various types of physical boundary conditions are then described.

After presenting numerical results for a series of specific plate problems ,

a discussion and conclusions are provided in the final section.

• BASIC THEORY FOR LINEAR PLATE PROBLF~1

It is assumed that deformations are small implying simple bending of the

plate and that no median surface stretch occurs. The Principle of Minimum

Potential Energy requires that the variational of the total energy of system

must vanish

S11=CWJE _ W p) ~ (1)

where

11 - total potential energy

UE 
- strain energy of deformation

(—W
p) 

- potential energy of all external forces

The total potential energy formula could be expressed in the following form:

n ccduT_~cc (xu+’1’v+zw)d vot_ s~cTx v ÷~yv+~
w)4s (2)

Vot ‘4%.

where the terms on the right side are defined as follows:

~1 U T ~~~. ~E}
T{6}dVot - strain energy density

‘i’ Z~I - external body forces

$1t}T [T  ~~ Tzl - external surface tractions

~ 
01

T tu V W J  
- displac~uent ccrçonents

.4
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According to simple bending theory, displacement components in the planar

directions , are functions of the transverse deflection W, and therefore

UB = - Z W X
VB ~ — z w ~ 

(3)

As a consequence, the strain vector (E) will take the following form:

uB)x I w~xx
{E} ~c V B~y = — Z j  ~~~ (4)

u~~+v~,< L2 ~~~~
If the (C] matrix represents the material properties at each node, the stress

vector will have the form:

(5)

In the case where body forces are negligible and only the surface traction

components in the Z direction remain, the total potential energy of element e

will be:

fl SSS{e~
T[C1{~} d V t  ~SS{ O }T{ T} ciSe (6)

Vot S

DERIVATIVE APPROXIMATIC1’~S AND NODAL POINT TOPOLOGY

The governing equations , such as Equation (1) are based on an energy

Minimal Principle. As a result , for most plate and shell problems to be

treated with the energy approach , only second order derivatives are necessary

to characterize the energy field. Unlike higher order derivatives, it is

simpler to obtain accurate finite difference approximations for second order

derivatives for an irregular mesh [101.

An arbitrary finite difference element is defined by central nodal point i

and eight or less neighboring nodes j ( Figure ‘ ). The area of an element has

-- —-~~~~~~~~~~~~~~~~ .-~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~ -- - - -
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a polygonal shape obtained by cutting distances between node i and nodes j in
half. The derivatives of a finite difference element i, obtained at node i,

are taken as constant over the whole area of that finite difference element.

Elements along the edge of the structure (Figure 2) are called boundary

finite difference elements. An internal type of node i uses an X-Y coordi-

nate system, while boundary nodes use a T-N system, T being the tangential

direction and N a normal direction relative to the boundary curve.

Five partial derivatives must be determined for the interior nodes speci-

fically W,~, W,.~,, W,~~, W,,~ and W,~~. For the nodes along the boundary the

derivatives W,T, 1
~’N’ ~~~~ 

W,~~ and W ,.~ must be specified.

Depending on the mesh type different forms of elements will occur. The

basic building block is a triangular shape. However, an element may have any

L polygonal form, from triangular to octagonal. The form of the element will

greatly depend on whether the node is on the boundary or in the domain.

To define an element i the neighboring nodal points around node i must be

chosen. The criteria suggested in Reference [11 will be used to select neigh-

boring nodal points . This selection process is very important because it avoids

an ill-conditioned coefficient matrix and results in better accuracy of partial

derivatives. The domain in the vicinity of a given node I is broken into eight

45° pie shaped segments (see Figure 3) and the closest neighboring nodal points

j, in each segment to the center node i, is noted. Since the nodal mesh is

arbitrary , it may happen that in some of the segments there is no close node,

or no node at all (such as nodes along the boundary). In this case the scheme

may become incomplete, which will have some effect on the accuracy of the den-

vatives; but this procedure is still acceptable because the minimum number of

neighboring nodes is five. Should the closest node in a zonal pie segment be

at a distance that is more than two average distances (between the nodes of



---- --. -
~~~~~~~~~~~--—

.
~~~

-

-7-

the entire mesh), such a mode will be considered as nonacceptable. For

nodes along the boundary , neighboring nodes will be selected in the same

way. Also, along the boundaries, the manner in which neighboring nodes are

selected and their number, depends greatly on the boundary condition type.

As in Reference [1], connection between five unknown derivatives at node

i and the values of the function in node i and neighboring nodes j will be

established through a Taylor’s series expansion; if we retain derivatives up

to the second order, the expansion takes the following form:

w
3 

= Wi + (x 3 - X i)w~ x + — 

~T
’i) w~ + (x~ - xi)Zwi

+ -
~
-(‘i’~ 

_y1)Z w~,yy+(X3 -Xi)(Y3 Yi)Wi~xy 
(7)

A physical interpretation of this function is that when we know the values

of the displacement function W and its five partial derivatives at node i,

we may calculate values of the function at any other local field point. The

associated surface is a nonsymmetric paraboloid, i.e. a surface of the second

degree. However, we will invert the procedure and calculate the five unknown

partial derivatives, starting with known values of the function W at node i

and at least five adjacent nodes j. We then obtain a system of five equations

with five unknown partial derivatives: by inverting this system the derivatives

can be determined. The set of equations may be described in matrix form as

follows :

[A I{Df } = { f }  (8)

where

[A] - is the coefficient matrix

{ D
ç}  

- is the derivative vector

{ .f } - is vector related to nodal function values at five

selected nodes

.-

~

-. ..— —. — , .
~

—. —. -. .~-~~ -~~-- .~~._. - — . .--- - .-——.‘-—=.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~
_ -~ —-
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By inverting the coefficient matrix the partial derivatives (Df) may be ob-

tained in an explicit form.

To achieve acceptable accuracies it is desirable to select more than five

j nodes surrounding a given central i node . As shown in Reference [1] such a

procedure could be established by adopting an averaging process. If we con-

sider eight points surrounding a given central point as a typical case (such

is the case for the usual, regular square mesh), then four points closest to

i in the primary zones I-IV, Figure 3, are selected along with the closest

node in each of zones V, VI , VII and VIII in turn. Derivative approximations

are obtained by averaging the four sets of results [11.

It is useful to introduce a concept related to nodal point selection called

mutual reciprocity. Two nodes are said to be reciprocal if the first selects

the second as an adjacent node (using say scheme of Figure 3), and vice versa.

Should the first select the second as an adjacent node, but the second does not

select the first one then the nodes are said to be nonreciprocal. Better accu-

racy is achived when nodes are mutually reciprocal. Nonreciprocal nodes occur

more often on the boundary than in the domain.

ARBITRARY FINITE DIFFERENCES COUPLED TO A VARIATIONAL APPROACH

If we define [B] as the inverse of the coefficient matrix, the derivative

vector may be expressed as

{Dç}~~{BJ{~~} 
(9)

In the case of small deformations, the energy equation contains only second

order partial derivatives (see Equation 4), it is convenient to use a reduced

inverted coefficient matrix [B*], which is rectangular by its nature

{ B ]  1 pq , P 3~4,5 (10) 

- -~~- - - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~ - - . .~~-—-  -
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Substituting Equation (10) into Equation (4) , we obtain the strain vector in

the foll owing form:

{~}~ — z[B~]{c} (11)

Using Equations (11) and (6) and the fact that there are no U and V displacements

in the middle plane , we find that the total potential energy of an element to

be

e = ~ 1~ Z2{f}T[B4
~]

T{CJ[B*J{$) JV01 - IS W 1z 
d Se

Vol 9 (12)

To enforce equilibrium, a variational form of finite difference energy

method will be used . The total potential energy over the entire structure area

will be:
n —

f l Z  lie (13)
e-l

where n is the total number of finite difference elements. The Principle of

Minimum Potential Energy (see Equation 1) requires the variation of IT with

respect to each nodal deflection vanish

&e {l1~ 
0 . e~~1I 2) . . .)  fl (14)

What evolves are n equations in terms of n unknown displacements at n nodal

points.

Two different type of terms from the variation of a generic node i appear

in the following equation:

÷ ~
{ 

~~~~ 

n~) = 0 (15)

Applying operator (15) and using formula (12), where all matrices and vectors

have averaged values, we obtain the following expression:

L - - - - . _.~~. . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .. - .. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -.~—
. - - -~~—

. - - ~~~~~~~~~ _ _ _~-~..~~~~~~~~~ —— ..
~ -.— —~ “~--
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{ $~z2 ~~ i[~ *} T[C }[Be
.1{f }dV ot _ 

~S~Z is}
~

~~~~~~~~~~~~ [B~]
T[cJ[s~}{c} ~ vofl . 

(16)

3- Vol

To transform Eq. (16) into a more convenient form, we may impose the following

substitutions

r ~ i . . — 
a[{f} ’]~ a1T

L G J
~ ’i 

— aw, L B J~
[G *1,)l = 

aRc}T}) { B~j
T (17)

= SST aS~S
where the last item represents the load term.

The volume differential is obviously

d V0t = dZ dS
and the thickness of plate is constant everywhere ; after separating the vari-

ables of integration and combining Equations (17) and (16), the following

result is cutained:
h/

~~~2 f 1 [ J [ *1{ } dS]1
- S (18)

÷2 ~~~~~~~~~~~~~~~~~~~~ dS]~}dZ  =

Integrating over the Z variable and replacing the area integrals with finite

values of the areas, because all other matrices under the int egral are assumed

to be constant over the area of the elements, we may write Equation (18) in the

form

A Si

~ Sj} 
(19)

Now, we introduce the stiffness coefficients vector of node i

[kIn = ~~~~~~~~~~ [G t 1
~~~1 ~[cJ [B~]~ (20) 

- . ~~~~~~~~~~~~~ — - —
. 

- - - - -.-~~ 
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and the off diagonal stiffness elements of the vector node of i:

[k 1 ~~~~ = ~~~~~~
- 

~~.S3 
[G*J j i  [cJ {B~J~ (21)

Now, Equation (19) for node i assumes the following form :

r~
= cj (i) (22)

By regrouping k and f elements of Equation (22) in node i and creating new

vectors

[ k  ~~ 
- n dimensional stiffness coefficient vector for node i

{ W }  
- n dimensional displacement vector

we transform Equation (2 2) into the following form:

{ k 1(~) {w} = cj (~~) (23)

which for all n nodes produces the overall assembly matrix equation of the

problem

K W = Q  (24)

A computer program , developed using Fortran V language, solves this system

of n l inear, nonhomogeneous equations with n unknown d i splacement, for any

domain and boundary cond itions .

BOUNDARY CONDITIONS

For most boundary conditions in solid mechanics, specification of dis-

placement derivatives up to the second order are sufficient. When the boundary

is irregular the tangent and normal at a boundary node usually have different

directions from the X and Y global coordinate system (Figure 4).

IRREGULAR BOUNDARIES

As it is important to know geometrical characteristics of boundary in

any boundary node , two classes of domains will be analyzed : Areas described by

a known mathematical function and other shapes of irregular domains.
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When the analytical function of a boundary is known it is quite easy to

find out their characteristics using pure mathematical derivatives . For

example, finding the tangential direction at a boundary node is straightfor-

ward .

The case where the boundary is not functionally definable is less trivial.

To determine the tangent at the boundary at node N1, relative to the x-~ system,

part of the boundary N0-N1-N2 will be approximated by interpolating a poly-

nomial (Figure 4). It is convenient to pass a parabola through the three

boundary points. Boundary derivatives may then be readily calculated.

The shape function Equation (7) , applied to a boundary node, has the

simplifi ed form:

= W~ +T~ WC T  +N~ WC N  + -~ - T~
Z WC T T

÷ 4 N~ W C~~N ~ T~N~ W C T N  
(25)

Generally, five nodes are selected through which the Taylor series is forced

— to pass in an N-I coordinate system. The fact that the nodes along the boundary

are described via a local coordinate system does not cause any difficulty,

because the energy stored depends on the distances between nodes , which doesn ’t

vary during transformation.

SPECIFIC SUPPORT CONDITIONS

Boundary conditions for different supports are developed by exploring

the form of shape function given through Equation (25). The following three

boundary conditions are considered:

- -  Simple supports

- - Clamped supports

- - Free edges

—. . .~~ — ~~~~~~~~~~~~~~~~~~~~~ - ~~~. . .
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If we analyze different types of supports regarding their kinematic and

natural boundary conditions it is obvious that a varying number of unknown

boundary derivatives remain to be determined. Where more boundary conditions

could be applied , less unknowns appear; whenever less unknown partial derivat ives

occur at a boundary node , less adj acent nodes have to be taken in combination .

If more nodes than necessary are chosen, averaging is applied. For example,

it will be shown that for clamped supports only one adjacent node is necessary,

while in the case of free edge nodes, six points are needed.

Simply Supported Plate

If the edge of a plate is simply supported , the deflection as well as

the bending moment along the edge must vanish. As the condition W = 0 is

also applied in the vicinity of the node C (see Figure 5), it means that

WCIT = WC T T  0

and therefore the boundary conditions are

W~ = 0
(26)

WC~N N = O
As a consequence, the boundary shape function given through Equation (25), for

a simply supported boundary, reduces to:

W 3 = Nj t4
~
/C N  +T3 N~ WC~TN (27)

It becomes obvious, that we need only two j nodes in order to define unknown deri-

vatives; other nodes could be used by averaging to improve the solution accuracy.

Plate Boundary with Clamped Support

If the edge of the plate is clamped in node C the deflection as well as

slope of the middle plane in N direction must be zero . The boundary conditions

at such a node (see Figure 6) ,  are :

W~ 0
(28)WC N =  0

_ _  --.-~~~~~ - - -~~~- -~~~~~~~~~~~~- ~- - - -~~-~~.- .-
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As a result, we find that

WC~T WC T T  = WC T N  0
The shape function at the nodes along the boundary, assumes the following form

in this case:

= -
~~~~ N~~~ W

C
’ NN (29)

Only one j node is required for satisfaction of the clamped support condition .

Plate Boundary with Free Edge

A free boundary (see Figure 7), requires that the edge moment and shear

force vanish (or be equal to applied loads) . As shear forces are related to

third derivatives of the displacement, an expanded form of Equation (25), which

— includes those terms is necessary. The resulting form of Equation (25) is

as follows:
2 2W3 -W c ~~ Nj 9~(C)=13 W~’ -j- + Nj WCN++ (T3 —V N~)Wc T T

+1
~ 
N3 

WC’TN+ ~-N~(3~~ ÷V -2) WC~TTN ~ ~~ J N~~
1C ’TNN (30)

For this case , at least 6 j adjacent nodes on the boundary and inside the

domain are reauired.

EXAMPLES

Obviously, accuracy of soluticns obtained depends on the numbei of nodal

noints selected . If the number of nodal points is increased, the solution should

become more accurate. As accuracy and the number of nodal points affects com-

puter time, some compromise should be achieved.

Results obtained are correlated with existing solutions [14, 15, 16].

For illustrative purposes, the displacement function W in some characteristic

cross-sections are presented.

_ _ _

~

- , -

~ 

~~~~~~~~~~~~~~~~~~
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SIMPLY SUPPORTED CIRCULAR PLATE

A simply supported circular plate (Figure 8), loaded by uniformly distri-

buted load is solved using four different types of arbitrary meshes. The input

data are

~~~~O.3
r0 ,  E, ~~, p

with the flexural rigidity:
ED-

The theoretical solution in dimensionless form is
- 

W - 5 + .V — ~~~~(6÷2V) #-~~~
4(1+V)  p ~~~

, ,.. 
_ _ _

64 (1+-V )  D 
‘~‘2. D

where
r

All solutions obtained by the finite difference energy method for arbitrary

meshes are shown in Figure 9.

Each type of mesh used Dl , D2 , b3 and D4 has in parenthesis the number

of nodes covering the entire domain; solutions obtained show accuracy associated

with distribution of mesh points and the number of the nodes.

Deflections along the radius of the plate obtained for mesh type D4, with

77 nodal points , very closely coincides with the exact, theoretical solution.

CLAMPED SQUARE PLATE

A square plate with clamped boundaries (Figure 10) , loaded by a uniformly

distributed load is solved using five different types of meshes. Input data
H are a , h ,~ , E ,? with flexural rigidity D.

All solutions (Figure 11) in dimensionless form are given in the following

expression
w p a

D
where W is the dimensionless deflection of plate. 

~~- .— .  - . —,~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
.
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Each type of mesh used D5, D6, D7, D8 anl i)9 has in parenthesis the

number of nodes covering the entire domain of the plate. Solutions obtained,

show accuracy being associated with the total number of used nodes. Results

of case D9 with the largest number of nodes, almost coincides with the results

from Reference [16]. It should be noted that mesh D6 represents an example

with an aribtrary spread of 64 nodes totally.

KIDNEY SHAPED PLATE WITh MIXED BOUNDARY CONDITIONS

In this example, the structure with an irregular domain (see Figure 12) ,

loaded with a uniformly distributed load p, is solved . Boundary condi t ions

are mixed such that the plate is clamped along a portion of the boundary ; the

remaining part is free.

Figure 12 shows 107 nodes used and the results obtained for deflections

along three marked, cross-sections .

Geometric and physical properties are as follows :

Dimensions: see scale of geometry

E= 3320000 ktps/ft t

h= 0. 2.5 ft
~~~ = 1.o k~~ /ct~ -

DISCUSSION AND CONCLUSIONS

A finite difference energy method capable of handling irregular domains

has been developed and applied to linear plate problems. The method incorporates

the Principle of Minimum Potential Energy and the ability to use arbitrary meshes

within the framework of the finite difference method.

The total area of a domain is subdivided into smaller portions, which we

might call finite difference elements. A Taylor’s series expansion is used in

the spirit of a shape function to determine derivatives at a given node as function

of surrounding node values. The entire potential energy in the system is

—.- .———- — —~~-—— __
~~ _ .. .. ...

~~.— -~ - _.— ._.._.;~~ .- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~.~~~~~~~
_________— — _ _  

~~~~~~~~~~~~~~~~
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minimized with respect to each of n nodal displacements. M n x n system

of equations arises which is solved for the displacement field. When calcu-

lating derivatives at each node a zonal criteria is setup to assist in sel-

ecting proper adjacent nodes for a given central node. Should node A select . 
-
~

node B as a surrounding point and node B select node A, the two nodes are

said to be mutually reciprocal. If many nodes are nonreciprocal appreciable

error will arise.

To show the similarity between the finite difference energy method for

arbitrary meshes and the finite element method, the current methodology has

been developed in a way paralleling the finite element method. The final

form of equilibrium equations , with assembled stiffness matrix , clearly demon-

strates this point. Further comparisons with the finite element method reveal

the finite difference elements to be esentially nonconforming; what results

usually is a more “flexible” stiffness matrix.

In addition to the linear theory shown here, the theory has been extended to

nonlinear problems and will be presented at a later date. The techniques and

programs are developed for the solution of membranes and thin, shallow spherical

shells [8].

Using basic elements and the essential approach of the finite difference

energy method for arbitrary meshes described here, we should be able to solve

any general thin shell. Only minor changes in theory would be necessary.

Since energy related techniques could be used in both the foriiulation of the

finite element and arbitrary mesh finite difference metho~~, it should be possible

to utilize a combined approach in a single problem. Indeed, Bushnell has done

so for essentially one-dimensional problems, using Fourier series expansions in

the second direction. In principle, there is no obstacle to such a general

combination. Displacement components at the nodes are the fundamental unknowns

—, 
. 

- -,~~-~,=.- .- 
~~~~~~~~~ - ,. .-- - 
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for both methods . The shape function will differ between the finite difference

and finite element method and some attention will have to be focused on the

interface regions . Significant economies in computer time may be possible with

a combination method. Finite elements would probably be selected in zones where

sharp load or stress gradients exist as well as at complex boundary regimes .

The theory of the arbitrary finite difference energy method for irregular

domains could be extended to another large class of problems in which a structure,

undergoes plastic deformations in addition to elastic deformations. To accomplish

this, an extension of the theory and procedure is feasible.

It should be of interest to examine the accuracy of the energy finite diff-

erence/arbitrary mesh approach when concentrated or other sharp load gradients

occur. From an energy viewpoint it should be feasible to obtain the work done

as a result of deformations in the vicinity of these load systems.
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