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ABSTRACT

The governing equations for laminar, transitional

and/or ;u;bqlent, incompressible, three-dimensional boundary

layers are solved numerically. The equations are deﬁeloped

in terms of an'orthogonal surface coordinate system and include
surface curvature effects. The coordinates are generated nu-
merically, while the inviscid floﬁ is obtained from a general
qu tial flow procedure. The only restrictions on body geometry
h;é:éhét-it possess a blunt nose and a plane of symmetry. The
;Pgééégr:i}ayer equations, after being transformed into similarity

Ve N N
qxpe variables, are solved using the implicit finite-difference

Krause scheme. Various test cases are presented to establish

the accuracy of the resulting computer program.
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NOMENCLATURE

Quantity defined in Eq. (47)
Van Driest damping constant
Specific heat, ftzlsecz-ok

Skin friction coefficient based on local edge
properties r/% pUi
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inner eddy viscosity law
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velocity component hEU/hE oUe
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Quantity defined by Eq. (51)
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Unit vector

Transition intermittancy factor

Mixing length constant for Van Driest inner
eddy viscosity law

-1
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Curvature of w coordinate, (hehw) hu,E
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‘Viscous énd inviscid cross-flow velocity components

i
i
i
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Nondimensionalizing length normally taken as one foot

h3n
E 0 E E.E

-3
hw,O hm hw,w

Distance normal to body surface (ft when dimensional)

Boundary layer thickness used in outer eddy viscosity
law (ft. when dimensional)

Pressure (lb/ft2 when dimensional)

-3 (g o/mp? 02 - § (v, o/h )% W2

Prandtl numbef

Radial coordinate (ft when dimensional) 1

Reynolds number

Surface distance (ft when dimensional)
Temperature (°R when dimensional)

Viscous and inviscid longitudinal velocity components
respectively (ft/sec when dimensional)

Viscous and inviscid normal velocity components
respectively (ft/sec when dimensional)

respectively (ft/sec when dimensional)

W=1W, at stagnation point and in symmetry plane,
=9 elsewhere as used in Sections II-4 through II-6
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Subscripts

e Boundary-layer edge

n Indicates differentiation with respect to n
t Designates turbulent quantities

0 Wall conditions

n Indicates differentiation with respect to n
£ Indicates differentiation with respect to £
w | Indicates differentiation with respect to w

$0 . ‘g-direction quantity evaluated at the wall
E,E ¢ derivative of g-direction quantity
® Freestream conditions

Vector quantity

Superscripts
* Dimensional quantity
3 Non-dimensional quantity

Non-dimensional stretched quantity

‘ Turbulent fluctuating quantity
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SECTION I

INTRODUCTION

A computer program has been developed to predict
laminar or turbulent three-dimensional boundary layers over
blunt bodies immersed in incompressible fluids. The program
includes the effects of surface curvature. Such a code is
useful for predicting the boundary-layer growth over sub-
merged bodies at angle of attack, or bodies of non-circular
cross-section at zero angle of attack.

In this report, the three-dimensional boundary-layer
equations are developed in a surface-oriented, orthogonal,
curvilinear coordinate system with all surface curvature ef-
fects included. Further, the limiting forms of these equa-
tions in symmetry planes and at the stagnation’point are
developed. It is required that any body shape considered by
the code possess a plane of symmetry.

The resulting equations are integrated using a marching,
implicit finite-difference scheme on an IBM 370 system-model

158 digital computer.

1. Background

The three-dimensional boundary-layer equations for
laminar, compressible flow have been developed by Moore (Ref. 1).
Procedures for numerically solving these equations for the in-
compressible case have been developed by Blottner and Ellis
(Ref. 2) and Chang and Patel (Ref. 3). The Blottner and Ellis




procedure for laminar three-dimensional boundary layers uses
an orthogonal, surface-oriented, curvilinear coordinate system
which is numerically generated. In this procedure, the co-
ordinate system is developed independently of the boundary-
layer or inviscid flow, but has as its origin the inviscid
stagnation point. The procedure does require, however, an
analytic solution for the inviscid flow and is therefore
restricted to a rather narrow class of bodies. The method of
Chang and Patel for laminar or turbulent three-dimensional
boundary layers also uses orthogonal surface coordinates, but
these coordinates are calculated analytically based upon the
geometry of mathematically well defined shapes. As such, this
procgdure is also limited in the class of bodies which can be
calculated. .

The procedure developed in the present report takes
advantage of the versatility of the Blottner-Ellis (Ref. 2)
coordinate system so that a much wider class of bodies may be
studied. Essentially, the numerically generated coordinate
package of the Blottner-Ellis procedure is separated from the
boundary-layer procedure. This allows for the development of
a coordinate system for a given geometry to be carried out as
a separate task from the boundary-layer calculation. Thus, once
the coordinate system has been developed for a given geometry
at a given angle of attack, that body can be studied under a
variety of flow conditions without having to regenerate the

body coordinate system. Further, since the procedure is
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numerical, it can be used with a discrete description of body

geometry as well as analytic, thus further enhancing the pro-
cedures versatility.

Since the body geometry that can be handled by the

. code is restricted only to blunt shapes with a plane of sym-

metry, a rather general technique for predicting the inviscid
flow about the body is required. The Smith-Hess (Ref. 4) pro-
cedure is used for this purpose. An intermediate code is then
used to interpolaté the output of the Smith-Hess code onto the
sur face-orthogonal coordinate system. All of these data are
then Fourier fitted and the Fourier coefficients are stored on
disk. This disk is then read by the boundary-layer program
which predicts the boundary-layer development on the body.

The technique described in this report accounts for all
surface curvature effects, and, to the authors' knowledge, this

is the first time these effects have been accounted for in

three-dimensional boundary layers.

Rl et g e




SECTION II

GOVERNING EQUATIONS

1. Coordinate System and Boundary-Layer Equations

In this section, the full incompressible three-
dimensional boundary-layer equations are developed. The equa-
tions developed are written in an orthogonal curvilinear body -
oriented coordinate system whose origin is located at the stag-
nation point for blunt nosed bodies. The details of the co-
ordinate system are depicted in Fig. 1 . As can be_seen in this
figure, two coordinate systems are shown; the first a body -
oriented polar coordinate system and the second a surface -
oriented curvilinear system. In this system, £* is measured
away from the stagnation point along meridional cuts, w* is
‘measured normal to & and around the body and n* is measured
normal to the body. At the stagnation point £= 0, and o= 0
along the windward symmetry cut. In this system the body radius
r* is generally a function of w* For this coordinate system a

differential distance ds* is

2 2 2

ds¥’ = mx? (%, ux,ne)der? + B2 (g%, k0 do + dn¥? (1)
where hg and hz are the metric scale coefficients.
The governing equations of fluid mechanics written in
this coordinate system are (Ref.5 ):
Incompressibility:
a(h, u) a(h,w)  3(h,h v)
S o+ —E L s 50 . (2)
¢ dw an

-




Navier Stokes

~ -~ ~ ~ ~ ~2 2 ~ i ~ ~ v
u ou w du au w 9 uw ah uv 9h
S e e e B SRt s . - g
Ry 96 B, 3w o8  h.h, 9E heh, 90 h, 38
3 Y e <1 TS
1% Re™ - 3 3t Re h, 3i
- -: B8~ ey (:ﬂ —:)  abrge 2: (:5 —:)
h, 3E h B, 9F \b, 9E BB, % \B, 2
-1 YAG =
+§e£ :—n hﬁh“:—? (3)
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Energy
i aF W oT o Rme”! [a b af) o he oT |
s e ey T eVl e ¥ B L ) B :“_’ |
hy 3¢ h dw an  Prhh | 38 h€ of 3w 'h 3@ g
|
9 [~ =~ aT s
+ — |h,h — + ¢ 6
an Ew an) ; i
where :
¥ 5 ;
2 1 51 % .3 Vv 9h |4
B e il —_ o 4
du fi |
hg A hghw o hE on |
RIS g ~ 12 '
1 23w v dh u oh
+ 2 A + g ~(D + e ~w
hm dw hw on hghm &
av |2 1w r -y vy é
| + 2 e ! RS h(ﬂ e [
; an hw ow on hw
i 2 " 2 ~ i & ~ -
A 1 23v 3 w h, 9
ﬁ b B Cors (éL' ¥ [:ﬂ e~ (:— + 5 — (EL' 3
| on hg hE £ th 3€ \h h, 3w hE |
] x " |4
1 8g 1 % % w dh v oh §
ﬁ + A :——~+:——~*—:+~~—~§*:——:§ |
hE g hw dw an hghw W h5 on
v aﬁw g
+ — +— = (7)
h, i hghw dE

In the above equations the following non-dimensionalization

has been introduced:

u* w* V* i £* n‘ p#
u= b w = Sl v = 5 E~» o 1 w = 0)*, ne= S ﬁ = T‘Z
U, Uy | W L L o U,




We now approach the above equations with the assumption
that in a vanishingly small region near the surface, a region
of order ¢ thick, all flow properties except the normal ve-
locity component are of order one - v itself being of order €.

Thus, we introduce the following stretched coordinates:
€=EF, w=0, n=n/e (9)

1/2

where € = Re According to our above described ordering

scheme we then write

E,w,n;e) = p(E,0,n%¢e) (10)

-~
—

and note that EE = hE and h, = h

w-

Introduction of Eq. (9) and (10) into the governing

equations and retention of all terms to order ¢ gives
a(h,u) 3¢h w) 3(h.h, v)
£ s 2 E—— =0 (11)
9k ow on
2 o
u du w du du w° dh uw dh uv 3h
e Sy 0, il b A i ol m+__ _:§+_-__——J
5 o -
hE £ hw dw an hE b 13 hEhw Jw hE an
Al Ay | At W 3—_n€§w3§ (12)
hE 9 hghu on an
“je

LAt i

o e
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(=
@ |a
13

=
1l b
=1 |

o

h ) 3h
g uw 3h . u hg A Zz “
hghm 9t hghw ow hw_an
iy ond aw\
~— —{h.h — (13)
T 8n}
(14)
e Tt Iy 5y
hEthr an an
2 e 2
+ b el (15)
W =
an hw

Equations (11) through (15) represent the full second-order

three-dimensional incompreésible boundary-layer equations

written in the surface-oriented curvilinear coordinate system

described above.

Boundary and Matching Conditions

In order to complete the above described set of equa-

tions, the boundary conditions at the body surface and matching

conditions at the boundary-layer edge must be established.

B
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At the wall we apply the usual no slip condition and

write

w(f,s,0) = w(&,5,0) =0 (16)

To allow for mass injection at the surface we write

WE,0,0) = vo(E,n) a7)

Using the subscript m to denote matching values, we write for
large n,

U—u (£,w,n)

w—-—.wm(E,m,n) AS Ne—e® as)

P—‘-Pm(ﬁ»w,n)

In order to find values for um and wh we turn to the

requirement of vanishing vorticity for large n. First we

note that
1 ... [ov sk w
R=VxV=—— hehms — - -
hEhw ow on

e a_x: & 3(hgu) o1 3(h?w) i a(tjiu)
b BAER 1 Y " Y

Substituting Eqs. (9) and (10), the boundary-layer scaling

laws gives

1 e 1 W 1a3hw] _ v 1 3a(h,u)
9_ = hcie [8—" - - _“.’ J o thu[e.__: - - —-s.—]
h W € om 3¢ € om

P




I 2(h W) a(r‘:gu)}
el W | dw

el MER T B
| - h on h, on
w B

Multiplying by € and retaining terms to 0(e) gives

Requiring Q to vanish at large n then gives

, a(h w) :
] s bl
; on
} -—
! 3 > as N —e-o (19)
o(h_ u)
P ._(__5_. = 0
i ‘ an
i )
} o
j Equations (19) can be integrated to give
| Ao
é
F(E,0) )
; ™ —
1 E iy
as N —e ® (20)
F,(%,w)
w
In order to establish Fl and F2 the matching condition that the .

viscous velocity profile as n —e » match the inviscid velocity

profile as n—e 0 will be used. Thus

Fl(—év;) -
um i e U(Eva’ph)
h
€
FZ(EIG) % gt “UE "
Y “ —:ii——_ W(E,w,n)

w

=10~

(21)
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where the capitol letters denote inviscid quantities. Ex-~
panding the first of Eqs. (21) in a MacLaurin series gives

F,(E,0)

= U(E.B.O) + ( )
%

E,w,0

The outer flow must be irrotational however, so that from the

definition of vorticity

o(h, U v
bkl
an 13

or,

<
| @
B&Léra
| M

SR A ARY i -

3 1 3V U ah 1 [3
- | —=-U
i hE %t h, i hE 13

3

We now note that, by a MacLaurin series,

= hEpO (1 + kE o+ .. .)

Thus, using the binomial series

-1l1l-

S
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F,(E,&) 1) 3 L d i
(1 - k.§ ¢ RED) = UCE,8,00(1 - kil + B A% + ...
" o £ £ g &

where the boundary condition V(£,0,0) = 0 has been used.

Finally
F1(€.0) = by o U(E,0.0). (22)

R

In a similar manner

Fp(.@) = h, g WE,w, 00 23)

Equations (20) then become h

Be o U(E,0,00 )
5 h

3

5 as N—e (24)

since h£ =h,and h =h .

3. Elimination of Pressure from the Boundary-Layer Equations
Examination of Eqs. (11) through (15) reveals that
the principle difference between these equations and the usual
first-order boundary-layer equations is the fac; that the pres-
sure is not constant across the layer. As pointed out in Ref.
6 for the two-dimensional case, ﬁhese equations can be made
similar to the first-order boundary-layer equations by elimina-
ting the pressure as a variable, hence eliminating the need for

direct solution of the normal momentumvequation. Once this is

12

o




accomplished, solution procedures similar to those for the

first -order equations (see Refs. 2 and 6 ) may be applied

to the system.

In order to eliminate the pressure the normal momentum

equation, Eq. (14) is first integrated to give

R e ..
. _5.:_2_22 . . -_-_T“Z_‘Z € + F(E,w) (25)
e Bo

where use has been made of the matching conditions. Now note
that

n _
h
Teund 2 n [=2 =2 2| =
IE(“l’nz)' :/ —ég— (hg'o U: - hE u ‘dn
oot
nzs
- w,n [+2 2 _z2 2%’
- (ny,ny) -fﬁ—sl— (hw,o W, -h, v"|dn
= w
e |

=13-
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Eq. (25) is differentiated with respect to w and evaluated

at n»® to give

F  af1z0.® + 150.0] (h§ ovf_) ? (ﬁﬁ o"ﬁ)
2+ 58 = —'7— + — -'—"-2—_
g o % , W\ 2h} 9w \ 2h
aP
i (28)
Jw

In order to evaluate 3p/dw as n+» the n+« limit of Eq. (13) is
taken, which gives, after use of the matching and inviscid ir-
rotationality condition

¥ = 2 g 2
P % ED (Ee_i’_) % (Eg,_o_w_e)

ow 2 3% hE hm

Use of this result in Eq. (28) then gives
¥.UERY
dw dw

or, upon integration.

F = IE—+ I‘:)-+ F(E)

Thus, Eq. (25) becomes

B! g
n
h ~
w., n —2 —2 2 — e
+/ _5—}_1 (hw’owz - hyw ) dn'+F (&) (29)
e W
n

w2l



1 In a similar manner, this equation is differentiated with

respect to £ and evaluated as n— @ yielding

(30)

wlw
| | e

]
wlw
™'

R AL

Evaluating Eq. (12) as n—« and using the matcking and

irrotationality conditions gives

= 2 - 2 :
ap 19 N h W |
j e, % kLot oo ( _g_:o_e_-) + ( el J.
9E 2 3F he W g
! so that
& 3 2 2 2
oF 19 h, U h W
IR i (_JLQ_Q) + (_159_2)
Y3 2 3t b, B,

|
{

|

J

!

|

l Integration of this result with respect to £ and substi-
‘ tution into Eq. (29) gives

{

h
o el E,n [ =2 2 e =2 2 '
p(€,w,n) —f F‘(he,o"e hgu J dn
= 5
n
h 2 2 2 —
+ 8 | 52 ¥ . B dn'
'53 w,0 e w
. w
n
=2 22 -2 2
s hE,OUe L hw,owe +C
252 252
£ w
i o L
]




where C 1is a constant of integration. In order to evaluate

C Eq. (31) is examined as n-w,

- S S SR
i AR h W
I G (32)
2h? 22
£ w
From inviscid conditions near the body,
w2 2
U
P =a=.L4¢
. 2 2

which is recognized as Bernoulli's equation and hence C is
identified as the stagnation pressure. Solving Eq. (32) for

C and substituting into Eq. (31) yields

u? h2
o = T = e E.0
p(§,w,n) = Pe(E.w) + — 1 - —=—
2 1_—1'2

E

= Yé N Ei - + I-(; ) + I—(E.W) (33)
2 " ki w
w

The pressure is finally eliminated from Eqs. (12) and

(13) by substitution of Eq. (33) which gives

u odu w dJu Jdu w2 3h uw Bg
—_——t— —+ VvV — - - 3
hE £ h Jw an hgh & hghw dw
uv aﬁg o 9
e el e ol B P
hg an h5 2k
Py ol SCOND W I (34)
T AR
hC ¢ héh an

=15




e hE,OUe " mJOWe

2h2 2h?
& w

4. Transformation of the Boundary-Layer Equations

We now define the following new independent variables
£=¢
W
n(€,w,n) =
and new dependent variables

F

@ = T/T

where W can be either We or Ue' From the chain rule




The time averaged continuity equation, Eq. (1l1), is now integrated

or, after using Eqs. (37) through (39)

2 2 h
— v==-—YV -
Ueg &

hw OGW

i R R e T
U £ 3 BY
e w e (41)

This equation is now differentiated with respect to n to give

1 £ s [ nn 3
g e e e ( w £,0 UeF)
heh, V2u, | 26 | ng

\'

P -1, -1

9¢h,"h )

3 h,h 3 £ w
B s 5“’4’\/ we)_v———-—
dw h 2U an
w e

which is the transformed continuity equation.

The convective operator is now transformed,




Using Eq. (40) this result Lecomes

u 2 w 3 3 hE oUeF 2 h WG 3 2u, 3
:——:+_———_+V—=———-2——’ ——-+——L2———+——V—— (43)
hE & hw ow an hE A hw qw £ an

The transformation relations, Eqs. (37), (38), (39) and (43)

are now applied to the time averaged £ momentum equation, Eq.

(34) yielding

EF g&'zc b o
( 2 Fw + (V + UHm + on)Fn = oF

h F, +
S0 h =
& w w
1 (he g i 9,4 1 fh & :
2 \ n 2 \ n '
£ w
2

£.0 hm Eh an an
oF (ahg)2 oF azhg b EA
# 2 Sf, —m g Mora i ahidd T o & 7 E
hE an h5 on hg ZhE,OUe
: : ) (44)
e e
ahE,OUe ¢
where T
h e
- EO 2 T 2 '
IE J —EL— (hg,OUe hgu )dn

n £ .
h £
,f 0 hg o“g (1-?2)‘/-— dn'
i 20,
w 3
3
Us ¢ h
-] [( 5'0) (1-F%)dn" (45)
J 2 4 \n

£

=19

S —




and

= 2
h W
o w,0 ,2 g2 e 21 | & '
—i= B0 ( Bl )\/zu o
h W Vv “"e (46)

Also,
2
w 2
2 y2 (—% - G) $ ad.n 28
X hw,Owe W2 ahw E hE,OUe(l F) 31’1§
A = h° an h° 3n
w &
\3
3 3 2
h U h w
_( hg,o)\ eb (1-F%) _(_%_g) w2 & 2. || @n
k 2 w 2Ue w

In the following definitions, note that W = U, for general

points and W = We for the stagnation point and points on the

symmetry planes.

PR Giageis g Praet
a1=—.a2=——,a3=-£ (48) A
Uy U, W
£ U £ oU 4 ow
B = — ——?— 8 B c—— _.e; B st e
1 » B . Bg — (49)
h
&,Oue 9 hw,OUe W hE.O‘e 3L
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1 dh J. oh h ah
K. = .__§’ K = 4 > _§_§Q e (59)

|
.
|
|

m (51)
h, 3n hw an

The transformation relations, Eqs. (37), (38), (39) and

(42) when applied to the time averaged w-momentum equation,

Eq. (35), give

hgnF h OEZG &
—z;——c;g+—“’=——c+ v -of +a.)6 ~jp
2 2 W n w
2h 2h
€ w
2
hé.n hw,n hw,n h £
- +h b et o
h h S it "h




Sl e

— 2
Eal hm,O AET}B
* . 2h h “30 T om uw
w,0 w w,07e
£ 9
- —_— (I€+Iw) (52)
2hw,Oer dw
where
£ oW £ ow 3 ow
e » —=, 8y = — By — (53)
hw'owe dw hg,ow E hw’ow dw
h oh
L, = 2 — (54)
hw dw
Finally, the transformed time averaged energy equation is
by il b .Ea,C -1
0 0y 072 & 2 2.8 2-2
—gh-é—_ 95 7 _:Z—_ etu i (V+Ile)6n 55 eﬂ’1+ hE.0)‘Fn+ho\>.0“311“2
£ w
2 2 -2
4h A 4h Aa
i £.,0 hz _ w,0772 h2 (55)
h4 E,n h4 w,n
£ w
where
2
1 23h 1 3h U
He = — .J-  — _J 3 x = _2 (56)
hw an hf an Te




Transformed Governing Equations in the Plane of Symmetry

The governing equations at the windward symmetry plane
are found by examining Eqs. (37) - (56) in the limit as w—eO.

In the plane of symmetry we take W = We and note that

ow
o (51

8w dim o e Tom :
w—=0 we w—=0 e
ow

with the last limit being bounded. In the plane of symmetry

we note the following,

o = = - = (58)
R Kag 3

Uy =Mg 22U, g2 ... (59)

1 2

Ve = We wt ... (60)

h, « H, + Hoo" + (61)
T el v .

W R (62)

Substitution of Egs. (58) to (62) into Eq. (42) gives

h
N i s i it 2_.( w0 : U F)

hoh § 20, | 3¢

e
h 20,

3




which is the windward streamline form of the continuity
i equation. We further note that at the symmetry plane

KE = 0, so that the {-momentum equation, Eq. (44), becomes
5 i

aan - (V + on + on) Fn - (1-V) 3 + UME
3
hE n ' 4
- i e e iz e
3 3
2

, 1/h €
I = _( E.O._) (1—1-‘2) By i~ (1-F2) (LE'LEI 0’
‘ 2\ h 2 '
| €
; EA s 13 3(I€+Iw) (64)
f e . Z
| Zhg,oue ZhE,OUe A

Before examining the ,-momentum equation we must first

look at some limits at the windward streamline,

EW,

ay8g = ,8g = (65)

hm,OUe

K H,U
15_ phes” (66)
a, hEhwWél

After noting that both of these quanitities have bounded values,

we find for the w-momentum equation, Eq. (52),

.



2
g fh, h h
- i _g,nw,n _ “wn
o0 =1y OHm+0n)Gn + = ( ; + hw,nn )G

£ b
2 -1
1 /n £ (h
3 - (_w&) (1-6%) 3.8 +-(_w£)
2 6 h
w
he 2 K, EA
 Araf ) OED R g g
h& Gg Zhw 0 e e
£ 3
F———— — (1 + 1) (67)
Zhw Oere dw

Now, at the windward streamline,

an n 3Ue
ETR W
Thus,
NG 2 Uez
G; i U wel (68)

We also note that

"20 ‘/f (-——L—) (l-F ) dn' ' (69)
’ jr ’——*—) (a G ) dn' (70)
ZU

2%

oy ———a

S P —




T ———— ~.

so that

—— w 3

1 3l £ h
L ._[ (_&2) @2-6%an’ (1)
We dw 1 ZUe ! hm

20U » 3
1 31 e e £ h
— ] 2 ’ /(_L_O) (1-F%ydn’ (72)
We dw We1 2Ue . hE

These latter results allow us to evaluate the last term in

the w-momentum equation.

Finally, we write for the symmetry plane energy equation

h EF
-1 N o - A 2
Pr enn (V+He)9n ——;7——65 hE,O A Fn
£
4h A
£,.0 2
PR ik (73)
hg
awe
Ve also note that at locations where — = 0 the limit
dw

(57) is unbounded. From Eq. (63) we also see the term requiring

G is not required and hence we do not need to solve the w-momentum

w W
equation. Also note that — —=£ = w and hence the product
W_ 3w
oW ’ oW
G —£ is bounded at the symmetry plane when —£ = 0.

ow dw
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6. Transformed Equations at the Stagnation Point

At the stagnation point, the properties at the edge

of the boundary layer and the metrics at the surface are

Ue = U1 E +
b 2
We = Wl E+ W2 £E° +
(74)
hE = ng + H2£ E +
hw i leE

Let us first substitute the above relations into the inviscid

irrotationality condition. This gives

1 09Up

T,I 3o~ = 2Hlw,0

At the stagnation point we take W = We and write

al=62=—1-a (75a)
U

g =1 (75b)

Bl = ] (75¢)
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(75h)

We now substitute these results into the continuity

equation, Eq. (42)

1 / & 2“1:» 1£,0
ngnlw g Ej
3 [HigHy,0 /
£ lw,
+ — - By B ¥
3w ( ) 1£ "lw
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Thus,

— - 2
H H a G B o H
Vn A s %E;,O F- lw,0 i (_‘i.,. _)( lm,O) e

2

2
Zle ZH15 ow le,O dw

1 oH I oH | oH
S G v | B +( e lg)v (76)
Hy, 9w H, . H o

Before the £-momentum equation is evaluated note !

E,'LE =0
En €
j Bes 9 -
? s el TS R
i €
1 e 1
i
1 (o] 3
{ E a1 2 & h '
! = & - . 1€ . Ipg = / _£,0 (1-F%)dn
E Ue 9k Ul i hE
: n
2 A 3
g a1, 2 wir H :
- Y o 3/% 1 g 1 = I-M) (l_GZ)dn
U 93¢ U lw H
1 n lw
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becomes

Before

Using these results, Eq. (44), the £ -momentum equation,

|
i
‘.
F (V+ oH_ + 0 )F ¥
an " ofy, + 9p)F, - ?
h n? h h |
ool Sw.n &0 €én i 7.} e 508 '
; n
hghm hg hg hE
. & 2 H 2
H Go h - lw,0
. lw,0 % _&,0 (1-F2) =0
2HT hE 2 le
2 -1 2
e B;
x (2 - EK 0) (1FG)-9- _£,0 _1w,0
2 h le
W 3 ¥
2 e L
< gyt T3 1Ly ] (77)
U U J
the w-momentum equation 1is evaluated note
B 2a
a a
i 1 aw §
aB,.= aB W. #0
6 4 1
H'].m,O 1 -
« ow
= 2 = 0 wo = 0
Hlu),O dw
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With these results the w-momentum equation, Eq. (52)

becomes
hE h h2 h
66 ~(V-0R +0 )6 -]of =220 00, «n
nn m n‘ n - 5 .
£ w w w
: oy y,0 B o4 Bs
-0 (L),n G— ;’,’ GG B e J_g__ (I-FG) 2
" h 2H P h
w 1y £
2 _1 2
cafheo) 62 5 4 [0 ) [ Reo
2 H 6 H h
lw lw E
¢ 2
tk: 1 [n " 3
(l-FZ) SES - i _549 {1tFE) - L + Ilg
20 2 h 3/2
3 U1 2U,
Vu 9L 2 oW
+ & LS 1. -2
V2 Hp, oW e W, Uy 3w
Ilm + g aI].w W
J 1/2
2U1 ‘fz Hlm,OU]_ dw
Finally, the energy equation becomes
= oG 9
oy enn - (v +,He)9n - Py ew o G AFn
lw
4h, o) o @AEES f oWy .
4 —Sal gy + w (79)
4 €,n 2
hg lw an
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7. Coordinate System and Metric Coefficients

The orthogonal surface curvilinear coordinate system
used to write the boundary-layer equations is identical to
the one developed by Blottner and Ellis (Ref. 2). As shown
in Fig. 1 the three coordinate directions are ¢, w, n. For
each set of ¢, w, n there corresponds a set x, 6, r in the
polar coordinate system whose origin is at the stagnation
point. The inviscid data tape contains data in the £, w,n
coordinate system and at each point the corresponding values
of x, 6, r are written. The transformation between the two
coordinate systems is generated numerically in program BLOT
which is contained in the TAPGEN program (see Ref. 7). The
procedure is identical to that of Ref. 2. For each point in
the £, w, n system, program BLOT also generates values of
hg’0 and hw,O and these quantities, along with their £-deriva-
tives are also written on the inviscid data tape.

The boundary-layer program itself contains routines
to generate values of hE and hw as functions of n for points
in the boundary layer away from the wall. These routines are
used only in calculations where surface curvature effects are

included. For cases where no surface curvature effects are

included, the following relations are used:

B *®ehg o
hw= hw,O
h&.n ¥ hC.nn e
hw.n = hw.nn = (0 (80)




st

In order to calculate the values of the metric

coefficients away from the wall the definitions of the metrics

are used, i.e.

; ds?  dx? + drl + (rde)?
b - — = " (81)
de de
2 at?  ax? + dr? + (rde)?
hw = 2 = 2 : (82)
dw dw

where s and t are defined in Fig. 2 . The following definitions

are now made,

= X
X X9 -

-~

r =t +r (83)
¢ = 69+ 0
Thus, :
d 2 d 2 S, B 7 a2
2 xg +dr 2dr dr, + dr [ (xqtr) (o 4+de)]
b . 0 PO ALY 0
E dEZ dE2 dEz
2dxdx+dx’ gl
and
2 dxo2 + dro2 + roz d¢02 Zd; dro + d;z
h, = 7 4 7
w dw dw
(rgd®? + £% (dog + dp?  2dx dxy + dx?
+ +
dw2 dm2
2 F
= hw,O +h (85)
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e —

The above expressions are evaluated numerically

using the values of ;, r, and ¢ for points in the profiles. !

-~

If g is taken to represent x, ; or 5 then (see Fig. 3). | 4

d g =%
_E = 2,n 3Ln (86)
dg

2,n iz = 53
dg 3 -8 i
e = 24,1’1 lJn (87) :
dw w2 - wl

The positions of the coordinates themselves are
generated with the numerical scheme of Blottner and Ellis
(Ref. 2 ). This procedure is first-order accurate and re-

quires relatively small step sizes in ¢ and w. For this reason

the coordinate generation routine was coded independently of
the boundary-layer program so that the coordinate system could
be generated on the fine mesh and the boundary-layer equations

evaluated over a coarser mesh.

8. Eddy Viscosity Models
Prandtl's mixing length hypothesis states that the
eddy viscosity is the product of some characteristic length
and the normal velocity gradient. The characteristic length
is related to the size of the eddies of momentum flux normal
to the body and is called the mixing length. For two-dimensional

flow this concept leads to:

€ = pz*zlaulanl (88)
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Prandtl's studies assumed that the eddy viscosity should

depend only on local eddy scale and on the properties of tur-

bulence. Adams (Ref. 8 ) extended this concept to the three-

dimensional case by assuming that the eddy viscosity is also

independent of coordinate direction by writing the component

of turbulent stress terms as:

T = -pu'v' = pl*z 3E/on 3u/dn
L3

T, = -ov'w' = 92*2 9E/5n  3u/an
w

where E is some scalar function. Therefore,

2
Ap OL Tl S ply” OE/dn

The total shear in each direction is written as:

=y ou/dn - pu'v' = y du/dn + €, Ju/aIn

% £

3

Pl dw/dn - pw'v' u dw/an + € aw/3an

therefore the total resultant shear is written as:

1/2
T = [152-+ruf ] = [(u + eg)z (aulan)2

1/2
+ (u + ew)z(aw/an)z]

Using equations (94) and (91) the total resultant

shear becomes:

T = [u + pz*z aE/an] l:(au/an)2 +(aw/an)2]
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By analogy with the two-dimensional case where the eddy
viscosity expression incorporates the velocity gradient of

the shear component, the scalar E becomes:

1/2
3E/3n = Eau/zm)2 +(aw/8n)2J (96)

1/2
Em e, we, " 92*2 Baulan)z +(3W/an)2 ] (9n

which reduces to ﬁhe two-dimensional form when w = 0. This is
referred to as the invariant turbulence model by Hunt, Bushnell,
and Beckwith (Ref. 9 ), and was used with success by Adams
(Ref. 8 ).

The model used in this investigation is the common two-
layer inner-outer model which uses the Prandtl mixing length,

theory and the Van Driest or Peichardt damping near the wall.

Following Patankar and Spalding (Ref. 10 ) and Adams (Ref. 8 )

the mixing length distribution is as follows: |

: e = ks n {0 < n > Any/kyl
Ly = A ny {)\nllk* < n} ©8)
| where
ky, = 0.435
A=0.09

1/2
ng =n when [(u2 + wz),(uez +we2)] = (.99

The inner law is damped near the wall so as to yield the exact

laminar shear stress term at the wall; To accomplish this, two

different damping factors have been used in this investigation,
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Van Driest's damping term with local shear stress, and
Reichardt's (Ref.ll ) damping term.
Van Driest's damping term for two-dimensional flow

is:
2‘* =] - exp :n—ﬁ (99)
i *
HA

where Tt is the local shear stress and A* is 26.0. Therefore

the total shear near the wall becomes:

2

2
1 - exp :“—éﬂ (3u/en)  (100)
H

T = u 3u/on + pkkz n2
for two-dimensional flow. Again, use is made of analogy to
derive the form of the near wall shear for a three-dimensional
flow. By analogy of equation (100) with equations (95) and

(96) the three-dimensional form of the total shear becomes:

2
2
L el 9E/on + pk*2 n2 1 - exp :2%%£é (3E/an) (101)
U
or
2 2 -n TP :
eg = ok," 0" |1 - exp o (3E/3n) (102)
M

Cebeci (Ref. 12) developed a mass-transfer correction to
Van Driest's inner eddy viscosity law by modifying the damping
constant A*. For turbulent flows with mass transfer Cebeci

determined the damping constant to be

A* = 26 exp (-5.9 Vo +)
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where

+ 1/2

Ve vb/(TO/p)
Reichardt's expression for the inner eddy viscosity

law was obtained by curve fitting experimental pipe flow

data. The expression is:

e, = uky [-2—‘,;2 - 11.0 tanh (“—‘I—T--_E )] (103)

u 11y

As can be seen this expression does not involve the velocity
gradient terms. For this reason it is preferred for use in
numerical solutions, since it usually requires fewer itera-
tions to converge.

Following equations (97) and (98) the outer eddy
viscosity law is:

€y = AZ nl2 9E/in (104)

and the total shear stress is:

to = u 3E/an + A% n % (3E/om)? (105)

The outer eddy viscosity law is used in conjunction with the
Klebanoff (Ref. 13) intermittency factor which assures a

smooth approach of €g to zero as y - §. The modified law is:

€ = Az “22 y 3E/an (106)
where y is Klebanoff's intermittency factor:
y = [1 +5.5 (n/6)6] (107)
39~
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Schetz and Favin (Ref.l4 ) have derived a correction to
Reichardt's inner eddy viscosity law for cases of mass trans-
fer. This correction has been used in the current investiga-
tion, giving this corrected expression for the inner eddy

viscosity:

eg = ku (1 + vo+ uhHl/2 (@t . ne"’ tanh (n+/ne+)) (108)

where
vo = vo/Tole
n+ = ndtp/u
and

+ +
e 3.65/(v0 + 0.344)

The quantity u’ is found by integration of the expression

du+ (1 + Vg u )
—_— = 177 (109)
dn 1+k L+ vyt o' @ - nt otanh @F/n )
or using equation (108):
dut 3 (1.4 vo+ u+)
dﬁ+ (1 + ei) (110)

Since the eddy viscosity € is implicit in the integration for
u’, the calculation of e; is an iterative procedure for mass

transfer cases.
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9. Transition Models

Two models of transition from laminar to turbulent flow
have been used in this investigation. One model is a simply
instantaneous transition to turbulent flow, and there really
is no transition region or zone at all. In the second case a
smooth transition to turbulent flow occurs over a prescribed
distance. This distance is known as the transition zone
and is defined as the distance between the onset of transition
at £ = Et and the beginning of fully turbulent flow at & = ET J
at some point downstream.

The probability of turbulent flow at any point is ex-

E pressed by a model by Dhawan and Narasimha (Ref.l5 ) as:
I(6) = 1 - exp (- ((X-X)/D2) (111)

where If(x) is the transition intermittency factor,

and
o = 0.412
X =X - X
Ie = 0.75 Lf = 0.25
|
| and where
§ Ig(X.) =0 '
] (112)
|
Le(Xp) = 0.97

By substituting equation (112) into (111) an expression for X can
be found based on the transition zone length:

X = (e - X.)/2.917 (113)
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Now, substituting(113) back into (111) the final expression

for the transition intermittency factor as used in this in-

vestigation is obtained:
I.(E) =1 - ex [ 0.412 (2.917)% ((X-X.)/(X-X ))2] (114)
£ P : > ) [ =Xy

The transition intermittency factor is employed as a simple
multiplier of the eddy viscosity in the governing equations
and therefore acts as a damping coefficient for the full tur-
tulent eddy viscosity. It is an expression relating the
fraction of time any particular point spends in turbulent flow,
and therefore the probability of turbulent flow existing at

that point.
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10. Finite-Difference Method

The finite difference method used in this investiga-
tion is idential to the one used by Frieders and Lewis (Ref.17 ).
Basically the procedure is based on the method of Dwyer
(Ref.18 ) with modifications by Krause (Ref.19 ). The pro-
cedure allows for variable spacing of the normal coordinate.

As implemented in the current investigation, the
finite-difference procedure is a forward marching one, thus
taking advantage of the parabolic nature of the governing
equations. The method used marches away from the stagnation
point by first stepping down the windward symmetry plane one
step and then marching around the body from the windward to
leeward symmetry plane. This process is repeated until the
calculation is completed.

Basically the finite-difference procedure is implicit
in the normal direction and explicit in the - and w-directions.
In order to retain stability in regions of reversed cross-flow,
the Krause difference molecule is used for w differencing as
depicted in Fig. 3 . Taking w to be a general variable (i.e.

either F, G or 6) then

ow WZLp - w3’n

9 AE

ow (w2,n o4 wlln) y (w4,n v w3LB)

2w 2Aw

&3




where the subscript notation is that of Fig. 3 . Central
differences are used in the normal direction with mesh points

spaced according to the formula

k =

where k is a constant which can be set at the discretion of
the user. Substitution of the finite-difference expressions
into the governing equations results in a set of non-linear

difference equations of the form

- " = -
n-l~+an2,n 'an2,n+1 +Ew R (213)

-A w
2 Zn n

’

This relation is linearized using the Newton-Raphson interation
formula

2

wi - :zw‘z’,n Wy o w® )2 (116)

n 2.n

where wg " is the value of the dependent variable from the
previous iteration. For the initial iteration, wg & is ap-
proximated with Y n Use of FEq.(116) in Eq.(115) results in

’

a set of simultaneous linear algebraic equations of the form

-Anw2,n-1 +Bnwz,n +an2,n+1 e

which are solved using the Thomas algorithm (Ref. 20).
11. Normal Pressure Gradient Approximation

The normal pressure gradient which appears in the
normal momentum equation, Eq. (14) basically arises from

centrifugal force effects. Due to the low speeds being

considered in the current work this effect was neglected.
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This was done by setting I, and Im to zero in Eqs. (44)

c
and (52). 1In the actual coding however these terms were
left in the governing equations and this effect could easily

be included in the future by having subroutine PRESSI evaluate

Eqs. (45) and (46) in program ICBL3D.
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Section III

RESULTS AND DISCUSSION

In order to test the validity and accuracy of the
computer program developed from the foregoing analysis, a
variety of test cases was selected. Since the principle de-
parture of the present analysis from previous efforts is in
the inclusion of surface curvature effects, it was this area
that received considerable attention during the testing process.
Test cases were run at a Reynolds number of one hundred in
order to achieve a thick boundary layer on the body, thus
amplifying the curvature effects. Calculations were made over
spheres and spheroids at various angles of attack and turbulent
effects were included in one comparison.

The first test case run was that of a sphere at angle
of attack. In this calculation a coordinate system is selected
that is not aligned with the sphere's wind axis thus producing
the requirement for a three-dimensional calculation of the body
boundary layer. The utility of this calculation is that it can
be easily compared with existing axisymmetric boundary-layer
calculations. Calculations were made for a unit sphere at
a = 2°, Re = 100. The results were compared with those of
Davis et al. (Ref. 6). The results of Ref. 6 were obtained
with an axisymmetric boundary-layer code with longitudinal and

transverse curvature effects included (SFC). The results of these

comparisons are shown in Figs. 4 through 6. Plotted in Fig. 4

is the development of the skin friction and displacement thickness
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along the windward symmetry plane of the sphere. The results

of the present calculation without surface curvature (NoSFC)

agree identically with predictions made by the VPI&SU axisymmetric
boundary-layer code (Ref. 16). The skin-friction comparison
between the present method and that of Davis et al. (Ref. 6)

for the SFC case is also excellent. Figure 5 shows the variation
of skin friction around the sphere along £=constant lines. Com-
pared in Fig. 6 are the velocity profiles at a point on the
windward symmetry plane for the with and without SFC cases.

Calculations were then made over a 4:1 spheroid at
a= 2% and Re = 100. The semi-major axis of the body was
aligned with the angle of attack line and was four feet long.
The results of these calculations are shown in Figs. 7 through
10. Figure 7 illustrates the development of the boundary layer
along the windward symmetry plane. The skin friction for the No
SFC case is compared with an unpublished calculation made with
the Blottner and Ellis (Ref. 2) code. As can be seen the agree-
ment is excellent. Figure 8 illustrates the development of the
skin friction around the body and compares the results with
that of the Blottner and Ellis code for the NoSFC case. 1In
Figs. 9 and 10 velocity profiles are compared between the two
codes.

An interesting result of these calculations is that
inclusion of surface curvature effects initially produces a
somewhat thicker body boundary layer compared with the NoSFC
case. This is in contrast to the inclusion of transverse curva-

ture effects only which initially produces a thinner boundary
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layer compared with the NoSFC case (see Ref. 6). Since the
pressure gradients experienced by the boundary layer over
flatter portions of the spheroidal body where longitudinal
curvature effects become less important are not such as to

thin the boundary layer, this thicker boundary-layer persists
along the body. The results indicate that all curvature effects
must be accounted for in order *“o correctly predict the boundary
layer growth over blunt nosed bodies.

Figures 11 and 12 detail the boundary -layer growth
for the same 4:1 spheroidal body at o = 10°. The effects of
this larger angle of attack are clearly seen by comparing the
circumferential skin friction plot of Fig. 12.

In Figure 13 a turbulent calculation is presented for
a 4:1 spheroid at a = 0° and Reg = 107. Comparison is made
between the present method and the results of Chang and Patel
(Ref. 3). As can be seen the agreement is excellent.

These calculations were made to verify the code and
as can be seen by the calculated results, agreement between
the present method and previously published works is excellent.
It should be borne in mind, however, that the present code is
much more versatile than either the codes of Refs. 2 or 3 in
that it includes surface curvature effects, it can treat

arbitrary body shapes and it includes turbulence effects.
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SECTION IV
CONCLUDING REMARKS

The total system of computer programs generated to
implement the foregoing analysis represents a package with
very general capabilities. These capabilities are as follows:

1. Body must have a blunt nose and a plane of symmetry

but is otherwise arbitrary so far as the boundary-
layer code is concerned at arbitrary angle of at-
tack.

2. Current inviscid capabilities are restricted to

axisymmetric shapes at zero and non-zero angles
of attack and arbitrary cross-sections at zero
angle of attack.

3. All surface curvature effects included.

4. Laminar, transitional and/or turbulent flows can

be calculated.

5. Effects of heat and mass transfer included.

To the authors' knowledge these capabilities represent
the most complete package available today for predicting three-
dimensional boundary layers.

The system of programs was separated into two independent
systems of programs in order to maximize operational versatility
and to facilitate future development. By removing the calcu-
lation of the inviscid flow and coordinate system from the
boundary-layer code, this boundary-layer code can be viewed as

a solution procedure for the set of governing equations
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developed in Section II. The separate inviscid flow computer

program supplies data to this solver which defines both the
body geometry and inviscid flow. Thus, if alternate means for
generating either the inviscid flow or coordinate system are
desired, other methods can be substituted into the appropriate
blocks in the inviscid package without affecting the boundary-
layer code. Further, the separate boundary-layer calculation is
allowed to proceed on its' own step size along the surface with-
out considering mesh requirements of the inviscid flow or co-
ordinate generation codes.

In summary, the analysis and programs resulting from
this investigation represent as versatile, flexible, general
and efficient a method for predicting incompressible three-

dimensional boundary-layers available today.
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