
AD—AQb1 197 VIRG INIA POLYTECHNIC INST AND STATE UNIV BLACKSBLJRG —fTC FIG 20/Il
THREE—DIMENSIONAL INCOMPRESSIBLE BOUNDARY LAYERS ON BLUNT BODTE——ETC (tJ)
MAY 77 0 L DWOYER, C H LEWIS. P R GOGINENI

UNCLASSIFIED VPI/SU—AERO Ob3 NI.

‘ tELL I_ ~~~~~~~~



10 ~ 2 8  r~i~_________ is o 1315 II 2 2
I~~~ 3.5

2 01•1 ~~
_____ ~~• 1P!

NATIONAL BUREAU OF STANDARDS
~ CSOGOPY NESO4.UTIC d TEST CHAST



-

(2~ VPJ & SU AERO iVj

Three - Dimensional Incompressible
Boundary Layers On Blunt Bodies

Including Effects Of Turbulence, Surface
Curvature And Heat And Mass Transfer

Part 1: Analysis And Results

by

D. L Dwoyer, Clark H. Lewis and P. R. Gogineni

This research was sponsored by the App lied Physics Laboratory of the Johns Hopkins Univer~
sity under Subcontract Numbe r 60032$.

Aerospace and Ocean Eng ineering Department
Virg inia Polytechnic Inst itut e and State Univer sity

BIacksburg~ Virginia 24061



~~~~~~~~~ E-pI~~NSION~~ 1NC~~~R~ SSIBLE ~OUNDARY

ON BLUNT ~ODIES INCLUDING EFFECTS OF ‘~URBULENCE , /
\ ~URFACE ~URVATURE AND VEAT AND ~ASS TRANSFERa/

FART L • ~NALYS IS AND ~ ESULTS ,

by

D. L./Dwoyer, Clark 11./Lewis P. R.[Go~ine~~~
j

This research was sponsored by the Applied Physics Laboratory
of the Johns Hopkins University under Subcontract NLmtber
600325.

Aerospace and Ocean Engineering Depar tment
Virginia Polytechnic Institute and State University

Blackaburg, Virginia 24061

(/
~~~~
—

~

(
~,

~~Y ~~~~ ~~ public re~~~’S

L.~~~~~~



ABSTRACT

The governing equations for laminar , transitional

and/or turbulent , incompressible , three-dimensional boundary

layers are solved numerically. The equations are developed

in terms of an orthogonal surface coordinate system and include

surface curvature effects. The coordinates are generated nu-

merically, while the inviscid flow is obtained from a general

po~kt iaa flow procedure. The only restrictions on body geometry
• 1 •~ are tha~t . i t  possess a blunt nose and a p lane of syninetry. The

1 4

bo nIar~~4layer equations , after being transformed into similarity

~~~ variables, are solved using the implicit finite-difference
Krause scheme . Various test cases are presented to establish

the accuracy of the resulting computer program.
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NOMENCLATURE

A Quantity defined in Eq. (47)

A* Van Driest damp ing constant

C Specific heat, ft2/sec2-°R

Cf Skin friction coefficient based on local edge
e proper ties r4 ~~

C Skin friction coefficient based on freestreant

properties pU~

E Scalar velocity function used in the Van Driest

inner eddy viscosity law

F Nondimensional boundary-layer longitudinal

velocity component h
~
U/h

~~0
Ue

Functions of ~~~, to defined by Eq. (20)

Function of f , w defined by Eq. (25)

F Function of F defined by Eq. (29) -

G Nondimensional boundary layer crossflow velocity
component, h(ow/hw OW

~~~~ 
Metric coefficients in ~ and to directions respectively

urn Quantity defined by Eq. (51)

Ho Quantity defined by Eq. (56)

i Unit vector

If Transition intermittancy factor

Mixing length constant for Van Driest inner
eddy viscosity law

k~ h~~0 (h~~~)0

Curvature of ~ coordinate , (h
~
h
~
)’ 

~~~~

K Curvature of to coordinate, (h
c
h
~
Y’ ~~~

V
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Mixing length

L Nondimensionalizing length normally taken as one foot

L~ h~~0 h~
3 h~~~

L h h 3 h
to to , 0 to (0 , 10

n Distance normal to body surface ( ft  when dimensional)

Boundary layer thickness used in outer eddy viscosity
- law (ft. when dimensional)

p Pressure (lb/ft2 when dimensional)

Q .4 (h~~0/h~~~ U~ - ~ (h1 0 0/h 10
)2 w~

Pr Prandtl number

r Radial coordinate (ft when dimensional)

Re Reynolds number

S Surface distance (ft when dimensional)

T Temperature (°R when dimensional)

u, U Viscous and inviscid longitudinal velocity components
respectively (ft/sec when dimensional)

v, V Viscous and inviscid normal velocity components
respectively (ft/sec when dimensional)

w, W Viscous and inviscid cross-flow velocity components
respectively (ft/sec when dimensional)

W 
~
‘
~e 

at stagnation point and in syimnetry plane ,

W Ue elsewhere as used in Section
s 11-4 through 11-6 

- 

-

X Axial coordinate (ft when dimensional)

a Angle of attack

We/Ue

a2 W/Ue

a3 We/W
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81 (Uh~~0Ue)Ue~~

82 (FJh1 0 0Ue)Ue w

B3 (
~ /h~~OWe)We~~

84 (
~ /h w 0 We)We w

85 (~ /h~~0W)W~

86 (~ /h1 0 0W)W10

Boundary-layer thickness (ft  when dimensional)

6* Boundary-layer displacement thickness (ft  when
dimensional)

Re~~ ’2

+c Eddy viscosity

Transformed normal coordinate

6 Nondimensional boundary-layer temperature, T/Te
U
~
/Te

Coefficient of viscosity, lb-sec/ft2

Longitudinal surface coordinate (ft when dimensional)

p Density , slugs/ft3

a l + c +

Shear stress (lb/ft2 when dimensional)

$ Meridional angle, degrees

• Dissipation function given by Eq. (7)

Transition length (ft when dimensional)

to Transverse surface coordinate

Vorticity (sec~~ when dimensional)
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Subscripts

e Boundary-layer edge

n Indicates differentiation with respect to n

t Designates turbulent quantities

0 Wall conditions

Indicates differentiation with respect to ~

Indicates differentiation with respect to ~

Indicates differentiation with respect to to

c-direction quantity evaluated at the wall

~ 
derivative of c-direction quantity

Freestream conditions

— 
Vector quantity

Superscripts

* Dimensional quantity

Non-dimensional quantity

Non-dimensional stretched quantity

Turbulent fluctuating quantity
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SECTION I

INTRODUCT ION

A computer program has been developed to predict

laminar or turbulent three-dimensional boundary layers over

blunt bodies immersed in incompressible fluids. The program

includes the effects of surface curvature. Such a code is

useful for predicting the boundary-layer growth over sub-

merged bodies at angle of attack , or bodies of non-circular

cross-section at zero angle of attack.

In this report , the three-dimensional boundary-layer

equations are developed in a surface-oriented , orthogonal ,

curvilinear coordinate system with all surface curvature ef-

fects included . Further, the limiting forms of these equa-

tions in symmetry planes and at the stagnation point are

developed . It is required that any body shape considered by

the code possess a plane of symmetry.

The resulting equations are integrated using a marching ,

implicit finite-difference scheme on an IBM 370 system-model

158 digital computer . 
—

1. Background

The three-dimensional boundary-layer equations for

laminar , compressible flow have been developed by Moore (Ref. 1). - 
-

Procedures for numerically solving these equations for the in-

compressible case have been developed by Blottner and Ellis

(Ref. 2) and Chang and Patel (Ref. 3). The Blottner and Ellis
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procedure for laminar three-dimensional boundary layers uses

an orthogonal, surface -oriented, curvilinear coordinate system

which is numerically generated . In this procedure , the co-

ordinate system is developed independently of the boundary-

layer or inviscid flow , but has as its origin the inviscid

stagnation point. The procedure does require , however , an

analytic solution for the inviscid flow and is therefore

restricted to a rather narrow class of bodies. The method of

Chang and Patel for laminar or turbulent three-dimensional

boundary layers also uses orthogonal surface coordinates , but

these coordinates are calculated analytically based upon the

geometry of mathematically well defined shapes. As such, this

procedure is also limited in the class of bodies which can be

calculated.

The procedure developed in the present report takes

advantage of the versatility of the Blottner-Ellis (Ref. 2)

coordinate system so that a much wider class of bodies may be

studied . Essentially, the numerically generated coordinate

package of the Blottner-Ellis procedur e is separated from the

boundary-layer procedure. This allows for the development of

a coordinate system for a given geometry to be carried out as

a separate task from the boundary-layer calculation . Thus, once

the coordinate system has been developed for a g iven geometry

at a given angle of attack , that body can be studied under a

variety of flow conditions without having to regenerate the

body coordinate system . Further , since the procedure is

-2- 
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numerical , it can be used with a discrete description of body

geometry as well as analytic , thus further enhancing the pro-

cedures versatility.

Since the body geometry that can be handled by the

- code is restricted only to blunt shapes with a plane of sym-

metry , a rather general technique for predicting the inviscid

flow about the body is required. The Smith-Hess (Ref. 4) pro-

cedur e is used for this purpose. An intermediate code is then

used to interpolate the output of the Smith-Hess code onto the

surface-orthogonal coordinate system. All of these data are

then Fourier fitted and the Fourier coefficients are stored on

disk. This disk is then read by the bmindary-layer program

which predicts the boundary-layer development on the body .

The technique described in this report accounts for all

surface curvature effects , and , to the authors’ knowledge , this

is the first time these effects have been accounted for in

three-dimensional boundary layers.

-3-
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SECTION II

GOVERNING EQUATIONS

1. Coordinate System and Boundary-Layer Equations

In this section , the full incompressible three-

dimensional boundary-layer equations are developed . The equa-

tions developed are written in an orthogonal curvilinear body -

oriented coordinate system whose origin is located at the stag-

nation point for blunt nosed bodies. The details of the co-

ordinate system are depicted in Fig. 1 . As can be seen in this

figure , two coordinate systems are shown ; the first a body -

oriented polar coordinate system and the second a surface -

oriented curvilinear system . In this system , ~* is measured

away from the stagnation point along meridional cuts , ~~ is

measured normal to ~*and around the body and n* is measured

normal to the body . At the stagnation point ~~~~= 0, and ~~ 0
along the windward symmetry cut . In this system the body radius

r* is generally a function of w~ For this coordinate system a

differential distance ds* is

ds*2 = hf (~*,~*,n*)d~*
2 + h*

2(~*,ü *,n*)dw*2 + dn*
2 (1)

where h* and h* are the metric scale coefficients.w

The governing equations of fluid mechanics written in

this coordinate system are (Ref.5 ):

Incompressibility :

~
(h
~
u) a(h~w) ~(h~ h v )

+ + - = 0  (2)
3F~ an

-4-.
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~~~~

Navier Stokes

ii au ~ au ar .. a~~ i~
— — + — —+ ~~~~~~ — - _ — +

h~ ~~ h
10 

3w an h~h~) a~ h~ h10 
ato h~ 311

= .
~~~~~~~~~~~~~ 

÷~~~~~~~~~ !~~ + ‘
~I

’
L (~~~~)h~ 3~ h~h~ 3~ ~~~ a~~j h~ h10 3w h10 3w

— l -.Re 3
( )

- -. - . .. - .~. 2 - -

u 3w w 3w 3w uw 3h u wv 3h
— ---- + — — +~~~~— +  —~~~~- 

_ _

h a~ a an ~~ a
to ~~w

= + ~ i~~ ~~ +~ i’! ~~3~ h~h 3~ h~ 3~ h~h10 
3~ h 3~i

+ 
Re~~ ~~ (4)
h~h10 311 311

ü 3~ ~~ ~j ~2 3h
10— — + — — + ~~ — - — —~~ - — — — -

h~ 3~ 311 h~ 311 h
10 

3n

Re4 3 h 3* Re~~ a h 3* Re~~ 3 .

+ ____ — — + — —

~~~ 

— + ____ — h~h

(5)
-5- 
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Energy

ii ~ 3T Re ’ ra  h 3T 3 Ii 3T
+ + ~ - — = 

I — —
~~ 

— + — .! —
h~ 3~ h 3w 3n Prh

~
h
~~L3~ 

ii~~~ 3~ h
10 

3i~

+i~ (~~~)]+ ~~ ( 6 )

where

3~ h~h10 
3~ h~ 311

ri - 
ai 12

+ 2 I — — + — —~~~ +

Lh 3w h
10 

3n h~ h~ 3~

~~~~ Ii 3
+ 2  — - + l— — + h — —

+ [ ~~ — .~~~~~ + .~+ r~ ~ +
~~~~~~~~~~~~ 

~SL ~311 h~ h~ 3~ a~ 1

ri 1 3~’
+ ~ I —: + •:— + + - - + -:--

I h 3~ h 3w 3n h h 3w h 3n
10 -

- -. - -i2
v 3h u 3h

+ — —~~~ + - 
(7)

h
~ 

311 h~h 3~ J
In the above equations the fol lowing non— dimension alization

has been introduced:
* * * * *

- U - w - V - - n - P
U = 

~
-j , W —i, V = —i, E, - = —j , U) ~~*, fl = 

~~~~ 
P * *2U~, U~, U~,, L L

*
h~ , h

~ ~~ , T ’ — ~ 2 
(8)

- -‘—--— -— —~~ - -------- -~ - -~ -- --- --—— - ~~~~~~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~~ - - - -~~~~~ __ .._ - -_~~~~~~~~~. -
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We now approach the above equations with the assumption

that in a vanishingly small region near the surface, a region

of order e thick , all flow properties except the normal ye-

locity component are of order one - v itself being of order c.
Thus, we introduce the following stretched coordinates:

(9)

where c Re~~~
2. According to our above described ordering

scheme we then write

~~~~~~~~~ =

v(~ ,~~,~~;c) c~~~~~~L~~~c)

p(~~,&~~i;c) ~(~ ,~~ii~c) (10)

and note that — and ~~~~

Introduction of Eq. (9) and (10) into the governing

equations and retention of all terms to order c gives

3(h u) 3(h w) 3(h h 10 v)
+ ~~~~~_ = o  (11)

u 3u w 3u 3u w2 31~ uw uv
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ 3~ 311 h~h10 
a~ h~h10 

3w h~ 31

(12)
3~ h~h10 

a~ ~ ‘~ a- u )

-7-
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-- ~~~~-~~

— 2 —  —
u 3w w 3w 3w uw 3h u 3h wv 3h10_ _ + — - — - + v — +  ___~l _  + — —

3~ h ~ ~~~ h~h10 ~~ ~~~~~ 

3n

- 1 3p 1 3 — —

= - — — + —v- — h h —~~~ (13)
h 3w h h  3n ~~~~3nJ

to

u2 w2 a~i~ 3p
+

~~~~~~
-

~~~~~
=

~~~~~ (14)

1 L
3 ii~~10

Pr 3n 3n

+ ~2 [a (u
fl2 

+ ~2[L(~~j ]2 (15)

Equations ( i i )  through (15) represent the ful l  second-order

three-dimensional incompressible boundary—layer equations

written in the surface -oriented curvil inear coordinate system

described above.

2. Boundary and Matching Conditions

In order to complete the above described set of equa-

tions , the boundary conditions at the body surface and matching

conditions at the boundary-layer edge must be established.

-8-
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At the wall we apply the usual no slip condition and

write

— w(r,~~,0) = 0  (16 )

To allow for mass injection at the surface we write
-

-

Using the subscript m to denote matching values, we write for

large n,

u .—....u (~~, to ,n) 
—

as n— ~~~ (18)

-

-

In order to find values for Urn and Wm we turn to the

requirement of vanishing vorticity for large n. First we

note that - -

i 1~. - l ay  a(s ).
fl V x V = _ c~h h i - I - - - -— — — h

~i L ~~
10

~~
L 3w 3n

~ 1!~
_
~~ 1 +~~~~W La~ 311 J ~ [ a~ ai JJ

Substituting Eqs. (9) and (10), the boundary—layer scaling

- 

- laws gives
~~~~~~~

.-

~~~~~~~~~~~~~ J~~T ~~~~~~~~~~~~~— 

h
~
h
~ ~ L ~ ~ ~ J W e 3~ J

-9-
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r 3(h w) a (h ~ u)
+ d  I —

~~~ - —
~ L ~~~~~ 3w

Multiplying by e and retaining terms to 0(e)  gives

I 3(h w) I 3(h~u)(A) 
_ _ _ _

h 3ii h 31i
(A)

Requiring c~ to vanish at large n then gives
.

3(h w)
= 0

an

— 
as f l —~~~ (19)

3(h U)
= 0  

-

Equations (19 ) can be integrated to give

F1(~~, w) -

m

- a s n— ~~ ( 20)

F2(t , i )
Wm _

In order to establish F1 and F2 the matching condition that the

viscous velocity profile as —~~~ ~ match the inviscid velocity

profile as n— .~~0 will be used.- Thus

F ( F , w) -

Urn 
— ______  

- U ( F~,~~,1~)
h

- as 11 .0 (21)
F2(~~, w) - -

Wm 
- W ( E ,:, n)

—4



-~~~~~ —-- -~~~~~ - -—-- -— -

where the capitol letters denote inviscid quantities. Ex-

panding the first of Eqs. (21) in a MacLaurmn series gives

-
— —

— U(~ ,w ,0) + — n + .
h— -

The outer flow must be jrrotationaI~ however , so that from the

definition of vorticity

3(h~U) 
— 

3V

or,

an h~ L a~ an J

We now note that , by a MacLaurin series ,

- 
— (~~

)_ - + ~~~~ 11 + ...
~~~

— a h \
h 

~~~
+ S j n + . . .

311 )
0

— i + 11 + . . .)

Thus, using the binomial series

-11-
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F1(r ,~~) - -2 2 - - -2 2
—

~~ 
(1 — k~i1 + k~fl ) = U(~ ,~~,0)(1 — k~ñ ~- k~ 11 ) + . - .

- 

-

where the boundary condition V(~ ,w ,0) — 0 has been used.

Finally -

F1O~,w) = h~~0 U(~~,a , 0 ) .  (22)

In a similar manner

F2(~ ,w) = h 0 W( E~,w, 0) - (23)

Equations (20) then become

Um = ‘

h~
as _~~~~,0D (24)

W (~ ,w ,O)

I
10

since h = 1~ and h =

3. Elimination of Pressure fr~~ the Boundary-Layer Equations

Examination of Eqs. (11) through (15) reveals that

the principle difference between these equations and the usual

first-order boundary-layer equations is the fact that the pres-

sure is not constant across the layer. As pointed out in Ref.

6 for the two-dimensional case , these equations can be made

similar to the first-order boundary -layer equations by elintina-

ting the pressure as a variable , hence eliminating the need for

direct solution of the normal momentum equation. Once this is

-12- 
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accomplished , solution procedures similar to those for the

first-order equations (see Ref s. 2 and 6 ) may be applied

to the system.

In order to eliminate the pressure the normal momentum

equation , Eq. (14) is first integrated to give

- - 
~~~~~~~~~~~~ - ~~u2)d~~

j  h~~~ ~~~~ w~ - ~2 
~2 )  dn ’

~
2 u2~~~~

2 2
— - 

w , e + ~~~~~~~~~~~~~ (25 )
2h~ 2b

10

where use has been made of the matching conditions . Now note
that

‘~
(“1~~2

)
~ -J h~ 

- i~ u2) d~~’ (26)

¼ ~~~~~~ 
— 

~~ ~ 
w~ - ~2 ~2) ~~ (27)

-13-
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I

Eq. (25) is differentiated with, respect to and evaluated

at n-~ to give

= 
a[I~ (o , u) + i— ( o ,i~)] + a ( h ~~ou~

) 
_ (

~~
°
~~)3w 3w 3w 2h~ 3w h

10

+ —  (28)
3w

In order to evaluate 3p/ 3~ as i~+co the i~-~co limit of Eq. (13) is

taken , which gives , after use of the matching and inviscid ir-

rotationality condition

ap 
= 

i. a [(~~~oue\
2 

+ (~w , 0~~ 2 1
3~ 

2~~~~[\ ~ I ~ i I J
Use of this result in Eq. (28) then gives

— 

3(1-7+1;) -
-

or, upon integration -

Thus, Eq. (25) becomes

p(i,;,~~) =f ~~~~~ ~~~2) dli ’

÷1 hw~n (
~ ~ 

- ~2~2) dil’+F (0 (29)

-11+- 
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In a similar manner , this equation is differentiated with

respect to ~ and evaluated as n—  yielding

3F =-

~~~~~ 

~~~~~~
- (30)

Evaluating Eq. (12 ) as n—~ and using the matcting and

irrotationality conditions gives 
-

= - 

1 3 

~ 
~~ ,OUe 

2 

+ 
Iw,OWe 

2

2 3~ L

so that

= - 

i a [ ~~ , OUe 
2 

+ 
hw o We 

2

- 2 3~~ L

Integration of this result with respect to ~ and substi-

tution into Eq. (29 ) gives

pc~~
;,i~
) =] 

~~~n H~ U2) dii ’

+ r 1w, n 
( 

~ 2 W 2 
- 1i2w2 

) 
dli ’

J ~3 w ,O e  to
— U)
n

~
2 t~

2 
~

2 w 2
— E,,O e  w ,O e +~~ (31)

21 2 12
(A)

-15- 
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where C is a constant of integration . In order to evaluate

C Eq. (31) is examined as

2 2 — 2

~
, (~~~, to ) = - ~,0 e - ~~ e 

+ c (32)
2h 2h

to

From inviscid conditions near the body,

w2 u2
P = - - - ~~- — ~- + Ce 2 2

which is recognized as Bernoulli’s equation and hence C is

identified as the stagnation pressure. Solving Eq. (32) for

C and substituting into Eq. (31) yields

— u2 I
p(~~,;;,~~) = P (~~Ji~) + —

~~~ ~ - _ _ _ _

e 2

w2 /  j~2~~~~ — —

+ 
_

~~ 
( i - 

w~O ) + I— (n,~ ) + I—(n ,~~) (33)
2 %  h

(A) - J

The pressure is finally eliminated from Eqs. (12) and

(13) by substitution of Eq. (33) which gives

u 3u w 3u 3u w2 ah uw 3h
— — + - — — + v — -  —

~~~~~~+

i~
. 

~; ali h a~ 3~ —

(A) ~~~~to

uv 3h 1 3

h~ 3n h~ a~

I 3u\ (34)
— — — —  ~~w ~~h~ 3~ h~h~ 3~i

-16-



u 3w w ~w 3w uw U
2 3h

=— —= + = - -— + v — ± _ _ —=~~~~~- - - —  —~~
h~ a~ h 3 Bii hFh~ 

a~ h
~
h
~ ~~

wv al~ 1 3 1 3Q
+ - —~~~ + =— — (I-p- + I--) = - =— —

h 3n h ~ i ~‘ h 3w

_ _ _  
3 

to

h h  3ii ~~
to
~~ii

~~~ to
• 

. where

~2 u 2 ~2 w2
= - ~,O e 

- 
w ,O e (36)

2h2 2h 2
to

4. Transformation of the Boundary-Layer Equations

We now define the following new independent variables

()

= (37)

and new dependent variables
h u

F =
h~ 0U

h w
(A)

h Ww ,O

0 = T/T (38)

where W can be either We or Ue~ 
From the chain rule

3 3= +a~ a~ 
~‘ an

a a— = — + Ti— —
— to3w 3w

(39)
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The time averaged continuity equation , Eq. (11), is now integrated
to give

1 3 Iludii’-—- ——- r h W d f l ~= - 

1~~~ a~J ~ ~~w ~ J
- 

or , after using Eqs. (37) through (39)

2 h F h 0GW
I— v — V -  ~~~~~~ n— - ‘

~~
‘ (40)

h~ ~ 
h U e 

(A)

where

— ~ r / 2 h~~0F hU )ØGW 
~
_ 1

— 

~~~ 

- 

h~ 

- 

h2 

~~ 
~wJ 

(41)

This equation is now differentiated with respect to n to give

1 rr
V = - 

h
~
h
~ ~f2U [

~ 
~~~~~~~~~~L_ U F

+ ~ J~ 
WG) - V 

~~~~ ] (42)

which is the transformed continuity equation .

The convective operator is now transformed ,

u 3 w 3  3 h U F  h U F  3
+ + — ~,O e 3 ~~~ ~,0 e  — 

—- 

h~ an
h W G 3  h WG a 12U 3

+ 
w,0

~~~_ +  w ,0 
~~~~~~~~~~~~~~~~~~~~~~~~~ I—

~ 
—

h 2 3w h
2 10 3n ~~ 3n

(*) (A)
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Using Eq. (40) this result Lecomes

u 3 w 3  3 h U F 3  h W G 3  2[J 3
~,0 e  

— +  
w ,O 

~~~~~~~~~~~~~~~~~~~~ (43)
h~ 3~ h 3w h~ 3~ h 3w 3ri

The transformation relations , Eqs . (37), (38), (39) and (43)

are now applied to the time averaged F~ momentum equa tion , Eq.

(34) yielding

~~~G h
h~~0 2h~ 

F~ + 

2h
~ 

( + (V ÷ oH + = aFnn

+ — ( 
‘~~~~ 

‘

~ ~1(l-F ) + — ( 
,

~~~~ + ~K ~)
2 \ h / 2 \ h f

to

-2
— —  2- — ( 1 F  ) ( L  L -

( h
~~
)(h

~~o)

2
2 2  

-

,

_
oF 3h.~

h~~0 h
~ 

(A) 
h
~
h
~ 

an 3n

oF /3h ~ 2 oF 32h h
+ —~~~ I~~~~~1 - — 

2
E + F c  ~~~~ fl

+

h~ \3n / h~ an ~ h~ 2h
~~O

Ue

a
- ,

~ 
—(I + 1 )  (44)

Dh U 3~ 
(A)

~,0 e  ~‘

where
I h  — 2I~ J £~,0 (h~~OUe -

n ~

J h~~0 h~~0U~ ( l F 2)~[~~

~j r~ 
J(h ci o)

3 

(l-F 2 )dn ’ (45)
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and

(A) J h3 
(1
2 
0
w~ - 1~ ~2 

~ dii ’

= 
h~~~ h~~ 0W2 

- G2)J~~~ 
an’ (46)

= w2 J ~~ / (
~~~~

)3 
(~~

2 
- G2) dn ’

A1sQ,
2W

~ _.e~h2 w~ 2 G 3h h’~ U’( l — F ” ) 3h

_ _ _ _  
- (

~~~
)
~ 

W2
,/
~ (~i 

- G
2)) 

(47)

In the following definitions, note that W = Ue for 
general

points and W = We for 
the stagnation point and points 

on the

symmetry planes.
w w W

— 
- 

e — 
- 

— e
— — 

~2 — — 

~ 
= 

(4 8)

U Ue w

3U 3W

= ____ e — _ _ _ _  
e _ _ _ _  

e
— , p

2 
— _______ — B — (49)

h
~~o

Ue 3~ hw 0
Ue 3w 

~ h
~~0

We ~

-20-
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

K~ 
= 

~ 
—i

, K = —~~~~, L~ 
h~~0 

~~~ (50)
h~ h 3w ~ h~ h 3~ h~ 3~

1 3h 1 3h
H = — —---~~~~~~— --— --- -

~~~ (51)
m h 3 n

The transformation relations , Eqs. (37), (38), (39) and

(42) when applied to the time averaged to-momentum equation ,

Eq . (35) , give

h F h ~~~
+ to;0 2 c + (V - oHm + o~) C -

2h 2h (A)

to

/h~~~ ~~~~ ~~~~ h
— + 1  - -— — -—+ h j_

~~ 
w ,~ G

\ h h w ,n r i , 
~
1 h

to to

= cC + i(h~~0)2 (~ 3 
- FG)

+ 

1 
~~~ ) 2 ~~~ ~3 - a2 G

2) 86

~ 
(h10o )~~(h

~~
o)

2 

(1-F 2) K~
h hr

~~/h 
\2

+ ‘

~~~~~ 

) (~ 3 - FG) K 0
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_ _ _ _ _ _ _ _

- ~~~~~~~ (~~ - C2 )(L
10 

- L1 0 0) 
+ 

2h 0 

(h~ .o)
2 
a3

+ 

~~~~~~~ ( h 0\
2 

+ 

A~ r~
2h \h I 3,w 2h U W

w ,0 to w ,O e

a
- _ _ _ _ _ _  — (1 + 1)  (52)

2hw O UeW 3w

where

E 3W ~ 3W ~ 3W
B —

~~~~, 8~ = — , 86 = _____ —

‘~ h 1 0 0W~ 3w h~~ 0W 3~ h~~ oW 3w

3h
~L = ~0 — (54)

~ h~ 3w
to

Finally, the transformed time averaged energy equation is

h ~F h ~c~ G -] 2 2 2  22
+ 

t o O  2 
~ + (V +H o )O~ Pr 0~~~+ h~~o

AF
n
4h w o ~~~

a2
to

4h 2 A 4h 2 x~
2

- ~~0 ~,2 - — 
to , 0 2 h 2 (55~

4 “
~~,n ~4 w ,n ‘ ‘

h~ “to

where

H = —
~~~~~~~~~~~~

+
~~~~~

—
~~~~~~

--
~ ‘ (~ 6)

~ h 3 ~ h f 3fl T0
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5. Transformed Governing Equations in the Plane of Symmetry

The governing equations at the windward syn*netry plane

are found by examining Eqs . (37) - (56) in the limit as w—..0.

In the plane of symmetry we take W = W e and note that

G = u r n  -
~~
- = u r n  (57)

w—.O W e w~~~0 e
3w

with the last limit being bounded . In the plane of symmetry

we note the fol lowi n g,

W
a1 a2 = = 0 (58)

Ue tie + tie w~ + . . .  (59)

We W e (A) ÷ . . .  (60)
1

h~ H1 + H2w
2 + .. . (61)

h H + . . . ( 62 )(A) (A)

Substitution of Eqs. (58) to (62) into Eq. (42) gives

V n - 

h~~~h J~ [
~~~~~~~~ to~~~~~o 

J
U F )

+ 

h~ h~~0G /T!1 ~~~~~~~~~ - ~ 
3(hj~ 1~~

1

)J (63)
h~ ¶ 2 U e ~~ ~n

-23- 



which is the windward streamline form of the continuity

equation . We further note that at the symmetry plane

— 0, so that the E -momentuzn equation , Eq. (44), becomes

I h
oF - (V + oH + 0

n
) F - [(l-V) ~~~ +

- 
i (h ~~o~~

2 
( 1-F 2 ) 8i + — (1-F2)(L -L 0)2~~~ h~ / 2 ~

Ut 3(1 +1)
- 2~~~ 

+ — U’ (64)
2h~~ OUe ~ 2h~~ OUe

Before examining the to-momentum equation we must first

look at some limits at the windward streamline ,

a B  a B  _ 1 (65)
w ,O e

K H U2 e _ (66)
&~ h h W2 ~~w e 1

After noting that both of these quanitities have bounded values,

we find for the to-momentum equation , Eq . (52),

-24-
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a h h h2
cC - (V_clH

m+on
)G

n 
+ ç( ~ 

w ,n 
- 

w ,n 
+ hw n n )C

h F F 1 / h  ~~2
- 

~~~~~~ C = - — I ~~~~~~~~ 
I (l-FG)8

2h 2~~~

~~2 /
- — ( ~ ) (l-G ) ~~ 8~ 

+ — ( ~2 ~~h i l v  2~~~h(A) to

~ (
~~~~ o 

)

2 
(1-F2 ) - 

2h ~2 w , O e e

a
+ (I r + I )  (67)

2h U W  3w ~‘

w ,0 e e

Now , at the windward streamline ,

n

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

Thus ,

fl~~; 
~~~~~~~~~~~~~~ 

Ue

We 
— 

~~~ 
U~~~~ W 

(6 8)

We also note that

I~ - U~ 
~~~~~~~~~~~~~~ f(

~~~ 0) (l_F 2) dn ’ (69)

= ~ I1~E 
~~~~~ 

(cz~ - G2
) dn ’ (70 )
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so that

— ~~~~~~ = ~~~. /~ 
[(h~~o~~

3 

(&~ -G
2)dn ’ (71)

W 3to el~~~2 u J  
‘ 

h (,~ I
n

i. ~~ 
— 

~~
1eUe2 f J ( h~~0)3 ( 1-F 2 )dn ’ (72 )

W 3 w  W 
~~

2Ue n

These latter results allow us to evaluate the last term in

the to -momentum equation .

Finally, we write for the symmetry plane energy equation

h 0~F 2 2Pr O nn
_ (V+H

~
)O

n 
- 

~2 ~~~~~~ -h~~0 A F ,~

4h 0X 2+ h~~~~~~ (73)
h~

We also note that at locations where —
~~~ — 0 the limit

3w

(57) is unbounded . From Eq. (63) we also see the term requiring

C is not required and hence we do not need to solve the to-momentum

w aw
equation . Also note that — —s — w and hence the produc t

W 3w
3W e 3W

C ~ _! is bounded at the symmetry plane when —i — 0.
3w 3w
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6. Transformed Equations at the Stagnation Point

At the stagnation point , the properties at the edge

of the boundary layer and the metrics at the surface are

U = U, F~ + .e

W = ~ + w2 
~2 +

(74)
h~ = H 1~ + H2~ ~~ + .

h = H  ~to 1w

Let us first substitute the above relations into the inviscid

irrotationality condition . This gives

1 31.11
r~ ~~~~~~

— = 2Hl~ ,O

At the stagnation point we take W = We and wri te

*1 (75a)
U1

a3 — l  (75b)

— 1 (75c)

-27- 
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= 2~~ 
(75d)

1 W 1 + 0
83 = B~ 

= (75e)
2 W 1 0

1 3W

H W ~ W 1 + 0
lw ,0 I

$4 = 
~6 =

Hi~ ~~ 
~~2 W 1 = 0 (75f)

1 3H2 F 0
FK~ A = _____  ‘‘ (75g)

H 3w
i to , 0

1
= (75h)

We now substitute these results into the continuity

equation , Eq. (42)

V~ = - 

~~~~~~~~~~~ [L (

lto~~~~0 ~~~~~~ U1F )
+ ~ ( H

l~ H i~~ o~~~~~~~ ) - H1~ 
H1 

V

3 1:1
~~

-28-
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_ _

Thus,

= - 

H1~~ 0 F~~ lto , O 
~~ + (‘

~
+ 

+ 
~~~

)(H
i~~~~~o 

)

2 
&Gn H~~ 2111w 3w 2 2 H1

H ~~1 i  3H 1 3H
- 

lw ,0 
_ _ _  

l~~~~_ lw ,0
2H~~ [ 2H 1~ 3w Hi~~ o 3w

1 an 1 / 1  ~H 1 3H
- — 

~~~ 
G + 1w + — (76)

H1 3w J H1 3n H1~ 3r~

Before the c-momentum equation is evaluated note

= 0

~~~~~~~~~~~~~~~ ~~~~~~ 

.jiii•;~ ~~~~~~~~~

~~~ 
_ _ _ _ _ _  ; I1~ 

= j (h
~~o)3  (1F2 )d~

at 4
~4Ji W1I~ 

= f(H1~ o) 3 ( l G2 )dn
U ~~ U 1 1w J \ H 1~
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Using these results , Eq. (44) , the ~-momentu1fl equation ,

becomes

oF - (V + oH + a
n
)F

n 
- 

[

(h 1h~~~ 
- 
~~~~ 

+ 

1~~~ \_ 
~ 

F
h~ h~~/ 

~ h~

— I \2  /H \ 2

- 

H
i~~ 0

Ga 
F = - 1(~~~~O ~ (1-F~) 

- 
~~~~ 

1w~0

2H i~ \ h ~ /

_2 1h \-1/H  \ 2

X (2~ - 
- 

~K o~ 
(l-FG ) - ~ 

F ,0 ) ( ~~~2 \h ~ / \ H i~

x (1-G)
2 

~~~~~ 

+ 

w~~i~~~
]

Befor e the to-momentum equation is evaluated note

8,) 2a
= — = 2

a a

1 3W 1
— —  W + 0

IL, U 3w 
1

iw ,0 i.

_______  

3W 2
= — = 0  W — 0

Hi~ ,0W 2 3w 
0

• ~~~~~~~~~~~ _ _
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U1 3H 1ç
W1~~~ 0

- a H H w1~ ito  1

U 1
w1 = 0W2 H1~ H1 aw

Define

A1 = :~%~ji~ 
[ 

h~~0U~(1-F
2) 

::1~ 
- (h

~~o)3 
~~~~~~~~~ 

(1-F 2)

- (1 C2) — 

H
~~~0 

W~ (1-C
2) 

aH
~~

giving

________ — 

A1
- _ _ _

to , e 1

also,

= + 
__~.I~i 

I1_~
2ht o 0UeW 3w ~J iiJj 1F~ ~j2 H1~ ~

W1 3w

and 
2

31 11w aw l a ‘ito

2h 011W 3w 
= 

P~fr Hj~ 0U~’2 3w 
- ¶J ~ U~ ‘2

~~ - 

31

~~~~
Hi W O U

~~~
2
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With these results the to -momentum equation , Eq. (52)

become s

h h2 h
cC -(V - oH + a )G - a t ~~~~~~ to , f l  - 

W ,fl 
+ 

w ,f l f l
nn m 

h h h h
U to

h~~~
] ~~~~~ GG = (~c,o~~

2 
(1-FG) ~~~ h~, j 2H1() 

to 
~ h~ / 2

I ~ 2 %-1 /
- ~(

Hi~~0 I (1-G2) 8 + (1w ,O
2~~~H1 /  

6 
~~H1 / ~~~~

(1-F 2) - 
~ 

~~~~~~~~~~~~~~~~ 
(l-FG) - 

A
1 

+ 

3 
‘12ct 2 ~~~~ u~~

2 
~j~ç ~

___________ 
ai~ ~ 

2 aw1 — 2+ + — - a
i~~~~~

• 

Hiw OW1 3 (A) 
~~~~~~ ~

I a 31lw 
+ ____________ ito

~~ ~J i H1~A ) oU~
1
~ 3w 

(78)

Finally, the energy equation becomes
ctG

Pr~~~O - (V + H ) 8  + 0 = - A Fnn 2H 1(A)

4h A 4A 2~~
2 /3H \

+ ~~~~~~ h2 + ______  
ito (79)

4 2h& H1 \ 3n

0
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7. Coordinate System and I~e t r i c  Coef f i c ien t s

The or thogonal sur face curvilinear coordina te sys tem

used to write the boundary-layer equations is identical to

the one developed by Biotcner and Ellis (Ref. 2). As shown

in Fig . 1 the three coordinate directions are ~~~, ~~~, n .  For

each se t of ~~~~, to , n there corresponds a set x , 0 , r in the

polar coordinate system whose origin is at the stagnation

point. The inviscid data tape contains data in the ~~~, w , n

coordinate system and at each point the corresponding values

of x , 0 , r are written . The transformation between the two

coordinate systems is generated numerically in program BLOT

which is contained in the TAPGEN program (see Ref. 7). The

procedure is identical to that  of R e f .  2 .  For each point in

the ~~~, to , n sy stem , program BLOT also generates values of

h~~0 and h
~ o and these quan tit ies , along with their E -der iva-

tives are also written on the inviscid data tape .

The boundary-layer program itself contains routines

to generate values of hr and h
~ 

as functions of n for points

in the boundary layer awa y from the wall. These routines are

used only in calculations where surface curvature effects are

included . For cases where no surface curvature effects are

included , the following relations are used :

h~ = h~~0

= h
~~o

~~~~~~~~~~~ = 0

h — h  = 0  (80)to ,n w ,nn

-3 3- 
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In order to calculate the values of the metric

coefficients away from the wall the definitions of the metrics

are used , i.e.

2 ds 2 dx 2 
+ dr2 + (rdq) 2

h~~=— ~~= dC 2 
(81) 

-

= 
~~2 

= 
dx2 

+ dr 2 + (rd~)
2 

(82)

where s and t are defined in Fig. 2 . The following definition s

are now made ,

X = X
0

+ X

r = r 0 + r  (83)

Thus ,

— 

dx 0
2+dr 0

2 
+ 

2d; dr 0 + d;2 
+

2dxdx+dx2 2
+ = h  + h  (84)

and

2 dx 2 + d r 2 + r 2 d~~
2 2d; dr

h -  +
to 2dto dto

(r0d~)
2 

+ r 2 (d~ 0 + d~ ) 2 2dx dx0 + dx 2

+ 
— +

2 2dw dw

— h ~~ 0 + h ~ 
(85)
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The above expressions are evaluated numerically

using the values of x, r, and ~ for points in the profiles.

If g is taken to represent x , r or ~ then (see Fig. 3).

(~~~~~ 

‘

~ 
= 

g2~~ 
- 

~~~~ (86)

2

/ dg \  g2 - g 1
( 

— 
J 

= ~fl ‘n (87)
\dw /  to2

- to
12,n

The positions of the coordinates themselves are

generated with the numerical scheme of Blottner and Ellis

(Ref. 2 ) .  This procedure is first-order accurate and re-

quires relatively small step sizes in ~ and to. For this reason

the coordinate generation routine was coded independently of

the boundary-layer program so that the coordinate system could

be generated on the fine mesh and the boundary-layer equations

evaluated over a coarser mesh.

8. Eddy Viscosity Models

Pr and tl ’s mixing length hypothesis states that the

eddy viscosity is the product of some characteristic length

and the normal velocity gradient. The characteristic length

is related to the size of the eddies of momentum flux normal

to the body and is called the mixing length. For two-dimensional

f low this concept leads to:
-
: = p

~*
2
~ 3u/3nI (88)
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Prandtl’ s studies assumed that the eddy viscosity should

depend only on local eddy scale and on the properties of tur-

bulence . Adams (Ref.  8 ) extended this concept to the three-

dimensional case by assuming that the eddy viscosity is also

independen t of coordinate direction by writing the component

of turbulent stress terms as:

-pu ’v ’ = 3E/3n 3u/3n (89)

= —pv ’w ’ = 
~~~ 

3E/&n 3u/3n (90)

where E is some scalar function. Therefore ,

c = c = aEfan (91)

The total shear in each direction is written as:

= ~i 3u/3n - pu ’v ’ = ~i 3u/3n + 3u/3n (92)

T
w ~J 3W /3n - pw ’v ’ = ~i 3w/ 3n + c~ 3w/3n (93)

therefore the total resultant shear is written as:

1/2 1 2 2
= [T~

2+T 2 ] L~ 
+ c~) (au /3n)

+ (p + c )2(3W /an)2]

Using equations (94) and (91) the total resultant

shear becomes:

11/ 2
= [u + r~~~

2 3E/3n
J [(3u/

3n)2 +( aw/ an) 2 j  (95)
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By analogy with the two-dimensional case where the eddy

viscosity expression incorporates the velocity gradient of

the shear component, the scalar E becomes:

= ~3u/3n)
2 +(aw/an)2] 

1/2 
(96)

2 2 2 11/2
£ = C~~ — — ~~~* [~au,’an~ + (awlan) J ( 97)

which reduces to the two-dimensional form when w — 0. This is

referred to as the invariant turbulence model by Hunt , Bushnell ,

and Beckwi.th (Ref. 9 ), and was used with success by Adams

(Ref .  8 ).

The model used in this investigation is the common two-

layer inner-outer model which uses the Prandtl mixing length s

theory and the Van Driest or P.eichardt damping near the wall.

Following Patankar and Spa].ding (Ref. 10 ) and Adams (Ref. 8 )

the mixing length distribution is as follows :

{0< n > A r ~/k*
}

A - n e {An t /k* < n }  @ 8)

where

— 0.435

A— 0 .09 -

2 2 2 2 1/2
- n~~

=nwhen [(U + w ) / . U~ + W )] — 0.99

The inner law is damped near the wall so as to yield the exact

laminar shear stress term at the wal l .  To accomplish this, two
different damping factors have been used in this investigation ,
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Van Driest’ s damping term with local shear stress, and

Reichar dt’s (Ref.1l ) damping term .

Van Driest ’s damping term for two-dimensional flow

is: 

= i - exp (a_ ~L ) ( 99)

where r is the local shear stress and A* is 26.0. Therefore

the total shear near the wall becomes:

— p 3u/3n + ~~2 ~2 
[i 

- exp ( i ]~~~ (3u /3n)
2 

(100)

for two-dimensional flow . Again , use is made of analogy to

derive the form of the near wall shear for a three-dimensional

flow. By analogy of equation (j00) with equations (95) and

(96) the three-dimensional form of the total shear becomes:

or 

T j  = 
~ 3E/3n + pk *

2 n2 
[1 

- exP (-~~
1~)]2(3E/3n)2 (101)

L j  
= pk*

2 n2 
[1 

- exp
(

~~_~~
)]2 (3E/3n) (102)

Cebeci (Ref. 12) developed a mass-transfer correction to

Van Driest’s inner eddy viscosity law by modifying the damping

constant A*. For turbulent flows with mass transfer Cebeci

determined the damping constant to be

A* — 26 exp (-5.9 v0

-38-



_____________________ -

where
+ 1/2v — v

0
/(t /p)

Reichardt ’s expression for the inner eddy viscosity

law was obtained by curve fitting experimental pipe flow

data. The expression is:

C j  — pk
* 

[_.~_~ 1 - 11.0 tanh (n~f ) ]  (103)

As can be seen this expression does not involve the velocity

gradient terms . For this reason it is preferred for use in

numerical solutions, since it usually requires fewer itera-

tions to converge .

Following equations (97) and (98) the outer eddy

viscosity law ~5:

C
O 

= A
2 n~~ 3E/~Ln (104)

and the total shear stress ~S:

TO 
— p 3E/3n + A 2 2 (3E /3 )2 (105)

The outer eddy viscosity law is used in conjunction with the

Klebanoff (Ref. 13) interutittency factor which assures a

smooth approach of to zero as y -# 6. The modified law is:

C
O 

— A 2 n~
2 y 3E/ 3n (106)

where y is Kiebanoff’s intermittency factor:
I 6 1 1— 

y — ~ l + 5 ,5  (n/ 6) J (107)
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Schetz and Favin (Ref . 14 ) have derived a correction to
Reichardt’s inner eddy viscosity law for cases of mass trans-

fer. This correction has been used in the current investiga-

tion, giving this corrected expression for the inner eddy

viscosity:

C j 
= kp (1 + v0~ u+)~~’2 (~ + 

- fl
e
+ tanh (n+/n +)) (108)

where

=

n+ — n~jTp/p

and

= 3.65/(v0~ + 0.344)

The quantity u~ is found by integration of the expression

+ ++ (1 + v  u )

dn 1 + k (1 + v0~ u~) ( + - 

~e 
tanh (n+/ne

+))

or using equation (108):
+ +

du+ ( l + v 0 u )

dr~ ( l + c ~ ) (110)

Since the eddy viscosity C~ is implicit in the integration for

u4 , the calculation of ci is an iterative procedure for mass

transfer cases.
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9. Transition Models

Two models of transition from laminar to turbulent flow

have been used in this investigation . One model is a simply

instantaneous transition to turbulent flow, and there really

is no transition region or zone at all. In the second case a

smooth transition to turbulent flow occur s over a prescribed

distance. This distance is known as the transition zone

and is defined as the distance between the onset of transition

at ~ — and the beginning of fully turbulent flow at E =

at some point downstream .

The probability of turbulent flow at any point is ex-

pressed by a model by Dhawan and Narasimha (Ref.l5 ) as:

I
f
(~~~ 1 - exp (- 

~ 
((X

~X~)/ ~
) 2 ) (111)

where I
f
(X) is the transition intermittency factor ,

and

— 0.412

- X 1f = 0.75  f — 0 .25

and where

If(Xt) 
— 0

(112)
1f (X~f ) — 0.97

By substituting equation (112) into (111) an expression for ~ can

be found based on the transit ion zone length :

= (XT - X~)/2.9l7 (113)
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Now, substituting(113) back into (ill) the final expression

for the transition intermittency factor as used in this in-

vestigation is obtained:

If(~) 
= 1 - exp [ 0.412 (2.917)2 ((x_x t

)fcx,
~~
.x
t

)) 2 I  (114)

The transition intermittency factor is emp loyed as a simple

multip lier of the eddy viscosity in the governing equations

and therefore acts as a damping coefficient for the ful l tur-

tulent eddy viscosity . It is an expression relating the

fraction of time any particular point spends in turbulent flow,

and therefore the probability of turbulent flow existing at

that point.

-42- 

5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-5- - —



—------ 5-

10. Finite-Difference Method

The finite difference method used in this investiga-

tion is idential to the one used by Frieders and Lewis (Ref.17 ).

Basically the procedure is based on the method of Dwyer

(Ref.18 ) with modifications by Krause (Ref. 19 ) .  The pro-

cedure allows for variable spacing of the normal coordinate.

As implemented in the current investigation, the

finite-difference procedure is a forward marching one , thus

taking advantage of the parabolic nature of the governing

equations. The method used marches away from the stagnation

point by first stepping down the windward symmetry plane one

step and then marching around the body from the windward to

leeward symmetry plane . This process is repeated until the

calculation is completed.

Basically the finite-difference procedure is implicit

in the normal direction and explicit in the c- and to-directions.

In order to retain stability in reg ions of reversed cross-flow ,

the Krause difference molecule is used for w differencing as

depicted in Fig. 3 . Taking w to be a general variable (i.e.

either F, G or 0) then

3 w w 2~~ - w 3~~

= ~~2,n - 
w 1)~~~ + (w4~~ W3 n )

aw 2Aw
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S.

where the subscript notation is that of Fig. 3 . Central

differences are used in the normal direction with mesh points

spaced according to the formula

k =  n
- 

- - 

~~n-1

where k is a constan t which can be set at the discretion of

the user. Substitution of the finite-difference expressions

into the governing equations results in a set of non-linear

difference equation s of the form

-A~w2~~_1 +B~w2~~ -C
~~
W
2~~~~+i +E~w2~~ = Dn 

(115)

This relat ion is linearized using the Newton-Raphson interation

formula

~~~~ = 2w~~~ W 2~~~ - (w~~~)
2 (116)

where ~~~~ is the value of the dependent variable from the

previous iteration . For the initial iteration , w
~~n 

is ap-

proximated with Wl n ~ 
Use oE Eq. (116) in Eq .(115) results in

a set of simultaneous linear algebraic equatiore of the form

_A~w2~~~.1 + 8 W 2 
+CnW2 n+l = Dn

whi ch are solved using the Thoma s algorithm (Ref .  20) .

11. Normal Pressure Gradient Approximation

The normal pressure gradie-tt which appears in the

normal momentum equation , Eq. (14) basically arises from

centr i fugal  force e f fec t s .  Due to the low speeds being

considered in the current work this effect wa~ neglected .
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This was done by setting I~ and I
(A~ 

to zero in Eqs . (44)

and (52) . In the ac tual coding however these terms were

lef t in the governing equations and this effect could easily

be inc luded in the future by having subroutine PRESSI evaluate

Eqs. (45) and (46) in program ICBL3D .
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Sec tion III

RESULTS AND DISCUSSION

In order to test the validity and accuracy of the

computer program developed from the foregoing analysis, a

variety of test cases was selected. Since the principle de-

partur e of the present analysis f rom previous ef for ts  is in

the inclusion of surface curvature effects , it was thi s area

that received considerable attention dur ing the testing process.

Test cases were run at a Reynolds number of one hundred in

order to achieve a thick boundary layer on the body , thus

amplif ying the curvature e f f ec t s .  Calculations were made over

spheres and spheroids at various angles of attack and turbulent

effects were included in one comparison .

The first test case run was that of a sphere at angle

of attack. In this calculation a coordinate system is selected

that is not aligned with the sphere ’s wind axis thus producing

the requirement for a three-dimensiona l calculation of the body

boundary layer . The ut i l i ty of thi s calculation is that it can

be easily compared with existing axisynune tric boundary-layer

calculations . Calculations wer e made for a unit sphere at

a 20 , Re = 100. The results were compared with those of

Davis et a l .  (Ref .  6 ) .  The results of Ref .  6 were obtained

with an axisymmetric boundary -layer code with longitudinal and

transverse curvature e f fec t s  included (SFC).  The result s of these

comparisons are shown in Figs. 4 through 6. Plotted in Fig. 4

is the development of the ski: friction and displacement thickness
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along the windward symmetry plane of the sphere. The results

of the present calculation without surface curvature (NoSFC)

agree identically with predictions made by the VPI&SU axisymmetric

boundary-layer code (Ref. 16) .  The skin- friction comparison

between the present method and that of Davis et al. (Ref. 6)

for the SFC case is also excellent. Figure 5 shows the variation

of skin friction around the sphere along E’=constant lines. Com-

pared in Fig. 6 are the velocity profiles at a poin t on the

windward symmetry plane for the with and without SFC cases .

Calculations were then made over a 4:1 spheroid at

a 20 and Re,~,, = 100. The semi-major axis of the body was

aligned with the angle of attack line and was four feet long.

The results of these calculations are shown in Figs. 7 through

10. Figure 7 illustrates the development of the boundary layer

along the windward symmetry plane . The skin friction for the No

SFC case is compared with an unpublished calculation made with

the Blottner and Ellis (Ref. 2) code . As can be seen the agree-

ment is excellent. Figure 8 illustrates the development of the

skin friction around the body and compares the results with

that of the Blottner and Ellis code for the NoSFC case. In

Figs. 9 and 10 velocity profiles are compared between the two

codes .

An interesting result of these calculation s is that

inclusion of surface curvature effects initially produces a

somewhat thicker body boundary layer compared with the NoSFC

case. This is in contrast to the inc lusion of transverse curva-

ture effects only which initially produces a thinner boundary

— 
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layer compared with the NoSFC case (see Ref.  6) .  Since the

pressure gradients experienced by the boundary layer over

flatter portions of the spheroidal body where longitudinal

curvature effects become less important are not such as to

thin the boundary layer , thi s thicker boundary-layer persists

along the body . The results indicate that all curvature effects

must be accoun ted for in order ~o correctly predict the boundary

layer growth over blunt nosed bodies.

Figures 11 and 12 detail  the boundary-layer growth

for the same 4:1 spheroidal body at a = 10°. The effects of

this larger angle of attack are clearly seen by comparing the

circumferential skin fr iction p lot of Fig . 12 .

In Figur e 13 a turbulent calculation is presented for

a 4:1 spheroid at a = 00 and Re ,, = io~~. Comparison is mad e

between the present method and the results of Chang and Patel

(Ref.  3) .  As can be seen the agreement is excellent.

These calculations were made to verif y the code and

as can be seen by the calculated results , agreement between

the present method and previously published works is excellent .

It should be borne in mind ,however , that the present code is

much mor e versatile than either the codes of Refs . 2 or 3 in

that it includes surface curvatur e e f fec t s , it can treat

arbitrary body shapes and it includes turbulence e f f e c ts .
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SECTION IV

CONCLUDING REMARKS

The total  system of computer programs generated to

implement the foregoing analysis represents a package with

very general capabili t ies.  These capabil i t ies are as follows :

1. Body must have a blunt nose and a plane of symme try

but is otherwise arbitrary so far as the boundary-

layer cod e is concerned at arbitrary ang le of a t-

tack .

2. Current inviscid capabilities are restricted to

axisymmetric shapes at zero and non-zero angles

of attack and arbitrary cross-sections at zero

ang le of attack .

3. All surfac e curvatur e effects  inc luded .

4. Laminar , transi~ ional and/or turbulent flows can

be calculated .

5. Effec ts of heat and mass transfer included .

To the authors ’ knowledge these capabi l i t ies  represent

the most complete package available today f or predicting three-

dimensional boundary layer s.

The system of progr ams was separated into two independent

systems of programs in order to maximize operational versat i l i ty

and to facilitate future development. By rem oving the calcu-

lation of the inviscid flow and coordinate system from the

boundary-layer code , this boundary-layer code can be viewed as

a solution procedure for the set of governing equations
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developed in Sec tion II . The separate inviscid flow computer

program supplies data to this solver which defines both the

body geometry and inviscid flow. Thus , if al ternate means for

generating either the inviscid flow or coordinate system are

desired , other methods can be substituted into the appropriate

blocks in the inviscid package without affecting the boundary-

layer code. Further , the separate boundary-layer calculation is

allowed to proce ed on its ’ own step size along the surface with-

out considering mesh requirements of the inviscid flow or co-

ordinate generation codes .

In summary , the analysis and programs resulting from

this investigation represent as versatile , flexible , general

and efficient a method for predicting incompressible three-

dimensional boundary-layers available today .
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