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Effect of Fresnel Zone Blockage on
Very Low Sidelobe Antennas

1. INTRODUCTION

At present the United States Air  Force is interested in the development of
radars with -50 dB azimuthal sidelobes. In order to maintain such low sidelobes ,
unfortunately, it is necessary to find a radar site which is free from all main-beam
blockage within quite a distance from the radar. In this paper , we will present an
approximate method for estimating the effect of partial-beam blockage by an
obstacle (such as a tree) located in the Fresnel zone of the antenna.

2. FORMAL THEORY

2.1 Field Scattered by the Obstacle

Consider an obstacle in the Fresnel zone of a radiating antenna , as shown in
H Figure 1. The far-electric field scattered by this obs t acle can be wr itt en as 1

A

(Received for publication 26 October 1977)
1. Morse , P. , and F ishback, H. ( 1953) Methods of Theoret ical  Ph ysics , vol . 2 ,

McGraw-Hill , New York
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FIgure 1. Obstacle in the Fresnel Zone of an Antenna

~~~~ =-~- ffJE - 1) E e i~cr 
d3 x ’

k2 e ’° fff (e - 1) E e
ilC~~ sin 9cos 4 + y ’ sin 9 sin ~ + z ’ cos 9)

0 v

dx ’ dy’ dz ’ , ( 1)

where

k = the signal wave number,
= the relative (complex) permittivity of the obstacle,

V = the volume of the obstacle,
E = the electric field Ins ide the obstacle ,

I = the unit dyad ,
V o x s I n 9 c o s ~~~+ y s l n 9 s l n Ø + ~~~cos 9,
9 • the polar angle,

= the azimuthal angle,
c, y, z are unit vectors, and

= k(R0 - x 1 sin 9 cos ~ - y1 sin 9 sin 0 - z1 cos 9).

- . 
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Let us now assume that the antenna is a planar , rectangular aperture lying in

the z o o plane. We further assume that the antenna is linearly polarized, and
excited with an electric field distribution i e0(x , y) . Then the Fresnel-zone field ,
near the z-axis, in the plane z = z 1 can be approximated as

- i kz 1E~
(z 1) = x co(x , y) e , (2)

where a(x , y) is plotted 2 for various aperture-field distributions . For the case of
a square aperture with a cosine distribution in the x-direction and a cosine squared
taper in the y-direction, the values of the relative axial field a(O, 0)/e 0(0 , 0)
are given in Figure 2 , assuming the linear aperture dimension is 15 ft and the sig-
nal frequency 3.35 GHz. We observe that there is no significant dropoff in the
field strength until z 1 is approximately 200 ft ; consequently, for z 1 < 200 ft we can
use the approximat ion

o(x ,y )~~~e0(x ,y )  . (3)

Next we need to calculate the field inside the obstacle. For mathematical
simplicity , we shall assume that the obstacle is a homogeneous rectangular struc-
ture oriented as shown in Figure 3. We also assume that the transverse dimen-
sions of the obstacle (that is , its x and y dimensions ) are considerably lar ger than

the signal wavelength. In this case, we may approximate the field transmitted into
the obstacle by that which would be transmitted into a planar slab, of infinite extent
in the x-y directions. Upon using the aforementioned assumptions, along with
Eq. (2) , and ignoring the effect of the obstacle on the aperture distribution , we find
it straightforward to show that the electric field inside the obstacle is given by

F ~ik~ z I ik z ’l -ikz
E~~~~~c~(x , y ) [A e + B e 2 

J e  
1 (4)

where

z = z 1 + z ’ , k2
o k ~~~

112

I
2. Air  Force Handbook, Electromagnetic Radiation Hazards, Air  Force Commun-

icatlons Service (E-l Standard) TO 3lZ-l0-4 , 1 Aug. 1966.
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and

2(E 1h1’2 
+ 1) exp ( l4 k 2~~)

1’ 2 ‘

(E l I ’2 + j )2 exp (i4k 2~~
) — 

~~~ 
,2 

— 1)

2(E~~l
’2 

— 1)
B =  1’2 2 112 2 

(6)

(€ ‘ + 1) exp ( i 4 k 2~~) -(c ‘

If we recall that x ° x1 + x’ and y = y 1 + y ’ and then substitute Eq. (4) into Eq. (1) ,

we obtain

-i~
( •  ~)ffdxIdy 1 a(x1 +x

I. y1 +y ’)

— 
0 s0

~~i k si n 0( x I c o s0+y I s in0)  (7)

where S0 = transverse surface area of obstacle ,

~ l k(R 0 - x 1 sin e c o s 0 -y 1 sin e s i n 0 + 2 z 1 sifl 2 
~
.)

2~ I - ik z ’ i k  z’l
F a (e - 1) f dz ’ et k z ’ cos U 

[A e 2 
+ B e 2 ] (8a)

-2e”~ [21 sin .y - 
b(l - e~~) e~u’] , (8b)

ik a - b e n

and

~~o 4 k ~~ e~~~
2 

,

a = (e~~
2 

- 1)2

b = ( € ~~~
2 + 1) 2 

.

Note that Eq. (8a) is valid for all values of 9, but Eq. (8b) is specialized to the

case when 0 is small , so that cos 9 ~ 1.

9
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It is interesting to observe from Eq. (8) that when ki -
~ 

~~~~, F -~ (2i /k ) .  Con-
sequent ly, when k i = E r 

- ic/W E is very large, Eq. (7) reduces to

~ 
~) ff dx’ dy’ c(x1 + x ’, y 1 + y’)

0

~~~~~~~~~~~~~~~~~~~~~~~ (9)

Finally, if the obstacle is within 20(~ ft of the ant enna, we may use the approxima-
tion in Eq. (3) to get

— i, 1 1
E5 -~ i k e  

. i~) f f  dx ’ dy ’ e0(x 1 + x ’, y 1 + y ’)
0 s0

e
i k 5in 9~~

d I c05
~~~~~~

I 5i11~~ - (10)

Equa tion ( 10) is the standard result for the effect of near-field blockage by a per-
fec t ly conducting obstacle. In the opposite limit when E is near unity, we find

F 2~~(€ - 1) , provided k
~ lE - 1

~ ~< 1.

2.2 Direct Field of the Antenna

The far field of the ant enna in the absence of any blocka ge can also be writ ten
in the same form as Eq. (7) . From Silver3 we have

-i k R

= 
~ f f  dx’ dy’ e0(x ’, y ’) e~~~s~r~ e(x’ cos~~+y ’ sin~ )

( 11)

where 
~~l 

= (l + z . ~) I  - - ~~~~~, and is the area of the antenna aperture.
For values of 0 < 15°, we can approxim at e G 1 ~ by 2~ - 2~ sin 6 cos 4 .

3 . Silver , S. ( 1965) Microwa ve Antenna Theory and Desi gn, Dover , New Yor k,
p. 162.

10 



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.3 Iotal Radiated Field

The to tal field radiated when an obstacle is located in the Fresnel zone of an
antenna is obtained by combining Eqs. (7) and ( 11) , provided it is acceptable to
assume that the presence of the obstacle does not alter the aperture field distribu-
tion. Let us , therefore, combine Eqs. (7) and (11) and assume that 6 < 150

, so

that G 1 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We ob tain

-ikR L1 L2
i k ~e s f dx’ / dy ’ e0(x ’,y ’) ~i k s i n e(x ’ co s 4 +y I sin 4 )

0 -L 1 -L 2

X Y
. 0 0

- ~~~~ 2 dx ’ f dy ’ a(x 1 + x ’, y 1 + y l)

~i ks i n 9(x I co s4 + y ’ sin4) 
, ( 12)

where ~ = - ~ sin 9 cos ~ ~2 = k(x 1 sin 6 cos 4 + y1 sin 6 sin 4 - 2z
1 sin 2 

~~~~, the
aper ture antenna has dimensions 2 L1 and 2 L2 in the x and y direc t ions, respec-
t ively and the obstacle has transverse dimensions 2X and 2Y - No t e that  when

z 1 < 200 f t , we can replace a( x 1 + x ’, y 1 + y ’) by e ( x 1 + x ’, y 1
+ v ).

In studying Eq. (12) further , we will assume tha t z 1 > 200 ft , beca use it is
unlikely that a radar would be placed in a site with obstacles closer than that dis-
t anc~ . We shall also assume that the obstacle is the pr inc ipa l  source of the side-
lobes. When we make this latter assumption, it is easy to see from Eq. (12) that
the relative (that is , relative to the axial power density) sidelobe power dens i ty

S is as follows:

x 2

k2 F 2 

~
A d x

I 

~~~~~~~~ 

a(X x , Y 1 + y ? ) e 5
~~~ 6 C 0 54 + 5

~~~4~~

/ dx l /

2 
dy ’ e ( x ’ ,

-L 1 -L 2

( 13)

11 
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For the case of a square aperture with e0 cos (irx/2L 1) cos
2 (iry/2L 1), we can

rewrite Eq. (13) as

= 

(

~~~
)2 IF

2 
‘

dx ’ dy’ a(x1 + x’, y1 +

euh 1
~5u11 6(x’ cos4 +y ’ sin4)

(14)

In much of the Fresnel zone (0 . 3 
~~, 

p ~ 2, where p a Xz1/4L~) we have found

that a(x , y) can be approximated by the analytic form

~(x , y) = a0 exp {- m 1 ( x )
2 

- m2 (
~~~~

)
2 } (15)

where the values of m 1 and m2 depend on the aperture taper and p. Val ues of m
fo r different aperture field tapers are presented in Table 1. Values of a are
presented in Figure 2.

Table 1. Values of m for Different Aperture Field Tapers (Values of m versus
p = Xz 1/r L~ , where 2L 1 = aperture dimension and X = wavelength

Cosine -squared Cosine -cubed Cosine -fourth
Cosine Taper Taper Taper Taper
p m p m p m p m

0.5  0 .9  0.3 1. 43 0.3 1.15 0. 3 0.975

1.0 0. 2 5  0 . 5 0. 605 0.5 0. 45 0. 5 0 .38

2.0 0.059 1.0 0.155 1.0 0.125 1.0 0.1

2 .0  0. 040 2 . 0  0. 03 5 2 . 0 0 . 025

When the obstacle area is considerably smaller that the aperture area, it is
possible to simplif y Eq. (14) by realizing that & varies rather slowly over the
extent of the obstacle. Consequently, we can approximate a(x 1 + x ’, y1 + y ’) by
a(x 1, y 1). If this is done and the integrals in Eq. (14) are then evaluated we find ,
af ter using Eq. (15) , that

12
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c.~~~~~. ’.

S(9, 4) 
(

~~ka
)2 Fl2 (x o Y

o)
2 

exp -2m 1 (X )

2 

- 2m
2 (~~~

)

sinc2 (kX sin 9 cos 4) sinc
2 (kY sin ~ sin 4) , ( 16)

where x 1 and y1 are the coordinates of the center of the obstacle, we shall be
primarily concerned with the azimuthal sidelobes. Consequently, we can set

41 lr/2 in Eq. (16). Also, for 9 well outside of the main beam, the envelope of

the function sinc 2 (kY 0 sin 9) is (kY0 sin ~)
2~ Therefore, the magnitude of the

azimuthal sidelobe at 0 is

? T k a X 2 F x 2 y 2

( 2L )~~~ 
1F 1 2 exp L- 2m l (~) - 2m 2 (~ )

IS(4) = 1r/2 1 = 2 . (17)
(k L 1 sin 9)

3. NUMERIC A L E XAM PLES

3.1 Fence-like Obstacle

As a f irst  example, let us consider the situation in Figure 4. The obstacle is
assumed to be a metal fence or a very dense forest at a distance z 1 of 800 ft from
the antenna. For this case Fl 2 4 /k 2 , a0~~ 0.31 and p~~ 1. Because we are
unable to perform the x- integration in Eq. (14), we will approximate a(x1 + x ’) by

where x 1 = -2L1, (see Figure 4). If we assume the obstacle is infinitely

long in the y - direction , w e obtain from Eq. ( 14)

= = exp 
(k L 1 sin 6)

2] . (18)

From Table 1, we find m2 = 0. 155, so that for 6 outside the main beam, the side-

lobe level is smaller than -400 dB, which is clearly no problem.

3.2 Finite ~bstacIe

We now consider the same geometry as in Figure 4, except with th~ obstacle

width , 2Y , smaller than the aperture width.  A pictoral illustration of ‘ie projection

13
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Figure 4. Fence-like Obstacle in the Fresnel Zone of an
Antenna

of the obstacle onto the ape rtu re is shown in Figure 5. In this case, we may use

the approximate formula in Eq. (17) to obtain

41 4. x io 6 (1~l~’l)~
IS (4 = ~) I = 2 

(19)
sin 0

If the obs t acle is met al or dense wood, such as a tree trunk

l F l 2
~~ 4/k 2

However, if the obstacle is the branches and leaves of a tree , i t is difficult to
specify IF I . although it is expected that Ft2 <4/k2. In order to be pessimistic.*

we can assume

Fl
2
~~~ 4/k 2

*Note that for ~ ppropriate combinations of e and ~ we find that Ft
2 

> 4 /k 2
. but

generally I F I ~ 4/k 2 otherwise.

14
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Figure 5. Projection of the Obstacle onto the Aperture Plane

so that

= l r/ 2) I  4 .7 x 10 6
/sin 2 e

• Consequently, for 0 = 100 the sidelobe level produced by the obstacle will be
-38. 1 dB. This is unacceptable, because we require -50 dB sidelobes. However,
when the main beam is elevated , we expect that the azimuthal sidelobe level will
decrease. In order to study the effect of beam elevation, we realize that for a
given beam elevation the value, x 1, of the location of the obstacle center is

x 1 = -2L 1 - 800 tan 
~ 

ft , (20)

as is clear from Figure 6. For this case we get, in place of Eq. (19) , the result

3 
_ 5 ( k I F I \ 2

S ( 4 1 = !~)I~~~~~
5 X lO

2
7 e x p [_ 2 U + 53. 3t an ~~~~2] (21)

2 sin O °

If we again assume that F l2 4/k 2 , we obtain the results in Table 2.

15
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Table 2. Azimuthal Sidelobe Levels for the Obstacle in Figure 5

• Clearance

~~ 
(degrees) o (ft) sie = 6°) l dB S(O = l0°) l dB

0 0 -33.7 —3 8. 1

0.5 7 -43.6 -48.0

1 14 — 5 7 . 3  -61.7

1.5 21 —74 .8 -79 .2

1. CONCLUSIONS

We have found that for high (complex) permittivity obstacles of transverse
dimensions 2X 0 and 2Y 0 centered at (x 1, y 1) relative to the aperture center , the
relative azimuthal  sidelobe level is

16
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1s(o = ~)l 
(a o X

o)

2 

exp 2m l (
~~~

)

2 
- 2m 2 (

~~~
)
2]

2 (2L 1 sin e/X)

where 2L 1 is the linear aperture dimension, X is the wavelength, and a0 and m are
given in Figure 2 and Table 1. By us ing the above result , we have shown that even
when there is not actual aperture blockage, the effect of obstacles could lead to
sidelobe levels greater than -50 dE. In general, it is not always sufficient that the
entire aperture have a clear line of sight ; this conclusion is illustrated pic t orially
in Figure 7.

TH ESE OBSTACLES GENERALLY
ANTENNA 

\
LINE OF SIGHT REGION \GIVE SIDELOBES >-5Od8 

(NJ 
• •

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •

~~~~ THIS OBSTACLE
GENERALLY GIVES

-, SIDELOBE S<—5OdB

GROUND— ’

8001 _ b Oo ’ 
1

Figure 7. Pictorial Representation of the Results
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