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ABSTRACT

Fixed configuration filter theory provides a methodology for designing
filters of reduced complexity which will provide suboptimal performance in
general, and optimal performance under certain conditions. In this report
we derive fixed configuration reduced order filters for continuous and dis-

crete time systems, with and without state dependent noise.
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FIXED CONFIGURATION REDUCED ORDER FILTERS

I. INTRODUCTION

Fixed configuration filter theory provides a methodology for designing
filters of reduced complexity which will provide near optimal performance.
Sometimes the performance is optimal, although the filter structure is sim-
plified. The simplification is achieved by specifying the filter structure
a priori, and then optimizing the free parameters of the filter. The advan-
tage of such a filter over an optimal linear Kalman filter is that far fewer
on-line calculations are necessary. This is desirable for many applications
where the computational facilities are limited and/or the state vector is so
large that it is not feasible to perform all the on-line calculations required
for Kalman filtering. Such situations are common Air Force problems.

The fixed configuration filter discussed in this report is referred to
as a reduced order filter. It has applications in several areas. One appar-
ent area of usefulness occurs in aided navigation systems such as loran-iner-
tial or doppler-inertial-loran systems. Another area of application is point-
ing and tracking problems. The criterion for applicability of reduced order
filtering is to have a relatively high order system with interest in estimat-
ing only some of the state variables. This is often the case when many of
the state variables occur due to a detailed model of the noise processes in
the system. Here, the interest is not to estimate the noise state variables,

but only their effect on the variables of concern, such as position and veloc-

ity.
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Much of the previous work in fixed configuration filtering has suffered
from a rather important factor. Although the on-l1ine computational require-
ments were significantly reduced, the off-line computation of the optimal
filter parameters was difficult. Sometimes the situation was handled by
solving a difficult nonlinear two-point boundary-value problem (TPBVP) [1].
In other cases, filter parameters were not truly optimized, but only optimized
with regard to the following stage of estimation, [2]. In the work presented
here we continue to investigate reduced order filtering problems with the
same general context set forth in [3]. The solutions obtained are basically
of two types:

1. Truly optimal solutions where the TPBVP reduced to a single-point

boundary-value problem.

2. Suboptimal or partially optimized solutions where only a linear

TPBVP must be solved.

Both of the above mentioned solution categories have the property that
the amount of off-1line computation required is predictable and reasonable.
This fact makes the methodology we are suggesting feasible in that the reduced
order filtering problems can be solved with a realistic amount of off-line
computation, while the on-1ine computational savings could be enormous.

The main contributions of this research are presented in the first four
papers appearing in the Appendix. The first two papers decal with continuous
time problems. The first paper is entitled "Reduced Order Modeling." It has

been submitted to the IEEE Transactions on Automatic Contro! as a short paper.

The second paper is entitled "Reduced Order Filtering with State Dependent
Noise." It has beeen submitted to the 1978 Joint Automatic Control Confer-

ence, and will also be reviewed for the IEEE Transactions on Automatic

Control.
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The third and fourth papers are discrete time versions of the reduced
order filtering problems. These are draft copies, not presently in the final
form for submission to appropriate journals. The titles are "Linear Discrete
Reduced Order Filtering," and "Discrete Reduced Order Filtering with State
Dependent Noise." The discrete problems are distinctly different from the
continuous problems, and represent nontrivial extensions. Perhaps this fact
is one of the more important findings of the research. The fifth paper in
Appendix A is not pertinent to this research, but was performed during the
duration of this grant.

The details of the research are to be found in the papers in the Appendix.
A discussion of the papers and an overview of the research findings are pre-
sented in the following sections of this report. The work presented herein is
a continuation of an investigation which began in the summer of 1976 while the
principal investigator participated in the USAF/ASEE sponsored summer faculty

research program at the Frank J. Seiler Research Laboratory.

II. DISCUSSION

a) Reduced Order Modeling

The paper "Reduced Order Modeling" presents a method for modeling a
linear stochastic system of high order, using a reduced order model. The

problem is formulated as follows. Given a linear stochastic model

x
—_
ct
~
1}

A(t) x(t) +w(t) (1)
with output

C(t) x(t) (2)

y(t) =

where w(t) is zero mean white noise, find a reduced order model
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y(t) = F(t) y(t) + K(t) w(t) (3)

which approximates (1) and (2). The error criterion is quadratic

E f T T
J—E{jI e (t) R(t) e(t) dt + e (tf) Se(te)! (4)
t
where e is the equation error

edy -y (5)

This problem was motivated by the work of Obinata and Inooka [4], but uses
much the same mathematics as that in [3]. It is really a model matching
problem, but may be regarded as a peculiar kind of reduced order filtering
problem where one only measures the input noise, and there are no noisy
observations of the state vector.

The optimal results for this paper arecharacterized by a singular arc
which exists wihen the matrices F(t) and K(t), and the vector of initial

conditions, }(t are selected appropriately. The correct choice of the

o)
matrices is extremely simple when it can be done, but generally the algebra
will not have a solution. In this case a suboptimal approach is suggested
where F(t) is selected a priori and only K(t) and §(to) are optimized.
The solution is obtained as a single-point boundary-value problem.

The value of §(t0) in this paper was not constrained a priori so that
} (t) would be an unbiased estimate of y (t) for t>t,. It was obtained via
application of the generalized boundary condition [5] from the caiculus of
variations. When the optimal choice for F(t) could be obtained, this
approach led to the same result as an unbiased constraint. We obtained the

very important result that when F(t) is not selected optimally, it is better

to select } (to) in such a way that } (t) is a biased estimate of y (t).
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That is, the quadratic performance measure will be smaller if this is done.
At this point it appears that the same remark will hold true in the other

filtering problem which we have solved with the unbiased constraint applied

prior to optimization. This may be an important property pertinent to the
‘ reduced order area, however we have not gone through the mathematics to

generalize the result yet.

b) Reduced Order Filtering with State Dependent Noise
This paper represents an extension of the basic theory set forth in [3]

to systems with state dependent noise as described by stochastic equations of

the form
n
dx (t) = A(t) x(t) dt + dw( Z x; (t) - wy (£)]6;(t) d ((té)
where the disturbances are zero mean incremental wiener processes and p(t) is

the mean value of the state vector. The observation vector is also corrupted

by state dependent noise. It is of the form
n
dy (t) = dv(t) + C(t) x(t) dt +3, [x; (t) -uy (£)] My (t) dv (7)
i=1
A filter is to be designed to estimate a lower order vector
z(t) = N(t) x(t) (8)

The filter is of the form

dz (t) = [F(t) z(t) +g(t)jdt +K(t) dy(t) (9)

and the estimate of z is required to be unbiased. We select a(t) and é(to)

to meet the unbiased requirement, and then optimize the choice of F(t) and

K(t) with respect to the quadratic performance criterion




t
3=k {ffeT(t) Qe(t) dt +eT(t) Se(ty)) (10)

t
0

The solution proceeds along the same lines as that obtained in [3], with
different equations resulting from the state dependent noise. There is an
interesting interpretation to the result obtained when

n
Rits B Py (D)6 (£) =M (t) = o (11)

i=1
j=1
where = is the covariance matrix associated with v. The solution is the same
as that obtained in [3], but with R, the covariance matrix associated with v

replaced by R + Y33 and Q, the plant noise covariance matrix replaced by Q +

¥1» where
55 T
¥, & ¥ P G. 6. (12)
and
i T
. ¥ P M. = M; (13)
3 i xxij i ]
3#1

The analogy could be carried further, without requiring (11), if w and v
were allowed to have non zero cross correlation. There are some interesting
aspects to what we have said here. As an example, one may have meaningful
problems with state dependent noise when R = o. Such problems would not be
well posed without state dependent noise. It is remarkable, considering the
complexity of problems involving state dependent noise, that the results

obtained in [3] could be extended to this class of problems with such minor

modifications.




c¢) Linear Discrete Reduced Order Filtering

In the proposal, it was stated that the research area would be pursued
to some extent within a discrete framework. This was motivated by the fact
that the discrete format would make it easy toevaluate the amount of on-line
calculation required by the reduced order filters. What we found was that
the character of the discrete problem was considerably different than that
of the continuous time prcblem, and that the extension of the results was
not a trivial exercise. The main reason for the difference is that matrices
which occur only Tinearly in the continuous problem occur quadratically in
the discrete problem.

The discrete problem is formulated using the dynamical model

A, x. twmi.: § 20, 1, .. 4
X j xJ wJ j =0, 1 (14)

d+1

with observation model

Y. =C s LSS e (15)

; X, + v,
Jeenl RS ] et

where Wy and vj are zero mean white noise sequences. A lower order Tlinear

transformation of the state vector

z. AN, x. (16)

=F 2 +ij. + 9, (17)

The deterministic vector sequence, gj, and the filter initial condition, 20,

are to be selected so that Zj is an unbiased estimate of zj. The matrix

sequences, Fj and Kj are then chosen to minimize a quadratic performance

measure in the error




The performance measure is
M-1 71 T
J=E {jéa e; Uj e; +ey Sey! (19)

A general TPBVP is specified, whose solution gives the required sequence of
matrices, Fj and Kj' The interesting feature of the problem that differen-
tiates it from the continuous time problem, is that the matrices Fj and Kj
both appear quadratically in the Hamiltonian. The singular optimization
problem is therefore not present in the discrete case. This has both good
and bad aspects. The good feature is that one does not have to go through
the excessively tedious mathematics of deriving conditions for a singular arc.
The bad part is that it is not obvious how one should proceed to solve the
TPBVP.

The way that the TPBVP simplifies is interesting, and closely related

to the unbiased requirement. To satisfy the unbiased requirement, it is

necessary to select

- K A, - F. N 21
ke TS (21)

S

It turns out that if one can make Gj = 0 by selecting F_ appropriately, then
J

the TPBVP simplifies and becomes a single-point boundary-value problem. It
is not always possible to find an Fj that makes Gj equal to zero however.

For this reason the problem is considered where only Kj is optimized over the
entire interval, and Fj is selected prior to optimization, perhaps according

to a one-stage optimization procedure [2]. The important aspect of the
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result under these circumstances is that one only has to solve a linear TPBVP.
Such problems can be solved using invariant imbedding techniques with the
method leading to a discrete Riccati equation. Some effort was spent on a
computer program using this approach during the course of this research.

The author feels that the discrete problem and its solution represent a sig-
nificant aspect of the research performed during the period of this

grant.

d) Discrete Reduced Order Filtering with State Dependent Noise
In view of what was done in the case of continuous time systems, a
natural extension of the preceding paper is to consider the case of state
dependent noise. The dynamical model considered is of the form
n P—
x(3+1) = A(3) x(J) +w(i) + 2 % (3) r5(3) nl3) (22)
i=1
where w(j) and n(j) are zero mean discrete white noise vectors. The obser-

vation model is of the form
n —
y(i+1) = C(i+1) x(3+1) + v(j+1) +.>:1 X, (3) M (3) n(3)  (23)
'|=

where v (j+1) 1is the zero mean discrete white measurement noise that is addi-
tive. In (22) and (23), the terms x; (j) are defined as X (3) - Eix; (3) 1.

We note that often measurements of the form

s

y(I+1) = CO+D x(@G+1) + v+ + 1 x; (G+1) M (3+1) e(5+1)

(24)

i=1

can be put in the required form (23), where - represents a disturbance influ-
encing the observation in a multiplicative way. Hence we do not view the

form of (23) as overly restrictive. The ability to treat nonadditive noise

situations is a useful addition to the research findings. It enables one to
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treat problems where the measurement is either present or absent in a random
way, as is exemplified by the inertial example problem considered in the
paper.
Just as in the continuous time problem, the results carried over with
only minor modification to the case with state dependent noise, i.e. algorithms

were developed for desianing filters of the form

2(3+1) = F(§) 2(3) + K() y(i+1) + g(3)  (25)
where é(j) is a reduced order estimate for z (j) = N(j) x(j). These algo-
rithms differ in relatively minor ways from those developed without state
dependent noise.

A1l of the papers discussed in this section and presented in the appendix
deal with different aspects of reduced order filtering and signal processing.
In all cases we have had as a goal, the idea of avoiding unrealistic off-line
computation, e.g. high order matrix valued non-linear TPBVP's. It is the
author's opinion that the results are practical in the sense that the off-line
computation is feasible, and the on-1line computational savings may be tremen-
dously important in a system where estimates must be available in a limited

time frame, and the dynamical system is of high dimension.

I11. OTHER TOPICS

The most important aspects of the research, in the author's opinion, have
been set forth in the publications which have been discussed. There are some
other topics that we feel are worth mentioning however, and these are discussed
in this section.

a) Steady State Results

Consider the steady state or stationary version of the problem considered

in [3]. We assume that there is a model such as described by (1) but with
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constant A matrix and stationary noise w. The observation model is
y(t) = Cx(t) + v(t) (26)

where v (t) is zero mean stationary white noise. The vector to be estimated
is

z (t) = Nx(¢t) (27)
and the filter is a reduced order filter, not time variable,

2(t) = Fz () + Ky (t) (28)
The optimal matrices F and K are to be found so that the performance measure

J=Ete () Yelt) (29)

is minimized, where eaA z - z.
The problem is basically a calculus problem, that can be stated as

follows. Find the matrices F and K to minimize

3= tr{up, } (30)
where
P AE{e(t)eT(t)} (31)
ge —
satisfies
6=BP +FP +P F +pP B +NQN + KRK' (32)

xe ee ee ex

In (32) B is defined as

Ba(NA - FN - KC) (33)
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j and Q is the covariance matrix associated with w while R is the covariance |
1 |
| matrix associated with v. The matrix Py, is defined as

\ e & T

4 Ps * P~ Elxe") (34)

and satisfies the requirement
i T T I
G AR AR B P F £ QN (35)
where Pxx is the second moment matrix
% T
Pl =B X (36)
XX
which may be regarded as known, and satisfies the constraint
o=AP.. +P. Al +9 (37)
XX XX

We note that there are stability requirements which must be met before these
equations are applicable.
Augmenting the cost function with the constraints (32), (35), and the

transpose of (35), we have

T

b il T T il
J*—tr{UPee+[Bpxe+FPee+PeeF +Pex8 + NQN' + KRK ]Aee

T

T T 7 1
+
[APxe + PXXB + PxeF + QN ] Axe + [PexA + BPXx + FP (38)

ex

T
+ NQ]Aex}

5
|
51 Taking the gradients of J* with respect to Pxe and Pee setting them equal to

zero gives the equations for the Lagrange multipliers

o=U+F A _+A F (39)
ee ee
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T
o=A A _+A F+B A (40)
xe xe ee
We note that Aex = Ale' Setting the gradient with respect to K equal to
zero gives
_1 "

= [p ¥k a P yowd (41)

ex ee ex XX

Since F appears linearly in the Hamiltonian, it is a bit troublesome. Taking
the gradient of J* with respect to F and setting it equal to zero gives the

requirement that

GL(P. - B Yo P~ WR DA, < (42)

It can be seen that @ will be zero if A is zero and P - NP__ = o.
xe ee xe

We will show that if F can be found so that B is zero, i.e.
NA - FN - KC=o0 (43)

and the required F is nonsingular, then o will equal zero when K is selected
optimally. When B = o, (40) is solved by f T Subtracting (35)premulti-

plied by N from (32) gives

o T . L
(P = WP ) F' + FP, - NAP,, * KRK' =0 (44)

Substituting from (43) into (44) we obtain

% i i
o= (P, -NP _)F +F(P_-NP })+K[RK -CP ] (45)

The last term is zero when K is optimal, as can be seen from (41) when Axe = 0.

Hence when F is nonsingular, (45) implies that

Pee = KP. (46)
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and consequently, O is zero. When a solution to (43) can be found it is of

the form
F=[NA-KCINT+ 1 - NN (47)

where I' is arbitrary and 1t indicates the pseudo inverse.

We have presented the equations which must be solved for an optimal F;
however, it should be noted that both F and A must have all eigenvalues with
negative real parts for the solution to be applicable. The steady state
value of u, the expected value of the state must be zero therefore; and con-
sequently, the required filter is of the form indicated by (28), with no
bias removing function, g(t).

It is clear that (43) cannot always be solved, and we, therefore, look
at the problem with specific values of F. If F is picked a priori, then we
may solve the algebraic equations (37) and (39) for PXX and Meg? and hence
these are regarded as known quantities. The remainder of the problem only
involves linear algebra. We illustrate this by example. Suppose F, U, and

A are matrices of the form

ee
F=#]
U=ul (48)
A =N 1
ee ee

where f, u, and ho are scalars. Then (35) and (40), after substituting

from (41) can be evaluated as

611 Gyo Fie . 1 (49)

G21 G22 Axe D2
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where

G..aA+F-p_c'Rlc

1S XX

=i T -1
B b P B R CR
T -1
Gyy A A C R C
50)
T T ~1 (
622 Aa-[A +F-C R CPYYJ
il T

D; &P [NA - FN]' + QN
By, &= [NA-FNIT &

2 ee

At this point, the gain K can be evaluated by substituting the solution to
(49) in (41). We note that if the solution is to be valid, then all of the

eigenvalues of the matrix

(51)

must have negative real parts. The author would like to point out that the
matter of a computational search for a value of F that will lead to good
performance when used in conjunction with the above equations, appears to be
complicated by the fact that the matrix (51) must be checked for stability at
each stage to insure that the equations are meaningful.

In summary, reaarding the steady state problem, one must be aware that

a solution to the reduced order problem may not be possible, even when a

solution for the corresponding finite interval problem is available.




=
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b) Computational Savings

In this section a few remarks are made about on-line computational sav-
ing, because this is the factor that motivates the work. A reduced order
filter of dimension & of the form indicated by (17), with an observation of

dimension m requires
¢ (2 +m) multiplies
and
g (2 +m - 1) adds
for each on-1ine filter update. A Kalman filter of dimension n would require
n (n + m) multiplies
n(n+m-2) adds

for each on-line filter update, assuming that all the necessary filter param-
eter were stored. The savings in calculations are significant when the reduced
order filter is used; for example, if a filter of dimension 2 is used to
estimate 2 state variables of a 10th order system, and only a scalar observa-
tion is available, then only 57 of the calculations of a Kalman filter are
needed per update. Of course, this difference would be even more impressive

if n were greater than 10. Performance of a reduced order filter may be

very good as indicated by the example in [3] (JACC version), and the off line

computation, though it may be extensive, definitely is feasible.
IV. AREAS OF FUTURE RESEARCH

A number of interesting subjects have come forth during the course of

this research and have not been properly resolved at this stage. We will
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mention them briefly in this section. One of the basic issues that we have
not confronted is "how does one find an optimal solution when it is not pos-
sible to find an F matrix that maintains a singular arc?" We have chosen to
look at suboptimal solutions in this case, rather than dealing with this
central issue. Another point of interest is with regard to the control of
stochastic systems. It is of interest to know how well a controller would
perform if the control were required to be the output of a reduced order
filter, designed according to the procedures we have presented here, as

opposed to those in [6].

The reduced order modeling problem introduced a novel aspect to the work,
i.e. can we do better than we have been doing with respect to minimizing a
quadratic error criterion, if we drop the requirement that the estimate be
unbiased? Based on the reduced order modeling paper in the appendix, it
appears that the answer is yes when F is selected a priori.

We have seen that the steady state solution to the problems we have con-
sidered does not exist when A is an unstable matrix, since this would imply
that Pxx was unbounded, and (37) would not apply of course. Another area
that we must look into is the conditions for existence of the solutions of the

Tinear two-point boundary value problems that we have derived in this research.
V. SUMMARY AND CONCLUSIONS

Significant progress has been made during the course of this research in
several areas which we had sought to investigate at the onset of this project.
We have Tooked at both continuous and discrete problems, with both additive
and state dependent noise in each case. It has become clear that the discrete

problems are quite different than the continuous time problems, primarily

because of the quadratic occurrence of the F matrix in the discrete time
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problems, while the corresponding matrix occurs only linearly in the contin-
uous time problem, giving rise to a singular solution. It would be interest-
ing to take the 1imit of the discrete solution as the sampling interval qoes
to zero to obtain the continuous time solution [7], to clarify the relation-
ship between the two kinds of problems.

The author feels that the "specified F" solution obtained in this research
are of considerable practical importance in the design of reduced order fil-
ters. The reason that they are important is that they maintain the TPBVP
nature of the reduced order filtering problem, so that optimization looks
beyond one stage ahead, however the TPBVP is linear. It is linear even in
the case of having state dependent noise! The solution, when it exists, can
therefore be obtained off line in a predictable number of steps. This is
unlike the case of nonlinear TPBVP's which are generally solved by quasi-
linearization or some such method, and which may or may not converge, and may
be very sensitive to some initial guess at a solution. Since the TPBVP's we
are dealing with are generally of high order, it is fortunate indeed that
they are linear. A logical procedure for solving reduced order filtering
problems which we are currently working on is to obtain an F matrix that is
optimal with respect to the next stage, as in [2], then modify the results
by solving the Tinear TPBVP to get the corresponding optimal gain.

As we have acknowledged in the previous section, there are still a number
of unanswered questions in this area of reduced order filtering. The author
believes, however, that the methods which have been investigated here are very

promising.
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1. INTRODUCTION

It is often convenient to model a high order system using a low order |
dynamical model. Several researchers have considered this type of problem [1] - |
[8]. In a recent paper, Obinata and Inooka [8] have treated the problem of |
obtaining a reduced order time invariant model which minimized a steady state
quadratic error criterion. In this paper a similar viewpoint is taken, however :
we solve the nonstationary problem with a white noise input, and an integral
quadratic performance measure. Optimal control theory is used to obtain a
solution, which is conveniently found using the matrix minimum principle [9].

The problem is similar to the filtering problems pocsed by Lee [10], and Sims

and Asher [11], in that a singular solution is obtained. When a singular
solution is not possible or is considered too complex, a suboptimal solution is

suggested.

2, PROBLEM STATEMENT

We consider the linear stochastic model

ot
~—

| x(t) = A(t)x(t) + w(t) (
where w (t) dis zero mean white noise with covariance matrix
Efw(t) w (1)1 = Q(t)s (t-n1) (2)

The state vector x(t) is of dimension n, which is presumably too large to be

desirable. The output of the system, y (t), is a linear transformation of the




state vector,
y(t) = €(t) x(t) (3)

and is of dimension m which is much smaller than n. The objective is to find

a reduced order model

G e = FL) $U8) + ki) wie) (4)

A - . 5
where y (t) is an m vector which adequately approximates y (t). We assume

that the initial statistics of the state vector are known

E {X(to) = Ho (5)

1]
el

Var {x(ty) } o

The problem is to select the matrices F(t) and K(t), and the initial condi-
tion &(to) in a way that minimizes the performance measure
tf

J+E{! e
tO

T(t) R(t) e(t) + el (tg) S, (te)) (6)

where e (t), the equation error is defined as

e(t)ay(t) - y(t) (7)

Note that we do not require apriori that y be an unbiased estimate of y,
although this turns out to be a property of the optimal solution. If one

does not select F optimally, however, it can be advantageous to have a nonzero

expectation of the error.

e - P i | (eI S AP




B e o s

3. OPTIMIZATION

The first step in the optimization procedure is to transform the problem
into an equivalent deterministic problem. From equations (1), (3), and (4),

the error dynamics are governed by the stochastic equation
é =Bx + Fe + (C-K) w (8)
where B is defined as
Bié + CA - FC (9)
The second moment matrices associated with (1) and (8) are defined as
Py ()8 E (x(t) xT (t)}

P ()2 E [x(t) €T (t)} = PL () (10)

Poe ()2 E fe(t) el (t)}

From (1) and (8), we can see that these matrices satisfy the deterministic

equations

2o 0]
]

:
XX APXX+pXXA +Q

B e T T Syt
Pog = AP, ¥ P B P B+ QLK) (11)

S T T » QN
Pog S BP + P B # Bl # P . F # (L= Q) Q{C-K)

We make the assumption that y (t,) is to be deterministic. Then the initial

conditions for (11) are




T
PXX(tO) PO *uo Ho

g §
Poalta) = (P, # ol ) €V {t5) = uy ¥ (1)

Bt .
Pee () = C(t) (Py + ug 1 )C (¢ )= vltoh! €T (t)) - € (tg) wy v (t,)
+y (to) y' (t,) (12)
The performance measure (6) may be written in terms of the matrix Pee as
Ly
J=tr{1‘:0 R(t) Pae (t) dt + SP(tf) ) (13)

The problem can now be stated completely within a deterministic framework. The
matrices, F(t) and K(t), and the vector y (ty) are to be selected to minimize
(13) subject to the constraints imposed by (11) and (12). The problem is
ideally suited to solution using the matrix minimum principle [9].

The Hamiltonian is formed as

R R R
Ho=tr RBgy 3 Bog bige * Py e * By Bagd (14)

where we have ignored the equation for PXX since it is a known quantity. The

costate equations are obtained from (14).

P PR S . e i

Ny = e Lt IR N A (15)
% and

2 N -aH ~ T

Aec = iﬁgg = -R - F Aee - R F (16)

The terminal conditions for (15) and (16) are

e (tf) =0




It should be observed that Aex is simply the transpose of Axe‘
The transversality condition applied at the initial time provides the

correct initial condition for }. The transversality condition is

T

T
tr {dPee(to) Aee

(t) + P, (t) A1 () + dP, (t) gy (to)} = o

0] 0

Since P0 and gy are fixed and the only allowable variation is in &(to). we

have from (12),

tr ([, (tg) (v (tg) - C(t

o) M) = A, (to) g1 dy’ (ty)

7 0]

+dy (tg) [ng, (to) (¥ (tg) = C(tg) uy) = Mgy (tg) ugl ' 3 =0 (19)

ee

The above will be satisfied for arbitrary variations in 9 (to) only if the

equation
(to) y(to) = A (to) C (to) Mo e /\ex(to) Mo (20)
is satisfied. If A (to) is nonsingular then Q(to) is given by

ee

¥itg) = TC(ty) +Agg (t)) Ay (tg) T,

Next we consider optimization with respect to the gain matrix, K(t).
Taking the gradient of the Hamiltonian with respect to K and setting it equal

to zero gives the expression

n o (t) K(t) Q(t) = A, (t) Q(t) + Aee(t) C(t) Q(t) (22)

ee o
Equation (22) will have a solution K(t) if the equation,

A /\vr [ A

ee "ee thoe C1Q = [Ag, *+ A C1 0 (23)

ex ee

is satisfied at time t. If a solution exists, it is of the form

|
{
|
|




_ A& - EPIEREEY R
K Aee[Aex+AeeC]QQ 1 “ee“ee’QQ (24)

where T' is an arbitrarv matrix. In the above expressions ¥ is used to indicate
the pseudo inverseof amatrix [12]. When hee is nonsingular, (22) always has a

solution given by
-1 1
K=[C+hop fee1QQ +r [1-0Q"] (25)
In reality, Q will seldom be nonsingular, however if it is, (25) simplifies to

K(t) = c(t) + 2 (e)a (1) (26)
ee X

and a unique expression is obtained.

Obtaining the matrix F(t) is considerably more involved because it appears
linearly in the Hamiltonian. It therefore leads to a singular type of optimi-
zation problem. The part of the Hamiltonian which depends on F can be written

as
H =Fo =8 g7 (27)
where 0 is defined as

€ - + -CP \ 28
04 (P, - CP.) Axe (Pee CPal te (28)

From (20), it is clear that o(to) is zero. If we can show that o(t) is zero
during the interval [to, tf], than a singular arc exists. Taking the time

derivative of 0 gives

(.)=Fn-OF—KQ[AXe+(C-K)TA +(CP_ -P )R (29)

ee ] xe ee

The third term in Equation (29) is always zero when K is selected optimally,

as can be seen from Equation (22). Therefore, if R is zero, a singular arc




exists independent of the choice of F. Generally, however, R will be positive
definite, and to insure a singular arc we must have the term SZQ}ZPxe - Pee

be zero in addition to the requirement of an optimal selection of K. We can
have 2 (t) = o in the interval of interest if w(to) is zero and @ (t) is zero

in the interval [to, t_]. The time derivative of @ can be shown to be

f

PR, . o T
G=oF +F g+ (Pex - Cpxx) B - KQ (C-K) (30)

If B is zero, then from (15) and (17) it can be seen that AX is zero. An
optimal choice of K thus insures that the last term in (30) i§ zero, and (30)
is really a homogeneous equation in @ when B is zero. From (20), and the fact
that Axe(to) is zero, we have that Q(to) is zero and consequently a singular
arc will exist if K is selected optimally and B is required to be zero. This

last requirement then is that
B=C+CA -FC =0 (31)

A solution to (31) exists if and only if

.Y

(C+CA)C'C=C+CA (32)

If a solution exists, it is of the form

’*

FalCscRI T + 0 {1-00") (33)

*
where ' is an arbitrary matrix.
We have thus obtained a solution to the problem when it exists. The matrix
F is to be selected according to (33), and assuming Aee is nonsingular, from

(25) we have

K=(c-r1)qqt+r (34)




where T is arbitrary. From (21), the appropriate initial condition is

y(t) = C{t ) (35)

E{e(t)}=o0 (36)

when the solution is optimal. Furthermore, from (8) it is clear that B = o
implies that E {e(t)}= o for tz_to. Note that although we did not require a
priori that } be an unbiased estimate of y, that is the way the solution turned
out.

Further remarks regarding the optimal solution are appropriate. Note that
the weighting matrices R, and S, and the terminal time, tes do not influence
the solution (except that R and S should be positive definite symmetric
matrices.) More importantly from (33) and (34), we do not have to solve for
any matrices pxe’ Axe’ etc. The two-point boundary-value problem (TPBVP) has
in effect disappeared. Not even the initial variance Po influences the
solution, which has turned out to be extremely simple.

It should have occurred to the reader that (31) cannot always be satisfied.
If one therefore selects F apriori, without regard to optimization, Equations
(15), (16), (17), (21), and (24) can be used to specify the optimum choice of& (to)
and K for any agiven F. The solution, though suboptimal in an overall sense, may
be adequate. Note that in this case the weighting matrices R and S do influence

the solution. It should also be observed that there is no TPBVP to be solved

in this case either, although a single-point boundary-value problem must be

solved off line to evaluate the optimal gain.




.
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4. EXAMPLES

In the first example, we illustrate a case where a solution exists, and
is easily obtained. The system is as described by (1) and (3) with

o -1
A= ; C{t) = [cos £ sin t] {37)

and Q nonsingular. The reduced order solution obtained from (33), (34), and

(35) is characterized simply and uniquely by

F(t) = o
(38)
K(t) = [cos t sin t]
and
y(to) = [cos t, sin to]uo (39)
[f Q is singular however, the result is not unique. For example if
0 0
i = (40)
0 q
then instead of the expression (38) for K, we have
K(t) = [v(t) sint] (41)

where y(t) is arbitrary. This makes sense of course because (40) implies
that whatever multiplies wl(t) in the solution makes no difference.

We shall now consider a problem where (31) cannot be satisfied. A first
order model of the form indicated by (4) is to approximate a second order

model of the form indicated by (1) and (3) with




L————-—-_____....__...‘_

A= s Elt) = [t %] (42)
o oy
with Q>0 and o # - Because (31) cannot be solved, and for reasons of
simplicity, F is selected to be zero. The performance measure to be minimized
is
L1 2
J=E[(’)e(t)dt+e(T)} (43)

The optimum values for the gains are found to be

iy - T T
i<1.(t)=t+(1+T-t)1e“1t s i

where

u (z)}A(1+T) + (0, T+ ~1)r -0, v 51=1, 2 (45)
ui 1 1 i

We emphasize that F = o is an ad hoc decision for this second example, while
a unique solution for the first case. For the second example the initial

condition is, according to (21),

2
y() =1+ { ¥ ed y (1) dx (46)
i=1

SUMMARY

In this paper we have developed new methods of reduced order modeling for
time variable systems with white noise inputs. The criterion used for purposes
of optimization has been an integral quadratic function involving the equation
error. When a sinqular solution to the reduced order modeling problem can be

obtained, it has been demonstrated to be extremely simple. It was shown that




11

the optimal solution must provide an unbiased estimate. When the singular
optimal solution cannot be obtained, a suboptimal easily implemented procedure

has been developed for obtaining the reduced order gain matrix. Both the

optimal and suboptimal solutions have been illustrated by example.
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I. INTRODUCTION

There has been considerable work dealing with the topic of filter-
ing for problems with state dependent noise [1-3]. As well as being of
theoretical interest, the topic is of some practical importance since
many systems are better modeled as having multiplicative disturbances
instead of additive. One example occu-~s in the momentum exchange method
for regulating the angular procession of a rotating space craft [4].
There is a disturbance which depends on the procession rates. Another
example occurs in the design of phase lock loops [2]. The phase insta-
bility of an oscillator described in rectangular coordinates appears as
white, state dependent noise. If one received a signal which consisted
of a large numb>r of sinusoids of various frequencies, each having phase
distortion, then one would have to build a hiaoh order filter to recover
the signal using existing methods.

The design of high order filters is often problematic from the view-
point of on-line computation. Therefore, a number of researchers have
been interested in desianing filters of reduced order [5-8]. It often
happens that one is only interested in estimating a lower order linear
transformation of a state vector, and it seems reasonable to attempt to
do this with a lower order filter. Design of the filter parameters is a
fixed configuration optimization problem [8-10]. In such problems, the
structure is not necessarily optimal, but given the structural constraints,
the parameters are selected optimally. It is interesting to note that
these problems often have non-unique solutions because there are too many
free parameters. This feature can be used to obtain filters which are

easier to implement than well-known techniques such as Kalman filtering,

ne



even when the fixed configuration filter is of full order [8]. In some

cases, there is no performance loss associated with the alternative linear

filter, [8], [11].

In this paper we seek to extend the reduced order filtering results
developed in [8] to problems with state dependent noise. The problem
is similar to that considered in [12], however, in [12] a discrete system ;
model was considered, and only a single stage/optimization was performed.
Here a continuous time problem is considered, and the matrix minimum
principle [13] is used to obtain a solution. Because we allow a driving
term in the filter to remove any a-priori bias, it turns out that the
problem has singular arcs, which is not surprising considering previous
works [8], [11] in the area. A very nice feature of the work is that

in some cases only linear two-point boundary value problems are obtained.

These can be solved either by a direct use of linear systems theory or
by a Riccati equation technique. Under certain circumstances only a

single-point boundary-value problem must be solved.
II. PROBLEM STATEMENT

The system of interest is assumed to be modeled by the Ito stochas-
tic differential equation

dx(t) = A(t)x(t)dt + dw(t)
nﬂ
£ X [0 (0)]si(0a) (1)
izl

where x(t) is the state vector of deminsion n and u(t) is the mean value
of the state vector. The disturbances are zero mean incremental Wiener

processes with covariances

Efdw(t)dw! (t)} = Q(t)dt (2)
E{dv(t)dvT(t)] = E(t)dt
=3




It is not hard to show [14] that the mean value vector, u satisfies
du(t) = A(t)u(t)dt (3)
The initial condition for (1) is random with known mean and variance
E{x(ty)}= g (4)
Var {x(t ) }=P (5)

n

H

[}

0

Equation (4) is obviously the initial condition for (3).
The observation vector is also corrupted by state dependent noise.

n
dy (£) = C(t) xie)dtrav(t) + 3 [xi(t)-ui(t):] M. (t)dv (6)
']:

In (6), y(t) is the observation vector of dimension m, dv(t) is the
additive measurement disturbance, and dv(t) is the multiplicative dis-
durbance. The vector v(t) may be large, and some of its elements affect
the dynamic model through the terms G;, while others affect the obser-
vational model through the terms M;. The additive disturbance, dv(t)
is a zero mean incremental Wiener process with covariance
E ddv(t)dv'(t)} = R(t)dt (7)
The terms w(t), v(t), v(t) and x(ty) are uncorrelated.
Only a linear transformation of x(t) is to be estimated, j.e., it
is desired to estimate
z(t) = N(t)x(t) (8)
where z(t) is a vector of dimension 2 <n.
The estimate of z(t), which we call Q(t) is constrained to be obtained
by the filter equation
A1) = [F0)z(t) + 9()] at + k(t)y  (9)
The vector g(t) and the initial condition, Q(to) are to be selected

so that

E fe(t)} = 0 vt =[t,, te] (10)




where e(t) is the error vector

A

e(t) = z(t) - z(t) (11)

The matrices F(t) and K(t) are then to be selected so that a quadratic
performance measure &

f

3=} [ e'(t) Qe(t)dt + eT(te)Se(te) (12)
t
0

is minimized. The weighting matrix S is assumed to be positive definite
symmetric. The weighting matrix 6 may be positive definite or zero and

is critically important to the solution.
IIT. GENERAL SOLUTION

In order to proceed, it is convenient to develop an equation for
the error. From the Ito differential rule Eé], it is seen that
dz(t) = N(t)dx(t) + N(t)x(t)dt (13)
Using (6), (9), and (13) it is seen that the differential equation of

the error is

de(t) = dz(t) - dz(t)
or
de = [(NA—FN-KC+N) X - g:]dt+ Ndw - Kdv
n n
+Fedt+ [NZ x.6; - K xiMi:l dv
= =1 (14)
In (14) we have introduced the notation, x = x-u. From (14) it is seen
that
d_Efe(t)} = F(t)E}e(t)
dt (15)
provided that
g(t) = (NA-FN-KC+N)u(t) (16)

]
i
3
5
!
£




If furthermore

2(t ) = N(t )ulty) (17)

it is clear that

E {e(to)}= 0 (18)

From (15) and (18), one can see that (10) is satisfied so that (16)
and (17) are appropriate selections. 1f g(t) is selected according to

(16), the error differential equation can be written as

de = (NA-FN-KC+N)xdt + Ndw-Kdv
n =
+ Fedt +) x; (NG ;KM ) dv (19)
i=1
The equation for x is
s
dx = Axdt + dw + ) x;G;dv (20)
' i=1

Clearly x and e are both zero mean processes.
If (19) and (20) are put in 1 equation, it is easy to see how
the second moment matrix defined as
E{x(6)XT(8)} | Egx(t)e (2]
Ele(t)XT(t)} | Ele(t)eT(t)} (21)

propagates. This is useful since the performance measure (12) may
be written as

T
3= trf [T Qpyqlt)dt + SPeelte)] (22)

[f one has the appropriate constraint equation, the optimal selection
of F(t) and K(t) may thus be solved with deterministic theory using the

matrix minimum principle.

Equations (19) and (20) may be written as




dw

x|

dx(t) A [0

de(t) (NA-FN-KC+N)! F e Ndw - Kdv

n
+ Z X'l.'i dv
j=] !

where

NG; - KM,
i

The second moment matrix associated with (23) satisfies [4],

P =GP+ PG +0+

where
E o ]
g 2
l(NA-FN-KC+N) F J
T
N
QAQ]Q ]
ng | kreT + nonT J
and

1}
—

i
j:

Partitioning P in (25) we obtain the individual equations,

(26)

e




: T
Py " AP+ PA + 0 +¥ (29)

0.
"

ee [NA-FN-KC+N Pxe + pex [NA—FN-KC+N]

T T T T
+FPL + PPl + NON' + KRK' + KWK

N\IIZKT - Kw,TNT 4 N N (30)

and

. B ]
Pxe = APXe + P

o T
xx (NA-FN-KC+N)© + P F

+ QN + ﬂﬁNT = QEKT (31)

In (29), (30), and (31), the terms \yl, ¥, and W, are defined as

n
D e
= p £, = B 32
j=1
2"? T
¥, = p G. =M (33)
2 $=1 XX.iJ 1 J
j=1
L T
Wy -1;1 Pxxij M; E M (34)
J=1

The term P, is simply the transpose of Pxe' Clearly Pxx can be calculated
independently, and can thus be regarded as a known quantity. The problem
is to select K and F so that (22) is minimized subject to the constraints
imposed by (30) and (31).
The Hamiltonian for this problem is then
1k

. : 5" o Ty AR
e lQpee i Pee Vee ' P’ xe ? pex“ ex | (%)

o .




where Ao, fye, and Ay, are Lagrange multiplier matrices associated with

pee’ Pyes» and Po, respectively. The constraint equation for Pgy is in-
cuded for symmetry.

The optimal solution for the gain K(t) is obtained by setting the
gradient of H with respect to K equal to zero. This leads to the ex-

pression for K.
-1
K=A L (P..C' + NE) +A__ (P CT +\If)] [RN!1 (36)
ee Aee ex 2 Tex M oxx 2 3J

where the required inverses are assumed to exist. The Lagrange multiplier

matrices satisfy the equations

_oH =
hog = — = - 1{Q +AeeF + F' Ace} (37)
;Pee .
and
==t L ) T T
o % = - {(NA-FN-KC+N) ' Age + A" Ay + AyaF | (38)
xe

The matrix Agy is just the transpose of Aye. The initial conditions for

(29), (30), and (31) are

b=p (39)
and

(40)
The terminal values for (37) and (38) are as required by the transversality

condition applied at the terminal time

Aee (tf)

"
w
—
e
—
N

and

"
o
—
F=Y
N
~

S ——




Notice that Aee(t) can be computed separately without solving the rest

of the problem if F is known beforehand. However at this point, we have
not yet determined how F should be selected. It will be seen that this
depends in a critical way on the nature of Q. We will consider two

different classes of problems.

CASE 1.

In this case, we assume that 6 = 0. The meaning of this is that
the quality of the estimation algorithm is only important at the terminal
time. This may make sense for rather a large class of problems. The
reason that this case is of particular interest is that the selection
of F does not affect the Hamiltonian, so that we are free to select its
value based on other considerations.

Consider that part of the Hamiltonian which depends explicitly |
on F.

H* = tr {FO+O'F } (43)
where

0= {#

se"WPxe) Age + (Pex NPy, ) Axe (44)

From (39) and (40) it is clear that(a(to) = 0. If it can be shown that

O(t) = 0 for all t in the interval of interest, then a singular arc

exists. The Hamiltonian is independent of F. In this case, one does
not need to specify F to stay on the singular arc. Differentiating

Ogives

R ¥ R - it R T
6= FO- OF + K[RK Aoe + VKA = P Age = CP Aye = WpT Agg = W,TN A\ee]

Dragt Copy, Fig. 1 Not Avadlable, Jowrnal Undecided



The bracketed term in the above is zero whenever K is chosen optimally,

i.e., according to (36). Hence
O(t) = F(t)O(t) - O(t)F(t) (46)

and (46) implies that ©(t) = 0 for all t >to since ©(t ) = 0. The

a)
selection of F is thus not a performance factor. It may be selected
a-priori so thatA\ee(t) can be precomputed. It may be selected so as
to achieve some other objective such as reduced sensitivity, computational

convenience or to minimize some alternative performance measure specifi-

cally involving F.

When one thinks about it, the singularity with respect to F is
not particularly surprising. Clearly two different filters can even pro-
duce the same output at a particular time, given the same input. What is
interesting, is that this fact is generally overlooked, and as the example
problem will show, that an alternative filter structure can be relatively

easily implemented.

CASE II.

In this case the weighting matrix, 6, is a positive definite sym-

metric matrix. When one develops an expression foré), the result is

0=FO-OF +Q0Q (47)

instead of (46), where

Q= NP, - P (48)

€e

Thus unless € is zero, a singular arc does not exist.

-10-
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It is easily seen that 2(t) does not equal zero unless F is slected
appropriately. From the initial conditions, ()(to) = 0. Taking the

time derivative of () we get

Q= FQ+QF + (NP (NA-FN-KCH) T

xx'Pex)

B T w TyT 10
K [RK 4% N' + WBK Cpxe} (49)

Examining the last equations we see that if
(NA-FN-KC+N) = 0 (50)

then
. T
Q= FO+QF (51)

This follows from the fact that when (50) holds, ‘“xe(t) is zero for

all t in the interval. Consequently the expression for the gain becomes
-1

= [PeyC” + 1) [R 4 5] (52)

and (52) is sufficient to have the last term in (49) be zero. In view
of (51) and the fact that Q(t,) is zero, it is clear that € (t) is
zero for all tE;[to, th provided that (50) holds and that the gain is
selected optimally.

When ) (t) is zero, it may be seen that the orthogonality require-

ment is met in a reduced state space, i.e.

(1) = N(E)Pyg(t)-Peg(t) = E 4 [z(t)-e(t)JeT(t)} - 0 (53)
Since 2 = z-e, (53) may be written as L
E{Z(t) e'(t)} =0 (54) |

«11=




so that what we have required for singularity is that the error and {
the estimate be orthogonal.
When N is the identity matrix and there is no state dependent

noise, the result is the Kalman filter, with the requirement (50) that
F(t) = A(t)-K(t)C(t) (55)

which of course means that the filter is of full order. When the filter

is of reduced order, and N is constant, what we have is the observer

constraint equation [16]
NA-FN-KC = 0 (56)

In general, when 6‘>0, (50) is a necessary condition for a singular arc.
Clearly it is not always possible to select F to satisfy (50). In such
cases, the problem needs to be reformulated so that an unbounded F is
not indicated. Alternatively a suboptimal solution can be accepted.
We will examine this topic in the next section.

A necessary and sufficient condition that (50) have a solution

F, is that

[NA—KC*rN:l N = [NA-KC+N] VtE)'to,tf} (57)

If (57) holds then a solution is
P s ‘:NA-KC+N] N+ l‘[I-NN’] (58)

where N)bis the pseudo inverse of N and where I is an arbitrary /X’
matrix [17]. When the matrix (NNT) is nonsingular then the solution

(58) can be written as
-1
F [NA—KC+N] N [NNT:| (59)

]2




IV. SPECIFIC F SOLUTIONS

In the preceding section we have shown that when one is only
interested in estimation at a particular time, the selection of F may
be based on considerations other than optimality, so that one may
pick it prior to optimization. Furthermore, when Q>0, it may not
be possible to find an F which results in a singular arc. In
that case one may opt to select F prior to optimization. In this
section, we will see that when F is selected a priori, the two point
boundary value problem which must be solved for.the selection of K
is linear, and hence relatively easy to solve.

Consider substituting the gain expression (36) in (31) and (38).

The resulting expressions are

. 5 . T T 1 ¥l
Poa = Wpp * PXX(N+NA-FN) * PoF * 4N o+ 1 N
T -1 T T -1
VR AT A (RN LI
% i
+ PZ MEE Pxe] (60)
and
- T -
Axe = -(NA-FNH)T Age - AT Aye = AF + CT (R+ ¥)!
T e il (61)
[(Pxx e WZ) xe ¥ (C Pxe * 13 N Aee]

When F is known a priori, both Pxx and.\ee are known in the sense that
they may be precomputed. The above equations are then seen to give a
Tinear TPBVP in the matrices Py, and A,,. The solution may be obtained

in a straight forward manner using linear systems theory, or alternatively
by assuming that the elements of A , are linearly related to those of

Pyes and obtaining a solution involving a Riccati equation. The values

obtained for P, and Aye may then be used in the gain expression (36).

-13-




We cannot overemphasize the importance of the fact that our result

is a linear TPBVP, since it is reasonable to expect to solve a linear
matrix TPBVP. Often a nonlinear matrix TPBVP is so difficult to solve,
that the utility of the result is questionable. We shall explain pro-
cedures for solving a linear TPBVP by looking at a particularly easy
case in which ‘Aee is a scalar times the identity matrix. This results
when both F and Q are scalars times the identity matrix. When this is

true, (60) may be written as

B = LpaPoee L e 0, (62)
where
L= R&E-I*E (63)
le =—L* (CPxyx +\y2T) A-lee (64)
e S T T Tl
D) = Pxx (NA-FN+N) ™ + QN +W N - L* \1'2 N (65)
and where
L* = (PyCT + W) (R +wy)7! (66)
Equation (62) is of the form
Ay = L2 Pxe * L22Aye * Dy (67)
where
L. =C' (Rt ¥)~Lc & (68)
21 3 e
L, = -AT-F + ¢'* (69)
i
and
. il = T
DZ = -(NA-FN"‘N)T Aee C (R+ ‘V3) 1“’2 NT hee (70)

-14-




Let L be the matrix

L L
L = [ 11 12] (71)

[ Loy Lzzj

and @ be the associated state transition matrix which can similarly be

partitioned
[
P = ‘ (72)
‘.“’21 “’22J
Then the solution to (62) is
PoakE) = 11 (t, to)Pxe(to) o5 (t,tg) Aelto)
T (73)
of [l o) sy (80) Dp(+)] ¢
o
and
17
of [atto nto 055,710, (1) dr (74)
to
Applying (74) at time t = t. gives
Axe(tf) 0= ¢21(t 't )P (to) + ¢22(tf,to) Axe(to)
(75)

+f [e21(te 00 () + byt IDy(1)]d

=15
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We can solve (75) for Aye (tg) and substitute the results in (73) and
(74) to obtain the solution for all te{}o, tf].
There is another approach which is probably preferable in most cases.

We assume that A,, is Tinearly related to P,, by the relationship
he(t) = U(E)Pg(t) + B(t) (76)
Differenatiating (76), one obtains the differential equation
AXE = UPXQ +U[Lllpxe 2 DI+L12 UPXG & L12 B] + 8B (77)
Alternatively, from (67)
Aye = Lo1Pxe * Lop UPxe + LppB + Dp (78)
Equating (77) and (78), we get for U
U+ ULyy + ULl = Lpp + Lyl (79)
and for B

ULypB + B + UDy = L,,B + D, (80)

Since Ay (tf) = 0, the terminal conditions for U and for B are

The Riccati equation (79) and equation (80) can be solved backwards in
time from the above terminal conditions. The optimal gain may then be
expressed as

-1
T i !
k=[P Qe hyy + nge ! \UP.xe+B)T(PXXCT+w2)J [R+\v3] (83)

3=




and Py 1s evaluated as

Pxe = L11Pxe * L12 [pre + B] + D, (84)

The matrices Ae P U, and B must be evaluated off line, however, Pxe

e’ Xx’
and K can be evaluated on line if this is desired. Most likely these
would also be evaluated off line and K stored for on line calculation

of f(t) using (9).

V. EXAMPLES

The first example we shall consider is of the category discussed in
Case II. We assume that A(t) is zero, N(t) = C(t), and that there exists
an F such that

FC = C - KC Vte[to, t{] (85)
then if CCT is nonsingular
: -1
F = [ccT ) chT] (ccy (86)
The filter equation is
- = T =3 A
dz = CC" (CC') 2dt + K [dy - zdt] (87)

The initial condition for (87) is

The gain is of the form
-1

K(t) = [PxeTcT + %J [R + w3} (89)

=17
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where Pxe is the solution to
— S | T i
Pre = Poflcch) l[cc -CC'K J+(Qw1) C-vy K (90)

Alternatively since CPye = Pee’ it may be desirable to evaluate (89)

as 24
K(t) = [P + Cvy) R+ ] (91) !
where P, is the solution to
:
: B i o I W | ]
P () —[cc T KJ Poe*Pee [cc (cch)-! -«
+ccT + kR + KW3KT - CWZKT
- ko + cvycT (92)

The reason (92) is appealing is that Pee has fewer elements to calculate
then Pye.

The next example is concerned with the very simple problem of
estimating a constant having zero mean and variance 1 prior to observations.

The observation is of the form
dy = x dt + dv + Mx du (93)

where v and v are zero mean white noise with covariance parameter 1
and M is constant. We are interested in estimating the value of x at

time, T. Hence
J=e{e? (1)} (94)

and this is a problem of the category referred to as Case 1. For com-

putational convenience we select F = 0. The TPBVP then is

%e =y ARy 2 Ne) (95)
Me =¥ (pxe B Axe) (96)
«18-




with Pxe (0) =1 and AXe (T) = 0, where

vy o (1+m2)7] (97)
The solution is
I - y(t-T)
P (t) = (98)
xe
e
and
t-T
i 1 % 4T

Interestingly, because of the complimentary nature of Py, (t) and fye(t),

the gain is a constant,

1 + YT (100)

The filter is simply

LY = e dy(E)
1+ T g (101)

and the error variance at time t = T is

P_(T) ! ki M2 (102)
— 1+ YT 1+ M+ T

The filter (101) is simpler to construct than the choice which would
require F = -K, i.e., one of the form

dR(t) = k(t) [dy(t) - Q(t)dt} (103)

«19-




even though it i obviously a full order filter. The authors feel that

the nonunique property of optimal linear filters for certain cases is

a feature which one should take advantage of.

VI. REMARKS AND CONCLUSIONS

We have extended the results of [8] to problems having state de-
pendent noise in the observation and dynamical equation. Control
theoretic methods have been used to solve the problem, and optimal
solutions have been shown to correspond to singular arcs. Different
solutions result when there is an integral performance measure than
when only estimation at the terminal time is important. In some cases,
we have seen that it makes sense to select the filter matrix ahead of
time and then optimize the gain. The computational algorithms associated
with such prior selection are particularly convenient. There are no
terribly difficult TPBVP's in this approach and that is why the authors
feel that it is practical and useful, both for full order and reduced

order filters. The amount of off line calculation necessary to simplify

on line filtering appears to be quite realistic.
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INTRODUCTION

In this paper we consider estimating only a part of a state vector, using
a reduced order linear filter. The problem is motivated by the fact that
sometimes one is only interested in estimating a portion of the state vector,
while the entire state vector may be of large dimension. For example, the
entire state vector might contain state variables asscciated with a detailed
model of the noise generating process, and the filter designer might only be
interested in estimating position and velocity. The complexity of the Kalman
filter for estimating a large state vector leads one to consider less compli-
cated reduced order filter designs for estimating the variables of interest.
The reduced order filter would typically have fewer on line calculations, but
a greater number of off-line calculations required for evaluating the filter
parameters.

There has been considerable research in the area of reduced order filter-
ing [1-8] because of the difficulties involved in implementing a full order
filter of large dimension. This paper is a discrete version of the work
presented in [8], wherein a continuous time problem was formulated as a two-
point boundary-value problem (TPBVP). The discrete problem is quite different
than the continuous time problem, since some of the filter variables to be
optimized appear quadratically in the discrete problem and only Tinearly in the
continuous problem. This paper also represents an extension of [5], where a
discrete reduced order filtering problem was solved, but the parameters of the
reduced order filter were only optimized with respect to performance at the

next stage. Here parameters are optimized over an interval. A solution is




obtained using the matrix form of the minimum principle [9]. As in [8], a

suboptimal approach is suggested which leads to a linear TPBVP to solve, and a

method of solution is suggested.




PROBLEM STATEMENT

Consider a linear stochastic process defined by the discrete state

equation

where xj is the state vector at stage j, and wj is a zero mean white noise
vector. The system is observed with noisy Tinear measurements

yj = Cj X; + Vj o e (2)

where yj is the observation and vj is zero mean white noise. The covariance

matrices for wj and Vj are

:
W PR XN Ry

(3)
B
E V. V } = R.S .
{ J k gealic
The noise terms, wj and vj are not correlated with each other or with the
initial condition, My = In the problem considered, a lower order linear
transformation of the state vector is of interest
Z: = N; X (4)

J J
Since Z is lower dimensioned than Xj , we consider estimating it with

The dimensions of z., x., and yj are £, n, and m respectively, and & < n.

a reduced order filter of the form

Z.j+1:Fj ZJ.+KJ- )’J+1+93 (5)




The objective of the problem is to select gj and z . to satisfy a require-

0
ment that the estimate be unbiased, i.e.,

The matrices Fj and Kj are then subject to optimization to minimize a

quadratic performance measure,
d=Ef{zx e " Y. +te Se } (7)

The solution to the unbiased requirement is easily obtained by considering
the error difference equation. The optimization problem can then be solved

using the matrix minimum principle.
THE UNBIASED REQUIREMENT

By considering (1), (2), (4), and (5), we find that the difference

equation for the error is

E ; = Fs Efe ., } * N . = K G A.-
i A2 A N Bl LT e B T
P N, i
- G it B B
where s AE{xj ).  From (9) it is clear that we will have a linear homo-

geneous equation for the prior expectation of the error provided that gj is




selected as

. = . - K. : - . . 0
93 [(NJ+1 i C3+1) Aj Fj NJ ]uJ (10)

Hence E{e . }t= 0 VJ.>0 if E{e } =0, which will be true 1f20 is

chosen as

J C O L R 7
D.a(Nj+q- KjCj4q) (13)
S A
oo T
It is clear that Yj is a zero mean process satisfying -
Xiag T Cog oy (14)

The remaining problem is to minimize the error criterion (7), with respect

to Fj and Kj , subject to the constraints imposed by (12) and (14).

OPTIMIZATION

The performance measure (7) may be written in terms of the error

variance matrix

M-1
J=trfn U _P_(j)+sSP (M)} (15)
j =0 J ce e

i




where

Pee(J)‘A‘_E‘(ejeJT’ (16)

From (12) and (14) it is seen that *he error variarnce matrix satisfies

! A : T : e | : T
Pee(3+1)-FjPee(3)rj +Fjpex(3) 6 +Gjpxe(J)Fj +
; (17)
T T
)
GJPXX(J)GJ +D. Q;0; + KJRJ+1KJ
where
P (§) =Pay (§)aE{xsel ) (18)
xe \J e X = R

propagates according to the equation

- b - T : 1 T
Paatdrl) = AP (3 )P +Ajpxx(3)Gj +Qij (19)

From (14), the matrix P, (J)AE{ Yj Ij T satisfies

2 B . T
P bitt) = Ap AR+, (20)

The initial conditions for (17), (19), and (20) are

o
—
I
m
x
¢
i
-
%}
=S
5¢
—~
o
S~
Il
o

(21)

e
®
[¢]
—
o
~
n
=
b, |
=

The problem is now completely within a deterministic frame and can be

solved using the matrix minimum principle. The Hamiltonian is of the form

i HJ.= I {Ujpee(j) + Pee(j+1)/\ Tee(j+ 1) +Pex(j+1)-“exT(j+1)

: T \EE)
PPy (i+]) Ao (3+1))

where Ag e and A, , are Lagrange multipliers, and Ao » is the transpose of




— v

(&3]

A After substituting from (17) and (19), the costate equations can be

xe’
found from (22).

1 = - = T 3
Noe (3) =0H Us +F 5 /\ee(J+1)Fj (23)
3P geld)
and
by kY =aly =B K AIFINE; 4 (24)
xe e J g J
WP)(E(J)
A L (3+1)F
j ner J

The terminal conditions for (23) and (24) are

s (M) =S (25)

and
A (M) = o (26)

Setting the gradient of the Hamiltonian with respect to Kj = 0 gives a

necessary condition for optimality,

: . T 1 : . T
Aee(3+1)Kj[Cj+1pxx(3+1)cj+1 +Rj+1]” hox (3+1) Py (3+1)C5 4,
A T Y o T
+ N P (j*‘l)]CT
j+1  xx afnl!

Similarly, setting the gradient with respect to Fj equal to zero gives

Neo T+ Py [Py (3) =P oy (ING TN P () + NPy ()N ] o

= [hgxld#1) *heg (3+1) (Ngag-K Cyy M AGIP (1N, T-P o (9]

Thus we have the TPBVP giving the necessary conditions for an optimum. In




general, such a problem is difficult to solve. There are two cases in which
it is not unreasonably difficult to solve the problem. In the first case, the
TPBVP simplifies into a cingle point boundary value problem. The Kalman
filter is of this category. In the second case, Fj’ is not optimized, but
selected prior to optimization. The optimization of the gain Kj may then be

accomplished by solving a linear TPBVP which is a routine procedure.

SIMPLIFICATION

In this section we show that there are circumstances where the TPBVP
simplifies considerably. Assume that it is possible to select Fj in such a

way that Gj is zero, i.e.

(N K;C

j#1 ~K3C54 )R -F N, =0 (29)

JJ

Then from (24) and (26) it is clear that A, (j) is zero. If A,, is non-

singular, and if furthermore

e . . T
2 (3P ol -Py (GIN;" =0 (30)
then (28) can be written as
FN.LP (N =P ()] = (N K.C ALTP, (INT
: (31)
P oeetdl]

so it is clear that (29) implies that Fj satisfies the necessary conditions

for an optimum. It really isn't necessary that & o be nonsingular for (29)

e
to imply (28), but it is critical that 2(j) be zero, so we investigate this

point.

Using (17) and (19), and noting that Gj is zero, we obtain

T A Ry T v w—




. : T T
\ = F ; F.' +[K.C.,.0Q.C. a8,
2 (j+1) (J)F [J 541%3C 541 *K3R 54, 5,

i 1

. . i T
-Nj+1Q5C;544 Fjpex(J)Aj Cis1 ]Kj

We will show that the bracketed term in (32) is zero when Kj is selected

optimally. With Gj equal zero, (27) will be satisfied if

Kj[cj+1pxx(3+1)cj+1 443 i ex j F+1 xx

-F. N P (] .
J xx(J)AJ‘ J+1

We substitute for FJ Nj from (29) in the last term of (33), obtaining

] . T ek . T :
Ky DO aq Py D0, " * Ry T =DFP ey (3) AT+ Ny P (G4 1)]
(34)
T % g T
Cj +1 [N 541 |<j C 3+ ] Aj P P (j)A 3 C j+1
Substituting from (20) for Pxx(ji-l), and simplifying the result gives
T - i T
K. ' ¢ . SR = E . P AL BN € .
J[CJ+1QJ J +1 J+1] [J e x (3) J J+1Qj] J+]
(35)
which insures that (32) may be written as a homogeneous equation
@ (j+1) = F, a(3) F, ' (36)
‘ J J

whenever Kj is selected optimally. From the initial conditions of the
problem, 2 (o) =0, so (36) implies that 2(j)=0 for j>o0. We therefore
have established that (29) and (35) will satisfy (27) and (28), the necessary

conditions for optimality. We can write (29) and (35) as

T T
Aj €541

el
. e 19 y
(C5419C%541 *Ryuq




baccnmlied o oo

g ol

- T

or
KjT
[ = B. 38
J = i (38)
F T
J
where Lj and Bj are defined as the corresponding matrices in (37). A
necessary and sufficient condition for (38) to have a solution is that
/1-
B =B =SB 39
R [ J (39)
where L;f is the pseudo inverse of Lj’ If a solution exists it is of the
form
|F.] = ¥ B.)T + = :f N
b s 1= Fs T sppide Tu ) (40)
where T is an arbitrary matrix.
It is of interest to relate our solution to the well known Kalman
filter solution when the filter is not of reduced order, but Nj=1. In
this case (29) requires that Fj be selected as
F. = <. € . A 4
N LY (41)
which is the same as the Kalman filter result. Using (41) in (35) we have
T T
G oo T RR . wE, AP (YA K. =
[ J+1QJ Jotl Jt+1 s xe(J) 4 CJ+1 J J
(42)
. T
€. g C A.P N
: J+IQJ h S xe(J) 3 !
Noting that P, (3)=P (i), and defining the one stage prediction error
variance matrix as
3 g 5 ik
p + =A.P PR
ep WHLI) AJ ee(J)AJ Q] (43)

e ——

N A SV A BV A e ¥ Pt A 7 P A g e .
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[t is clear that (43) gives the common expression for the Kalman gain

K, =P iy e, 06, P iEupE . Tem 1

44
J ee( j+1 j+1 ee 1 j+1 (34)

Since in the reduced order case, we may not be able to solve (40), or more
fundamentally, may not be able to solve the TPBVP specified in the previous
section, we therefore investigate a partial solution where Fj is selected

a priori, and only Kj is optimized.
SPECIFIED Fj SOLUTIONS

The idea that we suggest in this section is motivated by the fact that
if we select Fj prior to optimization, the remaining TPBVP is linear, and there
are a number of approaches available for solving Tinear TPBVP's. If a solution
exists, it can be obtained in a predictable number of steps, depending on the
procedure used. Thus a reasonable amount of off-1line calculation can bring
about a large savings in on-line calculations. The performance loss can be
made small by selecting Fj in some way which relates to performance, but does
not require solving a TPBVP. Such a procedure was indicated in "5] where only
single stage optimization was considered. We should also point out that if one
is only interested in the estimate at the terminal time, the selection of Fj
does not affect the performance measure. This was proved in [8] for continuous
time problems. Hence the method we propose here is appropriate for that
special case, i.e. the actual optimal performance will be achieved.

If Fj is selected a priori, we note from (23) that Aee may be regarded as
a known quantity, as is Pxx’ in the sense that it may be precomputed without

regard for the remainder of the problem. If . (j) is nonsingular, one may

solve for the gain Kj as




-1

. ; ; : . T
Kj =08 o (G+1)ng (G Pyy (3+1) + F5{Py (3) =Ny Py, (J)1A; (45)
+Nj+1pXX(J+1)] CJ"“]. [Cj+1pxx (J"l) CJ+1 +RJ’+]]
" T
where we have also assumed that [Cj4~1 PXx (j+1) Cj*-l + Rj+1] has an
inverse. Substituting (45) in (19) and (24) we obtain the expressions
: : 17 T < it :
P + 1) = (I = P +1) €. M A. P Fodtat
. (3+1) = ( ae (J )J+1 J.+1) 3 P (3) ; 1(J) o)

-1
P (§+1) Ciap M. . TP (j+D)a i+1) A j +
e WAL Bpa gt Mo, TR iR 1) AARY

T T . : )
= A, = o ) +
M (3)= Ay (T-Cy o Mo m P @) a (3+1) i (3)
47)
T 17 i - T g (
A" C M A. P F. A el
R T e Xe(J) ; \ee(J )J
where
D (3= (1- P (i+1)C,. TM Ty (P (+1)N, . -
1 XX J+1 J""l ‘ XX J+1 (48)
o
A. P N.'F
; g (j) ; J)
T T oF T : T
D = [(N. Ro=F, Y <& . p +1) N
Z(J) (¢ J*1 3 J J) A A S ( XX (3+1) i*1 (49)
j et | )
By B (3) N;* F; JA B Aot 1) Fs
and
T - i -1
M 8 G g P S » 4+ R.
512 Cen Caaa P G G P+ Ry (50)

The boundary conditions for (46) and (47) are specified by (21) and (26)
respectively. Equations (46) and (47) are linear in the matrices to be 5

computed, PXe and Axe' Therefore there are a number of ways to solve the

problem. One approach is to assume a linear relationship between the elements
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bl

- e s *
of Pxe and Axe’ i.e. after putting the elements of Axe in a long vector Axe’

and similarly putting the elements of Pxe in a vector Pxe*’ we may assume that

N * * *

A (i =3 . P " {j)+ & (51)

*

*
Recursive equations may then be obtained for =. and g 3 and the TPBVP is

*j
effectively transformed into a single point boundary value problem.

We illustrate the above remarks by examining a special case where it
is not required to first put the elements in a vector format. It is assumed

that the matrices of (23) are all in a scalar form, i.e.

which requires that S and U be similarly defined. Then (46) and (47) are

of the form
P (%) = agy () P () +ap, ()4 (G+1) + 0y (3) (54)
/\xe (J) = ‘121 (J) pxe (J) * ®99 (J) Axe (J+ 1) + DZ (J) (55)
where
e Bl afa =B e . h. A
11 =] XX ard: "3xy 57
. % [ : ;
agy (3) & -1g, GNP (G4D) Gy M TR, (G+1)
56)
T . T T T (
apy (3) & ' e (3+1) Aj Cj+1 Mj*'l A
: k] 5

R
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3 A Tinear relationship between Pxp and Mo is assumed, i.e.
M e (i) = ”Pxe (i) + £ (57) ?
i
Substituting (57) in (54) and (55) gives §_
Pxe (J+1) =anp (J) Pxe (J) + alz (J)Eij‘*lpxe (J+1) iy (112 (J)Bj+l (58)
+ Dy (§)
25 Pre (3) * 85 = apy (3) P (3) +app (3) 5549 P (3+1) e
+agy (30 8,4 * 0y Q)
Solving for Pxe (j+1) in (58), and substituting that result in (59) gives
.] PXe (J) 1 BJ- = <¥21 (J) Pxe (J) i ‘122 (J) Gj-{»l o+ D2 (J) ;
e . il . : . (60) i
tagp (3) 25 I -agy (3) 554907 Logg (3) Pyg (3) + app (3) Bse1 ;
+ 0, (3) ]
If the above is to hold for arbitrary Pxe’ then we must have i
;
. : . -1 : ]
5'-‘]' N azl (J) + (122 (J) :j+1 [I g '/112 (J) :j"'].] ‘311 (J) (61)
and
=1
} = i =
Bi= agp () [T+ 25 (T -ap, (3) 550 9) 0y (30185, 4 + D5 (3) e
i ‘
' -1 !
| 1 o - 3 = 3
The terminal conditions for the above are
Eg=0; By=0 (63)
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Having solved backwards in time to evaluate {%j:and{ﬁj;, one may then solve

(58) forward from the initial condition specified by (21). Since Axe is

known in terms of Pxe’ (45) may then be used to evaluate the optimum gain
sequence. We note that the algorithm we have suggested will fail if any of

the required matrix inverses fail to exist any where along the trajectory.
EXAMPLE PROBLEM

In this section we domonstrate the performance of a filter designed with
a specified set of values for {Fj}. The example is a simplified model of a

discretized inertial system as treated in [8]. The dynamics are modeled as

L A
. = ot 4
X541 A xJ Ws (64)
} where A is .02, and the observation model is
: Hparg T B A S i

- The covariance matrix of W is assumed to be
(

| S

and Vj is white noise with covariance parameter .1. The initial variance of

the state vector is assumed to be the identity matrix. It is desired to

estimate X1 using a first order filter of the form

I TSI I I P R TS Y

jé From (10), g5 must be selected as

|
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1 afd

The filter parameters Fj and Kj are selected in tha following way. First a

single stage optimization procedure is used to obtain values for Fj and Kj as
indicated in [5]. This does not require solving a TPBVP. The performance of
the resulting filter is shown in Figure 1. The value of Fj is maintained, but ;
Kj is optimized according to the method proposed in this paper, i.e. by solving
a linear TPBVP to minimize the performance measure

3= ECE e+ ey (69)

j=o

The results are shown in Figure 1 where they are compared with Kalman filter
results and single stage optimization results. It is seen that performance
can be improved, relative to that obtained in [5], while maintaining the same
amount of on Tine calculations. The increased number of off line calculations

is within reason since only a linear TPBVP must be solved.
REMARKS AND CONCLUSIONS

In this paper we have investigated the discrete version of the reduced
order filtering problem. The solution to the general problem is seen to be a
nonlinear matrix TPBVP, and hence of Timited usefulness. We have shown,
however, that under certain conditions it is possible to find a simplified
solution to the TPBVP, and that this may be of considerably less complexity
than the Kalman filter. Another approach has been presented where only the
gain of the reduced order filter is optimally selected, the other parameters

having been selected a priori, either by means of a single stage optimization

procedure as in the example problem, or by some other method. The motivation
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behind this approach was that a linear TPBVP resulted, which could be solved
with a predictable amount of calculation. The reduced order filters described
in this paper are suited to those situations where it is important to reduce
the number of on line calculations. The filter gains would ordinarily be

precomputed and stored for use in filtering the data.
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ABSTRACT

The linear reduced order filtering problem is formulated as a matrix
two-point boundary-value problem for systems with state dependent noise in
both the dynamic and observation models. Cases are presented in which the
two-point boundary-value problem simplifies.
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INTRODUCTION

Many systems are more realistically modeled as having multiplicative
noise instead of additive noise. One example occurs in the momentum exchange
method for regulating the angular procession of a rotating space craft [1].
There is a disturbance which depends on the procession rates. Another example
occurs in the design of phase lock Toops. The phase instability of an oscil-
lator described in rectangular coordinates appears as white, state dependent
noise [2]. Multiplicative noise also appears naturally in system identifica-
tion problems [3]. Because such problems are of considerable importance, there
has been much research dealing with the topic of filtering and control for
systems with state dependent noise [1-5].

If the order of the system is large, the desian of a corresponding
filter of large dimension is often problematic from the viewpoint of on-line
computation. Consequently there have been many papers written in the area of
reduced order filter design [5-9]. 1In situations where one is only interested
in estimating a lower order linear transformation of the state vector, it is
reasonable to attempt to do this with a filter of reduced order. The para-
meters of the filter may then be selected using fixed configuration optimiza-
tion methods [8-13]. The structure of such a filter may then be suboptimal,
but the parameters are chosen optimally, subject to the structural constraints.

In this paper we consider a discrete version of the work presented in
[5], where a continuous time problem was formulated as a two-point boundary-
value problem (TPBVP). The discrete problem is quite different from the

continuous time problem, since some of the filter variables to be optimized




appear quadratically in the discrete problem and only linearly in the continu-

ous time problem. The problem considered here is similar to that considered

in [13], however in [13] only a single stage optimization was performed, and

an observer structure was required. Here the matrix minimum principle [14]

is used and optimization is performed over an interval. The observer structure
is not required a-priori, as we allow a driving term in the filter to remove
any a-priori bias. Cases are presented where the TPBVP simplifies considerably.
In one case only a single-point boundary-value problem must be solved. In
another case, a linear TPBYP is obtained which can be solved either by direct

use of linear systems theory or by a Riccati equation technique.
PROBLEM STATEMENT

A stochastic process is considered which is modeled by a discrete

equation with state dependent noise

x(3+1)=A(3) x(3) +w(j) +§ x; (3) 15 (3) n (3) (1)

where x (j) is the state vector at stage j, and w(j) and n(j) are zero mean

white noise vectors. The term ;ﬁ (j) is defined as
xg (3) Axs (3) = w5 (3) = x(3) - Elx; (3P (2)

The observation model is of the form

n

yiy*1)=¢ (j+1)x(j+1)+v(j+1)+i‘=z:1§1- (3) M (3)n(3) (3)

where v (j+1) is zero mean additive white measurement noise. We note that

measurements of the form

M

1i,-(J+1)M*i*(j+1)s(j+1) (4)

y(J'+1)=(:(J'+1)><(J'+1)+V(J'+l)+1




where ¢ is zero mean white noise can be put in the required form (3), if n and
Mi are properly defined, and if it is also true that when Q} (J+1) multiples
a non-zero term in the summation of (4), then its dynamical representation (1)

contains no noisy term. The covariance matrices for w(j), v(j), and n(j) are

Etw (3) w (k)T = Q(3) 8, -

J
Ev (3) vT(K)Y = R(J) 85, (5)
E(n (§) nT(K)} = 2 () 6.

Jk

These terms are not correlated with each other or with the initial condition

Xo+ The known statistics of the initial condition are

i
=

E{x (0)}

"
]

Var{ x (o)}

In the problem considered, a lower order linear transformation of the state

vector is considered

Z43) = N« ) (7)

The dimensions of z(j), x(j), and y(j) are 2z, n, and m respectively, where
2<n.
Since z (j) is of lower dimension than x (j), we consider estimating it

with a reduced order filter of the form

2(3+1)=F3)z2(3) + K(F)y(G+1)+ g(J) (8)

One objective of the problem is to select g (j) and z (o) to satisfy a require-

ment that the estimate be unbiased, i.e.




p

E{e(j)}=E{z(j)-2(j)) = o; ¥j>o i

We note that the expectations are prior expectations and we are not requiring
that the estimate be conditionally unbiased, which is a much stronger require-
ment. The matrices F (j) and K(j) are then selected to minimize a quadratic

performance measure

S|
2= Eiz e
=0

3) u(i)e (§) +e’ (N*)Se (N*) ) (10)

The solution to the unbiased requirement is obtained by considering the error
difference equation. The solution to the optimization problem is solved using

the matrix minimum principle.
THE UNBIASED REQUIREMENT

The error difference equation can be shown to be

e(5+1)=6(3) x (3)+ F(5) e(d) + D () w(3) - K(I) v(i+1)-g (i)
+DE K () Ty () ) - KE)E, K () M (9) na) e
where we have defined the matrices
6(3) = ING+1)- K(3) CG+1)] A -F () N () (12)
and
D ()= N(3+1) - K(3) C(3+1) (13)
From (11) it is clear that if g (j) is selected as
g (3) = 6(3) u(d) (14)

and if




Efe(j)t=0¥j>0

(16)
With g (j) selected according to (14), the error difference equation may be
written as i

e(j+1)=G{J) x(J) +F(3) e(d) +D(F) w(j) - K(3) v(i+1)
n (17)
+_§i x5 (3)B; (3) n(3)
":
where
B, (3) 4D (3) T, (3) - K(3)M; (3) (18)
and
X3} = x (3} - uld) = x{3) - EEx )} (19)
to be consistent with (2). It is clear that x (j) is a zero mean process
satisfying
— o — - n — .
x(3+1) = A(3) x(3)+ w(J) o (3) r; (3) n(3) (20)

In order to solve the remaining problem, it is necessary to select K (j)
and F (j)

to minimize J as indicated by (10) subject to the constraints
imposed by (17) and (20).




THE OPTIMIZATION PROBLEM

The performance measure (10) may be written in terms of the error

variance matrix as

It is possible to set up the optimization problem completely within a
deterministic framework if one can find a set of equations describing the

propagation of Pee' We first define the matrices

T

T
Pex (

(3)a E{x(J)e (i)}

P () AE (X (3) X (5)

Then from Equations (17) and (20) it can be seen that the above matrices

satisfy the equations

P (341) = F(3) P () FL3) + 6(5) Py (3) 61 (3) + G (3) Pdd) FT (3)

FF(3) P (3) 6 () +D(3) Q3D () + K(F) R(F+1) K (3)

ex
+0(3) ()07 () *+ K(3) ¥y (3) K (3) - K(3) % (3) DT (3)

-0 (3) vy (3) K (5) (25)




P (3*1) = A(§) P

where we have used the definitions

i, k=1

The initial conditions for (25), (26), and (27) are

The problem may be stated using only deterministic equations. It is desired

to choose K (j) and F (j) to minimize J as indicated by (21) subject to the

constraints imposed by (25), (26), and (27). Actually Pxx(j) may be pre-

computed and considered a known sequence of matrices. The remaining part
of the problem is solved using the matrix minimum principle. The Hamiltonian

is of the form




: ; : A0 : | R
Hy = tr (U (J) Peg (3) # Pog (3 #1)8 {3+ 1) + P {3+2) A, (J+1)
(32)
. ¥ i
* P (321}, (§+1)]

where B and Ae are Lagrange multiplier matrices, and Aoy 18 the trans-
pose of L The costate equations can be found from (32), after substitut-

ing from (25), (26), and (27).

: N oo 1) =y = V) + FT(3) Agg (3+1) F(3) (33)
ge

NEY =5:”'j = 6T () (3+1) F(+AT () A, (G+1) F(3)

xe (34)

The terminal conditions for (33) and (34) are

* ee (35)

=
—_
=
*
~~
1]
(e}

A necessary condition for optimality of the filter gain can be found by setting
the gradient of the Hamiltonian with respect to K equal to zero. The result-

ing expression is

Mg G+DINGHT) P (3+1) €T (3+1) + F(IP, (3) - N(3) P (3)]

AT () CTGHD) F NG YD)+ g, (G+1) (P (3+1) €T (§+1)

$el(5)) = A (3+1) K()(C(I+1) P (3+1) €T (3+1) + R(3+1)
T

i frp(5) 4y (@) CTEH) F ) Y, () (36)

Similarly, differentiating Hj with respect to F (j) and setting the result

equal to zero gives the equation




(3) + N(3) P ()

§) - NG P i

xe

(i) ] (37)

We have presented the TPBVP giving the necessary equations for an optimium

choice of K and F, the reduced order filter design matrices. In general the

TPBVP will be rather difficult to solve. There are two cases we shall consider

in which the problem simplifies considerably and may be solved with a reason-
able amount of effort. In the first case the TPBVP simplifies into a single
point boundary value problem. In the second case, the problem is really mod-
ified so that F is selected prior to optimization and only K is optimally
selected. The resulting TPBVP 1is therefore linear and can be solved by well

known procedures.

SIMPLIFCATION

In the first case we assume that it is possible to choose F (j) 1in such

a way that
G(3) =N@G+1)A(J) - K@) C(3+1) A(3) - F(3) N(F) =0 (38)

Then from (34) and (35) we can see that Ay (j) is zero. If it is also true

e
that

is zero, then (37) simplifies to




hoe (3+1) F(3) N(J) [P

XX

~[N(3+1) - KEI) ECI+ 1) T ALI)EP

XX xe

Thus (38) is sufficient to insure that (37) is satisfied under the indicated

conditions. We must investigate the requirement that o (j) is zero, and see

what the implications are. Using (25) and (26), a difference equation for

Q(j+1) may be derived, i.e.

R(3+1) = F(3) a(3) FT(3) +[K(J) CG+1)10(3) +¥(3)} cT(5+1)
E +KEVRG+1) + ¥ (31 - N(G+1) 1Q(3) +¥(3)CT(G+1)

- F(3) Pag (3) AT(3) CT(3+1) - N(3+1) %y (4) (a1)
+K () v, (3) CT(E+1) + C(G+1) v (311K (5)

We will show that the bracketed term that multiplies KT(j) in (41) is zero
when K is selected optimally.

If G(j) is zero and A (j+1) is nonsingular, then Equation (36)

becomes
K(DLCE+D) Py (3+1) CT(I+1) + R(G+1)+ ¥, (3)+ ¥, () €T (5+1)

+C(3+1) ¥ 1N = ING+D P, (G+1)+ F(3) Py, (1) AT(DICT(G+1)

P T T T T

+N(G+1) v (3) - ING*1) - K(3) €(G+1)] AGI) P, (3) AT(3)

:1 cT(j+1) (42)

‘? where we have substituted for F(j) N(j) from (38) in the last equation. If

we further substitute from (27), replacing Pxx(j +1) , we obtain
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12
K IC(G+D) Q) + ¥ CT G+ D+ RG+1) +¥, () + ¥, () ¢ (G+1)
$CEHD) Y L(I)] = F(3) Pay (3) AT () CT(G+ 1) + NG+ L¥ ()
| + Q) 1cT(G+1) +¥)(3) ] it
E Equation (43) is sufficient to show that (41) may be written as
a(i+1) = F(3) a(j) FT(3) (44)

whenever K (j) 1is selected optimally. Since 2(o) is zero, (44) implies that

| @(j) = o¥ j>0. We have therefore developed alternative equations for selecting
K(j) and F(j), i.e. (38) and (43). Furthermore these equations do not involve

the Lagrange multipliers so that we no longer have a TPBVP. If we define

v () ACG+1) Q) + ¥@CT(E+1) + REG+1) + vy(d) + ¥ (1) CT(+1)

y T (45)
+ C(3+ 1), (3)
and
v (3) 8 [¥p (3) + C(G+1) £ ¥(3) + QNI NT(G+1) (46)
then (38) and (43) can be written as
AT (5) ¢ (5+ 1) e < () ] [ AT ()T 5+ 1)
: i (47)
'''' () D AG) P () || FT() v (3)
or equivalently
KT (3)
L(3) | ==zmemmm = v(§) (48)
FT (3)

where L (j) and v(j) are defined as the corresponding matrices in (48). A

necessary and sufficient condition for (48) to have a solution is that
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L () L) (@) = v(i) (49) |

3 where L12j) is the pseudo inverse of Lﬁij). If a solution exists it is of the i
; form i
| |
'~ : : s : Lo f
: K3 FG T = Ha) w@ T+ e - %) L)) (50) |
: : ;
where T is an arbitrary matrix. i

i'

;

| Since it is clearly possible that we might not be able to solve (48), and
é more generally, we might not be able to solve the TPBVP specified in the pre-
vious section, it seems appropriate to investigate a suboptimal approach. We
-therefore investigate a partial solution where F (j) 1is selected a priori, and

only K(j) 1is optimized.
SOLUTIONS WITH SPECIFIC F (j)

Selecting F (j) a priori has an important consequence, i.e. the TPBVP to
be solved in optimizing K(j) 1is linear. There are a number of approaches

available for solving linear TPBVP's, so that one can solve for an optimal

filter gain with a reasonable amount of off Tine calculation. Performance will

of course be suboptimal because F (j) is not optimized, however the loss in

performance can be kept small by selecting F(j) in some way which relates to

performance but does not require solving a TPBVP. A procedure similar to that
indicated in [8] can be used to select F(j) where only single stage optimization
was considered.

From Equation (33) it is clear that with F(j) selected a priori, A

ma
‘| ee MY

be regarded as a known quantity, just as Pxx is known. With Aee known and non-

singular, one may solve for K(j) using Equation (36). The resulting expression

is

4
{
i
1
\




where

If we
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D A G P, G CT G Y (5)1 NG +1) v ()

- o (D176 e+ )]

* (51)

FAN(I+D) Py (541) + F(3)IP, () - N(J) P

MY (G+1)= [R(3+1)+ v, (§)+ ¥ (5)C'

i ) (3+1)+ C*1) ¥ ()

+c(i+n)r, (3+)cl(G+137! (52)

substitute frem (51) in Equations (26) and (24), we obtain the equations

Pe@+) = [1- (P (G+1) cT(G+D+¥ () W (3+1) C(3+1) ]

AG) P (3) FT(E) = [P (341) CT(3+1) + 9, (DI M (341) [ v, (4)

and

where

+C(I+1) PG+ T A+ AZL(G+1) + 0y (3) (53)
Mo (3) = AT () L1 - CT(G+1) M (G+1) (9, (§) + C(3+1) P (3+1)}]
he (1) F(3) - AT(3) CT(3+1) M (5+1) C(3+1) AGI) P, (3) FT(3)
“Bag (3 1) FLJ) + 05 () (54)

pl(j) and pz(j) are defined as

p1 (AP, (G+1) N (3+1) - AL P () NT(H) FTLS) -DP,, (3+1)

ST + vy (DT MG+ LEC(E+1) P (G+1) + v, ()

N (§+1) - C(i+1) ALS) P, () NT(3) FT(4)] (55)




p, (3) = ING+1) AG) - FG) N@IT A (G+1) F(3) - AT ()

TG+ M G+ [HC(G+1) P (3+1) + %, (3) ) NT(G+1) - C(3+1)

CAG) PG NG FT@)T A (G+1) F(§) (56)

XX ee

The boundary conditions for (53) and (54) are given by (31) and (35) respec-
tively. Since (53) and (54) are linear in Pxe and Axe’ there are many ways
to solye the TPBVP. One approach is to assume a linear relationship between
the elements of Pxe and Ao We may put the distinct elements of Ao in a

*
long vector A:e, and similarly form PXe from the distinct elements of Pxe' If

we then assume the relationship

Me () =V () P () + 6% (3) (57)

then recursive equations may be obtained for V*(j) and 6*(j) and the problem
is transformed into a single point boundary value problem. We will illustrate
the procedure with a specific example where it is not necessary to put the
distinct elements of PXe and Ae in a vector form.

It is assumed that the matrices of (23) are selected to be of a scalar

form, i.e.

(58)
Mo (3) = Rog (3) I

where f and Aee are scalars; the terminal matrix s must be of the same form.
We may then reposition Aee and F in (53) and (54) and obtain equations of the

form

Pro (3+1) = 013 (3) Prg (3) + app (3) Mg (3+1) + 01 (3) (59)




N —

he (3) = apy (3) P () + apy (3) B (341) + 0, () (60)
where
wyy () AF () (=P, (G+1) €T (1) + y (GIIN (G+1) CG+D] AG)
app (8 -2 341 [P (341) CT(G+1) + v (DTN (5+1) 1 (3)
FC(3+1) P (5+1)] (61)

ayy (38 -F2 (3) 2 (31 AT(E) CT(G+1) W (3+1) CLI+1) AL)

app (1) AF (3) AT(3) [1 - CT(3+1) M (5+1) (¥, (5) + C(+ D) Py (3+1)3]

A linear relationship between PXe and e is assumed, i.e.

Ao (3) = V() P (3) + 8(3) (62)
Substituting (62) in (59) and (60) gives
Pxe(j +1) = agg (3) Pxe(j) ¥ alz(j) V({j+1) Pxe(j +1) +a12(j) g(i+1)
+ ol(j) (63)
v (J) Pxe(J) +p(J) = a21(j) Pxe(J) + azz(J) V(j+1) Pxe(j +1)
+ay, (3) B(3+1) + 0y () (64)
Solving for Pxe(j +1) in (63), and substituting that result in (64) gives
V() Py () + 8(3) = apy (3) Pyg (3) + ) (3) B(3 4 1) + 02 (3)

Fagy () VG+D) TT - app () VE+ DT T o), (5) Py () + agp (3)

B(3+1) + op(3)] (65)
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If the above is to hold for arbitrary Pxe’ then we must have
? z . s . : -1 :
V() = apg (G) + app () VG+1) [T - ap, (3) VE+1)] 77 a (3)  (66)

and

1

8(3) = agp () [T+ V(3+1) (T~ ap, (D VG Py, ()] 8(3+1)
o () + g () VG (T-ap, D VE+ e () (67)

The terminal conditions for the above are
V(N) =05 g(N) =0 (68)

We may thus compute V and 8 backward in time so that Ave is known in terms of

pxe’ The gain may then be calculated forward in time using Equation (51) and

solving for Pxe from (59).
In this section we consider a simplified model of a discretized inertial

system as considered in [8]. The dynamics are modeled as
Kt 1) = x (3) + w(j) (69)

where A is .2 and the observation model is
y(i+1) = [1+e(i+1),0] x(j+1) + v(j+1) (70)

where ¢ (j) represents a sequence of independent random variables such that

Pl eldr =t 1= %

Pr[ e(j)=-1] =%

(71)

and ; then is the probabilty that there will be no signal measured at a given

stage. If we define n(j) as «(j+1) then (70) may be written as
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y(F+1)=1[1, 0] x(5+1) +v(i+1) +[H(J)+AX2U)]rKﬂ (72)

where it has been assumed that wl(j) is zero. Equation (72) is of the same
form as (3). The initial conditions for the example have mean value zero and
the initial variance matrix is the identity matrix. The variance of the
measurement noise is R = .1, and the variance of the plant noise parameter,
wz(j) is 1. It is desired to estimate x, using a first order filter of the

1
form

z(5+1) = F(3) z(3) +K(3) y (j+1) (73)

There is no driving term, g(j), since u(j) is zero. The parameter F(j) is
not selected optimally, but selected using a one stage optimization procedure
as indicated in [8]. The parameter K(j) 1is then selected by solving a linear
TPBVP as suagested in this paper. Optimization is with respect to the perfor-
mance measure

N*-1

J=Et Y e?(j) + e (W) (74)

j=o
In Figure 1, the performance of the reduced order filter, designed to account
for the probability that there will be no signal present at a given stage, is
compared with that of a second order Kalman filter designed using the assump-
tion that the parameter multiplying xl(j +1) in (70) is at its mean value of

unity.

SUMMARY AND CONCLUSIONS

In this paper we have investigated the discrete reduced order

problem for systems with state dependent noise. The aqeneral

to be a nonlinear matrix TPBVP, however the result be
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complicated under certain circumstances, resulting in an initial value problem.

Simplification also results when some of the filter parameters are selected
optimally and the others are chosen a priori. In this case a linear TPBVP
results, which can be solved by standard procedures. Because systems with
state dependent noise occur frequently, we feel that it is important to con-
sider the reduced order filtering problem for such systems. As indicated by
the example problem, such models can represent intermittent observation data
as well as a number of other situations. The reduced order filters described
in this paper are suited to those situations where it is important to reduce
the number of on line calculations, and the gains may be precomputed and

stored for use in the filtering process.
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OPTIMAL TRACKING

OF A

* MARKOV JUMP PROCESS*

Craig S. Sims
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Oklahoma State University
Stillwater, Oklahoma 74074

Abstract

A feedback control is obtained for a linear random tracking problem with a
quadratic performance measure. Both inputs to the system and the reference vector,
which is to be tracked, are capable of instantaneous change.

INTRODUCTION

Tracking problems are an important category of
control problems where the output of a system is
required to follow a reference vector. Such prob-
lems have been extensively treated in the litera-
ture [1], [2]. In this paper, we consider this
class of problems within a format which allows the
reference vector to change values suddenly. Thus
the system may be tracking one vector, and sudden-
ly it is required to track another vector. For
added generality, we also allow for the possibil-
ity of system inputs which can change instantly.

It is assumed that the input and reference vectors
may change instantly and randomly in time, so that
the problem is a stochastic control problem. The
elements of, these vectors are modeled as Markov

jump processes with a finite number of states [3].

Sworder introduced a method for solving related
stochastic control problems in [4], where the
parameters of a linear system were modeled as
*This research was supported in part by the Air

Force Office of Scientific Research, under Grant
No. AFQSR-77-3248.

Markov jump processes. We apply similar methodology
to solve the random tracking problem in this paper.

PROBLEM STATEMENT

Consider a system described by the linear differ-
ential equation

x(t) = Ax(t) + Bu(t) + y(t) (1
where y(t) is a random input vector. The output
equation is also lirear

y(t) = Cx(1) (2)
The control vector, u(t), is to be selected to
minimize a quadratic performance measure

:
=1 EI.[t[[yh) - (037l (x) - n(0)]

+ ' (1) Ru(‘r)]d1|x(t), r(t)} (3)
In (3), n(t) is the random vector to be tracked,
and r(t) is an indicator function which indicates
the values of n(t) and y(t). The stochastic
vectors, y(t) and n(t),are Markov jump processes
described using the transition probabilities

Prin(t+a), y(t+a) = i Y | ale)s ¥{t) = niss YJ]
=058 +08), i#]
=14qb+0(8) =] (4)
for 133 = Ve @5 wonn 8

J
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Thus we are designing a control to track a signal
which is capable of instantaneous change, and are
also subject to instantaneous input disturbances.
The controller at all times has perfect informa-
tion, r(t), which indicates the current values of
the signal to be tracked and the input disturban-
ces. Using notation corresponding to that of
Sworder [4], we denote the event

{n(t), ¥(t) = nyy yy)=—r(t) €[i] (5)
Note that there are only a finite number of pos-
sible values which can be assumed by n and y. From
the definition (4) it is clear that

S
3 a5 = 0 (6)
i=1

and we will make use of this fact in the develop-
ment of the optimal controller.

THE OPTIMAL SOLUTION
To obtain the solution we follow steps similar to
those used in [4]. The Hamiltonion for this
problem is

MO = 3 (Cxen) Q(Cxn) + u'Ru

aT[Ax + Bu + v) (7)
where X is a stochastic Lagrange Multiplier. It
is necessary to minimize E{H[x(t), u (t)]|x(t),
r(t)} with respect to the contorl, u. This leads
to the equation

ulx(t), r(t)] = -RTBTEG(E) [x(t), r(t)}  (8)
It is convenient to assume a linear form for A
A(t) = P(t) x(t) + alt) (9)
so that u(.) can be written as
ulx(t), r(t)] = -R71BT[E(P(E)[r(t)} x(t)
+Ela(t)[r(t))]a K1) x(t) + B(t) (10)
Substituting for u in (7) and differentiating with
respect to.g, we obtain the differential equation
for A,

5= (cToe » XTRR)x + CTgn - KTRe - (A+BK) T2

H .
X
(1)
which has terminal condition,
AMT) =0 (12)
Another expression for A is found using (9), i.e.

K(t) = P(t) x(t) + P(t) (1) + &(t) (13)

or, substituting from (1),

A= (P+PA+ PBK)Xx + PBE + Py + a (14)
If (11) and (14) are equated, and we substitute
for A from (9), then two equations are obtained:

Tok - (a+8k)Tp (15)

P+ PA+PBK=-C'C - K

cTon - k"R - (A+BK)Ta = PBB + Py + & (16)
These equations are required if (11) and (14) are
to be equivalent for arbitrary x.

From (15) we calculate E{P(t)|r(t)e[j]}. The re-
sulting expression is

EP()[r(t)el31) = -Py(t)A - AT (1) - cTac

+4(t) BR']BTPj(t) an)
where we have defined

Pj(t) A E(P(t)|r(t)e[i]} (18)
and used the fact that

EK(t) |r(t)eli]} = -R“Bij(t) (19)

The left hand side of (17) can be calculated a
different way as

E(P(t)|r(t)c[i]}

- 1im EP(eaYr(t)e[3]) - EfP(t)[r(t)e[5])
[\”0 A

(20)
Using (4), we then obtain

S .
E(P(t)[r(t)cli]) = 2, agy Pi(t) + Py(t) (21)
i=1

Hence combining (17) and (21), there results

. S T T

Pk . Po= -P.A - . = "

S ;E; 9 P, A - APy - CaC + PR
j=

-1,T
Pa
. J
(22)
Noting that (22) gives the same expression for all
Pj’ and using (6), we have
p= T8'p (23)

J=2152,04448

Py = -PA - ATp - c'qc + PER

Equation (23) is fortunate, since it indicates
that it is only be necessary to solve one Riccati

equation and not s coupled Riccati equations.

Using equation (16), we calculateE{a(t)|r(t)e[i]},
obtainina

E{a(t) [r(t)el§]} = CTan -ATaj(t) P (t)y;
+p (t)sr” 8T a;(t) (24)
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where we have defined the vector

aj(t) A E{a(t)|r(t)eli]) (25)
and noted that
EB(t)[r(t)c i) = R8T (26)

Proceeding as in obtaining (21), we find another

expression,

S
Ela(t)[r(t)eld]) = ZZ% a0 + &ty (2n)

i=
Combining (24) and (27), we then find
S

. T T -1,.T

. = g (- .'P . g - P .
uJ CQnJ AaJ YJH’BR B“J ‘Z_J;qmcx]

B2 eesss o (28)

Hence there are s vector equations to be solved
for the terms {a.}, and these are coupled through
the parameters 55 From (12) it is clear that
the terminal conditions for (23) and (28) are

uj(T) =0

The optimal control strategy, is thus found to be

ulx(t), r(t)] = -R'BTIP (1) x(t) + a;(t)]  (30)

when r(t)e[j]
where P (t)and aj(t)are found by solving (23) and
(28) respectively.

EXAMPLE

We will consider a simple scalar example with an
input which can change suddenly. The dynamical
description is

x = u+ y(t) (31)
where y(t) has two probable states, y(t) = y* or
y(t) = 0. With y* a transient state and 0 an
absorbing state, we have

Priv(t+A) = y*[y(t) = v*] =1 - qA

Priv(t+a) = y*|v(t) =0 ] =0
Priy(t+a) = 0 [y(t) = y*] = aa (32)
Priv(t+a) = 0 |y(t) = 0] =1

where q > 0. The problem is an infinite horizon
problem,

J = E{ f [x? (1) + u?(1)]dt|x(t), r(t)}
t

Since we are looking for the stcady state solution,

correspondina to (22 ) we have the deaenerate
Riccati solutions,

poal = b= by [T AT | B9
where we have assumed that if r(t)c[l]. it
means y(t) = 0, and r(t)c[2] means y(t) = y* We

have corresponding equations for %G and a,

o T ey =0 (34)
Gy == Y* (1 4Q)ay= 0 (35)
which gives
o
Ca) = 1+4q (36)

The optimal control is thus
ulx(t), r(t)] =- x(t) - y*/(1+q) when r(t)r[z](37)

ulx(t), r(t)] = -x(t) when r(t)e[1]
Suppose that to begin with, r(t)e[2], then sub-
stitution of (37) in (31) gives

x =- x4y (1) (38)
1+q
which describes the trajectory until y(t) switches

to zero, at which time we begin to have a decaying
exponential described by

X = -X (39)
The results appear to be reasonable, although they
are not intuitive.

SUMMARY
In this paper we have applied the stochastic
minimun principle to solve a random trackinag pro-
blem where the values to be tracked were capable
of changing instantly. In addition, input dis-
turbances have been modeled as Markov jump
processes which could suddenly change values. A
feedback control was found which minimized a
quadratic performance measure. The control law
was found to be linear in the state vector and con-
tained an additional additive term which changed
whenever the input disturbance or reference vector

changed.
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