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A RELIABILITY GROWTH MODEL INVOLVING
DEPENDENT COMPONENTS

by
N. Langberg and F. Proschanl

Abstract
Earlier papers have shown how to convert competing risk models involving

dependent random variables into models involving only independent random
variables, while simultaneously preserving the distribution of the minimum and
the probabilities of the various failure patterns. In the present paper, we
consider a sequence of such conversions occurring at successive points in

| chronological time in which the independent random variables are becoming

} stochastically larger. We obtain results which essentially demonstrate that

} the limiting distributions in the sequence of dependent models “"correctly"

| correspond to the limiting distributions in the sequence of independent models.

| These results have applications in reliability growth models and in bio-

1 medical competing risk models in which the competing risks are increasing

] with age; in these models dependency is permitted among the random variables.

lkesearch sponsored by the Air Force Office of Scientific Research, AFSC, USAF,
| under Grant AFOSR-74-2581D. The United States Government is authorized to
reproduce and distribute reprints for governmental purposes.
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A RELIABILITY GROWTH MODEL INVOLVING !
DEPENDENT CQMPONENTS

by

N. Langberg and F. Proschan
Florida State University

1. Introduction. In several earlier papers, Tsiatis (1975), Miller (1977),

and Langberg, Proschan, and Quinzi (1978) show how to convert various competing
risk models involving dependent random variables into models involving only
independent random variables, while simultaneously preserving the distribution
of the minimum and the probabilities corresponding to certain "failure patterns''.
Explicit equations are presented which yield the distributions of the independent
variables. In a more recent paper, Langberg, Proschan, and Quinzi (1977) develop
statistical estimators of parameters of interest in competing risk models in
which causes or times of death (in the biomedical context) or of failure (in
the reliability context) are not necessarily independent.

In the present paper we present a result which should prove to be basic
in converting reliability growth models involving dependent failure times into
equivalent models involving only independent random variables. Analogous
applications exist in the biomedical field in which survival functions may be
docroasingj'rather than increasing, with chronological time. The probabilistic
theorem presented will be useful in inference in reliability growth models involving

dependent failure times.

1"l'hrwglnmt the paper we use 'decreasing" in place of "nonincreasing" and "increasing"
in place of '"nondecreasing".
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2. The Reliability Growth Model. The notation and terminology are as

in Langberg, Proschan, and Quinzi (1978).

Consider a series system of n components undergoing improvement as time
passes. At fixed chronological time u, 0 < u < u, (uo possibly infinite)
component i has random lifelength Ti(u) for i =1, ..., n, where Tl(u), ooy Tn(u)

are not necessarily mutually independent. We say that failure pattern I occurs

if the simultaneous failures of the components in subset I of {1, ..., n} and
of no other components causes (i.e., coincides with) the failure of the system.
Define
I if failure pattern I occurs at time u
E(T(uw)) =
P otherwise.

Let S(u) and T(u) represent the vectors of component life lengths of two systems

whose system life lengths are S(u) and T(u), respectively. We say that the

two systems are equivalent in life lengths and patterns at time u
(S(u) gl(u)) if P(S(u) > t, E(S()) = I) = P(T(u) > t, E(T(u)) = I) for each
t 20and each I < {1, ..., n}. Thus, two systems which are equivalent in life
length and patterns are such that (i) their life lengths have the same distribu-
tion and (ii) the corresponding failure patterns in the two systems have the
same probability of occurrence.

The main result of Langberg, Proschan, and Quinzi (1978) may be restated

in the context of our model as follows:

2.1. Theorem. For fixed u, 0 < u < u,» let T(u) = 'inﬂi(“)’ 1<4isn)

denote the life length of an n-component series system, where 'l'i(u) represents
the life length of component i, i = 1, ..., n. Define Fu 1(t) = P(T(u) > ¢,
ETW) = 1), F, ((t) = P(T(w) < t, E(T(w) = D), F (t) = P(T(w) > t), and




a(F,) = sup{x: f;(x) > 0}. Then the following statements hold:

(i) A necessary and sufficient condition for the existence of a set of
independent random variables (Hy, I < (1, ..., n}) which satisfy H(u) -lizcu),
where H(u) = nin(HI(u), I c{1, ..., n}), is that the sets of discontinuities
of the Pu,l be pairwise disjoint.

(ii) The distributions of Hl(u), I < ({1, ..., n}, are uniquely determined

on the interval [0, a(Fu)) as follows:

t
G, 1(t) = PH(w) > t) = exp[-é (dFS'I/F;)]'

(2.1)
M FL @, (L)) (F (8, (1,3)) + £,(a_(1,3))],

qéld)

0st«< a(Pu), where F&,I is the continuous part of F“’I, {au£I,j)} is the set

of discontinuities of Fu I in [0 t) and fh I(au(I,j)) is the size of the jumps of Fu
at nu(l,j).

(Note that G, p may place mass at infinity.)

,1

The survival probabilities E; =1-6 for Hl(u), the time until a
1]

I u,l
shock occurs which simultaneously destroys subset I, for I c {1, ..., n} are

obtained by solving the identities:

15{1 4 n}a;'l(t) = F;(t), t =20, (2.2)
and .
| ngc;'JdG“'l - F;'I(t), t 20, (2.3)

TS RO 355 = N



Thus at each fixed instant u of chronological time, we may "replace" the
original series system of dependent components by a set of mutually independent
sources of shock; a given source of shock fails a corresponding subset of com-
ponents. Moreover, the replacement is so chosen as to yield the same joint
distribution of failure pattérn and system life length as possessed by the
original system. Finally, the distribution of the time of each type of shock
occurrence is explicitly specified in (2.1).

Suppose now that the system is experiencing reliability growth; specifically,
assume that:

(i) E;,I is increasing inu, 0 S u < u_ for each I {1, ..., n}, so that
HI(u) is stochastically increasing inu, 0 S u < ug for each I < {1, ..., n}.
That is, each type of shock is occurring with decreasing frequency as chrono-
logical time passes. This, in turn, implies that the system life length T(u)
is stochastically increasing in u. Since EL,I(t) is monotone increasing in
u<u, it follows immediately that the 5;.I(t) converge to i:i :25 ﬁ;’l(x)
for each t 20, I ¢ {1, ..., n}; call this limit Ei(t). E}Ct) is © a survival
function, with mass possibly at infinity.

Three basic questions now arise:

(1) Does the joint distribution Fu of failure pattern and life length

,1
converge to a joint distribution as u + u for each I < {1, ..., n}?

(2) 1If such limiting joint distributions exist, do they coincide respectively
with the solutions (call them PI) of (2.1) corresponding to the limit distributions
Gl' I1c{l, ..., n} (as we would hope)?

(3) Does the system lifelength distribution Pu converge to a lifelength
distribution as u » uys if so, does it coincide with the solution F obtained
from (2.2) where the subscript u is omitted?

In the next section we prove that under mild, reasonable conditions, affirm-

ative answers exist for all three questions.

-
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3. Limit Results in the Reliability Growth Model. In this section we give

convenient sufficient conditions to yield affirmative answers to questions (1),
(2), and (3) at the end of Section 2, and present proofs’of our results,
We are considering the model of Section 2. We make the following two
additional assumptions:
(ii) The sets of discontinuities of the Gu,I are pairwise disjoint for each
fixed time point u, 0 s u < u,-
(iii) The sets of discontinuities of the G_ are pairwise disjoint.

I
The main result may now be stated:

3.1. Theorem. Assume the reliability growth model specified in Section 2

and assume (i), (ii), and (iii). Then

(1) 1lim Fu I(t) exists for each t 2 0 and each I < {1, ..., n},
’

u*u
(]

(2) 1lim Fu I(t) = FI(t) for each t 2 0 and each I < {1, ..., n},

u*u
o

(3) 1lim F (t) exists and = F(t) for each t 2 0; moreover, F;(t) is

usu
o

increasing upward to F(t) as u increases upward to u,-

To prove Theorem 3.1, we will make use of

3.2 Lenma. Let uy be an increasing sequence converging to u,. Then for

eacht 20and I < {1, ..., n}, limsup F_ _(t) s F, (¢t).
uk,I I

ke

Proof of Lemma. By (2.3), we may write:

s/ n G de

F t)=) n G dG :
1 t Je1 Yt Yol T g g U1

u.k

since each G““.J < E}. Next note that




ncdc )« 8 ") 1d [1 - 1 G,(x)]
{er W ol { 1 U1 i Je1 ¥
sJIG, (&) -G (x)1d [1- n 6;()].
{ uk’I uk’I 3 * [ J=I :

But by the Lebesgue dominated convergence theorem,

m [ [ w18 -6 014, [1- 1G]
t k J=1

=] [6;®) -E1d 1 - 1 G ]
{ I I X J=1

-I I G(x)dG(X)’F(t):
t J=I

by assumption (iii). The desired conclusion now follows. |

We may now prove Theorem 3.1.

Proof of Theorem 3.1 (1), (2). Let {uk}, 0 < uy < u,, be an arbitrary

sequence converging to u, and let t 2 0. By (2.2),

(t) = 1 (t) =
1:{1,?. ) “k-l 1e(1,...,n} “k’
lim sup 1 ﬁ; 1(t) = lim sup )) F; MO
koo I(1,...,n} %’ Koo I<{1,...,n} %’
But
lim sup ) (t) s ) lim sup F.  _(t) < F.(t),
' 1e(1,...,a “k'l Ic{1,...,n}k+ ok Idl,?...n} ’

by Lemma 3.2. Now by assumption (iii) and the appropriate version of (2.2) we

have:

) Fi(t)= 1 G, (t).
Ie{1,...,n} I<{1,...,n}




e S p————

Recalling that Ei(t) = 1lim E; 1(t) from Section 2 and summarizing the inequalities
k¥ Tk’
above, we may state:

n G (t) s ) lim sup F (8 < 3 Fi(t) = G, (x).
Ie{1,...,n} Ic{l,...,n}k+w Uy I<{1,...,n} Tc{l, ... .0)

The desired conclusions (1) and (2) now follow immediately.

Proof of Theorem 3.1 (3). By (2.2), 1lim ?;(t) exists since each lim 5;

d
uu wu
exists. Next note that
F(t) = ) Fi(t)= 1 Gi(t) = lim 1 G, () =
Iell, oo ) I={1,...,n} wu Tef{d i n} 2
lim ] F _(t) = lim F (t).
wu Ic{l,... n} u,1 wu u

The monotonicity of ?;(t) in u is a consequence of the monotonicity of each

Gy, 1+ I

I - - ey - R P




4. Extensions, Modifications, and Generalizations.

4.1, Remark. In the reliability growth model discussed above, we assumed
that reliability growth was occurring during the interval of chronological
time [O, to). Obviously, the conclusions of Theorem 3.1 may be obtained by
assuming that reliability growth occurs at the time points of any subset U
of [0, ») (or, for that matter, over the entire half-line). As examples,
consider:

(a) U= {u, 2u, 3u, ...}, where u > 0,

) U=(0su, <u, <u, < ...}

1 2 3

(¢) U= {fo, uo] <y <u, < ety

etc. Moreover, the set U need not be deterministic, but may be random.

4.2. Remark. In the model of Section 2 and the corresponding result,
Theorem 3.1, we assumed that shock intervals from each source were stochastically
increasing with chronological time. It is clear that by reversing inequalities
and the direction of monotonicity, we can obtain a dual to Theorem 3.1 in which
the intervals between shocks from each source are stochastically decreasing
with chronological time. System reliability (or in the biomedical context,

organism survival probability) would decrease with chronological time.

4.3. Remark. The model of Section 2 and the limit results of Section 3
were formulated in terms of reliability growth. An equally important and useful
application exists in the context of competing risks of death of a biological
organism from a variety of diseases, accidents, or other causes. In this
context, Remark 4.2 is especially relevant. We consider a situation in which
an organism is subject to death as a result of any of a number of diseases

or combinations of diseases. As time passes, the organism becomes more

it —— .
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vulnerable to each of the diseases. Note that the model now appropriate differs
from the model of Section 2 only in the direction of the monotonicity; i.e.,
the different types of shocks are becoming stochastically more frequent, rather

than, as in the first model, stochastically less frequent.

4.4. Remark. In the reliability growth model, we are able to deduce mono-
tonocity of ?;, system reliability as a function of chronological time u.
However it is not necessarily true that each f; B is monotone in u. This is a

’

consequence of the fact that as some modes of failure become less likely, others

may become more likely.

4.5. Remark. Assumption (iii) of Theorem 3.1 can not be obtained as a

consequence of assumptions (i) and (ii). A simple counterexample is available

to verify this assertion.
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