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h th.oretic quantity, u k .  the probability of buf f er overflow.

The work is divided in four parts

‘J- encodi.ng of the data;
~~/encoding of message lengths;
L~ encoding of message starting times)
~~~.ncoding of message origins and destinations.

With respect to data encoding, an algorithn is given to construct a prefix
condition code that mjpimiees th. probability of buffer overflow.

Next a theory of variable length flags is developed and applied to the
encoding of messag. lengths.

For concentrators with synchronous output streams , it is shown that the
concept of average number of protocol bits per message is meaningless. Thus,
in order to analyze the encoding of message starting times, a class of flag
strategies is considered in which there is a tradeoff between delay and low
priority traffic.

The problem If encoding message origins and destinations is attacked from
two different points of view. Some strategies (variations of the polling
scheme) are analyzed and shown to be much more efficient in heavy traffic than
just using a header , as is usually done. A simplified model is also developed .
Its analysis suggests that there exist strategies to encode message origins
and destinations that are much more efficient than everything considered until
now.
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- ABSTRACT

Consnun.ication concentrators perform the basic network function of

merging many input flows into a- single output flow . This requires

formating the data and encoding side information about when messages

start , what their lengths are and what their origins and destinations

are.

This thesis examines efficient ways of performing these functions ,

th . objective being to minimize the average message delay, or some other

queueing theoretic quantity , like the probability of buffer overflow.

The work is divided in four parts :

-- encoding of the da ta ;

- encoding of message lengths;’

- encoding of message starting times;

- encoding of message origins and destinations.

With respect to dat a encoding , an algorithm is given to const ruct

a prefix condition code that minimizes the probability of buffer overflow.

Next a theory of variable length flags is developed and applied to
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the encoding of message lengths .

For concentrators with synchronous output streams, it is shown

that the concept of average number of protocol bits per message is

meaningless. Thus, in order to analyze the encoding of message starting

times, a class of flag strategies is considered in which there is a

tradeoff between delay and low priority traffic.

The problem of encoding message origins arid destinations is

attacked from two different points of view , some strategies (variations

of the polling scheme ) are analyzed and shown to be much more efficient

in heavy traffic than just using a header, as is usually done. A

eimplified model is also developed . Its dnalysis suggests that there

exist strategies to encode message origins and destinations that are

much more efficient than everything considered until now.

Name and Title of Thesis Supervisor :

Robert G. Gallager

Professor of Electrical Engineering
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- Chapter I

Preliminaries

1. Introduction

The last decade has seen a tremendous development of computer

networks . Numerous books and papert describing and analyzing systems

have appeared (see Section 2) .

From the operations research point of view , the most studied

problems are those of inod~ Lling the queueing phenomena in the net-

works , of routing the naesiages so as to minimize some cost , usually

the average message delay , and of laying out the network in some

optimal fashion.

Computer scientists have been concerned with the architecture

of the computers in the nodes , and with the protocol , i .e .  contro l

messages exchanged between subsystems of the network . This is related

to the problems associated with distributed computation.

Presently the most important consideration in the design of

protocols is to get a working system where no deadlock ~an occur .

Little attention has usually been paid to the effects of the over1-~ead

produced by the protocol On the performance of the network . However ,

taking a queueing theorist view of the problem , [Kleinrock et a l . ,

1976) pointed out that the effect was significant in the ARPANET .

~Gal1ager , 1976) showed that information theory can be used to

produce basic lowerbounds on some of the information that is carried

in the protocol messages .
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Our goal is to obtain results similar to those of Gallager,

but under less restrictive hypotheses. In particular, we will not

assume an infinite number of sources and links of infinite capacity.

Thus we will take into account queueing effects and interactions

between sources. One will find in this work concepts and methods

from the fields of queueing theory on one hand, and information and

coding theories on the other.

We do not plan to solve at once all the protocol problems in

a complete network. Instead, we pay attention only to the nodes, i.e.

the points in the network where different links join each other. From

our point of view a node can be decomposed in a “router” followed by

“concentrators” (see Figure 1.1).

The role of the router is to determine the destination of each

input bit and to send it, together with some associated information to

be described later , to the corresponding concentrator. The concentra-

tors merge the many input flows into one output flow.

We will not consider the structure or the optimization of the

router, instead we will regard it as a source, with known statistics ,

to the concentrators .

Because their input is generally stochastic, concentrators

contain a buffer in which queueing phenomena occur. In addition to

transmitting the data they received , concentrators usually perform

other duties :

10 they reformat” the data. This may involve translating characters

from one code to another, merging packets into messages or

dividing messages into packets.
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Figure 1.1

Decomposition of a Node into

a Router and Concentrators
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~~~~ 

} Output
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2° they transmit service information to the downstream nodes:

— information about the line being idle or not;

— information about the origin and destination of the data.

3° they perform some kind of error control , typically implementing

an error detection and retransmission system in conjunction with

sending error detecting parity bits to the downstream node.

4° they send flow control information to the upstream nodes and/or

the router indicating that they are unable in some way to handle

the flow of data.

We will consider in this work only the first two functions; they

are related to what information theorists call “source coding,” whereas

the third one is more like “channel coding .” The fourth function should

be studied with the routing question and is not touched here.

Note that classical source cod ing theory is interested in

transmitting as little redundancy as possible . In computer networks

the goal is usually to minimize the average message delay . These two

objectives are not always compatible , as we shall see .

Note at this point that we consider all higher level protocol

messages , like “ end to end” messages to set—up a “ session , ” and like

f1o~i control and routing messages , as r egular data that must be trans-

m.itted by a concentrator to another nod e , together with information

abou t its origin , destination and some error check.

The plan of this thesis is the following : in Section 2 of this

chapter , we will, review previous works of interest while we present in

Section 3 an outline of the original contributions of this work. The

next foux chapters describe in detail the actual results. They are

organized as follows:
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In Chapter 2, we examine how the concentrator should encode the

data so as to minimize in some sense the message delays .

In practical systems the data are often transmitted in batches,

called “packets” or “messages.” We analyse in Chapter 3 a very efficient

way of encoding the length of these batches . This will introduce an

encoding technique, using flags, which will be used extensively in the

next two chapters.

In Chapter 4, we study efficient ways of solving a seemingly

trivial problem: how should a concentrator indicate to the downstream

it transmits idle bits. This simple problem will introduce

some conceptual difficulties that appear more strongly in Chapter 5.

Chapter 5 treats the problem of encoding message origins and

• 

- 
destinations. It has two distinct parts: in the first part we use a

simplified model to see what issues are involved. In the second part

we examine and compare different practical strategies for encoding the

origins and destinations while not degrading too much the average

message waiting time .
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2. ~~view of Previous ~~rks

~~ rapidly review previous works of interest , ~~nsideririg

mth.ly works that give general -i ~~~ ratl~ r than technical det~a ii s~

‘fl’E.se last refe.rences are nEntioned in the text as they are r’~&&.

~~~i1d a ro~’d~r need genera.]. infozTn~~on about cat~ iter ne~~~rks,

the books of (Davies ax~ Baxter, 1973] , (~branson and Icuo, 1973] and

[ScIs’~artz , 1977] are valuable.

• [Kleinrcck, 19763 is an ex~~1lent reference on queueing ncdels

for ~~ çuter systans, while (Gerla and Kleinrock, 19771 present an over-

view of the prc~1a~e of optisial static routing and ne~~~rk layout and

give a ni.mter of references. ~~~ subject of adaptive routing and

nzzner~ is references on related subjects appear in (Segall , 1977] while

(Ga11~~er, 1977] offers an act~a]. adaptive decentralized ].copfree algo-

ritlin.

Many of the ~~~~~~ used in high level protcools today were born

d~~ing the developrant of the ARP~~~ r; suitable referei~~~s are (~~ocker,

1972], (Cerf, 1977], (I(leinrock, 1976] and (I~,einrodc and C~derbeck,

1977].

Of ~~ rse the ARPA~~r 5 well kz~~n for sending data in packets.

Axx ther network that f~rctions in a s~inilar way is the C1~~~DE 5 , (Pouzin,

1973] . Sane ne~~~rks ~~ r~ t use this idea , but transnit the data

• character by character, e.g. see [T~nes, 1971] and [Vander May, 19761.

‘fl~ references just n~~ti~~~ describe the background of this

thesis, but have r~ direct ii~çact on it. We r~~i review sane works
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that have a stronger relation to it.

The motivating paper behind this thesis is the one by (Gallager ,

19761 which showed that there is a trade off between the delay

incurred by a message and the amoun t of information necessary to

indicate its origin or destination. However, the delay there is a

“voluntary” delay in the sense that the concentrator sometimes chooses

not to send a message although the line is available. We will examine

how “involuntary” queueing delays can be exploited to minimize the

amount of protocol.

Another paper along these lines is [Rubin , 1976]. Rubin notes

that if some rate-distortion function exists for the output of a source,

and if the output of the source encoder is sent over a link for which a

relation exists between rate and average delay, one can obtain a delay-

distortion relation . This approach is not very useful, because it

neglects the delays added by the coding process and it assumes that the

average delay on the link is only a function of the rate, and not of

other parameters of the coder output sta t istics . It is an unfortunate

fact that infcrmation theory is concerned only with rate.

A work that has a strong relation with this thesis is the one by

[Jelinek, 19681 and [Jelinek and Schneider, 1972]. They were the first

to show that a code with minimal redundancy is not necessarily optimal

as far as buffering problems are concerned. We will use some of their

ideas and extend their results in Chapter 2.
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The goal of this thesis is to find efficient ways for a

concentrator to perform the source coding functions described in Section

1, and divided in four main sections:

- encoding of the data ;

- encoding of the message lengths;

- encoding of the idle times;

- encoding of the message origins and destinations.

The objective is to minimize the average message delay, or some other

queueing theoretic quantity, like the probability of buffer overflow.

We review briefly our contributions in these fields.

In Chapter 2, we present an algorithm to construct a prefix

condition code minimizing the probability of buffer overflow. It is a

generalization of Huffman ’s procedure.

Variable length flag strategies are studied exhaustively in

Chapter 3. We give coding and decoding algorithms using flags , analyze

their performance and sensitivity, and identify the classes of flags that

have some desirable properties . The main result is that if well chosen

flags are utilized to encode the length of a message , the expected number

of bits used is upperbounded by the entropy of the distribution of the

message length + .56

We study in Chapter 4 how to encode the message starting times to

minimize the average message delay. Unfortunately the best way of doing

this is still unknown. We were only able to show that the concept of

average number of protocol bitE per message is useless when the line is

synchronous . We also analyzed a practical strategy, using flags, to



19
encode the starting times . This is a variation on the theme of the

ti/Gil queue.

Our main contributions are in Chapter 5, where we study the encod-

ing of the message origins. We first introduce a simplified model where

the objective is to minimize the entropy of the sequence of the origins

of the messages being transmitted. We also show that, at least for this

model, the traditional methods (e.g. forming packets or polling) are

far front being optimal. We give a lowerbound on the best achievable

performance and show how dynamic programming can be used to f- nd the

optimal strategy

We also analyze four practical strategies to encode the origins.

They are based on well-known queueing strategies. Our main contributions

are a closed form expression for the waiting time in cyclic queues with

synm~etric inputs, and a fast algorithm to compute the waiting times in

the asymetric case, We also solved the problem of optimal source

coding for an integer alphabet with Poisson distribution.



20

Chapter 2

Source Coding to Minimize Delay

1. Introduction

We devote this chapter to the problem of source coding to mini-

mize delay. After presenting our model in Section 2, we consider briefly

in Section 3 how to find a code minimizing the average delay . The

problem of minimizing the probability of large delays or of buffer over-

flows is treated in Section 4. Finally, we review and generalize in

Section $ the work of [Jelinek and Schneider, 19723, which is stronly

related to the topic of this chapter.

2. The Model

We propose the following model : an asynchronous mernoryless

source emits symbols drawn from the alphabet (1,2,3,... ,c} ; symbol

i has probability p. . The time intervals between two source emissions

are independent random variables with distribution function A . An

encoder naps the source symbols into codewords which are placed in an

output buffer of size 9 from which one letter is removed every unit

of t ime (first in, first out). The output codewords are formed by

letters from an alphabet of size d and the codeword corresponding to

source symbo l i has length m. . Wi thout loss of generali ty we can

assume that c ~ d + k(d-l) for some integer k and that p~ > p~~1 > 0.

In the following sections we consider the waiting t ime and

delay of symbols that do not cause buffer overflows. The waiting
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time is defined as the time difference between the moment a s~inbo1

arrives at the encoder and the moment the corresponding codeword

starts leaving the buffer . The delay is the waiting time , p lus the

length of the codeword . We do not consider what to do when the buffer is

empty or overflows ; this is treated in Chapter 4.

3. Minimizing the Average Delay

Unfortunately , for most intelEmission processes , it is not

possible to compute the average delay . Sometimes, thcugh,it is

feasible , e.g. if the buffer is infinite and if A(t) 1 - e
_Xt

t > 0 . In this case the average delay is equal to (this is a

M/G/ l queue)

X(E p .m~ - (Z p.m .)~ + Z p.m.
E ( D ] 

1 -  X

for all codes such that A ~ p .m. < 1 . However, even in this
1 1

simple case we are unable to find an algorithm yielding a code

that minimizes this expression . We can only make three general

observations valid for all problems .

First, Huffman codes , which minimize the average codeword:

length, are robust for this application . They are optimal when

the load is light , because then the waiting time is negligable

compared to the average codeword length. When the load is heavy ,

it is of primary importance to keep the system stable by mini-

mizing the average codeword length , i . e .  utilizing a Huffman

code .
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Next , by a simple exchange argument, one sees that in an optimum

code m~ > m~~ 1 (because p~ ~
Finally, as in Huffman codes , the codewords of the d least

likely symbols have the same length.

4. ldinimi z ing the Probabilities of Buffer Overflow and uf Long Delays

A. Introduction

~Kingman, 1970] showed that for infinite GIG/i queues with

interarrival time distribution A and service time distribution B

the stationary probability WC (x) that a symbol waits more than x

units of time is upperbounded by

-sox

where s
0 

is the supremust of the values of s such that

A*(s) B*(_s) < 1

Kingman ’s method yields the same result for finite queues.

From this, it is easy to upperbound the probability of buffer

overflow: denoting by w and b the waiting time and length of a code-

word we have

probability of buffer overflow a PCw+b > M)

~~P (w>M—b)

< E(e~~~~~~) ~ < s < 0

- sM 0a B* (_ s) e 0 < s < s

By more complicated arguments , [Wyner, 1974] established that there
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0-s M
exists a lowerbound decreasing like K e

Applying these results to our model , we see that for every

code C , the probability of buffer overflow is of the order of
-s°B

e , where s (C) is the supremuzn of the values of s such that
C sm.

F(C,s) a A* (s ) Z p .e  < 1 . Therefore it is desirable to find a
i=l

uniquely decodabie code with the largest s . Before doing this, we

will bound this largest

B. Bounds on the Largest

This section can be considered as an extension to asynchronous

sources of results obtained by [Jelinek ,- 1968] and outlined in Section
c -m.

For any uniquely decodable code Z d 1 < ~ (Gal].ager , 1968, p.— i=l
4.~ ] ,  and by H~ ider ’s inequality for all S > 0

(.
~~ 

p~ e~~~
)

~~ ~ 
+ S 

(
~ 

d i)T~ ~ 
+ ~

i 1  lal

m d
in d + ~> z p.

j=1 1

Thus for all uniquely decodabie codes ,

m d  ~ l n d + s
c sm. (c 1 n d + s ~ m d

A* (s) 
•

E p~ e 1 
> A* (s) E p~

with equality for a given s if f

~‘ 
m d  m d

I l n d + s  c l n d + s
in. a me (s) 2 - lo

~~ ~~~ / . z p1

which is rarely possible , because rn.  must be integer . However , for
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every s , there is a uni quely decodab ie code with

+ 1 > rn~, > a~~(s)

Thus we can conclude that the largest ~O is upperbounded by 5~

defined as the supremu in of the values of s such that

m d  ~~l n d + s
F c l n d + s l l n d

A* C s) ( E p. ) < 1

and lowerbounded by the supremum of the values of s such that

l n d  t l n d + s
C in d + s u n  d

eSA* Cs) L .~~ 
~~ / < 1

/

Further , s~ is achievable if m
~~

(s
~

) is an integer for all i

Finally, we note that if we were encoding blocks of n input
0

symbols, the largest s would still be upperbounded by ~~ , and

lowerbounded by the supremum of the values of s such that

/ m d  ~l n d + s~I f c  l n d + s l m n d jn
e5~A* (s) 

~iul ~ I I
This supre mum increases to s~ as n grows .

c. An Algorith m to Construct an Optimal Prefix Condition Code

In this section we present an algorithm to construct a prefix

condition code with the largest achievable s° . It is well known

jGallager, 1968, p. 49] that no gain would be achieved by considering

non prefix condition , uniquely decodabie codes. The algorithm has ti4o

_ _ _ _ _ _ _ _ _  S
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main steps that we describe first .
- C Sm.

Step I finds a prefix condition code minimizing Z p~ e 
1

ia 1
for a given s > 0 by the following method . As [I-fuffnian, 1952]

noticed a quarter of century ago ,~i~~~n optimal prefix condition code where

the codewords corre sponding to symbols c - d + 1 t o c are the

longest and differ only in the last character. If c d , this

specifies an optimal code ; if c > d , this reduces the problem to

finding a prefix condition code of size c - d + 1 minimizing
c~.d sin. c sin

Z e 1 + (e5 
~ 

p.) e . Again we can make the sane
jl i=c-d+l 1

observation and continuing we will eventually reach the point where the

code is completely specified .

One sees t~at for s = 0 this algorithm yields a Huffinan code ,

whereas for s large enough, it assigus codewords of length f log~c1..l

to the
r mog~ ci

d - c
d - 1

most likely symbols , and codewords of length Im o g~ ci to the others.

By definition we wil l  say that such a code is generated for s =

Note that , depending on the actual implementation of the algo-

rithm, many different codes may be generated for a given s . They a ll
c sm . /

minimize z p. e 1 but it may happen that all of them do not have the1

same s~

Step I I  computes the s~ corresponding to a particular code.

Except in special cases this must be done by numerical methods , e.g.

the Newto n-Ra ph son algorithm [Klerer and Kor rt ,l967 ,p.2-59 ] . There are
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no special problems because the function f(C,s) , defi ned at the

end of Section A , is convex in s for all codes C

The main part of the algorithm is as follows : (see Fig.  2. 1)

1 compute

2 U

3 j : a l
c s.1m .

4 Loop use Step I to find a code minimizing 
~ p . e ~ L

j a 1
denote this code by C

5
5 use Step II to find the s~ corresponding to C

5
denote this s~ by

6 if 5~ = 5.  then stop
-~~ 3 3-1

7 else 3 a

8 go to Loop

Of course, we must show that this algo~thm will terminate after

a finite time , and that the last code generated is optimum . The proof

is simple. First we note that s
5~ 1 > s~ 5 > 1 because

fCC . , s~ ) < 1 (line 5), thus (line 4) f(C
3~~1 , $ 3 ) < 1 ~°

:= sup 4.s : f (C
5~~1 , s) < i} > s~ . Secondly, we observe that

th. maximum codeword length of any code generated by Step I is less than

c, so the number of codes that can possibly be generated by Step I is

finite. These two remarks insure that the algorithm will terminate in

a finite time .

Let C~ and s be the last generated code and its s~ . We

must show that C,, is optimal. If it is not , there will be a prefix
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0 FIGURE 2.1 
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Iterative Procedure to Find

a Code with Maximal gO

f (C ,s)

C2 C3 C4

Cl

I Slower bound
I I ,

S S •
I I ~ I
S 5 I • *I I I
I S S
I 5 I •S S I I
S 5 I
S S I

S S I
I S I I
S S S S

S I S S
S S S S S
S S I I I
I S I S I

~ s

~2 
33 94 so—s U
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condition code C~ and a corresponding s~ with s ,~ > s~ . Thus

0< s~ < , so f (C ,,s~) 1 . Also , by convexity of f(C~ ,s)

f(C , ,s~ ) < 1

If f(C~,s~) < 1 , C~ may not be the last code generated by

the algorithm (lines 4,5,6).

If f(C~,,s~ ) 1 and s
~ 

> 0 , by invoking the facts that
f(C,,0) a ~ f(C~ ,s ,) < 1 and the convexity of f(C~ ,s) we can

conclude that f(C,~,s) = 1 sc [O ,sfl . By analyticity of f(C~,s)

s > 0 (Laplace-Stieltjes transform of a probability distribution),

ft(C’ s) a 1 s ~~. 0 , so s , a 
~ and a fortiori s~ = ~ . From the

algorithm , C1 is the code described earlier that is generated by

Step I for s . If for C~ the waiting time is 0 with probab i-

lity one (i.e. sr ~) ,  it is clear that the same will be true for

C1 , because the length of the longest codeword in C1 is no longer

that the length of the longest codeword in any other code. Thus

a a s~ ~ s~ , a contradiction.

If f(C
~,,s~) = 1 and s,,, * 0 , then, as noted earlier, Ci,,

is an Huffman code , and as such minimizes ~—. f(C ,s) over allS szO
codes. The fact that s,, a 0 implies that ~~ f(C~ ,s) > 0 so
-, saO

~~~~
- f(C~ ,s)~ > 0 and by convexity either s ,~ a 0 a ~~ which is a

~aQ
contradiction, or s~ > 0 , 

~~~~ 
f(C~ ,s) a 0 . As in the previous

sa0
paragraph this leads to the conclusion that f (C~ ,s) 1 s > 0

and to a contradiction .

We have exhausted all possibilities and may conclude that C

is optimal .
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Before leaving this section, we show that if one desires to find

a prefix condition code minimizing

C

~~ ~~~
i—i

then the algorithm of Step I can be used only if g is linear or

exponential.

The following conditions on g must be met for the algorithm to

work:

-- g is non-decreasing,

so that if p. > p. , m~ < m~ in an optimal code;

-- g(m+l) = a gem) + b

so that at every step the size of the problem can be reduced

by 1 , while the form of the problem does not change.

These conditions imply that f must have one of the forms

a > l

or g(m) a am + 3 a > 0

D. Numerical Results

A listing of a Fortran IV program implementing the two main steps

of the previous algorithm appear in Appendix C. This program was used

to compute the optimal code for a 128 symbol alphabet. The symbol

probabilities are equal to the relative frequencies measured in an air-

line reservation system, and are listed in Table 2.1 . We are

grateful to Codex Corporation for furnishing these numbers .

We used two kinds of interarrival time distributions: determi-

nistic and exponential. This last one is a realistic model of what

happens in practice, see [Fuchs a!ld Jackson, 1969], or (Lewis and Hue,
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Table 2.1

Symbol Probabilities Used in the Example

1 0.208593E 00 44 0.543153E—02 87 0.L$3428L1 !—03
2 0.L413809E—01 45 0.532954E—02 88 O.3144279!—03
3 0.359989!—O1 £46 0.519072E—02 89 0.301999E—03
£4 0.3L$4146E—O1 £~7 0.510923!—02 90 0.282097E-03
5 0.3141741!—01 48 0.1495C80E—C2 91 0.281L104E—0 3
6 0.310R07’E—Ol 49 0. 14 95 0 80 E— C2 92 0.2L4O11L4~ —03
7 O .2971C5E—0 1 50 O.1431145E— 02 93 O.227836E—03
A 0.252622!—01 51 C.41C917E— 02 94 0.125453E—03
9 0 . 2 5 0 5 4 7 Z — O 1  52 0 . 4 10 4 6 1 Z — 0 2  95 0. 123671E—03

10 0 .23 9 84 9 !—0 1 5) 0 . 3 8 19 8 ’4 E — 0 2  96 0.800050~~— ’DL 4
11 0.214937E—U 1 54 0. 373736 Z—0 2 97 0 . 2 0 7 9 3 4 E — 0 5
12 0.205013E—0 1 55 0.3716147E—02 98 0.376261!—05
13 0.204~~32!—01 56 0.33532~~E—O2 99 0.1OO006~ —0414 0 . 2 0 t 4 2 9 5 E — 0 1  57 0.33L4189E—02 100 0.5148814E—05
15 0 . 2 0 3 1 5 1E — O 1  58 0 .3239 51E-02  101 0 .237639~ — 05
16 0 .1~~5 0 3 4 E — 0 1  59 O . 3 2 1 8 2 2 E — 0 2  102 O .237639Z— 0 5
17 O. 17 0 4 3 9 E — O 1  60 0.289216!—02 103 0. 89 1145 !-•05
18 0 . 1 14 1 9 1 6 E — O 1  61 O .279 186 !—02  104 0 .37626 1E— 0 5
19 0 . , 13 L 4 7 3 2 E — O 1  62 0. 2 7 1 0 L 4 7 E — 0 2  105 0 .2 5 7 L 4 4 2 E — 0 4
20 C . 12 6 8 5 3 E — 0 1  63 O . 2 6 12 8 L 4 E — C 2  106 0.360418E—014
2 1 O . 1 2 6 8 2 3 E — O 1  64 0 . 2 5 2 6 3 0 E — 0 2  107 0 . 1 9 2 0 9 1 E — 0 4
22 0 . 1 2 6 6 5 8 E — 0 1  65 0 . 2 1 934 0 ~ — 0 2  108 O . 5 1 4 8 8 L 4 E — 0 5
23 0 . 1 2 6 5 5 5 E — O 1  66 0.213528E—02 1C9 0.207934E—05
24 0 . 12 0 6 6 3 E — O 1  67 0 . 1 8 1 7 5 4 ? — C 2  110 O . 30 89 3 0E— 04
25 0.1 1589O ~ — f l 1  6~ 0. 171922E—02 111 0. 17129~ !—0t4
26 0 . 11 14 2 59 !—0 1 69 0. 1 6 8 0 4 0 E — 0 2  112 0 . 9 6 0 L 4 5 6 E — 0 5
27 0.1114121E—01 70 0. 1 55 0 2 0 E — 0 2  113 O . 5 1 4 8 8 4 E — 0 5
28 C . 1 1 03 6 6 ! — 0 1  71 0 . 1 L 4 3 7 8 1E — C 2  114 0 .2 9 7 0 4 8 E — 0 6
29 0 . 1 0 4 8 ) 7 ! — 0 1  72 C . 14 3 7 12 !— 0 2  115 0 . 17 8 2 2 9 E — 0 L 4
30 0 .969 L 4 96! —0 2  73 0 . 1 42 0 6 8 ! — 0 2  116 O . 2 3 6 6 4 8 E — 0 4
31 0 . 9 5 7 2 9 7 E — 0 2  74 0 .13691-~E—02 117 0.306953!—05
32 0. 94 L4 4 L4 5!— ~~2 75 0 . 1 3 1 7 q C E — 0 2  118 0 .554 L4 9 0!—05
33 0. 9 3 2 2 16 E — 0 2  76 O . 12 3 2 0 6 E — 0 2  119 0.138622!—05
34 0 . 8 8 1 3 3 2 P — 0 2  77 ) . 1 1 6 7 5 0 E — 0 2  120 O . 3 7 8 2 L 4 1 E — 0 4
35 0.R44231!—02 78 O .9’42039E—03 121 0.653506!—Oc
36 C .R31517~ —02 79 0.912136F-03 122 0.306950!-05
37 0.826121E— ’~2 80 C.865797!—03 123 0.930751E—05
38 0.809219!—02 91 0. 767177~ — 0 3  124 O. 11 6 R 3 9 E — 0 4
39 0. 753829 !- ’) 2 82 0 . 7 1 9 0 5 L 4 F — 0 3  125 0. 196052 !—OL I
40 0. 7 3 7 2 3 4 E — C 2  83 C . 6 3 9 3 L 4 7~ — 0 3  126 3 .2 0 7 9 3 L 4 E — 0 5
£ 47 0 . 6486 6L 4 !—02 84 0 . 6 ] O 1 3 R E - 0 3  127 0. 116839 ~~— 0 4
42 0.~ 4 5 A 8 2~ —C2 85 0.59Lt690~ — 03 128 0.415867~~—05£43 0.6027c0~ —O 2 136 0.583C07E—03
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1972].

The results appear in Fig. 2.2 and 2.3. We give some additional

information here :

the binary entropy of the alphabet is equal to 5.32

the average codeword length of a Huffman code is equal to 5.35

the number of iterations to reach the optimal code was generally

small (1 or 2) for Poisson arrivals, but larger (3 to 10) for.

deterministic arrivals;

the difference between the upperbound on s~ , and the performance

of the optimal code is extremely small (of the order of 1%) in the

Poisson arrival case. This is the reason why the upperbound does

not appear in Fig.  2 .3 .

The average codeword length of the optimal code behaves in the

— expected fashion; being largest in light traffic, but close to the

average codeword length of the Huffman code in heavy traffic.
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5. Review and G e n e r a l i z a t i o n  of Je l inek  and Schneider ’ s Work

Jelinek and Schneider considered the fo l lowing  problem : once

per time unit a memoryless source emits a letter from the alphabet

A: a (1,2,.. .,c} . Letter i in this alphabet has probability p~ >O

An encoder maps these source letters into codewords formed by letters

from the alphabet B := {1,2,. .. ,d) • The mapping is as follows : a

complete and proper set of N prefixes c~ is defined for the

alphabet A (i.e. every sequence of letters from A starts with one

and only one c~ ). Prefix c. has length r . and probability q~

induced by the p~ ‘s. Every c~ is m&pped into one codeword d~

formed by letters from 5 . Codeword d~ has length in. and the

N -m.
d. ‘ s are uniquely decodable , so that E d -~ < 1 (this is the

3 j a i

Kraft inequality see [Gallager , 1968 , p. 4 7 ] ) .  Each time the pref ix

is recognized by the encoder , codeword d
J 

is placed in a buffer

of size B from which one letter is removed every time unit. Jelinek

and Schneider address in detail the problem of what should be done,

when the buffer is empty or overflows .

Their main result is the following : for every block to vari-

able length code (r. constant), or variable length to block code

(mj constant), there exists K14 K2 > 0 and s~ such that in the

stationary state, for all B > 1

K1 d
5 B  

< Probability of buffer overflow < K2 d~~~
8 (1)
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where s~ is less than or equal to the supremuin ~~ of the values of

s such that

1 l+s

d5 > z (2)
jal

is positive if the entropy (base d) of the source is less than one

(this ensures stability) and is f in i t e  if c > d (otherwise there

need be no queueing effect). In the sequel , we always assume that s~

is positive and finite so that s can be dfined as the largest root

of the equation

1 l+sc —
S . l~ sd =

(i=l

They give algorithms yielding codes with exponent s~ arbitra-

rily close to s,~ , ar.d conjecture that the same result would hold in

variable length to variable length coding . ~e show now that this

conjecture holds .

To show that the theoretical limit on the exponent s’~ is the

same for the variable length to variable length codes as for the codes

considered by Jelinek and Schneider , it is er’~ugh to show that for

every code there exists a K1 
> 0 such that for every B > 1

- s l i
Pr (Buffer overflow) > K1 d U

Because we consider only the lowerbound , we can ignore the overhead
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associated with the recovery procedures that have to be used when the

buffer overflows or becomes empty .

Denote by

km the length of the k~ codeword placed in the buffer

(k = 1,2,3,...)

the length of the prefix corresponding to the kth codeword

the number of letters in the buffer after the kth codeword

has been placed in i t .

Note that and rk are strongly dependent , but are independent of

the nr~ ‘s and r~ ‘s j~k

We have the relation

k . k k-i kn = Mm [B , in + Max[0 , n - r ]] k = 1,2,...

k k-i k k:M mn [B, Max [m , n + m  - r ] ]

and we assume a0 
= 0

Now defining

0w ~
k . k-i k kw = Mm [B , Max[0, w in - r ]] k a 1 ,2,...

we see that obeys the standard relat ion for the waiting time in

a queue and that surely nk > ~
k k = 0,1,2,...

Thus the probability of an overflow for the process is greater

than or equal to the probability of an overflow for the process wk 
-

The results of [ Wyner , 1974] can be applied ~o this last

process , thus for every code , there are K1 > 0 and s0 such that

Pr (Buffer overflow) > K1 d
5 B where s° is the largest root of



37
N s(m.-r.)
Z q.d ~ = 1

j = l  ~
N s(m.-r.)

( E q. d ~ is the Laplace-Stieltjes transform (base d) of
j=1 ~

the distribution of rn - inn , ~ = 1 ,2,...)

[Jelinek and Schneider, 1972] give a proof of the following

Lemma , attributed to Forney :

If Su is defined as before , then for all comp lete and proper

set of prefixes, 1 
- ____

N 1+s r~ l+s
E q. u d U

l

j=l ~

Now , Htilder ’s inequality yields

S $1 U 1 UI N s (m.-r.)\ 1+s I N -in. \l+s N l+s - r~ ~
j

E q.d U 3 3 ) u E d ~ J U 
> E q. U d u

‘¼ 
j=l ~ / \j = 1 / — 

5= ’ ~
N - in.

thus by the Lemma and the fact that E d ~ < 1
j=l

N s (m.-r.)
E q.  d u 3 ~ > 1

j=l ~ 
—

with equality if and only if

N -rn .
E d  ~~~ l

j=l p
and 1

d 3 = (q 5 
d ui) 

1+~~

N s(m .-r.)
Now , the function E q. d -~ ~ is a Laplace-Stieltjes t ransform

j=l ~
of a probability distribution , thus it is strictly convex (except in a

trivial case), and its value at 0 is 1. We have seen that i ts  value

is greater than or equal to 1 at > 0 , thus it is greater than 1
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for all s > 5 • so s~ ~ 

for all variable length to variable

length codes.



Chapter 3

Flag Encoding Schemes

1. Introduction

Consider the problem of finding a binary Huffman code to jointly

encode a binary random variable, which is equal to 1 with probability

•lS , and another random variable which takes the values (0,1,2,. ..,7)

with equal probability. One readily finds that the following code is

a solution:

(0 ,0) 000 (1 ,0) 111000

(0 , 1) 001 (1 , 1) 111001

(0 , 2) 010 (1,2) 111010

(0 ,3) 011 (1, 3) 111011

(0 , 4) 100 (1,4) 111100

(0 ,5) -101 (1, 5) 111101

(0 ,6) 1100 (1,6) 111110
(0 , 7) 1101 (1, 7) 111111

This code has an interesting structure : all codewords corresponding to

(l ,i) start with ill , followed by the binary representation of i -

(0 ,i) is encoded into the binary representation of i , except that a

0 is inserted in third position if the first two digits are 11 . The

sam e pattern reappears in the joint Huffman encoding of a binary random

variable and a random variable taking with equal probability anyone of

values .

This structure offers the possibility of doing the coding in two

steps : first encoding the messages , then modifying the codewords , either

by using a prefix , called a flag , or inserting an extra symbo l to avoid

confusion , to encode the binary random variable. The receiver will

recognize if a flag is present , possibly recognize and delet e the extra



character, then decode the message .

Often in computer communication network s and elsewhere , one

needs to jointly encode messages , furnished by an outside source , and

binary information generated locally, like an “acknowledgement” or “end

of transmission .” This can be done easily by eventually introducing a

flag, known to the receiver , at the beginning of a message , or at some

other point decided in advance , and inserting extra symbols to avoid

confusion , if r.ecessary.

This s t ra tegy is attractive for many reasons: it is simple , does

not cause much delay , nor require much buffering because the message

is not truly reencoded and does not need to be known in its entirety.

it is optimal in some cases , as we have just seen, and can be made

adaptive, as we shall see later . -

In this chapter , we will study this strategy in detail . We wil l
of

first give a very general algorithm that permits the use/any flag at any

point in a message . Next we will study the performances of this

strategy and see how it can be optimized . In the following section

we examine the use of adaptive flags to encode messages and batch lengths.

Finally we will see how reducing the class of allowable flags can improve

performances.

Before doing this , we introduce some definitions . By flag we

mean any finite sequence (ct]. - .ct~,) of symbols from the alphabet

(0 , 1, . .  ,d}; v is called the length of the flag (v > 1) while

is called the root o (p is possibly empty). We denote

by 8 the symbol , different from ct,~, , that is inserted when necessary



to avoid ambiguities, and we will call the sequence 
~2

8) the antiflag.

Fixed-length flags are actually used in IBM Synchronous Data Link

Control to encode message lengths [Donnan and Kersey, 1974]. They are

analyzed in [Camrass and Gallager, 1976]. jScha~kwijk and Post, 1973]

used flags to encode data for transmission Qn the Binary S>onmetric

Channel with Noiseless Feedback.



2. General Flag Coding Algorithm

We considet the following situation: a semi-infinite sequence

(the data) (u1, U
2 

, ... ) of d-ary symbols is furnished to an encoder ,

together with a sequence (v1 , v~ , . . .)  of binary symbols. We give

an algorithm to jointly encode these two streams using flags , i.e. the

output (x 1 , x2 ,...) will consist of the sequence (..ut..) plus

some flags or inserted symbols used to indicate the values of the

V
t 

~s.

We denote by (ai,.. .,a~~) the flag to be used after u~ j •f

v a , by p the root of this flag , and by 3~ the symbol that

is to be inserted in case of possible confusion. We place no

restriction on the composition of the- flags , except that of course

B
t ~~ 

- 
-

t

Before giving the algorithms for coding and decoding we note

that they need the following features to be efficient:

a) we want to either use the flag corresponding to a v~ , or

to make at most one insertion ;

b) if d > 2 we want to make an insertion only when it is

necessary, i.e. when the next symbol is the same as the

last flag symbol or the insertion.

We will illustrate these two points . Throughout examples 1

to 3 we use ds3 and

a 4 (a~ 4 4 a~ ) a (0 , 0 , 0 , 0) 2

v 2 
a 2 ~~ 4) 

a (0 Q) a 2
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Example 1: Violation of requirement a)

1 2
U = 1  u = 1

1 2v a l  v a t

1 2 3 4 5 6 7 8 9 10x x x x x x x x x x

1 0 0 2 0 0 1 0 0
1 1 1 2 1 1 2 2 2U a 2 B ct

3 
U a1 a2

There we insert B2 in the middle of the first flag to indicate that

we are not transmitting the second flag . We transmit the second flag

in x8 and x9 - We have thus used both the flag and the insertion.

The correct way of proceeding is illustrated below.

Example 2:

1 2 3 4  5 6 7 8 0x x x x x x x x x

1 0 0 0 0  0 0  1

4 4 4 4 4 a~~ u2

a
1

We realize that if x4 is 0 , x3 and x4 will be interpreted as

the second flag. We then repeat 4 in x5 and Continue the trans-

mission of the first flag , which will be decoded after the second.

- 1 2If we had to transmit u = 1 u a 1

1 2V O v ‘1

the output would be



4 1

Example 3:

1 2 3 4x x x x

1 1 0 0

1 2 2 2U U a 1 a 2

We see that here the second flag appears after u2 - To insure that

the encoder does not repeat the second flag after u2 in example 2

we introduce in the algorithm below the indicator variable wt which

is initially set to 1 , then to 0 as soon as an insertion or a flag

corresponding to v~ are transmitted. Once w~ a 0 no r~ore flag

or insertion corresponding to v~ can be sent.

Let us look now at the peculiarities introduced by requirement

b). Here we use d=3 and

a 3 c4 4 4) = (0 , 0 , 2) = 0

v2 
a 2 (4 4) a (~ , 0) ~

2 a 2

Example 4:

1 2 .  3 4
U l U z O  U a D  u a l

1 2V a D  v a D

1 2 3 4 5x x x x x

1 0 0 1

1 2 3 4
U U U U

No insertion is needed , neither for v ’ , nor for v2 -
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Example 5:

1 2 3 4u = 1  u = 0  u = 0  u = 2

v
1

a O  v2 = 0

1 2 3 4 5 6x x x x x x

1 0 0  2 0 2

ut U2 U3 
8
2 

8
1 ~4

One sees that the change of value of u4 from 1 to 2 provokes the

appearance of two insertions. The point is that the decision to

insert 32 depends on the value of the next symbol, which itself

depends on the value of the next symbol!

The algorithm given below solves this problem by establishing

a first in first out stack of row vectors s = (5 1, 5 2, S
3

)  . Normal

flag or data characters occupy only the first element of the vector~ n

inserted character associated with v~ is represented by the

t t
triple (?,B ,a ) -

In the prev ious two examples, the stack would be

s(1) a (? ,32,4) = (?,2,0)

s (2) a (? ,8~,4) a (? ,0,2)

s (3) a Cu4,-,—) a (1,-,-) Example 4

a (2 ,-,-) Example 5
normal

As soon as a / character enters the stack, the subroutine

“cleanstack” is called. Starting from the end it compares s(j)

with s(j-l) . If s
i

(j _ l )  a ? and (s1(j) 
a s2(j-l) or s3(j-l~

s1(j-l) is replaced by s2 (j-1) ; if s1(j-l) = ? but
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2
(j-l) and 53(5—1)) , s(j—l) is deleted and the stack

collapsed.

Thus in Example 4 the following transformation occurs

(?,2,O) (?,2,0) (1,— ,—)

(? ,O ,2) -‘- (1,-,-) -
~

(1,— ,— )

whereas in Example 5

(?,2,O) (?,2,0) (2,— ,—)

(?,O,2) -
~ (0,- ,-) (0,-,-)

(2,— ,—) (2,— ,—) (2,— ,—)

The stack is then emptied to yield part of the output sequence.

Before giving the algorithms we make precise 2 syntactic points :

-) (ü~~, . . , &) means the empty set if i > 5 -

-) In a “do loop” of the form “For i a a step b until c do. .“

no statement is executed if (sign b) a > (sign b) c -

Most of the notation has been explained above or is self

evident, except (a1
, ..  ~~~

t ) - t t  represents the output of the

decoder . It is mimicked by the encoder. At every instant before

-
~~ t” + 1 , these sequences are equal in both encoder and receiver .

This, together with the fact that Ql Qt -l is equal to

- u
t - 1 guarantees unique decodability of the (Ut) sequence.

Unique decodability of the (Vt) sequence is guaranteed because the

flag to be used af ter U
t appears if and only if a
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Coding Algor i thm

c~i Set the binary variables w1 , i > 0 , to

v0 and w° to 0

c2 Set the integer variables t , t ’ , t ” , stacksize to 0

c3 For 5 a 0 Step 1 until t ’  - 1 do

c4 begin

t ’— j+l t ’  t ’ — i t ’ — icS if Cu , - ,~ ) a p - and w a 1

c6 then

c7 begin

t ‘ -.3c8 w = 0

c9 stacksize a stacksize + 1

d O  if a 0

d l  then s(stacksize) := (? , $t _ 3
, at _ 3 )

cl2 else

c13 begin
t i -icl4 s

1(stacksize) :=

cl5 t ’ a - 5

c16 cleanstack

cl7 end

cl8 end

c19 else continue

c2 0 end
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c2l t ’ := t ’  + ~

t tc22 if v = 1  and w = 1

c23 then at : =

c24 else

c25 begiz’

c26 t := t + 1

tc27 u :=u

c28 end

c29 stacksize := stacksi:e + 1

c30 s1(stacksize) =

c3l cleanstack

c32 go to c3
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Clean Stack

cs~ For i := stacksize Step — 1 unti l  2 do

cs2 begin

cs3 if = ?

cs4 then

cs5 begin

cs6 if s~ (i) = s2(i-l) or s1(i) s
3~

i-1)

cs7 then s
1 (i-1) 

a s2 (j - 1)

cs8 else

cs9 begin

cslO stacksize := stacksize - 1

csll for j := i-] Step l until stacksi:e do

s(j) = s ( j+ l )

csl3 end

csl4 end

cslS else continue

csl6 end

t”+icsl7 For i :a 1 until stacksize do x = si
(i)

csl8 t” a 
~~~ + stacksize

csl9 stacksize a 0
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Decoding Algor ithm

dl Set the binary variables , . ..  to o

1 2w , w , ... to

d2 Set the integer variables t ’  , t” to 0

d3 t ” := t ” + 1

d4 For j := 0 Step 1 until  t’ -l do

dS begin

d6 ~f (~t~~3+1 , - .. ü~~ ) = p 3 and w t ’ 3 = 1

d7 then

d8 begin

d9 ~~~~ := 0

dlO if x~ =

dl i then

dl2 begin

d13 ç.t’ _i 
:= i

dl4 ~~‘ := t ’  - j

diS go to d3

dl6 end

d 1’ else

dlS begin

d19 jf x~ a

d20 then t ” := t ” + 1

d2l else continue

d22 end

d23 end
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d24 else continue

d25 end

d26 t ’  := t ’ I

t”d27 u : = x

d28 go to d3

A program implementing these algorithms has been written in

Basic. Data and flag compositions were randomly chosen in a ternary

alphabet , for t=1 to 100 . The output of the coding program was

fed into the decoding program which decoded it correctly.

As final remark , we note that there is no reason for all

flags to be known in advance. All that is needed is that if the flag

corresponding to v~ has length ‘

~~~~ 
, the flag corresponding to ~~~

must either be known at time t , or it must be known that its lengtiv

is greater than ~~-i , this for i=l ,2,...,vt
_ l 

- This guarantees

that the transmission of the flag corresponding to v~ will not be

interrupted because of the flag used to signal ~~~ -
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A. Method

We will investigate in this section the performances of the pre-

vious algor ithm , and see how they can be optimized ; more precisely, we

wil l  study how to minimize the total average number of symbols used ( f lag

and inserted characters) because of the possible presence of a flag at

time t - We denote by v the length of this flag , and by p the

probability that it will be used.

We have inunediately that the average number of symbols used is

equa l to p~ (l_p) Pr (insertion is needed) .

We note that v > 1 whereas Pr (insertion is needed) < 1 , so

that a flag should never be used to indicate an event of probabil ity

greater :han .5 ; rather a flag should be used to indicate the

complemen t of this event. From now on we wil l  assume p < .5

In general , Pr (insertion is needed) is a complicated function

of the data process s ta t is t ics, of the f lag  composition and of the

compositions and probabili ties of insertion of the neighboring flags.

To avoid this difficulty we use a trick dear to information theorists ,

i.e. we will average Pr (insertion is needed) over the ensemble of flag

compositions and insertion symbols. If the flag is not used after time

t , an insertion due to this flag will occur if the symbols (x~
’
~~

t” +~j -1 t”+vx , x ) are equa l to the flag or the antiflag . If their

compositions are chosen randomly, the probability of an insertion is

2 d~~
’ 

- We will therefore minim ize on v the function f(p ,v) defined

b-, f(p,4 a p\) + (l-p) 2d~~
’ 

- We will denote by v°(p) a value of

v that minimizes  f ( p , ~~)

We stress that the value of f(p,u) is an ensemble average over



the composition of the flag, and that there is no guarantee that a

particular flag will perform as well. However, we are sure that for

every u and v processes there will be at least a flag composition that

will achieve this or a better result. Consequently, we d~ not claim

that v°(p) is the length of the flag which causes the use of the mini-

mum average number of symbols , but only that there is a flag of length

v°(p) which will use no more than an average of f(p,v°(p)) symbols

for each given u and v process.

B. Optimization and Performance Analysis

If we al low u to take real values , one checks that for p

fixed f(p,~) is convex in v , and takes its minimum value

p (log~ !..2. + lo~~ (2 log e d) + log~ e) at v = lo~~ ~~~~~~~~ + log~~(2 log d ) .

Of course , \ 0(p) must be integer , and by convexity of f (p , v) one sees

that it must be equal to Iv’ (p)l or Lv ’ (p)+lJ where v ’(p) is such that

f(p ,v ’ (p)) = f(p , \) ’ (p) + 1)

This equation yields

a log~ !.2. + loge 
2 ( d - i )

= [iog~ .!. 2. + log 2(d-1)~~

or ~1og~ !. + log~ 2 ( d_ l )j

Moreover , for every p the value of f(p,v°(p)) (which is a piecewise

linear function of p (see fig.3J)) wi l l  be lowerbounded by the minimum

va.lue on v of f (p ,v) and upperbo unded by f ( p ,~~’ (p ) )  thus

p(log~ 
!. 2. + log~ (2 loge d) + lo~~ e) < f (p ,v°(p))
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< p (log~ 
_
~_2~ + log~ 2 (~~i.) + ~~

-
~
-)

Specializing these results to the case d=2 , we see that v°(p)

a h og 2 
!~2.1 or L iog 2 !2. + lJ (figure 32) or equivalently v° (p)

is such that

0
1 

~~~~~

and the value of f (p ,~ °(p) )  is lowerbounded by p( log 2 
!~2. ÷ 1.91393)

and upperbounded by p ( l og 2 
!~ . + 2) -

It is interesting to compare the average number of bits (counting

a symbol as log2 d bits) used by this scheme to the binary entropy

a -p log2 p 
- (l-p )  log2 (l-p) for the following reason: in

general H (p) is not a lowerbound to the average number of bits used

when a particular flag is utilized, because we are jointly encoding the

data and the fact that an event occurs. However if the entropy of the

data is log 2 d bits per symbo l , and if

the only event to be signalled is the one we are considering at

time t , H(p) is a lowerboun d to the average number of bits used by

any scheme to indicate the possible occurrence of the event. Because

f(p ,v) does not depend on any hypothesis about the data on the other

flags, il(p) is a lowerbound to (log2 d) f (p , v)

From this remark and the bounds developed earlier , one finds

immediately:

Max(O , p( log
2

(2 lo~~ d) (log 2 e))  + l og 2 ( l -p ) )

< (log 2 d) f(p, \)°(p)) - 11(p)



• ~~~56

- - - ~~~ •0  

- - - - - - — .

- - - - - - -  — — - - - -.

2
0 

o 
1

I

01

I

I I I I

9 0’



< p(log2 (2 
+ (log2 d)(~~.r

)) + log
2 

(l-~~ ~~

< p( log 2 ( ;—
~

—-) + (log2 d)(~—1-))

The last inequality uses the fact that log2 (l-p) < -p  log
2 

e -

In particular , for d=2 we obtain

Max(0, p (l.91393) + log2 (l-p)) < f(p, v0(p)) -

< 2p + log 2 ( l— p)

~ .55730 p

For small p , for which log2 (l-p) = -p log 2 e

.47123 p < f ( p ,  v° (p )) - H(p) < .55730 p - (1)

As p goes to 0 , ~~~~~~~~~ v° (p)) 
- 

H(p) oscillates between .47123 and

. 55730 - These facts wil l  be used later .

For da2 , then, flag schemes are qui te efficient, but they dete-

riorate as d increases : the lowerbound on f (p ,~) - Il(p) increases

like log2 (log e d) while the upperbound increases like log2 d -

C. Sensitivity Analysis

We will investigate here the sensitivity of the performance of the

flag schemes. Two issues are at hand : First , how does a wrong choice

of ‘~ degrade f(p,v) for a given p ? Second , if p is imperfectly

known , how does an error in the estimate of p affect the choice of the

flag length? We will treat these problems for d=2 only.

The first  point is easy to treat . If one uses a flag of length

v° (p) + k in place of v° (p) the penalty is equa l to f ( p ,  v° (p) + k)

0
- f (p , v (p))

a (k + 2— (v°(p)-l) -(v°(P)+k-l))( - 
1 

~

+ 1

k > O
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- 2-(~°(p)-l) - 1 
- p); k < 0

2

These are saw-toothed functions of p , and are plotted in figure 3.3

for kal and k=-l - These expressions are exact but do not give much

insight , so we will derive simple upperbounds . We recall that f(p,v)

is a convex function of v , and that v’(p) < v °(p) < v ’ (p ) + 1

Thus , by convexity , for k > 0

f(p , v°(p) + k) < k f (p ,’v’ (p)+l+k)

+ 
v ’(p)÷l-\°(p) f( \) ~~(
k+\ ’(p)+1-~o(p) ~ ‘‘ ‘~~

and 

f(p,v ’(p)+l) < v ’(p)+l-v°(p) f(p,v’(p)+l+k)
k+v ’ (p)+l-v°(p)

÷ 
k 

- 
___ f(p v°(p))

Ck÷V ’ (p)+l-~°(p)
Adding these inequalities, one obtains

f(p,v°(p) + k) + f(p ,v ’ (p) + 1) < f(p,v ’(p) + 1 + k)

÷ f(p,v°(p))

or

f(p ,v° (p) + k) - f(p ,~°(p)) < f(p,u ’ (p) + 1 + k)

+ 1)

Computing the right hand side m~nber , one gets

f(p,v°(p) + k) - f(p,v° (p)) < (k 2 -k ..l) 
~

Similarly, for k < 0 , one has

f(p,v°(p)+k) < -k f(p ,v’(l).k) + ~
°(p)-~ ’(p)

v (p ) -v ’( p)-k

f(p,v°(p))
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-kf(p ,v ’(p ) )  < ~~~‘ ‘-~~~~ f(p ,v ’(p)+k) +

v (p)-v ’(p)-k ‘

f(p ,v°(p))

Adding these inequalities , one obtains

f(p,’v°(p)+k) + f(p ,v ’(p)) < f(p,v ’(k)+k) + f(p ,v°(p))

and thus

f(p ,v°(p)+k) - f(p,v° (p ))  —. (k +2~~~~~- 2) p

These upperbounds are plotted in figure 3.3 for k l  and k=-l - The

penalty is always less then .Sp if one uses flag length too large

by one symbol , whereas it is less than p if the length is too small

by one symbol . The same pattern appears for larger ~kI , the penalty

increasing roughly like kp for k > 0 , but like 2~~p for k < 0 -

It will be important later to have an upporbound on f(p ,2) - K (p )

for p between 1/3 and 1/2 , i .e .  in the reg ion where v°(p) = 1,

because flags of length 1 hav e some awkward properties , and we will

wish to use flags of length 2 instead . We want an upperbound of the

form ap > f(p ,2) - Il (p) - Becaus e this function is convex , the tightest

upperbound of this form will  equal it at p = 1/3 or p a 1/2 , so

~ = Max (3 ( f ( l/ 3 ,2) - H ( l/ 3 ) ) ,  2 ( f ( l/ 2 , 2)  - H ( l / 2) )

= 5 ( 2 )

The second point , the sensitivity of the optimal length to an

error in the estimate of p is more d i f f icul t  to assess , due to the

discontinuities in v°(p) (figure 3.2). A good rule of thumb is

that when p is overestimated or underestimated by about a factor of 2,

the resulting flag length is too small or too large by one symbol .
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4. Adaptive Flag Stategies to Encode Batch and Message Lengths

We consider the following problem : a batch of messages must be

transmitted on a noiseless binary .ink . We denote by m the random

number of messages in a batch , and by b 11 b2,... the lengths (number

of bits) of these messages. Being motivated by the case wh~ e a batch

would be the set of messages in a busy period of a GIG/i queue, we

model the b~ ‘ s as independent identically distributed random

variables , but we let the probability of having m messages in a

batch depend on the lengths of these messages as follows .

Let (~ ,S,P) be a probability space .

b11b2,... be a sequence of measurable functions b1: - i ~- N ~~
(N : {1,2,...})

m be a measurable function m :~ - .I N

be the smallest ~ - algebra making b
~ 

-

measurable

We require the b
~ 

‘s and m to have the following properties :

the b1 ‘s are independent and have a probability

mass function ~ 
m

a

b1 and m have finite mean s

In words , the second property say s that the knowledge of

does not give any information as to whether or not m is smaller

than i -

Our problem is that not only must we transmi t the messages , but

we must also indicate the number of messages in the batch and their

lengths . We assume the starting tine of the transmission to be known
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to the receiver . We will examine different schemes to furnish this

information, and we will evaluate their performances. Before doing th is ,

we characterize precisely what we mean, and compute the entropy -of t~’e

information we are sending .

We want to specify to the receiver which event from the countable

set A of disjoint events , A: a{~~~~~: m(~) = k , b1(~) x 1, ..  .,bk (w) =

xk}: k, x1,... ,x,~ 
t.f~} , occurred . Note that UA a - To obtain a

simple expression when computing the entropy of A , it is handy to

define the functions 
~k’ 

kdN~~ , by Rk: qN++ ) k +

P(:~~~ m (w)=k, bl (w)=x j,...bk(w)=x k
})

Rk (x l , .  - ,
~~~~~ 

= ___________________________________

ii Bm (X. )
i=l

k
if lE Bm (X . )  > 0

1

13 otherwise

In words , Rk(b l,. - . ,bk) is the conditional probability that the batch

contains k messages , given the lengths of the first k messages .

We often denote Rk
(b

l ,. - - ,bk) by R
k

(b) -

it is now easy to write the entropy of A as

m (w)
H(A) = E ( _ l O B 2 (R m(w) (b ( ü) ) 

.
n Bm ( b ( ~ ) ) ) )

1 l

m (~)
a E(- Z log2 B

m (b~(W)) - log2 Rm(~)(b(~)))1=1
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= E (m) H (S )  -~ log 2 Rm~•~~~

( b ( W ) ) )

by the theorem proved in Appendix A , which holds because of the

conditions imposed earlier on the b~ ‘s and m . H(B)  denotes

C

m .  i n .
— ~ B (i) log2 B ( i)

i =l

This can be rewri t ten

C

H(A) = E (m) H(S) - E R~~~(b (u ) )  log 2 R~ (b( w ) )
i= 1

and can be put under the form

R. (b(w))
H (A ) = E (m) H(S) ÷ E R~ (b~~~) H  1 

(3)
i=l

wi th Rc :=  1
C)

1
CR. : = 1 — ~ R. > 1
1 . 1. —

This form will be useful later.

We will refer to the second term in (3) as the conditional

entropy of the number of messages given their lengths . It is smaller

than the entropy of the number of messages which itself is bounded by

E(m) H(1/E(rn)), [Gallager , 1968, pp. 23 and 507]. This upperbound

is achi eved if m is geometrically distributed and independent of the

message lengths . Because E(m) U(l/E(m)) is approximately equal to

log2(eE (rn)) the second tern in (3) is generally smaller than the

first.

We go on to the analysi3 of some coding schemes to transmit the

in fo rmat ion  in A - From the point of view of minimizing the expected
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codeword length , the optimum would be to jointly encode the number and

lengths of the messages. This method uses at most one more bit than

the theoretical minimum , but is generally infeasible , and can lead to

large delays because all messages must be known to the transmitter

before the appropriate codeword can be found .

It would be easier to encode separately the number of messages

and their lengths , in such a way that a message could be transmitted

and decoded correctly before all messages in the batch have been pro-

cessed by the transmitter . We will examine three strategies in this

class, using flags .

The first ~o strategies have in common that they transmit

sequentially each message together with a codeword indicating its

length. If the codewords are well chosen , this wi l l  requ ire an averag e

number of bits between E(m) H(B) and E (ni) (H ( B ) + l )

To indicate the end of a batch , the first strategy transmits a

f lag of length ~ af ter the last message , and mak~~ appropriate

insertions in the other messages . By the usual random coding

argument, this will use an average of ~+(E(m)-l)2~~
’
~~ = E(m)(E~~) 

+

1 — (‘i-i) . .(1 - ~ ( )}2 . bits , so that , as we have seen earlier , the optimum

= \)°(1/E(m)) if E (m) > 2 - If E (m) < 2 , the flag should be used

after a message if it is not the last in the batch. We do not consider

this case any further. From previous studies this choice of flag

length will use at most an average of l o g 2 ( E ( m ) - l )  + 2 bits , which

lies between E ( m ) K( l / E ( r n ) ) and E(m) H(1/E(m)) + .55730. Thus this

strategy is efficient if the conditional entropy of the number of
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messages given their lengths is close to its maximum .

The second strategy , using variable flag lengths , is efficient

under all circumstances . The idea is that at the end of the trans-

mission of the 1th message , both transmitter and rece iver know

b1,b2,. .. ,b~ , and can compute R~~(b) and R~~(b) - The cost oF using

a flag of length v to indicate that message i is the last one in

the batch , given there are more than i-i messages in the batch , is

R~(b) R (b )
v + 2 - 2 . Thus V should be a function of

R~~ 1 (b) R~~ 1(b)

R. (b)
b1, b2,...,b. : = V° ~ — 

if R . (b ) < 
~ R~ 1

(b) , and the
R. (b) ~~~~~ 1 - —

i — i  —

strategy should be changed as indicated earlier if R
~
(b) > ½ R~~1(b) -

Given b this scheme uses less than

R. (b) R. (b)
H ~ + 

1 —  .55730 bits
R~~1(b) R~~ 1(b)

We will incur this cost if  the number of messages in the batch is

greater than i-l , so the average total number of bits used is less

than
R .(b)

E E CR. 
~ 
(b) H 1 — 

+ R. (b) .55730)
ia l 1 R~~ 1(b) ~ —

R . ( b )
a E Z R 1 1 (b) K — 

+ .55730
ial R. (b)1—1 —

(by comparison wi th  ( 3 ) )
which 4s very efficient . Note that if R

~
(b) / R~_1 (bj << 1 for all i ,

we have from formula C 1) that the average number of bits used is

larger than
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R. (b )

E E R .  1(b) ~~ 
1 — + .47123 , approximately.

i= l  1

i - l ( b )

The only problem with this strategy is that in general it does

not meet the requirement of the general flag coding algorithm of

Section 2 that if a flag of length V may be inserted at time t

flags starting at time t+i must either be of length greater than

V-i , or be known to both transmitter and receiver at time t . There

are two remedies to this: one is to assume that the message lengths

are larger than the longest f lag , which often makes sense; the other

is to use a special class of flags developped in the next section .

They do not have this requirement , but two new problems arise then .

The averaging on the flag composition to get f(p ,v) does not work any-

more , and this special class does not contain flags of length one .

These difficulties can be overcome : on one hand , if for all 5 all

messages of length j are equally l ike ly , f(p ,V) will still be an

upperbound on the average number of bits used by a flag of length V

from this class; on the other hand we have shown in (2 ) that the

upperbound f(p,v(p))  - H (p )  < p .55730 still holds if one uses fla~

of length 2 instead of flags of unit length , thus the penalty for not

using the optima l length is not unbearable.

To conclude the analysis of this variable flag length al gor ithm ,

we note that it can also be used to encode the length of a message . It

is sufficient to replace the word message by the word symbo l in the

previous description , and to use flags from the special class mentioned

above . If for all 5 all messages of length j  are equally l i ke ly ,

the conclusion that the average number of bits used will be less than
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the entropy of the message length + .55730 still holds .

The third strategy works only in the case where the messages

have a variable length. It is based on the observation by {Gallager ,

1978] that any Huffman code can be modified so that a 2 symbol prefix ,

say 00 , is not used , and so that the resulting redundancy is be tween

.41503 and 1. The strategy is as follows : transmit sequentially each

message together with a modified Huffma n codeword indicating its length.

After the last message in the batch , send 00. The number of bits used

by this strategy lies between E(m) (H(B) + .4l503) + 2 and EOn) (H(S)

+ 1) + 2 - This strategy is indeed a flag strategy, so it must be less

efficient then the previous optimal algorithm , but it is extremely easy

to implement .
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5. Desirable Flag Compositions

As we have noted earlier , the algorithm given in Section 2 suffers

from the fact that insertions and flags may appear in the middle of

other flags , and consequently that the ‘s are no t necessarily

received in order , and that the flag corresponding to v
t may have to

be specified before time t - This complicates the algorithm and removes

some freedom in using adaptive fl ags.

The prob lem of flags appearing in flags could be solved at the

expense of making more insertions , but this can lead to more than one

insertion per possible flag use and the analysis of Section 3 breaks

down . We will not pursue this approach .

Instead we look at this in the context of Sections 3 and 4 , where

the important parameter from the user ’s point of view is the flag length ,

not the flag composition . We assume that we have a class of flags

containing at most one flag of each length and we use only flags from

this class in the following algorithms . The main difference between

these algorithms and those of Section 2 is tha t flags are inserted at

once (c’19 , c ’20 , c ’21) whereas in Section 2 a check was made between

flag symbols to see if insertions were needed . TI-us here no flags or

insertions will appear in flags . Of course these algorithms will not

work with all classes; we say that a class is allowable if the composi-

tio~s of the flags in the ~lass are such that the decoding algorithm

yields the correct output for all associations of flags in the class

with v~ -
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Coding Algori thm

c ’l Set the integer variables t and t” to 0

c ’2 Set the integer variable i to -l

c ’3 For 5 :=  0 Step 1 until  i do

c ’4 begin

t-j+1 t t-j t+l t—jc 5 if (u ,.. - ,u ) = and u =
t-jor ~

- j

c’6 then

c ’7 begin

c ’8 t” a 
~~

‘t + 1

t” t-jc 9  x :a ~~~

c’lO i a j -

c ’ll e~d

c ’12 else continue

c ’13 end

c ’l4 t a t . + 1

c ’lS t ’ := t” + 1

t” tc ’16 x :zu

c ’l7 i a j +

c ’18 j f v~ a 1

c ’l9 then

c ’20 begin

c ’2l for j a l  Step 1 until I do

c ’22 begin



c ’2 3 if (u t i
~~~,. - - ,ut) ~~~~ and = 
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or ~V
t - j

c ’24 then

c ’25 begin

c ’26 t” := t” + 1

c ’27 x~
c ’28 end

c ’29 else continue

c ’30 end

c ’31 for j=1 Step 1 until v~ do

c ’32 begin

c’33 t” :=  t” + 1

c ’34 x : = a .
3

c ’35 i := -l

c ’36 end

c ’37 end

c ’38 else continue

c ’39 go to c’3



7].

Decoding Algor i thm

d’l Set the integer variables t and t” to 0

d’2 Set the integer variable i to -1

d ’3 Set the binary variables ‘~~~~ 
, 1 

~ 
1 to 0

d’4 t” a + 1

d’s For 5 := 0 Step 1 until i do

d’6 begin
t—j+l =t td ’7 if (ti , . .  .,u ) = P -j

d’8 then

d’g begin

d ’lO  . t” t -jif x =~~~~

d ’l l  then

d ’l2 begin

d ’ l3 1 :—  j—l

d’ 14 t” :=

d 15  end

d’16 else

d’17 begin

d’18 - t~~ tif x
V
t -

d’19 then

d ’2 0 begin

d ’2 1 ~t J  a

d ’2 2
t : t — j

d’23 j a — l

d’24 t” a

d ’25 end
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d ’26 else continue

d ’ 27  end

d’28 end

d ’29 else continue

d’30 t := t+ l

td’31 Q :=x

d ’32 i := i+ 1

d’33 go to d ’4
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Note that these algorithms are simpler than those given in Section

2 , and the flags are inserted and received in order . This explains the

role of i : if the last f lag or insertion were sent at time t-i , it

is useless to search for a root in lines c ’4 , c ’lS and d ’6 past t - i+ l .

Thus the presence of i limits the scope of the search , and makes sure

that at most one insertion occurs for each flag .

We will now look at conditions for classes to be allowable. With-

out precautions, problems can arise in two cases because part of a flag

may be misinterpreted as another flag or an insertion

Case a)

cI
t,t 

~~~~~•I~

(~~ ? (~~~i~

~f 
~~~~~~~ 

- 
~~j+V~~~ 

= (
~~t+i 

- 

t+i 
or ~t+i

) 
~~~~~~~~~~ 

<V
t

the receiver may detect that a flag has been used at time t+i , or ~t~ i

wh en the flag is used at time t - The same problem occurs in

Case b)

I~~~
’k

~~ I ~~~

I ~~~ 1

t t t-i t-i t-i . -(o~ . ,) (a1 . ,  ~ - 
- 

orB ) , 1 > 1 , 1 
~~~~~~~ 

<

t—1 t-].

If the f lag  compositions are such that these cases never arise , all flags
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and insertions will be correctly recognized , and thus also the data. So

a class is al lowable i f and only if cases a) and b) cannot occur . From

this we proceed to prove three resul ts :

1) We give explicit conditions for a class containing only one flag

to be allowable , and we determine the number of such classes.

2) We show that no class containing a flag of length 1 and another

flag is allowable if d=2 , but many exist if d > 2 -

3) We prove that if d=2 there are only two kinds of allowable

classes containing a flag of length 2 -

To derive the f i rs t  result , we note that if only one flag (say

~~
.) with ~ being the possible insertion) is allowed in a

- 
class , situation a) never occurs whi le  situation b) wi l l  not occur for

j < 2 or if the following j - 2  inequalities are verified

~ - - 

~~—~)  ~ ~~2 
., 

~~~

. or 3)

‘ 

~2 ’ - ‘~~j — 2 ~ ~ (or.. , 
~~ 

or 3)

(a
1 ~~ ~ ~~~~~~~~~~~ ~ 

or ~) (4)

The ~th condition may be interpreted is ‘the f l ag  does not have

period i” , because if it is not true, =

2 2+1

= ~~~. or 8j- i . 3

A flag satisfying - i 1  these conditions will be called strong; another

flag wiLl be called weak. To ~~ec~ Lt a flag is strong, it is enough

to check the las t  L4~-! condi t ions , for if a f lag  has period I
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1 .~~ i. .~ . t 4-i - 1 , it has also period mi for some mi € C 
~.4j ,

j-3, j-2} -

It is of academic interest to know the number of strong flags of

length. j . We will compute how many among the d~
4 possible roots

satisfy (4) once a
5 

and B have been chosen.

For pedagogical reasons we start by determining the number of

roots such that

(a
1 

...  
~ ~~~~~~~~~~ 

O~~~~~ ) , i=l , 2 ,~~ j — 2  (5)

These roots wi l l  be called strong and their number denoted by d~~
1y (j - l ) ;

the other roots wil l  be called weak. If a root is weak , let i be the -

least i f or whi ch (5) does not hold. Then as we have seen , 
~ 1~-i~1~Then 

~~~~~~~~~~~~~~~~ 
) = 

~. . . ) O
5~~~) and is a strong root of a f lag of

0 0

length i0+l - For every such root there will  be d distinct

weak roots of length j-1 ~~~~~~~ ‘~ j-l_ 1~ 
cart take all possible

values). Thus the number of weak roots of length j-l is equal to

L 2  - .

y (j - l ) )  = Z d1y ( i ) d 3~~~~
4i

i= 1
or ¼[

~
_j

= 1 -  E ~~~ (6)
i=l d

k
We see that y (2k )  = y (2k+l) = 1 - E ~-~.-~1- and that y is a

i=l di

decreasing non negative function of k , thus it has a limit , y (~) say ,

as k increases. We will bound i ( ~~)  , and show that it is positive.

From (6) one finds

k
y (4k+2) = 2 - (~ + 

~
.) ~ 

T (2 .)

j=0 d



with y C O )  := 1 76

so y(a) a y(4k+2) - (1 + .) ~ 
y(~~

)
i=k+l d

and because y is a decreasing function

1 ~ 1y(~ ) < y( 4k +2)  - (1 + 
~
.) y(~ ) - 

~i=k+l d

y (2k + 2)

Thus
y (4k + 2)  - 

1 
2k+1 

y(2k+2) < y(~ ) < y(4k+2)
(d-l)  d

1 (7)
- 2k 1 

— y(4k+2)
(d—l)  d — 

+1

In par ticul ar , for k~ 0 , using the fact that ~~2) = 1 -

1 1 1 1 1
24 d d -d+l

These bounds are extremely t i gh t  for d >> 1 -

~‘Je are grateful to Prof. Massey for pointing out that ~~ie1sen ,

1973] obtained by a similar method but in a di f ferent  context the

same expression for y ( i )  , and the same lowerbo und for y(~
o) - A

strong root is called there bifix-free. Tables of numerical values

are also given; in part icular for ds2

y (O)  1

y ( 2 )  = .5

~~4) a 
~375

y(ó) a .3125

y (S)  = . 2881

y (a) = - . 6 ~ S whereas from ( 7 ) wi th  kz2

.2675 < y (~~) < . 2690
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Now that we have seen the mechanics of the proof , we attack the

problem of finding the number of strong flags of length 5 , terminating

with a given and using a given B as possible insertion . We

define this number as d~~~~~( j )  -

If a flag is weak , there is a smallest i c{2,3,. - - , l +

such that

(a 1,.. .  ,a .) = (a 54 1 1, . . .  ,a.~ or 8)

On the other hand from every strong f lag  of length i one can build

2 ~~j_ 2 i  distinct weak f lags  of length 5 > 2i , say (a~,. - . , )

by choosing 
~~ 

= 
~~~

, .  . ., a! = t . or B , = - a . , . . . ,  a! = a .

and choos ing ~~~~~ . . , . arbi t rar i ly .  From every strong flag of

length i such that a 1 = , one can obtain the weak flag

(a 1, . . .  ,a. 1, a1, a 2 , .  .. , a~~ ) of length 2 i - l  - Noting , by induction

on i , that the fraction of strong f lags  of length i that have

a is 2/d , we can wri te  in general

d~~ ’(l - 5 ( j ) )  ~ 2 d~~~’ d~~~5( i)
i= 2

thus ii
$ 2  -

~(j) 1 — 2 z d~~ 5( i)
ia2

As was the case for y , S is a non increasing function of i

2 -
.

~S ( 2j )  ~ ( 2j — 1 )  = 1 + - 2 z d ~ 5( i )  where ~ (1) :a 1 -
ial

We can thu s wri te

5 (4ki-3) a 1 + - 2( 1  + 
~~~~ ~~ d 2’

~
1
~~~(2 1+1)

iaO
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and

:= l im 3(1) = 5 (4k+3) 2 ( l +~~ Z d 2
~~~~~S ( 2 j + 3 )  ~~k >  0

i-~~ i=k+ l

As before t~-~~s per :~i ts  bou~~.ing 
~~~

- 
1 5(2k +3)  < S (=) < 6 (4k#3) - 2k +2

d
2

~~~~~
2

( d - l) /2  1 + d (d-l)/2

- 5(4k+3) k> 0

Using the fact that  5(3)  = 1 — 2/d
2 1 1(1 — — ) C l  — ~) < 5 (a) < (1 — ~—)(l 

_ )
42 d2(d-l)/2 d2 1 # d (d-l)/2

Of course for the binary case 5(i+l) = y(i) -

This concludes the analysis  of classes- containing only one flag.

To show the second resul t  mentioned above , note that  s i tuat ion a)

cannot be avoided if d=2 and if the f lag  used at time t has length

j > 1 whi l e  the f l ag  used at time t+l has unit length . On the

other hand , if d=3 and the f lags are 0 , 02 , 022 etc. with  “1”

being eventually inserted , situations a) and b) never occur .

We prove now the third result: suppose that d=2 and that a

class r’~ta~ns a flag of length 2 and other flags. If the root of

the flag ~f length 2 is “0” , s i tua t ion  a) is avoided only by

having  a l l  symbols in che other  f l ags , except the f i r s t  and the last ,

be equa l to “1” - Because the flags must be strong , the first symbol

must be different from the penulti m ate. Thus we conclude tha t  the

root of a f l a g must have the form (0 , 1, 1, . . .  , l) - If the root of

the flag of length 2 is 1” , the same conclusion arises , w ith all

“O”s replaced by “1” , and conversely. tn both cases , the las t
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symbol can be chosen freely independently in all flags . One checks

that these classes are allowable.
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Chapter 4

Encoding lessage Starting Tines

1. Introduction

We cons ider in this chapter a seemingly trivial problem , which

was mentioned briefly in Section 2of Chapter 2 - We will not be able

to solve it completely , but we will gain some insight into the peculia-

rities of making information theoretic and coding theoretic statements

in a queuing environment .

The model is the following: an asynchronous nemoryless station-

ary source emits messages which are stored in an infinite buffer and

transmitted over a noiseless synchronous binary link with a capacity of

1 bit per unit of time . We assume that the interemission times and

message lengths are mutually independent random variables and that each

message contains a “codeword” indicating its length. By this we mean

that if the receiver knows when a message starts it wil l  be able to

detect the end of the message from the information provided by the mes-

sage itself. This can be done by prefixing a message with a codeword

indicating ics length , or by using flags as explained in Chapter 3 , or

simply by using messages that are codewords from a prefix condition code ,

as in Chap ter 2 - We denote an interarrival (service) time by a (b)

and by A (B) its probability distribution function , and assum e

Ea > Eb > 0
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2. Discussion of the Problem

Because the arrivals and lengths are random , it may happen that

the buffex becomes empty. The line being synchronous , something must

still be sent out , and the rec eiver mus t be able to distinguish these

idle bits from the data bits. From another point of view , this is equi-

valent to recognizing when the line becomes busy , i.e. detecting the

message starting times . There are many possible strategies to do this ,

the most obvious one being to transmit “0” ‘s when the line is idle , and

prefix every message with a “1” . Natural ly one asks which is the

“best” strategy . We should first agree on the meaning of “best.”

f we define as protocol bit a bit which is not a message bit (in

the p r~ v:ous -xazmt’l e, the idle bits “U” and the pref ix bi ts “1” would be

the Dr”tocol bits), i t  seems reasonable to find the strategy which mini-

inizes the average number of protocol bi ts per message , i.e. the limit

(if it exists and is constant with probabil ity one) as the time goes to

infinity of the number of protocol bits sent to the number of message

arrivals. Unfortunately this criterion is most useless , for all strate-

gies resulting in a stable system have the same average number of proto-

col bits per message , and this number is equal to Ea - Eb This is so

because if the system is stable , the law of large numbers says that the

average total number of bits per message is Ea , and Eb of these are

message bi ts .

This result is thus trivial , although surprising at first sight .

I ts  informat ion theae t ic  meaning is that  al though the amount of infor-

nation carried during an id le  period may be small , it cannot be encoded
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eff ic ien t ly .  To give more sense to the concept of protocol bit , we can

do the following: suppose that we have at our disposition an infinite

reserve of “low priority” bits (this could represent some kind of service

information) that we can transmit when we wish . Thus there is no reason

for the line to be idle , but we may still need protocol bits (defined as

bits that are not data nor low priority bits) to differentiate between

the two other kinds of bits . Note that , as before , for a stable system ,

the expected number of pro tocol bi ts per message plus the expected

number of low priority bits per message equals La - Eb . We can now ask

the question : what is the infimum of the average number of protocol bits

per message? The answer is 0 , and this can be approached by the follow-

ing strategy : send ~ (meant to be large) low priority bits , then a

codeword indicating the number .n of message arrivals since the last

such codeword has been sent , then the n messages . Repeat the process.

The average number of protocol bits per message will  be equal to the

expected codeword length divided by En. If the codewords are well

chosen , the expected codeword length will be smaller than (Ei-t+l)H(1/ (En+l)+ l
the

[Gallager , 1968, p. 507], thus/ average number of pro tocol bi ts per

message is smaller than (l+l/En)K (l4~3n+l))+l/En . Cl’~arly, as ~ goes to ~ so

does En , thus the average number of pro tocol bits per message goes to

zero. The drawback of this strategy is that the average message waiting

time goes to infinity as ~ increases.

A meaningful problem would thus be to find a coding scheme mini-

mizing the average message waiting time for a given average

number of protocol bits per message . We are unable to solve this pro-



blem , or even to lowerbound the expected waiting time . We will  be

content to study the following class of flag strategies :

~~~~~~~~~~~~~~~~~~~~~the buffer empty?

Send a message
+ Send a flag

possible insertior

Send some Send some
low pr ior i ty  bits  low priority b i t s

_ _ _ _  I

Ideally we should let this scheme be adaptive , i .e .  we should

allow flag and low priority bit sequence lengths to be functions of the

times of reception and lengths of the previous messages, flags and low

priority bit sequences. This is known to the receiver . In light of the

results of Chapter 3 and of the fact that this scheme sends flags when

the buffer is empty, which has a favorable influence on the message
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waiting time , one expects that the best scheme from this class must be

nearly optimal . Unfortunately this is s t i l l  too complex to analyze, and

here we restrict ourseif to the following scheme :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

poss ible insertion

Send ~~(b)

low priority bits

Send flag

of length v2 Yes Is the buffer empty? NO

Send ~~., Send f lag
low priority bits of length ‘

~l

Send

low priori ty bi ts

We have thus removed much of the variability of the flag and low

priority bit sequence lengths , al lowing only the leng th ~0(b) of the low
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priority bit sequence immediately following a message to be a function
length

of that message/and allowing the first flag and low priority bit sequence

in an idle period to be differentfrai~the others in the idle period . We

assume that with probabil ity one a message is longer than Max (~‘1, v2)

otherwise some messages cannot be considered as being received when they

are fully transmitted!

- To be able to obtain analytical results  we wi l l  also model the

arrival process as Poisson . The analysis will  proceed in steps : in

Section 3 we will study a general queueing model whose parameters will

be identified in Section 4 50 that it represents the f lag strategy we

want to examine . The main results wi l l  be given in Section 5 , whi le  the

optima ’~ function ~~ (b) w i l l  be looked at in Sec t i on  6. We wi l l  give

nuinericil results in Section
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3. M/G/]. Queues with Overhead

A. In roduction

We analyze here the following problem : arrivals in a queue follow

a Poisson process with rate X: = l/Ea and the service times have

distribution B’ . The first customer in a busy period suffers an extra

delay with distribution F
1 , while the services of the other customers

are increased by a random amount with distribution F2 - We assume that

the interarrival times , service times and extra delays are all indepen-

dent . We will study the stationary distribution of the number of

customers in the queue, the mean waiting time , and the joint distribution

of the busy period length and of the number of customers in the busy

period .

B. Stationary Distribution of the Number of Customers in the Queue

Let x~ be the number of customers in the queue right after the

n
t}
~ customer has left the system and let be the probability mass

function of X
n 

- We have the following recursive relation between the

‘ 5 :  Xn X~~~1 
+ (number of arrivals during ~th service) - I

n-1>0
It is well known that the number of arrivals during the n service has

a generating function equal to Ft (A_Az)B ?* (X_Xz) or F~ (X_Xz)B ~* (X_Xz) ,

depending on whether or not Xn_ l a 0 - Denoting by ll~ the z-transform

of 
~~ 

, we have immediately

rt~ (z) a ~~~~~ (0) F~ (X—Xz) B~* (A—A z) + 

~~n-l ~~ 
— 

~
n_ 1 (0) )  -

F~ (A-Xz) B~* (X_Xz ) 1.
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By classical methods CKarlin , 1975, pp. 96-102J one sees that the system

is ergod ic if and only if X ( Eb + Ef
2) < 1 ; in this case the z trans-

form ~ of the stationary distribution 1 must be equal to

t* (O) B~* (X_Xz)(z F~ (X-Xz) — F~~( X - A z ) )
— z - F~~( X — A z )  B~ *(A ..Xz )

and a*(l) must equal 1 , so , using L’I-iopital ’s rule as z ÷ 1

1 — XE (h’+f
2)fl*(~) - _____________

1 + AE (f 1—f2)

B’ * ( h — A z )  F~~( X - X z )  ( : -l)
thus t~ (:) = (1 - X E ( b ’ +f 2 ) )  z — F~~( X - X z )  B c * ( x _ X : )  -

i z F~~( X — X z )  — F~~( A - X z )
1 + A E ( f 1— f 2 ) F~~( X - .~ z) ( z — l )

If f1 a F~ , the second factor in brackets ie equal to one , and we

obtain the Pollaczek formula for M/G/1 queues with service distribution

B ’

Il is also the stationary distribution of the number of customers

in the queue at an arrival time [ Kleinrock , 1975 , p. 176], and , becaus e

the arrival process is Poisson , also at a random time .

C. Average Delay

Comb ining the remark at the end of the last section with Little ’s

formula [Little , 19611, one obtains by differentiating rI*(z) the fol-

low ing formula for the average message delay , where the delay is defined

as the difference between the times of service completion and message

arr ival:
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2 2A (Eb’ + 2Ef

2 Eb’ 
+ Ef2) 1E(d) = Eb ’ + Ef

2 
+ ½ 1 - X (Eb ’ + Ef 2 ) + 

1 + X ( E f 1-Ef 2 )

( (Ef 1 - Ef 2 ) ( l  - XEf 2 ) + ½ X (Ef ~ - Ef~~))

A (Eb ’
2 

+ 2Ef 2 Eb + E4) 1Eb ’ + 
1 - X (Eb ’ + Ef

2) 
+ 1 + A (Ef

1 
- Ef 2)

(Ef 1 + ½ X(Ef ~ - Ef ~~)) ( 1)

D. Busy Periods

Denote by g and m respectively the length of and the number of

customers served in a busy period . We will characterize the function

=

It is well known [Kleinrock , 1975] that if F
1 

= F
2 , GM* (s , z)

there denoted GM~(s,z), satisfies the relation

GM~(s,z) = :F~ (s + A - AGM*(s,z)) B~*(s + A — AGM~ (s ,z ) )

We will express GM* (s,z) in terms of GM~(s,z) as follows : let

b1 and f1 be the lengths of the first service and extra delay , and

be the number of arrivals during b 1 and f 1 - We then have

a ze 5 b1) (MG~ (~~.))
1

because the n
1 arrivals wi l l  generate n

1 independent busy periods

characterized by GMa - Av erag ing on n 1, b1, and f1, one obtains

a F1 (s + A - AGM~ (s ,z) )  B’~(s + A — AGM~ (s ,z ) )
F~ (s + A - XGM* (s ,z))
F~ (s + A - XG~l*(s,z ) )  GM~ (s ,z)
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One obtains easily the moments
Ef + Eb ’

E(g) - 
- A (Ef

2
+Eb’)

1 + X (Ef
1 - 

Ef 2)E (m) = 
1 - A (Ef 2+ E b ’)  (2)

4. Identification of B’ , F1 and F
2

In the analysis  of the queueing system of the prev ious section we

have obtained expressions that involve the Laplace-Stieltjes transform

9 t * , F1 and F~ - We will identify them from the prev ious description

of the coding scheme .

B ’ will be the probabil ity distribution function of b ’ : =

b + ~~ (b) , i.e. b’ is the sum of the lengths of a message and of the

low priority bit sequence that immediately follows it .

f2 will correspond to the extra delay for a message in the middle

of the busy period. In our scheme , f2 will be equal to 0 or 1
— (~‘l l)

depending on whether or not an insertion is needed . So F~ = 1 + 2

(e 5 - 1) if the first ‘~1-l bits of all messages are equally l ikely and
2Ef

2 Ef
2

a 2  . (3)

It is harder to compute F1 - We start by solving the following
Let

problem.! the times 0,t1,t2,... form a renewal process , the probabi-

lity distribution function of t
1 

being C
1 (C

1(0
)aO) , and the distri-

bution of t~~ - t
1_ 1  

being C2 (C
2

(0 ) O) , 1a2 ,3,... At a random

time t , independent of the renewal process and with distribution function

1 - ~~~ , t > 0 , a “supervent” occurs. We wish to find the Lap lace-
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Stieltjes transform of the distribution F
1 

of the random variable f 1
defined as follows :

= mm (t -t) + d
l
!(t~~~~t) + d 2 1(t >t)

t >t

where d
1 
and d

2 
are random variables independen t of the renewal process

and of t , with distributions D
1 and D2 respectively. In other words ,

is equal to the time between the occurrences of the superevent and the

following event, plus a random variable whose dis tribution is D
1 

if the

superevent occurs before the first event , and D
2 

otherwise.

We have immediately :

-s (t1—t )F1(s) = Pr (t < t,) E[e It < t
1
] D1(s)

—s ruin (t -t)

+ ~~ (t > t
1) E[e ~ 

~ I t  > t~ ] D~ (s) ~ ~
t >t

We compute now :

~~ -At

Pr (t > t
1

) a e d C
1

(t
1

) = 9(X) ( S )

-s(t -t) t

E[e ~ t < ~1] 
a 

1 
~~~ dC

1
(t

1
) f 

1 dt Ae
_ A t

e S(t l _ t )
— 

1 -9 ( A)  °

~ Cl(s) - 9(A)
a 

1 - C1 (X)

Similarly , because t is “inemoryless ,”

-s(t -t) A 9(s) - C~ (X)E(e ~ jt~~1 t < t fl > 1] a 
1 - 9(A)

The right hand side member is independent of n , given n > 1 ; thus
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-s ruin (t~_t) 

C~ Cs) - 9(A)
E[e tr 

I t > t
1
) = 

2 
- 9(X)

Plugging thes e results into ( 4 ) ,  we obtain ,

A Cl (A)
F1 (s) = ~ — [(C 1(s)  - C l ( A ) )  D I ( s )  + 

1 — 9(X) 
(9 (s)

— 9( A) )  D~~(s ) )]

and by different iat ion ,

C~~ (A)
Ef

1 
= - x. + Ec 1 + i—

~ 9(X
) Ec 2 + (1 - C1 (A)) Ed

1 
+ 9(A) Ed2

2 2 2 2 9(X) 2Ef
1 

= —~ - - 
~~ 

Ef
1 

+ Lc
1 

+ 2E c 1Ed 1 
.s. 

~ - 

9(X) 
(F02 + 2Ec 2Ed 2)

+ (1 - C 1(A ))  Ed~ + 
C1 (A) Ed~

We will use the fact that

2 2 
C1 (A) 

2Ef 1 + ½XEf 1 = 
Y~ A [Ec1 

+ 2Ec 1Ed 1 + 
1 - 9(X) ~~~2 + 2E0

2
Ed 2)

+ (1 - C1 (X)) Ed~~ + C 1(A) Ed~ 3

We wi l l  need later the fact that

Pr (t > t )  = 9(A) (9 (X)) m l  
, n=1 ,2, . . .  ( 6 )

for the same reason 
~~ 

( S ) .

In our coding scheme , the “superevent” wil l  be the arrival of a

message . C~ will correspond to the distribution of the flag of length

\I plus the low priority bit sequence of length 
~~~~

. Thus C* = e 1

e ial ,2 - d
1 
and d2 will be equal to zero, except if an irsertion
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is needed in the f i rs t  message of a busy period , so D* a =

-v +1
1 +2 2 (~~~S 1) , and Ed 1 = Ed 2 = Ed~ - ~~~~2 

-

- , under the usua l

assumptions .

Thus,

e
_A 

~~~~~~Ef
1 

= -1/A + + + 
-A (~~2

+v
2
) ~~2 ~~~~~ 

+ 2

1 - c ( 7 )
and

— (v
2
—1 )

Ef
1 

+ ~.E f 2 
= ½ X (( v

1 
+ + 2(u

1 
+ 
~~) 2 

+

—A
e 2

-A 
~~~~~~ ~~~~~~~ 

+ 2 
~~~~~~~~ 

2 )
l - e

+ 2
2 )  ( 8 )

S. Main Result

Putting together all the results of the previous sections , we

obtain a formula for the average message waiting time as a function of

and : from (1), (3) , (7) and (8)

Ew - 
~~~2 + 2 2 (Eb + E~~0

) + E b ’
2
)

- 

~~~~1~~
1)
)1 - A(E b + E ~ + 20 (

I ~~~~~~~~+ 2 (v
1
+~~1

) 2 +

~ 
-A (v2

+~2)f[ 1 - c
- A 

1 
+ 

~

~~ ~~~~ 
+ 

e
1 -A( v

2
+~~2

) ~
‘
~2~~ ’2~ ~

1 - c
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2 — ( ~2 _ 1) _ (
~2 _ 1) — ( v1— l )

((
~~+~~

) + 2 ( ~~.~~) 2  ) + 2  - 2
-(v 2 — 1) _ (

~ i _ l)
2 - 2

We also obtain the average number of low priority bits per mes-

sage, which, after a little moment of reflection, must be equal to

+ 
E(number of low priority bits in an idle period)

0 Em

where in has been defined as the number of messages in a busy period.

By substituting C 3 ) and C 7 ) in C 2 ) one obtains

____________  

-(v2-j) -(v1-1)x( ~l 1 + 

~~~~~~ ~~~~~~ 
+ 2 - 2 )

l - eEm — — 

-(v1-l)1 - X(E b + E + 2 )

In the parlance of Section 4 , the number of low priority bits in an

idle period is equal to + ~ if the superevent occurs between

and t~,1 Thus its expected value is equal to

+ 
e 

~~~~~1 - e

as can be seen by using ( 6 ).

The expected number of low priority bits per message is thus equal to

—A (v 1+F~1)
e

-A (v .~~) (~~- E b - E ~~~- 2  
1

1 - e
E + 

-A( ’v1+~ ) (10)
e 

~ 2 ’v2~ 
_ (v

2
_1) — ( ‘v  — 1 )

+ ‘v i 
- 

-A (v 2 +~2) + 2 - 2



What is left to do is to try to minimize E(w) on 
~ O 0’~ ‘ ~l

and while keeping the expected number of low priority bits per

message fixed. In the next sect4.on we will gain some insight into the

prob lem of optimizing on ~~(b) for fixed. This will reduce the

problem to optimizing on , v1 and v2 , which wil l  require

numerical computations.

6. Optimization of ~~(b)

We decided to let the length 
~ 

of the low priority bit sequence

following a message be a function of the length b of this message.

Denoting b + ~~(b) by b’ , we see from formulas C 9 ) and (10 ) that

the average message delay depends on E b’ and E b’2 while the

expected number of low priority bits per message depends on E b’ . The

question then arisesof how ~~(b) should be defined so as to minimize

E b’2 for given E b’ and B

We will solve this problem for the case where 
~~ 

may take non

integer values. This will give some insight and a lower bound for the

interesting case when takes only integer values, which is an infinite

dimensional non linear integer programming pro blem.

We must find

mm P (b + ~ (b) ) 2 dB(b)

subject to the constraints:

J’ ~~(b) dB(b) ~. 0 C 11)
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We start by defining a as the only. root of the equation

I ~ (x-b) dB(b ) =

This root exists and is unique and positive because the function

(x-b)dB(b) ~ S Continuous (left and right derivatives exist every-

where) , is equal to 0 at x—0 , is increasing if it is not equal to

o , and goes to ~ as x increases.

We have

P (b+~0 (b)) 2 dBfb ) = ~1.a (b+~~(b)) 2 dB(b ) + f°°(b+~ (b))
2 dB (b)

> f(b+~~ (b)) 2 dB(b ) + 1 b2 dB(b) .‘ 2a 1 (b) dB(b)

by non negativity of

b + ~ (b) dB(b)) 2 
2> + I b dB (b) + 2a I ~ (b)dB(b)— 

f~~ dB (b ) a a 0

by the Scht~arz inequality

(a 1a dB(b) - )~~~~ 
J~ ~~(b) dB(b))

2 
2+ 1  b dB(b )

f~~dB(b) a

+ 2a 1 ~~ (b) dB(b )

by the definition of a

(a 1a dB(b ) - P ~ (b) dB(b)) 2 
2a 0 + 1  b dB(b )

I~~dB(b) a

+ 

~~ ~~(b) dB(b)

> a2 f dB(b) - 2a ~~~(b) dB (b ) + 1 b2 
dB(b)

L 
. 

~~~~~~~~~~~~~

. _ _
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+ 2a 1 ~0 (b) dB(b)

a2 f~ dB(b) + 1 b
2 dB(b)

This lower bound is achieved if

b +  ~0 (b) a b < a

b

i.e. if ~~(b) a 

c

a_b b ~~a

b > a

This satisfies (11) with equality because of the definition of

a and is thus optimal. This result is intuitively pleasing.

As noted above , the constraint that must have integer

values makes the prob lem much more difficult , except if ~ happens

to be an integer. In general, constraint (11) will not be satisfied

with equality by an integer solution if ~0(b) is a deterministic

function of b
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7. Numerical Results

Many of the results of this chapter have limited practical

interest. This is due to the fact that generally there are no low

priority bits to be sent. However, the analysis of Lhe previous section

is relevant as far as the use of flags is concerned. We will briefly

consider how the flag lengths should be chosen to minimize the average

waiting time when no low priority bits are sent. (Formula (9) with

. = a 0.)

We recall that we use a flag of length v1 to indicate the end

of a busy period, while flags of length v2 are sent during the residue

of the idle periods.

From numerical computations it appears that the choice v2
a2 is

never worse than v2
al , and is in fact optimal in light traffic. In

heavy traffic the second flag is rarely used, so its optimal length

increases somewhat to reduce the probability of an insertion in the first

message of a busy period. The effect on Ew is relatively negligeable,

as illustrated in Table 4.1.

v2
a1 \

~2
2 v2=3

A E b .  .5 v
1

a 3

Ew 1.739 1.733 1.975

XE b a  .95 v~~= 9

Ew a 80.971 80.724 80.646

Table 4.1

Influence of “2 on Ew

Eb—8 Eb 2a64 -
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The situation is much more complicated as far as v1 is concerned .

The presence of the expressions 2 Eb and X2 respectively

in the numerator and denominator of the first term of the right hand

side member of (9) makes the optimal v~ an increasing function of Eb

and X . Contrary to the case of “2 Ew is quite sensitive to the value

of v~ , especially when the load is heavy:

if Ebs 8 Eb2 s64

“2 2

AEb = .95

then Ew a 92.89 for

a 80.72 for 
~i

9

We illustrate in Tables 4.2 and 4.3 the behavior of the optimal

value of Vl as the load increases for two different message length

statistics.

2a) E b 8  Eb = 64

b) E b = 5  Eb2 = 3 0
The first case represents the transmission of single characters without

special source encoding, whereas the second is representative of the

message length statistics when some source coding (see Chapter II) is

performed. Note that we did not take into account the effects that occur

when flags are longer than messages.

We do not give examplez with larger average message length:

except in very heavy traffic the improvement in performance brought by

the use of optimal length flags do not warrant the increased complexity.

It seems more sensible to send “0” s when the line is idle, and to

prefix every message with a “1”.



Table 4.2

Optimal V
1 
as a Function of the Load

E b 8  ~~
2 64 V

2
2

optimal Ew for Ew for Ew for
X/Eb V

1 
optimal V

1 
V1a2 v~~l0

.05 3 1.73 1.74 1.95

.10 3 1.99 2.01 2.43

.15 3 2.28 2.31 2.92

.20 3 2.6]. 2.65 3.43

.25 3 2.97 3.04 3.97

.30 3 3.40 3.50 4.55

.35 3 3.89 4.02 5.18

.40 4 4.45 4.65 5.87

.45 4 5.1]. 5.41 6.64

.50 4 5.90 6.33 7.52

.55 4 6.87 7.50 8.55

.60 4 8.09 9.00 9.79

.65 5 9.66 11.02 11.34

.70 5 11.69 13.88 13.36

.75 5 14.55 18.23 16.13

.80 6 18.81 25.67 20.24

.85 6 25.83 41.26 27.01

.90 7 39.71 94.71 40.48

.95 9 80.72 80.84
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Table 4.3

Optimal V
1 
as a Functioa of the Load

~b~5 Eb2Z3O v2~ 2

optimal Ew for Ew for Ew for
X/Eb V

1 
optima]. V

1 
v1—2 V1 10

.05 3 1.69 1.69 2.05

.10 3 1.89 1.90 2.59

.15 3 2.12 2.14 3.13

.20 3 2.38 2.41 3.66

.25 3 2.67 2.72 4.20

.30 3 3.00 3.09 4.74

35 3 3.39 3.52 5.30

.40 3 3.85 4.04 5.89

.45 3 4.39 4.66 6.52

.50 4 5.03 5.44 7.22

.55 4 5.79 6.44 8.02

.60 4 6.75 7.76 8.97

.65 4 7.99 9.60 10.15

.70 5 9.62 12.30 11.67

.75 5 11.84 16.71 13.75

.80 6 15.19 25.17 16.83

.85 6 20.~ l 47.92 21.91

.90 7 31.26 321.00 32.02

.95 9 62.36 62.42
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Chapter 5

Encoding of Message Origins

1. Introduction

In the previous chapters we have examined ways to encode the

message contents and lengths, and to differentiate between idle and

message bits. We will study here how to encode message origins and

destinations in a simple case. The model is as follows :

S1 R1

S2

S
n

Figure 5.1: The Model

Messages are sent from the asynchronous sources S1 , i=l ,2 ,. .m , to a

concentrator containing an infinite buffer . From there they are trans-

mitted over a noiseless binary synchronous link to a “deconcentrator”

which sends the messag~~to their destinations, R1 , i 1 ,2 ,. .  .n . We

observe that in general the destinations must be indicated by the sources

to the concentrator, the origins and destinations must be indicated to

the deconcentrator , while the origins alone need to be indicated to the
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receivers .

To simplify the model , we can associate a virtual source and

receiver with each source-receiv~r pair, as in the following figure .

~1l 
. R11

Sin

S Rml . /  \: ml

S ”mu . . . .  muFigure 5 .2 :  Simplified Model

Each source sends messages only to the corresponding receiver

so it is enoug h to indicat e to the deconcentrator the message orig ins.

We will  consider only this reduced problem .

2. Basic Idea.

Assume now that there are M independent sources, and that

messages from source i arrive at the concentrator in a Poisson manner

at rate A , so that , as seen by the concentrator, the probability that

the next message comes from source i is 1/M . Does this imply that

we need at least an average of log2 M bits per message to indicate the

origins to the deconcentrator? The negative answer to this question

justifies the existence of this chapter.
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If the messages were sent out by the concentrator in the order

they were received , log2 M would be a lowerbound to the average number

of bits per message. However, although in general messages from a

given source must be sent in the order they were received , to insure the

intelligibility of the sequence of messages, there is no reason for

messages from different sources to be transmitted in this fashion. It

is precisely the possibility of reordering the messages that permits a

decrease in the amount of information. We will illustrate by two

examples how easily this can be done.

In both cases we assume as in Chapter 4 that each message contains

a codeword indicating its length, that the sources are ergodic , that the

mean interemission time of source i is E(a.) , and that the mean

length of messages from source i is E(b~) . In both techniques we

queue the messages in a special buffer according to their origins.

In technique I we transmit a “0” if buffer i is empty; if not,

we transmit a “1” followed by a message. We go then to buffer

(i+1) mod M and repeat the process.

In technique II we still transmit a “0” if the buffer is empty;

if it is not empty we transmit all messages present , prefixing then with

a “1” . We go to buffer (i+l) mod M and repeat the procedure.

In both cases, if the recc iver is initially synchronized and if

there is no transmission error, the receiver will be able to recognize

the origins of all messages .

By a reasoning similar to the one in Section 1 of Chapter 4, we

obtain the result that the average number of protocol bits (the “O”s and
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‘~‘e “1’s~ per message is equal to

- Z E b . / E  a.
1 1

1’E a.
I.iz l

t~~r ~~~~ !e~ h~u~~ues r e su l t i ng  in a stable system. One sees that in heavy
‘.4

~r af i : c  ( t E b 1/E a ; ~ 1) this quantity will be very smal l .  We
i=l

recog!u:e ~h i t  :iz~ongst the protocol bits , some indicate that the line

is~ i.i e’ all buffers re empty), while others effectively indicate the

‘ri~ iri of the messages , but the receiver is incapable of differentiating

between these two 1~inds .

The conceptual d i f f icu l ty  of defining a “protocol bit” that we

met in Chapter 4 reappears even more strongly here. We could try to

reintroduce the concept of “low priority bit” from Chapter 4 but this

does not appear to lead to very useful results. We will rather use two

other approaches: in Section 3 we will modify the model and neglect

completely the idle bits , concentrating on the study of how the reorder-

ing of the messages can decrease the amount of information necessary to

specify their origins. In Sections 4 to 7 we will analyze some strate-

gies to transmit the messages and their origins in an efficient manner,

the goal being to minimize the expected message delay .



105
3. A Simplified Model

A. Introduction

To avoid the difficulties associated with the presence of idle

times in the usual queueing model , but still be in a position to study

the influence of the reordering of the messages on the amount of

information necessary to specify their origins, we study the following

model where we keep the number of messages in the queue constant.

B. Notation and Description of the Model

At time 0 a buffer contains N-i messages, of which m
5 

ca-me

from source j  , j  = 1,2,.. .,M .

At time i + ~
. , i = 0,1,... , one and only one new message

enters, it comes from source j with probability p~ independently of

the initial content of the buffer and of the previous arrivals. We

denote its origin by X~

At time i + one and only one message is removed from the

buffer. We denote its origin by Y~

We denote by S~ the state of the buffer at time i , i.e. S~
M

is a M-tuple (m1, m2,...,lnM), ~Z m~ = N - 1 , where m~ is the number
j=1

of messages from source j present in the buffer at time i . One sees
N+M-2

that the number of possible values of S~ is 
~~ 

(Feller , 1968,

p. 38], which we denote by ~ . We index in some way the values of Si

and denote them by s1, 
~~~~ 

.,s0 . The probability distribution of S0

is known a priori . We denote it by the row matrix 
~ 

, whose J
th

component is equal to Pr(S0 = s
i

) .
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Similarly, S denotes the state of the buffer at time i +

N messages are present in the buffer at that time, so that S~ can

take := (N~~~~I) different values denoted s~ , si,.. .

Very often we will need to deal with sequences of inputs and

outputs. X
(~~J) 

denotes the sequence (Xi, X1~1J ...,X .1) and we

define Y~j 
~ 

in a similar fashion.

It will prove useful to define a function U (for Unordering)

whose domain is the set of sequences x . . and Y . . and whose values
[1 , 3 )  [i ,j )

are M-tuples. The kth component of U(X[~~J)) is the 
number of X~

in X
[~~J) 

that are equal to k . -

We can use U immediately to verify the relation

S~ + U(X~~~~) - U(Y[~~J)) 
= S

J 
i .~. i (1)

If a suitaole probability distribution has been defined, H(Y[~~J))

denotes the entropy of Y[1J ) i.e.

: - Z Pr (Y (~~ 3) = 
~~~~~~ 

log2(Pr(Y [1~~)= ~~~~~~~Y [~~J)

To avoid the introduction of more symbols , we also use H in the

following sense: if c is a s—tuple , c = (c1,c2,... ,c5) , with non
5

negative components , we define H(c) := - £ c~ log2 cj . The meaning
i= 1

of H(.) will always be clear from the context.

C. Objective

The problem we wish to study is to find an “optimal” way of

making the ‘s known to an observer watching the output of the buffer.

This involves two distinct points: first , at time i + ~
. the
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transmitter must decide what message to send out, i.e. the value of

There is a constraint on : one can only send out a message that is

actually in the buffer. Mathematically this translates into the

st.ttement : “all components of S~~1 must be non negative ,” and was

iinp1icit~y taken into account when we determined the number of states .

Second , the receiver must be able to recognize Y~ . To that effect we

allow a binary codeword of (variable) length n1 to be transmitted in

front of every message , and we require that the knowledge of the code-

words transmitted at time j + , j = O,1,2,...,i 1 and of Y
10~~ )

uniquely specifies Y~

Our objective wili be to minimize the “expected number of protocol
T- 1

bits per message,” h := jim sup E ~
. 
~ 

over all possible encoding
i=O

strategies, i.e. the choice of the message to be sent next, and the

choice of the codewords indicating what message is sent.

We will give some examples in Section D and a lower bound in

Section E. Finally we show in Section F how dynamic programming can be

used to find the “optimal” choice of the message to be sent next .

D. Examples of Strategies

The end of the previous section may be made clearer by consider-

ing the following strategies.

STRATEGY I

We transmit the messages in the order they entered the buffer;

this is the only choice if N=l . The probability that (Y
~
=k) = 

~k

i ‘ N , thus the best we can do is to use a Huffman code to indicate the

message origins , and the average number of protocol bits per message, h
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will  be bounded by

H(p ) < h < H( p ) + 1

where p := (p 1, p 2 , . .  
~~ ‘ 

~
‘M~

STRATEGY II

We do the following: at time .75 we send a Huffman codeword

specifying S~ ; at times .75, 1.75, ... , N -.25 we transmit in some

prespecified order (e.g. all messages from source 1, followed by messages

from 2, etc.) all messages present in the buffer at time .5 . Note that

no codewords are needed at times 1.75, 2.75, . .., N - .25 . At time

N • .75 we transmit a codeword specifying S~ and repeat the procedure.
N

The probability that S~~ = (m1, m2, ... , m.d) , k > 1 , is equal to

N! m~ M

m1! ... 1~~~! ~‘1 ~~~~ 
PM , m. > 0 

‘ 

j~ l 
m. = N , thus

H(P N) 
< h < H(p *N) 

+ ~ where H(p *N ) denotes the entropy of the multi-

nominal probability distribution .

It is of interest to examine how this expression behaves as N

increases. We can write

H( P N) 
= 

j !1 ~ log 2 p~ - ~ log 2 N! + 

~ 
{
~!~ 

~ [N
’
~p i~ p ) N m 1og

To get a lowerbound we use the log-convexity of the gamma function to

obtain

*14 M MH(p ) ~
. - ~Z p

~ 
log2 P~ - ~

. log2 ~~ + ~~ ~ log2 F(l + N~~)

The use of Sti r lin g ’s fo rmula [Feller , 1968 , p. 52], ti ght if ~~~ > 1

log(T(l+x)) > log /~ff + (x + 
~
.) log x - x log e



yields

H(p N) ;~~
•
~.! log 2 (2iiN) E log2 p~ (2)

To obtain an upperbound, we use Stirling ’s formula for log m! together

with the inequality

m - Np.
log m < log Np. + N ~~

- log e
3 Pj

This yields

i~~T Np. 2
log m! < iog2V e + m [los _

~~
.. + 

io~~e] s log e

This does not hold at m=O when Np. < .43 but is otherwise satisfied.

Using this in the formula for H(p ) , and using Stirling ’s approxima-

tion for log N! , we obtain

HCp
?)
~ < ~! log2 (2ireN) + -~~~~~ ~ log~ ~~

We can thus conclude that for this strategy, the expected number of

protocol bits per message is equal to ~j~- log 2 N + 0 [
~
.)

STRATEGY I I I

Here we note that at time i + there is at least one source

such that 1
N+M- l

1 messages from it are stored in the buffer. We send

the binary representation of the index of this source , then the

messages. The average number of protocol bits per message is bounded by:

log 2 M (log 2 ~i)+ i.
N+M—l 

< h < 
~N+M— l —

I M j L

Here for large N , h is approximately equal to M+N-l log2 M

which is better than in Strategy II. However, for small N , II may be
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better.

The two followin g strat egies will be studied -
. r the case M=2

and p1 = p2 
= .5 . A comparison of all strategies for this case appears

in Table 5.1

STRATEGY IV

Strategy IV is essentially polling: one transmits as many

messages from source 1 as possible , until none remains in the buffer.

One transmits then a run of messages from source 2 , then 1 again, etc.

The end of a run can be indicated by a flag as studied in Chapter I I I .

i~ N=l , each run has a geometric probability distribution. In

general, the probability distribution of a run is the distribution of the

sum of N independent geometric random variables, and thus a Pascal

distribution:

Pr (run = n) = [~.Jfl [~:~J 
n=N , N+l ,

Its mean is equal to 2N , so we can bound the expected number of proto-

col bits per message by

Entropy of run < h < Entropy of run + .56
2N — 2N

The upper bound holds if the assumptions made in Section 4 of Chapter I I I

are satisfied.

We now turn our attention to evaluating the entropy. This can be

done numerically; results appear in Table 5.1. To obtain asymptotic

results we note that the entropy is equal to 214 - E {~Jfl {~:~
‘
~ 

log2[~~.~).

Writing log ~ log (n-N +i) - log (14-1)! , we see , from the
i~l

convexity of log (n-N+i) , that - log is concave. By Jensen ’s
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inequality we can lowerbound the entropy by 2N - log2 [2

~_ 1J and, using
log2 ~~~~~~~

Stirling’s approximation, by 2 Writing

log {~) 
= log (n-i)! - log (n-N) ! - log (N-l) ! , using the convexity of

the first term, using Stirling ’s approximation together with the formula

loge x 
< x-1. for the second term, and Stirling ’s approximation for the

third, one can upperbound the entropy by (log2 4ire
2N)/2 . Thus, for

log2 N
Strategy IV, h behaves like + 0 {~

.J . This is about twice

as good as Strategy II.

STRATEGY V

As mentioned earlier, we study this strategy only for M=2 with

= = .5 . Suppose that at time i + .5 we know that only messages

from source 5 (5 = 1 or 2) are in the buffer. We can then send N of

thei~ without any codeword , and the distribution of ~~~ will be 
-

binomial . We then alternate between messages from 1 and 2 , until this

becomes impossible because the buffer contains only one kind of message.

We then signal the end of the run, e.g. by a flag.

The expected number of protocol bits per message is thus bounded

by

Entropy of run h < 
Entropy of run + .56

N+E(run ) — N+E(run)

The upperbound holds if the assumptions made in Section 4 of Chapter III

are satisfied.

It is of primary importance to study the statistics of the run.

Assume that we try to send a message from source 1 at odd times, and a

message from source 2 at even times. S~ performs a non-stationary
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random walk: with probability .5 , S~ .,1 = S~ whe reas with probability

•~~ 
~~~~~~ 

= S~ + (-1 , 1) if i is odd, and S~~1 S~ + (1 -1) j f

i is even. A run stops if S~ = (0, N) with i odd , or (N, 0) with

i even. However, we note that as far as the statistics of the

remaining time in the run is concerned, being in state S = (k, N-k)

at time i is equivalent to being in state S~~1 = (N-k , k) at time

i+l . We can thus describe the process by the (N+l , N+i) transition

matrix

1 0

1 1
2 2o 1 1

1 1

1 1  0
corresponding to the stationary process:
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It is entirely feasible to compute the distribution of the time

until trapping in state (0 , N) if the initial probability distribution

of the state is binomial , by classical Markov chain methods e.g. [Howard ,

l9~l, vol. I). Results appear in Table S.l. Fortunately, the mean time

until trapping has a simple form . Denoting by g(m1, in2) the mean time

until trapping if the initial state is (m 1,m2) one finds the relations

g(0, in2) 0

g(m1, m.~) 1 + .~. (g(m 2+l , m1 -1) + g(m2, in
1

) )  in
1 

> 0

The solution to this system of equations is

g~ n1, in2) 2m1 (2m2 + 1)

Averaging on the binomial distribution of the initial state, one finds

that the expected run is equal to N2 . It is now easy to upperbound

the entropy of the run: by [Gallager , 1968, p. 507] it is upperbounded

by (N2 + 1) H 2 where H is the binary entropy, i.e.
N + 1)

H (x) := H ( ( x,l-.x)) . This bound is extremely close to the actual value

(the relative difference is less than 1%), indicating that the

probability distribution of the run is nearly geometric. From the

results of Section 4 of Chapter III , fixed-length flags will be almost

optimal.

Because x H[~) 
< log2 CX , h is upperbounded by

log2 (e(N2 + 1)) + .56

N’ + N

The presence of N in the denominator makes this scheme markedly

superior to ill others. Note that it is the combination of two features

that makes it efficient :
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-— the fact that it does not attempt to send a message for N time

units after detecting that no such message is present;

-— the fact that it alternates between sources.

Strategy IV (polling ) has the first feature, but not the second; we have

seen that the expected run is equal to 2N . If one uses pure alternat-

ing, the expected run will be equal to 1 + 4 g0 + 4 g~ = 2N , instead

of N+N2 when both features are present.

There are strategies for which h behaves like (k log(N))/N2

+ 0 (!~.) even when M >  2 We describe now such a strategy for the

syimnetric case (p. = , i-1,2,...,M) . It is a generalization of

Strategy V.

One removes one message from each source in cycles (say 1,2,3,...

M,1,2,...) until this becomes impossible. One transmits then M—1

codewords indicating the number of messages from each origin remaining

in the buffer, and those N messages. This being done the distribution

of the buffer state is multinomial and we start the procedure again,

removing one message from each source in cycles. We call the number of

messages transmitted during the cyclic part of this strategy a run

If one uses a flag strategy as described in Section 4 of Chapter

III to indicate the end of a run, h will be upperbounded by

log2 (e(E(run) + 1)) + .57 + (M—l) [log2 NIh <  
~(~~~) + N
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If one can show that E (run ) is proportional to the ~~~~~

result will be obtained . E (run) can be computed as in Strategy V. If

denotes the expected run length if the initial state is

one has the relations

g ( O , in2 , ... , m~) 0

g(m1,m2, ... , m.d) 1 + ~. (gün 2+1, in3
, . . . ,in1—1)

+ g (in
2, m3+1,...,m1—l) ... + g (m 2 , m3 , . . . m 1) )

151 
> 0

This can be solved numerically. For M—3 we obtain the expression

3m1 (3m2 + 1) (3m
3 + 2)

g(m1, in2
, in3

) = 3 (in
1 

+ + in
3

) + 1. • E(run) is equal to the

average of g(.) over the mu].tinomia]. distribution of the initial state.

If M’-3 we obtain E(run) N(N2 + l)/(3N + 1) , which is approximately

equal to N
2
/3 for large N , as desired.

We are unable to solve ~~js~ system of equation for all N , but

can lowerbound Z(run) by the following method.

Let c’4~ ‘4, 
..., m~) denote the state of the buffer at time

5 + .5 . Assume that at time .5 the state distribution is utultinomial,

and start removing the messages in cycles. In order to obtain the
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bound we remove the constraint that the m~ ‘s must be non negative.

Thus the buffer  state performs a non-stationary random walk and

Pr(run < ~) Pr 
O<k~,j 

(m
~kl) od ~ ~ 0) 5=0 ,1, . . .

< E Pr (mm (m~~~~~~) < 0)
i 1  kE IN :0<i+kM-1<j 1

5=0 ,1,...

We recall a version of Kolmogorov ’s inequality (Karlin , 1975,

p. 280] : If a1, a2 , ... form a inartingale and have a mean Ea > 0

Var (a
then Pr (mm (a

1
, a2, ... , a )  < 0) < . Here for each i

(Ea)

i+kM-l . N+i-].the m~ ‘s , k=O ,1,..., form a marti.ngale and have mean 
M

and variance (N+i+kM- 1) ~ (l -

Thus

. 1  1(N+)) ~ (1 —Pr (run < j )  < M  
2 5=0,1,...

M

and Pr (run > x) > max (0, N
2 
- (N+x) M(M_l)

) x > 0
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E(run ) Pr(ruxi > x) dx

1 (N 
M (M-i) 

2 
N > M (M-l)

This shows that E (run ) increases at least proportionally to N
2 for

large N , as desired.
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Strategy

II III IV V

N = l  1 1 1 1

2 .75 1 .678 .599

3 .604 .5 .519 .390

4 .508 .5 .423 .274

5 .440 .333 .358 .203

6 .389 .333 .312 .157

7 .350 .250 .276 .126

8 .318 .250 .248 .103

9 . 292 .20 0 .22 6 .086

10 .271 .200 .208 .073

11 .252 .167 .192 .063

12 .237 .167 .179 .055

13 .223 .143 .167 .048

14 .211 .143 .158 .043

15 .200 .125 .149 .038

16 .190 .125 .141 .035

Table 5.1

u r n  ~ H1’I,. as a function of NT 
~ i

O,T ) j

M = 2 p1 p2
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4 E. A Lower Bound on h~

We have shown in Section D that simple strategies ( i . e .  I I )  can

make h decrease like ; more compi’cated strategies ( i . e .  V)

log 2 N
yield a decrease proportional to 2 We wi l l  show here that h

N
cannot decrease faster than ((M-1)/(M+N-l))

2 
. We will use in the

sequel many standard relationa between information theoretic expressions ;

they can be found in [Gallager , 19G8].

Assume that we have decided on a feasible strategy. We have that

for all T

Z n~

thus

h > u r n  sup 
~

> u r n  sup Z 
~ 

H(Y
t~t (j+l)t~ 

Y
[O~~t)

) t l ,2,3,...

(in fact we have equality, but this requires a li ttle proof)

> u r n  sup 
~~~~ ~~

H(Y
[it (i+l)t) IY (O . t). S~~

)

t=l ,2,3,.. . (3)

We now lowerbound 
~~

- H(Y
[it , (i+1)t) ~[O ,it)’ 

Sm~
)

We have 
~ 

H(Y
[it (i+1)t) ~[0,it)’ 

S
~~
) 
~ ~

1
~ [o ,it) ’ S~~)

where I(A;B) := H(A) - H(A~B)

= H(S) - H (BIA )
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>
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~
‘
~
‘
[O,it)~ Smt )

by the Data Processing Theorem

[Gallager , 1968, p. 80].

~
. (H (U(X [o t ) )) -

IU(Y
(it (j+l)t)

)~ ~[o it)’ S~~~
))

by independence of the ‘s.

Repeating relation (1)

= S(j+l)t 
+ U(Y[it (i+1)t)~ 

—

and remembering that S
(i l)t 

can take c differen t values , we see

that for ever U(Y
[it (j+l)t)) and S~~ U (X

[it (i+j)t)) can take at

most c different values.

Thus H(U(X(jt (i+l)t))IU(Y[jt (j+l)t))~ 
‘
~[0,it)’ 

Sm~
) < log2

Writing H(U(X
[it (j+l)t)))  = H(p ) as in Section D , and replacing in

(3) one obtains

h ~ max ~. (H (p~~) - log2 ~) 
(4)

t= 1,2 , . .

This can easily be computed .

We are interested in an asymptotic relation for large N . Us ing

(2)
- * M-lH(p t) ~ ~~~~~ uog~(27r t) + ~~ ~ log

2 p~

I
2 M-l

with t a b .  M in (4)

ri p.
j —1 ~
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one obtains (neglecting th~ integer constraint on t)

M-l2ir (log
2 e) ~fl 

-

— e

For ~. 12  ,

2n (log e ) p  p
30 h >  2 

2 
1 2

e N

if

One can show that

N+M-2 M+N-2 M-1
~ := ( M-.l ~ < e

so 1
M M-1

2i~( log2 e) IT P. 2
h > 

j = l  ~ M—1
— 

e3 M+N-2

F. “Optimal” Strategy

As explained in Section C , a strategy consists of two parts :

-- a rule to determine the value of Y.
1

-- a code to indicate the value of

The first part is the most interesting. We will gain some insight

into it by assuming that non integer codeword lengths can be used subject

only to the Kraft inequality [Gallager , 1968, p. 47]; in that case it is

very easy to solve the second part.

Let ’s assume that one has decided how to select that ‘s; then

for all encoding strategies
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T-I
E 

~ 
n. > H(Y O T

)
i=0 [

= 

~ [o ,i; 
Pr (Y [O~~)=Y [O~~) 

Pr (Y~=Y~

IY [o i)=Y [O i)
) log

2

This lowerbound can be achieved by using at time i a codeword of length

-log2 ~~~~~~~~~~~~~~~~~~~~~~

~~ Y
~~>’~ 

and Y
[Q .)=Y[0 .)

This codeword provides j ust enough information to enable the receiver to

recognize Y~ . A consequence of this is that the conditional probabi-

lities

- Pr (S~=s 5 I Y [o i) =
~ [o i) and codewords transmi tted between 0 ~ i)

= Pr (S~=s 5 l Y [O~~) =Y [O~~) )

Note that thi s is not true for all encoding strategies : in Strategy II ,

the codeword transmitted at time .75 specifies not only Y , but also

S~ . Thus in general Pr(S 1 s~ )Y 0=k , codeword transmitted at .75)

~ Pr (S
1=s~ IY0=k)

Now that we have “solved” the second part of the problem , we ~an

turn our attention to the first part: how should we choose the Y . ‘s

so as to minimize

u r n  sup ~~H(Y[0 1)) 
= lirn sup - ~~~E Z Pr(Y [0~~) =Y f Q 1) )

{ .~~ Pr(Y
~~Y~! V 10 ~)

_Y
[0 ~))loç(Pr(Y~=y~ 

y
[j 0)~y[jQ ))] 

(4)
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It turns out that this can be done by dynamic programming.

Unfortunately we need first to give some more definitions :

denotes the unit simplex of R 5

u denotes a column matrix of suitable dimension (depending on the

context) with all components equal to 1

ek 
denotes a row matrix ~f suitable dimension (depending on the

context) with all components equal to 0 , except the kth

which is equal to 1.

th
rI~(Y [0~~)) is a M-tuple whose j  component is equal to

Pr (S~=s 5 ~
‘[O , i)~~’[O , i) .L

Similarly,

is a c~’-tuple whose 5
th component is equal to

Pr(S~=s~~Y[Q~~)=y [0~~)). --

By independence of the X~ , one can write:

= ~~(Y [0 ,~ ) ) P (5)

where P is a 
~~~~~ 

stochastic matrix whose element = 

~k 
if

s = S. + , and 0 if there is no such k.

EXAMP LE : ~i = 2  N = 2

a = 2  + 3

if s1 — (1,0) 
~2 

= (0 ,1)

a (2 , 0) s = (1,1) s — (0,2)

then
(p 1 p2 0

p1 p2

A policy a , a—l ,2,.. .t (
~ 

w i l l  be defined later), is charac-

- ~~~~~~~~~~~~~~~~~~~~~ L .tr ~ - -— i-
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terized by a (c~ ,M) policy matrix Aa with the following properties :

1) A~ . = 0 or 1
1)

M
2) E A~ . = 1

ii

3) A~ . = 1 only if the state S~ contains a message from source j

The significance of this is that if at time k.+.5 the state is s , one

will choose := m such that 
~~~ 

= 1 . Properties 1) and 2)

guarantee that a unique such m exists, and 3) guarantees that only

messages that are actually in the buffer m ay be sent.

Matrix Aa has the following addi tional properties , which are

easy to verify

a
1) A is stochastic

2) If policy a is used a~ time i , the condi tional probab ili ty

that Y~ = k given 
~{Qi) 

= Y [0 ,j ) is equal to the kth

component of fl~ (Y[0~~)) A a 
, or (by (5)) of rt

~
(Y (O ,~)

)P Aa

EXA1’1PLE: M = 2 N = 2 as before.

There are only two policies , 1 and 2 , with

1 0 2 1 0
A1 = 1 0 A —  0 1

0 1 0 1

S. • S 5, ,,
In both cases , one transmits a 1 in state (2,0) and a 2 in

state (0 , 2) (there is no other choice) ; policy 1 transmits a “1” in

state (1 , 1) , whe reas policy 2 transmits a “2. ”

If rt~(Y(Ø~~)) (p 1, 
~2
) , and if policy 1 is used ,

(Pr (Y~.4 IY [O i ) =Y [oj~ 
Pr (Y~=2 Y [O~~) aY (O~~) ))
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~~1 ~~ ~1 
p2 0 1 0

1 0
0 p

1 p2 
0 1

= 
~~1 

+ 
~2 ~l ’ ~‘2 ~~

Note that the number , , of policies can be qui te large: if
+ .thmessages from k origins are present in state s~ , the ~ row of

a policy matrix can take k distinct values. The number of states with

messages from k origins present is in turn equal to 
[~
] {

~~ J
(with ~= 0 if a < b ), where the. first factor is the number of

distinct choices of k origins, and the second factor represents the

number of ways of distributing N messages between k origins , in

such a way that each origin receives at least one message. This last

number is equal to the number of ways cf distributing N-k messages

- M M fN-1)
between k origins. Thus there are IT k k ~k-1J distinct policies .

k= 1

EXAMPLE :

We have seen that if ‘t=N=2 , there are 2 policies . In the

seemin gly innocuous case M=4 , N=8 , there are about 6 .2 2 1O~~ policies.

Associated to policy a we define M (c ,c) transition

matrices Ba , k k=l , 2 , . . . ,M , by

a , kB . .  , 1 if and only if
13

I +I ( s. a s. — ei k

~~
A

~ k
a 1

0 otherwise
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These matrices have the following properties; they are proved by direct

examination .

1) Ba ,k u = k th column of Aa

2) If pol icy a is used at time i
+

a fl1& (0~~) ) B u

3) If policy a is used at time i
+IT. (y 10 .)

~~ 
B

~ ~~~~ 

~~~~~~~~~~ 

(6)
B u

Cthis is Bayes ’ rule) .

Property 2) justifies the appellation of “transition matrix.” Using (5) ,

(6) can be written as

~ ~
= 

r11(y[0 .)) P 5a,k -

EXAMPLE : M = 2 N a 2 as before.

Asso ciated to policy 1 (defined earlier) , we have the matrices

1 0 0 0
B1’1 a 0 1 B1’~~~’ 0 0

0 0 0 1

As an illustration , B~ ’~ = 1 because state (0,1) can be obtained from

(1 , 1) by removing (1,0), and because if policy 1 is used , a “1” is trans-

m.itted if the state is (1, 1) .

Say policy 1 is used at time i

= (p t ,  ~~

f l (Y [0~~) ) a 
~~~ 

q
~~ Ø~) 

a (p
1p1, ø 1p2 

+ ~2p 1, ~2p 2 )

Then if - 1



+ + \ 127P 1 P 2IT. ~~1(o , i)~ 1fl a 
+ + +i+l

+ ~~2 ‘
~l 

+ 

~2)

__________ 
P ip 2 +

= 
+ P2~ l Pl

+

whereas if y
~ 

a 2
1

IT. ‘[01~ )~
2fl a (0,1)i+l

Similar expressions result if policy 2 is used.

Although we are inte rested in minimi z ing lim sup 
~
. H(Y

[O T))T-~

it is easier to first minimize T~I 
H(Y [O T+l) ) for some fix~~ T.

We have f rom (4)

T
= - Z E Pr (Y

(0~~)~~~[0~~)
) CT j (Y [0,i) )i=0 y

[0~~)

where C I v  ) a - 
~ 

Pr (Y . ay H Y [O~~ ) =Y {O i) ) log2 (pr (Y.ay.T— i~ [0 , i) 1 1 1  1yi

is called the expected immediate cost at time

given that V a Y[Q ,j)[0,i

Defi nin g D0 (Y [0 1 1 ) ) : — 0

D. (>‘EO ,T_ i)) 
a Cj(Y [O T j)) + E Pr(Y~~.=y1i+1

yT -

We have that H(Y
[O T+l)

) a D . D. is called the cost to go at timeT+1 1

T-i+l . Using Bellman ’ s p r inc ip le  of o p t i m a l i t y  [Be l lman , 1957] we see

that this expression can be ninimized by going backward in time : at

time T-i , for every sequence y
[0 1 • )  , we should find a strategy

such that the resulting values of Pr(Y . a k I Y  iv )
T—i [0,1- i) [O ,T— i)

—4
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k— 1 ,2,.. .‘1 minimize Dj+l (Y [O T..i))

In a first step we wil l  minimize H(Y [O T+l) ) over all  strategies

consisting of us ing at time i a policy a(y[Q~~)
) . We will show

later that nothing is gained by using more general strategies.

At time T the receiver has computed 
~T~~ [o , t)~ 

. If the trans-

mitter , which can also compute riT (Y [O T) ) , decides to use policy a

one checks that

= H(IT
T (Y [O T)) P Aa)

One sees that there is a policy a
O

(H
T
(y[O T)~~~’ 

depending on y
10 1)

through 
~T~~[0T)

3’ that minimizes H(IIT (Y [O T)
) P Aa) over all

policies. We denote the minimum by V
1 0L1(Y [01)))  . Thus V

1 
(called

the minimal cost to go at time T) is defined by

V
1

( 11) := mm H( iI P Aa)

H(T P AaO(IT)) (8)

It is aesthet ical ly  pleasant to define V
0(rI) : 0 (9)

EXAMPLE : N =2 M a 2 as before

Let IT( Y [O T) ) = 
~~~ ~~

If pol icy 1 is used ,
p1 p2 0 1 0

C
o&[Q T)

) H 
~~~ ~~ { J oJ . 1

= !~~~2
p

2 )

whereas if policy 2 is used

CO (Y [O T))

One sees that policy 2 minimizes the expected immediate cost if

p1 ~~~~
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As we have seen earlier , the number of policies can be enormous.

We show now that at most M! policies need to be considered when one

minimizes C Q (Y[0 1) )

THEOREM I

Let a0 be a policy minimizing the expected immediate cost

H(~I P A
a
) for a given II in ~

c Denote the ~th component of lIP by

Let (t1, ~~~~~~~~ r~ ) := IT P A 0

For the given IT , for all i such that > 0 define the

relation on {1 1 2 1. . . ,M~ b y :

if ~~~ = 1 , then 5 > k for all k~ j such that

contains a message from k

Then is a partial ordering of ~1,2,... ,
M }

Proof:

We must prove that if ~ j2

>

~n-l 
~

then it is not true that in ~ Assume to the contrary that 5 >

With out loss of generality , assume that state s contains

messages from j
~ and 

~i mod n)~l 
jil~,2,. . .n , and that ~~ = 1

Because a0 
is optimal

_ -r~ log
2
T
5 

- 

~ 
log2

t
5 ~~. 

(r~ o
1~

log~r
5 

_p
1~ 

- (t~ +~)1og2
(t. +p) (10.a)

1 1 2 2 1 1 2 a 2
otherwise H(~ PA a

) •- would be reduced by making A 1
? = 0 and

ci
A ?  1 .

132
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Relation ( l O .a)  can be rewritten as

- r . log2
t .  < t~~ log

2~~ 
- (t . +p

1
) log

2
(t
5

+c
1)

- 
(lO .b)

The function x log,x - ~x+o)log2~x
+p) decreases with increasing x for o>0 ,

so (10 .b) implies

1. - P  > t .1 —

Similarly

— 0. > r .  i=l , 2 , . . .  ,n
1 

ki mod n)s.l

Adding these inequalit ies one obtains

n
— E p.  > 0

1=1 ~ 
—

which is a contradiction . - .

Q.. .D.

Because a partially ordered finite set can be totally ordered ,.

we have the following theorem:

THEOREM II

There is a policy a minimizing H(1 P A
ci
) which has the form

-- define an ordering > on (1 , 2 , . . .  ,M }
a 

+-- A.. = 1 if 5 is represented in s. and if 5 > k for all
i) 1

k~j represented in s~

There are at most ~ such policies.
Q.E .D .

An algorithm that comes naturally to mind , but which does not

qui te  work , to define the ordering > is the fol lowing:

-- for 5= 1 , 2 , . .  ., M compute from 1 the probabil i t ies  p~ ,

kal , 2 \1 , that at time i. .S the buffer  contains at least one
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message fr om source k , but none from sources k 1,k2,.. .

Let k. := mm {k : p~ 
> p3 m~1,2,.. . ,M }

—- Define ~ on ( 1 ,2,... ,M } by k
1 ~ 

k
2 

> .. . ~ k~~

The idea beh ind this algor ithm is to send a message from the origin tha t

is the most likely to be represented in the buffer. If this is impossi-

ble (because no such message is in the buffer) , we try the next most

l ikely ori gin and so on.

Here is a counterexample showing that the resulting policy is not

necessarily optimal.

EXAMPLE : N = 2 M = 3

p 1 
= .2 p2 

= .6 p3 
= .2

= (1,0,0) 
~2 

= (0,1,0) s3 
= (0 ,0,1)

It = (.475, .05 , .475)

= (2,0,0) s = (1,1 ,0) s = (1,0,1)

s~ = (0,2,0) 5 = (0 ,1 ,1) s~ = (0,0,2)

One f inds

= (.095, .295 , .19 , .03, .295, .095)

p
~ 

= .58 p
~ 

= .62 p
~ 

= .58 k1 = 2

- 2
p1 

= .2 85 p~ = 0 p = .285 k
2 

= 1

p
~ 

0 p
~ 

= 0 p~ 
= .095 k 3 = 3

so 2 ~ 1 3

The resulting H(.j = - .62 log2 (.62) - .285 log2 (.285) - .095 log2(.095)

= 1.26
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However , the ordering 1 ~ 3 > 2

results in the cost

Ft C . )  = .58 log 2 (.58) 
- .39 log2 (.39) 

- .03 log2 (.03) = 1.13

At time 1-1 , or more generally at tine T-i , i=l ,2,. . . ,T

the receiver has computed “T-1~~[o ,T-~)~ 
. The transmitter must find

a policy ct(Y [OT . ) minimizing (from (7))
— i )

M
C.(y

10 ) + E Pr (‘
~ 

=k~Y,T-i) k=l T-i [O ,T-iY>’[0 ,T-i)~~

V.Ut . ((Y [Q ,1_~)~ kfl)1

We have seen earlier that if policy o is used

Cj(Y [0 1 i)) = H(
~T j

(Y [oT i)) P A~)

Pr (YT i =k IY {o T j)=Y [oTi )) = 
~T-i~~{0 - 

) P Bask
,T i)

~ 
) P0 -f-i)

“T-i+i~~~[o ,T-i)~~ 
= 

~T 
(y ) P B~~-

. [0,1-i)

Thus policy ~(y1 
- ) must minimize0,1-i)

M cx ,k11(11 .(Y [0,1_~)
) P A~) + E 

~~~~~~~~~~~ 
P B u1-i k= 1

~ 1~T~i~~0 ,T-& P B~~~ 
)

~ L~T-i~~ o , T -i))  P Bci~
k

U J

Clearly there is an opti iial pol ic -.- . ~~ - C 1 . 

~
‘ [0,T-i)~~ 

which depends
1 T-i

on y
[ 

only through ~~~~~~~~~~~ . We define V. (IT)0,T-i)

t}~e minimal cost to go at time 1-i , by
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V . Qt) = m m .  (1-1(11 P A °) + E P B~~~ u V. 

IT P B
1+1 . 

, _ i. ~.a ~c.—i . h r o ~ 11)

I (n) k~a.(j1) M ci. (IT) ,k :~PB 1
= H (IT P A ) + ~ IT P B U V .  r — ~

k—i 1

L rIPB

At this stage we have done the following: we know how to mini-

mize H(Y[O T)) in a recursive fashion over all- strategies cons isting

of using at time i a policy a(Y[O~~)
) . We have seen that in fact

there is an optimal policy that depends on 
~ [o i) only through

We will now prove some properties of the V~ ‘s.

THEOREM I I I

V. (1) is a continuous function of T

Proof:

By continuity of F1(.) and induction on i
Q.E.D.

THEOREM IV

Let A be a (s,t) stochastic matrix.

Then: IT u H -
~~—- is a concave function of IT for IT in the set of

s-tuples with non-negative components.

Proof:

Let and IT2 be two such s-tuples;

let (q~ , ... , u~ ) := A

2 2(q 1, . . 
~ 2 

A

Then : for ‘c [O , l ]
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XII u H — (1-A ) t U H — —1 f l u  -‘ ~l u1 -

+ (1-A )~~~A
- (A n  + (1 x ) n

2
) U H (;:

l 
+

t
E q~ Xq~ + (1-A ) q~

— 
1 l i l  J ~— A E q. log,

j l  ~ 
- 

q’{
•
~~ 

q
1 

+ (1- ) q~
]

2 ~ H~ 
+ (1-A) q)

~~ 

-

+ ~1-X ) E q. log2j =i . 
~ q

2 Xq~ + (1—A) q
~
)

< 0 because log~ x < x-1
- Q.E.D..

If s=t and A is the unit matrix , this gives the we l l  known

result that H(fl) is a concave function of IT for ~ in

CORO L LARY IV . 1: Let A be a (s,t) stochastic matrix and C be a

(r ,s) nonnegat i-.~e matrix.

Then : ~Cu H $~~
-
~ is a concave function of t for 1 in the set of

Lu)

s-tuples with non negative compopents .

Proof:

The components of C are non negative and the composition of

a concave function and a linear function is concave.
Q. E. D.

COROLLARY 11.r .2 : Fo r all (s ,o) non negative matrix C , for a l l  i > 0 ,

ITCu V. is a concave function of II , for IT in the set of s-

tuples with non negative components.

Proof:

By induction on i
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V0 = 0 thus V0 is concave

c t ka a k  •PB ’V. (.) = mm H (.PA ) Z •PB ‘ u V.i+1 1 ci ,ka k 1 PB U

so Cu V . = mm ICu H JICPA
~~ + Z 1CPB ci ,k u V. IT CPB ci J k 

‘

~

i+l~~Cu) ~ iCu k=l 1 1ICPB~ ’~ ~

The terms in the right hand side member of this equation all are

concave by the previous corollary and induction on i . The minimum

of a set of concave functions is concave.
Q.E.D.

We are now in a position to prove that nothing is gained by

using more general strategies than what we have considered until now,

i.e. strategies where at time T-i one uses a policy determined by

Y {Q ,1)

THEOREM V

Denote by Di÷l (Y [o T..i)) the cost to go at time T-i if one

uses a given causal strategy (i.e.

X [i T+l)=x Ei T+l)) = PT(Y
~
=k
~
Y
[O i)=~ [0 i) ~

X[o i)=x [O i)). Let

:= 0

Then : Dj(Y L Q T j~ l))~~~
Vj(fl

T j+l (Y [o T..j+l))) i=O ,l ,2,...,T+l

Proof:

By induct ion on i

-- n ‘
~~~~~

-

-- Suppose D , > V~ , then frot~ (7)
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) + E Pr (Y .=k tY• D~+1 C’ [0 1..~)) 

= C
i (Y [O T i) T-ik=I

> C~ b’ ) + E Pr (Y =k IY [0 T..j)=Y [Q T.j)).— [0,1-i) k=l T-i

V. (fl . ((Y [o ,Ti) J
k ) ) )  (12)

i T-i+l

Let the (;~ ,M) matrix At be defined by

I + +At . := Pr (Y . =j ~ S .=s ‘~~[o T..m) =
~ [o T..1)~T-i. nT-i

An instant of reflexion will convince the reader that A* can be

wri tten as a convex combina tion of pol icy matrices :

r TaAt = E c A , c > 0 Z c = 1a a —

+Defining similarly the M (a ,a) matrices B ‘ k=l ,2

by B := Pr (S . =s.
* k Y =k~S~ =sn~ T-i#l j ‘ T-i T-i n

one has that B ‘ = c Ba,ka
ci= 1

As befo re Pr (y . =k~Y1-i [O,T-i)~~~[O ,T-i)~ 
= IT ~ (y

[0 1 1)
) B~~k ~

and by causal i ty  = 

~T-i~
’[O,T-l)~~ 

B u

It
T i (Y [O T 1)

P B
and , ~1 141 ( (Y [0 ,1..1)~

k) )  = 
* kB ‘ u

Thus from ( 12)

~ H1 ~ a . (~ 101~~~
P Aa

)]a T-i

14 Ii I a T i
I ~ cn .(y [o T j)

pB ci
~~~

~ c (~ iv )P  Ba , k U) 1 V Ia= 1
k l  ‘ a l  

a r-i [0 ,1-i) j i V

~ c (nT
~j(y

[oT
~ i) )P9

ci~~~~
j

a(ct=l
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By Theorem IV and Corollary IV.2 , the right hand side is a concave

function of (c1,c2,...,c1) , and thus takes its minimal value at a

vertex of Z~ , say

Thus
- M

Dj+1CY[o,T_i)) .i H(rt.
~~i

(y Io ,T_ ~ A8) + E IT (y )P B8,kui) 
k=i T-i [0,T-i)

~ {~
T~I~~~O~T 

)P B8,k 
)

—i)

~~
ITT.jC.Y[OT )P B~

,kuI
—i) J

> V. (It 
—
. 

~~[o,T—m)~~ 
by (11)

— i+l T i Q.E.D.

V. (It) is naturally a nondecreasing function of i ; the next
1

theorem says something about the behavior of the increase.

THEOREM VI [Odoni , 1969]

mm (V. (IT) - V.(fl)) > nu n (V (IT) V (It))i+1 1 — IT ~ 
- 

i-l

max (V. (It) - V.(lI)) Max (V (IT) V (II))
IT ~ 

— 
i—l

Proof:

From (11) 1 a.trr ~ ,i.c 
‘

~a (II) M a.(lt),k
V. (it) = H(fi P A ~ ) + z rtpB u vi ci~ (fl) ,ki+1 

k=l I IT PB uJ

M a. (IT),ka . (It) __________

V. (II) < H (IT P A 1 ) + ~ IT PB ~ v 
{flPB~~i~-iI a1 (fl),

kk=1 
~IIPB u)

cz (fl),k ~ I ~ (fl),kM a (ri) ,k 1 1II PB 1 j rIPBso V. (IT) - V. (II) > IIPB u IV. I - V. 
,k1+1 i — I i i c i .  (fi),k j 1- l i a (IT)k= 1

~ ~IIPB 1 
u) ~ItPB ~ u)J
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and Mm cv. 1

(IT) - V.(II)) > Min (V . (rt ) - V. 
1

( f l ) )
IT 1 1 1

The other statement is proved by replacing ci m (II ) by a~~1
(It )

Q.E.D.

Because the V. ‘s are increasing, it is inconvenient to work

with them numerically. We note that a
m

(IT ) will  still minimize the

right hand side member of (11) if V
m
(fl) is translated by a constant.

This leads to the definition of 
~ 

and V
1 

as follows.

v (fi) := 0
M

:= mm H(IIPA
ci
) + ~ ITPBa,ku v. k i~~,l1 k l  1 IIPB ’ u

(12)

v
~+1

(TI) := v .1 (II) — v .1 (e
1)

One checks by induction that v.~~1
(IT) = V m+i (IT) - V~~1 (e

1) , and that

v . ( e 1) = 0 for all i

v~ (IT) can be interpreted as the relative cost of having a state

probabili ty vector IT at time T-i+1

Theorem VI can be rewritten as

Mm (
~m (IT) 

- v . 1 (t)) <m m (v
~.4.i.(fi) 

- v .(rt~) ~.
v
~ +1 (e l )

< max (-
~~~1(rD 

- v. (fi))

< max (~ .(IT) - v~~1(rI))It
We turn now to the discussion of the infinite T case. It is

natural to assume that there exists functions a and v , and a

constant g , such that

lim a. = a
1 ~

lim v. = v
1i-$

~~
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1im v

~
(e1) = g

i-I.o,

Then one would expect from (11) that the following relation holds :

M 
k IITPBa,k 

•

~
g + v~ (fl) = mm IH ( IT PAci) + Z ITPBa, u v 

,k (13)
a k=l ~ItP Bci 

ujj

M a (IT) ,k a~ (It) ,k ‘1
E IIPB u v  Ia (II ) IIPB

= H(IIPA 
k=l

~IIPB u)

The optimal strategy would be to use the policy a ( f l ~~(Y ( Q . ) ) )  at all

times i , and one expects lim 
~~

. H(Y
[O T)

) = g
T-~

This is made precise in the following theorem .

THEOREM VI I

If there exists a bounded real valued function v~, , a function

a~ and constants g
1 

and g
2 such that for It in ~~

M 
k 1npB~,k ~fl

— 

~ 
[ 

k=l 
*~~~~a k  Ig1 

+ 
~~~~ 

< mm H(IIPA
ci) + Z IIPB ci

~
uJ j

a~ (II ) ,ka~ ( IT ) M a~ (It ) ,k IITPB 1 (14)H(ITPA ) + E ITPB u v~. l  a
~ (II) ,k Ik=l

~ItPB U)

~ g2 
+ v

~ (rt)
Then:

-- the entropy H
a

(Y
[O T)

) of 
~ [o T) corresponding to using policy

a*(fii (Y (o j))) at all times i has the property that

~ u r n  inf ~- H (Y ( 01) ) < lim su~ -
~~
- H (Y [o ,1) ) ~ g2 (15)T aT-’~ 

T a  — 
T-~

and 

.— ..—~~~~~~~~ -~---- --
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-- g1 ~ u r n  inf T• Hb (Y
[0 1)) (16)

where 1
~,cv[0,1) ) resul ts from a causal strategy.

Proof:

Let IT := sup v
~ (IT ) - inf v~~(IT )

IT
We define D (It ) := 0

a~ (fl) M cz~ (fl) ,k
D.~ (II ) := H (IIPA ) + E IIPB ui l  

k=l

a~ (rI),k
IIPB

a~ (rI),k 
i=O ,l,...

IIPB u

From (7) : H
a

(Y
[O T)) = D

TUtQ) .

We have the relation

D0 (fl) < v~ ( IT ) - inf v~~(IT )
IT

and by induction on i and (13)

D~ (rt) ~ ~ g2 
+ v~

(]I) - inf v
~ (II) i=l ,2,...

It

We can conclude that

T 
< g

2
+~~

thus proving that

u r n  sup 
~~

. H
a

(Y
[O T)) ~. g2

i.e. the right hand part of (15).

We also have the relation

v~ ( IT ) - sup v~ (rT ) < V 0 (~ )

and by induction on i and (14)



1L.~1i g
1 

+ v~ ( 1) — sup v
~ (IT) 

< V ~~(IT) i=1 ,2,..

We can conclude that

i g~ - ~2 < V~ (fi 0) (17)

Now , if (16) is not true , there is a strategy such that

g1 
lim i:f 

~ 
Hb

(Y
[o T)) 

+ 2e

But there is a 1 > ~— such that
— C

T Ft
b

(Y
[O ,T) ) ~ u r n  inf r Hb0~[0,T) ) + C

For that T

I g
1 ~ 

H
b

(Y
[O T)) 

+ 0 ÷ 1

I VT
(IT
O) 

+ ~i .i. 1

which contradicts (17).

Thus (16) is true, and the left hand part of (15) follows .
Q.E.D.

This theorem asserts that if one can find functions v~

and constants g
1 

and g2 , e.g. by using algorithm (10), one can bound

the optimal performance, and one can find a strategy perform ing wi thin

g2 - g
1 , of the optimum. Theorem VI guaran tees that g

2 
- g

1 
does

not increase as one progresses in algorithm (12). Note that convergence

can be hastened in (12) by damp ing [Schweitzer , 1971], i.e. defining

v~~1 (rt ) := X (v.~~1
(It ) — ~~÷1 (e 1) )  + (1-A) v~~OI) for some wel l  chosen

A in (0,1]

COROLLARY VII.l : If there is a bounded real valued function v , a

function a and a real number g such that (13) is satisfied , the

strategy consis t ing of us ing policy a ( ~ . (y (Q~~ ) ))  at all  times i

-.~~~~~~~~~- -~~~~~~~~ .~~
-.
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is optimal , and l im

~
H(Y

[0 T)) g
T-~

Proof:

Make g
1 = = g in Theorem V I I .

Q.E.D.

Note that nothing in this corollary guarantees the existence of

an optimal strategy .

Note also that if a policy a (II~ ) is used at all times i , the

IT. ‘s themselves form a stationary Markov Process in the simplex of

and the probability distribution of can be computed . Our

problem can be seen as a Markovian decision theory problem with obser-

vable state (i.e. IT
S ) . These problems have been extensively studied

especially in the finite dimensional case (see [Kushner , 1971]).

Contrary to what is usually done , the proof of Theorem VII carefully

avoids the use of the stationary distribution of the IT~ ‘s, which is

not guaranteed to exist , because the hypotheses are not very restrict-

ive.

EXAMPLE : M = 2 N = 2 as before

Let 1 
l~ 2~

Equation (12) takes the form , where we use v ( p
1

) in place of

v ((p 1,2 2 ) )

g + v~ (p 1) = min{H(Pi+ø iP2) 
+ (l-o 1)p 2 v ( 0)

pl
+Q

l 
(p
~,-P1)t-1(p

1p1) 
+ p

1p 1 v (1) + (l—p
1p1

) v 
-

The first argument in m~”(.,.) corresponds to policy 1 , the second

to policy 2.
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We have solved numerically this example for different values of

p1 by discretizing the unit simplex of 1R 2 (51 poin ts) and us ing the

algorithm (12 ) .  Results appear in Table 5.2.

Table 5.2

g := lim 
~~
. H(Y rQ 

~~ 
corresponding to an optimal strategy

~ L , J

M=2 N=2

p1 g

.5 .60

.6 .58

.7 .51

.8 .41

.9 .25

.95 .14

In all cases , an optimal strategy turns out to be:

use policy 2 when ~. .5

Note that , if p1 
= .5 , this is exactly what Strategy V of Section C

does.

For p1 ~ .5 this result shows that the strategy of always mini-

mizing the expected immediate cost is not optimal.

It would be pleasant to prove analytically that the strategy

descr ibed above is op timal.  In the case p
1 = p., = .5 ,this would

involve finding a bounded function v~ and g verifying

g + v~ ( O 1) = H (~~) + v (1) + ~ (2-~ 1
) v~(2

1 .)

for .~~. .5 , and a similar expression for 0
1 1 .5 . By symmetry one



- 

. 

. 
1LI.14.

expects v~ (x) = v~,,(1-x) , so Vc,, and g must satisfy 
-

2 1 ~1 u 
_____g + v ( p 1) = ~( (_) + —~~- v (0) + ~-(2-p 1)v 2
~
Q
~

p
1 :~. 

.5

In this expressions , all the arguments of v are between 0 and .5.

Once this function is found , one should prove that it satisfies (13) .

Bef ore closing this section , we make a brief historical review .

Our problem is essentially the problem of controlling a Partially

Observable Markov P rocess. We solve it by working in the simplex of

where the it .  ‘s form a Markov Process if a policy a~ (Ft.) is

used at times i . The problem is thus “reduced ” to a Markov decis ion

problem with  observable state. The idea of doing this has become

classical, starting with [Drake , 1962]. One can f ind more references in

Section 4 of [Plat:man , 1976]. This last work is an attempt to control

Partially Observable Markov Processes without making the transformation

to the IT space, and is also an excellent review of the state of the

art.

We should point out that the Par t ia l ly  Observable Markov

Processes studied in the literature are simpler than what is considered

here , because their immediate cost is only a function of the stat e of

the ori ginal process , and the policy. Thus the expected immediate cost

at ti me T-i if policy ~ is used has the form

Cj (Y [o T i) ) = 
T-i~~ [o,T-i)~. 

q

for some column ~-tuple qa

This compares with C
i

(y
[o T.j))z 

H(itT..j(Y [O T..j~
) P A~) in our case.

However the nice properties of cor.tinuity and concavity of the functions
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~~. Analysis of Practical Stritegies

A. Notation and Organization

Through ut Sections 4 to 8 we will consider a model where source

i , i=1 ,2,.. ~ , emits messages in a Poisson manner with rate

A . := l/Eaj,XT := A. ,where every message contains a codeword
i=1

indicating its length and where the lengths of the messages from source

i have a probability distribution B. . We assume that the message

lengths and interarrival times are independent random variables . We

will attempt to compute the expected message wai t ing  time for d i f fe ren t

strategies indicating the message origins .

In Section B we will quickly study the equivalen t of strategy I

of Section 3.3: the concentrator transmits the messages in the order
es

they were rece ived , and prefix/each of them with a codeword indicating

i~ s~ origin.

In Section 5 we analyse some variants of Strategy II  of Section

3.3; periodically the concentrator sends a codeword indicating the

state of its buffer , then empties it. This will lead to a source coding

problem of independent interest that will be treated in Section 6.

Section 7 w i l l  see the computation of the average message

waiting time in cyclic strategies , where the concentrator ser’:es all

messages from source i present in the buffer , then all messa ges from

source i+l , and so on. Finally we will discuss all results in

Section 8.
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B. Analysis of the First-In-First-Ou t Strategy

We send the messages in the order they were received , prefixing

a message from source i with a codeword of length n1 
. We must

also specify what to do when the line is idle. In that case we use

the sane policy as in Section 2 of Chapter 4 , i.e. we insert a flag

of length v
1 at the end of a busy period , then flags of length v2

if no arrival occurred during the transmission of the previous flag.

Note that the flags and the codewords must be chosen jointly, so that

the probability of an insertion in a message will depend on the origin

of the message . We denote by p
~ 

the probability that the flag of

length causes an insertion in a message from source i

~e will use the formulas developed in Chap ter 4 to compute the

average message delay with the following identification :

b’ = 0 Cwe include the message lengths in f
1 and f

2)

= message length + codeword leng th + possible inser tion

due to the flag of length v1,

thus
M

Ef 2 = k— A . ( ~J .  + n.)+ p 1)
T i=l 1

E4 = 

~~ 

E A. (E(b.’n.)
2 

+ p
~ 

2p~E(b~+n~ ))

wil l, be defined as in Section 4 .4 with

c. = j 1 ,2.

d1 
= d2 message length + codeword length + possible inser-

tion due to the flag of length v2
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Me 1
+ ~~~,

+ —_  ~~A (Eb. +n. + 
2

~~ ~. ~.
thus Ef

1 
= -

~~~~~

._ +  \)~
- T i=l

l-e

M 2Ef 1 + .
~
- ?1.Ef~ = + 2V 1/X T Z A (Eb . + n. + p.)

1 1 1i= 1

M
e 12 2 1

+ 

~,
“2 

+ 2V
2/XT 

E A (Eb.+n +p )
T 2  j=~ 

~ 1 i i j
l - e

M 2 2 ~~2X~ (E(b.+n.) + p. + ~p.E (b.+n.))
~L. 1 1 1 1 1 1

and one obtains from formula (1) of Chapter ~,# that the average message

delay is given by
M

2Z A . ( E (b . + n . )  + + 2p~E(b .+n.))M 1 1 1  1 1
E(d) A (Eb +n ) I i=].

A .~~ i i i +

~~~~~

-

T 1=1
1 - E X . ( E b . +n . +p!)

1 1 1 1i= 1

+ 

2’v~ 
~ x 2 

+ 

‘
~‘T
’
~l ‘~ Me 2 A—x_ .-

~
- 

~~T i=l 
- 
T ~ ~~

2 XT i=l ~
1 1-e

-4. — _____________________________________________________________

2 
~~T

V le
V
1 

+ 
-ATV2 ~~ 

+

l - e

~ X
~~

(p
~ 

- P~)T i=l (3)
M

~~ i~ l 
A 1 (p~ - Pj)

If V 2 the last term simplifies to

M A
~~~

py (4)
i— i I



It is of interest to see how E(d) behaves in light and in

heavy traffic. In light traffic , the second term is negli gible , so one

sees that the codewords should :ome from a Huffman code ,so as to
M

minimize 
~ 

X~n~ . V
1 

and V
2 

should be small , say v 1=v 2 =l , or
1 1

V
1
zV
2
z2 , as we will discuss in Section 4 . 7 .  If all A. ‘s are more

or less equal ,

E(d) ~~
_- ~X. Eb

~ 
+ log2M + 1.5

and increases with log
2
M

In heavy t ra f f ic  the second term will  dominate , and it will  be

of primary importance to maximize its denominator, thus again using a

Huffman code , and using a large V
1 

. If all A~ ‘s are more or less

equal , we can have stability if ZA~ (Eb~+1og2M) < 1 . Thus if Eb~ is

of the order of log2M or smaller , the maximum throughput of the system

will  be much reduced by the presence of the codewords .

5. Strategies Indicating the Buffer State.

A. Introduction

We study in this section a class of strategies where periodically

the concentrator sampl~~ the buffer , makes known the state of the buffer

to the deconcentrator , then transmits all the messages that were present

in the buffer at the sampling time .

In addition to the notation introduced in Section 4.A , we call

the time intervals between two sampling points the scanning times, and

we denote them by s~, , i=l ,2,.. We denote by m the number of
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arrivals from source j during ~~ , and by VT the (var iable) leng th

of the codeword used to indica te the state of the buffer , i.e. the m~ ’s

j=1 ,2,..M at the end of s1 . Note that S
1 

is known to t~’e receiver .

Thus an interesting problem is to find a code minimizing 
~~~~~~~

This code will be very complicated , because it will joint ly encode the
since

‘s. F(owever ,/ the m . ‘s are conditionally independent given s~,
nothing will be lost by encoding separately, except some redundancy .

If we encode the m~’ separately, the problem is to find a ninimum

average codewo rd length code for a Poisson random variable.  This is

still challeng ing because the number of codewords will be infinite , ~o

that Huffman ’s procedure (Huffman , 1952] cannot be applied directly.

We solve this problem in Section 6.

Here our goal is to find the average message delay , and we pro-

ceed to do so.

B. Statistics of the Scanning Times

Because the arrivals are Poisson , the scanning times form a

Markov chain which is irreducible because, for any value of s., there

is a non zero probability of no arrivals during s~

We have the relation

_xS i+ 1 ~ ~ i — X\Li i i iE(e m 13 m2 . . .m.,~, s . )  = E(e j m 1m 2 . . .mM, s~
)

M
II (Bt (x) ) ~ x > O  (5)

j =1  ~
Of course we want to average this , wh ich is possible analytically only

if E(e T
~m~ .. .m,~,s1) has a sufficiently simple form. In particular
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it is not possible if VT 
results from the algorithm of Section 6. We

will restrict ourselves to strategies where E(e Im~ , • ‘ ‘‘  m~ , 5i)

has the form

M

~ V~ . (x) (V~~ (x) ) ~ ( 6 )
j a l

M
We wil l  also require that z E V0. ~. 0 . Otherwise infinitely many

j=l
scanning t imes could take place in no time. Without causing any

S.

difficulty we could add a factor (V~ (x) ) 1 in (6) , but this would

be fruitless. We will examine codes that have the above property after

finishing the analysis of the scanning times statistics .
the

We can now average (5”) on m~
’ ,Inumber of Poisson arrivals

during 5. , to obtain

E{e~~~~~~~si ] = {
~ 

V~ .(x)
] 

ex~ {s. ~

-xs . Re x > 0 (7)
I~ noting E e 1 by S’~(x) we have —

St
1

(x) = ~ V~ .(x)
] 
S~ [E 

x~ (l - V~ .(x) B~(x))] Re x > 0

Def ining V* (x) : = n V~ . (x)
j=l ~

= x

‘1
= ~ x.(l - V~ .(x) B~ (x)) Re x > 03 —

f~’(x): = f1 (f~~
’1 (x)) > 1 Re x > 0

We can rewrite ( 1’) as
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S~(x) = 

~ V* (f3 (x) ) S*(f’(x)) Re x > 0  152
j =0

M
~Ie will show now that if ~T 

:= E X.(Ev 1. + Eb) < 1 and if
j=1 ~

lim 1 V* (p.~ x) 1 , then , for x real , S* (x) := lim S’~(x) is
x4o i=o

independent of S~ and is continuous at 0 . Thus [Feller , 1966, p.

43l~ the process s. is positive recurrent and S* £s given by

S*(x) = TI V*(fJ (x)) 
- 

Re x > 0
j =0

which is suitable for numerical computation . The proof is simple: by

M
convexity one has immediately that f1 (x) < ~ A . ~— (V~ .(y)Bt (y)) x

— 
3=1 ~ ~

‘ 
~ y=O

= zT x • Thus f~’ (x) < x and u r n  f’(x) 0 , so lixn S~~(f ’(x )) = I

To be able to use the reference just mentioned we need lim j~ V* (f J (x ))
x+o j=l °

= 1 , which is insured by u r n  TI V~ (p
3x) = 1 , because V* (x) is

x+o j=o 0

decreasing and upperbounded by 1 for x > 0 . Note that this condition

and the continuity of S* (x) at 0 are guaranteed if E v
0 < but

this is not necessary.

Note also that if 
~T = 1 , f’(x) x + 0(x) ; thus if ii V* (f)(x) )

j =0
converges to a number d i f ferent  from 0 , S* will depend on S~ , where-

as if S*(x) = 0 x > 0 , S~ is not the Lapalce-Stieltjes transform of

a probability distribution . At any rate, the process s~, is not

positive recurrent if = 1

From (5) , if the process is posi t ive  recurrent , S~ satisfies the

relat ion
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M

S* (x) = V*(x) S~ E A . (]. — V~ .(x) B~(x)) (8)

and is a decreasing function of x , as is V~

Thus C 8) implies that

M
x > E X .(l - V1.(x) B’~(x)) x > 0

j=l ~ 3

Dividi ng by x and taking the limit as x+o , we have that 0T ~~- ~

We can conclude that 
~T 

< 1. is a necessary condition for the

process to be positive recurrent. We are unable to prove that it

is sufficient; we still need a condition on V~ . From now on we will
M

assume that 
~T 

< 1 and E E v
0
. < ~ , and we will consider only

the stationary system ( i .e .  S~ = S*)

Taking the values at x=O of the derivatives of S~ in (8  )

one finds
M
~ E v

03

E S 3 l  
M

1 - Z X .(E V i, . 
+ Eb~)

(9)
M M

(Es) E A. E(v, . + b.)
2 

+ Z var (v .)
2 2 .1

~~~ 
‘.~~ 3 •

~~~ 
03

E S  = (ES) + M 2
1 - ~ A .(E y

1
. + Eb.)

i — i  -l .1

C. Description of the Code

A coding scheme that satisfies ( 6) is to use a unary code to

encode each m~ . In that case V* .(x) V1 . (x) e~~ . Note that



it is not necessary to transmit all the codewords at the beginning of

the scanning time . We can ~ arsmit first the codeword specifying m~

then the m~ messages from source 1, etc. A more efficient form of

the same code is to prefix every message with a “1”, and to transmit

at “0” when all messages from source 1 have been transmitted . This

has a favorable effect on the message waiting times.

We will consider a generalization of this strategy , using

flags. We transmit first all messages from source 1, then a flag of

length v
1 

, then all messages from source 2, etc. Under the usual

assumptions (see Chapter 3)

-(v.-l)
(x) = exP (_ x v ~ ) , V~~ (x)= 1-2 ~ (1 - e X)

5=1 ,2 . .  .M

D. The Waiting Time

If the service discip line for each source is first in first out,

the waiting time w~, of a message arr iving from source i u units

of time before the end of a scanning time of leng th/is equal to u

plus the sum of the engths and insert ions of the messages from sources

1, 2 , . .  . i-1 that  arrive during z , plus the sum of the lengths and

insertions of the messages from i that  are already in the queue , plus

the f lags 1, 2 , . .  .i - l  plus a possible insert ion.  Thus

-xw. 
- 

i-i
E(e  e ~~ e~~~

[
~ z 

j = l  
~~~ - V15 (x) 9(x~

}

e x p ( - ( z -u )  \~~(l - Vi~
(x) 

~~~~ 
V~ 5

( x ) . V t ~~
(x) Re x ~



155

u is uniformly distributed between 0 and z , because the arrivals

are Poisson, so

E( e ’1z) = 
~ 

V~~. (x) exp(-z 
~~ 

A .(l - V~ .(x) 8~(z)))
5= 1 ~ 5= 1 ~

exp ( -zA .( l  - V~~. ( x )  B~~(x) )) - exp( -zx)
V~~. (x) 1 1

1 z(x + AjV~~. (x) B~~(x) - 1))

Using the statistics of z developed in Appendix B one obtains :

i—I. i
TI V~~~(x) S~’ Z X

5
(1 - V1 . (x) B~~(x ) )

= E (e  1
) = 

3=1
1 Es (x + A . ( V~ .(x) B!(x) - I))

i—i
S~ x + E X .( l  - V~ .(x) B~(x))

j=1 ~ V* .(x)
li

Differentiating one obtains the moment

i— l E 2 1 + ~ i—I 1
~~ 

Ev 05 + E s 2 
1 

+ 

j~ l ~~~~~~~~~ 

E ClO)

where p.: a A. (EV . + Eb.)
1 3. 11 1

One can find from this an expression for the average message waiting

time , Ew := -~~
._. 

~ A . Ew. . In general this expression is quite long
T i=l

to write and depends on the ordering of the sources . The only state-

rnent tha t  we are able to make about the ordering that minimizes the
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average waiting time is that if Ev0. = Ev0. and p~ = p .  one should

have A
1 

> > . ..  > , or equivalently , Ev 11 + Eb
1 

< Ev12 + Eb
2 

<

< Ev
1~1 

+ Eb~1 , as expected.
that

If A , Ev~~, = Ev0 and p~, 
= P and Ev

1~ =Ev 1, one checks /

M—l Es2Ew = T Ev 0 + ~~~— (1

If in addition E (v 1. + b.)2 = 9 and var v0. = 
2 , we can use ~~9 )

and (10) to ob tain

M-l ‘~~~O ~~~T AT9 +~ o 2/Es
Ew a ~~~~~~ Ev0 

+ 
1 - 

~T 
2 

+ 

~~~~~~ 

+ Ev 1

Ev ‘1Ev 0 A 9
= — + 

1 - 
~T 

+ 
2(1 - 

~~ 

+ Ev 1 
(11)

Thus if in our coding scheme we use flags of length v , and if the

‘sources are iden tical , the average wai ting time is g iven by

Ew a 2 ’
~~~ - ~~- + 

Mv 
+ 

A
T(Eb 2 + 2Eb 2~~~~~~~’~~~~ # 2~

(v_l)
)

2 1 - A
T

(Eb + 2-(v-l)) 1 - A
T

(Eb + 2 _ (v_ l)
)

One sees that in light traffic the first two terms wil1~~minate ,

especially when M is large. In heavy traffic , the presence of the

protocol does not affect the capacity of the line if one chooses v

large enough .



6. Optima l Source Cod ing for a C’ ass of Integer Alp habets 15~’

For fini te source alp habe ts , the Huffman coding algori thm

~tuffman , 1952] yields a minimum expected codeword length code

satisfying the prefix condition . Although it cannot be applied

directly to countably infinite alphabets , its optimali ty can be

used to develop optimal codes for these sources , as [Golomb, 19663

and ~3allager and Van Voorhis, 1975] did in

the case of geometric probability distributions . We show that for

a large class of probability measures , includ ing those whose tail

decreases faster than geometrically with a ratio equal to .618,

the coding problem can be reduced to a finite one , to which Huffman ’s

procedure is applicable. This result hinges on the observation

that if the tail of a probabili ty measure decreases monotonically,

no matter how fast , the codeword lengths of an optimum code must

not increase faster than linearly, with slope 1, for otherwise

some prefixes will not be used . This leads to the coding procedure

developed in Theorem 1.

Theorem 1

Let p(.) be a probability measure on the set of nonnegative
Ass ume

integers . / there is a nonnegative integer m such that for all

j  > m and i < j  , the fol lowing hold:

pCi) >p(j ) (la)

p( i ) > E p(k) (lb)
k =j  + 1
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Then a binary prefix condition code with minimum average codeword

length for the alphabet consisting of the nonnegative integers with

the above probab il it ies is ob tained by the fol lowing procedur e :

Consider the reduced alphabet with letters 0,1 , . . .,  in+l whose

probabilities are

p1 (i) = p( i) i < m

in
p1 (m+l) 

a 1 — E p ( i)
i=0

Apply Huffma n ’s coding procedure [Huffman ,1952] to this reduced

alphabet . Denote by C
1

(i ) and ~1 (i) respectively the codeword and

codeword length for letter i (C
1 (i) is a sequence of .~1 ( i) binary

symbols) 0 < i < m+l.

From there , construct the codewords C(i) for the original

alphabet by

C(i )  = C
1(i) 

j < in
(2)

C( i ) = ~C1( m ÷ 1 ) , ( i _ i n _ l ) * 0 , ~} i > in

where n*0 denotes a sequence of n 0’s.

Moreover , with this procedure the average codeword length Z

for the ori ginal alphabet is given by
in

t = E(i) + t
1
(m+1) - in + 

~~ (-~.1 (i) 
- Z1 (m+l) + in - i)p(i)

i=0

where E( i ) = ip ( i )  < m~2
i=0

Proof

It is a simple mat te r  to check that Z is as given , and that ,

because of h ypot ~ es~ s (lb s E ( i )  is f i n i t e :

-J



In
E( i )  = E p ( k )  + E p (k)

i 0  k=i+l i=m+ 1 k=i+1

m
< E ~ p (k) + E pCi- i)

i=0 k=i+l i=m+ 1

< m+2

The codewords C
1 (i) satisfy the prefix condition , so it is clear

that the codewords C(i) also do. We show now tha t this code has

minimum average length , using the same technique as Gailager and

Van Voorhis [3] .

Let the letters 0,1 . .. ,  m+r of the “r-reduced” alphabet have

probabilities :

- 

~~~~ 
= p C i )  i < rn+r

a p ( i )
i=in+r

The hypothesis ensures that , as long as r is greater than or equal

to 1 , the smallest probabil ities are pr
(m+r_l) and pr(m+r) .

Applying Huffman ’s procedure to the r-reduced alphabet , on e ver if ies

that the codeword lengths of the first m~r letters in this

alp habet are the same as the lengths of the corresponding code—words

given in ~2). So , denoting by ç the average codeword length for

the r-r educed alphabet , ç converges to as r grows.
Let ç be the minimum average codeword length for the original

alphabet , the minimum being taken over all uniquely decodable codes, so

that .1 > . .  We cla im that T < T because we can obtain a uniquely
— o r —  o

decodable code for the r-reduced alphabet by taking as codewords for

letters 0 to m~r-l the corresponding codewords in the optimum code ,



160

and choosing as codeword for letter m+r the shortest remaining code-

word in the optimum code. The average codeword length of the code so

obtained is not larger than z
~ 

, and is not smaller than 2.r since

Huff man ’s procedure yields an optimal code. We conclude that

Z~ < t ~ , but L converges tO 2. as r increases , so 9.

Recal l ing tha t 9. > , 2. = . Q.E.D.

The question then arises : how rapidly must p(.) decrease in

order to satisfy the hypothesis? A sufficient condition is that it

satisfies p(i.) > p (i+l) + p ( i + 2 )  for large i ; a weaker condition

is that it decreases at least as fast as ‘.~h ’re g = .
~.(/5-1)= .6l803

If pC i )  = p ( i÷1 )  p ( i + 2 )  , then p (i) = p (O) g
1 , and hypothesis

(ib) is satisfied with equality for all i and j = i~ l

In particular , the coding procedure developed in Theorem l is

optimum when the probability measure is Poisson :

p(i) - i=0 ,l ,. . .

The only problem is to ‘find the smallest suitable value for m (as

defined in Theorem 1). One checks easily that pCi) increases with

i to a maximum value of p (r) , where r = [x l- i , and then decreases

(fxl denotes the sirnilest integer not smaller than x). If n is the

smallest positive integer such that p (n) < p(0) , the smallest we can

hope in to be is n-i (a smaller in wil l  not satisfy hypothesis (la)).

Fortunately, t~iis is so , and ~e can upperbound this in by r e X ]  - 1

as the following theorem will show . The size of the reduced alphabet

for which ~e oust execute iluffinan ’s proceduce and maintain a codeword

table is thus a reasonable function of \ . In table 5.3 we presen t A as a
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~ 
upper limit of A m upper limit of A

for that in for that in

0 1.0000 15 6.8004

1 1.4142 16 7.1770

2 1.8171 17 7.5531

3 2.2133 18 7.9289

4 2.6051 19 8.. 3043

5 2.9937 20 8.6794

6 3.3800 21 9.0542

7 3.7643 22 9.4287

8 ~.147l 23 9.8030

9 4.5287 24 10.177

10 4.9092 25 10.550

11 5.2888 26 10.924

12 5.6676 27 11.298

13 6.0458 28 11.671

14 6.4234 29 12.044

Table 5.3

Relation between A and in for Poisson distributions

-J
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function of in for small values of X . Itt particular , if A < 1 , then

m=0 so that the opt imum code is unarv and its average codeword length

is equal to l+X

Theorem 2 

~. A
If p ( i )  = ~ i=0 ,1,...

and in is the smallest nonnegative integer such that p (m+1) < p(O)

then

a) 1 2 A 1 - 2 < m < f e A l - l

b) p ( i )  : p ( j )  i > m
j = i -#- l

and thus (1) is satisfied by this in

Proof

a) We will first upperbound in . By Stirling ’s inequality [r~eller ,

1968, p. 52]

~~~ > Hi . (2~i)~
2 

> [~J i=l ,2,3...

If i > eA , then i~ > , so that  p (0)  > p C i )  and thus n ÷ l  <

(A more careful analysis shows that, when X is larg e , m is approxi-

mately equal to eX - ½ log 2-~eA - 1 .)

To lowerbound in , we note that the logarithm function is

I 1concave downward so that log ~~~ log -- : j > --- ~ log j =
- 5=1 i= l

I log i~ If p( i) < p (0 )  , then flo g i! > log ,~, so tha t

log —f-— > log A , (3)

m+ 2and thus — ) A
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b) 
jaj+l 

( i )  = 
e~~X 1 

+ ( i i :) 
+

2 3
- A A< pCi) i~~ ••+ 

2~~(i+l) (j+l)

A
i+1.p(i)

i+ 1

From inequality (3), if pCi) < p(O) , < and < 1

i+1

This yields the desired result.

Q.E.D.
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- . ~na 1vsis of C y c l i c  S t ra tegies

A. Introduction

Ue give in Sections A to F a complete analysis of the average

message waiting time for two important cyclic queueing systems . No

explicit reference to the application of these systems to the encoding

of message origins is made before Section G.

Communication and computer systems in which a single server is

shared among several queues are common. For example , in a concentrator ,

messages arr iv ing from many sources must be sent on one output line . In

time-shared computer systems , a central computer must provide service

to several users . The queueing models presented here may be useful in

the analyses of these and similar problems .

Consid er a node with ‘1 incoming communication links and one

outgoing link . Digital messages arriving on link i. are queued in a

buffer i of infinite capacity. Periodically a “server ” empties the

queues and transmits the messages on the outgoing link . We will study

the average w a i t i n g  time in each queue under two service disciplines.
the

In the f i r s t , referred to as/” pleas e wait ” d i sc ip l ine , the server

serves only those messages already present in queue i when he arrives ,

then switches to queue i+l , which takes a random time , and goes on in
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cycle , visiting each queue once in a cycle. In the second discipline , the

“exhaustive service ” discipline , the server empties queue i completely,

then spends a random time switching to i+1 and continues the cycle. The

random time between queues can be viewed as being used for transmission

of protocol.

In both cases the ~th queue is characterized by a Poisson input

with parameter A . messages per time unit and a service time with mean

time units per message and second moment . The switching times to

queue i have mean time units and variance . We assume all

interarrival , service and switching times to be independent.

Approximate studies have been made by [Leibowitz , 1961] and

[Kruskal , 1969]. [Cooper and Murray , 1969] and [Cooper , 1970] studied

both disciplines in the case of zero switching times . [Eisenberg, l~ 72]

cons idered a more general conf iguration for the- server cycle and allowed

non zero switching times . He solved the problem of the exhaustive ser-

vice discipline . [Konheim and Meister , 1974] solved the discrete-time

equivalent of the exhaustive service problem in the case where the queues

are identical . In addition , numerous authors referred to in [Eisenberg,

1972] studied the system of queues when M=2

This research was pursued before the publication of [Carsten et

al , 1977], which analyzes the “please wai t” case by a method similar to

ours . The rate of convergence of the algorithm presented in the paper

just mentioned is not as claimed there , as will be shown in Section

Our solution differs from previous studies in the fact that we

use a direc t appr oach , without trying to find the Laplace-Stieltjes

transforms of the waiting time distributions. ~ce w i l l  show that we can

find all average waiting times by solving a single system of about 1
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linear equations and we present a practical method of doing so. We

remark that our results can be applied to the case of zero swi tching

times and have a very s imple form when the queues are identical .

In many communication sys tems , like computer networks , beside

transmitting messages , one must also convey their origins or destinations .

This can significantly increase the incurred delay . We will show how

the previous queueing disciplines can be applied to reduce this over-

head.

In Section B w e  present some rela tions valid for both discipl ines.

The “please-wait” case is treated in Section C and the “exhaustive-

service” discipline in Section D. In Section E we present the simple

modification that must be made to the previous results when the arrival

processes are .compound Poisson processes.. In Section F, we propose to

use an iterative algorithm to solve the system of equations and show

that it converges. The application described above will be treated in

Section G.

B Some Rela tions Valid for Both Discip lines

Results in this section are very general . They hold not only for

the two service disciplines we cons ider , but also for many others , e . g .

if one limits in some way the number of messages that can be served in

one scan , as long as the system of queues remains stable.

We consider the system as being in the stationary state and the

server as undergoing an alternance of switching periods of length c~

< i < 
~) and service periods of leng th t~ , the 1th service period

being spent in queue i mod ‘1. (See Fig.5.3) From there we define the
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~
th scanning time by

i—i
s. := ti M  + 

.~~~ 
(Ck + tk ) +

k=i_M+ l

i-i
= E (tk + ck l ) (1)

k=i-M

and the ~
th intervis it time by

i—i
v . := ~ 

(ck + t
k) + c. (2)

k=i-M+ l

= s. -t .
i. i-M

In the steady state, we have the following relations between the means

and variances of the service period lengths :

E[t2.] = E[t2. mod M~ 
(3)

var (t.) = var (t1 mod

and similarly for the switch ing , intervisit and scanning times . From

(3) the average of (1) is independent of i , and

E[s~J = E[s]

We can find the value of E[s] by the following reasoning. Let T be

the time for n scanning times relative to queue ~l to take place.

Say T S
M 

+ 52M • s~~ . Denote by m~~ the number of messages

arriving in queue j dur ing I , by m0Ut the number of messages

leaving queue 5 and by 2...~ 
~j2 

...Z. out the lengths of these
3
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messages.

We then have

out 1m. I

~ ~ l !~ + ~ 9. .
n . 

c
5+~1(~~1) ~~j~~l L ~~~~ i=l

9 1 in out itt

T1~~~~~~~~
1
~~~~~~ 9. !E 

~ 
Cj+M(i~ l) + 

~ T in out . jil
Tn . in .  i=lJ a i

L 

jal

Let us see wha t happens as n goes to infinity. We show in Section

H that if

A .
1p < 1 (p = )—

i=l i

the queueing system is stable and the process ~~~~ i= .. . ,-l ,0,l}

is ergodic;  thus I. goes to Efs]  wi th  probabil i ty  one as nn
n

increases . By the law of large numbers , ~ - Z
n i=l 

cS M ( ~~ 1) goes to

outin itt .
in.

v. , to \ and _.!_~_ 
~ ~ to .!~

_ , all  wi th probab ili ty
3 1 j out . ii U

in. i— l j
3

out
In

one. —
~
j-
~

-- goes to 1 if the system is stable. Sc we obta in :
Tn.

3
‘-1

* 
5=1 ~ (4)M
1 - ~ 

p .
5— 1 ~

This expression is meaning ful  only if p~ 
< 1 , as expected .

i=l
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One finds similarly that

EtV
5
] = (1 - 

~j mod & E[s]
and

E~ t
5
] 

~
j mod 9 E [s]

NI NI
From now on we will assume E p. < 1 , ~ v. > 0 and we will use

i=l ~ i=l
the index 5 where we should use 5 mod ‘1

C Waiting Times for the “Please Wait” Disci pline

We proceed in three steps. First we will express the average

waiting times as functions of the moments of the scanning ti~nes. We

find then a relation between the moments of the scanni~. t~ines and those

of the service period lengths . Finally we show that these are related

to the solution of a certain system of linear equations .

Suppose we observe a message entering ~ueue i and we note

that it arrives u units of time before the end of a scanning time

(relative to i) of length z and that it finds n messages in front of

it. u , z and n are random variables . For a f irs t itt f irs t out

service,an d conditioned on n , u and z , the Laplace-Stieltjes trans-

form of the distribution of the waiting time of our message is

E(e l f n ,u ,z) (Bt (X )) n e~~
x

where 3 is the Laplace-Stieltjes transform of the distribution

function of the service time of a message in queue i
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We will now remove the conditioning . Averaging on n , the

number of Poisson events in a period of length z-u , we obtain

-w~x (A. (Z_U))
n -A. (z-u)

E(e  u ,:) = ~ 
n T (B~ CX))n e

n=o

a ~~~~~~~~~~~~~~~~~ 
e~~’~’

The arrival process being Poisson , u is uniformly distributed between

0 and z so

-w.x A.z{B~ (x)-lJ 
-~~XE(e ~ :) = 

1 e - e

+ A .B* (x) - A.
1 1

If the scanning times relative to the 4 th queue have a distribution

function Prts~ <x] = S~~
(x) with Laplace-Stieltjes transform S~ , we

show in Appendix A that Pr[z<x] = f~ y/E [s] dS~ (y) (th is would be a

well known result of renewal theory if the scanning times relative to

ti-te ~th queue were independent); from there

1 S~~(A . ( l -B~~(x) )) 
- S~~(x)

x + AB~(x) - A

Differen tiating one finds the average waiting time in queue i

E ( s~ ] (1 + p.) (1 + p.) (1 + p.) Var(s.)
E [ w . ]  a 1 

= E[s]  + 
1 1

1 
2 Ets] 2 ~~[s]

(5)

Let us find now a relation between var (s.) and var (t.) . If n. is

the (random) number of messages present in queue i when the service

-4
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The reason for dividing by E[s] in (8) appears before formula (16).

From (9) and then (7) and (3) we obtain

var Ct.) var Ic. )
1 - 1+1R.. = 

E[s] 
+ 

E{s]

i— i i~ ].
=A .e. + - E R + 

1+1
1 1 ~ —NI k=i—M jk ElsI (11)3

If 1. > j R. . = F[t. (t. + c. )] - E [t . J  E[t . + c.~ 1]13 1 3 j+l 1 3 3

= E[ E[t. ktk , (ck l } , k < I ] (t. + c. )]3 j + l

- E[ E l t . I ( t  } (c } k<i]] Ett . + C. ]
1 k ‘ k+l ‘ 3 j+l

The outside expectations are on the tk ‘s and c ‘s , k < ik+ 1

By (6) and (1) -

i-i
R. . a E[p E Ct + c )(t + c ))13 i

k=i-M k k+l 5 j+l

i—i
- p E E[tk + c

k+l) E[t. + c. 1 ]
~ k=i-M

i—i
= p .  2 R.k . i > j  ( 12)

1 k=i_M

If we define the set I as {(i , j )  c 2 2 i. < i < NI , i-M+1 < 5 < i}

we can obtain a system of NI 2 linear equation5 in the 9
2 

unknown5

R. . (i,j) E I by rewr iting (11) ~nd (12) as13

M i-i j-i -

R = p2 
~ 

R + 2 ~ R ] + A 0 + ~i+1~~ 3=~ ~ ja i_M+ 1 k=i_ ~1 5k i i E[s]
(13)



-

~

i— l (i,j) c I
R. = p

1 ( R.k + E Rk . )  I 
~ 

j (14)
13 k=i-M ~ k=j+l ~

and using relation (10) where necessary .~ e present in Section 6 a

practical way of solving this system .

From (5), (8) and (11) we obtain for the average waiting time in queue

E[s](l + p.) (1 + p.)
= 

2 
+ 

2p~ 

[R 11 
- ~~~~ 

~~~~~ 
NI 

(15)

For example when \ 1=2 we have the system

R11 = p
~ [R 11 + R

22 
• 2R 10~ + X 1® 1 +

R27 = p
~ (R 11 + R

22 + 2R 21] + ~7® 2 + 
1

E [s]

= p 1 [R 21 + R22]

= 02 [R 10 + R11)

wh ich yields

2 2a 2(A 101+—) ( l — p 1
p 2 —o 2 ( l+p 1p 2 ))-.. -(X 202 +—)p 1( l — p 1p 2 +2p 1)

R = 
E(s] Ets]

11 (l
~
p
l~

Q2) 
(l+ p

1
+p
2
+p

1
p
2(1+~ 1

+c
2
+2~ 1~ 2

))

and
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2 2a a
(l+ O i ) f l®l~~~~ 

(l+p 1p 2 +2p 1p~ +2 o~ ) + ( A ~~ 2 +~~ ) ( l-p ,  o,÷ 2c)
E[s](l+01) E[s] E(s] 

—

E[w
1] 

= _____________________________________

2 2 (l- p
1-c~2) (l+

p
1
+p
2
+p

1
p2(1+ p

1
+p

2
+2p

1
p
2

) )

2 In the case of vanishing switching times so that E[s] and

— become null , the system (13), (14) remains valid and

= 

~~~~~~ 

[R~~ - x1o1] I = 1,... ,M (16)

In the important case where the queues are identical , or more
a? 2

prec isely if p
~ 

= p and Xj®~ + 
EI~T 

= A0 + 

~~ 
, i = 1,2,.. .M we

find that for (i, j )  ~ I

R..
= 

l-(M --l)p S

and 

R = 

( l - ( M - l )p )  [~ ®+ 
~EJ

]
j j  (1+ p) ( i — NI p)

‘4 -
~

so that 2(1-90) (\)(l4p)+A®) + 
-
~~
-•.

E[w 1] = E[s ]  
(1+)~~ + 2(1-Mp) [xo + 

~~~~ 
/ i=l ,2,.. ,M (17)

The ~j.’s need not be equal for relation (17) to hold. We see that

the part of the delay due to the switching times is equal to

E (l~~) M a
2 

— 
Mu (1+o) 

+ 
a 2

[s] 
~~~ 2 (1-Mt] E[~) 

— 
2(1-0M) ~~

If the c~ieues are not identical , the overhead is more difficult to

assess. However , if the a~~’s are all zero , one deduces from formula

‘~~5~ tha t  the existence of switching times causes an extra delay
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E [s] ( l - s c . )  th1 for mes sages in the i queue . Other moments , like the

average queue lengths and the means and variances of the number of

customers served in one sca can eas ily be compu ted from the previous

results .

D. Waiting Time for the “Exhaustive Service” Discipline

The method used in this section is very similar to the one used

in Part C.

The customers present in queue i when t~ starts have

arrived during v1 . {Avi-Itzhak , Maxwell and ~filler , 1965] and

~Eisenberg, 1972] found an expression for the average waiting time in

queue : 2
A .D- E[v.] A9 . E[v..] var (v.)

E[w1) 
= 2 ( l~~p~ ) + 

2ET~~~ 2 ( l - p 1) + 
2 

+ 
2E[v1] 

(18)

If Ii customers are present in queue i when service starts we can

regard t~ as composed ~f n independen t “NI/Gil busy periods”
0.

[Tak~cs, 1962] each with mean and second moment -

(1-p.)~

Using this observation and a reasoning similar to the one used in Part

C, one finds
0-

E [t 1j v 1
v] = 

~~~~~~~~~ 

v (19)

A~O~ p.
var (t.) = 

~~~~~~~ 
E [s]+ ( 1—~-—Y var ( v . )  (20)

(1_ pt) 1
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Let us now find the system of equations :

front (2)

var (v.) 
— 

i-i i-i a2

Z KE[s]  — 

j = i -Ni+l k=i-in+l j k  
+ 

(21)

E[(t. + c.)(t. + c.)) - E[t + c J E[t + C ]1 3  3 1. i 5 jwhere K. .13 E[s]

and has the same proper-ties as in (9) (10).

Using (20), (21), (19) and (2)

2i-i pA~ G~ P~ 2 i-I. 

~ K + ( 1
)
2 a~11  1K.. = _______ ____ 

____ ____E1]. 
(l— p.~~ i j=i-M+ l k=i-m+l jk l- p~ ~[i~f

2 2p a a.i 1 1+ 2 1 
~~ 

+ 
E[sJ

2 2
K = 

1 1 ~i i-i i— i
[ A ®  + — +  E

~~ ( l -p . )~~ ~ ~ E{s] (1-p.)2 j=i-M+l k=i-M+l

(22)
and by (19) and (2)

i—l
K.. :13 1— p. k=i_M+l I > 5 (23)

Defining the set J by J = {(i , j )  ~ Z 2 ; 1 < i < NI , i-M+2 < 5 < i}

We obtain a system of ‘-t (M-l) linear equations in the unknown K.
13

(i , j )  c J by rewriting (22) and (23) as
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2a.1 

~~~~°1 
1K.. = - - . + ]

11
(l— p1)~ E[s] - . 

-

2 NI i:1 j-l
+ [ E K  + 2  ~. ~ K

(1— p1)
2 

j=l ~~ j j - M + 2  k i-M+1 5k ] (24)

j~ l

p
i 

i—i
K. . = K +
13 T~~ 

t :  5k k =j + l  
> (25)

From (18), (21) and (22)

2
— 

E [s](l_ p~ ) K 11 (l—p 1) (l+ p1) 
____E[w . ] + ___________ — [A 1~ 1 +

2 2 -1 
— 2 2p 2p. E[s]

i

1=]. . . .  M

As in part C this solution remains valid when the switching times vanish.
2a 2

When p . =p and A~ ®~ + i~T~1~ 
= A® + a we obtain for (i,j) ~ JE [ST

pK..
K. - =

13 1— ( M — 1 )  I > 5

2
(i—(M—l)p) [A® + 3

K. . = (1—p) (1—Nb )
i-I.

so that
2

E[w.] E[s] 
(1;o) + 2 ( l 4lp) [A® + 

~~~~~~~~~~ 
] (26)

1

= 1,2,.. .9

The difference between the result for the “please wait”  discipl ine (18)
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and this one is PE[s] . This corresponds to the fact that the fraction

of messages arriving in a queue that the server is emptying , i.e. p

is delayed an extra scanning time in the “please wait” case.

E. Generalization to Compound Poisson Processes

To be complete , we investigate here the simple modifications

that must be brough t to the prev ious theory when the arrival processes

are modeled as compound Poisson processes. This is sometimes a

realistic model when data sources emit messages in clus ters separ ated by

long idle periods . In this case the ~th queue is characterized by the

following statistics : clusters of messages arrive in a Poisson manner,

at a rate of A1 clusters per unit of time . A cluster is composed of

a random number of messages . Let the mean number and mean square number

of messages in a cluster be and c~, respectively. The message

lengths and switching times have the sane means and variances as in

prev ious sections , and we assume all in-terarrival , service and switching

times, and the number of messages in a cluster , to be independent .

If we consider the set of messages present in a cluster as a

superinessage , with mean length and mean square length of 
~~/U 1 and

+ !~~. 
~~~~~~~~~~~~ [Karlin and Taylor , 1975, p. 13] respectively, the

superinessages will arrive in a Poisson manner so that the analysis of

sections 2 , 3 and 4 rema ins val id , as far as the scanning, intervisit

and service period lengths , and the waiting times of the superinessages

1are concerned . All we need to do is replace — by —i- and ® . by
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+ (~
. — 

~
. )  in all formu las .

The average waiting time of a message is equal to the average

waiting time of the corresponding supermessage , plus a term taking into

accoun t the average time necess~iry to serve other messages in the same

cluster . The average extra delay suffered by the ~th message served in

a cluster is equal to (n-l) , so the average sum of the extra delays

suffered by all messages in a cluster contianing exactly n messages is

equal to n(n-1) 
Averaging on n and dividing by the average number

of messages in a cluster yields an average message extra delay of

_ _ _ _  
1

~~~~~~~~~~

F. Properties of the Systems of Equations

In the first part of this section , we pres ent al ternate forms

for the systems of equations (13) (14) and (24) (25). These new systems

contain more unknowns bu t have a simpler structure , which is usefu l when

the time comes to solve them numerically. In the second part we show

that all systems considered in this paper can be solved by an efficient

iterative algorithm .

Using equation (12) we can rewrite (11) as

i—i 
1R.. = 

~~ j:f M 
R~ 5 

+ A~E1~ 
+ (27)

Defining the set I’ by I’ := {(i,j) ~ ~~jl < i < ‘4 , i-NI < 5 < i} we

L ~~~~_
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- can obtain a set of 9(9+1) equations in the unknowns R (1,5) £ I ’
15

by rewriting (12) and (27) as

5 i—i a 2
R.  p ( 

~ P. + E R
k
j + 6  (A® + 

1+1
1~1 i~ k=i—M jk k:5+l 3 I~ i I E[s] (28)

~6 = 1  j f j j

0 otherwise)

and using relation (10) when necessary .

Similarly the equations (22) (23) can be rewritten as -

p 5 1—1iK. = — 

~ K .k + E Ku .)15 1-p.
1 k=i_m+ l ~ k=j+1

I . a2
+ 6  1 

~~~~~~~ 
i

- 
1~ (1_ ~~)

2 I i E[sJ 3 (29)

or
5 j a2

K.. = p . [  Z Ki k + E K
~K
.]+ 6 _.!— [ x ® +  1 ,

13 1 
k=i-M+ l k=j-+ 1 ~ ii l-Q j i i Els]-’

for (i , j )  such that 1 < i < M , i-M+l < j < i

(30)

The system (28) can be rewritten in matrix form as

R = A R + B  (31)

where R is a column matrix formed by the R~5 , (i
,j) c I’ . A

strai ghtforward computation of the solution of (31) can become quite

lengthy , A being a 9(9+1 ) by M ( M + l )  matrix. Instead , the fo~~ of

equation (31) suggests an iterative procedure , where in the nth estimate

of R ,R , is expressed in terms of the (n_l) th estimate by

L - ~~~~~~~~ 

-

-—
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R = A R + B
n n-l

By inspecting equation (28) one checks that each iteration requires

only M3+W+M additions and M2+M multiplications . The variables that

need to be stored ar e th: elemen ts of and ~~~ , together wi th the

p
1’s and the X~®~ + 

EL S] ‘s , i.e. a total of 2M(M+2) variables . A

variant to the algorithm exists (see the specialized texts , e.g. [Varga ,

1962]) that reduces this number to M (M+3) . In either case this is far

from the 94 that one could expect . It is known that R~ converges

to the solution P when the norms of all eigenvalues of A are less

than 1 . Fortunately, this is the case when the system of queues is

staUe, as we shall see.

If p
~ 

> 0 i=l ,2 . . .  NI, one can check that the matrix A is

an irreducible nonnegative matrix in the sense that all its elements

are nonnegative and it cannot be rewritten as

A 0
A - 1 

(with A
1 
and A2 square)

A
3 A2

by any permutations of rows followed by the same permutations of

columns . Among the numerous properties of thi s typ e of matrix

[Gantmacher , 1960, Ch. 13], we use the following : the eigenvalue of A

with the largest norm , c~ , is real , positive , and bounded as follows :

(A) k R (A ) k R
mm < max (32)

k ‘ ‘k — — 
k

for all non zero vectors R with elements > 0

We denote by (A)k and (R)k the kth row of A and R. Now , if we use
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in (32) a vector P wi th its elements R
~~5 

set equal to p
i
p . , we

find that

NI
a —  Z p .  < 1  (33)

1=1

If some p. ‘s = 0 , one verifies ~asily that relation (33) still

Jiolds . A similar algorithm can be used to find the solution of the

systems (13) (14), (24) (25), (29) (30). One finds by the same method

the following relations about the dominant eigenvalue a

Systems Relations

M H 2
(13) (14) 1 > 2 p .  a > E p.

1—1 i— i

NI NI
NI .

~~~ 0i 0k .~~ ~i
0k 

2

i— i 1=1(24) (25) 1 > 2 p .  > max ~ > mm
i—i k k

~k~
0

M NI

NI .
~~ 0

i~~~ k .
~~ 

~i
0k

(29) 1 > Z p .  > max > -~~ > mm
i-i k ~~~k k

°k~
0 

-

NI
(30) 1 >  ~ p * a

1*1
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G. Appl ication to the Encoding of the Message Origins

In the light of the strategy used in Section S it is clear how

the cyclic strategies developed he;e can be used to indicate the message

origins. It suffices t~ queue the nessages from origin i in a special

buffer that is emptied in a cyclic fashion , and to indicate the end of

the serv ice w ith a f lag of leng th v . . If the probability of insertion

is known , it is possible to apply the previous results to compute the

system performances.

In particular , if the queues are identical and the probabili ty

of insertion equal to ~~~~~~ one obtains from (17) and (26)
— t v—l ’

~_ f \ )_ 1~~ 
Mv(l + A (Eb + 2 ‘- ‘))  \

~~(Eb + 2Eb 2 ‘
~ 

‘ +

E w =  ‘ ‘~ ~‘ + +

2(1 - MA (~1’ + :~~~~
1)
~ 

2(1 -

2
(v i) ~MX (Eb + 2

for the ‘p lease wait ” disc ipl in e, and

Ew = 2 (~~~~~ Mv~~ - X (Eb + 2 1)
) 

A
T

(3 + 2Eb

2(1 - MX (Eb + 2~~~~
1) 2 ( 1 - MA (Eb + ~~~~~~

for the “exhaustive service.” The first term takes into account the

possible insertion in fro ntof  a message . !lere b refers to the length

of a messa , ~, exclusive of any insertion . two
We note that  in l ight  t r a f f i c  the f i r s t/ t e r~~ w m l l  dominat e  in

both c~ises , whereas the presence of the protoco l does not affect the

capacity of the link if long enough flags are used.
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El . Condition for Stability

We show here that if ~ o. < 1 , the queueing system is stable ,and

the process ~~~~~ 5= ... ,— 1 ,0,l ,. . .} formed by the lengths of the

scanning times relat ive to queue i is ergodic.

To keep the argument short , we wil l  prove these resul ts only in

the case where , with probabil ity one , all service and switching times

take only a countable number of values , so that the state spaces of the

Markov Processes defined below are countable.

We def ine dk:= (tk 3 ck l  , ~~~ ... ~~~~~ , ck M )
T . The

d k ‘s form a non stationary Markov Process and by (6)

/o 0 1

0 0 0 0 1

0 1

E[dk l ldk=d] 
= 

0 

+ 

1 

d

°k~~k~~k
0 0 U 0/

for the “please wait” case. If the ‘exhaustive service” discipline is

used , the expression is similar except that the first in the

square matrix above is replaced by 0 , and the others by 
~~~~~~~~

(by (19)). In both cases we can write

E[dk+l jd k=d] 
= B

k 
+ Ak a
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We consider now the process d.~~~1 
, k= . . .3 -1 ,0,1,... for i

fixed. It forms a stationary Markov chain , all  values of the form

(0 , c~~1 , 0 , c~~2 ,..., 0 , c . M ) , where the c’~ ‘s have non

zero probab ility, are accessible in one step from all states , so the

process is either recurrent or transient . One finds that

E d. (k+1)M~~~+~ 4 
d = + A i+M_1 A j+M 2 ... A

1 
d

for some c-  . If the eigenvalue of A - A . ... A . with the
1 i+M—l i+M—2 1

largest norm , a , is less than one , for any initial conditions ,the

mean of ~~~~ is un iformly bounded , so the process is positive

recurrent . Using the same technique as in Section F , specifically

formula (32) with test vector ( p . ,  0, p i t . 0. . . 
~~~ M l ’  Q)

T , one

checks that ~ is < , = , > 1 with E p .
3=1 ~

If the d.~~~1 are ergodic , then , a fortiori , so are the
r

‘s because they are equal to the sum of the elements of the

_ i _  ‘ S .
1
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~~. Comparison of the Practical Coding Schemes

In the previous sections we have analysed four different

practical coding schemes. ‘Ihich one is the best? If the input

statistics~~e known , the performances can be computed and the various

parameters optimized. Only then can one decide. It is however

possible to make some general statements , as we will do here . For the

sake of simplicity we assume that all sources have the same

statistics , that all flags have length v

and that the probab ility of insertion is

For convenience we reproduce here the formulas for the average

waiting time :

I. First In First Out : (forinu lac~ 3 ~ ~ of Sect ion ~ )

Ew = + 2-(v-l) + En + 
‘!- (E(b+n)

2 
+ 2 E (b+n) 2-(v-l ) 2)~~~~~~

2(1 - MX (E (b+n) + 2~ (v~ l) ) )

We recall that n is of the order of log ,\1

II. Sampling : (formula 11 of Section 5 )

Ew = - + + 
M~ — ____

- 
1 - Mx (Eb ~ 2~~~~~~)

+ 
M~ (Eb 2 

+ 2Eb ., (v—l ) 
+ 2

_
~~

_ 1))

2(1 - ~-1~ (Eb +

L E .  P lease  ~ait: (formula S of Section )

Ew = 2- (v-1) + ~\)(1 - +

2 ( 1  - M~ (Eu +
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message in a. batch, according to the probability (as computed by the

receiver) that the batch will terminate after the present message.

The observation that Strategy r works well in light traffic

and Strategy IV in heavy traffic suggests a hybrid scheme, similar to

what [Hayes , 1976] and [Capetanakis , 1977] use in another context.

The idea is to group the M origins in M’ groups (M’ <M) , say

origins 1 and 2 in group 1, 3 and 4 in group 2, etc. Strategy IV (or

II or III) is used to differentiate between the groups, while prefixes

are used to indicate the origins inside of a group. In the example

just mentioned, messages from odd origins would be prefixed with a

“0”, the others with a “1”. By varying the size of M’ one obtains

a continuum of possibilities , ranging from M ’ = 1 (optimal in light

traffic) to M’ M (best in heavy traffic). The performances of

this scheme can be obtained by modifying in a trivial fashion the

results for Strategy IV (or II or III).

Another point that we will investigate is the relation between

the average message waiting time and the average number of protocol

bits per message, denoted by h , which is equal to 1/MA - Eb (formula

(1) of Section 2). To be able to compare these results with those of

Section 3 we will rather compute the relation between the average number

of protocol bits per message and the average number of messages waiting

for serv ice , Em , which by Little ’s formula (Little, 1961] is given by

Em = M A Ew

As we have noted earlier , some of the pr otocol bits convey

information about idle times , and some about message origins. In Section

3, all protocol bits transmit information about the origins. The
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comparison with Section 3 will still be meaningful in heavy traffic,

where the encoding of the orig ins uses up most of the protocol bits.

This is clear in the case of Strategy I.

There,

Em ~~~ + + M~\En

+ 
MX (E(b+n)2 + 2E (b+n) 2~~

?_ i) 
+ 2~~

’)
~~~

2(h - En -
or 

h = En + 2 v-l) 
+ 
(E(b+n)2 + 2E(b+n) 2~~~~

1) 
+ 2

_
~~

_1))

Em ‘~ 
2

’~~~~~~~ EnM)~, 2

The first term represents information about the origins. As Em

increases, so does the optimal v and h tends to En , as should be.

In the case of Strategy II, the third term in the formula for Ew

will dominate in heavy traffic. We will thus have

- MvEm = _____________

h —

h + 

-

Em

Optimizing on v and neglecting the integer constraint, one finds that

the optimal v is given by v = log2 (2 loge 2 Em/M) . This value of

v justifies the approximation of Ew by the third term in the formula

above. Using this value in the formula for h , one obtains

h ~~ log2 (2e(l o g~ 2) ~ i)

which has exactly the same f orm as what was found for Strategy II of

Section 3.D, except that a factor is missing here. This is easy to

explain qualitatively: the only difference between the situations

in Section 3.0 and in this section is that the number of messages
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served in one scan is variable here, which causes a loss of eff iciency

lo~~xbecause x is a convex function.

The cases of Strategies III and IV are simi lar, we treat IV only.

The second term in the expression for Ew will eventually dominate.

Neglecting the term in the numerator, we obtain

~ ; 
Mv(l - AEb)

2(h -

or

h + ~~~
. (1 - AEb)

The optimal v is given by

• 4(log5 2) Emv~~~log2 l - X E b  ~~
and the resulting h is equal to

(1 - AEb) M 4e(log5 2) Em
h — 2 !i log2 (1 - AEb) M

This is about twice as efficient as Strategy II, but less efficient

• by a factor of two than the comparable strategy of Section 3.D.

We can thus c~nc1ude that although in heavy traffic strategy

IV is the most efficient of the strategies we analyzed, it is proba~bly far

from being optimal, as indicated by the results of section 3. Nevertheless

.normous gains can be realized by using it in heavy traffic, as illustrated

in the following rnmterical example.

Fixed length messages arrive at a
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concentrator in a Poisson manner, at a rat e A on each of M input

lines. We want to transmit on a noiseless binary, synchronous output

link not only the messages , but also their origins.

Usually this is done by pref ixing mes sages with an address . In

some cases this scheme significantly increases the average delay

incurred by the messages, as a numerical example will show.

Let us use as time unit the interval necessary to transmit one

bit on the output link and.. let us take M=l6 , the length 
~j . = 50 and

A = . If we naively forget about the addresses , we obtain from the

formula of the mean waiting time in a M/D/ i queue :

~ _ _ _Etw] 
~ (l-Mp) = 100

If we use a 4 bit address and prefix all messages with a “1” to

distinguish them from idle periods during whi ch we transmit “0” ‘s , the

length becomes 55 (a 10% overhead ) but the delay becomes

i 16 io~o (53) 2
EIw] — 

16 55 + .5 202
- 1000

(the term .5 takes into account the synchronous nature of the output

link) . The presence of the addresses doubles the mean waiting time in

queue .

Another simple way of transmitting the origin of the messages is

to use the cyclic , exhaustive service discipline . We queue messa ges in

a buffer correspon ding to their or igin , pref ix them with a “1” so that
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their length is now 51 bits , process every queue in turn and when it is

empty transmit a “0” . Our “switching time” has thus mean V 1 and

variance 0 . From formula (26) of Section 7.

E 1 16 1 (1 — 51/ 1000) 1 16 1/1000 (51) 2
16 51 + 

~ 
16 51 154

- 1000 - 1000

The improvement is due to the fact that this way of transmitting the

address is naturally adaptive. When many messages are waiting in queue,

few bits per message are needed to indicate the origin. Of course, this

strategy works well only when the traffic is heavy, but this is precisely

the time when it is worth reducing queueing delays. As the traffic

growth heavier, this scheme works better and better.

9. Suggestions for Future Work

We have shown in Section 8 that the “sampling” and “polling”

strategies behave in the same way in the fixed length queue and variable

length queue cases. Unfortunately we know from Section 3 that they are

rather inefficient. One would expect that the efficient strategies for

the fixed queue length case will also perform well in a variable length

queue environment. Their analysis is not easy, becaus e they introduc e

much memory in the queueing system, but should be attempted.

On a more abstract leve l, the state of a queue can be regarded

as forming a partially observablt Markov process when the input process

is Poisson. One should be able to use the same method as in Section 3

and determine a strategy that minimizes the entropy of the output sequence,
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Appendix A

A Theorem about Random Sums

We prove here a theorem that is used in Section 4 of Chapter 3.

Let Cc~ , S , I’) be a probability space. We recall that if

x ~ 
-
~~ IR is a measurable function, E Ix I <~

s ,and jf S ts a c-

algebra included in S , E(x!B) is defined as a B -measurable

function such that f
~ 

E(xIB ) dP = xdP . for every B in S . One

can show [000b . 1953, pp. 16 and 32] that E(xIE) exists , that any

two versions of it are equal almost everywhere, and that if z is

a 3-measurable function with EIxz I~~
o , E(xz I B) = z E(x~5) almost

everywhere. These facts are used below .

Let m be a measurable function ut +

b 11 b21... be a sequence of measurable functions

E (~b .I)<o~ i £ iN~~ b. ç~ +

be the smallest c-algebra for which b
1 is

measurable

be the smallest c-algebra for which b
~+i,

b. ,.. • are measurable
~ + 2

be the smallest a-algebra for which

b 1, b 2 1. .. ,b. are measurable

then

I
III ~~~ —~IV~~~~~VII

VI ’  f
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where

I E b. = a if P(m > i) > 0 i £

m is independent of the b~ ‘s

II the b~ ‘s are mutually independen t

E b
~ 

a if P(m > i) > 0 i €

= c ~ (i)

i .e .  m is a Markov time

I I I  E b. = a if P (m > i) > 0 i £

E( I i l S i ) = E ( I~~~ ) a .e .

i.e. the event m=i is independent of b. ,b. ,...i+l i÷2

IV £ b1 = a if P(m > i) > 0 i c

E(I • I S .)  = E(I • )  a.e.m<i. 1 111<1

i .e .  the event ~‘i<i is independent of b1

V E(b . I • )  = a E(I  .)
1 m>i m>i

VI E E b . = a E (m)
i=l 1

m
V I ’  £ ~ b. <~~~~1i=l

rn
VI’  is a technical condition to insure that E E b. is

i=l
well defined .

Proof

I~~~~I I I  this shou ld be clear ;

II ~~~ I I I  it is enough to show that

C , 

~B 
E( I m=i) dP = 

~B 
‘m=i dP
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or P( {
~ 

: m(~) — i})P(B) P(f~ m (~)=i}flB)
1This fo l lows  front the fact that B c S , and

that by II

(i)m(u)) = ii c S

and the b. ‘ s are mutually independent .

III~~~~ IV E( I~~~~~I B ~~)

i—i
— Z E(I •I B .)• m=3 1.3=1

= Z E(Im=j) by III because & for j < i

= E(I m<j)

IV~~~~ V E (b~ ‘m> i~ 
= E ( E (b . I i I B . ) )

- ECb~ E(i jB.))

= E b. E(I • )  by IV
1 in>i

= a E( I m i ) by IV

vi ra

•~

p VI E Z b. E Z b. I
• 1 • 1 nt> 3.vi i— i 1=1 — j

— Z E(b. ‘
~>j~ 

by VI ’

— t a E( I
~~~j ) by V

i—i —

= a E ( m )

Note that we do not need to assume E ( I b . I ) < ~ and

V I ’  if P(b . > 0) = 1 i ~ 1N~~ , and if we al low
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th e v alue~~
If the ‘s are independent and iden tically dis tribu ted , and

some technical conditions are met , it is well known that I~~~VI ,

while III.~~~VI (also known as Wald’s theorem) is proved at differen t

places in [Feller, 1966]. [Doob, 1953]proves that tI~~~VI

The theorem given here is very simple , and its hypothesis

minimal; that IV~~~VI is somewaht surprising , we give an example

illustrating it.

prob . m b
1 

b
2 b

3

3/16 1 0 — l 2

1/16 1 16 7 2

1/16 2 0 -1 0

3/ 16 2 0 7 0

4/16 3 0 — 1 0

4/16 3 0 — l 2

We have E b 1 = E b 2 = E b 3 = 1

E m — 9/4

P (m < 2 1b 2 = —1) = ¼ = P(m < 2)

P(m 31b
3 

= 2 ) — ½ = P(m < 3)

Thus , surely enough,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 9/4 — Em Eb 1
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although

P (aI.21b3u 2)  — 0 0 P (m.2) — ¼

thus hypothesis III is not met .

4 ~I 1 0

~4 !

—‘.—— — - _0~ T T - T - ~~~~~~~~ —-*- ---------
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Appendi x B

We prove here a theorem used in Sections 5 and 7 of Chapter 5 .

The method is si milar f or both cases , we wil l  give the details for Section

5 and sketch the proof for Section 7
M

We know that if < 1 and if ~ E V 0. < , the process
i—i 3

{s. , m~ } , i 0 ,l,... (5 fixed) is Markovian and positive recurrent , thus

ergodic; £ s~ and E m~ are finite. For x given , consider the random

variables

= m~ I1 1 3 3 s 1<x

The 
~ 

process is also ergodic, because if a set A of sequences

{z
~

} is shift invariant , so is the set A’ : = {{s~~m~} : {z~ (s~
,m
~~

c A}

A ’ has the same probability as A , i .e. 0 or 1.

Theorem

The limit, as the time increases, of the fraction f(t) of

messages from origin j that arrived in the queue during scanning times

of length less than or equal to x is almost surely equal to

~(i)~ ~~ 
y dS (y) . 0

Proof: Denoting by a(t) the number of complete scanning times up to

time t , we have tha t
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• a(t)
E m~~I Z M~~I• 3 S < X  . 3 S • <i”0 1— .~ 1—0

~(t) ~ 

t ( tj  <

Z m .
1—0 1=0

By the strong ergodic theorem , the ratio of the numerators over aCt)

goes with probabilty one to E m~ I~ <~~ 
- 

~ 
y dS(y) while the ratio

of the denominator to a(t )  goes with probability one to A
5 

Es

Q .E.D.

Note that this would be a well known result of renewal theory

if the scanning times were independent, and if the arrivals did not

interact with the lengths of the scanning times.

The proof for Section 7 goes along the same lines, the main

difference is that the process {m~,S.} must be replaced by a process

of larger size, similarly as we did for the d~ process in Section

to retain the ‘larkov property.

-— - 0 0 ~~~~~~~~~ ~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~ - f ~~~
,_
~ 

0 
— - O w
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Appendix C -

This appendix contains the listing of FORTRAN IV subroutines

MOHUFF and LSEQ1 which implement respectively Steps I and II of the algo-

rithin presented in Section 4.C of Chapter I I .

MOHUFF is a straight translation in FORTRAN of the algorithm

given in Step I. It works best when the symbols are listed in order of

decreasing probabilities.

LSEQ1 computes the largest root of the equation A* (s) B*(_s) = 1,

using the Newton_ Raphson algorithm [Kierer and Korn, 1967 , p. 2-59].

Because this al gorithm works best with functions whose ratio of the second

derivative to the first derivative has small absolute value, the sub-

routine computes the largest root of the equation log A*(s) + log B*Es)=O.

In lines 14 to 18 the program searclisfor a starting point larger

than the largest root. Because the Laplace-Stieltjes transforms of pro-

bability distributions are log-convex, the sequence of values produced by

the algorithm from this starting point will converge monotonely to the

largest root. The0 algorithm itself occupies lines 19 to 28.

Function evaluations take place in lines 33 to 66. Subroutine

INTTIM , which must be provided by the user, computes log A*(s) and

log A*(s) . If IND - 1 , B*(s) is set equal to the lowerbound devel-

oped in Section 4.B of Chapter II, and the program computes s , If
U

IND 2 , B* (s) ~ p • e
smi 

, and the pro gram computes the corresponding
i=l ~•

When m~ is constant, the same objective is attained more

efficiently by setting IND to 3.



207

F 0 0 0 0  0 0 0 0 0 - N N N N N N N N N N m ~ ‘ m ~ m ‘~~0 0 0 0 00  ~~O 0 C 0 0 0 0 OCO 0 0O C 0 0 00 CC 0 0 C C C 0 0 0
000 0  0 Ci 000 0 0 0 00 0 0 Ci 0 0 0 0 C 0 C 00 C 0 0 00 00 00 0
== ~~~~~~~~~~~ ==~~~~= ==~~~~= = = = ~~~~== ~~~~
0 0 0 00 0 ~~~~0 OC O CO 0 0 0 C CC O 0 o C o 0C 0 C0 0~~~ 0 0 3 0 0

0

‘La
0 z

0..
o

O
0

— U

A. E 114 N
0

C Z~~~ Z
z — a_~~ ~
— £—

ii ~ -
0 L ~ 0

z (m a. z
N 1-4

C~~~ ~~~2
U C—  —( m O  ‘.. ~~~~~ N

0~~~
~ 0 ~ a N (N

C N 0 0
C&~~CI’.~~~~~~~ ~ 0(m 00

~~~~ ‘~‘ ~~~C~~J — Z 0cm ~ — U ~~ -~ Z — — _

r. 1-’ E-’ ~~~
~~~~~. — cm~~~ ~~~.-~~~~ z ’-
~~.. = ~.o ~~ ,—i m ~ ~~ C N

Z 
~~~~~~~~~~~~~~~~~~~ ~~~ Z Z

= £.I IU t~~~a. A . Q A .~~~~~Z .... Q In •
oO z— . ~ r~~~ t C ~~~. z c j

—~ • I1~~ul • • A. —
a—a ~. C e~ :Lz = ~~ lu 1?.l U .-~ . — l~ r— ~.i ~a ‘— —

~~~~~~~~~~~~~~~~~~ a. z o v ~ C 4 z— .
Z 1-4 Ia~ 0.. In £- ~~ 

E-. ‘~~ N £ • • • . • ~~ i—
— C F’ CI~ = C. N * , A. a—~ ,— — - C
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ a A. 110 fi II 4-4~~ 4~~~ II

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N
0 A . A D~~-~~~ *e ~~~ • i c -~ ~~~-..-.U ~~~~~~~0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C C .  1 0  , — “ N C . C . ( N N. —~~~
~~ I— a-4 1-4 0 Z ~~ ~~ F’ — ‘ I.. ~ 4-4 Z ~~~ ~~ ‘ ~~~ ~~ Z — 0 0 z

C V ~~~ ~~~Z Z U 3 I l .I I Q I t z a . ~~~~~~~~~~~~~~~~~~~

C
0

IA .
• 0 4’s ~~ N

U~~J ~~J L) U ‘- ‘ CJ N N (N

- ~~0~~  - - ~~~ 0 0



N ~~ ~~~ 0 - ~~ m ~~ ~~ N ~~ ~~ 0 (N ~~ N ~~ Q% 0 - e~ m ~~ ~s N ~~ O~ C ~~ 
208

~~~~~~ ~~~~~~~~~~
0 0 0 0 0 0 0 0 0000 0
0C i 0 0 C 0~~- ? 0 0 0 0 0C C C 0 C 0 C C 0 C0C 0 0 0 Q C  0000000

0 0o Q 0 00C C Q O 0 0 0 0 Q0 c C 3 C Q C~~~~0 O 0C C 00 0 C CC -.0

(I,
C

0
a

C
0
U

a-a
F’
A.
0

F’

0
S

— U,
(‘1 F’0 4-4
Z

F
U,

A.
+ ‘ O
— ‘~~~~~00  F’C F E’  F’ ri..
z 0 0

0 1-4 - 2
— 

_
5_•’ +

0 ~~ ‘ N~~~ N
N F A. a-a m
N Q 2 2~~~ — —
0 Q 51fl 4-4 4-4~~~ 2 1-4 ILa
F A . N  . • Q  U —

— 0 0 ~~~~~~ C. I.~~~+ + A. .
~— ~~ • • r~~~~~~.- .~~~r’i~~~ 0.~ 2*  ~-I —

— 0 V~ (N 2 e • — 4-’ 0 + 2 — ~~ z
A. C ~~ ii II ~ — — ~~~2 — ~~ 4-4 1-4 E— O~A. • • — — — s-a 2 2 — — ~~ ‘~ • 4-4 II A. 2
II F’ (N II ‘~~~ I.) U II II ‘- II 0 • ca — A. A. — ~~ H

O a-~ ~ £~ 0 0 4-4 0 ‘.~ It N H ..
~ 2 m — H — II 0 ‘— F’ 4. 2 A. —

(N p4 0. ‘— • ~~ F’ 2 Z 2 1 — II N — — — H H ~~ • C .—~ ~ ). A. r.sJ
0(N (N I 4 4 F ’ ’~~~ a—. . - 4 0 s 4 -4 a-4 C F ’CN A . O A .0u ~~~~~~~ C. E40

II
02 4-4 p~ ~~ ~ C.. ~.. A. Q n. o.. a 0 2 2 — L~ 0 0  A. 2 2 1. Q Q  -~ C s-i U 2 F’ ~~ C

A.
A.

C (NO - (N 0 0
N (N U U - - ue irs



2 .9p.
0 00 0 0 0 0 0 0 0 00 0 0
0 00 00 0 0 0  ~~ 00 0  C.~ o

0 0 3C 0 0 0 0 00 0 0 0 3

cm
C
A.
0
a

C
C
U

S
,- (N
C —
2
— Cll

— =
• F’

I, ~~(N Z ._..
C aLa .-
2
4-4 .(N

— m
S
(N U~~~4
O —~~~2
— In.~

.
—
‘-a ~~—

—
— s-~ —

C — —~~~(N N —
C s-

II F’ — A. ,—
0 — 0 .”

C — A. —
2’~ _•. — —
~-4 I.3 ~~~0 (N A. • ~~Z 4 • C — — —
( N 4 4  .~ . C..( 2 — ar

~~ —— • — 0 — ~
F ’ I4 2 s  0 0

— 0~~~~N U ( N  I
— • C ~~ ii C 44 — •
~~~— 2  .....~..Z — — ‘.0 — —
~~ C~ — — (N a.-. (N II 2 

~- I-
II 2 —~~~ C ..-~~~ ~ ~~‘- a..02 2 0  I ~~~a-a i-~~~~~~~rC U — — s-a 4-’ a C

a-a a - a C . .c0a . .a~~~ ca U a A . L a~~~~~

0
00  d~~0

_____ - ~~-_ - . - _
-O.- - O’~~~~~ ,_ _~-.-,._ -—.~——- --



210
~~~N~~~~~~~~~~~~~ N~~~~ C ’ . O . - N~~~~~~~~~~ ’.C N C’. 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 0 0 0 0 0 0 0 0  ‘ — , -  ‘ — .-~~~~~~~~r N N (N (N (N (N N N ~~ N m ~~ r’~ m ~~ m ~~
000 000000 0 0000 00 00 00  Ci 0 00 0 000 0  0 000000
0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 C 0 000 0 0 00
0 0 0~~~~~0 C C C 0C 0 C0 OC C. O C . 0C .O C~~~~~ () O O 1 QC  C~~~~~~~~~C~~00 C .

Cl~ 1.1 IL. (.4 0.1 Cl 1.4 (i4 •~. ~.: u. C.~ Cl 0.5 0.. (~3 Cl (.4 154 Cl Cu 1.-h Cl (.4
u~ cm vs Ui c.l Cll (11 ‘~ cm v~ c/i VS cm cm vs c~ cr~ cm cu cm cm vs vi cm vs vs cu us vs vs ci, vs cm C/S

A..

0 Cl

f - C

Cl
a-a

C’,
• p

C C / i

O —— • 2
A.

C zs- i  =- C u  0’” F’
52 I-a C
( m A .  A.
1 =  — — —

‘ f r a  ~~~~~ (N
A.~~~~Cu ~itlC l * A .  f - C  N
4”4 5 — C C

at’
Q% — 0

— —  o’ . _  f-s
2 —~~~ U

•C5 0 A. 0 —
A . O C  0.2 —

f - C  •(nmo C..~~~ 0 0
— C • C C

CC.. — • Z f-’ 2 2 C
2 0 • 0. — ~~ a-a C.~ — z
4-4 0 00  — ,  — -
— F’ .-  ~~‘ C.. C — (.~ ~~ — -.0 —
— 0 uS • 4-4 ~~ C.. 0 ~ C ~~001-5 * C. a—s • O .  ~-I0 F’ 0 I
IL’ A. 15 Ci Cl — s C C.) -.0 0 ~O — Cl
U, ( m U C / iA . 2  ~ •Z  15 — 15 • 0 .
—l ~~ VS 2 • l~ US (N (N (/5 — — (/5(IS — 1.15 0.3 — .—4 — 0 • . 0 0 C I • 0 +
l.a (.4 .

~ ‘5 2 It’ • ‘.0 • 0 0 0 ‘.0 1/) Cl 0 (N
2 15 F’ ~ . A. ~ (N N 0 — 0  - — — C —~ — ‘ N
— ~~ o , ~ A. • * Cl • — • • — . ‘ 0.. (/5 • .J
1’ C 2 ~~. Z ~ , F’ 0 Cl F’ 0 “3 0 ~~ ~~~~~‘ Cl C ‘.0 —

~~ 
(5 ‘.0 C l c . _ 3 C 0 2  a’s

0 F’ C * 15 — • — • ‘ — — • — ii • o~ o c.- •
A . C l ( m 3U - ~~’~~ .J P I N  Cli o o .-.u’c .~~~ C U i C 0 NC 0 4- 11 •0’.O
~~ I— — r.-~ .~~ C-’ f— A. ..3 0 — I-s (/5 — F’ — N (-. H C/i —~ — I’ ‘~~ 1— — A. F’ 0 II
~~~~~~~~~~Z C C u Z~~~~~,a. I C . .  4* C i A .  II 0- C) II 0. 11 C U p ,  I.J 0. l.4 U ii II (.3
(fl C. fr-. ~~ a.-, s-a C ( 5 4 - / 2P-. I5 ,-a s-i C m U~l C ~~~~ Q 1 5 U, A .2~~~~~A. 0. A. m:

2 (.3
0 0- 1/5 0.
Ci 4-’ =

— N —
0 0 o

U U U U  1(4 — its ‘.o ‘.c



211
m m m . ~~ ~~ ~~~ .~~ ~~~ ~~ ~~ ~~~~~~~~ c/•~~c/•5 c/~~(t’ L t’ U~~V S t t s  ‘..~~~‘.0 ’.C ’.0 ’.0 sC~ ‘.~ ‘.0 ‘.0
0 0 000 0 0 C C  0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 00
0 0 0 00 0 00 0 0  c~ 0 0 0 00 00 0 0 0 00 0 0 0 0 00 0 0 0

• 0100010 C- C: C. C- 0 0 0 0  Ca Z.- C- 0 0 00 00  0 0C . . 0 0 C~ 00

UI cm vs vs vs VS vi vs c/S U) vs cm vs crs vs vs In vs cu cj~ cm v~ 
(/5 vs vs vs In (/5 VS In Vs

S

0
03
vs
s-a

*

Cl
0 Ci

o N 2
0 0. — Cl
-.0 = -.. — II — — (5
0 .~~ (.5 0 44 1.3 0 A.
F’ * 0. Cl
0 — I — < 4 4  - •(5 — (N < *4 2

~~ N • — 1< — O
• — 1/) 0 1/5 — (/5 — U

~~ 0 0  C.. — — (N N A. — — N — (N
( NZ  .~~~ .- f’5 £ 0 2 ‘)4 s-1 E < 02  00
N v~~. ~~ Ii. 0’ a~l It’ . .154  * a - 4 0 + u’a . - a<0~ f % Z
~~~.- ...3 * 0 —

~~~ F’ - ~~~F ’ *  ).
~~F ’ <  ~~~~~~~~~ •— II . — ~~ Cl (5 • C F’ C — II — (S — F’ • Cl.. — (— US + ‘ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <0  ~~~..3 .~~~~~4 4 < Z A . 0~~~~~* .0
01 k. — + 2 ..4 44 .. s-a 4. It’ * 44 — ~ • — ‘..~ 15 IfS p.-. ..-. F’

< 0  •~~~~U i 5 4~~”’C 00  <
• 0 A .  (I • I... 4-. P P . . + A .~~~ . 0 0 * 1 <”

II . 0 4 4 4  ~~~~ 
p~ < s- 3 0. SI ~-‘0 *4 ‘ . 0 4 4 4 4 0 .  P p.3 P P < (-s ...5 .... II

0 C 0 . P I C C C * l < PI~~~~ C I P ~~~~ C 0 . h I C I I ~~~~ < P P 1.~~C 0 Z
s~~C a . . a < 0 . A . U~~~~0. 0 . U 0 . 0 . 1 5 0 . 0 . 0~~~~~~~< 0 .A .L J 0 . A . 1 5  L A . A . 1 5~~~~ L’

O (N a’S C
O 0 0 0 0
-.0 ‘.0 ~.0 .0 -



t

212

Distribution List

Defense Documentation Center 12 copies
Cameron Station
Alexandria , Virginia 22314

Assistant Chief for Technology 1 copy
Office of Naval Research , Code 200
Arlington, Virginia 22217

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Office of Naval. Research 6 copies
Code lO2lP
Arlington, Virginia 22217

Office of Naval Research I. copy
Branch Office, Boston
495 Surmer Street
Boston, Massachusetts 02210 -

Office of Naval Research 1 copy
Branch Office , Chicago
536 South Clark Street
Chicago , Illinois 6060 5

Office of Naval Research 1 copy
Branch Office , Pasadena
1030 East Green Street
Pasadena , California 91106

New York Area Office (ONR ) 1 copy
715 Broadway - 5th Floor
New York, New York 10003

Nava l Research Laboratory 6 copies
Technical Information Division. Code 2627
Washington, D.C. 20375



~1

- 213

p

Dr. A. L. Slafkosky 1. copy
Scientific Advisor
Comsandant of the Marine Corps (Code RD-l)
Washington, D.C. 20380

Office of Naval. Research 1. copy
Code 455
Arlington, Virginia 22217

Office of Naval Research 1. copy
Code 458
Arlington , Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr . E. H. Gleissner 1 copy
Naval Ship Research £ Development Center
Computation and Mathematics Department
Bethesda , Ma ryland 20084

Captain Grac e ZI . Hopper 1 copy
NAICC~4/MI S Plann ing Branch ( OP-916D)
Office of Chief of Nava l. Operations
Washington, D.C. 20350

Mr. 1Cm B. Thompson 1 copy
Technical Director
Infor mation Systems Division (OP—91T)
Office of Chief of Naval Operations
Washington , D.C. 20 350

Advanced Research Projects Agency 1 copy
Info rm ation Processin g Technique s
1400 Wil son Boulevard
Arlington , Virginia 22209


