Janvary, 1978 (ESL-R-798
ARPA Grant ONR-N00014-75-C-1183

ADA0S51166

SOURCE CODING FOR COMMUNICATION

*

-t
o

a CONCENTRATORS
o
)
C ol
« =
S L.
c—: Pierre Amedee Humblet
[e |
=L C2
-

DITRIBUT

Al’ﬂ\ (‘.’A_”E ﬁ

Appxo' d iQ‘ Luk“ IUIEX

Electronic Systems Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Department ‘of Electrical Engineering and Computer Science

e ety

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. R

Q NUMBER 2. GQVT ACCESSIO

Dietocz] Phes!

_SOURCE _CODING FOR COMMUNICATION CONCENTRATORS ° l

Technical /Repott "

.

6 _PERFORMING ORG. REIPOAT NUMBER

(%]
N~

Pierre Amedee

ANT NUMBER(s)

%

|5- PERFOAMING ORGANIZATION NAME ANO AOORESS
Massachusetts Institute of Technology
Electronic Systems LaboratoryV
Cambridge, Massachusetts 02139

UNIT NU“IIRS
S5T10
ONR Ident:.:ying No. 049-383

e

1. CONTROLLING QFFICE NAME ANO ADORESS
Defense Advanced Research Projects Agency
1400 Wilson Boulevard

(Vimmrsin

213

Arlin%;on, Virginia 22209
. MOMITORING AGENCY NAME & AODRESS(!! different from Controiling Office)

Office of Naval Research
Information Systems Program
Code 437

1S. SECURITY CLASS. (of this report)

UNCLASSTIFIED

[T%a. OECLASSIFICATION/ DOWNGRADING
SCHEDULE

_A:l.ng:.an...xi.:gmaiﬂﬂ
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, ! dilterent irom Report)

. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side il necessary and Identify by block number)

Concentrators Computer Networks

AN

Protocols

20. “(.‘CT (Continue on reverse eide |f neceesary and identify by block number)

many input flows into a single output flow. This
and encoding side information about when messages
are and what their origins and destinations are.

Communication concentrators perform the basic network function of merging

requires formating the data
start, what their lengths

This thesis examines efficient ways of performing these functions, the
objective being to minimize the average message delay, or socme otier queueing

-7

FORM
JAN 73

1473

EDITION OF | NOV 68 1S OBSOLETE
S/N 0!02~0N°6“l

72_¢ﬁ §

pD ,

CURITY CLASSIFICATION OF THIS PAGE (When Date

(pessrug ®m1eq ueuy)ZOVd SINL 4O NOILYDISISSY D ALINNOAS

| 20. Continued
theoretic quantity, like the probability of buffer overflow.
The work is divided in four partss

u]cnco':ling of the data;

*/encoding of message lengths;

(2 encoding of message starting timesy
‘<!encoding of message origins and destinations.

With respect to data encoding, an algorithm is given to construct a prefix
condition code that minimizes the probability of buffer overflow.

Next a theory of variable length flags is developed and applied to the
encoding of message lengths.

For concentrators with synchronous output streams, it is shown that the
concept of average number of protocol bits per message is meaningless. Thus,
in order to analyze the encoding of message starting times, a class of flag
strategies is considered in which there is a tradeoff between delay and low
priority traffic.

The problem of encoding message origins and destinations is attacked from
two different points of view. Some strategies (variations of the polling
scheme) are analyzed and shown to be much more efficient in heavy traffic than
just using a header, as is usually done. A simplified model is also developed.
Its analysis suggests that there exist strategies to encode message origins
and destinations that are much more efficient than everything considered until
now.

(posojug o10q WOYAIAOVd SIML JO NOILLYDIZISSY D ALInNDT"

January, 1978 Report ESL-R-798

SOURCE CODING FOR COMMUNICATION CONCENTRATORS
by

Pierre Amedee Humblet

This report is based on the slightly altered thesis of: Pierre Amedee
Humblet submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at the Massachusetts Institute of
Technology in December, 1377. This research was conducted at the
Decision and Control Sciences Group of the M.I.T. Electronic Systems
Laboratory, with partial support extended by the Advanced Research
Projects Agency under Grant ONR-NO00l4-75-C-1183.

Y .
)} “\S‘?\\B\,‘“N\ |

Electronic Systems Laboratory
Department of Electrical Engineering
and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

- “ e T 2 60 R U s TR g wano

.

SOURCE CODING FOR COMMUNICATION CONCENTRATORS

by

PIERRE AMEDEE HUMBLET

Ing.Civ.Elec., Université Catholique de Louvain
(1973)

S.M., Massachusetts Institute of Technalogy
(1975)

E.E., Massachusetts Institute of Technology
(1975)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
- DEGREE OF ‘

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

® (JANUARY 1978)

Signature of the Authorﬂ'wﬂ.%\/’{;/

Department of Electrical Engineering and Computer Science
December 13, 1977

I_./ D ;h ’1"'{‘
COPtAfLnd BY.uooees sl I i e T T e ceieensassnsssnasanans
Thesis Supervisor

RBEPERE BV s o6 500 07056 554 6 50000 ¥ 608 ¢ 0100 655 0B EA000 55065 666
Chairman, Department Committee

SOURCE CODING FOR COMMUNICATION CONCENTRATORS
by
PIERRE AMEDEE HUMBLET
Submitted to the Department of Electrical Engineering
and Computer Science
on January 4, 1978 in partial fulfillment of the re&uirements

for the Degree of Doctor of Philosophy

ABSTRACT

Communication concentrators perform the basic network function of
merging many input flows into a single output flow. This requires
formating the data and encoding side information about when messages
start, what their lengths are and what their origins and destinations
are.

This thesis examines efficient ways of performing these functions,
the objective being to minimize the average message delay, or some other
queueing theoretic quantity, like the probability of buffer overflow.

The work is divided in four parts:

‘- encoding of the data;

- encoding of message lengths;

- encoding of message starting times;

- encoding of message origins and destinations.

With respect to data encoding, an algorithm is given to construct
a prefix condition code that minimizes the probability of‘butfor overflow.

Next a theory of variable length flags is dcvcioped and applied to

the encoding of message lengths.

For concentrators with synchronous output streams, it is shown
that the concept of average number of protocol bits per message is
meaningless. Thus, in order to analyze the encoding of message starting
times, a class of flag strategies is considered in which there is a
tradeoff between Aelay ;nd low priority traffic.

The problem of enceding message origins and destin;tions is
attacked from two different points of view. Some strategies (variations
of the polling scheme) are analyzed and shown to be much more efficient
in heavy traffic than just using a header, as is usually done. &
simplified model is also developed. Its analysis suggests that there

exist strategies to encode message origins and destinations that are

much more efficient than everything considered until now.

Name and Title of Thesis Supervisor:
Robert G. Gallager

Professor of Electrical Engineering

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
TABLE OF FIGURES
TABLE OF TABLES
ACKNOWLEDGEMENTS
CHAPTER I PRELIMINARIES
1. Introduction »
2. Review of Previous Works

3. Outline of Original Contributions

CHAPTER 3 SOURCE CODING TO MINIMIZE DELAY

1. Introduction
2. The Model

3. Minimizing the Average Delay

4. Minimizing the Probabilities of Buffer Overflow and

of Long Delays

A. Introduction

B. Bounds on the Largest s°

C. Algorithm to Construct an Optimal Prefix Condition Code

. D. Numerical Results

5. Review and Generalization of Jelinek and Schneider's Work

CHAPTER 3 FLAG ENCODING SCHEMES
1. Introduction

2. General Flag Coding Algorithm

10

1

16

18

20

20

21

22

22

23

24

29

34

39

42

3. Performance Analysis and Optimization 52

A. Method 52
B. Optimization and Performance Analysis 53
C. Sensitivity Analysis 57

4. Adaptive Flag Strategies to Encode Batch and Message Lengths 61

S. Desirable Flag Compositions 68

CHAPTER 4 ENCODING MESSAGE STARTING TIMES

1. Introduction g 80
2. Discussion of the Problem : 81
3. M/G/1 Queues with Overhead 86
A. Introduction 86
B. Stationary Distribution of the Number of Customers 36

in the Queue

C. Average Delay 87
D. Busy Periods 88
4. Identification of B', Fl and F2 : 89
5. Main Result 92
6. Optimization of Eo(b) ' 94

7. Numerical Results 97

CHAPTER 5 ENCODING OF MESSAGE ORIGINS

1. Introduction 101
2. Basic Idea 102
3. A Simplified Model | 105

A. Introduction 105

B. Notation and Description of the Model 105

C. Objective
D. Examples of Strategies
E. A Lower Bound on h
F. "Optimal" Strategy
G. Suggestions for Future Work
4. Analysis of Practical Strategies
A. Notation and Organization
B. Analysis of the First-in-first-out Strategy
5. Strategies Indicating the Buffer State
A. Introéuction
B. Statistics of the Scanning Times
C. Description of the Code
D. Waiting Time
6. Optimal Source Coding for a Class of Integer Alphabets
7. Analysis of Cyclic Strategies
A. Introduction
B. Some Relations Valid for Both Disciplines
C. Waiting Times for the "Please Wait" Discipline
D. Waiting Times for the "Exhaustive Service" Discipline
E. Generalization to Compound Poisson Processes
F. Properties of the Systems of Equatiocns
G. Application to the Encoding of Message Origins
H. Condition for Stability
8. Comparison of the Practical Coding Schemes

9. Suggestions for Future Work

REFERENCES

106

107

119

121

145

146

146

147

149

149

150

153

154

157

164

164

166

170

176

L9

180

184

185

187

193

194

APPENDIX A : Gk

APPENDIX B 204
APPENDIX C 206

11

2.1

TABLE OF FIGURES

Decomposition of a Node into a Router and Concentrators
Iterative Procedure to Find a Code with Maximal s°
Code Performances: Deterministic Arrivals

Code Performances: Poisson Arrivals

Performance of Flag Strategies

Optimal Flag Length as a Function of p

Penalty for not Using the Optimal Flag Length

The Model

Simplified Model

Notation

e e

27

32

33

54

56

60

101

102

167

TABLE OF TABLES

Symbol probabilities used in the example

Influence of V_, on Ew

2
Optimal vl as a function of the load Eb=8 Eb2=64
Optimal vl as a function of the load Eb=5 Eb2=30
SIS ;
Lim E'H(Y[O,T)) as a function of N
1
g := lim = H(Y) corresponding to an optimal strategy,
T [0,T)

Relation between A and m for Poisson distributions

30

97

99

100

118

143

161

———

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor Robert
Gallager, my thesis supervisor, for invaluable counsel and support.
He stimulated my interest in protocols for computer networks, suggested

the topic of this thesis and generously contributed his time during this

- research.

I offer my.thanks to Professor John Wozencraft for his comments
in the early stages of this work, and to Professors Al Drake and James
Massey for serving as thesis readers and sharing their expertise.

Finally I am grateful to my officemates Messrs. Eberhard
Wunderlich, Thomas Marzetta and Joseph Defenderfer for the exchanges of
ideas that made this research experience pleasant and productive.

This work was supported by a research assistantship from the

Electronic Systems Laboratory with funds provided by the Advanced Research

Projects Agency, by a Frank A. Cowan scholarship and by a Vinton Hayes

Fellowship.
Data for a numerical example were kindly provided by Codex

Corporation, of Newton, MA.

il
Chapter I

Preliminaries

1. Introduction

The last decade has seen a tremendous development of computer
networks. Numerous books and papers describing and analyzing systems
have appeared (see Section 2).

From the operations research point of view, the most studied
problems are those of mod:1ling the queueing phenomena in the net-
works, of routing the messages so as to minimize some cost, usually
the average message delay, and of laying out the network in some
optimal fashion.

Computer scientists have been concerned with the architecture
of the computers in the nodes, and with the protocol, i.e. control
messages exchanged between subsystems of the network. This is related
to the problems associated with distributed computation.

Presently the most important consideration in the design of
protocols is to get a working system where no deadlock can occur.
Little attention has usually been paid to the effects of the overhead
produced by the protocol on the performance of the network. However,
taking a queueing theorist view of the problem, [Fleinrock et al.,
1976] pointed out that the effect was significant in the ARPANET.
[ballager. 1976] showed that information theory can be used to
produce basic lowerbounds on some of the information that is carried

in the protocol messages.

12
Our goal is to obtain results similar to those of Gallager,

but under less restrictive hypotheses. In particular, we will not
assume an infinite number of sources and links of infinite capacity.
Thus we will take into account queueing effects and interactions
between sources. One will find in this work concepts and methods
from the fields of queueiné theory on one hand, and information and
coding theories on the other.

We do not plan to solve at once all the protocol problems in
a complete network. Instead, we pay attention only to the nodes, i.e.
the points in the network where different links join each other. From
our point of view a node can be decomposed in a "router" followed by
"concentrators' (see Figure 1.1).

The role of the router is to determine the destination of each
input bit and to send it, together with some associated information to
be described later, to the corresponding concentrator. The concentra-
tors merge the many input flows into one output flow.

We will not consider the structure or the optimization of the
router, instead we will regard it as a source, with known statistics,
to the concentrators.

Because their input is generally stochastic, concentrators
contain a buffer in which queueing phenomena occur. In addition to
transmitting the data they received, concentrators usually perform
other duties:

l.0

they reformat' the data. This may involve translating characters
Ed
from one code to another, merging packets into messages or

dividing messages into packets.

Figure 1.1
Decomposition of a Node into

a Router and Concentrators

= =
Input E NODE = Output
:, i
Concentrator §- ‘~\
= Router
=

Concentrator

o/

13

. 14
2° they transmit service information to the downstream nodes:

- information about the line being idle or not;
- information about the origin and destination of the data.

3° they perform some kind of error control, typically implementing
an error detection and retransmission system in conjunction with
sending error detecting parity bits to the downstream node.

4° they send flow control information tothe wupstream nodes and/or
the router indicating that they are unable in some way to handle
the flow of data.

We will consider in this work only the first two functions; they
are related to what information theorists call "source coding," whereas
the third one is more like "channel coding." The fourth function should
be studied with the routing question and is not touched here.

Note that classical source coding theory is interested in

transmitting as little redundancy as possible. In computer networks

the goél is usually to minimize the average message delay. These two
objectives are not always compatible, as we shall see.

Note at this point that we consider all higher level protocol
messages, like "end to end" messages to set-up a "session," and like
flow contrél and routing messages, as regular data that must be trans-
mitted by a concentrator to another node, together with information
about its origin, destination and some error check.

The plan of this thesis is the following: in Section 2 of this
chapter, we will review previous works of interest while we present in
Section 3 an outline of the original contributions of this work. The
next four chapters describe in detail‘the actual results. They are

organized as follows:

15

In Chapter 2, we examine how the concentrator should encode the
data so as to minimize in some sense the message delays.

In practical systems the data are often transmitted in batches,
called '"packets' or '"'messages.'" We analyse in Chapter 3 a very efficient
way of encoding the length of these batches. This will introduce an
encoding technique, using flags, which will be used extensively in the
next two chapters.

In Chapter 4, we study efficient ways of solving a seemingly
trivial problem: how should a concentrator indicate to the downstream
node’when it transmits idle bits. This simple problem will introduce
some conceptual difficulties that appear more strongly in Chapter S.

Chapter 5 treats the problem of encoding message origins and

destinations. It has two distinct parts: in the first part we use a

simplified model to see what issues are involved. In the second part

we examine and compare different practical strategies for encoding the
origins and destinations while not degrading too much the average

message waiting time.

] 16
2. Review of Previous Works

We rapidly review previous works of interest, considering
mainly works that give general ideas rather than technical details.
These last references are mentioned in the text as they are needed.

Should a reader need general information about computer networks,
the boocks of [Davies and Barber, 1973], [Abramson and Kuo, 1973] and
[Schwartz, 1977] are valuable.

[Kleinrock, 1976] is an excellent reference on queueing models
for camputer systems, while [Gerla and Kleinrock, 1977] present an over-
view of the problems of optimal static routing and network layout and
give a number of references. The subject of adaptive routing and
numerous references cn related subjects appear in [Segall, 1977] while
[Gallager, 1977] offers an actual adaptive decentralized loopfree algo-
rithm.

Many of the ideas used in high level protocols today were born
during the development of the ARPANET; suitable references are [Crocker,
1972], [Cerf, 1977], [Kleinrock, 1976] and [Kleinrock and Opderbeck,
19771. :

Of course the ARPANET is well known for sending data in packets.
Another network that functions in a similar way is the CYCLADES, [Pouzin,
1973]. Same networks do not use this idea, but transmit the data
character by character, e.g. see [Tymes, 1971] and [Vander Mey, 1976].

The references just mentioned describe the background of this
thesis, but have no direct impact on it. We now review scme works

_— -

_—

17

that have a stronger relation to it.

The motivating paper behind this thesis is the one by [Gallager,
1976] which showed that there is a trade off between the delay
incurred by a message and the amount of information necessary to
indicate its origin or destination. However, the delay there is a
"voluntary'" delay in the sense that the concentrator sometimes chooses
not to send a message although the line is available. We will examine
how "'involuntary' queueing delays can be exploited to minimize the
amount of protocol.

Another paper along these lines is [Rubin, 1976]. Rubin notes
that if some rate-distortion function exists for the output of a source,
and if the output of the source encoder is sent over a link for which a
relation exists between rate and average delay, one can obtain a delay-
distortion relation. This approach is not very useful, because it
neglects the delays added by the coding process and it assumes that the
average delay on the link is only a function of the rate, and not of
other parameters of the coder output statistics. It is an unfortunate
fact that infcrmation theory is concerned only with rate.

A work that has a strong relation with this thesis is the one by
[Jelinek, 1968] and [Jelinek and Schneider, 1972]. They were the first
to show that a code with minimal redundancy is not necessarily optimal
as far as buffering problems are concerned. We will use some of their

ideas and extend their results in Chapter 2.

3. Outline of Original Contributions. 18

The goal of this thesis is to find efficient ways for a
concentrator to perform the source coding functions described in Section
1, and divided in four main sections:

- encoding of the data;

encoding of the message lengths;

- encoding of the idle times;

- encoding of the message origins and destinations.
The objective is to minimize the average message delay, or some other
queueing theoretic quantity, like the probability of buffer overflow.
We review briefly our contributions in these fields.

In Chapter 2, we present an algorithm to construct a prefix
condition code minimizing the probability of buffer overflow. It is a
generalization of Huffman's procedure.

Variable length flag strategies are studied exhaustively in
Chapter 3. We give coding and decoding algorithms using flags, analyze
their performance and sensitivity, and identify the classes of flags that
have some desirable properties. The main result is that if well chosen
flags are utilized to encode the length of a message, the expected number
of bits used is upperbounded by the entropy of the distribution of the
message length + .56 .

We study in Chapter 4 how to encode the message starting times to
minimize the average message delay. Unfortunately the best way of doing
this is still unknown. We were only able to show that the concept of
average number of protocol bits per message is useless when the line is

synchronous. We also analyzed a practical strategy, using flags, to

encode the starting tim;s; This is a variation on the theme of the
M/G/1 queue.

Our main contributions are in Chapter 5, where we study the encod-
ing of the message origins. We first introduce a simplified model where
the objective is to minimize the entropy of the sequence of the origins
of the messages being transmitted. We also show that, at least for this
model, the traditional methods (e.g. forming packets or polling) are
‘far from being optimal. We give a lowerbound on the best achievable
performance and show how dynamic programming can be used to f‘nd the
optimal strategy.

We also analyze four practical strategies to encode the origins.
They are based on well-known queueing strategies. Our main contributions
are a closed form expression for the waiting time in cyclic queues with
symmetric inputs, and a fast algorithm to compute the waiting times in
the asymetric.case. We also solved the problem of optimal source

coding for an integer alphabet with Poisson distribution.

20

Chapter 2

Source Coding to Minimize Delay

1. Introduction

We devote this chapter to the problem of source coding to mini-
mize delay. After presenting our model in Section 2, we consider briefly
in Section 3 how to find a code minimizing the average delay. The
problem of minimizing the probability of large delays or of buffer over-
flows is treated in Section 4. Finally, we review and generalize in

Section 5 the work of [Jelinek and Schneider, 1972], which is stronly

related to the topic of this chapter.

2. The Model

We propose the following model: an asynchronous memoryless
source emits symbols drawn from the alphabet {1,2,3,...,c} ; symbol
i has probability P; - The time intervals between two source emissions
are independent random variables with distribution function A . An
encoder maps the source symbols into codewords which are placed in an
output buffer of size M from which one letter is removed every unit
of time (first in, first out). The output codewords are formed by
letters from an alphabet of size d and the codeword corresponding to
source symbol i has length m. . Without loss of generality we can
assume that ¢ = d + k(d-1) for some integer k and that P 20 2
In the following sections we consider the waiting time and

delay of symbols that do not cause buffer overflows. The waiting

21
time is defined as the time difference between the moment a symbol
arrives at the encoder and the moment the corresponding codeword
starts leaving the buffer. The delay is the waiting time, plus the

length of the codeword. We do not consider what to do when the buffer is

empty or overflows; this is treated in Chapter 4.

3. Minimizing the Average Delay

Unfortunately, for most interemission processes, it is not
possible to compute the average delay. Sometimes, though, it is
feasible, e.g. if the buffer is infinite and if A(t) = 1 - e'x°

t > 0. In this case the average delay is equal to (this is a

M/G/1 queue)

2%
A pm; - @ pym)% I pym,
L= Xk p;m

E[D] =

for all codes such that A I pym; < 1 . However, even in this
simple case we are unable to find an algorithm yielding a code
that minimizes this expression. We can only make three general
observations valid for all problems.

First, Huffman codes, which minimize the average codeword.
length, are robust for this application. They are optimal when
the load is light, because then the waiting time is negligable
compared to the average codeword length. When the load is heavy,
it is of primary importance to keep the system stable by mini-
mizing the average codeword length, i.e. utilizing a Huffman

code.

I 22

Next, by a simple exchange argument, one sees that in an optimum

code mo>m (because P; Z-Pi+l)’

Finally, as in Huffman codes, the codewords of the d least

likely symbols have the same length.

4, Minimizing the Probabilities of Buffer Overflow and of Long Delays

A. Introduction

[Kingman, 1970] showed that for infinite G/G/1 queues with
interarrival time distribution A and service time distribution B ,
the stationary probability W (x) that a symbol waits more than x

units of time is upperbounded by

. °x

Wo(x) < e
0
where s is the supremum of the values of s such that
A*(s) B*(-s) <1

Kingman's method yields the same result for finite queues.
From this, it is easy to upperbound the probability of buffer
overflow: denoting by w and b the waiting time and length of a code-

word we have

probability of buffer overflow P(w+b > M)

P(w > M-b)

IA

B*(-s) o M

0 <s<

By more complicated arguments, [Wymer, 1974] established that there

S

E(e-scM—b)) 0<s < s°

(o]

23

)
-s M
exists a lowerbound decreasing like K e .

Applying these results to our model, we see that for every

codgB C , the probability of buffer overflow is of the order of

e-s , where SOCC) is the supremum of the values of s such that
F(C,s) := A*(s) .g pieSmi <1 . Therefore it is desirable to find a
uniquely decodabi:lcode with the largest so . Before doing this, we

will bound this largest so

B. Bounds on the Largest s°

This section can be considered as an extension to asynchronous

sources of results obtained by [Jelinek, 1968] and outlined in Section
¢ -m,

5 . For any uniquely decodable code £ d =
i=1

47], and by HYlder's inequality for all s >0

< 1 [Gallager, 1968, p.

In d
< sml\ln vs [S M\Imd s
) p; e z d
i=1 / i=1
In d
¢
3 p.ln + S
S 4 ¥
Thus for all uniquely decodable codes,
Ind Ind + s
c smy c Ind +s| Ind
A*(s) I p; e > A*(s) | T P;
i=1 =3 i=1
with equality for a given s iff
1n d In d
Ind + s (o] in +s
m, = m;(s) = - logy APy 74 z P;
j=1 =

which is rarely possible, because my must be integer. However, for

24

every s , there is a uniquely decodable code with
*
mi(s) +1> m, z_m;(s)
Thus we can conclude that the largest $ is upperbounded by Sy ?

defined as the supremum of the values of s such that

Ind Ind + s
c Ind +s]|lnd
A*(s)| = P; z1
i=1

and lowerbounded by the supremum of the values of s such that

Ind Ind + s
% (] Ind +s |Ind
e A*(s) £ D, <1
inl | *

Further, Sy is achievable if m;(su) is an integer for all i .
Finally, we note that if we were encoding blocks of n input

A

symbols, the largest 50 would still be upperbounded by Sy and

lowerbounded by the supremum of the values of s such that

In d Ind + s
p c Ind +s \Ind
e|A*(s) | T p, £1
inf 8

This supremum increases to s, @ n grows.

C. An Algorithm to Construct an Optimal Prefix Condition Code

In this section we present an algorithm to construct a prefix
condition code with the largest achievable s° . It is well known
[Gallager, 1968, p. 49] that no gain would be achieved by considering

non prefix condition, uniquely decodable cudes. The algorithm has two

25

main steps that we describe first.
c sm,

Step I finds a prefi* condition code minimizing .Z p; © .
for a given s > 0 by the following method. As [Huffma;tllgsz]
noticed a quarter of century ago,??grgn optimal prefik condition code where
the codewords corresponding to symbols ¢ - d + 1 to ¢ are the

longest and differ only in the last character. If ¢ =d , this

specifies an optimal code; if ¢ >d , this reduces the problem to
finding a prefix condition code of size ¢ - d + 1 minimizing

c=d sm, x c SW, 441

z p; © + (e z By . Again we can make the same
i=l isc-d+l *

observation and continuing we will eventually reach the point where the

code is completely specified.
One sees tRat for s = 0 this algorithm yields a Huffman code,

whereas for s large enough, it assigns codewords of length [logdc]-l

to the
[log, cl
d d

d -1

- C

most likely symbols, and codewords of length l'logd cl to the others.
By definition we will say that such a code is generated for s = = .
Note that, depending on the actual implementation of the algo-

rithm, many different codes may be generated for a given s . They all

c sm, /

minimize I p; e * but it may happen that all of them do not have the
i=1

same s° .

Step II computes the s° corresponding to a particular code.

Except in special cases this must be done by numerical methods, e.g.

the Newton-Raphson algorithm [Klerer and Korn,1967,p.2-59] . There are

26

no special problems beczuse the function f£(C,s) , defined at the

end of Section A, is convex in s for all codes C .

The main part of the algorithm is as follows: (see Fig. 2.1)

1 compute st

= u
2 s, =S
3] =il

c $: 1™y
4 Loop use Step I to find a code minimizing I p; ©)
i=1

denote this code by Cj
S use Step II to find the s° corresponding to Cj

denote this s° by sj
6 if s, =3,

i T then stop

7 else j := j+l
8 go to Loop

Of course, we must show that this algorithm will terminate after
a finite time, and that the last code generated is optimum. The proof
is simple. First we note that sj+1‘1 sj j > 1 because
f(Cj - sj)‘i 1 (line 5), thus (line 4) f(Cj+1 3 sj)_i 1 so
Sj.p 1™ SUP {s : f(CJ.*1 s 8) < 1] z_sj . Secondly, we observe that
the maximum codeword length of any code generated by Step I is less than
¢, so the number of codes that can possibly be generated by Step I is
finite. These two remarks insure that the algorithm will terminate in
a finite time.

Let C, and s, be the last generated code and its . We

must show that C, is optimal., If it is not, there will be a prefix

27

FIGURE 2.1
a Code with Maximal s©

Iterative Procedure to Find

i e T -

*Scomoon S ePO e PR G T rsT O PO Do wmeove oo ow

lower bound

SO'S

28
condition code C} and a corresponding s! with s! > s, . Thus
0<s, <= ,s0o f(C),s,) =1 . Also, by convexity of £(C!,s) ,
£(Cl,8,) € 1.

If f(C},s,) <1, C, may not be the last code generated by
the algorithm (lines 4,5,6).

If f£(C,,s,) =1 and s, > 0, by invoking the facts that
£(C;,0) =1, £(Ci,s!) <1 and the convexity of f(C!,s) we can
conclude that f£(C),s) = 1 s€ [0,s!] . By analyticity of £(C},s)
s > 0 (Laplace-Stieltjes transform of a probability distribution),
f*(CL,s) =1 s20,s0 s! == and a fortiori Sy = @ ., From the
algorithm, C1 is the code described earlier that is generated by
Step I for s =« , If for C] the waiting time is 0 with probabi-
lity one (i.e. sT = ®), it is clear that the same will be true for
C1 , because the length of the longest codeword in C1 is no longer
that the length of the longest codeword in any other code. Thus
®= s,=s;, s, ,acontradiction.

If £(C,,s,) =1 and s, = 0 , then, as noted earlier, C,
is an Huffman code, and as such minimizes %; f(C,s)l a* over all
codes. The fact that s, = 0 implies that g; f(C.,:) i >0 so
& £(Chus) Lo 20 and by convexity either s =0 - . o LS AR
contradiction, or s! > 0 , &;—f(c;,s) = 0 . As in the previous
paragraph this leads to the conclusion z;gt £{Cl,8).» 1 s>0
and to a contradiction.

We have exhausted all possibilities and may conclude that C*

is optimal.

29
Before leaving this sec;ion, we show that if one desires to find
a prefix condition code minimizing
c
151 p; g(m;)
then the algorithm of Step I can be used only if g is linear or
exponential. ‘
The following conditions on g must be met for the algorithm to
work:
-- g 1is non-decreasing,
so that if p; > pj » my < mj in an optimal code;
-- g(m+l) = a gm) +b
so that at every step the size of the problem can be reduced
by 1 , while the form of the problem does not change.
These conditions imply that f must have one of the forms
gm) =a" + 3 a>1

or g(m) =am+ 3 a>0

D. Numerical Results

A listing of a Fortran IV program implementing the two main steps
of the previous algorithm appear in Appendix C. This program was used
to compute the optimal code for a 128 symbol alphabet. The symbol
probabilities are equal to the relative frequencies measured in an air-
line reservation system, and are listed in Table 2.1. We are
grateful to Codex Corporation for furnishing these numbers.

We used two kinds of interarrival time distributions: determi-
nistic and exponential. This last one is a realistic model of what

happens in practice, see [Fuchs and Jackson, 1969], or [Lewis ‘and Hue,

OB IO WNMEWN =

Symbol Probabilities Used in the Example

0.208593E 00
0.413809E-01
0.359989e-01
0.344146E-01
C.3417417-01
0.310807E-01
0.2971CSE-01
0.252622E-01
0.2505472-01
0.239848E-01
0.214937E-01
0.205013E-901
0.204832£-01
0.204295E-01
0.203151E-01
0.185034E-01
0.170439E-01
0.141916E-01
0.134732E-01
0.126853E-01
0.126820E-01
0.126658E-91
0.126555E-01
0.120663E-01
0.115880E-11
0.114259E-01
0.114121E-01
C.110366E-01
0.1048078-01
0.969496=2-02
0.,957297E~02
0.944445E-02
0.932216E-02
0.881332FP-02
0.844231E-02
0.831517€E-02
0.826121E-02
0.8092192-02
0.753829E-02
0.737234£-02
0.64366UE-02
0.645882F-C2
0.6027602-02

Table 2.1

0.543153E-02
0.532954E-02
0.515072E-02
0.510923E8-02
0.495C80E-C2
0.495080E-C2
0.431145E-02
C.41C917E-02
0.410461E-02
0.381984E-02
0.373736E-02
C.371647E-02
0.335328E-02
0.334189E-02
0.323951E-02
«321822E-~02
0.2892162-02
0.279186E-02
0.271047E-02
0.261284E-C2
0.252630E-02
0.219340E-02
0.213528E-02
0.181754E-02
0.171922E-02
0.16804CE-02
0. 155020E-02
0.143781E-02
C.143712%=-02
0.142068=-02
0.136919E-02
0.13179CE-02
0.123206E-02
0.116750E-02
0.942039E-03
0.912136E-93
C.865797E-03
0.767177E-03
0.719054E-03
C.639347E-03
0.630138E-03
«S94690"-03
0.583C07E-03

87
88
89

91
92
93
9y
95
96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

30

0.434284=-03
0.3442792-03
0.301999E-03
0.282097E-93
0.281404E-03
0.240114E-03
0.227836E-03
0.125453E-03
0.123671E-03
0.800050%-C4
0.207934E-05
0.376261=-05
0.100006E-04
0.514884E-0S
0.237639E8-05
0.237639=-05
0.891145&-025
0.376261E-905
0.257442E-04
0.360418E-04
0.192091=-04
0.514884E-05
0.207934E-05
0.308930E-04
0.171298E-04
0.960456E-05
0.514884E-05
0.297048E-06
0.178229E-04
0.236648E-04
0.3049508-05
0.554490E-05
0.1386222-05
0.3782412-04
0.653506=-0%
0.3069502-05
0.930751E-05
0.116339E-04
C.196052E-04
0.207934E-05
0. 116839E-04
0.4158672-05

N S —

31
1972].

The results appear in Fig. 2.2 and 2.3. We give some additional
information here:
the binary entropy of the alphabet is equal to 5.32 ;
the average codeword length of a Huffman code is equal to 5.35 ;
the number of iterations to reach the optimal code was generally
small (1 or 2) for Poisson arrivals, but larger (3 to 10) for
deterministic arrivals;
the difference between the upperbound on s° , and the performance
of the optimal code is extremely small (of the order of 1%) in the
Poisson arrival case. This is the reason why the upperbound does
not appear in Fig. 2.3.
The average codeword length of the optimal code behaves in the
expected fashion; being largest in light traffic, but close to the

average codeword length of the Huffman code in heavy traffic.

32

(e)a/Adoxjus

(0€/1 30 sdais) S*

=

yzbuat
pPIOMapoOd

STPATIIY OTISTUTWIDIBQ

o 0 of Uo punoqaaddn

. 4 4 ©podo teuwrido jo o°
« + 9PpOd uPuWjIUH jO S

o °PO2 Tewrido jo .:umcm: paomapo> abexaae

:S9OUPUIOIID IPO) :Z°Z 2anbig)

- 1

- €

v

(e)a/Adoxjus (o5 /1 3© sdo3s) G-
L 155

A °
LR B A
. o
J °
Yo ° o
+# °
+
i [
A °
v % °
*
L 4
* . °
. " L3
- - o
¥ ™
% e
. . °
- . °
* .
- ® »
e e ©5pod> wrojyiun jo s

i R
-+ + 9poOd uruWIINH JO S °
* .

4+ 4+ ©9poo teurido jo om

opoo jewtjdo 3Jo yjzhHus] paomopod =beasae u .

u3bus|

pIOMBPOD
STPATIIY UOSSTOJ :SPOURPWIOIIDd d2pOD *E°¢ @anbra

S. Review and Generalization of Jelinek and Schneider's Work

Jelinek and Schneider considered the following problem: once

per time unit a memoryless source emits a letter from the alphabet

34

A: = {1,2,...,¢} . Letter i in this alphabet has probability p,>0 .

An encoder maps these source letters into codewords formed by letters
from the alphabet B := {1,2,...,d} . The mapping is as follows: a
complete and proper set of N prefixes cj is defined for the
alphabet A (i.e. every sequence of letters from A starts with one
and only one cj). Prefix cj has length rj and probability qj >
induced by the P; 's. Every cj is mapped into one codeword dj

formed by letters from B . Codeword dj has length mj and the

dj 's are uniquely decodable, so that jfl d j <1 (this is the
Kraft inequality see [Gallager, 1968, p. 47]). Each time the prefix
cj is recognized py the encoder, codeword dj is placed in a buffer
of size B from which one letter is removed every time unit. Jelinek
and Schneider address in detail the problem of what should be done,
when the buffer is empty or overflows.

Their main result is the following: for every block to vari-
able length code (rj constant), or variable length to block code

(mj constant), there exists Kl’Kz >0 and s° such that in the

stationary state, for all B > 1,

(o] (o]
K, d°° B < probability of buffer overflow < £, 4 il

35
where s° is less than or equal to the supremum Sy of the values of

s such that

) e
&5l o (2)
i=1

Su is positive if the entropy (base d) of the source is less than one
(this ensures stability) and is finite if ¢ > d (otherwise there
need be no queueing effect). In the sequel, we always assume that S,
is positive and finite so that s, can be dfined as the largest root
of the equation

1 l+s

[~
a1 g 1%
1

i=1

They give algorithms yielding codes with exponent & arbitra-
rily close to Sy and conjecture that the same result would hold in
variable length to variable length coding. We show now that this
conjecture holds.

To show that the theoretical limit on the exponent s° is the
same for the variable length to variable length codes as for the codes
considered by Jelinek and Schneider, it is erough to show that for
every code there exists a K, > 0 such that for every B > 1

-s B
Pr (Buffer overflow) > K1 " il

Because we consider only the lowerbound, we can ignore the overhead

36

associated with the recovery procedures that have to be used when the
buffer overflows or becomes empty.
Denote by

k t

m the length of the k " codeword placed in the buffer

(k= 1.2.5,.5.)
rk the length of the prefix corresponding to the kth codeword
nk the number of letters in the buffer after the kth codeword
has been placed in it.
Note that mk and rk are strongly dependent, but are independent of
the mj 's and rj 's £k .

We have the relation

a* = Min (B, o* + Max [0, i rk]] k= 1,2,
= Min [B, Max [mk, T rk]]
and we assume n° = 0 .
Now defining
wl =0
w* = Min [B, Mex[0, w*~ ! + m¥ - £X]] R 1,2,...

we see that wk obeys the standard relation for the waiting time in

a queue and that surely nk Z_wk | L 1B - R

Thus the probability of an overflow for the process nk is greater

than or equal to the probability of an overflow for the precess wk
The results of [Wyner, 1974] can be applied %o this last

process, thus for every code, there are K, > 0 and s® such that

1
)
Pr [Buffer overflow] > K1 e where s° is the largest root of

37
N s(m,-r.)
g, d 47 &%
J=l
N s(m,-r.)
e qj a 1) is the Laplace-Stieltjes transform (base d) of
J=i
the distribution of " - m" iy o i 1227 Sh S
[Jelinek and Schneider, 1972] give a proof of the following
Lemma, attributed to Forney:

If s is defined as before, then for all complete and proper

u
set of prefixes, 1 Su
— - P, —
N 1+5u 9 1+su
L g, d =1
o0 B

Now, HBlder's inequality yields

s s
o b} S R
N s (m.-r.)\ Tes § -m \Ted, N I+s 4 I+s
Tal = 2 I L:g 4 >. bl 4 d
j=1 j=1 j=1 7
N -m,
thus by the Lemma and the fact that I d Jil >
j=1
N s (m.-r.)
B d e T
j=1 7 E
with equality if and only if
N -m,
£ ddal
jal r
and !
-m =sr.\l+s
dJs(q.duJ) "
J
N s(m,-r.)
Now, the function C qj d J is a Laplace-Stieltjes transform
j=1

of a probability distribution, thus it is strictly convex (except in a
trivial case), and its value at 0 is 1. We have seen that its value

is greater than or equal to 1 at 5 ? 0 , thus it is greater than 1

for all s >

length codes.

.
u

s

SO

S

(]

<

s
u

for all variable length to variable

38

Chapter 3 39

Flag Encoding4§;hemes

1. Introduction

Consider the problem of finding a binary Huffman code to jointly
encode a binary random variable, which is equal to 1 with probability
.15, and another random variable which takes the values (0,1,2,...,7)
with equal probability. One readily finds that the following code is

a solution:

(0,0) 000 (1,0) 111000
(0,1) 001 (1,1) 111001
(0,2) 010 (1,2) 111010
(0, 3) 011 (3,85 . E13p1l
(0,4) 100 (1,4) 111100
(0,5) 101 (1,5) 111101
(0,6) 1100 (1,6) 111110
(0,7) 1101 % P R B3

This code has an interesting structure: all codewords corresponding to
(1,i) start with 111 , followed by the binary representation of i .
(0,i) 1is encoded into the binary representation of i , except that a
0 1is inserted in third position if the first two digits are 11 . The
same pattern reappears in the joint Huffman encoding of a binary random
variable and a random variable taking with equal probability anyone of
2" values.

This structure offers the possibility of doing the coding in two
steps: first encoding the messages, then modifying the codewords, either
by using a prefix, called a flag, or inserting an extra symbol to avoid
confusion, to encode the binary random variable. The receiver will

recognize if a flag is present, possibly recognize and delete the extra

s

4o

character, then decode the message.

Often in computer communication networks and elsewhere, one
needs to jointly encode messages, furnished by an outside source, and
binary information generated locally, like an '"acknowledgement'' or 'end
of transmission.'" This can be done easily by eventually introducing a
flag, known to the receiver, at the beginning of a message, or at some
other point decided in advance, and inserting extra symbols to avoid
confusion, if necessary.

This strategy is attractive for many reasons: it is simple, does
not cause much delay, nor require much buffering because the message
is not truly reencoded and does not need to be known in its entirety.

It is optimal in some cases, as we have just seen, and can be made
adaptive, as we shall see later.

In this chapter, we will study this strategy in detail . We will
first give a very general algorithm that permits the use?gny flag at any
point in a message. Next we will study the performances of this
strategy and see how it can be optimized. In the following section
we examine the use of adaptive flags to encode messages and batch lengths.
Finally we will see how reducing the class of allowable flags can improve
performances.

Before doing this, we introduce some definitions. By flag we
mean any finite sequence (al...av) of symbols from the alphabet
{0,1,..,d}; v is called the length of the flag (v > 1) while
(al"'av-l) is called the root o (p is possibly empty). We denote

by B8 the symbol, different fram a, that is inserted when necessary

41
to avoid ambiguities, and we will call the sequence (ul I ERER
a1 8) the antiflag.

Fixed-length flags are actually used in IBM Synchronous Data Link
Control to encode message lengths [Donnan and Kersey, 1974]. They are
analyzed in [Camrass and Gallager, 1976]. [Schalkwijk and Post, 1973]

used flags to encode data for transmission on the Binary Symmetric

Channel with Noiseless Feedback.

42

2. General Flag Coding Algorithm

We considerthe following situation: a semi-infinite sequence

(the data) (ul, u2 , «..) of d-ary symbols is furnished to an encoder,

together with a sequence (v1 > v2 ,...) of binary symbols. We give

an algorithm to jointly encode these two streams using flags, i.e. the

output (xl » x2 ,-+-) will consist of the sequence (..ut..) plus

some flags or inserted symbols used to indicate the values of the

vt I's.

We denote by (ai,...,at)
< : :

v =1, by pt the root of this flag, and by 8% the symbol that

the flag to be used after ut if

is to be inserted in case of possible confusion. We place no
restriction on the composition of the flags, except that of course

t t
B#av

t
Before giving the algorithms for coding and decoding we note
that they need the following features to be efficient:

a) we want to either use the flag corresponding to a vt s OF

to make at most one insertion;

b) if d > 2 we want to make an insertion only when it is
necessary, i.e. when the next symbol is the same as the
last flag symbol or the insertion.

We will illustrate these two points. Throughout examples 1

to 3 we use d=3 and

1 1
ag a4) = (0, 0,0, 0 B~ w2

) ’(0,0) B” = 2

43

Example 1: Violation of requirement a)

There we insert sz in the middle of the first flag to indicate that
we are not transmitting the second flag. We transmit the second flag
in Xg and Xg - We have thus used both the flag and the insertion.

The correct way of proceeding is illustrated below.

Example 2:

We realize that if X, 185U, Xz and X, will be interpreted as

the second flag. We then repeat a; in Xg and continue the trans-
mission of the first flag, which will be decoded after the second.
If we had to transmit u1 =1 u2 =]

v =0 Vo L

the output would be

Ly

Example 3:
xt x2 x3 <
) (R MR S
ul Uz Gf Q§
We see that here the second flag appears after u, . To insure that

2

the encoder does not repeat the second flag after u, in example 2

2
we introduce in the algorithm below the indicator variable wt which
is initially set to 1 , then to 0 as soon as an insertion or a flag
corresponding to vt are transmitted. Once w' = 0 no more flag

or insertion corresponding to vt can be sent.

Let us look now at the peculiarities introduced by requirement

b). Here we use d=3 and

3 R e 1
v = 3 (al @, as) = (0, 0., 2) " =0
2 2 2
v, = 2 (al az)) N B” = 2
Example 4:
u1 =1 u2 =0 u3 = 0 u4 = 1
1 3

No insertion is needed, neither for v1 , nor for v2

b5

One sees that the change of value of u4 from 1 to 2 provokes the
appearance of two insertions. The point is that the decision to
insert 82 depends on the value of the next symbol, which itself
depends on the value of the next symbol!

The algorithm given below solves this problem by establishing
a first in first out stack of row vectors s =(sl,sz,53) . Normal
flag or data characters occupy only the first element of the vector An
inserted character associated with v' is represented by the
t).

Ve

triple (7,8%,a

In the previous two examples, the stack would be

s(1) = (2,8%,00) = (2,2,0)

5(2) = (2,8],05)

5(3) - (U4,-,-)

(?,0,2)

(1,-,-) Example 4

(2,-,-) Example S
normal
As soon as a / character enters the stack, the subroutine
""cleanstack' is called. Starting from the end it compares s(j)
with s(j-1) . If sl(j-l) = ? and @l(j) = sz(j-l) or 53(5'1D .

s;(j-1) is replaced by s,(j-1) ; if s,(j-1) = ? but

46
Sl(j) # (sz(j-l) and ss(j-l)) , s(j-1) is deleted and the stack

collapsed.
Thus in Example 4 the following transformation occurs
(1,2,0) (?,2,0) a,-,-)
€2,0,2) > (1,-,-) >
1,-,-).
whereas in Example 5
(7.2,0) (?,2,0) 2,-,-)
(,0,2) - (0,-,-) + (0,-,-
2,-,-) 2,-,-) 2,-,-)
The stack is then emptied to yield part of the output sequence.
Before giving the algorithms we make precise 2 syntactic points:
-) (ﬁi,.., Oj) means the empty set if i > j
-) In a "do loop" of the form "For i := a step b until c do.."

no statement is executed if (sign b) a > (sign b) ¢ .

Most of the notation has been explzined above or is self
evident, except (01,...0t') . It represents the output of the
decoder. It is mimicked by the encoder. At every instant before
t" + t" + 1 , these sequences are equal in both encoder and receiver.

This, together with the fact that a',...,a% "1 is equal to

ul,...,ut = guarantees unique decodability of the (ut) sequence.
Unique decodability of the (vt) sequence is guaranteed because the

flag to be used after ut appears if and only if vt o= I

L7

Coding Algorithm

. . : i z
cl Set the binary variables w , i >0, to 1

vo and wo to 0
c2 Set the integer variables t , t' , t", stacksize to 0

€3 For J i= 0@ Step 1 uatil t' = 1 -do

c4 begin
cs TR e AT R e B e
cé then
e7 begin
c8 wt' a0
c9 stacksize := stacksize + 1
c10 if vt =g
cll then s(stacksize) := (?,St'-j, u?lij)
¢iZ else
cl3 begin
R LY
cl4 51(stack51ze).= aj+l
cls th i g = o
clé cleanstack
cl?7 end
cl8 end
cl9 else continue

c20 end

) R L L

22 if vi=1 and w' =1
c23 then Qt' 1= az,_t
c24’ else

c25 begin

c26 AT N

c27 ﬁt' 1= ut

c28 end

c29 stacksize := stacksize + 1

! At
c30 sl(stacksize) = ut

c3l cleanstack

c32 go to c3

csl
cs2
cs3
cs4
csS
cs6é
cs7
cs8
cs9
csl10

csll

csl3
csl4
csl5
cslé
csl7
csl8

csl9

L9
Clean Stack
LU

For i := stacksize Step -1 until 2 do
begin
if sl(i-l) =?
then
begin
if sl(i) = sz(i-l) or Sl(i) = ssii-l)
then sl(i—l) i= sz(i-l)
else
begin
stacksize := stacksize - 1
for j := i-1 Step 1 until stacksize do
s(§) = s(i+1)
end

end
else continue
end
: L " t'"+i .
For i := 1 until stacksize do x = sl(x)

t" := t" + stacksize

stacksize := 0

L v 50
| Decoding Algorithm

dl Set the binary variables it ; i S ata B0 10

Wi i W e B0
d2 Set the integer variables t' , t" to 0
d3 S e T

d4 For j := 0 Step 1l until t'-1 do

ds begin

dé TR i G SR RN B O B

d7 then » i
d8 begin

d9 s R !
d10 if x° = a?lij J
dll then |
d12] begin

d13 U =

d14 £t =t -

d1s go to d3

dlé end

d17 else

d18 begin

d19 if x* =gt

d20 then ¢t =tV a 1

dz21 else continue

d22 end

d23 end

51

d24 else continue
d2s end

d26 t' :=.t' &+ 1}

a7 6t st

d28 go to d3

A program implementing these algorithms has been written in
Basic. Data and flag compositions were randomly chosen in a ternary
alphabet, for t=1 to 100 . The output of the coding program was
fed into the decoding program which decoded it correctly.

As final remark, we note that there is no reason for all
flags to be known in advance. All that is needed is that if the flag
corresponding to vt has length Ve the flag corresponding to vt+i 5
must either be known at time t , or it must be known that its lengti-
is greater than vt-i « this for i=l,2,...,vt-l . This guarantees
that the transmission of the flag corresponding to vt will not be

interrupted because of the flag used to signal vt+1

¥

3. Performance Analysis and Optimization 52

A. Method

We will investigate in this section the performances of the pre-
vious algorithm, and see how they can be optimized; more precisely, we
will study how to minimize the total average number of symbols used (flag
and inserted characters) because of the possible presence of a flag at
time t . We denote by v the length of this flag, and by p the
probability that it will be used.

We have immediately that the average number of symbols used is
equal to pv + (1-p) Pr (insertion is needed).

We note that v > 1 whereas Pr (insertion is needed) <1 , so
that a flag should never be used to indicate an event of probability
greater “han .5 ; rather a flag should be used to indicate the
complement of this event. From now on we will assume p < .5,

In general, Pr (insertion is needed) is a complicated function
of the data process statistics, of the flag composition and of the
compositions and probabilities of insertion of the neighboring flags.

To avoid this difficulty we use a trick dear to information theorists,
i.e. we will average Pr (insertion is needed) over the ensemble of flag
compositions and insertion symbols. If the flag is not used after time

e
e

t , an insertion due to this flag will occur if the symbols (X

Naya "
i 1, Y g) are equal to the flag or the antiflag. If their
compositions are chosen randomly, the probability of an insertion is

24"

We will therefore minimize on v the function f(p,v) defined
by £(p,v) = pv + (1-p) 2d™Y . We will denote by vo(p) a value of
v that minimizes f(p,v)

We stress that the value of f(p,v) 1is an ensemble average over

53

the composition of the flag, and that there is no guarantee that a
particular flag will perform as well. However, we are sure that for
every u and v processes there will be at least a flag composition that
will achieve this or a better result. Consequently, we do not claim
that v°(p) is the length of the flag which causes the use of the mini-
mum average number of symbols, but only that there is a flag of length
vo(p) which will use no more than an average of f(p,vo(p)) symbols

for each given u and v process.

B. Optimization and Performance Analysis

If we allow v to take real values, one checks that for p
fixed £(p,v) 1is convex in v , and takes its minimum value
p(logd l;E + logd (2 loge d) + logd e) at v = logd 1;2 + logd(Z loge gy
Of course, vo(p) must be integer, and by convexity of £f(p,v) one sees
thaf it must be equal to rb'(pf] or Lv'(p)+1j where v'(p) is such that
flp,v' () = £(p,v'(p) + 1)
This equation yields

1- 2(d-
\)'(p) = logd —p—2+]_()gd —-(——dl_).

(p) = [logy l—pR + logy &H’Q]

or l}ogd léa-* logd Z(d-l)J

SO

Moreover, for every p the value of f(p,vo(p)) (which is a piecewise
linear function of p (see fig.3.)) will be lowerbounded by the minimum

value on v of £(p,v) and upperbounded by £f(p,v'(p)) thus

}a
p(logy —1;2 + logy (2 log, d) + log, e) < £(p,v’(p))

1 g° 9° b 7
M = ¥ a e s - t t 0
»] : '
% { ' '
! | ' '
- " 1 '
.... | . . z’
c.] | &
. 1 ']
' 1 '
.]]]
l. - - - 4 v.
% i 1]
" ' .
' ' -
M) [
. ' ' L
' ' g
...] 8.
Y (] ...
= “ '
S ' 8"
o SR
o 1.
.o-c-—
.nc.n.- .o..-..]
I=0 . 3 |
D I R AQVI
||||I|iluA~->u-N (d-1) + od =0 ¢=0/ p=a/g=n 9=A
- A |

sa1dajeals Feyy jo aduemrojreg :['g oandry

55

d
T

2 p (log, lga + logy 2(951)+
Specializing these results to the case d=2 , we see that vo(p)
- r1°82 l;R] or Llogz l%ﬂ + 1] (figure 32) or equivalently vo(p)
is such that

1 A
—— & £
i, T

and the value of f(p,vo(p)) is lowerbounded by p(log s A 1.91393)
2 p

and upperbounded by p(log2 152)

It is interesting to compare the average number of bits (counting
a symbol as log2 d bits) used by this scheme to the binary entropy
H): = -p log2 p - (1-p) log, (1-p) for the following reason: in
general H(p) 1is not a lowerbound to the average number of bits used
when a particular flag is utilized, because we are jointly encoding the
data and the fact that an event occurs. However if the entropy of the
data is log2 d bits per symbol, and if

the only event to be signalled is the one we are considering at
time t , H(p) is a lowerbound to the average number of bits used by
any scheme to indicate the pcssible occurrence of the event. Because
f(p,v) does not depend on any hypothesis about the data on the other
flags, H(p) 1is a lowerbound to (log2 d) f(p,v)

From this remark and the bounds developed earlier, one finds
immediately:

Max(0, p(log,(2 log, d) + (log, e)) + log, (1-p))

2 (log, d) £(p, VO (p)) - H(p)

56

mNmOHI

T 6 L 9 S 14 € 4 T
i ' ' bt f ey
1 | ' | | 1 | ' | ' |
' ' ! y ') \ ' \ ' .
! 1 ' ! ' ' ' ' ' ')
'] ! N
1]] "])] 1] ' FE
' ' | | ! |
' ' \ ' |
] p |]] : | : . "
oy tora tad o g g S8 EIE Bl e
[“ ' ' ! : | . '
]
4 1 ' [' , ! v '
]] | ' '] I ' 4
' \ ' 1 ' €
! : ' v] ! (]]
| ! ¥ ' 0 1 ' '
| ! ' : ! ' ' .
[') !] | f e
] ' ! ' 1]
!]] \ 1
] | !] ' ' (]
|] "] 1 “.III_- G
|] '] 1 "
J ! | " ! [
] " ') TIIIIII|IL . 9
:] !] [
] g) ' :
] INI
] ! (]]
[" ' '
] '
]
! RS ﬁ
' ' - 8
' i '
! ' '
! ey p
] [6
] |
| : z=p
PN |
(d) o0\ k OT

d JO NOILONNA ¥ SY HIONIT OVId TYWILHO *:

'S muno1d

< pllog, (244 + (log,) (G5) + log, (1-p) 57
< p(log, (% d—;l) + (log, d) (d—c_ly))
The last inequality uses the fact that log2 (1-p) < -p log2 e .
In particular, for d=2 we obtain
Max(0, p(1.91393) + log, (1-p)) < £(p, v’ (p)) - H(p)
< 2p + log, (1-p)
< .55730 p
For small p , for which log2 (1-p) = -p log2 @

.47123 p < £(p, v°(p)) - H(p) < .55730 p . (1)

o
As p goes to 0, £(p, v (p)) - H(p) oscillates between .47123 and

p
.55730 . These facts will be used later.

For d=2 , then, flag schemes are quite efficient, but they dete-
riorate as d increases: the lowerbound on f(p,v) - H(p) increases

like log2 (loge d) while the upperbound increases like log2 el s

C. Sensitivity Analysis

We will investigate here the sensitivity of the performance of the
flag schemes. Two issues are at hand: First, how does a wrong choice
of v degrade f(p,v) for a given p ? Second, if p is imperfectly
known, how does an error in the estimate of p affect the choice of the
flag length? We will treat these problems for d=2 only,

The first point is easy to treat. If one uses a flag of length
vo(p) + k in place of vo(p) the penalty is equal to f£f(p, vo(p) + k)
- £(p, v (p))

o 0
= (k + 2-(\) (P)‘l) - 2'(\) (P)‘k‘l))(p x = 1)
- 4 (p)+k + 1

k>0

58
- (P)+k-1) -0 (p)-1) 1
(2 P v P - K) (—g—— - Pk < 0
o V (PI*k,
These are saw-toothed functions of p , and are plotted in figure 3 3
for k=1 and k=-1 . These expressions are exact but do not give much
insight, so we will derive simple upperbounds. We recall that £(p,V)
is a convex function of Vv , and that v'(p) f_v°(p) <vi(p) +1.
Thus, by convexity, for k > 0

f(P,Vo(P) + k) < 5 f(p,v' (p)+1+k)

T k+v! (p)+1-v° (p)

L, V' (P)+1-° (p)
k+v' (p)+1-vo(p)

£(p,v° (p))
and

! =1 sl o Vd
£(p, V' (p)o1) ¢ LI D) 07)1k
k+v' (p)+1-v- (p)

. X £0p,v° (p))

(k+v' (p)+1-v° (p) 1
Adding these inequalities, one obtains

£,V () + k) + £(p,v'(p) + 1) < £(p,v'(p) + 1 + k)
« £p,v° ()

or
£p,v° () + k) - £,V () < £(p,v'(P) + 1 + k)
-f(p,v'(p) + 1)
Computing the right hand side member, one gets
£(p,v°() + k) - £,°(0)) & &k + 27F 1) p

Similarly, for k < 0 , one has

o '
£(p,v' (k)+k) + 2RIV’ (p)

£(p,V° (p)+k) < — -
v (p)-v'(p)-k v (p)-v' (p)-k

£p,v° (p))

59

o 1
£,V (p)) € ——BIV B £p,ur(p)ak) 4 —— :
vo(p)-v'(p)-k v (p)-v'(p)-k

£p,v° (P))

Adding these inequalities, one obtains
£,V (P)+k) + £(p,v' (P)) < £(p,V' (K)+K) + £(p,V°(p))
and thus

£(p,v°(p)+k) - £(p,v0(p)) < (k +ZX D 2y p

These upperbounds are plotted in figure 3.3 for k=1 and k=-1 . The
penalty is always less then .5p if one uses flagllength too large
by one symbol, whereas it is less than p if the length is too small
by one symbol. The same pattern appears for larger lkl , the penalty
increasing roughly like kp for k > 0 , but like Z'kp for k<0 .

It will be important later to have an upperbound on £(p,2) - H(p)
for p between 1/3 and 1/2 , i.e. in the region where V’(p) = 1,
because flags of length 1 have some awkward properties, and we will
wish to use flags of length 2 instead. We want an upperbound of the
form ap > f(p,2) - H(p) . Because this function is convex, t?e tightest
upperbound of this form will equal it at p =1/3 or p=1/2 , so

¢ o Max (5 (£01/3,2) - H(1/3)), 2 (£Q1/2,2) - H(L/2))
® 5 R 3

The second point, the sensitivity of the optimal length to an
error in the estimate of p 1is more difficult to assess, due to the
discontinuities in vo(p) (figure 3,2). A good rule of thumb is
that when p is overestimated or underestimated by about a factor of 2,

the resulting flag length is too small or too large by one symbol.

PSSR
: 5 sebe et WY
\ cccccccccc ~|"¥

: . —_— 1 =)

yi3ua Fery rewradp ayz Fursn 1ou xoj Aireuay

punoq xaddn

uotrssaxdxa 3dexa

(D) n D)3 - (1+(d) 7*D)3

i¢'¢ aandrty

61

4. Adaptive Flag Stategies to Encode Batch and Message Lengths

We consider the following problem: a batch of messages must be
transmitted on a noiseless binary iink. We denote by m the random

number of messages in a batch, and by bl’b the lengths (number

PLRRE
of bits) of these messages. Being motivated by the case whee a batch
would be the set of messages in a busy period of a G/G/1 queue, we
model the bi 's as independent identically distributed random
variables, but we let the probability of having m messages in a
batch depend on the lengths of these messages as follows.
Let (2,S,P) be a probability space.
bl’bZ"" be a sequence of measurable functigns bi:Q»xNH
m be a measurable function m:Q>IN'" R
Bi be the smallest o - algebra making bi
measurable
We require the bi 's and m to have the following properties:
the bi 's are independent and have a probability
mass function B

E((w)|3i) = E(

(w))

Im(w)<i Imw)<i

b1 and m have finite means
In words, the second property says that the knowledge of bi
does not give any information as to whether or not m is smaller
than i .
Our problem is that not onlymust we transmit the messages, but
we must also indicate the number of messages in the batch and their

lengths. We assume the starting time of the transmission to be known

to the receiver. We will examine different schemes to furnish this
information, and we will evaluate their performances. Before doing this,
we characterize precisely what we mean, and compute the entropy of the
information we are sending.

We want to specify to the receiver which event from the countable
set A of disjoint events, A: ={{w: m(w) = k, bl(m) 2 xl,...,bk(w) =
xk}: K, Xisee s Xy € N} , occurred. Note that UA = Q . To obtain a
simple expression when computing the entropy of A , it is handy to

++ ++. k

define the functions Rk’ keN , by Rk: W) > R

P({w: m(w)=k, bltw)=x1,...bk(w)=xk})
Ry o) = ;
m B (x,)
i=1

k
if T B™x,) >0
i=1 .

13 otherwise

In words, Rk(bl,...,bk) is the conditional probability that the batch
contains k messages, given the lengths of the first k messages.
We often denote Rk(bl,...,bk) by RR(E)
It is now easy to write the entropy of A as
m(w) 5
HA = E(-logy(Ry () () T B0 (@)))
m (w)

- s(-_zl log, B" (b, (@)) - log, Ry @920
i=

53
= E(m) H(B) - E(log, Ry (B(w))

by the theorem proved in Appendix A, which holds because of the

conditions imposed earlier on the bi 's and m . H(B) denotes

-5 -2 log, 8™ (i)
i=1

This can be rewritten

H(A) = E(m) H(B) - E I R, (b(w)) log, R, (b(w))

i=1
and can be put under the form
s R, (B(w))
H(A) = E(m) H(B) + E Z R, ; (b(w)H|-=——— (3)
i=1 Ry ; (B(w))
with RS := 1
Q
e 3
R, =1 = L R i s 1
1 2 1 -—

This form will be useful later.

We will refer to the second term in (3) as the conditional
entropy of the number of messages given their lengths. It is smaller
than the entropy of the number of messages which itself is bounded by
E(m) H(1/E(m)), [Gallager, 1968, pp. 25 and 507]. This upperbound
is achieved if m is geometrically distributed and independent of the
message lengths. Because E(m) H(1/E(m)) is approximately equal to
logz(eE(m)) the second term in (3) is generally smaller than the
first.

We go on to the analysis of some coding schemes to transmit the

information in A . From the point of view of minimizing the expected

64

codeword length, the optimum would be to jointly encode the numbér and
lengths of the messages. This method uses at most one more bit than
the theoretical minimum, but is generally infeasible, and can lead to
large delays because all messages must be known to the transmitter
before the appropriate codeword can be found.

It would be easier to encode separately the number of messages
and their lengths, in such a way that a message could be transmitted
and decoded correctly before all messages in the batch have been pro-
cessed by the transmitter. We will examine three strategies in this
class, using flags.

The first wo strategies have in common that they transmit
sequentially each message together with a codeword indicating its
length. If the codewords are well chosen, this will require an average
number of bits between E(m) H(B) and E(m)(H(B)+1)

To indicate the end of a batch, the first strategy transmits a
flag of length v after the last message, and makes appropriate
insertions in the other messages. By the usual random coding
argument, this will use an average of v+(E(m)-1)2'(v'1L E(m)(E%aT -

1

a - E(m))z-(y-l) bits, so that, as we have seen earlier, the optimum

V= vo(l/E(m)) if E(m) >2 . If E(m) <2, the flag should be used
after a message if it is not the last in the batch. We do not consider
this case any further. From previous studies this choice of flag
length will use at most an average of logz(E(m)-l) + 2 bits, which
lies between E(m) H(1/E(m)) and E(m) H(1/E(m)) + .55730. Thus this

strategy is efficient if the conditional entropy of the number of

65

messages given their lengths is close to its maximum.

The second strategy, using variable flag lengths, is efficient
under all circumstances. The idea is that at the end of the trans-
mission of the ith message, both transmitter and receiver know
bl’bZ""’bi , and can compute R; (b) and Rg('g_) . The cost of using

a flag of length Vv to indicate that message i is the last one in

the batch, given there are more than i-1 messages in the batch, is

Ri(:D-) Rical) -V
- V o+ " 2 « 2 . Thus Vv should be a function of
Rl Ko
0 Ri U-)-) c
; - s e S $ 1
bl’bZ""’bi' v sy - i€ Ri(b__) <% Ri-lal) , and the
Py G

strategy should be changed as indicated earlier if Ri ®) > % R‘;‘lal)
Given b this scheme uses less than
R,(®) | R ®)

c
R) RS ®

H .55730 bits

[iarey =

We will incur this cost if the number of messages in the batch is

greater than i-1 , so the average total number of bits used is less

than
= R, (b)
E L (Ry_; () H|= + R; (b) .55730)
i=1 Ri-lal)
) Riai)
i=1 RS, (®)

(by comparison with (3)) 5
which As very efficient. Note that if Ri(p_) "y Ri-lol) okl Eor all . Y.

we have from formula (1) that the average number of bits used is

larger than

66

®© R. (b)
E L R, 1(b) Hootmeesd + 47123 , approximately.
0 R 8 .
i-1(b)

The only problem with this strategy is that in general it does
not meet the requirement of the general flag coding algorithm of
Section 2 that if a flag of length Vv may be inserted at time ¢t ,
flagsstarting at time t+i must either be of length greater than
v-i , or be known to both transmitter and receiver at time t . There
are two remedies to this: one is to assume that the message lengths
are larger than the longest flag, which often makes sense; the other
is to use a special class of flags developped in the next section.

They do not have this requirement, but two new problems arise then.

The averaging on the flag composition to get £(p,v) does not work any-
more, and this special class does not contain flags of length one.

These difficulties can be overcome: on one hand, if for all j all
messages of length j are equally likely, f£(p,v) will still be an
upperbound on the average number of bits used by a flag of length Vv
from this class; on the other hand we have shown in (2) that the
upperbound £(p,v(p)) - H(p) < p .55730 still holds if one uses flag
of length 2 instead of flags of unit length, thus the penalty for not
using the optimal length is not unbearable.

To conclude the analysis of this variable flag length algorithm,
we note that it can also be used to encode the length of a message. It
is sufficient to replace the word message by the word symbol in the
previous description, and to use flags from the special class mentioned
above. If for all j all messages of length j are equally likely,

the conclusion that the average number of bits used will be less than

67
the entropy of the message length + .55730 still holds.

The third strategy works only in the case where the messages
have a variable length. It is based on the observation by [Gallager,
1978] that any Huffman code can be modified so that a 2 symbol prefix,
say 00 , is not used, and so that the resulting redundancy is between
.41503 and 1. The strategy is as follows: transmit sequentially each
message together with a modified Huffman codeword indicating its length.
After the last message in the batch, send 00. The number of bits used
by this strategy lies between E(m) (H(B) + .41503)+ 2 and E(m) (H(B)
+ 1) + 2 . This strategy is indeed a flag strategy, so it must be less
efficient then the previous optimal algorithm, but it is eitremely easy

to implement.

68

S. Desirable Flag Compositions

As we have noted earlier, the algorithm given in Section 2 suffers
from the fact that insertions and flags may appear in the middle of
other flags, and cansequently that the vt 's are not necessarily
received in order, and that the flag corresponding to vt may have to
be specified before time t . This complicates the algorithm and removes
some freedom in using adaptive flags.

The problem of flags appearing in flags could be solved at the
expense of making more insertions, but this can lead to more than one
insertion per possible flag use and the analysis of Section 3 breaks
down. We will not pursue this approach. |

Instead we look at this in the context of Sections 3 and 4, where
the important parameter from the user's point of view is the flag length,
not the flag composition. We assume that we have a class of flags
containing at most one flag of each length and we use only flags from
this class in the following algorithms. The main difference between
these algorithms and those of Section 2 is that flags are inserted at
once (c¢'l9, c'20, c¢'2l) whereas in Section 2 a check was made between
flag symbols to see if insertions were needed. Thus here no flags or
insertions will appear in flags. Of course these algorithms will not
work with all classes; we say that a class is allowable if the composi-

tions of the flags in the class are such that the decoding algorithm

yields the correct output for all associations of flags in the class

: t
with v .

Coding Algorithm

Set the integer variables t and t"

Set the integer variable i to -1

For] =0 Step 1l until i do
begin

if (ut'3+l,...,ut) = 0% and

then
begin

t cw gt s]

xtu W= Bt-J
I =3«
end

else continue
end
t =g]

£ omigt - g

then
begin
for j=1 Step 1 until i

begin

69

0",

t+l t-j

e'23

c'24
c*25
c'26
c'27

c'28

¢35
c'36
€'3/
c'38

c'38

if (ut'j*l,...,ut) =0"") and a§ = gt)
or at'J
t-]

then

begin
) ALY 2 AT R
xt" = gt
end
else continue
end °
for j=1 Step 1 until v do
begin

et .

end
else continue

go to c'3

70

[——==

d*l
d'2
d's
d'4
d's
d'6
a7
d's
d'9
d'10
d'1l
dr12
d'13
d'14
d i5
d'1é
d'17
d'is
d'19
d'20
d'21
d'22
d'23
d'24

d'2s

s)

Decoding Algorithm

Set the integer variables t and t" to 0
Set the integer variable i to -1
Set the binary variables Gi P e i T
U p e
For j := 0 Step 1l pntil i do
begin
i (@I, a0 = et
then
begin
THE Y
then
begin
i=j-1
el it
end
else
begin
if xb = ot-d

then

t" ‘= t“*l

end

d'26 else continue

d'27 end
d'28 end
d'29 else continue

d'30 t = t3l

d'31 4" = x

73

Note that these algorithms are simpler than those given in Section
2, and the flags are inserted and received in order. This explains the
role of i : if the last flag or insertion were sent at time t-i , it
is useless to search for a root in lines c'4, c'lS and d'6 past t-i+l.
Thus the presence of i 1limits the scope of the search, and makes sure
that at most one insertion occurs for each flag.

We will now look at conditions for classes to be allowable. With-
out precautions, problems can arise in two cases because part of a flag

may be misinterpreted as another flag or an insertion

Case a)
ew| ta &t
“l q:. p:s:‘
¢ & & ke ¢ ' ¢
«, | o Kigy | Kioa Kior ' X
&l
" t . t+i t+i :
if (o, . Y e t+i . g
i+l i 1 Veui OT B, 2321, I, g SN

; . & +1
the receiver may detect that a flag has been used at time t+i , or Bt 1,

when the flag is used at time t . The same problem occurs in
Case b)
&l ki e e ",
d’ “1 “»& “zoi .
el ¢ ¢ ¢
o &, o o
0(‘ 1 Y v,
t t t-i t-i t-i : :
(al ...avt-i_i) = (aloi’ Ve 'avt-i =) 121,71 ¢ eyl < Ve

If the flag compositions are such that these cases never arise, all flags

74
and insertions will be correctly recognized, and thus also the data. So

a class is allowable if and only if cases a) and b) cannot occur. From
this we proceed to prove three results:
1) We give explicit conditions for a class containing only one flag
to be allowable, and we determine the number of such classes.
2) We show that no class containing a flag of length 1 and another
flag is allowable if d=2 , but many exist if d > 2 .
3) We prove that if d=2 there are only two kinds of allowable
classes containing a flag of length 2 .
To derive the first result, we note that if only one flag K (say
CEREE uj) with 2 being the possible insertion) is allowed in a
class, situation a) never occurs while situation b) will not occur for

j £ 2 or if the following j-2 1inequalities are verified

(ul N IRERD uj-l) # (a2 e aj or B8)

(al ’ az)--;aj_z) f (03:--, aj or 3)

(@) » a,) A (@5, 95 o1 8) (4)
The ith condition may be interpreted as ''the flag does not have
period 1i'" , because if it is not true, T4

- B

B ik B L8
j-i j

A flag satisfying all these conditions will be called strong; another
flag will be called weak. To check if a flag is strong, it is enough

to check the last Llélﬂ conditions, for if a flag has period i ,

}] =41 « [%J -1, it has also period mi for some mi € {[%J, s
j-3, j-2} .

It is of academic interest to know the number of strong flags of
length. j . We will comphte how many among the dj'1 possible roots
satisfy (4) once Gj and B8 have been chosen.

For pedagogical reasons we start by determining the number éf

roots such that

(al e Y v (aj_l & ot Eon ity aj-l) o aml 2 e (5)

i
These roots will be called strong and their number denoted by dJ'ly(j-l);
the other roots will be called weak. If a root is weak, let io be the °

j-2
least i for which (5) does not hold. Then as we have seen, io 5.[i§—1.

Then (@i,c:e,0:) = (@. . ;o.0;%.) and is a strong root of a flag of
; L s cilia f=1=2

length i°+1 . For every such root there will be d y

distinct

weak roots of length j-1 (can take all possible

a, goveplls 1 s
1+l gl 1

)
values). Thus the number of weak roots of length j-1 1is equal to
j-1
. - e 1 S d
#la ey e 3 Ay
i=1
or ¥
Izl
yy =1- & X ®)
i=1 d

k :
We see that vy(2k) = y(2k+l) =1 - I 1£%l and that y is a
d

i=1
decreasing non negative function of k , thus it has a limit, vy(«) say,
as k increases. We will bound vy(=) , and show that it is positive.
From (6) one finds
k

y(4ke2) = 2 = (1 + éq D
i=0 " d

y(2i)
21

with v(0] :=] 76

s0 v(=) = y(8ke2) - 1+ 3 5 XED
& X
i=k+1 d

and because vy 1is a decreasing function

31
vio) < yUARAZ) - (L%) ylwg s "X ‘%{
i=k+1 d
> " " Y(2k+2) "
Thus
y(4ks2) - P v(2ke2) < y(=) < y(dke2)
(d-1) d
1 (7)
3 ey, Yo
(d-1) d +1
In particular, for k=0 , using the fact that y(2) =1 - é
1 1 Jie 3 Bl 1
0<l-F-3<y(®)<l-3=-==(-——"
8 af ¢ & d%-ds1

These bounds are extremely tight for d >> 1 .

We are grateful to Prof. Massey for pointing out that l&ielsen,
1973J obtained by a similar method but in a different context the
same expression for +y(i) , and the same lowerbound for y(=) . A
strong root is called there bifix-free. Tables of numerical values

are also given; in particular for d=2 ,

y(0) =1

y(2) = .5

y(4) = 375

y(6) = .3125

v(8) = .2881

y(=) = .2678 whereas from (7) with k=2

.2675 < y(=») < .2690

77
Now that we have seen the mechanics of the proof, we attack the
problem of finding the number of strong flags of length j , terminating
with a given aj and using a given 8 as possible insertion. We
define this number as dJ 15(j)

If a flag is weak, there is a smallest i ¢{2,3,...,1 + l%L }

such that

vy OF 8)

(al,...,a.) = (aj+1-i"' j

i
On the other hand from every strong flag of length i one can build

2 d77“% distinct weak flags of length j > 21 , say (ai,...,ug)

By choosing o) = Q.,...;0! = . or & , al . ;oML oo e,
y g 1 1! E] 1 l b J‘l"'l 1’ ’ J l ’

and choosing a ;8. . arbitrarily. From every strong flag of

s L e R

length i such that @) = @, , one can obtain the weak flag
(al,...,ai_l,ai,az,...,ai) of length 2i-1 . Noting, by induction
on i , that the fraction of strong flags of length i that have

@ = ay is 2/d , we can write in general

1
j=1
i 3 e S
Fra e e 1 267 iy
ju2
thus j

T

§(3) =1 -2 § 4 §(1)
jn2

As was the case for y , § 1is a non increasing function of i :

j ol
5(23) = 6(25-1) = 1+ 3.2 T da"ls(i) where 8(1) := 1.
i=]1

We can thus write
k J

- 201 %) P S Gl P PYTIRR
i=0

§(4k+3) = 1 +

(=N]

78

and

(=) := lim 8(i) = 86(4ks3) - 2(1+éa : 4" @ D5025.3) Yro 0
jrm j=k+1

As before this permits bounding §(=)

1 1
§(Ak+3) - —gremmbom—— §(2ks3) < §(=) < 8(4k+3) -
d***24.1)/2 1+ d¥*24.1y/2

§(4k+3) k> 0
Using the fact that &(3) = 1 - 2/d% :

2 1 2 1
1-=0 -) < §(») < (1 - =)(1 -)
a2 d°(d-1)/2 4° 1+ d°(3-1)/2

Of course for the binary case 6&(i+l) = v(i)

This concludes the analysis of classes: containing only one flag.

To show the second result mentioned above, note that situation a)
cannot be avoided if d=2 and if the flag used at time t has length
j > 1 while the flag used at time t+1 has unit length. On the
other hand, if d=3 and the flags are 0, 02, 022 etc. with "1"
being eventually inserted, situations a) and b) never occur.

We prove now the third result: suppose that d=2 and that a
class cantains a flag of length 2 and other flags. If the root of
the flag of length 2 is "0" , situation a) is avoided only by
having all symbols in che other flags, except the first and the last,
be equal to "1" . Because the flags must be strong, the first symbol
must be different from the penultimate. Thus we conclude that the
root of a flag must have the form (0,1,1,...,1) . If the root of

the flag of length 2 1is '"1" , the same conclusion arises, with all

"0"s replaced by '"l1" , and conversely. In both cases, the last

79

symbol can be chosen freely independently in all flags. One checks

that these classes are allowable.

80
Chapter 4

Encoding Message Starting Times

1. Introduction

We consider in this chapter a seemingly trivial problem, which
was mentioned briefly in Section 2 of Chapter2 . We will not be able
to solve it completely, but we will gain some insight into the peculia-
rities of making information theoretic and coding theoretic statements
in a queuing environment.

The model is the following: an asynchronous memoryless station-
ary source emits messages which are stored in an infinite buffer and
transmitted over a noiseless synchronous binary link with a capacity of
1 bit per unit of time. We assume that the interemission times and
message lengths are mutually independent random variables and that each
message contains a ''codeword' indicating its length. By this we mean
that if the receiver knows when a message starts it will be able to
detect the end of the message from the information provided by the mes-
sage itself. This can be done by prefixing a message with a codeword
indicating its length, or by using flags as explained in Chapter 3 , or
simply by using messages that are codewords from a prefix condition code,
as in Chapter 2 . We denote an interarrival (service) time by a (b)
and by A (B) its probability distribution function, and assume

Ea > Eb > 0

81

2. Discussion of the Problem

Because the arrivals and lengths are random, it may happen that
the buffer becomes empty. The iine being synchronous, something must
still be sent out, and the receiver must be able to distinguish these
idle bits from the data bits. From another point of view, this is equi-
valent to recognizing when the line becomes busy, i.e. detecting the
message starting times. There are many possible strategies to do this,
the most obvious one being to transmit "0" 's when the line is idle, and
prefix every message with a '"1" . Naturally one asks which is the
'"best" strategy. We should first agree on the meaning of 'best."

If we define as protocol bit a bit which is not a message bit (in
the previous example, the idle bits "(' and the prefix bits "1" would be
the protocol bits), it seems reasonable to find the strategy which mini-
mizes the average number of protocol bits per message, i.e. the limit
(if it exists and is constant with probability one) as the time goes to
infinity of the number of protocol bits sent to the number of message
arrivals. Unfortunately this criterion is most useless, for all strate-
gies resulting in a stable system have the same average number of proto-
col bits per message, and this number is equal to Ea - Eb .This is so
because if the system is stable, the law of large numbers says that the
average total number of bits per message is Ea , and Eb of these are
message bits.

This result is thus trivial, although surprising at first sight.
Its information thearetic meaning is that although the amount of infor-

mation carried during an idle period may be small, it cannot be encoded

82

efficiently. To give more sense to the concept of protocol bit, we can
do the following: suppose that we have at our disposition an infinite
reserve of "low priority" bits (chis could represent some kind of service
information) that we can transmit when we wish. Thus there is no reason
for the line to be idle, but we may still need protocol bits (defined as
bits that are not data nor low priority bits) to differentiate between
the two other kinds of bits. Note that, as before, for a stable system,
the expected number of protocol bits per message plus the expected
number of low priority bits per message equals Ea - Eb . We can now ask
the question: what is the infimum of the average number of protocol bits
per message? The answer is 0 , and this can be approached by the follow-
ing strategy: send £ (meant to be large) low priérity bits, then a
codeword indicating the number .n of message arrivals since the last
such codeword has been sent, then the n messages. Repeat the process.
The average number of protocol bits per message will be equal to the
expected codeword length divided by En. If the codewords are well
chosen, the expected codeword length will be smaller than (En+1)H(1/ (En+1)+1
[Gallager, 1968, p. 507], thuz?Zverage number of protocol bits per
message is smaller than (1+1/En)H(14Zn+1))+1/En. Clearly, as £ goes to = so
does En , thus the average number of protocol bits per message goes to
zero. The drawback of this strategy is that the average message waiting
time goes to infinity as £ increases.

A meaningful problem would thus be to find a coding scheme mini-
mizing the average message waiting time for a given average

number of protocol bits per message. We are unable to solve this pro-

83
blem, or even to lowerbound the expected waiting time. We will be

content to study the following class of flag strategies:

A

a
L4

Yes Is the buffer empty?

Send a message

+ Send a flag
possible insertion

Send some Send some

low priority bits low priority bits

Ideally we should let this scheme be adaptive, i.e. we should
allow flag and low priority bit sequence lengths to be functions of the
times of reception and lengths of the previous messages, flags and low
priority bit sequences. This is known to the receiver. In light of the
results of Chapter 3 and of the fact that this scheme sends flags when

the buffer is empty, which has a favorable influence on the message

8L

waiting time, one expects that the best scheme from this class must be
nearly optimal. Unfortunately this isstill too complex to analyze, and

here we restrict ourself to the following scheme:

3
>

No

g _
rl‘

Is the buffer empty?

Send a message
(let b be its length)

+
possible insertion

Send Eo(b)

low priority bits

Send flag
of length Vs
Is the buffer empty?
Send 52 Send flag
low priority bits of length Y1
Send &
low priority bits
< < i

We have thus removed much of the variability of the flag and low

priority bit sequence lengths, allowing only the length Eo(b) of the low

85

priority bit sequence immediately following a message to be a function
of that messagg7y%%?allowing the first flag and low priority bit sequence
in an idle period to be different franthe others in the idle period. We
assume that with probability one a message is longer than Max (vl,vz);
otherwise some messages cannot be considered as being received when they
are fully transmitted!

To be able to obtain analytical results we will also model the
arrival process as Poisson. The analysis will proceed in steps: in
Section 3 we will study a general queueing model whose parameters will
be identified in Section 4 so that it represents the flag strategy we
want to examine. The main results will be given in Section 5, while the

optimal! function io(b) will be looked at in Section 6. We will give

numerical results in Section 7.

86

3. M/G/1 Queues with Overhead

A. In:roduction

We analyze here the following problem: arrivals in a queue follow
a Poisson process with rate A: = 1/Ea and the service times have
distribution B' . The first customer in a busy period suffers an extra
delay with distribution Fl , while the services of the other customers

are increased by a random amount with distribution F We assume that

5
the interarrival times, service times and extra delays are all indepen-
dent. We will study the stationary distribution of the number of
customers in the queue, the mean waiting time, and the joint distribution

of the busy period length and of the number of customers in the busy

period.

B. Stationary Distribution of the Number of Customers in the Queue

Let X, be the number of customers in the queue right after the

nth customer has left the system and let Hn be the probability mass

function of X, - We have the following recursive relation between the
+ (number of arrivals during nth service) - I

X
n-1>0
It is well known that the number of arrivals during the nth service has

g =

X e ox v .
a generating function equal to FI(A-Az)B'*(A-Xz) or FE(X-AZ)B'*(X-XZ),
depending on whether or not Rt ™ 0 . Denoting by H; the z-transform

of Hn , we have immediately

H;(z) - H;_I(O) FI(X-XZ) B'*(A-Az) + (H;-l(z) - H;_I(O))

F§(A-Az) B'*(A-Az) %

87
By classical methods [Karlin, 1975, pp. 96-102] one sees that the system

is ergodic if and only if XA(Eb + Efz) < 1 ; in this case the 2z trans-

form I* of the stationary distribution 1T must be equal to
m*(0) B'*(A-Az)(z Fj(r-Az) - F3(r-Az))
z - F%(A-Az) B'*(A-Az)

T*(z) =

and 1*(l) must equal 1 , so, using L'Hopital's rule as z > 1,

1 - AE (b'+f2)
I*(0) =
1+)\E(fl—fz)
B'*()\-Az) FE(X—XZ)(Z—I)
o A G AR S e e
2
1 z FI(X-AZ) - FE(A-XZ)
1+ AE(fl-fz) FE(kaz)(z—l)

If fi = F% , the second factor in brackets ie equal to one, and we
obtain the Pollaczek formula for M/G/1 queues with service distribution
* \J
F2 B
T 1is also the stationary distribution of the number of customers

in the queue at an arrival time [Kleinrock, 1975, p. 176], and, because

the arrival process is Poisson, also at a random time.

C. Average Delay

Combining the remark at the end of the last section with Little's
formula [Little, 1961], one obtains by differentiating M*(z) the fol-
lowing formula for the average message delay, where the delay is defined
as the difference between the times of service completion and message

arrival:

88
A(Eb'? + 2Ef, Eb' + Ef2)
2 2 1

E(d) = Eb' + EfZ + % T - A(ED' + Efz) * R)\(Efl-Efz)

((Ef, - EE,) (1 - AEE,) + % x(r-;ff ? Efg))

A(Eb'? + 2E£, Eb + Efg) .
= 1
B!+ % T Y& + EE,) * T+ X(EF, - B
(BE, + % A(E€® - Ef2)) £1)
1 1 2

D. Busy Periods

Denote by g and m respectively the length of and the number of
customers served in a busy period. We will characterize the function
GM* (s,z): = E[z"e 58]

It is well known [Kleinrock, 1975] that if Fl = F GM*(s,z) ,

2 ’
theredenoted GM;(s,zl,satisfies the relation

GM;(s,z) = zFE(s + A - AGM;(s,z)) B'*(s + A - AGM;(s,z))

We will express GM*(s,z) in terms of GM;(s,z) as follows: let

b1 and f1 be the lengths of the first service and extra delay, and ny

be the number of arrivals during b, and f

1 R We then have

n
m_-sg o 2a-3(E1701) ane iy
E[z'e |b1,f1,n1] ze 1 (MGa {s,2))

because the ny arrivals will generate n independent busy periods
characterized by GMa . Averaging on Ny bl’ and fl’ one obtains
GM*(s,z) = z Fi(s + X - AGM;(s,z)) B*(s + \ - AGM% (s ,2))

FI(s # X - XGM;(s,z))
i FE0s + X - X3 (5,2))

GM (s ,2)

89

One obtains easily the moments
Ef + Eb!

E(@) = 1= X(EE,+E67)

1+ X(Ef1 - Efz)

B = Xm0 =2

A. Identification of B', F, and F,

In the analysis of the queueing system of the previous section we
have obtained expressions that involve the Laplace-Stieltjes transform
Bt Fi and FE . We will identify them from the previous description
of the coding scheme.

B' will be the probability distribution function of b': =
b + Eofb) , i.e. b' 1is the sum of the lengths of a message and of the
low priority bit sequence that immediately follows it.

fz will correspond to the extra delay for a message in the middle
of the busy period. In our scheme, fé will be equal to Oor 1, :
~{vg-1

depending on whether or not an insertion is needed.- So F; =] + 2

(e's - 1) if the first v;-1 bits of all messages are equally likely and

S0 (3)
EfZ = Ef2 = 2 g
It is harder to compute FI . We start by solving the following
Let
problem./ the times O,tl,tz,... form a renewal process, the probabi-

lity distribution function of tl being C1 (Cl(O')=O) , and the distri-
bution of t, - t; , being Cy (CZCO')=O) o 1#2,3,..¢ ° At . random
time t , independent of the renewal process and with distribution function

1. e » t >0, a"supervent" occurs. We wish to find the Laplace-

Stieltjes transform of the distribution F

defined as follows:

f1 = mlnv(tn-t) +d

n
>
tn_t

90

1 of the random variable fl

+ d, I

II(tlit) 2 (t1>t)

where d1 and d, are random variables independent of the renewal process

and of t , with distributions D and D2 respectively.

1 In other words,

fi is equal to the time between the occurrences of the superevent and the

following event, plus a random variable whose distribution is D1 if the
superevent occurs before the first event, and D2 otherwise.
We have immediately:
-s(tl-t)
F(s) = Pr(t < t,) E[e |t < t;1 D3(s)
-s min (t_-t) (4)
+P(t>t)) Ele g je> t,1 D3(s)
t >t
r)-—
We compute now:
-At ;
Pr(t>t)=/"e 1 dc,(t,)=CrQ) £8)
1)) S 1
-s(t,-t) £ ¥
Ble ' Tlrct) s —E— Sac e £ dr ae eSO
1-c0) °
W CI(S) - C{(k)
X-s -G

Similarly, because t

-s(t_-t)
Ele %

The right hand side member is independent of n

|t cLt ,n»l]s
=

is "memoryless,"

i CECS) - CE(X)
A-S 1 - CE(A)

n-1

s glven # > 1 ; thus

Ly 91

: W y C3(s) - Cs)
(e

jt.> 2] #
t >t 1 T 1-c§(>\)

Plugging these results into (4), we obtain,

340y

i) = 5 (€0 - GO 0f(s) + gy (©309)
- C3(0) D3(s))]

and by differentiation,

1)

1
Efl = - r# Ecl + l—‘_-C-E_CWECZ + (1 - CI()\)) Edl i Ci(X) Edz

88 Zu smls me st ¢ pekeie (s e B
SR S | b e | _1-‘c‘7§ij' o B

* 2 * 2
+ (1 - CI(A) Ed] + CX(\) Edj

We will use the fact that

€10 2

1 2 = ¥ 2 2 ~
Ef) + WAEE] = % A[Ec] + 2EcEd) + 7— e (Eej + 2Ec,Ed)
s (1 -Cro) Ed? + cron) B2]
1 e 2
We will need later the fact that
Pre > t) = W E3oN™, w12, (6)

for the same reason as (5).
In our coding scheme, the 'superevent'" will be the arrival of a

message. Ci will correspond to the distribution of the flag of length
-sV,
vy plus the low priority bit sequence of length Ei. Thus C* = e
i

-s§.

"o is1,2 . d1 and d2 will be equal to zero, except if an insertion

92

is needed in the first message of a busy period, so D* = D* =

_\)24-1 o5 2 _(\)2_1) 1 2
1 +2 (e "-1) , and Ed1 = Ed2 = Ed1 = 2 , under the usual
assumptions.
Thus,
aoes e -(v,-1)
Efl = -1/\ + El Wity ')\(EZ*VZ) (\)2 +£2) + 2
Bt €7)
and
-(v,-1)
b L. 2 2
Ef1 + E'Efl =% A((vl - El) - Z(vl + El) 2 +
s e ; -(v,-1)
_A(\)1+€‘2)' ((\)2*52) + 2(\)2*52) &)
1 -e
Mly ¢ g)

+ 2

S. Main Result

Putting together all the results of the previous sections, we

obtain a formula for the average message waiting time as a function of

Eo(b) » 81 s 52 » Vy and v, & from (1), (3), (7) and (8)

=(v,-1) -(v,-1)
M3 F amd T i EE) + E b'))

-(\)1-1)
1-XED+EE +2)
o S el B

2
Wttt Bhrgigd. 3 : -xcv2+gE)J '

1
Ew = %

l - e

e-k(v1+£1) }

¢ S 1 gty V2*e2)
1 -e i

)
+ %

93

-(v,-1) -(v,-1)

TR RO R T T
'(vz'l) '(v1°T)

2 -2

=(v;-1)
2 1
(9)

We also obtain the average number of low priority bits per mes-

sage, which, after a little moment of reflection, must be equal to

E(number of low priority bits in an idle period)
EEO + En

where m has been defined as the number of messages in a busy period.

By substituting (3) and (7) in (2) one obtains

e-xcv1+51) -(v-1) (-1
ARy =, » X, (€a+vy) + 2 * #)
Em = X
-(\)1-1)
1-A(Eb+EE +2)

In the parlance of Section 4, the number of low priority bits in an
idle period is equal to Sl + 1 52 if the superevent occurs between t

and ¢t.

isl - Thus its expected value is equal to

~X(\)1+El)

g, + 2 3
1 X(,+E,) 2
i L 2

as can be seen by using (6).

The expected number of low priority bits per message is thus equal to

'X(\’l"gl)a
" eep St B - BE - z-cvl-l))
1 : -A{vz.EZ)J X 0
- e
. EO g “A(V,+E) A (10)
o Ve cuel) ety
Dk o = o e -3

l -e¢e

o4

What is left to do is to try to minimize E(w) on E,®) , &,
Ez,vl and vy while keeping the expected number of low priority bits per
message fixed. In the next section we will gain some insight into the
problem of optimizing on EOCb) for EEO fixed. This will reduce the
problem to optimizing on EEO " &1 i 52 » Yy and vy s which will require

numerical computations.

6. Optimization of SOQEL

We decided to let the length Eo of the low priority bit sequence
following a message be a function of the length b of this message.
Denoting b + EO(b) by b' , we see from formulas (9) and (10) that
the average message delay depends on E b' and E b'2 while the
expected number of low priority bits per message depends on E b' . The
question then arisesof how Eofb) should be defined so as to minimize
E b'2 for given E b' and B .

We will solve this problem for the case where Eo may take non
integer values. This will give some insight and a lower bound for the
interesting case when Eo takes only integer values, which is an infinite
dimensional non linear integer programming problem.

We must find

min /7 + £)% aB(d)
£, ()

subject to the constraints:
£ () >0 :

/o &5(0) dB(b) 2 E(E))> 0 (11)

o 8o

5

We start by defining o as the only root of the equation

[5 (x-b) dB(b) = E(&,)
This root exists and is unique and positive because the function
f: (x-b)dB(b) is continuous (left and right derivatives exist every-
where), is equal to 0 at x=0 , is increasing if it is not equal to
0, and goes to = as x increases.

We have
- 2 2 ® 2
Jo (e (8))7 dBD) = /7 (b+E (b))° dB(b) + /g (b+E (6))* dB(b)

> fo 0 0227 4B (o) + f5 b7 dBE) + 2 £ £ (B) dB(H)

by non negativity of Eo

5 sl
| Ug b+ g () 4B
15 dB(b)

. 3 b2 dB(b) + 2a 15 £, (b)dB(b)

by the SchWwarz inequality

2
(a /g dB(b) - E(E)+ /g & () dB®)) 42 g
. + ®)
15 dB(®) ¢

+ 2 f: g, (b) dB(b)

by the definition of a

e 2
(@ /3 dB(®) - /3 §_(b) dB(®)) #1424
i . B(b)
2 aBv) :

+ 2 [, &, (b) dB(D)

2o /3 4B - 20 75 € () dB) + /7 b2 dB(b) -

96
+ 2a f: £,(b) dB(b)
s a? /% dBb) + /™ b2 dB(D)
(o] a

This lower bound is achieved if
b + io(b) a(qa b<a

b b>a

i.e. if g, (b) = ‘a-b b<a

Lo b>a

This Eo satisfies (11) with equality because of the definition of
a and is thus optimal. This result is intuitively pleasing.

As noted above, the constraint that ao must have integer
values makes the problem much more difficult, except if o happens
to be an integer. In general, constraint (11) will not be satisfied

with equality by an integer solution if so(b) is a deterministic

function of b .

7. Numerical Results

Many of the results of this chapter have limited . practical
interest. This is due to the fact that generally there are no low
priority bits to be sent. However, the analysis of . he previous section
is relevant as far as the use of flags is concerned. We will briefly
consider how the flag lengths should be chosen to minimize the average
waiting time when no low priority bits are sent. (Formula (9) with
€g =8y =8, = 0.)

-

We recall that we use a flag of length v, to indicate the end
of a busy period, while flags of length v, are sent during the residue
of the idle periods.

From numerical computations it appears that the choice v2=2 is‘
never worse than v2=1 , and is in fact optimal in light traffic. In
heavy traffic the second flag is rarely used, so its optimal length
increases somewhat to reduce the probability of an insertion in the first

message of a busy period. The effect on Ew is relatively negligeable,

as illustrated in Table 4.1.

=] =2 =3

vy vy v,
AEb = .5 v, =3

Ew = .1.739 1.733 1.975
AEb = .95 vy, =9

Ew = 80.971 80.724 80.646

Table 4.1
Influence of v, on Ew

Eb=8 EbZ=64

98

The situation is much more complicated as far as V1 is concerned.

-(vl-l) -(vl-l)
The presence of the expressions 2 Eb and A2 respectively

in the numerator and denominator of the first term of the right hand

side member of (9) makes the optimal v, an increasing function of Eb

1

and XA . Contrary to the case of v, Ew is quite sensitive to the value

7
of vy especially when the load is heavy:

ff Ebses Eb2 = 64
v2 = 2
AEb = .95
then Ew = 92,89 for v1=5
= 80.72 for v1=9

We illustrate in Tables 4.2 and 4.3 the behavior of the optimal

value of v, as the load increases for two different message length

1
statistics.
a) Bb=3 B = &
b) Eb =S5 Eb2 = 30

The first case represents the transmission of single characters without
special source encoding, whereas the second is representative of the
message length statistics when some source coding (see Chapter II) is
performed. Note that we did not take into account the effects that occur
when flags are longer than messages.

We do not give exampleswith larger average message length:
except in very heavy traffic the improvement in performance brought by
the use of optimal length flags do not warrant the increased complexity.
It seems more sensible to send '"0" 's when the line is idle, and to

prefix every message with a '"1'",

Table 4.2

Optimal V., as a Function of the Load

L
Eb=8 Eb2=64 v2-2

optimal Ew for Ew for Ew for

A/Eb vy optimal v vlaz vl-lo
.05 3 1.73 1.74 1.95
.10 3 1.99 2.01 2.43
.15 3 2.28 2,31 2.92
.20 3 2.61 2.65 3.43
.25 3 2.97 3.04 3.97
.30 3 3.40 3.50 4.55
«35 3 3.89 4.02 5.18
.40 4 4.45 4.65 5.87
.45 4 5.11 5.41 6.64
.50 4 5.90 6.33 7.52
o5 4 6.87 7.50 8.55
.60 4 8.09 9.00 9.79
.65 5 9.66 11.02 11.34
.70 S 11.69 13.88 13.36
.75 5 14.55 18.23 16.13
.80 6 18.81 25.67 20.24
.85 6 25.83 41.26 27.01
.90 7 39.71 94.71 40.48

.95 9 80.72 ® 80.84

100
Table 4.3

Optimal Vl as a Function of the Load

Eb=5 Eb2=30 v,=2

optimal Ew for Ew for Ew fcr
A/Eb v, optimal 12 v =2 V,=10
.05 3 1.69 1.69 2.05
.10 3 1.89 1.90 2.59
+15 3 2.12 2.14 3.13
.20 3 2.38 2.41 3.66
«25 3 2.67 2.72 4.20
.30 3 3.00 3.09 4.74
.35 3 3.39 3.52 5.30
.40 3 3.85 4.04 5.89
.45 3 4.39 4.66 6.52
.50 4 5.03 5.44 7.22
.55 4 5.79 6.44 8.02
.60 4 6.75 7.76 8.97
.65 4 7.99 9.60 10.15
.70 5 9.62 12.30 11.67
o - 5 11.84 16.71 13.75
.80 6 15.19 25.17 16.83
.85 6 20.61 47.92 21.91
.90 7 31.26 321.00 32.02

.98 9 62.36 ® 62.42

Chapter 5

Encodigg,of Message Origins

1. Introduction

In the previous chapters we have examined ways to encode the
message contents and lengths, and to differentiate between idle and
message bits. We will study here how to encode message origins and

destinations in a simple case. The model is as follows:

Figure 5.1: The Model

101

Messages are sent from the asynchronous sources Si 5 dml s me e a

concentrator containing an infinite buffer. From there they are trans-

mitted over a noiseless binary synchronous link to a "deconcentrator"

which sends the messages to their destinations, Ri y el 2,0 . N&

observe that in general the destinations must be indicated by the sources

to the concentrator, the origins and destinations must be indicated to

the deconcentrator, while the origins alone need to be indicated to the

102

receivers.

To simplify the model, we can associate a virtual source and

receiver with each source-receivar pair, as in the following figure.

R11
Rln
le
Rmn
- Figure 5.2: Simplified Model
Each source sends messages only to the corresponding receiver
S0 it is enough to indicate to the deconcentrator the message origins.

We will consider only this reduced problem.

2. Basic Idea.

Assume now that there are M independent sources, and that
messages from source i arrive at the concentrator in a Poisson manner
at rate A , so that, as seen by the concentrator, the probability that
the next message comes from source i is 1/M . Does this imply that
we need at least an average of logz M bits per message to indicate the
origins to the deconcentrator? The negative answer to this question

justifies the existence of this chapter.

103

If the messages were sent out by the concentrater in the order
they were received, log2 M would be a lowerbound to the average number
of bits per message. However, although in general messages from a
given source must be sent in the order they were received, to insure the
intelligibility of the sequence of messages, there is no reason for
messages from different sources to be transmitted in this fashion. It
is precisely the possibility of reordering the messages that permits a
decrease in the amount of information. We will illustrate by two
examples how easily this can be done. :

In both cases we assume as in Chapter 4 that each message contains
a codeword indicating its length, that the sources are ergodic, that the
mean interemission time of source i is E(ai) , and that the mean
length of messages from source i is ECbi) . In both techniques we
queue the messages in a special buffer according to their origins.

In technique I we transmit a "0'" if buffer i is empty; if not,
we transmit a ''1" followed by a message. We go then to buffer
(i+1) mod M and repeat tha process.

In technique II we still transmit a "0" if the buffer is empty;
if it is not empty we transmit all messages present, prefixing then with
a"l" . We go to buffer (i+l1) mod M and repeat the procedure.

In both cases, if the receiver is initially synchronized and if
there is no transmission error, the receiver will be able to recognize
the origins of all messages,

By a reasoning similar to the one in Section 1 of Chapter 4, we

obtain the result that the average number of protocol bits (the '"0"s and

e |

104

the "1"s) per message is equal to

-

.
|

E bi/E a;

[N
—

Ny X

(1)

1/E ai

[N
—

for all techniques resulting in a stable system. One sees that in heavy
A? E bi/E a; < 1) this quantity will be very small. We

i=1

recognize that amongst the protocol bits, some indicate that the line
is'idle" (all buffers are empty), while others effectively indicate the
origin of the messages, but the receiver is incapable of differentiating
between these two kinds.

The conceptual difficulty of defining a '"protocol bit' that we
met in Chapter 4 reappears even more strongly here. We could try to
reintroduce the concept of ''low priority bit" from Chapter 4 but this
does not appear to lead to very useful results. We will rather use two
other approaches: 1in Section 3 we will modify the model and neglect
completely the idle bits, concentrating on the study of how the reorder-
ing of the messages can decrease the amount of information necessary to
specify their origins. In Sections 4 to 7 we will analyze some strate-

gies to transmit the messages and their origins in an efficient manner,

the goal being to minimize the expected message delay.

105
3. A Simplified Model

A. Introduction

To avoid the difficulties associated with the presence of idle
times in the usual queueing model, but still be in a position to study
the influence of the reordering of the messages on the amount of
information necessary to specify their origins, we study the following

model where we keep the number of messages in the queue constant.

B. Notation and Description of the Model

At time 0 a buffer contains N-1 messages, of which mj came

from source j , j 1,2,...,M’.

At time 1 # % , 1i=20,1,... , one and only one new message
enters, it comes from source j with probability pj independently of
the initial content of the buffer and of the previous arrivals. We
denote its origin by X.1 .

At time i + % one and only one message is removed from the

buffer. We denote its origin by Yi .

We denote by Si the state of the buffer at time i , i.e. S

&
is a M-tuple (ml, mz,...,mM), jgl m. = N - 1, where mj is the number
of messages from source j present in the buffer at time i . One sees
that the number of possible values of Si is N;?Iz [Feller, 1968,
p. 38], which we denote by o . We index in some way the values of Si ,
and denote them by Sps SgreeesSy e The probability distribution of So

is known a priori. We denote it by the row matrix Ho , whose jth

component is equal to Pr(So = sj).

106
Similarly, S; denotes the state of the buffer at time i + % ;

/ p +
N messages are present in the buffer at that time, so that Si can

+

take o' 1= [M1l diecerent values denoted P i AN
N 1 2 g+

Very often we will need to deal with sequences of inputs and

outputs. x[i,j) denotes the sequence (Xi’ xi+1""’xj-l) and we

define Y[i,j) in a similar fashion.
It will prove useful to define a function U (for Unordering)

T)

are M-tuples. The kth component of U()([i j)) is the number of Xn

whose domain is the set of sequences and whose values
in x[i,j) that are equal to k .
We can use U immediately to verify the relation
e B e e R e SC sl 5.
i e, 000092 5 = (L.
If a suitazole probability distribution has been defined, H(Y[.l j))

denotes the entropy of Y,.. .. , i.e.
e [i,3)

HiEYiz i = = U P (Y chme @ 43 lo 150) (PIPMERERE e
Cipagsyl B B SoiRel g S RSl WERR S nag® Ay, 5y 1
[i,3)
To avoid the introduction of more symbols, we also use H in the
following sense: if c¢ is a s-tuple, c = (cl,cz,...,cs) , with non

. 5 log2 ¢ - The meaning

s
negative components, we define H(c) := - E
1=

1

of H(.) will always be clear from the context.

C. Objective

The problem we wish to study is to find an '"optimal" way of
making the Yi 's known to an observer watching the output of the buffer.

This involves two distinct points: first, at time i + % the

107
transmitter must decide what message to send out, i.e. the value of Yi .

There is a constraint on Yi : one can only send out a message that is
actually in the buffer. Mathematically this translates into the

statement: ''all components of Siv must be non negative,' and was

1
implicitly = taken into account when we determined the number of states.
Second, the receiver must be able to recognize Yi . To that effect we
allow a binary codeword of (variable) length n;, to be transmitted in

front of every message, and we require that the knowledge of the code-

words transmitted at time j + >, 3§=0,1,2,...,i, and of Y

4 [0,1)

uniquely specifies Yi
Our objective will be to minimize the 'expected number of protocol

T-1
bits per message," h := lim sup E |= I n,| over all possible encoding

Tow T i=0
strategiss, i.e. the choice of the message to be sent next, and the
choice of the codewords indicating what message is sent.
We will give some examples in Section D and a lower bound in
Section E. Finally we show in Section F how dynamic programming can be

used to find the ''optimal" choice of the message to be sent next.

D. Examples of Strategies

The end of the previous section may be made clearer by consider-

ing the.following strategies.
STRATEGY I

We transmit the messages in the order they entered the buffer;
this is the only choice if N=1 . The probability that (Yi=k) o
i > N, thus the best we can do is to use a Huffman code to indicate the

message origins, and the average number of protocol bits per message, h ,

108
will be bounded by

B{p) < h < H(p) + 1

where p := (pl, Ppsenes pM)
STRATEGY II

We do the following: at time .75 we send a Huffman codeword
specifying S; ; at times .75, 1.75, ..., N -.25 we transmit in some
prespecified order (e.g. all messages from source 1, followed by messages
from 2, etc.) all messages present in the buffer at time .5 . Note that
no codewords are needed at times 1.75, 2.75, ..., N - .25 . At time

N + .75 we transmit a codeword specifying s and repeat the procedure.

N
The probability that S, = (m,, m,, ..., m,) , k > 1, is equal to
P kn 1773 MM =
' m M
F—‘L——,pll A p:}d o eI A O Y m. =N , thus
1h e Myt j jul e
N *N

*
B) <h< H ‘) ok where H(p N) denotes the entropy of the multi-

i

nominal probability distribution.
It is of interest to examine how this expression behaves as N

increases. We can write

.H—(Ll=- -l— N! l.
.E pj log2 P N log2 Nt + N LR

.y j=1] j=1 m=l

*N M M N
-

N} m N-m

To get a lowerbound we use the log-convexity of the gamma function to

obtain
He ™ ? lo ~Blog, N ¢ 8 8 log, T{1+ Np,)

j=1

o
The use of Stirling's formula [Feller, 1968, p. 52], tight if_jkﬁ > 3

log(T(1+x)) > log 20+ (x + %9 log x - x log e

yields 109

- M-1
= 3N

*
z
o

1
log2 (27N) + >N :

X log, P; (2)

To obtain an upperbound, we use Stirling's formula for log m! together

with the inequality

m - Np.
log m < log ij +—ﬁ5—-l-loge
j
This yields
2TNp . Np. Sk m2
log m! < log N P log—l+—g—+ log e
- 2 e A 2ij ij

This does not hold at m=0 when ij < ,43 but is otherwise satisfied.
*
Using this in the formula for H(p N) , and using Stirling's approxima-

tion for log N! , we obtain

W, . M
Hp ™) 2 M-1 1
N W leg, (GreN) + 3¢ 551 log; P;

We can thus conclude that for this strategy, the expected number of
protocol bits per message is equal to %ﬁl log2 N+0 [%)

STRATEGY III

1

Here we note that at time i + 3 there is at least one source

such that lN+n'lj messages from it are stored in the buffer. We send
the binary representation of the index of this source, then the lN+:'lj

messages. The average number of protocol bits per message is bounded by:

log2 M e <(log2 M)+ 1

NeM-T = N+H-1
=) =

Here for large N , h 1is approximately equal to QT%TT 10g2 M

which is better than in Strategy II. However, for small N , II may be

110
better.

The two following strategies will be studied . r the case M=2
and h*Ph " .5 . A comparison of all strategies for this case appears

in Table 5.1 .
STRATEGY IV

Strategy IV is essentially polling: one transmits as many
messages from source 1 as possible, until none remains in the buffer.
One transmits then a run of messages from source 2, then 1 again, etc.
The end of a run can be indicated by a flag as studied in Chapter III.

14 N=1, each run has a geometric probability distribution. In
general, the probability distribution of a run is the distribution of the
sum of N independent geometric random variables, and thus a Pascal

distribution:

1)* (n-1
Pr (run = n) = [i} [n-NJ n=N, N+1, ...

Its mean is equal to 2N , so we can bound the expected number of proto-
col bits per message by

Entropy of run <h < Entropy of run + .56
2N = = 2N

The upper bound holds if the assumptions made in Section 4 of Chapter III
are satisfied.
We now turn our attention to evaluating the entropy. This can be

done numerically; results appear in Table 5.1. To obtain asymptotic

® n
, : . 1 n-1 n-1)
rezults we note that the entropy is equal to 2N niN [IJ [n-N] logz[n-N}'
n-1 el
Writing log [n-N) = [log (n-N+i) - log (N-1)! , we see, from the
i=1
convexity of log (n-N+i) , that - log [::;J is concave. By Jensen's

111

inequality we can lowerbound the entropy by 2N - logz) and, using
log2 47N

Stirling's approximation, by ey, Writing

2N-1
N

n-N

the first term, using Stirling's approximation together with the formula

log [n-l} = log (n-1)! - log (n-N)! - log (N-1)!, using the convexity of

loge x < x-1 for the second term, and Stirling's approximation for the

third, one can upperbound the entropy by (log2 4ne2N)/2 . Thus, for

log2 N 1
Strategy IV, h behaves like e - S 0 [ﬁ) . This is about twice

as good as Strategy II.
STRATEGY V

As mentioned earlier, we study this strategy only for M=2 with
P, =P = .5 . Suppose that at time i + .5 we know that only messages
from source j (j = 1 or 2) are in the buffer. We can then send N of
them without any codeword, and the distribution of S;+i will be
binomial. We then alternate between messages from 1 and 2, until this
becomes impossible because the buffer contains only one kind of message.
We then signal the end of the run, e.g. by a flag.

The expected number of protocol bits per message is thus bounded

by

Entropy of run By Entropy of run + .56
N + E(tun) — N + E(run)

The upperbound holds if the assumptions made in Section 4 of Chapter III
are satisfied.

It is of primary importance to study the statistics of the run.
Assume that we try to send a message from source 1 at odd times, and a

+ :
message from source 2 at even times., Si performs a non-stationary

212
random walk: with probability .5 , S;+1 = S; whereas with probability
+ + » % - + + 2
I8 4 Si+1 = Si + (-1, 1) if i 1is odd, and Si+1 = Si + (1, =1) if

i is even. A run stops if s; = (0, N) with i odd, or (N, 0) with
i even. However, we note that as far as the statistics of the
remaining time in the run is concerned, being in state S; = (k, N-k)

at time i is equivalent to being in state SI#I = (N-k, k) at time
i+l . We can thus describe the process by the (N+1, N+1) transition

matrix

N —
(ST

N =
N —

3
2

N —

corresponding to the stationary process:

% 5
: >
e
(,N-1) I (N.0)
5

A

% &

It is entirely feasible to compute the distribution of the time
until trapping in state (0,N) if the initial probability distribution
of the state is binomial, by classical Markov chain methods e.g. [Howard,
1971, vol. I]. Results appear in Table 5.1. Fortunately, the mean time
until trapping has a simple form. Denoting by g(ml, mz) the mean time
until trapping if the initial state is (ml,mz) one finds the relations

g (0, mz) =0

g(ml, my) =1+ % (g(m,+1, my -1) + g(my, m)) m >0
The solution to this system of equations is

g(ml, mz) = Zm1 (2m2 + 1)
Averaging on the binomial distribution of the initial state, one finds
that the expected run is equal to N2 . It is now easy to upperbound

the entropy of the run: by [Gallager, 1968, p. 507] it is upperbounded

by (N2 + 1) H[—Tl———} where H is the binary entropy, i.e.
N+ 1

H(x) := H((x,1-x)) . This bound is extremely close to the actual value
(the relative difference is less than 1%), indicating that the
probability distribution of the run is nearly geometric. From the
results of Section 4 of Chapter III, fixed-length flags will be almost
optimal.

Because x H[%— < log2 ex , h 1is upperbounded by

log, (e(¥’ + 1)) + .56
h <

NZ + N

The presence of NZ in the denominator makes this scheme markedly
superior to all others. Note that it is the combination of two features

that makes it efficient:

114

-- the fact that it does not attempt to send a message for N time
units after detecting that no such message is present;
-- the fact that it alternates between sources.
Strategy IV (polling) has the first feature, but not the second; we have
seen that the expected run is equal to 2N . If one uses pure alternat-

ing, the expected run will be equal to 1 + L + 1

> go > gl = 2N , instead

of N+N2 when both features are present.

There are strategies for which h behaves like (k 1og(N))/N2

+ 0 (lio even when M » 2 . We describe now such a strategy for the
N

symmetric case (pi = % , i=1,2,...,M) . It is a generalization of
Strategy V.

One removes one message from each source in cycles (say 1,2,3,...
M,1,2,...) until this becomes impossible. One transmits theﬁ M-1
codewords indicating the number of messages from each origin remaining
in the buffer, and those N messages. This being done the distribution
of the buffer state is multinomial and we start the procedure again,
removing ane message from each source in cycles. We call the number of
me;sages transmitted during the cyclic part of this strategy a run .

If one uses a flag strategy as described in Section 4 of Chapter

. III to indicate the end of a run, h will be upperbounded by

log2 (e(E(run) + 1)) + .57 + (M-1) [log2 N1
h <
— E(run) + N

315

If one can show that E(run) is proportional to N the desired
result will be obtained. E(run) can be computed as in Strategy V. If

q(ml,...,mM) denotes the expected run length if the initial state is

(ml""'mM) , one has the relations

g(o' m2’ ceoey nlM) =0

.,m,=1)

1
glmy,my, -o.rm) =1+ 5 (gmy+l, mq, ...omy

yewai=)]

+ g(m2, m3+1,...,ml-l) s W g(mz, m3 1

m, >0

1

This can be solved numerically. For M=3 we obtain the expression

Jml (3m2 + l)(3m3 + 2)

3 (m1 +m

g(ml, m,, m3) = Az m3) e E(run) is equal to the

average of g(.) over the multinomial distribution of the initial state.
If M=3 we obtain E(run) = N(N° + 1)/(3N + 1) , which is approximately
equal to N2/3 for large N ,-as desired.

We are unable to solve this' system of equation for all N , but

. can lowerbound E(run) by the following method.
Let (mi, mg, “Ee g m&) denote the state of the buffer at time

j + .5 . Assume that at time .5 the state distribution is multinomial,

and start removing the messages in cycles. In order to obtain the

116

:

bound we remove the constraint that the mi 's must be non negative.

Thus the buffer state performs a non-stationary random walk and

" k
< i e 1=
Pr(run < j) = Pr (min (m(k+l)mod M) <0 §=0, 100 .
0<k<j
M .
< I Pr (min "M <o)
i=1 ke IN :0:}+kM—l§j
gm0 ot

We recall a version of Kolmogorov's inequality (Karlin, 1975,

pP. 280]: 1If ajr ay, ... form a martingale and have a mean Ea > 0
Var(an)
then Pr (min (a,, a,, «.., @) <0) < =———— ., Here for each i
1 2 n° - - 2
(Ea)
the m;+kM-l 's , k=0,1,..., form a martingale and have mean w
: 3 1 il
and variance (N+i+kM-1) ﬁ(l - ﬁ)
Thus
(N+9) (L -)
Pr (run £ J) < M 3 I=0,1,...
&
M
N2 - (N4x) M(M-1)
and Pr (run > x) > max (O, 3) x>0

N

337
o0
E(run) = fo Pr(run > x) dx

(N - M(u-1))°2
M(M-1)

3%— N > M(M-1)

2

This shows that E(run) increases at least proportionally to N for

large N , as desired.

Strategy
e ITI v v
1 1 1L 1
2 <75 1 .678 .599
3 .604 5 .519 .390
4 .508 S .423 .274
5 .440 <333 <358 <203
6 .389 <333 <312 1o 7
it .350 .250 .276 .126
8 .318 250 .248 -+ 103
9 .292 .200 .226 .086
10 <271 .200 .208 .073
11 +252 SL67 .192 .063
12 «237 167 .179 055
13 + 223 .143 .167 .048
14 s211 .143 .158 .043
15 .200 «125 . 149 .038
16 .190 « 145 «141 085
Table 5.1

lim %’H[\ro.r } as a function of N

Tooo L 10T)

M=2

118

Wk

119

E. A Lower Bound on h

We have shown in Section D that simple strategies (i.e. II) can

M

make h decrease like TN

more compl:cated strategies (i.e. V)
log2 N

NZ

cannot decrease faster than ((M-l)/(M+N—1))2 . We will use in the

yield a decrease proportional to We will show here that h

sequel many standard relation§ between information theoretic expressions;
they can be found in [Gallager, 19G8].

Assume that we have decided on a feasible strategy. We have that

fox all T
TE - By 3-%‘“(Yto)
i=0 X
thus
: 1
h > lim sup T H(Y[O,T))
n-«
3 B
> lim sup = I = H(Y,. . Yo 21,2, 5,0
Rt TR S TR L Y10,it)
(in fact we have equality, but this requires a little proof)
pu
> lim sup = [= H(Y,. : Y o T
g8 P N o0 t ([1t,(1+1)t)1 {05it) 1t)
ta},2,3,... (3)

T
We now lowerbound E'H(Y[it,(i+l)t)ly[0,it)’ Si¢)

1)

1 .
We have & HOY(ie (ie1ye)!Y(0,1e) Sie? 2 € T(ie, cter)e)iVpie, cietyt)

T

IY10,it) Sit)
where I(A;B) H(A) - H(A|B)

H(B) - H(B|A)

]

2 120
25 WX e, ey e) 390 e, ey e))

IY(0,i¢)> Sie)

by the Data Processing Theorem

[Gallager, 1968, p. 80].

1
= -t' (H(U(X[O,t))) o H(U(X[lt,(l“‘l)t))

U (e, (ie1)e)) Y00,it)* Sit))

by independence of the Xi & 7
Repeating relation (1)

U se, denye)?) = Suenye * Y e, el)e)? - Sie

and remembering that S can take o different values, we see

i+1)t

[it, @+1)e)? ™ Sie » UXpe anyey?

most o different values.

that for every U(Y can take at

bl HUX e, (o)) U0 e, Genye)) Y1o,5e)7 Sig) S108; °
*
Writing H(U(x[it (i+1)t))) = H(p t) as in Section D, and replacing in

(3) one obtains

1 *t
h > max T Hp) - log, 9) (4)
tel,2,..

This can easily be computed.

We are interested in an asymptotic relation for large N . Using

(2)
; '3 M-1 I M
Hp) 2 > 10q§2ﬂt) iy j:1 log2 pj
-
s g2 [M-1 _
with t = = - in (4)
| A - 1P

j=1

one obtains (neglecting the integer constraint on t)

[M ﬁlT
2n(log, e)' n P; i
2 i
h > J
— e g2/M-1
For M=2 , o=N,
er (log, e) p, P
o &5 2 ’ 1 52
e N
_ .834 d =
e ¢ el B R

One can show that

L NeM-2 MeN-2 M1
g sl M-1) <

SO

M
2n(log, € .2 P; e
hZ 3 M+N-2

F. '"Optimal' Strategy

121

As explained in Section C, a strategy consists of two parts:

-- a rule to determine the value of Yi 3

~- a code to indicate the value of Yi s

The first part is the most interesting. We will gain some insight

into it by assuming that non integer codeword lengths can be used subject

only to the Kraft inequality [Gallager, 1968, p. 47]; in that case it is

very easy to solve the second part.

Let's assume that one has decided how to select that Yi 's; then

for all encoding strategies

122

T-1)
E I n, > HQY
j=0 T [0,T)
T-1 .
= iio ' - Pr(Y[O,i)=y[0,i) z Pr(Yi=yi
Y10,1) Y5

Y10,1)*10,1)) 108, (P’(Yi’yi’Y[o,i)=y[o,i>lﬂ
This lowerbound can be achieved by using at time i a codeword of length
'1°g2 (Pr(Yi=yi IY[O,i)=y[0,i)))

if Yi=yi- and Y[O,i)=y[0,i)

This codeword provides just enough information to enable the receiver to
recognize Yi . A consequence of this is that the conditional probabi-
lities

Pr(Si=sjIY[O’i)=y[0,i)'and codewords transmitted between 0 & i)

= Pr(S7s51¥10,1) 10,1

Note that this is not true for all encoding strategies: in Strategy II,
the codeword transmitted at time .75 specifies not only Yo’ but also
S; . Thus in general Pr(Sl=sj|Y°=k , codeword transmitted at .75)

Pr(Sl=sj|Y°=k)

Now that we have "solved" the second part of the problem, we can
turn our attention to the first part: how should we choose the Yi '
S0 as to minimize

T-1

lim sup 7 H(Y (g 79) = lim sup - T I prqy

=Y)
T+ T+ =0 ¥ro 4 (0,1) 7 [0,1)

;E PrOYi=Yil Y10,4)™ [0,1)° ORPT O3 Yil Y13 0y (y,09)] @
i

123
It turns out that this can be done by dynamic programming.
Unfortunately we need first to give some more definitions:

S

I denotes the unit simplex of R®

u denotes a column matrix of suitable dimension (depending on the

context) with all components equal to 1 .

e denotes a row matrix -f suitable dimension (depending on the
\

context) with all components equal to 0 , except the kth .

which is equal to 1.

th
Hi(y[o i)) is a M-tuple whose j component is equal to

Pr(8;=%51¥0,1)™10,1)?
Similarly,

H;(y[o i)) is a c*-tuple whose jth component is equal to

Pr(s;=s;1¥0,1)*10,1)’

By independence of the Xi , one can write:

T 0o,1)) = 50,10 P (s)
where P 1is a (c,c‘) stochastic matrix whose element Pi‘ = pk %
S; "5t ., and 0 if there is no such k.

EXAMPLE: M=2 N=2
o =2 o =3
1f s, = (1,0) s, = (0,1)
s; = (2,00 sy=(1,1) sy=(0,2)
then
o Y
1 2

A policy a , a=1,2,...7 (7 will be defined later), is charac-

124

terized by a (c+,M) policy matrix A% with the following properties:

1) A;; =0 eopr 1
1]
M a
2) z Ai. =1 y
L
3) Azj = 1 only if the state S; contains a message from source j

The significance of this is that if at time k+.5 the state is s; , one
will choose Yk := m such that Ajm = 1 . Properties 1) and 2)
guarantee that a unique such m exists, and 3) guarantees that only
messages that are actually in the buffer may be sent.
Matrix A% has the following additional properties, which are
easy to verify
1) A% is stochastic
2) 1If policy o is used at time i , the conditional probability
that Yi = k given Y[O,i) = Y[O,l) is equal to the kth
component of H;(y[o,i))Aa , or (by (5)) of M;(ypo ;)P i
EXAMPLE: M=2 N = 2 as before.

There are only two policies, 1 and 2, with

18 1 0
A*a l1 0 A e lo 1
0 1 6 1

In both cases, one transmits a"1" in state (2,0) and a 2 in
state (0,2) (there is no other choice); policy 1 transmits a '"1" in
state (1,1) , whereas policy 2 transmits a "2."

If ni(y[o,i)) = (pl, 02) , and if policy 1 is used,

(Pr(YisllY Pr(Yi=2|Y

[0,i)*Y[0,i)’ [0,i)*[0,1)))

125
= (py P5) |Py P, O %0
[1" "2 foi
0 P, P, 0 =i
¥ (pl * 02 pln 92 pz) i

Note that the number , t , of policies can be quite large: if

h row of

messages from k origins are present in state s; , the jt
a policy matrix can take k distinct values. The number of states with
messages from k origins present is in turn equal to [:} [::i)
(with {g]:= 0 if a < b), where the.first factor is the number of
distinct choices of k origins, and the second factor represents the
number of ways of distributing N messages between k origins, in
such a way that each origin receives at least one message. This last
number is equal to the number of ways cf distributing N-k messages
between k origins. Thus there are kzl k

distinct policies.

EXAMPLE:

We have seen that if M=N=2 , there are 2 policies. In the
seemingly innocuous case M=4 , N=8 , there are about 6.22 1073 policies.

s de %

. : ; + B
Associated to policy « we define M (¢ ,0) transition

" a,k
matrices B p k=1,2,...,M, by
B?ik = 1 if and only if
= +-e
\Sj o i
a
lAik'l
0 otherwise

pé 126

These matrices have the following properties; they are proved by direct

examination.

th column of A% :

) %Ky .
2) If policy a is used at time i , Pr(Yi=k[Y[0’i)=y[0’i9
+ a,k
= M30p0,1y) B

3) If policy a 1is used at time 1i ,

(6)

(this is Bayes' rule).
Property 2) justifies the appellation of ''transition matrix.' Using (5),

(6) can be written as

a,k
crr e B g gnd B8
PR PRt
i+l [0,1) 1. (y) P Ba,k
ivY[o0,i) ®
EXAMPLE: M=2 N=2 as before.

Associated to policy 1 (defined earlier), we have the matrices
1 0 0 0

p+la fo 1 812+ [0 o

2 0 1

é’; = 1 because state (0,1) can be obtained from

As an illustration, B
(1,1) by removing (1,0), and because if policy 1 is used, a '"1'" is trans-
mitted if the state is (1,1).
Say policy 1 is used at time i ,
ni(y[o,l)) - (91; 02)
- + + +
M Gro,1)) = ©ps P 93) = (01Pys 919y ¢ 2Py 95P))

Then if Yi =1

e % ' 127

Tivl ((y[o’i)'l)) . p, +p ar # p

" R T iy

2 o Il
171" Ay " Paly

whereas if Yi =) 2
Ty (0pg,3y02) = (©,1)

Similar expressions result if policy 2 is used. wike

Although we are interested in minimizing lim sup % H
T

Mto,1))

b y : 5 e o] 1]
it is easier to first minimize T+T H(Y[O,T+l)) for some fixed T.

We have from (4)

T
oy " Pr(¥10,1)(0,1)? “1-iC0,1)’
e ik

where cT-i(y[O,i)) = - § Pr(YisyilY[O,i)ay[O,i)) logz(pr(Yi=yi
%

[Y A :v=Yrn :+)) 1is called the expected immediate cost at time i ,
(0,i) “[0,1)

given that Y[O,i) = y[O,i)

Defining = 0

D010, 1=1)’

03410 0,7-1) = iU, 1-1)) * ; Pr(Ye_ i*Yr.i
T-i

¥(0,7-1)"[0,1-1)) 01 (0, 121y ¥7-1)) (D)
We have that H(Y[O,T+l)) = DT+1 . D.1 is called the cost to go at time
T-i+1 . Using Bellman's principle of optimality [Bellman, 1957] we see
that this expression can be minimized by going backward in time: at
time T-i , for every sequence y[o T-i) ° we should find a strategy

such that the resulting values of pr(YT-i'klY[O,T-i)=y[0,T-i))’

128
k=1,2,...M , minimize Di+1(y[0,T-i))

In a first step we will minimize H(Y over all strategies

[0,T+1)’
consisting of using at time i a policy a(y[o i)) . We will show
later that nothing is gained by using more general strategies.

At time T the receiver has computed HT(Y[O t)) . If the trans-

mitter, which can also compute HT(Y[O T)) , decides to use policy a ,
’

one checks that

s]

One sees that there is a policy QO(HTLY[O,T)))’ depending on y[O,T)

o]
through HT(Y[O,T))‘ that minimizes H(HT(y[O,T)) P A7) over all

policies. We denote the minimum by Vlalfy[Thus V1 (called

0,m))
the minimal cost to go at time T) is defined by

V(D := min H(T P A%

a
= H(p A% M)y (8)
It is aesthetically pleasant to define VO(H) = 0 (9)
EXAMPLE: N =2 M= 2 as before

Let N(yro,y) = (Pys P))

If policy 1 is used,

(P, P, 0

01
= Hpy0,)
whereas if policy 2 is used
CoUo,1)) = HRpPY)

One sees that policy 2 minimizes the expected immediate cost if

pl i 02 * ok

129

As we have seen earlier, the number of policies can be enormous.
We show now that at most M! policies need to be considered when one

minimizes CO(Y[O,T))

THEOREM I
Let x be a policy minimizing the expected immediate cost
H(T P Aa) for a given 1 in 5 Denote the ith component of MP by
- a
e 0
o; - Let (rl, Toseees rM) =TT P A .

For the given I , for all i such that By * 0 define the

relation > on {1,2,...,M} by :

s a
if Ai? =1, then j >k for all k#j such that s,
contains a message from k .

~

Then > 1is a partial ordering of {1,2,...,M} .

Proof:
We must prove that if iy > is
PRI
In-1 7 n
then it is not true that jn > j1 . Assume to the contrary that jn > jl.

Without loss of generality, assume that state s; contains
a
a g g o
messages from I and %i mod 1 inl g, dtt . and that Aiji ¥ A

Because a, 1is optimal

0

-rjlogzrj - ij°gzrj < -(rj -oRlogjrjl-QP - (Tjﬂ’QQIng(Tj +%R (10.a)
é

& o 2
otherwise H(1PA™) would be reduced by making Al? = 0 and
a |
0
Aey ™1,
112

130
Relation (10.a) can be rewritten as

(rj -ol)logz(rjl-ol) - tjllogzrjl < r.ylogzx

: 3, - (Tj +ol)1og2(rj7+ol)

3
2 2 2 10.b)

The function x log,x - (x+o)log2kx+o) decreases with increasing x for p>0,

so (10.b) implies

Similarly

Ty w0y > 8

X =l 2, coe s
i % mod np1

Adding these inequalities one obtains

which is a contradiction.
QEsD.

Because a partially ordered finite set can be totally ordered,.

we have the following theorem:

THEOREM I1I
There is a policy o« minimizing H(I P AQ) which has the form

-- define an ordering > on (1,2,...,M}
a

-- Aij =1 i1f j is represented in sI and if j > k for all

k#j represented in s;

There are at most M! such policies.
Q.E.D;

An algorithm that comes naturally to mind, but which does not
quite work, to define the ordering > 1is the following:
-- for j=1,2,...,M compute from [the probabilities pi i

k=1,2,...,M , that at time i+.5 the buffer contains at least one

131
message from source k , but none from sources kl‘kZ""’kj—l 4
Fet kj := min {k : pi » p; mSL, 2 0. ME .
Define > on tE.2, ... ; Mk "by k1 > kz 2 kM ;

The idea behind this algorithm is to send a message from the origin that

is the most likely to be represented in the buffer. If this is impossi-

ble (because no such message is in the buffer), we try the next most

likely origin and so on.

Here is a counterexample showing that the resulting policy is not

necessarily optimal.

EXAMPLE: N=2 M=3

P, = o2 Py = .6 Py = .2

s; = (1,0,0) s, = (0,1,0) s; = (0,0,1)
w47, .08, .475)
* = 2 R+ = + =)

Sy (2,9,0) S, (1;159) S (1,0,1)
- + +

sg = (0,2,00 s = (0,1,1) s = (0,0,2)

One finds

The resulting H() = -.62 Iog2 (.62) - .285 log2 (.285)

n* = (.095, .295, .19, .03, .295, .095)

1 ¥ - o =
P, = .58 Py = .62 Py = <58 kl =2
2 . . *e 385 Kk
P, = .285 Py = 0 Py = -) = 1
3 3 A, ~
pl = (pz = 0 p3 = ,095 k3 3

.095 logz(.OQS)

= 1.26

However, the ordering 1 > 3 > 2

results in the cost

H(.) =~.58 log, (.58) - .39 log2 (.39) - .03 log, (.03)

At time T-1 , or more generally

the receiver has computed

TriOro,1-1))

132

—
(93]

* kK

at time. T=i .- 121,20 cusk: .,

The transmitter must find

a policy a(y[o T-i)) minimizing (from (7))
M
- = I =
Byt T BT Ca i i r o7, T

We have seen earlier that if policy a

vi(riT_m((y[o,T_i) ,K)))

is used

5 a
CiOro,1-1)) = Hllp_3Upg 7590 P A

Pr (Yp_ ;=K1Y (5 1.4y [0,1-1)

I

7-1 Uro,r-i

i . a,k
* T 100,11y} P B @

p Ba,k
))

T-i+1 h o,k
S Wgqugp? TR0
Thus policy 1(y[0 T-i)) must minimize

a " a,k
H(p_; 1o, 1-1)) PAD # A b iUpo,7-4)) P B 0
L a,k \

- i Oro,7.49) P B

i a,k

Wi, aeay? P50)

Clearly there is an optimal policy, ui(

on only through 1

Y(0,T-i) 1-i "o, 1-1

the minimal cost to go at time T-i , by

ar

TroiCro,1-1)7)
))

which depends

W i V.)
e define Jl*l(¥4

. k (1p a®k | 123
V. (1) =min. H(M P A%} + £ 1P B*“ uyv, I B i
i+l . k=1 i inp B:y.,}\ ;
a = RL U} Lll)
I X
a, () M 3, (M), fqpsui(r).k l
= H(T P A b D P) uvi . a_C'7)K:
k=1 1P i uJ

At this stage we have done the following: we know how to mini-
mize H(Y[O T)) in a recursive fashion over all. strategies consisting
’
of using at time i a policy a(y[o i)) . We have seen that in fact
’

there is an optimal policy that depends on y[only through

0,1)

. 2 '
ji(y[o,i)) . We will now prove some properties of the Vi sS.

THEOREM I1I

Vi(ﬂ) is a continuous function of I .

Proof:

By continuity of H(.) and induction on 1i .
QEESDy

THEOREM IV

Let A be a (s,t) stochastic matrix.
(ma} . . ;
Then: T u H’?TU is a concave function of T for 1 ia the set of

s-tuples with non-negative components.

Proof:
Let Hl and H2 be two such s-tuples;
1 R
let (9, «co » Q) = 1, A
2 e
@)y «ev 5 Q) =T, A

Then: for ic[0,1]

)
HIA HZA 134
AL u H| = +# (1-1) M, u H|==~]| -
Tu T,u
1) 2
{(xnl + (1-M)1,)A }
(xnl + (1-x)n2) u H O+ (-0 AL)s |
BT)
t
y [1} [Xq} & (lek) qﬂ
=X I q. log, Li=1 /
21 N
J l D + (1-) q; J
% =1
t
Zq?} 1+(1x)q]
ey i=1 1}
+ (=X} T8 ar log AL
%3 j 2 2 (¢t -
q; [Z Aq; + (1-}) qﬂ
) li=1 s
< 0 because log x < x-1
Q-E:D.

If s=t and A 1is the unit matrix, this gives the well known

: : ; S
result that H(I) 1is a concave function of N for N1 in ¥

COROLLARY 1V.1: Let A be a (s,t) stochastic matrix and € be a
(r,s) nonnegative matrix.

Then: ICu H!%E } is- a4 concave function of 0 for =N 1in the set of
s-tuples with non negative components.

The components of IC are non negative and the composition of

a concave function and a linear- function is concave.
Q.E.D.

COROLLARY IV.2: For all (s,o) non negative matrix C , for all i > 0,
MCu Vl(;g } is a concave function of 0N , for U in the set of s~
tuples with non negative components.

By induction on i

c

135

V0 = 0 thus V0 1s concave
M a,k)
Vi, () = min [H(PA®) + I ey P—Bl—k—
a k=1 epe® "y
(o M a,k 1)
\ (L (3 1
so ICu Vi*l(%J = min|0Cu H;EEEA | IR v, @a—k—‘]
¢ a il NS \ncPB®**)|

The terms in the right hand side member of this equation all are
concave by the previous corollary and induction on i . The minimum

of a set of concave functions is concave.
Q2 E. D

We are now in a position to prove that nothing is gained by
using more general strategies than what we have considered until now,

i.e. strategies where at time T-i one uses a policy determined by
¥10,1)
THEOREM V

Denote by Di+1(y[0,T—i)) the cost to go at time T-i if one

i i =k | = =
uses a given causal strategy (i.e. Pr(Yi k‘Y[O,i) y[O,i)’x[O,i) X[O,i)’

K, 1o (1,110 = PO (o, 1) 0,43%10,4) (0,097 Bt
DO = 0
Then: Di(y[O,T-i+l))Z-Vi(nT-i+1(y[0,T-i+l))) =012 oy Tl
Proof:
By induction on 1i .,
el S v
0y 2%

-~ Suppose D. > Vi » then from (7)

N 136
Y151V 0, 2150 * S0, pph LR Y e e 4 o1
Di((y[O,T-i)’k))

[

|v

M
E Pr (Y,

3 L7k 0 1) 0,141y

Ci 0o, -1y * ;
WLy e L G2

Let the (J+,M) matrix A* be defined by

#* e =1 i -
Anj ¢ Pr(YT_i ils SnsY[o,T-i) Y[O,T-i))

+ -
T-1
An instant of reflexion will convince the reader that A* can be

written as a convex combination of policy matrices:

T
’ Cc :_O N e
1 Q Q as=l Q

*
Defining similarly the M (0+,0) matrices B 'k < I

b B K
y a " Pr (S

M

s. , Y =k[s;

T-1417%5 » Yroq .50 Y10,7-1)" [0, T-1)’

ol
one has that B ’ =

- - * *’k
[0,7-1)*Y[0,7-1)’ * Tp-1 0o, 1-1y)8 * ¥

-
,K
and by causality = nT-i(y[O,T-l))P B u

As before Pr(y_ . =k|Y
T-1

Il (P B* x
- 1 y - 4
d, T=1 10, T=1)

Mroie1 (U0, 7-1y°%)) = X

*
eyl 5

Thus from (12)
)

1A

Q
' (1. .)P
054100, 1-1)) 2 H o3 0o, 7-10° A)

(a=1

a,k
i))P B g Vi

i 1
N LA N T

Q2
el 14
=

Q

137
By Theorem IV and Corollary IV.2, the right hand side is a concave
function of (CI’CZ""’CT) , and thus takes its minimal value at a
vertex of ' » say e, .
Thus
D, v L T)P 825y
i+190,1-1)) 2 g 3 o 124y oy 1-1070,7-4) '
B’k
¢ x40, 7.09)" &
b 8,k
s g pagy It B 0

Q-B:D.
Vi(n) is naturally a nondecreasing function of i ; the next

theorem says something about the behavior of the increase.
THEOREM VI [Odoni, 1969]

I

m;x Viep @M - V;(M) Max (v (M) -V, (M)

m
Proof:
From (11)
a, (1) M a (D),k IHPBai(H),k]
V,, (1) = H(T P A) + I NPB u vy et .
5 lHPB u/
a, (M) M a; (M), k {npsai(n)’k
PEEIRAPRRE. L W PB T S
; (M < H(k=1 lrﬂwpsai(n)’k
i u
(n (1
R AR gk) e [npsal(ek
s Lol Ll M it Y 7 DR Y ey e

PR u s 1w

138
and M;'-In (Vi @M - v, (M) ZM;n v, @M - v, ;M)

The other statement is proved by replacing ai(n) by ai_lcn)
Q.E.D,
Because the Vi 's are increasing, it is inconvenient to work
with them numerically. We note that ai(n) will still minimize the
right hand side member of (11) if Vi(H) is translated by a constant.

This leads to the definition of Gi and v, as follows.

v (M) := 0
M a,k
Vi, (D = min [H(PAY) + 2 pe®* Ky v, Rsu—k— 7T T
* a k=1 mPB™** " yu ;
(12)
Visd V0 2 00 TR i)
One checks by induction that vi+l(n) = Vi+1(n) - Vi+1(e1) , and that

vi(el) 2.0 for.all i .
vi(n) can be interpreted as the relative cost of having a state
probability vector 1N at time T-i+l .

Theorem VI can be rewritten as

(M - v, (M) v, (e))

Min (vi(n) - vi_l(n)) f_m;n (Vi+l

i
imzﬁx (\71+1(TD - v, (M)

Sm v; (M - v, (M)

We turn now to the discussion of the infinite T case. It is
natural to assume that there exists functions a_ and v_, and a
constant g , such that

lima. = a
; X @
1—)¢

limv, = v
: i)
1"@

139
}im Qi(el) =g

1-)-0:

Then one would expect from (11) that the following relation holds:

M a,k
g + v () = min H(HPAQ) + z HPBa’ku 9 EEEE—F- (13)
a k=1 PB™’"u
m,k
e . M _ o0k G
#ORGET o U Ve |To K
NPB u

The optimal strategy would be to use the policy am(ni(y{o i))) at all

2 3 v b
times i , and one expects lim = H(Y = ‘
xp el Yro,y) = 8

This is made precise in the following theorem.

THEOREM VII

If there exists a bounded real valued function v, , a function

@, and constants 8, and g, such that for N in t°

M a,k
g, * v,(1) < min H(HPAQ) g8 anQ:ku v, [HPB :
a k=1 [HPBQ’ u
a, (1) M a, (1),k HPBG*(H),R
= H(IIPA) + T TNPB u v, T T (14)
- * ’
N NPB u
28y + vl
Then:

-- the entropy Ha(Y[O,T)) of Y[O,T) corresponding to using policy

a,(ﬁi(y[o i))) at all times 1i has the property that

R 1 : 1
8, < 11$*:n£ T Ha(Y[O,T)) & 11¥¢:up T Ha(Y[O,T)) 28 (15)

and

=g 1
ol 11$¢inf T Hb(Y[O,T))

where Hb(Y[O T)) results from a causal strategy.

Proof:
Let Q := s%p Vi () - inf v (1) .
it
We define Do(H) =0
a, (1) M a, (M),k
D;,, (M := H(TPA) + I IPB T
k=1
a, (M,k
PB
=0,1,
0y a, (1),k 5
NPB u
From (7): Ha(Y[O,T)? = DT(HO) . ;
We have the relation
DO(H) < v, (1) - igf v, (M)
and by induction on i and (13)
D, (M) €1 gy *+ v (0) - inf v (I > 2 (% AT
i - 2 1

We can conclude that

ey
; SRR

+

o

thus proving that
1
lim sup = H_(Y <
P T %\ iom) I8
i.e. the right hand part of (15).
We also have the relation

V,(H) - Sup Vv, (m L Vo(n)

and by induction on i and (14)

140
(16)

141
i 8, + v, (M) - sup v, (M) 5_vi(n) Tml 2 s

We can conclude that

ig -a<v,(@ (17)

0
Now, if (16) is not true, there is a strategy such that
5" lim inf x HoeY

T T b
Q+1

[O,T)) + 2¢ >0

But there is a T > such that

1 et
BhyOin, vy SH0IEB ADgpmyh #
For that T ,

T X Hb(Y[O,T)) +Q+ 1

> VT(HO) + 0+ 1
which contradicts (17).

Thus (16) is true, and the left hand part of (15) follows.
Q.E.D.

,Cl,

This theorem asserts that if one can find functions v
and constants g, and g, » e.8 by using algorithm (12), one can bound
the optimal performance, and one can find a strategy performing within
By = B » of the optimum. Theorem VI guarantees that 8 - 8 does
not increase as one progresses in algorithm (12). Note that convergence
can be hastened in (12) by damping [Schweitzer, 1971], i.e. defining

vi’l(n) 1= x(vi+1(n) - vi+1(e1)) + (1-)) vi(n) for some well chosen

Adn (0,1])

COROLLARY VII.1: 1If there is a bounded real valued function vV, » 2
function a_ and a real number g such that (13) is satisfied, the

strategy consisting of using policy am(ni(y[o i))) at all times i

142
is optimal, and liméﬂ(Y[o T)) =g .
T i
Proof:

Make 84~ % in Theorem VII.
LB

Note that nothing in this corollary guarantees the existence of
an optimal strategy.

Note also that if a policy u(ni) is used at all times i , the
Hi 's themselves form a stationary Markov Process in the simplex of
ng, and the probability distribution of Hi can be computed. Our
problem can be seen as a Markovian decision theory problem with obser-
vable state (i.e. Hi) . These problems have been extensively studied
especially in the finite dimensional case (see [Kushner, 1971]).
Contrary to what is usually done, the proof of Theorem VII carefully
avoids the use of the stationary distribution of the Hi 's, which is

not guaranteed to exist, because the hypotheses are not very restrict-

ive.
EXAMPLE: M=2 N =2 as before

Let 1 = (oloz)

Equation (12) takes the form, where we use Vm(°1) in place of
v ((py,0,))

PP

8 * v, 0y = minjli(py+o p;) + (1-0)p, v, (0) *(P1*°1P2)VQ[EI‘32¥EQ 3

. Py*0, (p,-p)}
(plpl) L - Dlpl Vq,(l) + (1-le1) Voo l - plpl)

The first argument in mir(.,.) corresponds to policy 1, the second

to policy 2.

%* %k

143

We have solved numerically this example for different values of
p1 by discretizing the unit simplex of Elz (51 points) and using the

algorithm (12). Results appear in Table 5.2.

Table 5.2
g := lim i H(Y) corresponding to an optimal strategy
s T NI
M=2 N=2
P g
S .60
46 .58
i o1
8 .41
9 «25
.95 .14

In all cases, an optimal strategy turns out to be:
use policy 2 when 01 FAE
Note that, if P, = .5 , this is exactly what Strategy V of Section C
does.
For Py # .5 this result shows that the strategy of always mini-
mizing the expected immediate cost is not optimal.
It would be pleasant to prove analytically that the strategy

described above is optimal. In the case Py =P, = .5 ,this would

involve finding a bounded function v, and g verifying
P P
1

g+ Va(?)) =H(—2i) e :

vo(l) + 3(2-9)) Vo)

for 91 2.5, and a similar expression for 01 2.5 . By symmetry one

144
expects v_(x) = v_(1-X) , sO vy, and g must satisfy
l-pl

i T | 1
g * v (0] = Hi=p & = v (0) + 5l2-p)v, T5,]

Py < -
In this expressions, all the arguments of v_ are between 0 and .5.
Once this function is found, one should prove that it satisfies (13).

Before closing this section, we make a brief historical review.
Our problem is essentially the problem of controlling a Partially
Observable Markov Process. We solve it by working in the simplex of
R° , where the Hi 's form a Markov Process if a policy ai(ni) is
used at times 1 . The problem is thus ''reduced'" to a Markov decision
problem with observable state. The idea of doing this has become
classical starting with [Drake, 1962]. One can find more references in
Section 4 of [Platzman, 1976]. This last work is an attempt to control
Partially Observable Markov Processes without making the trensformation
to th; T space, and is also an excellent review of the state of the
art.

We should point out that the Partially Observable Markov
Processes studied in the literature are simpler than what is considered
here, because their immediate cost is only a function of the state of
the original process, and the policy. Thus the expected immediate cost
at time T-i if policy o 1is used has the form

Q
¢0%0,1-1) = M1 0o, 1-19) " @

for some column o-tuple qa
. ; & a :
This compares with Ci(y[O,T-i))_ H(nT-i(y[O,T-i)) PA) iIn qur case.

However the nice properties of cor.tinuity and concavity of the functions

: 145
V,(1) in the simpler problem are conserved here. [Platzman, 1976]
gives sufficient conditions on the matrices PB*X for an optimal
solution to exist in the simpler case; it seems that these conditions
would still be sufficient here. However, they are extremely cumberscme
to verify.

G. Suggestions for Future Work.

Although it is not of immediate practical use, it would be -
worthwhile to prove that an optimal solution exists, that it verifies
(13), and that v - 1s contimuous and concave.

It would be especially interesting to find analytic expressions
for v_ and o_ , at least for simple cases. We conjecture that
v“(ek) = v”(el) r k=1,2,...,0, i.e. that the relative values of perfect
state knowledge are the same, regardless of the state.

Q'nstmldtrytopmveordispmvethepossibilitythatanaw(ﬂ)
always belongs to the special class of policies considered in Theorem IT.

Finally, we assumed until now that the P; 's were known. One
should find robust strategies (e.g. a minimawstrategy) that could be used
when the source statistics are imperfectly known.

146

4. Analysis of Practical Strategies

A. Notation and Organization

Throughout Sections 4 to 8 we will consider a model where source
i, i=1,2,.. M , emits messages in a Poisson manner with rate
Ai 1= 1/Eai,)\T 1= 'El ki ,where every message contains a codeword
indicating its len;th and where the lengths of the messages from source
i have a probability distribution Bi . We assume that the message
lengths and interarrival times are independent random variables. We
will attempt to compute the expected‘message waiting time for different
strategies indicating the message origins.

In Section B we will quickly study the equivalent of strategy I
of Section 3.B: the concentrator transmits the messages in the order

es

they were received, and prefix/each of them with a codeword indicating
its: origin.

In Section 5 we analyse some variants of Strategy II of Section
3.B,; periodically the concentrator sends a codeword indicating the
state of its buffer, then empties it. This will lead to a source coding
problem of independent interest that will be treated in Section 6.

Section 7 will see the computation of the average message
waiting time in cyclic strategies, where the concentrator serves all
messages from source i present in the buffer, then all messages from

source i+l , and so on. Finally we will discuss all results in

Section 8.

147

B. Analysis of the First-In-First-Out Strategy

We send the messages in the order they were received, prefixing
a message from source i with a codeword of length n . We must
also specify what to do when the line is idle. In that case we use
the same policy as in Section 2 of Chapter 4 , i.e. we insert a flag
of length v, at the end of a busy period, then flags of length vy
if no arrival occurred during the transmission of the previous flag.
Note that the flags and the codewords must be chosen jointly, so that
the probability of an insertion in a message will depend on the origin
of the message. We denote by pi the probability that the flag of
length vj causes an insertion in a message from source i .
We will use the formulas developed in Chapter 4 to compute the
average message delay with the following identification:
b' = 0 (we include the message lengths in fl and fz)
f2 = message length + codeword length + possible insertion

due to the flag of length v

1
thus
g 1
G Sl T L G T
LT - | 1
AR I A (B +n)% « py + 2piE(b,+n,))

f1 will be defined as in Section 4.4 with

S ™ Yy jul, 2,
j j J=1i,

d1 = d2 = message length + codeword length + possible inser-

tion due to the flag of length Vs,

148

-)\T\)
1 M
thus Ef, = - %— + V., 0+ E—————-—-v7 & Z A; (Bb, #n, = p?)
1 T 1 -XTvz 2)T i=1 i i A a
l-e
1 2 M 2
Ef, + 3 M Ef] = vi + 2v,/); Elx (Eb; + n; + p;)
e'ATvl - M 5
+ S————V5 + 2u,/A. I A, (Eb +n, +p))
T2 i=1
1 -e
4 2 2 2
Sl ~
Y SRR o By TR yR)

and one obtains from formula (1) of Chapter 4 that the average message

delay is given by

M
2 1 DI !
| M T et LR B e
B e—— b —
s - R g
1 - z Ai(Ebi*ni*pi)
Aow i=1
v E;l- - e » o g i w22l g A,p)s
k R . ik S
e § -e
2 ~ATv1
v, + 2 v, +
1 -AT\)Z 2
s Al
M
1 2 :
i=1 (3)
1% 2
i - '
LR LT
I£ v, = v, the last term simplifies to
vy M Ai @)
- b < p'
2 qal i

149

It is of interest to see how E(d) behaves in light and in
heavy traffic. 1In light traffic, the second term is negligible, so one
sees that the codewords should zome from a Huffman code,so as to

M

minimize 151 kini Y and vy should be small, say vl=v2=1 4 or

vlsvzsz , as we will discuss in Section 4.7. If all Xi 's are more

or less equal,
~ 1
E(d) = -rT- Z)\l Ebi + logzM +1 155

and increases with log2M .

In heavy traffic the second term will dominate, and it will be
of primary importance to maximize its denominator, thus again using a
Huffman code, and using a large Ny If all ki 's are more or less
equal, we can have stability if Zki(Ebi+log2M) < 1 . Thus if Ebi is

of the order of logzM or smaller, the maximum throughput of the system

will be much reduced by the presence of the codewords.

5. Strategies Indicating the Buffer State.

A. Introduction

We study in this section a class of strategies where periodically
the concentrator samples the buffer, makes known the state of the buffer
to the deconcentrator, then transmits all the messages that were present
in the buffer at the sampling time.

In addition to the notation introduced in Section 4.A, we call

the time intervals between two sampling points the scanning times, and

we denote them by Si i=1,2,.. We denote by m; the number of

150

arrivals from source j during S; and by v, the (variable) length

*

of the codeword used to indicate the state of the buffer, i.e. the mJ's
j=1,2,..M at the end of S; - Note that S5 is known to the receiver.

Thus an interesting problem is to find a code minimizing E(\Qsi).
This code will be very complicated, because it will jointly encode the

: since
m; ’s. However,/the mj 's are conditionally independent given S; »

J
nothing will be lost by encoding separately, except some redundancy.
If we encode the m§ separately, the problem is to find a minimum
average codeword length code for a Poisson random variable. This is
still challenging because the number of codewords will be infinite, so
that Huffman's procedure [Huffman, 1952] cannot be applied directly.
We solve this problem in Section 6.
Here our goal is to find the average message delay, and we pro-

ceed to do so.

B. Statistics of the Scanning Times

Because the arrivals are Poisson, the scanning times form a
Markov chain which is irreducible because, for any value of Sy there
is a non zero probability of no arrivals during S5

We have the relation

E(e°x5i¢1‘mi doiabs 3w o Palel sk
1o My, Sy 1m2"'mM’5i)

M m}
T (B*(x)) ° AN ey
gup. o

Of course we want to average this, which is possible analytically only
- XV, N 2 .
if E(e T(mi...m&,si) has a sufficiently simple form. In particular

151

it is not possible if

T results from the algorithm of Section 6. We

-X - 3
will restrict ourselves to strategies where E(e uT'ml R m; S.
1 b #3
has the form
M % m?
* 6
Vo (x) (V5 (=) (6)
Jel
M
We will also require that [E VOj > 0 . Otherwise infinitely many
I=1

scanning times could take place in no time. Without causing any
difficulty we could add a factor (V*(x))Si in (4) , but this would
be fruitless. We will examine codes that have the above property after
finishing the analysis of the scanning ggges statistics.

i ; .
We can now average (5) on mj ,/number of Poisson arrivals

during S o to obtain

-xsi+1 M M
- * * * e
Ele S5 -n Voj(x) exp|s, _2 Aj(Vlj(x)Bj(x) 1)
j=1 Je=l
-xs; Re x >0 (7)
Denoting (E e by S;(x) we have
M M
* = T * -
Si+1(x) .g Voj(x) S; L Aj(l sz(x) Bg(x)) Re x > 0
j=1 j=1
M
f i »* .
Defining Vo(x). 'n vaj(x)
j=1
fo(x): = X
1 M
£ = oy Xl - VI.(x) B* (x)) Re x > 0
j’l] J J =
i 1. .1-1 g
) » (T TI%3 i1l Re x > 0

We can rewrite (/77) as

i-1

S3(x) = 1 V*(fJ(t)) s*(f (x)) Re x > 0 152
i=0
M
We will show now that if or = 3 xj(Evlj + Eb) < 1 and if
j=1

lim 1 V*(pT x) = 1 , then, for x real; S*(x) := lim S*(x) .is
Xv¥o i=o0 foa ~

independent of S; and is continuous at 0 . Thus [Feller, 1966, p.

431] the process S5 is positive recurrent and S* is given by

s*() = 1 Ve () Re x > 0
j=o
which is suitable for numerical computation. The proof is simple: by
:)y
j=1) J
x . Thus £(x) <ptx and lim £(x) = 0, so lim s*(f'(x)) ,

iro i+

convexity one has immediately that fl(x) £ T % { Y(Vij(y)Bg(y))

Pr

1 8

To be able to use the reference just mentioned we need 1lim
xy0 j=1

=

ve (£ (x))

= 1 , which is insured by lim H V*(p x) = 1 , because V*(x) is
Xy0 j=0 "

decreasing and upperbounded by 1 for x> 0 . Note that this condition
and the continuity of S*(x) at 0 are guaranteed if E Vo <@ but

this is not necessary.

Note also that if o =1, £(x) = x + o(x) ; thus if T V;[fj(x))
j=o

converges to a number different from 0 , S* will depend on S; , where-
as if S*(x) =0 x> 0, S* 1is not the Lapalce-Stieltjes transform of
a probability distribution. At any rate, the process s; is not
positive recurrent if or = s

From (5), if the process is positive recurrent, S* satisfies the

relation

153
£ M
S*(x) = V*(x) S* 2 ALl = V2. (x) B*(x)) (8)
o ja1 3 1j
and is a decreasing function of x , as is V; ;
Thus (8) implies that
M
> B ALY = VX, B* >0,
gl L SR L x

Dividing by x and taking the limit as x+o , we have that o <l

We can conclude that Pr < 1 1is a necessary condition for the

s; Pprocess to be positive recurrent. We are unable to prove that it

is sufficient; we still need a condition on V; . From now on we will
M

assume that or < 1 and E E voj < o _ and we will consider only
j=1

the stationary system (i.e. S; = S*)

Taking the values at x=0 of the derivatives of S* in (8)

one finds

M

Z B voj

i=1
ES = W

1 = &% A (B Vy. + Eb;

R ;)
9
M 2 M
Es O e T . var :
2 40 B Loy gy 52000 Bret)
b M 2
1 e I X, (B ; % BB,
st J(i3 J)

C. Description of the Code

A coding scheme that satisfies (6) is to use a unary code to

encode each m; . In that case V¥ .(x) = Vi () = e * . Note that

154
it is not necessary to transmit all the codewords at the beginning of
the scanning time. We can tramsmit first the codeword specifying m; ;
then the mi messages from source 1, etc. A more efficient form of
the same code is to prefix every message with a "1'", and to transmit
at "0" when all messages from source 1 have been transmitted. This
has a favorable effect on the message waiting times.

We will consider a generalization of this strategy, using
flags. We transmit first all messages from source 1, then a flag of
length ¥ then all messages from source 2, etc. Under the usual
assumptions (see Chapter 3)

-(vj-l) i
Voj(x) = exp(-xvj) , Vlj(x)= 1=2 (= &)

j=1,2...M

D. The Waiting Time

If the service discipline for each source is first in first out,
the waiting time LA of a message arriving from source i u units
of time before the end of a scanning time of length;is equal to u
plus the sum of the lengths and insertions of the messages from sources
1,2,...i-1 that arrive during =z , plus the sum of the lengths and

insertions of the messages from i that are already in the queue, plus

the flags 1,2,...i-1 plus a possible insertion. Thus

-xwi e i-1
E(e u,z) = e exp|l-z T X,(1 - V*. (x) B*(x))
j=1 J 1j J
i-1
exp (- (z-u) A; (1 - Vi, (%) B;(X))-jil \'5j (x).Vi;(x) Rex 2190

155

u 1is uniformly distributed between 0 and z , because the arrivals
are Poisson, so
-wix i-1 i-1
E(e z) = VR (X)) expl-z E A1 - V*.(x) B(z))}
: 0j : j 1j 3
j=1 j=1
- - %* * - -
exp(zxi(l Vli(x) Bi(x))) exp (-zx)

z(x + ki(V;jCX) B;(X) =31}

Vi (®)

Using the statistics of z developed 1in Appendix B one obtains:

i-1 i
2 T V%, (x) [s*[l? AL (1 - V*.(x) B?(x))] .
w;(x): e xwi) _j=t 0j gl 3 1j J

Es(x + xi(VIi(x) B;(x) - 1))

i-1
Si[x + j§1 Aj(l - sz(x) B;(x))}]

%
. xli(x)
Differentiating one obtains the moment
i-1 g &2 [1 Wil 1 kel]
Ew. = T Ev,. + =—— ey SR+ (e 16 Y - 8, M
i j=1 0j E's 2 jul j) 1i ao0)

where Py xi(Evli + Ebi)
One can find from this an e=xpression for the average message waiting
M
time, Ew := : s Z A, Ew, . In general this expression is quite long
T i=1 B
to write and depends on the ordering of the sources. The only state-

ment that we are able to make about the ordering that minimizes the

156

average waiting time is that if Evoj = Evoi and p; = o, onme should
have A, > Xz 2 ... 2 Ay, Or equivalently, Evip * Eb1 SEBvpt Eb2 <
. iEvL_1 + Eb‘\1 , as expected.
that
Lf Xi =1, EVOi = Ev0 and P, =P and Ev,;=Ev;, one checks /
2
_M-1 Es
Ew = 3 Evo + 3Fs (1 + pT)
If in addition E(vlj + bj)2 = 0 and var VOj = 02 , we can use (9)
and (10) to obtain
2
N 0O +)
L L AEVO 1+oT ; ATQ +M0“/Es yio
2 Q= or 2 Z(I—DT) 1
2
Ev MEv A0 +10°/Es
. < EEaRl T (11)
e e i MY
T T

Thus if in our coding scheme we use flags of length v , and if the
‘sources are identical, the average waiting time is given by
2 -(v-1) -(v-1)
By = 2-(v-l) LR My p XT(Eb + 2Eb 2 + 2)
: -(v-1) -(v-1)
1 - a (b + 27071 1 - a @b + 27071

One sees that in light traffic the first two terms will dominate,
especially when M is large. In heavy traffic, the presence of the

protocol does not affect the capacity of the line if one chooses v

large enough.

6. Optimal Source Coding for a Class of Integer Alphabets 197

For finite source alphabets, the Huffman coding algorithm
Hnuffman, 1952] yields a minimum expected codeword length code
satisfying the prefix condition. Although it cannot be applied
directly to countably infinite alphabets, its optimality can be
used to develop optimal codes fq; these sources, as [Golomb,1966]

and Gallager and Van Voorhis, 1975] did in
the case of geometric probability distributions. We show that for
a large class of probability measures, including those whose tail
decreases faster than geometrically with a ratio equal to .618,
the coding problem can be reduced to a finite one, to which Huffman's
procedurz is applicable. This result hinges on the observation
that if the tail of a probability measure decreases monotonically,
no matter how fast, the codeword lengths of an optimum code must
not increase faster than linearly, with slope 1, for otherwise
some prefixes will not be used. This leads to the coding procedure

developed in Theorem 1.

Theorem 1

Let X(.) be a probability measure on the set of nonnegative
ssume

integers. / there is a nonnegative integer m such that for all

j >mand i < j , the following hold:

p@) > p() (1a)
p(i) > T p(k) (1b)

k=j+1

158
Ten a binary prefix condition code with minimum average codeword
length for the alphabet consisting of the nonnegative integers with
the above probabilities is obtained by the following procedure:
Consider the reduced alphabet with letters 0,1, ..., m+l whose

rd

probabilities are

| A
=]

P, (3) = p(d) i
m
py(mel) =1 - I p(i)
i=0
Apply Huffman's coding procedure [Huffman,1952] to this reduced
alphabet. Denote by Cl(i) and 21(1) respectively the codeword and
codeword length for letter i (Cl(i) is a sequence of £1(i) binary
symbols) 0 < i < m+l.
From there, construct the codewords C(i) for the original

alphabet by

C(i) = C; (i) i<m
(2)
Ci) = {Cl(m+1),(i-m-1)*0, 1} i>m
where n*0 denotes a sequence of n 0's.
Moreover, with this procedure the average codeword length Z
for the original alphabet is given by
m
T=E@) + £ (me1) -m+ I (£ (1) - £;(m+1) + m -)p(i)
i=0
-
where E(i) = I ip(i) < m+2
i=0

Proof

It is a simple matter to check that 7 is as given, and that,

because of hypothesis (Ib), E(i) is finite:

Bli) = % z p(k) + Z I pk)
i=0 k=1i+l i=m+1 k=i+l
m (=] o0
£ 5. T pyx L, pli-d)
i=0/ k=1i+1 i=m+1
< m+2

The codewords Cl(i) satisfy the prefix condition, so it is clear
that the codewords C(i) also do. We show now that this code has
minimum average length, using the same technique as Gallager and

Van Voorhis [3].

Let the letters 0,1 ..., m+r of the '"r-reduced'" alphabet have

probabilities:
pr(i) = p(1) i < m+r
pp(m+r) = I p(i)
i=m+r

The hypothesis ensures that, as long as r 1is greater than or equal
to 1, the smallest probabilities are pr(m+r-1) and pr(m+r).
Applying Huffman's procedure to the r-reduced alphabet, one verifies
that the codeword lengths of the first m+r letters in this
alphabet are the same as the lengths of the corresponding code-words
given in (2). So, denoting by Z; the average codeword length for
the r-reduced alphabet, Z: converges to L as r grows.

Let Z; be the minimum average codeword length for the original

alphabet, the minimum being taken over all uniquely decodable codes, so

that 2 > q;. We claim that 7:.i T; because we can obtain a uniquely

decodable code for the r-reduced alphabet by taking as codewords for

letters 0 to m+r-1 the corresponding codewords in the optimum code,

160

and choosing as codeword for letter m+r the shortest remaining code-
word in the optimum code. The average codeword length of the code so
obtained is not larger than E; , and is not smaller than Z; s Since
Huffman's procedure yields an optimal code. We conclude that

. 2 % but ¢_ converges to 2 as T increases, so { <

o
S R L Q.E.D.

The question then arises: how rapidly must p(.) decrease in

T
Recalling that ¢
order to satisfy the hypothesis? A sufficient condition is that it
satisfies p(i) > p(i+l) + p(i+2) for large i ; a weaker condition
is that it decreases at least as fast as gi where g = %(/S-l)=.61803
If p(i) = p(i+l) + p(i+2) , then p(i) = p(0) g' , and hypothesis
(1b) is satisfied with equality for all i and j = i+l

In particular, the coding procedure developed in Theorem 1 is
optimum when the probability measure is Poisson:

i -

p(i) = im0, 5.

i
The only problem is to find the smallest suitable value for m (as
defined in Theorem 1). One checks easily that p(i) increases with

i to a maximum value of p(r) , where r = [A]l-1, and then decreases
([x] denotes the smllest integer not smaller than x). If n is the
smallest positive integer such that p(n) < p(Q) , the smallest we can
hope m to be is n-1 (a smaller m will not satisfy hypothesis (la)).
Fortunately, this is so, and we can upperbound this m by jer] -1,
as the following theorem will show. The size of the reduced alphabet
for which we must execute [luffman's procedure and maintain a codeword

table is thus a reasonable function of A . In tableS53we present A as a

10

il

12

13

14

upper limit of A
for that m

1.0000
1.4142
1.8171
2.2133

2.6051
2.9937

3.3800
3.7643
4.1471
4.5287
4.9092
5.2888
5.6676
6.0458

6.4234

Table 5.3

15

16

17

18

39
20

21

22

23

24

25

26

047

28

29

upper limit of A
for that m

6.8004
71710
75531
7.9289

8.3043
8.6794

9.0542

9.4287

9.8030
10.177
10.550
10.924
11.298
11671

12.044

Relation between A and m for Poisson distributions

161

162

function of m for small values of) . In particular, if < 1 , then
m=0 so that the optimum code is unary and its average codeword length

is equal to 1+A .

Theorem 2
i -2
I p(i) = A5 i=0,1,.

and m is the smallest nonnegative integer such that p(m+l) 5_p(0) g
then
a) RA]l -2<mc< [Jer] -1
b) pli) > ; p() i >m
j=i+1
and thus (1) is satisfied by this m .

Proof

a) We will first upperbound m . By Stirling's inequality [Feller,

1968, p. 52]

: {111 ol {i]l .
P > ‘;] o (271) < > LE] S 3T R T

If 4 > ex , then {! » X , so that p(0) > p(i) and thus m+l < [ex].
(A more careful analysis shows that when) is large, m is approxi-
mately equal to el - % log 27ex - 1 .)

To lowerbound m , we note that the logarithm function is

g i i
concave downward so that log L%l = log % D l'% z logj =
j=1 j=1

% log i! If p(i) <p(0) , then % log i! > log A so that

i+l

log > log) , (3)

163
o =X 1 2
- A A A
b) I p@) = =1 e ¢]
juiel i i+1 (i+1) (i+2)
2 3
< p(i) ['\l & = + . — +]
ol (i+1)° (i+1)°
A
= p(i) 1+1)‘
el

From inequality (3), if p(i) < p(0) ,

This yields the desired result.

Q.E.D.

#

164

~3

Analvsis of Cyclic Strategies

A. Introduction

We give in Sections A to F a complete analysis of the average
message waiting time for two important cyclic queueing systems. No
explicit reference to the application of these systems to the encoding
of message origins is made before Section G.

Communication and computer systems in which a single server is
shared among several queues are common. For example, in a concentrator,
messages arriving from many sources must be sent on one output line. In
time-shared computer systems, a central computer must provide service
to several users. The queueing models presented here may be useful in
the analyses of these and similar problems.

Consider a node with M dincoming communication links and one
outgoing link. Digital messages arriving on link i are queued in a
buffer i of infinite capacity. Periodically a "server' empties the
queues and transmits the messages on the outgoing link. We will study
the average waiting time in each queue under two service disciplines.

the
In the first, referred to as/''please wait'" discipline, the server
serves only those messages already present in queue i when he arrives,

then switches to queue i+l , which takes a random time, and goes on in

16

cycle, visiting each queue once in a cycle. In the second discipline, the
""exhaustive service' discipline, the server empties queue i completely,
then spends a random time switching to i+l and continues the cycle. The
random time between queues can be viewed as being used for transmission

of protocol.

In both cases the ith queue is characterized by a Poisson input
with parameter Xi messages per time unit and a service time with mean
éf time units per message and second moment Si . The switching times to
q:eue i have mean W time units and variance Ui . We assume all
interarrival, service and switching times to be independent.

Approximate studies have been made by [Leibowitz, 1961] and
[Kruskal, 1969]. [CocPer and Murray, 1969] and [Cooper, 1970] studied
both disciplines in the case of zero switching times. [Eisenberg, 1372]
considered a more general configuration for the server cycle and allowed
non zero switching times. He solved the problem of the exhaustive ser-
vice discipline . [Konheim.and Meister, 1974] solved the discrete-time
equivalent of the exhaustive service problem in the case where the queues
are identical. In addition, numerous authors referred to in [Eisenberg,
1972] studied the system of queues when M=2 .

This research was pursued before the publication of [Carsten et
al, 1977], which analyzes the ''please wait'" case by a method similar to
ours. The rate of convergence of the algorithm presented in the paper
just mentioned is not as claimed there, as will be shown in Section F.

OQur solution differs from previous studies in the fact that we
use a direct approach, without trying to find the Laplace-Stieltjes

transforms of the waiting time distributions. We will show that we can

-
find all average waiting times by solving a single system of about M

166

linear equations and we present a practical method of doing so. We

remark that our results can be applied to the case of zero switching
times and have a very simple form when the queues are identical.

In many communication systems, like computer networks, beside
transmitting messages, one must also convey their origins or destinations.
This can significantly increase the incurred delay. We will show how
the previous queueing disciplines can be applied to reduce this over-
head.

In Section B we present some relations valid for both disciplines.
The "please-wait'" case is treated in Section C and the '"exhaustive-
service" discipline in Section D. In Section E we present the simple
modification that must be made to the previous results when the arrival
processes are compound Poisson processes. In Section F, we propose to
use an iterative algorithm to solve the system of equations and show

that it converges. The application described above will be treated in

Section G.

B Some Relations Valid for Both Disciplines

Results in this section are very general. They hold not only for
the two service disciplines we consider, but also for many others, e.g.
if one limits in some way the number of messages that can be served in
one scan, as long as the system of queues remains stable.

We consider the system as being in the stationary state and the
server as undergoing an alternance of switching periods of length 5
(-» < i < ») and service periods of length t, the ith service period

being spent in queue i mod M. (See Fig.5.3) From there we define the

(M=2)

Notation

Figure 5.3

serve go to

serve go to

go to

serve

to

go

serve

time

o

WP = - W o -

—
1
-

4F"K"‘°

h e e ccmccta=t

e T

Pams s bt ity

4.----—-‘1

faale o 3 e)

Pl i A

.- - = -

167

168
§

ith scanning time by

i-1
§. = £, + I (G & B) & G
i i-M K=i-M+1 k k st
i-1
= i (t + C) (l)
kei-m ¢ K

LEh .
and the i n intervisit time by

i-1
N b (cy + ty) + ¢ 2
b ket ¢ i

In the steady state, we have the following relations between the means

and variances of the service period lengths:

E[t;) = Blt; poq Ml |)

var (ti) = var (ti & M)

and similarly for the switching, intervisit and scanning times. From

(3) the average of (1) is independent of i , and

E[si] = E[s]

We can find the value of E[s] by the following reasoning. Let T be

the time for n scanning times relative to queue M to take place.

1

n
Say T =5 aM Denote by mj

+* S W ess * 8

2M

arriving in queue j during T , by m?ut

M the number of messages

the number of messages

leaving queue j and by 231 . ij ..,Qjmoutthe lengths of these
j

169

messages.

We then have

= mout
r W}, s T
-= I = s CA*H(i-l) + - s l.i
N a1 |®ia1) i=] 3
- out
M n m® pdut ™
= I L z c.+M i-1 + I- T . iut A)
Sl ™ fug JMU-L TR st~ e

Let us see what happens as n goes to infinity. We show in Section

H that if

n M
©
A
—
~
©
']
\L
-

i
the queueing system is stable and the process {siM’ P

is ergedic; thus %- goes to E[s] with probability one as n

n
- it
increases. By the law of large numbers, ry iil Cj#M(i-l) goes to
g out
pin m,

‘ = 52 b . oo
Jj » T to Aj and . 34 to oy all with probability
mj i-1 J

n0Ut
one. —%H_ goes to 1 if the system is stable. Sco we obtain:
m,
J
M
z vj
Efs] = JLL_M__. (4)
I « & o,
j=1 7

M
This expression is meaningful only if L Py <1, as expected.
i=1

170

One finds similarly that

EIVJ]= (1 82 pj mod M) E[S]

and
B[t;] = 05 yoq i ElS]
M M
From now on we will assume [ch - R R vy >0 and we will use
i=1 i=1

the index j where we should use j mod M .

C Waiting Times for the '"Please Wait" Discipline

We proceed in three steps. First we will express the average
waiting times as functions of the moments of the scanning times. We
find then a relation between the moments of the scanning times and those
of the service period lengths. Finally we show that these are related
to the solution of a certain system of linear equations.

Suppose we observe a message entering queue i and we note
that it arrives u units of time before the end of a scanning time
(relative to i) of length z and that it finds n messages in front of
it. u, z and n are random variables. For a first in first out
service,and conditioned on n , u and 2z , the Laplace-Stieltjes trans-
form of the distribution of the waiting time of our message is

-W.X

ECe ' |n,u,z) = (B; EN™

where B; is the Laplace-Stieltjes transform of the distribution

function of the service time of a message in queue i

171

We will now remove the conditioning. Averaging on n , the

number of Poisson events in a period of length :z-u , we obtain

-W.X o X - n
E(e & u;2) = § ¢ 1(2 o

n=0

3 eJ\i(z-u)[Bi(x)-l] o mUxX

-Ai(z-u)

— (Bz(x))n e g =

The arrival process being Poisson, u 1is umiformly distributed between

0 and z so

-ZX

-W. X AIZ[BI(‘()-I)
- @

z) = L ¢
R A AiB*(x) - ki

If the scanning times relative to the ith queue have a distribution

function Pr[sijg] = S, (x) with Laplace-Stieltjes transform St , we
show in Appendix A that Pr[z<x] = fg WE[s]dSi(y) (this would be a
well known result of renewal theory if the scanning times relative to
the ith queue were independent); from there

S1(\; (1-B3 () - S7(x)
ng)=ET§r X + AB;(x) - A

Differentiating one finds the average waiting time in queue i :

2
E(s;] 0 +p,) (1 +p;) QA+ op;) var(s,)
E[wi] = = E[s] +
2 Els] 2 ZE([s]
(3)
Let us find now a relation between var(si) and var(ti) . n is

the (random) number of messages present in queue i when the service

172

starts, ti is the sum of n, independent service times,

n
so E[ti | ni-n] . o

2 2
E{ti | nisn] = n[e:.L B li-] +n lf
uy L]

n, in turn is the number of arrivals in queue i during S;
S0 E[ni|si-s] = Ais
5[n§|51=$] - lzsz *A;s
and
E[tilsiss] =0, (6)

var (t.) = 1,9, E[s] + of var (s,) @)

As announced we now reduce the problem of evaluating (5) to
solving a system of linear equations.
From (1) we have

var (si) i-1 i-1

X I (8)
E[s] kei-M ji-M s

E[(ti - ci*l)(tj - cj*l)] - E[ti - ci‘ll E[tj - cj#l]

where lij:- 10|
®)
clearly Rij = Rji
Rij » Ri‘“.j"m ks ... ‘1,0,1. - (10)

but in general Rij # Rid’“

173

The reason for dividing by E[s] in (8) appears before formula (16).

From (9) and then (7) and (8) we obtain

var (ti) var (Ci+1)

o ¥ s 5 £ it e 1+

P R L g
=X O & p: 2 S -
11 1 5ai M ke=i-M jk © ElsT (11)
&g o i
1S Rij E[ti (tj + Cj+l)] E[ti] E[tj + cj+1]
= ELE[t; [}, oy, kei 1085 + 5)]
- <'
E[E[til{tk} L k<i]] E[t; + ;)]
The outside expectations are on the ty 's and Crel BE sk <id
By (6) and (1)
i-1
R;. = E[p, I T * ¢ oW,
1] [1 ciu (k k+l)(j J+1)]
i-1
- & Elt E[t.
g R [ty + cpq] Elty + ¢y 4]
i-1
sl DT i * (12)
Y k=i-M "

If we define the set I as {(i,j) €22: 1 <i <M, i-Mel < < i)
we can obtain a system of MZ linear equationsin the M2 unknowng

R,. (1,}J) €I DOy rewriting (11) and (12) as

ij
M T &
Rii B Di N WX S JZ N Ji- # AB . Zl
j=1 31 jaiMel k=i JK i1 "E[s]

(13)

174
j i-1 (1,30 € 'L
R.. = p. T R., + z R4 i j 14
. S (k=i—M 3 raje1 k3 ek i
and using relation (10) where necessary.We present in Section 6 a
practical way of solving this system.
From (5), (8) and (11) we obtain for the average waiting time in queue
2
E[s](1 +p;) (1+0p,) Lol
E[wi] = , + 202 [Rii - O\i(‘)i + Em)] (15)
i
§ o= X2, M
For example when M=2 we have the system
2 og
Ryp = Py IRy *+ Ryy + 2R0] + A0, +
E[s]
2 Gi
Ryz = P3 [Ry; + Ry + 2Ry0] + A0, +
Efs]
Rio = P1 [Ryy * Ryl
Ry1 = P2 [Ryg *+ Ryyl
which yields
2 2
% 2 Y108
WL x € — - 3
(X107 +==) (1-0,0,-05 (1+0,0,))+€X 0, +—) 0 (1-p,0,+20,)
ey E(d E[5]
s 1S

(1-py=p5) (1401 #0540, P, (140, +0,+20,0,))

and

175

°§ 3.5 Of
(1+0,) [(A0, +=) (1+p,p,+2p,p5+205) + (X,0,+=) (1-0,0,+20)
1 1= IS 2 g Ta2 2:2 172
E[s] (1+p,) E(g E{s]
1
E[wl] = -
2 2 (1-p1-0,) (1+01+09+01 0, (140, +0,+20,0,))
2 In the case of vanishing switching times so that E[s] and
(o 3
— become null, the system (13), (14) remains valid and
&
LT e
E[wi] = [Rii - xi@i] Tomdo. oM (16)
25
X
In the important case where the queues are identical, or more
2 2
ags
precisely if p. = p and 1.0 : g

,li¢E—[-s—I-=)\@*€[—s-]—,l=1,2,...M we
find that for - (i,j) e I

ii

Rij = =015 i#]

and 02
1-(M-1
K., = (1-®-1)p) a6+ gl
11 (1+p) (1-Mp) :
M o

so that = m)— (v(1+p)+X0) + =

E[w.] = E[s] - . (Ao + o’] / i=1,2 M (17)

i ¥ 2 2(1-Mp) Els 1=l,4, .00

The vi's need not be equal for relation (17) to hold. We see that

the part of the delay due to the switching times is equal to

ps)) , Mo Mv(leo) | o°
2 2(1-Mp) El[s] 2(1-pM) 2v

[f the queues are not identical, the overhead is more difficult to

-
assess. However, if the o;‘s are all zero, one deduces from formula

that the existence of switching times causes an extra delay

176

E[s](lﬁDi) th
————— for messages in the i~ queue. Other moments, like the

average queue lengths and the means and variances of the number of

customers served in one scan can easily be computed from the previous

results.

D. Waiting Time for the "Exhaustive Service" Discipline

The method used in this section is very similar to the one used
in Part C.

The customers present in queue 1 when ts starts have
arrived during v [Avi-Itzhak, Maxwell and Miller, 1965] and
[Eisenberg, 1972] found an expression for the average waiting time in

queue: 5
A; 04 E[vi] Ai@i E[vi] var (vi)

Efw;] = T0-pp) * ZE0v;] © I(-a) T TZ TEV,] (18)

If n customers are present in queue i when service starts we can

regard t, as composed of n independent 'M/G/l busy periods"
Q.
i

[Takdcs, 1962] each with mean p— iy
(l'oi)

—————— and second moment
u'l (l’pi)

Using this observation and a reasoning similar to the one used in Part

C, one finds

Py
E[tilvi=V] Al gl (19)
B
) 5 ke g1 A3 i) (20)
NaE (t.) = E(s = var (v, 2
i (1-0)2].--o.l 1

T S

177
Let us now find the system of equations:
from (2)
var (v.) 1-1 13 o2
—= D -
ETs] sei el knipey 3% = AIS) ket
o, o L E[(ti + ci)(tj + cj)] - E[ti + ci] E[tj + cj]
ij- E[s]
and has the same properties as Rij in (9) (10).
Using (20), (21), (19) and (2)
e T 4
s 1 0. i- i- P. o.
W 12 T 2 i
K., = + () z z Ko + =)
Hogealt TN ek ke 5 TRy ElE
0. o? 02
8 - SR
l—pi E[s] E[s]
1 of oi i-1 i-1
o = e [A.0, + +) % Ker]
i (1“’1)2 R | (1-pi)2 jei-Mel kai-Msl IF
(22)
and by (19) and (2)
05 i-1
K, = z :] ; =
ij l-oi k=i -Mé1 Kk) 153 23

Defining the set J by J = {(i,j) € 22:1 £ic<M, i-M+2 < j < i}

We obtain a system of M(M-1) linear equations in the unknown K.lj

(i,j) € J by rewriting (22) and (23) as

178

02
1 i
Koy [A: 0 #+]
ii s)2 i E[s]
2
u . il j-1
* [2 % . w73 T ¥ K
(1'0-)2 j=1) j=i-M+2 k=i-M+1 ikl (24)
i#1
o4 [j f i-1 : -
s L Ree, * T . 1 >0 2
H l-pi k=1-M+1 ik k=j+1 KkJ
From (18), (21) and (22
2
E[s]1(1-p;) Ki; (1-p;) (1+p) o
Bt = ;. 8 3 Sanaecs [6y]
20 205_ E[s]
i
1al ... M

As in part C this solution remains valid when the switching times vanish.

2

oy 2

o ~ 3 - (o) . . »
When ;=P and }‘io.l - ElsT AO + BT we obtain for (i,j) e J

g oA SR G
ij T O i >3
5
(1-M-1)p) (o + E%ETJ
Kij = (1-p) (1-Mp)
so that
2

Blwy] = B(s] $52L ¢ s Do+ 7) (26)

S T LR

The difference between the result for the ''please wait' discipline (18)

179

and this one is OE[s] . This corresponds to the fact that the fraction
of messages arriving in a queue that the server is emptying, i.e. o

b

is delayed an extra scanning time in the "please wait" case.

E. Generalization to Compound Poisson Processes

To be complete, we investigate here the simple modifications
that must be brought to the previous theory when the arrival processes
are modeled as compound Poisson processes. This is sometimes a
realistic model when data sources emit messages in clusters separated by
long idle periods. In this case the ith queue is characterized by the
following statistics: clusters of messages arrive in a Poisson manner,
at a rate of A; clusters per unit of time. A cluster is composed of
a random number of messages. Let the mean number and mean square number
of messages in a cluster be Ei and %4 respectively. The message
lengths and switching times have the same means and variances as in
previous sections, and we assume all interarrival, service and switching
times, and the number of messages in a cluster, to be independent.

If we consider the set of messages present in a cluster as a
supermessage, with mean length and mean square length of gi/pi and
Ei@i + l7-(;i-£i) [Karlin and Taylor, 1975, p. 13] respectively, the
supermegéages will arrive in a Poisson manner so that the analysis of
sections 2, 3 and 4 remains valid, as far as the scanning, intervisit
and service period lengths, and the waiting times of the supermessages
are concerned., All we need to do is replace %— by El and @i by

i i

180

- 1 -

e o

Qiei ~ uz (gi ’i) in all formulas.
i

The average waiting time of a message is equal to the average
waiting time of the corresponding supermessage, plus a term taking into
account the average time necessary to serve other messages in the same
cluster. The average extra delay suffered by the nth message served in

a cluster is equal to (n-1) %— , so the average sum of the extra delays

i
suffered by all messages in a cluster contianing exactly n messages is
n(n-1) 4 e
equal to s . Averaging on n and dividing by the average number
1

of messages in a cluster yields an average message extra delay of
R
i 1

F. Properties of the Systems of Equations

In the first part of this section, we present alternate forms
for the systems of equations (13) (14) and (24) (25). These new systems
contain more unknowns but have a simpler structure, which is useful when
the time comes to solve them numerically. In the second part we show
that all systems considered in this paper can be solved by an efficient
iterative algorithm.

Using equation (12) we can rewrite (11) as

)

-
1+1
s

i-1 g

Ryg * g 2 Ryy * 040 * ¢

27)
jei-M M

Defining the set I' by I':= {(i,j) ¢ Zzll <L M ;. =M€ <illo W

p 181
-can obttain a set of M(M+l) equations in the unknowns Rij o e) P s
by rewriting (12) and (27) as

s 3 i-1 i
Rt RN s S %5328 BT 28
(Gij =1 if i=j
0 otherwise)
and using relation (10) when necessary.
Similarly the equations (22) (23) can be rewritten as
Py j i-1
*ij 7 T; [k=iz-m+1 L k=§+1 s
ﬂ Ml i T8 4 ci] (29)
ij (l_oi)z i& = Efs]
or 2
B v $ s K.l + 8, 7=— 1.0, + ci]
0 eiael X ke © 13 ek 478 T Els)’
for (1,j) such thar 1 SisM i-Me1 <3<
(30)
The system (28) can be rewritten in matrix form as
R=AR+8B (31)
where R is a column matrix formed by the R.. , (i,j)e I' . A

1]
straightforward computation of the solution of (31) can become quite

lengthy, A being a M(M+1) by M(M+l) matrix. Instead, the form of
equation (31) suggests an iterative procedure, wherein the nth estimate

of R,Rn , is expressed in terms of the (n-l)th estimate by

182
R =AR__ +B

By inspecting equation (28) one checks that each iteration requires
only M3+M2+M additions and M2+M multiplications. The variables that
need to be stored are tge elements of ﬁn and §n+l , together with the
oi's and the xiei + ;%5% 's , i.e. a total of 2M(M+2) variables. A
variant to the algorithm exists (see the specialized texts, e.g. [Varga,
1962]) that reduces this number to M(M+3) . In either case this is far
from the M4 that one could expect. It is known that ﬁn converges
to the solution R when the norms of all eigenvalues of A are less
than 1 . Fortunately, this is the case when the system of queues is
statle, as we shall see.

1f p; > 0 1i=1,2 ... M, one can check that the matrix A is
an irreducible nonnegative matrix in the sense that all its elements

are nonnegative and it cannot be rewritten as

A1 0

Ay

A= (with AI and AZ square)

by any permutations of rows followed by the same permutations of
columns. Among the numerous properties of this type of matrix
[Gantmacher, 1960, Ch. 13], we use the following: the eigenvalue of A
with the largest norm, o , is real, positive, and bounded as follows:
(A) R (A),R
min —TR%— < o< max ~U£}— (32)
k | SRR T k

for all non zero vectors R with elements >) I
We denote by (A)k and (R)k the kth row of A and R. Now, if we use

183

in (32) a vector R with its elements Rij set equal to pipj , we
find that
M
a= I &5 ¢ (33)
. i
i=1

If some CH 's = 0 , one verifies :asily that relation (33) still
holds. A similar algorithm can be used to find the solution of the
systems (13) (14), (24) (25), (29) (30). One finds by the same method

the following relations about the dominant eigenvalue a .

Systems Relations
M M 2
(13) (14) 1> T p,2a2lE o,
i=1 i=l
M M 2
M ok Rty L
(24) (25) 1> I p; > max E:%‘:‘"".l a > min 3:%—7——-
i=1 k °k k Px
PiF0
M M
(29) L >k h > max 1:{ = > a > min l‘i "
i=1 k k k °x
ok#O
M
(30) ¢ B S

124

G. Application to the Encoding of the Message Origins

-

In the light of the strategy used in Section 5 it is clear how
the cyclic strategies developed here can be used to indicate the message
origins. It suffices to queue the messages from origin i in a special
buffer that is emptied in a cyclic fashion, and to indicate the end of
the service with a flag of length Vi - If the probability of insertion
is known, it is possible to apply the previous results to compute the
system performances.

In particular, if the queues are identicél and the probability
2—(v-1)

of insertion equal to one obtains from (17) and (26)

Mv(l + A(Eb + 2—(v~1))) XT(Ebz + 2Eb 2-(V_1) +

2(1 ~ MA(Er + 2~ (V"1)y 2 =

gw w2701

o~ (v-1)

(
MA(Eb + 2 (V1)y)

for the ''please wait" discipline, and
=(v=1) ,-(v-1
,-(v-1),Mu(1 - A(Eb + g*(V=lly A (0 + 2ED 2 ke

Ew
200 - mageb + 220 o C e » 22001

for the "exhaustive service.'" The firstterm takes into account the
possible insertion in frontof a message. Here b refers to the length
of a messa_:, exclusive of any insertion.
two
We note that in light traffic the first/termwill dominate in

both cases, whereas the presence of the protocol does not affect the

capacity of the link if long enough flags are used.

185

H. Condition for Stability

We show here that if [o; < 1 , the queueing system is stable,and
the process {SjM+i’ j=...,-1,0,1,...} formed by the lengths of the

scanning times relative to queue i 1is ergodic.

To keep the argument short, we will prove these results only in
the case where, with probability one, all service and switching times
take only a countable number of values, so that the state spaces of the

Markov Processes defined below are countable.

We define e

> T .
dei= (B 5 Spug » Bpet 4 oo Spagiel » Spad

dy 's form a non stationary Markov Process and by (6)

0 0 (7 g |
0 [0 SRR [M, |
@ 1
d
E[dk*l ldk-d] = +
0 1
0 Ok Py Py 5k/
Vi g o a 0/

for the '"please wait' case. If the 'exhaustive service' discipline is
used, the expression is similar except that the first Ok in the
square matrix above is replaced by 0 , and the others by ok/CI-ok)

(by (19)). In both cases we can write

E[dy,,d;=d] = B, + A d

186

We consider now the process kw00, ... for F

ik

fixed. It forms a stationary Markov chain, all values of the form

(0 . ct

i+l ’ 2,8

* soxngy O 5 o)T , where the c¢* 's have non
i+2 i+M j

zero probability, are accessible in one step from all states, so the

process is either recurrent or transient. One finds that

E d

di+(k+1)M di+kM = *C05 " Ajamel PpaMez o0 Ay

for some Ci - If the eigenvalue of A. with the

Fobtel Blam-g v Ay

largest norm, a , is less than one, for any initial conditions,the

mean of di is uniformly bounded, so the process is positive

+kM

recurrent. Using the same technique as in Section F, specifically

formula (32) with test vector (pi, Q, 0)T , one

gag? Ya neeBp g gs

o)

checks that « is < , = , > 1 with IS [
jag 3

If the di+kM are ergodic, then, a fortiori, so are the

S { kM 's because they are equal to the sum of the elements of the

'
divm 'S

187

8. Comparison of the Practical Coding Schemes

In the previous sections we have analysed four different
practical coding schemes. Which one is the best? If the input
statistics are known, the performances can be computed and the various
parameters optimized. Only then can one decide. It is however
possible to make some general statements, as we will do here. For the
sake of simplicity we assume that all sources have the same
statistics, that all flags have length v
and that the probability of insertion is g~ Lv=1)

For convenience we reproduce here the formulas for the average

waiting time:

I. First In First Qut: (formulas3 &4of Section 4)

. W (E(ben)?

2(1 ~ MA(E(Bsn) + 271y,

» 2 E(pen) 2" 071, p-(v-1)y

+ En

We recall that n 1is of the order of log M .

II. Sampling: (formula 11 of Section 5)

Ew = - % + 2_(\)'1) > M\) 5
1 - Ma(eb + 27 (1)

. MaEb? + app 27D, p-(v-1)y
2‘(\)'1)

2(1 - MA(Eb +)
III. Please Wait: (formula S5 of Section 7)
2
Bw w2201, Mu(l + 2 (b« 27070

2(1 - MA(Eb + :'(“‘1)))

188

MA(Eb B e ST Y
201 - (e + 2”071

IV. Exhaustive Service: (formula 26 of Section 7)

~(v-1
T T sl

201 - MAEb + 2~y

, MA(Eb® + 2Eb 27 wlv=d) o p=lv-1)y
260 ~MAES + 27 B

One sees immediately that, when the different origins have the
same statistics, strategy III is better than II if M > 1 , but not as
good as strategy IV. The relative difference between III and IV is
generally small. If M > 1 , the overhead in strategy II is double
the overheads in III and IV, If M=1 , II is equivalent to III.

In light traffic,strategy I is better than IV, because
§-+ logZM :-Ef . However, strategy IV performs better in heavy traffic;
if v is large enough,the presence of the protocol does not diminish
the traffic that strategy IV can handle. All of this is consistent with
what was said in Section 3. in light traffic it is hardly possible to
reorder the messages, thus strategy I must be almost optimal. In
contrast, strategy IV works well when many messages from each origin are
served in every scan, because the flag is used only once for each batch.

Note that as indicated in Chapter 3 , strategies II, III and IV would

work better if the flag lengths were allowed to vary from message to

189
message in a. batch, according to the probability (as computed by the

receiver) that the batch will terminate after the present message.

The observation that Strategy I works well in light traffic
and Strategy IV in heavy traffic suggests a hybrid scheme, similar to
what [Hayes, 1976] and [Capetanakis, 1977] use in another context.
The idea is to group the M origins in M' groups (M' < M), say
origins 1 and 2 in group 1, 3 and 4 in group 2, etc. Strategy IV (or
II or III) is used to differentiate between the groups, while prefixes
are used to indicate the origins inside of a group. In the example
just mentioned, messages from odd origins would be prefixed with a
"0'", the others with a ''1'". By varying the size of M' one obtains
a continuum of possibilities, ranging from M' = 1 (optimal in light
traffic) to M' = M (best in heavy traffic). The performances of
this scheme can be obtained by modifying in a trivial fashion the
results for Strategy IV (or II or III).

Another point that we will investigate is the relation between
the average message waiting time and the average number of protocol
bits per message, denoted by h , which is equal to 1/MA - Eb (formula
(1) of Section 2). To be able to compare these results with those of
Section 3 we will rather compute the relation between the average number
of protocol bits per message and the average number of messages waiting
for service, Em , which by Little's formula [Little, 1961] is given by
Em =M X Ew .

As we have noted earlier, some of the protocol bits convey
information about idle times, and some about message origins. In Section

3, all protocol bits transmit information about the origins. The

e ——— e - e 2 ——

4 47 ,

190
comparison with Section 3 will still be meaningful in heavy traffic,

where the encoding of the origins uses up most of the protocol bits.

This is clear in the case of Strategy I.

There,
Em = 3%3-+ w21 4 MaEn
o M)\(E(b-m)z + 2E(b+n) 2'(\)-1) % 2-(\)-1))
2th - En - 2-(v-1))
or

(E(ben)? + 2E(ben) 27 (V1) 4 o= (v-1)

Em v -(v-1)
m-z-z - En

b g e 2Tl

The first term represents information about the origins. As Em
increases, so does the optimal v and h tends to En , as should be.
In the case of Strategy II, the third term in the formula for Ew

will dominate in heavy traffic. We will thus have

s s Mv
§s -(v-1)
g o gmieel) LBy

Em
Optimizing on v and neglecting the integer constraint, one finds that
the optimal v is giien by v = log2 (2 loge 2 Em/M) . This value of
v justifies the approximation of va by fhe third term in the formula

above. Using this value in the formula for h , one obtains
M Em
h % log2 (Ze(loge 2) ﬁ—a
which has exactly the same form as what was found for Strategy II of
Section 3.D, except that a factor % is missing here. This is easy to

explain qualitatively: the only difference between the situations

in Section 3.0 and in this section is that the number of messages

-

e 191
served in one scan is variable here, which causes a loss of efficiency

because l2§_§ is a convex function.
The cases of Strategies III and IV are similar, we treat IV only.
The second term in the expression for Ew will eventually dominate.

Neglecting the term 2701 45 the numerator, we obtain

Em

- My(1 - AEb)
30 e 3L

or

S 9=(v-1) . My
h 2 +T

(1 - AEb)
The optimal v is given by

4Qog, 2)
velog iYW

and the resulting h is equal to

4e(loge 2) Em
& T -xE) M

n e S ALY o,

This is about twice as efficient as Strateﬁy II, but less efficient
by a factor of two than the comparable strategy of Section 3.D.

We can thus cpnciude that although in heavy traffic strategy
IV is the most efficient of the strategies we analyzed, it is probably far
from being optimal, as indicated by the results of section 3. Nevertheless
enormous gains can be realized by using it in heavy traffic, as illustrated

in the following numerical example.

Fixed length messages arrive at a

192

concentrator in a Poisson manner, at a rate A on each of M input
lines. We want to transmit on a noiseless binary, synchronous output
link not only the messages, but also their origins.

Usually this is done by prefixing messages with an address. In
some cases this scheme significantly increases the average delay
incurred by the messages, as a numerical example will show.

Let us use as time unit the interval necessary to transmit one
bit on the output link and let us take M=16 , the length %-= S50 and
A= Tﬁ%ﬁ . If we naively forget about the addresses, we obtain from the
formula of the mean waiting time in a M/D/1 queue:

N CE
Elw] = ¢ =) 100

If we use a 4 bit address and prefix all messages with a "1" to
distinguish them from idle periods during which we transmit "0" 's, the
length becomes 55 (a 10% overhead) but the delay becomes

| 16 155 (55)°

E[w] = 5 2 T .5 & 202
1000

(the term .5 takes into account the synchronous nature of the output
link). The presence of the addresses doubles the mean waiting time in
queue.

Another simple way of transmitting the origin of the messages is
to use the cyclic, exhaustive service discipline. We queue messages in

a buffer corresponding to their origin, prefix them with a "1'" so that

193

their length is now 51 bits, process every queue in turn and when it is

empty transmit a '"0" . Our "switching time' has thus mean Vv = 1 and

2

variance 0 = 0 . From formula (26) of Section 7.

2
E[w] = 1161 (1 - 51/1000) 116 1/1000 (S1)~ ~

S Y% el 454
1600 ~1000

The improvement is due to the fact that this way of transmitting the
address is naturally adaptive. When many messages are waiting in queue,
few bits per message are needed to indicate the origin. Of course, this
strategy works well only when the traffic is heavy, but this is precisely
the time when it is worth reducing queueing delays. As the traffic

growth heavier, this scheme works better and better.

9. Suggestions for Future Work

We have shown in Section 8 that the "sampling'" and ''polling"
strategies behave in the same way in the fixed length queue and variable
length queue cases. Unfortunately we know from Section 3 that they are
rather inefficient. One would expect that the efficient strategies for
the fixed queue length case will also perform well in a variable length
queue environment. Their analysis is not easy, because they introduce
much memory in the queueing system, but should be attempted.

On a more abstract level, the state of a queue can be regarded
as forming a partially observable Markov process when the input process
is Poisson. One should be able to use the same method as in Section 3

and determine a strategy that minimizes the entropy of the output sequence,

194
REFERENCES

ABRAMSON, N. and F.F. KUO, eds., 1973,
Computer Communication Networks. Englewood Cliffs. N.J.: Prentice-
Hall, 1973.

AVI-ITZHAK, B., MAXWELL, W.L. and L.W. MILLER, 1965,
"Queueing with Alternating Priorities," Operations Research, vol. 13,
pp. 306-318, 1965.

BELLMAN, R., 1957,

Dynamic Programm@;g, Princeton, N.J.: Princeton University Press,
1957.

CAMRASS, R.J. and R.G. GALLAGER, 1976,
"Encoding Message Length for Data Transmission," Report ESL-P-687, 1976.

CAPETANAKIS, J.I., 1977,
"The Multiple Access Broadcast Channel: Protocol & Capacity Considerations,"
Ph.D. Dissertation, Dept. of Elec.Eng. and Comp.Science, M.I.T.,
Cambridge, MA, 1977.

CARSTEN, R.T., NEWHALL, E.E. and M.J.M. POSNER, 1977,
"A Simplified Analysis of Scan Times in an Asymmetrical Newhall Loop
with Exhaustive Service," IEEE Trans. Communications, vol. COM-2S5,
PpP. 951-958, September 1977.

CERF, V.G., 1974,
"An Assessment of ARPANET Protocols," MNetwork Information Center,
#304889, stanford Research Institute, Menlo Park, CA, April 1974.

COOPER, R.B., 1970,

"Queues Served in Cyclic Order: Waiting Times," Bell System
Technical Journal, vol. 49, pp. 399-413, 1970.

and G. MURRAY, 1969,
"Queues Served in Cyclic Order," Bell System Technical Journal,
vol. 48, pp. 675-690, 1969.

CROCKER, S.D., HEAFNER, J., METCALFE, R. and J. POSTEL, 1972,
"Function-Oriented Protocols for the ARPA Computer Network," AFIPS
1972 SJCC Proceedings, vol. 40, Atlantic City, N.J.: AFIPS Press,
PP. 271-279, 1972.

DAVIES, D.W. and D.L. BARBER, 1973,
Communication Networks for Computers. New York: Wiley, 1973.

DONNAN, R.A. and J.R. KERSEY, 1974,
"Synchronous Data Link Control: A Perspective," IBM Systems Journal,
May 1974.

DOOB, J.L., 1953,
Stochastic Processes. New York: Wiley, 1953.

DRAKE, A.W., 1962,
"Observation of a Markov Process through a Noisy Channel," Sc.D.
Dissertation, Dept. of Elec.Eng., M.I.T., Cambridge, MA, 1962.

195
EISENBERG, M., 1972,

"Queues with Periodic Service and Changeover Time," Operations
Research, vol. 20, pp. 440-451, 1972.

FELLER, W., 1966,
An Introduction to Probability Theory and Its Application, vol. II,
New York: Wiley, 1966.

, 1968,
Idem, vol. I, 3rd edition. New York: Wiley, 1968.

FUCHS, E. and P.E. JACKSON, 1969,
"Estimates of Distributions of Random Variables for Certain Computer
Communications Traffic Models," Proc. ACM Symp. Problems on the
Optimization of Data Communication Systems, Pine Mountain, GA, pp.
202-225, Oct. 1969.

GALLAGER, R.G., 1968,
Information Theory and Reliable Communication. New York: Wiley, 1968.

w1976,
"Basic Limits on Protocol Information in Data Communication Networks,"
IEEE Trans.Inform. Theory, vol. IT-22, pp. 385-398, July 1976.

y 1977,
"A Minimum Delay Routing Algorithm Using Distributed Computation,"”
IEEE Trans. Communications, vol. COM-25, pp. 73-85, Jan. 1977.

, 1978,
"Variations on a Theme by Huffman," submitted to IEEE Trans.Inform.

Theory.

and D.C. VAN VOORHIS, 1975,
"Optimal Source Codes for Geometrically Distributed Integer Alphabets,"
IEEE Trans.Inform. Theory, vol. IT-21, pp. 228-230, March 1975.

GANTMACHER, F.R., 1960,
The Theory of Matrices, wvol. II. New York: Chelsea, 1960.

GERLA, M. and L. KLEINROCK, 1977,
"On the Topological Design of Distributed Computer Networks," IEEE
Trans. Communications, COM-25, pp. 48-60, Jan. 1977.

GOLOMB, S.W., 1966,
"Run Length Encodings," IEEE Trans.Inform. Theory, vol. IT-12, pp.
399-401, July 1266.

HAYES, J.F., 1976,
"Adaptive Polling," Technical Memorandum 76-3116-I, Bell Laboratories,
Holmdel, N.J., 1976.

HOW2RD, R.A., 1960,

196
Dynamic Programming and Markov Processes. Cambridge, MA: M.I.T.

Press, 1960.

» 1971,
Dynamic Probabilistic Systems, vols. I and II. New York: Wiley, 1971.

HUFFMAN, D.A., 1952,
"A Method for the Construction of Minimum Redundancy Codes, " Proc.

IRE, vol. 51, pp. 251-252, Sept. 1952.

JELINEK, F., 1968,
"Buffer Overflow in Variable Length Coding of Fixed Rate Sources,"
IEEE Trans.Inform. Theory, IT-14, pp. 400-501, 1968.

and K. SCHNEIDER, 1972,
"On Variable Length to Block Coding," IEEE Trans.Inform. Theory, vol.
IT-18, pp. 765-774, Nov. 1972.

KARLIN, S. and H.M. TAYLOR, 1975,
A First Course in Stochastic Processes. New York: Academic Press,
1975.

KINGMAN, J.F.C., 1970,
"Inequalities in the Theory of Queues," J.R.Statis.Soc., vol. B32,
pp. 102-110, 1970.

KLEINROCK, L., 1965,
Queueing Systems, vol. I: Theory. New York: Wiley, 1965.

, 1976,
Idem, vol. II: Computer Applications. New York: Wiley, 1976.

» NAYLOR, W.E. and H. OPDERBECK, 1976,
"A Study of Line Overhead in the ARPANET," Commun.Ass. Computing
Machinery, vol. 19, pp. 3-13, Jan. 1976.

. and H. OPDERBECK, 1977,
"Throughout in the ARPANET - Protocols and Measurement,”" IEEE Trans.
Communications, COM-25, pp. 95-103, Jan. 1977.

KLERER, M. and G.A. KORN, eds., 1967,
Digital Computer User's Handbook. New York: McGraw-Hill, 1967.

KONHEIM, A.G. and B. MEISTER, 1974,
"Waiting Lines and Times in a System with Polling," J.A.C.M., vol. 21,
pPp. 470-490, 1974.

KRUSKAL, J.B., 1969,
"Work-Scheduling Algorithms: A Nonprobabilistic Queueing Study (with
Possible Application to No 1 ESS)," Bell System Technical Journal,
vol. 48, pp. 2963-2974, 1969.

KUSHNER, H.J., 1971, ' 97
Introduction to Stochastic Control. New York: Holt, Reinehart and
Winston, 1971.

LEIBOWITZ, M.A., 1961,
"An Approximate Method for Treating a Class of Multi-queue Problems,"
I.B.M. Journal of Research and Development, vol. 5, pp. 204-209, 1961.

LEWIS, P.A.W. and P.C. YUE, 1972,
"Statistical Analysis of Series of Events in Computer Systems,"
Statistical Computer Performance Evaluation, W. Freiberger, ed.
New York: Academic Press, pp. 265-280, 1972.

LITTLE, J.D.C., 1961,
"A Proof of the Queueing Formula: I= AW," Operations Research,
vol. 9, pp. 383-389, 1961.

NIELSEN, P.T., 1973,
"A Note on fifix-free Sequences," IEEE Trans.Inform. Theory, IT-19,
pp. 704-706, Sept. 1973.

ODONI, A.R., 1969,
"On Finding the Maximal Gain for Markov Decision Processes,"
Operations Research, vol. 17, pp. 857-860, 1969.

PLATZMAN, L.X., 1977
"Finitesemory Estimation and Control of Finite Probabilistic Systems,"
Ph.D. Disserfition, Dept. of Elec. Eng. and Comp. Science, M.I.T.,
Cambridge, MA, 1977.

POUZIN, L., 1973,
"Presentation and Major Design Aspects of the CYCLADES Computer
Networks," Proc. 3rd Data Comm. Symp., 1973.

RUBIN, I., 1976,
"Data Compression for Communication Networks: The Delay-Distortion
Function," IEZEE Trans.Inform. Theory, IT-22, pp. 655-664, Nov. 1976.

RUDIN, W., 1966,
Real and Complex Analysis. New York: McGraw-Hill, 1966.

SCHALKWIJK, J.P.M. and K.A. POST, 1973,
"On the Error Probability for a Class of Binary Recursive Feedback
Strategies," IEEE Trans.Inform. Theory, vol. IT-19, pp. 498-512,
July 1973.

SCHWARTZ, M., 1977,
Computer Communication Network Design and Analysis. Englewood Cliffs,
N.J.: Prentice Hall, 1977.

s

* SCHWEITZER, P.J., 1971,

"Iterative Solution of the Functional Equations of Undiscounted Markov
Renewal Programming," J.Math.Anal.Appl., vol. 34, pp. 495-501, 1971.

SEGALL, A., 1977,
"The Modeling of Adaptive Routing in Data-Communication Networks,"
IEEE Trans. Communications, vol. COM-25, pp. 85-94, Jan. 1977.

TAKACS, L., 1962, 108
Introduction to the Theory of Queues. New York: Oxford University
Press, 1962.

TYMES, L., 1971,
"Tymnet - A Terminal Oriented Communications Network," AFIPS Conf.
Proc., vol. 38, 1971.

VANDERMEY, J.E., 1976,
"The Architecture of a Transparent Intelligent Network," Proc.
National Telecommunication Conference, 1976.

VARGA, R.S., 1962,
Matrix Interative Analysis. Englewood Cliffs, N.J.: Prentice Hall,
1962.

WYNER, A.D., 1974,
"On the Probability of Buffer Overflow under an Arbitrary Bounded
Input-Output Distribution," SIAM J.Appl.Math., vol. 27, pp. 544-570,
Dec. 1974.

199

Appendix A

A Theorem about Random Sums

We prove here a theorem that is used in Section 4 of Chapter 3.

Let (@, S, P) be a probability space. We recall that if
x : @+ R is a measurable function, E|x|<e ,and if B is a o-
algebra included in § , E(x[B) is defined as a B-measurable
function such that /g E(x|g) dP = /g xdP. for every B in B . One
can show 'poob, 1953, pp. 16 and 32] that E(xlB) exists, that any
two versions of it are equal almost everywhere, and that if 1z is
a g-measurable function with E|xz|<e , E(xz|B) = z E(x|B) almost
everywhere. These facts are used below.

Let m : be a measurable function m : o » N

b

bz,... be a sequence of measurable functions

1)
E(Jbj)e= 1eN™ b, :a+R

Bi be the smallest g-algebra for which bi is
measurable
gt be the smallest g-algebra for which bi+1’
b. ,,... are measurable
i+2
B(l) be the smallest ¢-algebra for which
bl’bz""'b' are measurable
i
then
I;§§;
I1] ==)IV ==V l
11 ==V1

vi*

where
I Eb, =a if P(m> i) >0 AR
m 1is independent of the bi b's
II the bi 's are mutually independent
Eb, =a if P(m>1i) >0 ien'
{w:aw) =i} € g (1)
i.e. m 1is a Markov time
III Eb, =a if P(m>1i) >0 ienN"
; T
E(ImailB) = E(T_,) a.e.
i.e. the event m=i is independent of bi+1’bi+2""
IV Eb; =a if P(m>1i) >0 ienN"’
E(Tp.;1B;) = E(I ;) a.e.
i.e. the event m<i 1is independent of bi
v E(, Imli) =a E(Imli)
i
m
Vi E L bi = a E(m)
(i=1
(m
Vi' K z |b.| <
4 i
1i=1
m
VI' is a technical condition to insure that E % bi is
i=1
well defined.
Proof
I = III this should be clear;
IT =111 it is enough to show that

¥l , 2 B(L Yt B

m=1

200

201
or P({y : m(y) = i})P(B) = P({y : m(y)=i}NB)
This follows from the fact that B ¢ B , and
that by II
{w : mw) = i} ¢ g

and the bi 's are mutually independent.

III =) IV E(Im<i|Bi)
i-1 l
= I E(__.[|B)
j=1 m=j' i
i-1 ;
= § E(I__.) by III because B.C B) for j<i
j=1 m=j ;L
i E(Im<i)
V=3V E(b; Imli) = E(E(b; rm>_1|Bi))
= E(b; E(lmlilBi))
=Eb, E(Imli) by 1V
= a E(Imzi) by IV
\'4 m @
VI Bl L b »B| T b1,
VI i=1 je1 2 2
= I E(b, I .) by VI'
i=1 =
P I) by V
i=1 et
= a E(m)

Note that we do not need to assume E(|b,[)<» and

4 L P(bi > 0) =31 ¢ Nt , and if we allow

202

the value = ,
If the bi 's are independent and identically distributed, and
some technical conditions are met, it is well known that I VI,
while 11f==9VI (also known as Wald's theorem) is proved at different
places in E’eller, 1966]. [Doob, 1953}proves that II=3VI
The theorem given here is very simple, and its hypothesis
minimal; that IV=3VI is somewaht surprising, we give an example

illustrating it.
prob, m b b b

3/16 1 0 -1 2

1/16 1 16 7 2

1/16 2 0 -1 0
3/16 2 0 7 0
4/16 3 0 -1 0
4/16 3 0 -1 2

We have E bl = Eb, = E b3 =1

2
Em=9/4
P(m < 2|b2 = -1) =% =P(m < 2)
P(m < 3|b3 =2)=4%=P(m< 3)
Thus, surely enough,
m

3 1 1
E ifl bi TE'O * 3T 16 + I3 (-1) +

S

4
gl

L B o
o

= 9/4 = Em Eb1

i
|
§
1
i
{

203

P=2|bg=2) = 0 4 P(me2) = x ,

204

Appendix B

We prove here a theorem used in Sections 5 and 7 of Chapter 5.
The method is similar for both cases, we will give the details for Section

S and sketch the proof for Section 7 .

M
We know that if ., <1 and if ¢ EV_ . < » , the process
T jul 0j
{si,m;} , 1=0,1,... (j fixed) 1is Markovian and positive recurrent, thus

- i o ; .
ergodic; E Sy and E mj are finite. For x given, consider the random

variables
i

ge- L
J s<x

i
.(s.,m.): =
zlﬁl,J) m :

The z, process is also ergodic, because if a set A of sequences

{zi} is shift invariant, so is the set A': = {{si,m;} : {zi(si,m;}e A}

A' has the same probability as A, i.e. 0 or 1.

Theorem

The limit, as the time increases, of the fraction f£(t) of
messages from origin j that arrived in the queue during scanning times
of length less than or equal to x is almost surely equal to

by [fyesom

Proof: Denoting by «(t) the number of complete scanning times up to

time t , we have that

——— i i -

205

a(t)-1 alt)y

N A : M1
bob il s gpy e dnl) lite
a(t) a(t)-1

b m. z m?
i=0 J i=0 j

By the strong ergodic theorem, the ratio of the numerators over a(t)

goes with probability one to E a1 = Xj Jz y dS(y) while the ratio

S .<X
josys

of the denominator to a(t) goes with probability one to Aj Eis .

Q.E.D.

Note that this would be a well known result of renewal theory
if the scanning times were independent, and if the arrivals did not
interact with the lengths of the scanning times.

The proof for Section 7 goes along the same lines, the main
difference is that the process {mi,si} must be replaced by a process
of larger size, similarly as we did for the di process in Section

to retain the Markov property.

. IR T
e A e A T s i

’

SRR

206
Aggendix C

This appendix contains the listing of FORTRAN IV subroutines
MOHUFF and LSEQl which implement respectively Steps I and II of the algo-
rithm presented in Section 4.C of Chapter II.

MOHUFF is a straight translation in FORTRAN of the algorithm
given in Step I. It works best when the symbols are listed in order of
decreasing probabilities.

LSEQ1 compufes the largest root of the equation A*(s) B*(-s) = 1,
using the Newton.. Raphson algorithm [Klerer and Korn, 1967, p. 2-59].
Because this algorithm works best with functions whose ratio of the second
derivative to the first derivative has small absolute value, the sub-
routine computes the largest root of the equation log A*(s) + log B*¢s)=0.

In lines 14 to 18 the program searchtsfor a starting point larger
than the largest root. Because the Laplace-Stieltjes transforms of pro-
bability. distributions are log-convex, the sequence of values produced by
the algorithm from this starting point will converge monotonely to the
largest root. The algorithm itself occupies lines 19 to 28.

Function evaluations take place in lines 33 to 66. Subroutine
INTTIM, which must be provided by the user, computes log A*(s) and
%; log A*(s) . If IND =1, B*(s) 1is set equal to the lowerbound devel-
oped in Section 4.2 of Chapter II, and the program computes 5 » If

IND= 2, B*(s) = L pi e
i=1

— , and the program computes the corresponding

s . When me is constant, the same objective is attained more

efficiently by setting IND to 3.

207

9¢€00NHONW
SEOO0NHOU
HEOONHOW
ELOONHON
CEOONHON
LEOONKHON
0E00NHOW
6Z00NHOK
8COONHONW
LTO0NHOW
9Z200NHOMK
GZ00NHOW
HhZOONHOA
€Z00NHONW
CZO0NHONW
LZOONHONW
0CO0ONEOW
6 LOONHON
8LOONNONW
LLODNHOK
91L00NHONK
SLOOUHOW
h1L00NHORW
€ELOONHOW
CLOONHOMNW
LLQOHOW
OLOONHOMW
6000N1ONW
8000NHOH
LOOONHOW
9009NHOW
SO000ONHONW
h000NHOW
£000NHONW
C00)0NHON
LOOONHON

(I)¥d=4aLNIW
I=1QNI
HALNIN=LJIZNIW
LANI=Zan1
120109 (MALNIW"3d39° (7)) nd)d1
020L09 (4dZNIN-d9° (1) ud) 41
GLAL=HdZNIN
GLA L =¥JLNIR
0=13N1I
V=1
£C0L09
L-¥=V
HhZoloov(srd-L-31°(v)ud)d1l
ISATIVHS ¢ GNHIdL
N=V
o=(1)1
0=(1)md
I=(1)an1
(1) a=(1) 84a
N°L=T 0LOQ
JZ1TVILINI
(s)axd=dxis
L1oLo9 (0L "19°s)d1
ZANTI1aNI’ (Ze)a’ (N)aNI“(N)T Z#+ES93INI
I’V (N)MD txUEAUIINT
dXF’S7AXIS IV dAININ “HALNIW’ (N) 44’ (N) d haTVTU
GIN¥NI3¥Y SI AZAJINIANI = S ¥0d HA0D TIVWILAO Nl Gl 12 S 41
SYAHY NHOK 2dV ©d GNV ANI
HIONET UMOM3IA0D YEVHEAV ILNdLno SI1 IV
QUOMEAOD WNWILAO 40 SLIH Z€ LSUIJd IHI SNIVINOD MO
HLONAT IN4dln0 ST 1
dZ2IS IndNI SI N
SIILITIIwdO¥d INANI ST 4
ININOAXT INndNI SI S
730D NVWJ4NH GII4IAOK FLDAWOD
(4d*ANTI’IV°ND°T°N°d’S) JANHOR ANILNOYEDS

e

he

£C

El
L

vouvwoovovwoovouou

S TIN5 8 T P

208

CLOONHONW
LLOONHOW
0LOONHONW
69000HONW
89000NHON
LY90CNHONW
9900010K
S900NHOKW
h9000NHOW
€9000HONW
Z900MNHOW
L90COHOH
090CNKEOW
6S00NHON
8S00NHOHK
LSOOUHOW
9G00NHOMW
SS00NHOMW
hSO0ONHOW
£S0UNHONW
ZSO0OUHOW
LSOONHONR
0SO00NHOW
6 h0OUNHOW
8h00NHOAR
LYOONHOW
9h00NHONW
SHhOONHOW
hHO0NOHOW
EN0INHOW
ChOONHOW
LhOOUHON
OhOONHOMW
6€£00NHOMW
BEO0ONHOMW
LEOONHON

N’L=I 0904
(66°9)31I3n

HILNI¥d AdLNT

NUDLAY

(1) 1% (I)d+T¥=TV

N’L=1I 0$ 0d

*0=1V

HL19NIT F9VYAAY FLNdROD
£10109

*1=dX4S

0=(1)1

o=(1)mD

I=(I)anr

*t=(1)ud

N’L=1 Z10G

€20109

FONILNDD

L+ (1)1=(1)1
ZANI=(I)anI

L+ (1) Mo+ (1) mD=(1) MD
280109

(1) w2+ (1) mO=(1) D
0oc0l09(ZeNI*an-(1)an1)dI
L€0lo9(1LaN1*02° (1) ANI)AI
: N’L=1 Q¢0d
GLa*¢=(1Lan1) 8a

((zZan1) 9d+ (LANI) 4a) «dXds=(ZANI) dd
dalvain
0h0l09 (003 "ZANI) 4TI
11xd

220109 (0°19°1I) 41

1-1I=1

(I) 4d=YHdZNIN

1=CZANI

020109

SA40M3d0D TVHNILAO FHL 40 SIIE LSOW-14dT Z€ dHL SLNI¥d HINIEd O

0S

(4%

it

0t
(43

LE

(74
X4

<9

2 '

9800NHON
S800NHOMW
HE00NHOA
€B00NHOW
ZB800NHONW
LBOONOHONW
080001OW
6LO00NHONW
SLOONHOW
LLOONHOK
9LOOTHONW
SLOONHONW
HLOONHOMW
€LOONHOW

and
(LIZE’XH’H1°X9°9°CLI1°XE’GTI”y o) L\KEO4
(+SAUOMAA0D s *XT’sSHLONT T4 *XG*4SITLITIAVHOUds *X8% s o) LVHYOI

Ny0l3d

(LUNI’L=zaNi’(zanNT)1) *(X)1°(1)a’1(00OL"9)ALT N
v=(1) 8D

(zanr)a-=(zax1) a

L-V=v

0cL0lo9 (0*ao*(zani)a)arx
V-v- (1) Md=(zan1)a

Z7 (1) mo=v

LINTI’L=CaNI 0ro0d
ZE=LANI(ZE*LO°LANTI) 4T
(1) 1=1aNI

oct
66

09
oL

Wil o bl B I TR Adu e T

210

9€0001S1
GE€0003S1
h€00038S1
£€0003S1
2€£0093s1
LEODOIST
0£0203S1
620003S1
B8200JdS1
L20003S1
9¢0003S1
GZ00013Ss1
hZ0004S1
£20003S1
220003S1
12000451
0Z000:ST
6L000dST
gL0NdIS1
LL0OJ0dST
91000451
GL0004S1
#10001S1
£10003S1
21000381
LLO004S 1T
0L0004S1
60000451
80000351
L00003S1
90000dS1
60000451
h000JiS1

"£00003S1

200003s1
100003S1

S+ZLHLEGI =¥

*0=14

*0=4

Nunlid

0=431

(0oL “9)aLIun

N¥NLAY

100 0L =S

10109

L13d=214a

N¥NL38(ZT79Q°39°LTdA"ARY " h-2°L°3T1°L13a) 41

(0S-5) sg¥=113a

a4d/4-0S=s

S$=0S

asI’(109’209’L09) 0109

Z=W

90109(00L "39°1) 4dI

L+I=1

aNI’ (h09°209°1L09) 0109

n0L09 ("0L"1u°S) 4l

G*45=§

2060129 (*0°19°a4 ANV *"0°39°4d) J1

NI’ (4097209°109)0LD9

L=W

*t=s(*0°11°s) 41

0=1I

GLd*L=z14a

1=431

I°(N)T Z»Ed93INI

W’HNPGRIYHAT heM4OILINI

dxa’o01v *sgv’211a’L1za@ ‘xnVav’v’ad’a’s’(N)d he1vid
0 Ol 441 1dS ANV SNOILV4dLI 66 ddldV dOLS FINADHEANOD ON 4I
NOSHIVJI-NOIMEN 3SND
AINENLEY ST LOO°OL “OL 19 SI 1004 SIHL 41
0 = ((s=)ex(S)V¥)D0IV 40 1008 LSA9¥YVI ALNAKOD

(8AT*1°N*d’°S’aNI) 1OIST INILOONENS

109

c0s

1 0S

Voo

211

890003S1
£90003S1
990003S1
S900031S1
h900904S1
€9000aST
290003S1
L90004S1
090003s1
650003151
8G0003S1
LS0003ST
9G60004S1
S60003S1
#50004S 1
€500J43S1
250003S1
LS0003S1T
050004851
6h000351
8h00DS'1
Lh0Q0dST
94000181
Sh000aS1
hHh0003IST
£H000451
¢h0004S1
Lh0004ST
0h0004dS1
6€£0003S1
8€0003S1
LE000AST

aNd

(,103ST NI FDNAOYIANOD ON) LVLUOI

A°(20S°1L06G) 0LOD

av+ (L) 1=04

V4Ss (L) 1=43
(QY°¥’S)WILINTI TIVD
W?(zos’Los)olo9

v+ (d)901¢ =4
av+d/ai=a4d
(AV’Y’S)WILINT 11¥D
(M) 1=XNV4Gd=04d

X0y +d=d
(xnv)dxi«(¥)i=xn¥
oLL=xn¥(*0LL-lo°*Xnv)dI
(%) TxS=Xxn¥

N’L=X g£090Q

*0=14

*0=4d

W’ (z20s°L0s) 0LO9
av+Q0d=14

V+d=d

(QU°V°S)HIILNT ‘1'T¥D
av/xinv=4d
N/4/3d-2LHLE69/XNN=0a
(d) s01v=an¥

ANNILNOD

x0vs ((%)d) 901v+GI=04d
Xuv+d=d

avss« (¥)d=xn¥
0090109(°0°3T1°(¥) d) a1
N’L=Y ¢090a
N/ZLhLEB9 " =AN

oot

v 09

€09

09

009

Distribution List

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Assistant Chief for Technology
Office of Naval Research, Code 200
Arlington, Virginia 22217

Office of Naval Research
Information Systems Program
Code 437

Arlington, Virginia 22217

Office of Naval Research
Code 1021P
Arlington, Virginia 22217

Office of Naval Research
Branch Office, Boston

495 Surmer Street

Boston, Massachusetts 02210

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, Illinois 60605

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, California 91106

New York Area Office (ONR)
715 Broadway - 5th Floor
New York, New York 10003

Naval Research Laboratory
Technical Information Division, Code 2627
Washington, D.C. 20375

12

212

copies

copy

copies

copies

copy

copy

copy

copy

copies

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps (Code RD-1)
washington, D.C. 20380

Office of Naval Research
Code 455
Arlington, Virginia 22217

Office of Naval Research
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, California 92152

Mr, E. H. Gleissner

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (0P-916D)
Office of Chief of Naval Operations
washington, D.C. 203S0

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D.C. 20350

Advanced Research Projects Agency
Information Processing Techniques
1400 Wilson Boulevard

Arlington, Virginia 22209

copy

copy

copy

copy

copy

copy

copy

213

