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An Approach to Understanding the Mixed Alkali Effect

by

George B. Rouse, Jeffrey 14. Gordon and William M. Risen, Jr.

Department of Chemistry
‘Brown University

Providence, Rhode Island 02912

Abstract

An approach to understanding the mixed alkali effect in binary

ionic oxide glasses is proposed . It is based on an expression for the

composition dependence of activated processes which is inherently cooperative,

and employs the regular solution model for the specification of this dependence.

A detailed molecular—level model, using spectroscopic data, is introduced

to obtain an estimate of the magnitude of the parameters of the approach.

It is shown that the composition dependences of the non—linearly varying

properties of mixed alkali systems, including both the measured properties

and the exponential and pre—exponential factors obtained from their

temperature dependence, can be understood using this approach. ~~~ S S N  for
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Introduction

Ionic oxide glasses of the general formula x?40 (l—x) M~0 ApOq are corn—

monly referred to as mixed alkali glasses when 4o and M~0 are different

network modifying alkali metal oxides and ApOq is a network former such as

Si02, P2
05, B203 or Ge02 the mixed alkali glasses are of special interest

1be—

cause many of their physical properties vary extremely nonlinearly as x is

varied. This has been shown clearly in a number of experimental investiga-

tions and discussed in several excellent review articles.2~~
9

Series of mixed alkali glasses are made by changing the relative con-

centrations of the alkali metal oxides while holding the overall stoichio—

metry constant (varying x in the general formula). The nonlinearities found1

are most pronounced for properties related to ionic mobility such as electri~al

conductivity, ionic diffusion , and dielectric relu.~ation and loss. On the

other hand , bulk thermodynamic properties, such as molar volume and density,

refractive indices, thermal expansion coefficient , and elastic moduli vary

either linearly with x or show only small deviations. Properties related to

structural relaxation such as viscosity and glass transition temperature

usually exhibit negative deviations. The nonlinear behavior of certain

physical properties with respect to x in a series of mixed alkali glasses is

generally known as the mixed alkali effect (or polycation effect).

Some of the previous theories of the mixed alkali effect can be charac-

terized by noting some special postulate about the structural character of

the glass network and have been proposed primarily to explain ionic conduc-

tance behavior. Each emphasizes alkali ion distributions or sizes, and each

has some inadequacy such as the need for a large number of adjustable para—

meters, the inability to account for other properties of mixed alkali glasses,

or simply the inability to explain the observed phenomena.

Others emphasize differences in the bonding and coordination of the 
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alkali ions in different alkali mixed alkali glasses. Although these have

some similarities to the structural theories, they commonly assume that some

type of interaction between dissimilar alkali ions is responsible for the re-

duced cation mobility in mixed alkali glasses. Foremost among them is the

theory of Hendricksen and Bray,19 
which emphasizes the importance of the

interaction energy arising from the coupling of the oscillations of neighboring

dissimilar ions in reducing the cation mobility . One other important aspect

of this problem which other approaches have either neglected or provided un-

satisfactory explanations for is the composition dependence of the preexpo—

nential (Arrhenius) term derived from experimental conductivity data.

Although there are structural consequences of changing the relative con—

centrations of the network modifying cations, and certain of the interactions

discussed in previous approaches are undoubtedly present, previously reported

approaches have a difficulty we wish to address with a new approach. The dif-

ficulty is that the cations, however their mobility is affected by the geometry

or other cations, are treated with general equations which subtly and often

implicitly assume that the statistical methods appropriate for independent

cation motion events apply to the system. This is internally contradictory in

those cases , especially those that postulate an interaction energy , in which

the conductivity in mixed alkali glasses is assumed to be due to a cooperative

process characterized by a concerted hopping mechanism involving both cations.

In this paper we present an approach to understanding the mixed alkali

effect which overcomes these difficulties by recognizing that the relevant

processes are inherently cooperative . Thus, it treats a general transport

property such as conductivity, as a cooperative process characterized by a free

energy of activation. In addition to presenting this general approach , we

discuss a specific model, applying this approach, which provides for the

evaluation of the composition dependent energy of activation for the conduc-

tivity process. This approach also provides an explanation for the composition
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dependence of the preexponential (Arrhenius) term. This specific model em-

ploys the spectroscopic (cation motion vibrational frequencies) observations

of our earlier study1 to evaluate the energies relevent to the pro-

posed ionic transport model.

Theory

The general approach to the problem of describing the composition de-

pendence of a transport property is based on the proposition that the relax—

tion time for the process characteristic of the property is determined by

the probability of a cooperative rearrangement associated with the process.

The approach is based, in part , on the Adam and Gibbs 20 approach describing

the temperature dependent relaxation times associated with cooperative re-

arrangements in glass forming polymers. To evaluate the transition probabili-

ties, a cooperatively rearranging region is defined as a subsystem of the

sample which, upon a sufficient fluctuation in energy (or enthalpy) can re-

arrange into another configuration independently of its environment. A

further assumption is that each subsystem interacts only weakly with the

macroscopic system. Since the subsystems are in mechanical and thermal con-

tact with each other, they can be considered as an isobaric, isothermal

ensemble of N independent, equivalent , and distinguishable subsystems. The

distribution of these subsystems is assumed to depart negligibly from an

equilibrium distribution.

Now if these subsystems are sorted into two classes, those, n in number,

which reside in states undergoing cooperative rearrangements, and the N—n

that are in states not undergoing a transition , the fraction that is in states

permitting rearrangement is given by

exp (—(G’—G)/RT) (1)

where f’, C’ and f, C are the partition functions and Gibbs free energies

for rearrangeable subsystems and for the ensemble, respectively. The co—



operative transition probability, W(T), is proportional to n/N, or

W(T) Aexp (—~G/RT ) (2)

This expression represents the transition probability for a cooperative region,

where A can be assumed negligibly temperature dependent in comparison with

the exponential function, and t~G = G ’—G. In the application of this approach

to polymer systems, the subsystems were made up of polymer segments containing

Z monomer units and the L~G of equation (2) referred to the free energy

change associated with a cooperative rearrangement of the Z monomer units in

a polymer segment constituting a subsystem . In extending this treatment to

other systems , the subsystems and free energy changes must be redefined to be

c~ittsistent with the process of interest. For example, if the process is ionic

transport in glasses, which will be discussed in detail in a later section,

the subsystems would consist of some Z number of ions and their sites and the

1~G for the process would represent the free energy change associated with the

cooperative rearrangement of these ions within a subsystem .

Now if this approach can be extended to the problem of the composition

dependence of the transition probabilities in binary mixtures, a general

approach to the problem of the mixed alkali effect will be firmly established .

This extension can be carried out by assuming the binary mixture to be des-

cribed by an appropriate mixture model and by replacing the free energies

(G and C) of equation (1) by their composition dependent counterparts

derived from the mixture model, so that equation (2) is replaced by

W (T,x) Aexp (—~G (x) / RT) (3)

where x represents the compositional variable (for convenience it will be

taken as the mole fraction of one of the components). Note that in this

expression , all the composition dependence of the transition probability is

embodied in ~G(x). The behavior of a transport property, t, with respect 

.
~~~~~~~~~~~.
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to x can now be described as

t(x) t exp (—L~C(x)/Rt) (4)

where t
o is a constant independent of temperature and composition and the

problem of expressing the composition dependence of a cooperative transport

property in glasses is reduced to one of appropriately expressing the compo-

sition dependence of the change in free energy associated with the process

characteristic of the property. It should be stressed here that the idea

of cooperative as opposed to independent processes is fundamental to this

approach.

The Composition Dependence of C

Applying this approach to finding the composition dependence of proper—

ties of mixed alkali glasses requires expressing the composition dependence

of the molar Gibbs free energy of activation, AG(x).

In considering ways to do this it is helpful to note that the problem

is similar to that for ionic conductivity and ionic self diffusion in binary

mixed ionic crystals. These properties of mixed ionic crystals have been

treated in a number of ways.21 
The simplest, based on Nerast type ex-

pressions that are valid only as limiting laws for infinite dilution of mobile

ions, are qualitatively useful, but they lead to significant inaccuracies

when applied to real systems. Thus, in these non—ideal mixed crystals, there

are often differences between self—diffus ion coefficients derived from elec-

trical conductivity and those derived from interdiffusion experiments.

Naturally, the usual explanation for the discrepancies is that mixed crystals

deviate from ideal behavior. Accordingly , the diffusion equations have been

rederived and the activity and activity coefficient introduced to take

account of this nonideality.

Although this is appropriate in principle, measurements of activities

for mixed crystals of ionic compounds are not usually available and a model

L . ~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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is required to estimate them and obtain their functional dependence on x

The model which has been employed successfully for this purpose is that

of a regular solution.

On the basis of the application of the regular solution model to ionic

conductivity and diffusion in non—ideal binary ionic crystal mixtures21

and the success of approaches that use the model in treating the physical

properties of liquid—liquid and solid—solid mixtures, the following assump-

tion will be made. The mixed alkali glass system will be treated as a

binary mixture, whose components are r40.ApOq and M~O•ApOq , and the regular

solution model will be assumed in order to derive the composition dependence

of L~G(X). Recall that the t~G is an activation free energy , defined in

equations (1) and (2) and that the regular solution model applies

separately to G and C of equation (1.).

The molar activation free energy , ~G(~) is given by

AG (x) = t~ Gact 
(x) — 

~~
Ceq ~~ (5)

where 
~~
Gact(X) indicates the value of the free energy in the activated

state (the n cooperatively rearrangeable subsystems) relative to a reference

state and 
~~
G
eq
(X) is that for the N—n subsystems in states not undergoing

a transition. For each there is a mixing term 
~
GM so that including the

appropriately weighted pure component terms, they are given by:

~~G (x) = x ~
‘G° + x A G ° + IVG (6)

act A A ,act B B,act M,act

and

EI~G (x) x A G ° + x.J~ G° + ~ c (7)
eq A A,eq is B,eq M,eq

Now, statistical treatments of regular solution models give rise to

mixing terms (one for each of the two states —— activated and equilibrium) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~



of the form

AG
M 

= RT (xA ln XA 
+ x~ ln x8) + X

A
X
B ~ (8)

where and are the mole fractions of components A and B, and .J is a

characteristic energy parameter which is a measure of the deviation of the

system from ideal mixture behavior.

The physical significance of J~ in molecular models is clearly delineated

as

= 2~~E°~~ —A~E~ —~~E (9)

where ~~E°~~ represents the contribution of A—B interactions , and and

are the A—A and B—B interaction energies, respectively. These terms

in the regular solution approximation arise from expressing the total inter-

action energy of the mixture in terms of the nearest neighbor pair inter-

actions .

Placing equations (6) and (7) into (5) yields the expression for

~G(x)

~G (x) = x~~G~ + x~~G + ~G14 (10)

where 1~G° = ~~G° —E~ G° , 1~C° 
= A G ° —L~~G° , and ~C x x

A A,act A ,eq B B,act B,eq N A B

~
3

act ~~eq~ 
= XAXB

J. Note that the ideal mixing term RT(
~
c
A
ln.X

A + x
B

1nx
B
)

drops out since it is the same for both the activated and equilibrium states .

Now, by making use of standard relationships and assuming that(
~
flV1.z o, equa t ion

(10) can be reexpressed in terms of separate energetic and entropic con—

tributions :

~G(x) 
~
xAl~

E
A 

+ x~~E~ + XA XE {J_T (
~~~~ ? ,X

]}
_T [xA

L
~
S
~ 

+ ~c~ s; - X
A
X
~ (

~
4I,X~ 

(11)

where J is the effective interaction energy parameter. Expressing equation 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(11) as

~G(x) = E(x) —TS(x) (12)

where E(x) and S(x) refer to the terms in the first and second set of curi y

brackets in equation (11) allows equation (4) to be expressed as

t(x) = t exp ( [—E(x) + TS(x)]/RT) (13)

or

lnt(x) = [in t + ~~~ 
—.~L~cl (14)

o R RT

Equation (14) has been rewritten in this way for the purpose of comparison

with conventional expressions of this form in a later section.

The problem of expressing the composition dependence of a particular

transport process now becomes one of finding the J, or interaction energy ,

characteristic of the particular transport process.

From equation (9) J of equation (11) can be expressed as

.3 2L~E~~ —~ E~ — t~E~ (15)

The physical meaning of J for the transpor t process under considera tion can

be clar i f ied by an examination of the method by which it is de tern~ined for  a

particular process.

For the molecular mod el under consideration , the energy bar r ie rs  to trans-

por t of the ions coope ratively moving with three possible nearest neighbor

interactions , A—A , B—B , and A—B , must be examined . The activation energy

f or each such pair is associated with the corresponding AE term in equation

(15). For a particular pair of sites (A—A, B—B , or A—B), transpor t can

proceed in either of two ways. In the case where the sites involved are :r.e

pair A—B , the two ways in which transport can occur are an A ion moving to

a B site or a B ion moving to an A site and the corresponding AE term is an

average of these two, or SEA_B = ½ (
~
EAB + ~

EBA ).

. . ..~~~~~~~...
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When the two sites involved are A—A or B— B , however , the two ways in which

t ranspor t  can occur for  each pair  are equivalent and ~~~ and L~E are s imp ly

the ac t iva t ion  energies fo r  t ranspor t  of the A and B ions to A and B sites

respectively. From (15) it can be seen th at J is related to the d i f f e r e n c e

in activation energy associated with transport to dissimilar rather than

s imilar  s i t e s .

Thus far, a general model applicable to the composition dependence of

any transport property has been developed which allows for  the determinat ion

of the composition dependence of a transport property once the characteristic

in terac t ion  energy , .3, for the process has been determined .

Vibrational Spectra of Ionic Oxide Glasses

Earlier,1 several important observations of the vibrational spectra

of single and mixed alkali glasses were presented . These observations will

be summarized here.

The far  infrared  spectrum of each of a series of ionic oxide glasses

M~O~ApOq where M=Na, K, Rb , Cs con tains a br oad absorp t ion band which has

been ass igned to the vibration of the cation in its site in the glass. It

has also been shown 22 
that the cation vibrational frequency , v0, is re-

lated to the activation energy for  ionic conduc tivi ty by the expression

1 2 2
Ea 

= M l v  (16)

where M is the ca tion mass and l
~ 

is the site—site distance (the distance

the cation must hop to get to a nearest neighbor site). This relationship

is used to evaluate the energies involved in ionic transport processes and

will be discussed further in the next section.

The fa r  in f r a r ed spec tra of the glasses discussed earlier1 show

that the frequencies of the cation— motion bands in the far infrared spectra 

~~~~~~~~~~~~~~
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do not shift with x, indicating that the vibrationally significant local

geometry and forces associated with a particular cation are unaffected by

the introduction of a second cation into the glass structure. Each Raman

active band due to vibrations of the metaphosphate network occurs at a

different frequency for each pure glass (x0 or 1), but for mixed alkali

glasses only one band occurs for  each type of mode and it varies l inear ly

with x. This indicates that the catlons in these mixed alkali glasses are

homogeneously distributed , there is no cation clustering, and the phosphate

chains are associated with an averaged cation environment whose effect on

the chain modes varies with x. These general observations may be expected to

apply to any ionic oxide glass system.

These spectroscopic observations are important to this approach for the

following reasons: (1) In order for the regular solution theory employed

in this approach to apply to transport processes involving ionic transport ,

the cations must be randomly distributed and the activation energies , L~E~

and ~E , must be composition independent. The spectroscopic observations are

consistent with these requirements , and (2) a quantitative comparison of

theory with experimental ionic transport data requires a method for evaluating

the energy terms of equation (11) independently . The far infrared data

provide a means of evaluating these energies.

tonic Transport Phenomena

The conductivity of glasses is usually represented by the empirical equation

E
aln~ = m c i —  (1.7)

If lna is plotted as a function of l/T for a particular glass, the preexpo—

nential term, Ino , and activation enerB~~ E~~ can be determined from the

intercept and slope of the resulting straight line. The conductivity be-

havior of mixed alkali glasses can be conveniently discussed in terms of

equation (17) if the composition dependence is explicit~ 1y stated as

_
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E (x)
lna(x) m c i  (x) — 

~T 
(18)

In a typical mixed alkali glass system, E (x) and lnu (x) plotted vs.

composition, x , exhibit maxima , and the maximum in E
a
(X) is larger than the

maximum in lna
0(x) so that a minimum in lna(x) is always observed.

In comparing to results of our approach with experimental conductivity

data, we find that the available ionic conductivity data must be divided into

two categories:

(A) The ionic conductivity is known experimentally at only one

temperature. In this case, lno (x) and E
a (X) of Equation (18) are not

known experimentally. Our approach allows for the calculation of E (x) based

on the measurements of the cation vibrational frequencies and calculation

of 
~
EA. ~

E
B 
and J. In this case, we must assume that (.~~ of (11) is zero

\ IP ,x /~~\
and lna (x) is linear, since we have no method of determining

P,x
(B) The ionic conductivity is known experimentally at two or more

temperatures for each glass in the mixed alkali series. In this case,

lno (x) and Ea (X) can be determined by application of Equation (18) to the

experimental data. Our approach allows us to calculate E
a

(x) , as noted

above. Once E (x) has been determined , (~
) can be assumed to bea \ /P,x /~~negligible (and lna (x) linear), or lno (x) can be estimated by using

P,x
as a fitting parameter.

The details of this procedure will be discussed below.

A Molecular Model for Estimating J

The magnitude of the mixed alkali effect with respect to conductivity

is determined by the interaction energy, J. So the problem of expressing

the composition dependence of a particular transport process is primarily

one of finding the characteristic interaction energy parameter, J, associated

with the particular process. In order to determine the interaction energy , 
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one must assume a model for the process and then evaluate the appropriate

energy barriers to transport in a manner consistent with the proposed

model. The magnitude of J depends on the ionic radii and masses of the

alkali ions and increases as their differences increase. Several attempts

have been made to correlate these effects with either the ionic radii or

masses of the cations, but in this approach we suggest that both ionic

radii and masses are important factors.

The present model, applicable to ionic oxide glasses of the general

form x
A
M
~
O X

B
M
~
O ApOq where X

A
, for purposes of consistency in the

remainder of this section, designates the larger cation, considers the

generally accepted ionic hopping model to apply to such transport processes

as ionic conduction and diffusion.  The characteristic interaction energy,

3, can then be expressed in terms of the activation energies for cation

site—site hopping. These activation energies for site—site hopping correspond

to the activation energy terms discussed in the general approach. The

values of the activation energies are arrived at from consideration of

isolated nearest neighbor p~~r interactions as in the general model.

The energy barrier to transport of a cation from one site to a

nearest neighbor vacancy which is large enough to accommodate the cation

is given by an equation of the form of equation (16). (The site—site

distances can be estimated from data for analogous crystalline materials and

the cation vibrational frequencies can be determined from the far infrared

spectra of the glasses.) This expression results from formulating the

ionic hopping process in terms of a double potential well in which the

cation acts as a simple harmon*c oscillator in hopping from one well to

the other . The validity of this expression has been tested with success for

several glass systems.

.- .
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For the three hopping processes involving the transport of a

cation from its site to a vacancy of equal or larger size (A—A, B—B, B—A ,

where A is the larger cation) the activation energy is given by an expression

of the form of equation (16). For the process involving transport of

a large cation to a small site, however, an additional amount of work , w,

must be expended to expand the small site so that it can accommodate the

large cation. This additional amount of energy must be added to the

activation energy for hopping so that the total activation energy for a

large cation hopping to a small vacancy is given by an expression of the

form of equation (16) plus an additional amount of work, w. This additional

amount of work can be estimated by saying that it is equivalent to the

work done in expanding the small site (a vacancy created by the departure

of a small cation). This is equivalent to the energy required to move

each of the six oxygen atoms a distance equal to r
A
_r
B 
against a force

associated with kM O ,  the metal—oxygen force constant, where r
a 
and r

B

represent the M—0 bond distances for the large and small cations,

respectively.

r — r
—1 A Bw = 6 [ -~.J km_o rdr] (19)

Assuming that the cation site is octahedral (it is not, but this assumption

is a reasonable approximation for determining the reduced mass of the

oscillator) the additional work term, w, can be expressed in terms of

the cation mass and vibrational frequency as

w 6 [
~4 r

A
r
E 4.4ir2v2iirdr] (20)

2 2  2 (21)
w = 13.2ir v 

~ 
(rA

_r
E )

where u is the reduced mass of the large cation in an octahedral site of

oxygen atoms (~ 
= MM /(2M

0
+M)). The expressions for the evaluation of
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the activation energies and interaction energies for ionic conduction and

diffusion have now been expressed in terms of molecular properties of the

glasses comprising the two components of the mixture. These molecular

properties, cation masses, cation vibrational frequencies, and site—site

distances can be independently determined.

The most striking feature of the mixed alkali effect with respect to

conductivity is the apparently simple dependence on ionic radii (or masses).

The effect increases dramatically as the difference in sizes (or masses)

of the two alkali ions increases. This is shown quite clearly by the results

of Hakim and Uhlmann3 who studied the systems x Cs
2
0.(l—x)R 0.6.7SiO

2

where R = Rb , K, Na, Li. The lowest maximum in E (x) was observed for

R = Rb and it increased regularly in the sequence R Rb to R Li. It has

also been observed that the maximum in E (x) and minimum in liw(x), which

usually are observed at approximately the same composition, always occur

at a composition rich in the larger alkali ion.

Con~parison of Observations and Calculations

A comparison of these qualitative observations with the theory

outlined previously can be carried out by considering the conductivity

• behavior in terms of the following equation derived from equations (14) and

(18) :

lnci(x) = [lna ’ + 
S(x) 

— 
E(x) (22)

In comparing theory with experimental data in terms of these equations

two cases are immediately apparent.

Case 1. The temperature derivative of J, is assumed to be

negligible.

In this case, Ea
(x) can be calcualted and lna (x) is linear, with the

values of lflclA 
and lnG~ being determined by conductivity measurements of

the end membered glasses (x — 0 or 1) in the mixed alkali glass series. This

______________________________ __________ _ _ _ _ _  -..
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case provides a zero parameter theory in which the properties of the mixture

can be calculated based on measurements of the properties of the end

membered glasses in the series.

Case 2. The temperature derivative of J, (
~

) , is not negligible.
P,x

In this case, a least squares fit of the data to equation (18)

determines J_T!-~~) . By calculating .3 as in Case 1, (
~

) can be
P,x P,x

determined. This case provides for a one parameter theory in which the fitting

parameter is • Now if (~
) happens to be negative, the maximum

P,x P,x
in E

a
(x) will be larger and a maximum will appear in lno (x). As will be

shown, (aJ/BT)p~~ as determined by this method is negative for all systems

examined so far , and the result is that the energies and the pre—exponential

factors both fit the data very well.

The results of the calculations using this model in Cases 1 and 2

for several mixed alkali glass systems are summarized in Table I and some

representative results are plotted in Figures 1 through 4.

Some Observations About the Non—Linearities

Equation (22) is identical to equation (18) if we let

lna (x) lna ’ + 
S(x) (23)

where m a ’ corresponds to the constant term in to of equation (14). If

equation (22) is differentiated with respect to x and set equal to zero,

it is found that the composition at which the minimum in conductivity

occurs is given by

24X
min cond 

— 2J (

The maxima in E(x) and 5(x) can be similarly determined and are given by the

expressions
— AE + J — T —

- 
A B aT p,x (25)max ,E 2[J_T(~~)P,x



and 

x ~~~~~~~~~ (2 6)max ,S —2(aJ/aT)~

Equation (24) indicates that if J is positive, as it always is, a minimum

in lna(x) will occur and that the position of the minimum will depend

on the relative magnitude of ~G~—~G with respect to J. If t~G~—~G (which is

proportional to inci
A

lna
B
) is zero, the minimum will occur at x = 0.5. In

those mixed alkali glass systems studied so far, it has been found that

AGX—AG
~ 
is positive and small relative to J so that the predicted minimum

in conductivity is shifted to some composition x > 0.5.

In discussing the predictions of equations (25) and (26) with

re8pect to the maxima in E(x) and S(x), it is useful to point out (see

Table I) that the term (aJ/aT)~~~ is negative, as determined by experiment.

This means that the term J — T(~~
’
) of equation (25) is always positive

‘

and grater than J. Thus, the maximum in E(x) is determined by the relative

magnitude of 
~
E
~
_
~
E°B with respect to J 

— T(~~) . If 
~
E°A

_
~

E is zero ,
P ,x

the maximum will occur at x = 0.5 and if ~E~—~E is greater than zero, the

maximum will occur at x > 0.5. The energy difference ~E~—AE is usually

1a~ \found to be positive and small compared to J — ~~~~ and the predicted
\ U I / p~~

• maximum in E(x) is shifted to some composition x > .5.

The maximum in S(x) is expressed by equation (26) and is determined

by the relative magnitude of the terms ~S~—~S (which is proportional to

(1na~—lna ) and (~J/
~

T) p~~
. It has been observed that the relative

magnitude of these terms does not follow a regular pattern, and in some

cases the maximum predicted by equation (26) is not in the composition range

O < x < 1. If (aJ/aT) is zero, there is no maximum and lna (x) is simply a straightP ,x a line.

_ _ _ _ _ _ _ _  .
~~ ~~~~~~~~~
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Figure 1: Observed and calculated (case 1) Log a

and E vs. x for the mixed alkali glassa

system x Cs20’(l—x)Na2
.O.6•7SiO

2. Data

from Ref. 3.
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Figure 2: Observed and calculated (case 1) Log a

and Ea vs. x for the mixed alkali glass

system x Cs20.(l—x)Rb20’6.7 Si02. Data

from Ref. 3. 
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Figure 3: Observed and calculated (case 2 with
(~~~)~ 

= 0)

x for the mixed alkali glass system x Cs20 (l—x)

Na2
0•5SiO

2. Data from Ref. 23.
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Figure 4: Observed and calculated (case 2, with (~~~)~~~ 
# 0)

for the mixed alkali glass system x Cs20’(l—x)

Na2O 5Si02
. Data from Ref.
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Conclusions

The use of the Inherently cooperative form of the expression for the

activation of the transport processes, together with the introduction of the

regular solution model for the composition dependence of the exponential in

that expression provides a basis for understanding the non—linearitieB known

as mixed alkali effects in binary ionic oxide glasses. In order to estimate

the magnitudes of the parameter that expresses the non—ideality inherent in

regular solutions, a molecular model has been introduced, which yields values

of the right order of magnitude. Within this framework the variations in the

experimentally derived exponential and pre—exponential terms can be understood.
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