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I. INTRODUCTION

In recent years , a number of methods have been developed in order to
compute laminar and turbulent three-dimensional boundary layers. Al though
some are developed in a general way, most are developed to treat either of
two specific classes of problems, i.e., flows on wings , or flows past bodies
or revolution. Cebeci et al. [1] developed a general method for calculating
the three-dimensional , compressible boundary layer on an arbitrary wing using
the eddy-viscosity concept. Similar calculations have recently been presented
by McLean [2] and by Kordulla [3]. Bradshaw et al . [4] simplified the three-
dimensional equations on a swept tapered wing by assuming conical similarity ,
and used a higher order turbulence model to solve for the flow. The history
of flows past bodies of revolution is more extensive , dating back to the first
studies by Moore [5] dealing with flow past a cone. Further studies by Cooke
[6], Boericke [7] and others integrated the conically similar quasi-two-
dimensional equations around the cone. The spinning cone and its attendant
problems were investigated by Dwyer [8) and Ki tchens et al. [9]. The diffi-
culties encountered in all the previous works due to behavior near the lee
side of the cone, or crossflow reversal , were effectively overcome by Lin and
Rubin (10), [11] who developed an augmented set of boundary-layer equations
for treating problems of this kind.

The flow past a more general body of revol ution, a prolate spheroid , has
been extensively studied by Wang [12] - [14]. Although the cone is a special
case of a general body of revolution , for the prolate spheroid at least, some
of the more troublesome aspects of the cone flow do not appear. The nonexist-
ence of solutions on the lee plane , found by Moore [5) and further investigated
by Roux [15] and Murdock [16], does not seem to apply to the prolate spheroid.
The crossflow separation , which causes the quasi-two-dimensional conical flow
to experience a square-root singularity , does not seem to exert such an
effect on the equations governing the prolate-spheroid flow. This has allowed
Wang to carefully map the attached flow on the prolate spheroid at incidence
by integrating from either the windward or leeward syninetry plane , something
which cannot generally be done on a cone using standard boundary-layer
procedures.
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The general characteristics of the viscous flow past a body of revolu-
tion can be broadly descri bed as follows . Depending on the incidence of the
body, the flow can be thought to consist of three overlapping , and not-at-all

distinct , regimes: (a) low incidence , where no separation occurs and three-
dimensional boundary-layer theory applies ; (b) low to moderate incidence ,

where the cross flow around the body separates and may possibly produce stream-

wise vortices which , however , still remain within the viscous layer; (c) higher

incidences, where vortices detach from the body and alter the prevailing
inviscid flow. Case (c) requires the complete (and possibly unsteady) Navier-
Stokes equations, but case (b) can be described by a simpler set of equations

called here the Parabolic- Elli ptic Boundary-Layer (PEBL) equations.

Under the research sponsored by contract N60921-76-C-0089, aspects of
this problem were investigated at Douglas during the past year , with the
emphasis being towards the development of a general computer program for cal-
culating the boundary layer on an arbitrary body of revolution using the clas-
sical three-dimensional boundary-layer equations , i.e., case (a). A parallel
effort used the PEBL approach in order to extend the ca~culat1ons to case (b).
This report presents the results of the first phase of the above contract.
Calculations were performed on a simpl e body of revol ution , the prolate spher-
oid. For the case of the standard three-dimensional boundary-layer equations ,
the prolate spheroid produces a region of reverse crossflow, due to an adverse
pressure qradient , but wi thout a change of sign of the cross-flow edge velocity .
Thus , the method used in [1], where the cross-flow Integration direction is
changed when the edge veloc i ty changes sign , cannot be used, and the behavior
of the finite-difference solution technique becomes apparent . The PEBL
approach is used for the first t ime on a general body wi th variable metric
coefficients (not simp ly a cone) and the sensitivity of the procedure to
streamwise separation can be assessed.

A supplementary effort dealt with the incorporation of a new scaling law
into the quasi-two-dimensional conical boundary-layer equations for the
turbulent flow on a cone [17]. A suggestion nede by Bradshaw [4], concerning
the choice of similari ty variable to be used in the computation , was followed ,
and produced noticeably better compari sons with the experimental data. These,
and other results from the various programs will be described in the succeeding
sections.
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II. GOVERNING EQUATIONS

2.1 The Boundary-Layer Equations for a General Body 0f Revolution

In this report we consider the sol ution of more general three-dimensional
boundary-layer equations than those discussed in our previous studies [l],[l8],
[19]. The generalization is due to the inclusi on of crossflow diffusion terms. A
detailed derivation is given in Appendix A. These generalized equations allow
for the computation of negative crossflow due to the elliptic nature of the
equations in crossflow plane . By using numerical schemes such as ADI (alter-
nating-directi on-implicit) procedures, they provide a means of comparing
solutions with those obtained from standard boundary-layer procedures such as
the Box scheme used in the present study as well as in our previous studies.
For three-dimensional i ncompressible flows in a curvilinear orthogonal coordi-
nate system, these generalized equations , whi ch for brevity we shall refer to
as PEBL (parabolic-elli ptic boundary-layer) equations , are given by

Continuity

k (h2u) + ~~~~
- (h1w) + 

~~~ 
(h~h2v) = 0 (2.1.1)

x-Momentum

~~~~~ 
~
-_ }

~~
+ v ~ - — uwK1 + w2K2 

-

~~~~~~~~~~~~~

+ ~~~ (
~ 

~~~~~_ j ~-r~ -r)

(2.1.2)

8-Momentum

+~ -~~.+v ~~~-uw~ +u 2Kl 
= _ + ~~~~~~~~~~~‘~ r)

1 a / 1 aw+ 
~~~~

_ _ _ _ _

1— 2v
~~

--K2~~
. (2.1.3)

Note that If the underl i ned terms in (2.1.2) and (2.1.3) are set equal to zero,
we recover the usual three-dimensional boundary-layer equations which we shall
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refer to as the standard three-dimensional boundary-laye r equations. In the
above equations h1 and h2 are metric coefficients and are functions of x
and e , that is ,

= h1 (x,e ) , h2 = h2(x,n) (2.1.4a)

The parameters K1 and K2 are known as the geodesic curvatures of the
curves o = const. and x = const., respectively. They are given by

K1 = — 1 ~ l K2 = — 1 ~ 2 (2.1 . 4b)

At the edue of the boundary layer , (2.1.2) and (2.1.3) reduce to

.i .!.+~~~~~~~ u w K +w 2K ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.l.5a)

~~~~~~~~~~~~~~~~~ 
+ u K i

(2.1 .5b)
The solution of the system (2.1.1) - (2. 1.4) requires both closure assump-

tions for the Reynolds stresses , and appropriate boundary conditions. The
closure model wil l be discussed in Section 2.4. Some of the boundary conditions
which need to be applied depend upon whether the standard or PEBL equations are
to be solved . In either case , however , edge and wall boundary conditions for
zero mass transfer are :

y = O  u ,w = O  v 0  (2.l.6a)

y -
~ u -. u( x ,O) w W

e(X~
O) (2.l.6b)

The standard boundary-layer equations also require starting solutions on
two intersecting planes . One of these is the windward plane of syninetry of the
body . The other is chosen as the line x constant around the nose of the
body where the value of x is equal to the value of x at the stagnation
point. On this line the assumption is made that the flow behaves as if it were
along an azimuthal attachment line . This eliminates the need to trace stream-
lines from the stagnation point around the nose of the body . Since for all the
bodies considered In this report the stagnation line Is extremely close to 
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nose, the effect of this assumption Is not felt after a few x steps downstream
of the starting solution due to the parabolic nature of the boundary-layer
equations .

On the windward plane of symetry w = 0, but w0 ~ 0, and all other
0-derivatives are zero. The 8—momentum equation , (2.1.3) is singular on this
line , but by differentiating it with respect to e, a complete set of equa-
tions is obtained . Thus , the windward symmetry plane equations are:

Continuity

}— (h~u) + h 1w0 + 
~~~~~ 

(h1h2v) = 0 (2.1.7)

x -momentum
u au ..u au au _ e e a i a u+ v ~~~ -~~-~~-- +~~~ ~~~ - u v

8-momentum

dW 1 2 aw u a w 0 1 2

~

_
i
_ 

~
—

~
- + ~— w0 -~ v -

~~~~~~
- — uw0K2 = }~!~ ~~~ 

4 
~~ 

W ee — UeWoeK2

+ . 
[v 

~~~ — (
~~T~T)~

] 

(2.1.9)

Here w~ = aw/ao , we e = e~
’a
~ 

These equations are subject to the following
boundary conditions

y = O  u ,w0 = O  v = O  (2.l.lOa )

y -~ u -
~ 

Ue (X) w 8 -+ wee(x) (2.1.10b)

The equations on the azimuthal attachment line are very similar to the
symetry plane equation s except that now the assumption is made that u = 0,
u,~ ~ 0, and all other x derivatives are zero. Note again that this is just
an approximation. Now the x-momentum equation is singular but can be util ized
after differentiation with respect to x. Thi s yields the azimuthal a ttachmen t
line equations :

Continuity

— h2u
~ 

+ }
~
- (h~w) + ~~

-
~
- (h~t~2v) = 0 (2 . 1 . 1 1 )
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x-momefltum

~~~
— u~ + 

~~

— 

~~ 
+ v A — u

~
wK 1 

= 
~~

— U~ +

a
~~ 

~~xe — UxeWeKl

+ ~~ ~~ 
-
~
_

~
_ —  (~ T~T)~

] 
(2.1.12)

z-momentum

(2.1.13)

Here u~ = au/ax , Uxe = 
~~e”~~ 

and the equations are subject to the boundary

conditions

y = O  u
~
,w O  v = 0  (2.l.14a )

y u~ -* u
~

( e )  w -
~ w(e) (2.l.14b )

The flow at the stagnation point itsel f is the first point calculated in the

solut ion procedure . Here a combination of both attachment line and symmetry

plane procedures is used to produce the equations for a general three-dimensiona l

stagnation point boundary layer.

I f the PEBL equa tions are to be solved , rather than the standard equations ,
it Is necessary to prescribe conditions on two boundary surfaces of the azi-
muthal direction since equations (2.1.2) and (2.1.3) are elliptic in the 0
coordi nate . On a body of revolut ion , two syninetry planes exist on the wind-
ward and leeward generators. Thus , at both e = 0 and 0 = ,r we have

u0 = 0 ; w = 0 (2.1.15)

It Is not necessary to solve different syninetry plane equations , as is done
in boundary-layer calculations , to start the calculation in the 0-direction .
The equations (2.1.2) and (2.1.3) are simpl y solved in the entire e-y-p lane
subject to the appropriate boundary conditions stated above. An initial data
p lane is also requ i red , as in the standard case, for all the calculations
to be made here using the PEBL equations. The standard equations are used to
generate this solution , I.e., (2.1.11) - (2.1.14).
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2.2 The Boundary Layer on a Conical Surface

If we are specifically interested in boundary layers on conical surfaces ,
then we have h1 = 1 and h2 = x. It follows from (2 .l.4b ) that K1 = 0 and
K2 = -l/x. For compressible flow, the standard three-dimensional boundary-
layer equations equivalent to (2.1.1) - (2.1.3) are :

Continuity :

~j 
(xpu) + fr 

(ow) + 

~ 
(x~V) = 0 (2.2.1)

x-Momen turn:

pu p ~~~~~~~
- +  

~~~~~~~~~ — p  

~~ ~ ~
_ pip~ ) (2.2.2)

e—Momentum :

pu ~~~~~~+ p 
~

-

~~~~~~
# 

~~~~~~~~~~~~~ 
p ~ _

~~~~~~~~~~~
- +  fr ( i~ ~ — 0~’v’) (2 .2.3)

Here e denotes the polar coordinate in the developed plane ; x the coordinate
along the generators; and y the coordinate normal to the surface; with w, U,
v the velocities in the e, x, and y directions . The boundary conditions
for these equations have already been given as (2.l.6a) and (2.l.6b).

In compressible flow it is also necessary to have the energy equation to
close the system of equations. In the present notation it becomes:

Energy:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _L)L (u
2 4w 2

)_~~ w]
(2.2.4)

where H is the stagnation enthalpy , and Pr the Prandtl nunther. The
boundary conditions on the enthalpy are

y 0 H given or aH/ay = given (2.2.5a )

y -. H He(Xp0) (2.2.5b)

At the windward stagnation line , e = 0, the cross-flow momentum equa-
tion Is singular. Taking into account the syninetry conditions and differenti-
ating (2.2.3) wi th respect to 6, we can wr ite It as

7
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pU p ~~~-+  ~~~~~~~~~~~~ ~~~~~~~~~ — . ~~. . +  

~~ 

[
~ 

i_P (~T~T)] (2.2.6)

Noting that w 0, (2.2.1), (2.2.2) and (2.2.4) can be simplified and written
as

fr (xpu) + pW
0 
+ fj (x~~) = 0 (2.2.7)

(2.2.8)

pu ~~~ 

~~~ 

~.a (
~ ~~~~~ 

_ P~’ii’ ~] 
(2.2.9)

where w8 = aw/ae. The boundary conditions for this set of equations is given
by (2.l.lOa ) and (2.l.lOb ) plus (2.2.5a ) and

y H -+ H (x) (2.2.10)

2.3 Geometry and Coordinate System

Three-dimensional boundary layers develop, in general , on a nondevelopable
surface. This means that the computations cannot be made on a Cartesian coord-
inate system; Instead a curvilinear coordinate system must be used. There are
several possible coordinate systems. One possibility is a streaml ine system.
Here the external streamlines form one family of the coordinate lines , and the
equipotenti al lines (orthogonal everywhere to the streamlines) form the other
fami ly of the coordinate lines . The use of this system enabl es the streanwdse
and crosswise velocity profiles to be computed easily and is one of the most
popular coordinate systems used in integral methods. However, the determina-
t ion of the streamli ne coordinate system requires a knowledge of the external
flow in considerable detail. In addition , the numerical computation of the
associated geometrical parameters Is quite Involved. As a result, when a dif-
ferential approach such as ours is used , this coordinate system is not very
attractive .

Another coordi nate system, popular for bodies of revolution , is the one
used by Blottner and Ellis [20]. Here the coordinate system is determined by
the intersection with the body surface of parallel planes which pass through
an axis containing the staqnation point. The other coordinate lines 
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obtained numerically from the orthogonal ity condition . When this system is
employed, the computations can start imediately from the stagnation point,
pass through the nose of the body and march downstream to the separation point.
Again this coordinate system requires a lot of numerical work to determine the
computational and the geometrical parameters.

At small angles of attack the stagnation point is close to the nose of the
body. A very attractive coordinate system is the body coordinate system, in
which one coordinate , say e , is formed by the lines x = constant , and the
other coordinate , s, is the line e = constant along the meridional direc-
tion , either measured along the surface or measured along the x-axis. For
numerical work the latter is preferred. It is this body-oriented coordinate
system which we shall use in the orecent work, see Section 5.1 for a snecific
example.

2.4 Closure Assumption s for the Reynolds Stresses

The solution of any of the sets of boundary-layer equations derived In
Section 2.1 requires closure assumptions for the Reynolds shear stresses,
_ 0j ~T~T 

~~~~~ As in our previous studies we use the eddy-viscosity con-
cept and define

24u v  
~1a y 

, — W v  _ t
2 i~

_

Following the formulation of reference 19 , we assume that C
l 

= £
2 

=

and define cm by two separate formulas. In the so-called i nner region of
the boundary layer , c

m 
is defined by

cm = c
i 

= L
2 

[(

~~~

)

2 
+ = L2S(y) (2.4.2)

where
1/2

I O.4y[l — exp(-y/A)], s(y) • + (a.) ] (2.4.3a)

A = 26 j~— u~ (vS
~

)”2 (2.4.3b
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In the outer region E
m 

is defined by

= = 0.0168 (Ute ~~~~~ 
(2.4.4)

where

2 2 1/2 1/2
Ute = (Ue + We) , u~ (u2 + w2 ) (2 .4.5)

where the inner and outer regions are established by the continuity of the
eddy-viscosity formula.

10
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f ly . TRANSFORMATION OF THE GOVERNING EQUATIONS

3.1 TransformatIon of the Standard 8ounda~y-Laver Equations

The boundary-layer equations can be solved when they are expressed either
in physical coordinates or In transformed coordinates. Each coordinate system
has Its own advantages. In problems where computer storaqe becomes
important, the choice of using transformed coordinates becomes necessary, as
well as convenient , since the transformed coordinates allow large steps to be
taken in the x and 0 directions. The reason for this is that the profiles
expressed in the transformed coordinates do not change as rapidl y as they do
when they are expressed in physical coordinates. The use of transformed coor-
c4inates also stretches the coordinate normal to the wall and takes out much of
the variation In boundary—layer thickness for laminar flows. Since the
standard and parabolic-elliptic equations will be solved by different methods,
and because there are additional terms in PEBI, the transformation of each
set will be considered separately.

For the standard equations , we first define the transformed coordinates by

/u \l/2
x x  Z 0  d n = ç

~
- dy (3. 1.1)

and introduce a two-component vector potential such that

h2u = ~4~- , h1w = , h~h~v = — (
~

- + 
~

-) (3.1.2)

In addition , we define dimensionless f and g related to g. and • by

= (u evSi )
112h2 f(x,z,n) (3.l.3a)

• = (uevs1)”2h1 ~&.g(x,z,n) (3.l.3b)

Here s1, which denotes the arc length along the x-coordinate , Is defined by

x
s
~ 

(3.1.4)

11
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Introducing the expressions (3.1.1) to (3.1.4) Into (2.1.2) and (2. 1.3) for
the standard equations , we get after considerable algebra ,

x-momentum

(bf”) + m1ff” — m 2(f’)
2 — m 5f’g ’ + m6f”g — m 8(q

’)2 +

= m10 (f 
‘ ~~~~ — “ + m ‘ f” -~~ (3 .1.5)ax ax~ 7 I~ ~i

z -momentum

(hg”) + m1fg 
_ m

3(g
1)2 — m 4f’g

’ + m6gg” —m 9(f’)
2 

+

= m10 (f’ ~~~ m ( ~9~:__ (3.1.6)
ax g ax, 7~~9 az ~ az)

Here primes denote differentiation with respect to n and

f l _ U u _~~~~_ + + Cmcm = (3.1.7)
-ç  g Ue 

b = l + c m

The coefficients m1 to m12 are given by

/ 1 C 2S1 K2) 
Si aU~ ~1 

awe
ml = ~ (~l + ~—~- 

~~~~~~~ 
— m2 

= j~~ ~~— m3 = 

~
r_pj_ ii—

S1 awe 
we 5

~ 
au

— K1S1m4 = —r- i~ 
— m5 = 

~~ az

We 
S1 awe S1 aue S1 w~

in6 = ç 
~
T•

~~
2i

~e
h2 az 

— S 1K1 m7 =

(~ -)~i~s1 m9 
= 

Ue K1 1  (3.1.8)

Si= 1~
— ni11 = in

2 ~ in
5 

+ m~ m12 = in
4 

+ in3 + in
9

To transform the syrnetry plane equations (2.1.7) - (2.1.9), we use

relations (3.1.1) and (3.1.4) for the coordinates , with the dependent vari-
ables define d as

12
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h2u = .~k. h w  ~~ay i z ay h1h2v = _ (
~~

.+ •) (3.1.9)

The dimensionless f and g are defined by

• = (uevSi )
112h2f(x,ri) (3.1.lOa )

• = (uevSi)l/2 hl~~~~g(x ,v1) (3 .1.1Db )

Using these variables the symmetry plane equations become

(bf”)’ 
+ m1ff” — m 2(f’)

2 
+ m6

fM g + in11 = m1~ (f’ 
af’ — f” 1!.) (3.1.11)ax

(hg”) + m1fg” — m 3(g’)
2 — m4f’g ’ + m6gg ” + m12 = in10 (f’ ~. _ g I1 i!. )

(3.1 .1?)
where

1 / ~l 
au
~ 251 K2 ) S1 awe ~1 aweml = ~ \l 

+ — rn2 = iç~
- 
~r 

= 

~~~~~

~ 
aw~~ S1= wzehi 
_

~~~~~

_ — S1 K2 
in

6 
= in

3 in10 =

in11 = m2 m12 = in
3 

+ in
4 

(3.1.13)

In the same manner, the attachment line equations (2.1.11) - (2.1.13)
can be transformed by using

~ 
1/2

- ( xe\ (3.1 .14)x = x  z 0  d n_
\~ ._) dy

h u  =
~~~~~

-
~
- h w = ~~ h1 h2v=_ (* +~~-) (3.1.15)2 x  ay 1 Dy

and

* = (uxevhi)
112h2f(z ,n) (3.1.16a )

• • (Uxevhi)1/2 h1 ~ — g ( z ,n) (3.l.16b)
Xe

• - - .---- . 
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With these variables , the attachment line equations are

(br’)’ + ~~ — ,2 
— m5f’g ’ + m6gf” + in11 = in

7 (g ’ ~~~
— — f”

(3.1.17 )
(bg ”)  + fq” — m39

’2 + in6gg” m1~ = fl~~ (a ’ 
~
f- — g”

where

1 ~ e

- h  
W f l  au

~
~5 1 U

;~~ \Ueh2 az K1

= (Uxehi )~
1/2 

~
_ f r  (h~

I2u~~
I2we) (3.1.18)

- 
h1 wein7~~~~~~~~

in11 = 1 + in
5

in12 = in
3

The general boundary conditions which apply to the three-dimensional boundary-

layer equations are

n = O  
~~~~~~~~~~~~~~~~~~~~~~~ 

(3.l.19a )

n = f ’  = 1, g ’ = 1 (3.1 .1gb)

3.2 TransformatIon of the Con i cal Boundary-Layer Equations

It is well known that for lami nar flows wi th nonporous walls and wall
temperatures Independent of x, or adiabatic wall conditions, the equations
(2.2.1) to (2.2.4) have similari ty solutions (i.e., solutions independent of
x) If we define the similari ty variable n by

~ 
1/2

dn = 
(peu~~) 

pdy (3.2.1)

In addition , if we introduce a two-component vectcr potential such that

14



(3 . 2 .2)pux = , Pw~ = ay ‘ ax X ~O

and dimensionless functions * and • by

• = eueue
’2x3”2

~~
0,
~ , • = (peueue)

L12x3/2 
~~~
. g( e ,n ) (3.2.3 )
e

then it can be shown that the two momentum equations , (2.2.2) and (2.2.3), and
the energy equation (2.2.4) can be written as

( I ~f ’  — f’s ~2.\ (3.2.4)(bf”)’ 
+ ~

.ff” + in1gf” + m~[(g1)2 —f ’g’] = in
2 

g ae ,
[
~e — (g’ )21 

+ ~~~ — f’g ’(bg”)’ 
+ fg” + m1gg ’~ + in —

3
L~ i p

= in2(g
s 
~.9.~

_ _ g h1 

~~ (3.2.5)ae

[C 
Cu2

+ —i. (i+ ~ 
~~

_)
~ He 

— hr) (f’f” + m~g ’g”)] + fE + m1gE’

= m2(g ae — as ) (3.2.6)

where primes denote differentiation with respect to n.
The definitions of the terms in (3.2.4) to (3.2.6) are:

fl _ u , w H + + C
m

~ b C (l + c )- — , g =
~~~~~

— ,
e

~ 1 “2 d W
eC = _.2.1~L_0e~e 

m1 = m3 — + ~ ~i ~°e’~e~ 
m~ =

1 
dwe 

(3.2.7)in
3 

= 
~~

-_ 
~~~~~~~

.

Here we have used the eddy viscosity and turbulent Prandtl number concepts and
have written the turbulence terms by

au aw-pU ’V ’ = pc ,11 ~j  
-pw~i’ = (3.2.8a)

(3.2.8b )Q~’TP = “
~ ~~~ ay

15
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Similarly, equations (2.2.6) to (2.2.9) can be transformed and expressed In
a form sii lar to those given by (3.2.4) to (3.2.6) by using the transforma-
tions given by (3.2.1) to (3.2.3) with slight modification to the following
parameters ,

pw0 
= ~~

- = — — • (3.2.9)

• = (p euet’e)
2’(3”2f(ts) = e~e

L
~e~~

”2 
W

~
e

O g(n) (3.2.10)

Equations (2.2.6) to (2.2.9) then become

(bf”) + ~
. f f”  + m3gf” = 0 (3.2.11)

(bg”)’ + ~~fg” + m3gg” + m3[?.
_ (g I ) 2] + ~~_ f 1 g 1 = 0 (3.2.12)

2

[
~
_. (

~ 
+ ~ E~~ (

~ 
— 

~
.) ff11] ~~ fE’ + m3gE’ 0 (3.2.13)

Here
wI — 0g - 

(We)o

The boundary conditIons which are valid for either (3.2.4) - (3.2.6) or
(3.2.11) - (3.2.13) are

= 0 f g = f’ = q ’ = 0 E~, or E
~ 

given (3.2.l4a )

• f’ = g ’ = E = 1 (3 .2.l4b )

The usual procedure that has been followed in predicting the boundary-
layer development on cones at incidence is to solve the system of equations
given by (3.2.11) to (3.2.13) for e — 0, and (3.2.4) to (3.2.6) for e 0
for both l aminar and turbulent flows with a mixing -length or eddy-viscosity
formulation. In those calculation s it is assumed tI~at the square-root van-
atlon of boundary-layer thickness for laminar flows also applies for turbu-
lent flows.

16
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Now, however, we do not follow this procedure for turbulent flows;
instead we follow a recent suggestion of Bradshaw et al. [4] and assume
that the velocity profiles u/ue and W/We are similar if we define V = y/x,
rather than y/I~. It follows then that for any quanti ty q

= (i~\ + (
~

2
~ ~1 (3.2.15a )

\ 3X )y 
\3x )y aY

~ 
ax

= (
~
a
~ ~ (3.2.15b )\ay /~ aY j
~ 

ay

To have similarity (aq/ax)~ = 0; then noting that aY/~x = -y/x
2 and

aV/ay = l/x , from (3.2.15), we can wr i te

(~q/~x)y = 
(a q/av)~(av/ ax)

(3.2.16)(aq/ay )~ (~q/aY)~(aY/ayJ 
= x

so that

~g =  
~~~~ (3.2.17)x a y

Wi th this assumption , it can be shown that equations (3.2.1) to (3 .2.4) can
be written as

fr (pw) + 
L (Xp~~) + 2p U = 0 (3 .2.18)

w a u  3u w2 a ( au —r—i-
p ~~~~-+  pV 

~~~
— p-j— ~~ ii ~~~~pu ~i ) (3.2.19)

w 3w 3w 
+ 

uw = — + 
a I aw __r-_v-

) (3 .2.20 )p~~~~~j
+ PV~~— x xd o

p — 
~~~~~+ pV 

~~ ay Pr ay 
~~ 

( 2 ) — pY H] (3.2.21)
w 3H - a H a [ & .3H ÷ (i  

1 a u2 + w 2

where

(3.2.22)

Similarly, the windward staqnat~on-line equatIons can be written as

+ }
~ 

xpv + 2pU — 0 (3.2.23)

p~ ~~~
- —  ~~~~ ~ aU r-r

~~
, 

~~ 
— pu v ) (3 .2.24 )
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~i+ 
~ ~~~

+ 
~ 

_.
~~~~~~

..=  —
~~~
.
~~~~~~

- +  F. 
~ 

~ _ Q _ P(~
T~ r~
] 

(3 .2.25)

~~ ~~~= ~
;. 
[~

r~~~+ ~~ 
_
~~~~~)f(~~~.)_~~~~TiTr] (3.2.26)

- 
If we now apply the transformation given by (3.2.1) to (3.2.3) with

pvx defined by

pVX = -2 ~~
—

~~
-
~~~- (3 .2.27)

to (3.2.18) to (3.2.21) and the transformation given by (3.2.9), (3.2.10) wi th
pVX defined by

pVX = -2 ~~
—

~~
- (3.2.28)

to (3.2.23) to (3.2.26), I t can be shown that the resul ti ng transforme d equa-
tions are almost identi cal to those given by (3.2.4) to (3.2.6) for the gen-
eral case and to those given by (3.2.11) to (3.2.13) for the windward
stagnation line case. The only difference appears in the coeffIcient~ of
ff” , fg” and fE’ ; instead of 3/2, the new equations have a coefficient
of 2. It should be noted , however , that the resulting equations for turbu-
lent flows are not strictl y similar like the laminar flow equations because
they were derived under the assumption of constant x. Thus , the equations
are valid for a fixed x and no scaling of solutions is allowed.

3.3 Transformation of the Parabolic -Elliptic Boundary-Layer Equations

Since thc PEBI equations should reproduce the 3DBL results In

regi ons where the cross-flow gradients are not large , the same argument can
be made for using a similarity transformation in these equations too. In the

nondlinenslonal PEBL variables used in Appendix ~~, the transformation (3.1.1)

become s 
~ 

1/2
= fh1dx 2 = 0 = (~

-) Y (3.3 .1)

wher e U
e 

= U
e
(X
~
0)
~ 

Plac i ng this into the PEBL equations (4.11) - ( A . l 3 )

and def inir1g a new veloc i ty-like variable , V as

18
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u 1/2
= + + 

~ (3.3.2)

yields the following equations

x-momentum

uu~ + ~~
._ wu~ + u — K1 uw + K2w 2 = + •~~- u + ~ 

~~~ 
(3.3.3)

-momen turn

UW + + w — K2uw + K1 ’i 2 = — p0 + w + ~ (ia. ~~

_ 2
~~

_ K
2u

2) 
(3.3.4)

cont i n u i t y

u 1/2 1/2(
~
) ~~~[u(~~) ]

- K 2u + u~~
2 1

~~~~~(~~-l/2) - K lw + = 0

(3.3.~~)

The appearance of the factor in the momentum equations (3.3.3) and

(3.3.4) is somewhat unusual and could be eliminated by normalizing the
velocities with their edge values. However , due to the presence of the second

derivatives with respect to z now present in the equation , this would intro-

duce more terms than are normally encountered ( such as a uezz term) and
it was deemed advisable to leave the equations as presented above. Th i s led
to a computational problem , to be discussed in Section 4.2, wh i ch was solve d
by a new technique also described in Section 4.2.

The boundary conditions to be imposed on this transformed set of equa-
tions are

= 0 u = w = 0 V = 0 (3.3.6a)

n u u (~ ,z~ w 
~
We(~

iZ) (3.3.6b)

z = 0 ,~ = 0 w = 0 (3.3.€~~)
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IV . NUMER ICAL METHODS

4.1 Numerical Formulation of the Standard Boundary-Layer Equations

We use the Box method to solve the governing 308L equations. This
is a two-point finite-difference method that has successfully been applied

to two-dimensional flows by Keller and Cebeci and to three-dimensional flows by

Cebec i . A detailed description of the method is presented in Ci) and [211.
For this reason onl y a brief description of it will be presented here.

One of the basic ideas of the Box method is to write the governing sys-
tem of equations in the form of a first-order system. Thus , in our case , the
first derivatives of f and q with respect to ~ are intro duced as new
unknown functions. With the rc~u1ting first-order system and an arbitrary
rectangular net, we use simple centered difference quotients and averages at
the midpoints of net rectanoles and net segments to get second-order accurate
finite-difference equations. Then nonlinear difference equations are linear-
ized by using Newton ’s method and the resulting linear system is solved by

the block-elimination method discussed by Isaacson and Keller [22].

In our present method we solve the two momentum equations simultaneously.
Essentiall y the stagnation -line equations and the symmetry pl ane equations are
two -dimensional flows in the sense that these equations have only two independ-
ent variables , (x ,n) or (z,n). On the other hand , the two momentum equa-
tions (3.1.5) and (3. 1 .6)  are three-dimensional flow equations for obvious
reasons. The solution of the two-dimensional flow equations is discussed in
considerable length in references [18], [21’), for th is reason we shall
onl y discuss the solution of three-dimensional-flow ecuations , namely, (3.1 .5),
(3.1.6) and their boundary condItions , (3.1.19).

With the introduction of new independent variab’es u(x,z,n), V(X ,Z ,~~),
w ( X ,Z ,r ) and t(x ,z ,n), the equations given by ( 3 1 . 5 )  and (3.1.6) can be
written as

f’ u (4.1 .la)

u ’ = v (4. l.lb)

= w (4.l.lc)

= t (4.l .1d)
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r
2 2 ( 3u af~(by )’ + m1

fv — m2u — m5uw + m
6

vg — m8w + m11 = m10 ~u -~~- — v

(w ~L_ ~ ~9-) (4. l. le)32

(bt)’ + m
1
f t  — m4uw — m3w

2 
+ m

6
qt — m9u

2 + m12 = m10 ‘u ~~ — t
‘I
’ 

~~~~

(w ~~~~— t ~~~) (4.l.lf)+ m
7 ~~

We next consider the net cube shown in Figure 1 and introduce the net
points by

x0 = 0  x = x  + k  n = l , 2, ..., Nn n-l n
= 0 z1 = z 1 1  + r

1 
i = 1 , 2, ..., I (4 .1.2)

n0 0 ri~~= n ~~1 + h ~ j 1 , 2 , . . ., J

The difference equations which are to approximate (4.l.la) to (4.l.ld)
are obtained by averaging about the midpoint (xn, Z 1~ ~‘j- l/2~

,1(j) (j,n,i— 1) (j,n,i)

~~~~~~~~~~~~~~~~~~-r

(J-l ,n-1 ,i-!)
z(i)

k_ri -1

Figure 1. Net cube for the difference equations for three-dimensional flows.
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f
fl~ 1 — fn ,ij-l - n ,i (4.l.3a )1~ 

- uj 112

n,i n ,i— u~~1 =— V j_ 1/2 (4.l.3b)

gfliI — 
- n ,i

h~ 
- W . 1/2 

(4.l.3c )

n ,i fl,i
W~ 

_ W j,•::~i~=h
3 

(4.l.3d )

where, for example ,

n ,i — 1 ,. n ,i- ~- ~~ + u~ ’~
’)

The differ enc e equations which are to approximate (4.l.le ,f) are rather
lengthy. To illustrate the differencinq of equations similar to (4.l.le ,f),
we consider the fol l owing model equation:

(4.1.4)y ’ + m
1 f~ 

= m10u ~ 7 az

The difference equations for this equation are

_ _ _ _ _ _  

~~~ 
~f l l~~

•
j ~~~j-l _ _ _ _ _ _

hj 
+ (ml)?:~~ ~~~j- l/2 (m1O )

~~~~ ‘~j - l/2 ~ k~~~~~)

(U I 
U~~ 1

s (m~~~~~ W
j 1/2 ri —) 

(4.1.5)

where , for example ,

— 1 n,1 n,i— l n 1- 4~ ~~ i• v~ + ,I—l + ~~~~~~

= ~- (u~ ’
1 
+ u~ ’

1 1  + u~ ’~ + u~~~~
l
)

= ~- (u~ ’
1 + u~~

I
~~

1 
+ u~~’~ +

n i  n-i~n— l/ 2 = ~ [(m
1 )

’
~ + (mi )?i 

+ (m
1 )(~ 

+ (ml)il ](m1 ~‘i— l/2
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The boundary conditions for the system of equations given by (4.1.1) at
x r 

~ and at z = z .  are :

ff I~ - 0 - - 0 n i  - 0 u~
”1 - 1 -

0 - , q0 
- 0, u0 

- , w0 - , j 
- w~ - 

~
uref

(4.1.6)
If we assume (f~~~ 

,i—1 
, ~~~ 

,i— l 
, ~~~ 

,i—l 
, 9

n— l s i— i , ~~~ 
,l— l 

, ~~~ 
,i— l

fr%~i-l n ,i-1 n ,1-1 n ,1-l n,1-l n ,1-1~ d (ffl-l ,i n-I ,l(
~ ~~Uj ~~Vj  ~~~~ ~ Wj  ~ tj ,, an 

~~
v~~~

”t , g~~l~ I, ~~~~~~ t~~
l
~

1) to be known for 0 < j  < J , then the differ-
ence equations (4. 1.3) and the difference equations for (4.l.le ,f) along the
(4.1.6) yield an implicit nonlinear algebraic system of 6J + 6 equations in
as many unknowns (f~, u~, v~, g~, w~, t~). We solve this nonlinear system
by means of Newton ’s method . The resulting linearized system is then solved
by using the block eliminati on method discussed by Isaacson and Keller [22).

4.2 Numerical Formulati on of the Parabolic-Elliptic Boundary-L~yer Equations

The PEBI equation set (3.3.3) - (3.3.5) is elliptic in the cross-flow
z-~ plane , but still allow s a parabolic march in the main flow, ~~, direction .
An implicit numerical procedure was chosen to integrate these governing equa-
tions for a number of reasons. The success of implici t methods on the boundary-
layer equations and parabolic-elliptic Navier-Stokes equations [23] implies
that they should be efficient for the very similar PEBL equations. It is
expected that solutions will be required at arbitrary points along the body;
and so for convenience in the computation , to eliminate the need to check the
step size restrictions of expli cit methods, unconditionally stable methods
(which are consistent with the orig ina l partial-differential equations of the
problem ) are necessary . This leads to the consideration of implicit methods.

The parti cular method used in this study Is the alternating-direction
imp l I cit (Aol) method , used in the form originally proposed by Peaceman and
Rachford [24]. The AD! method is ideally suited for the solution of (3 .3.3)-
(3.3. 4 ). There Is no stability restriction on the step size , and hence
arbitrary i~-steps are permitted . The method has second-order truncation
error in its marching variation , which is also a requirement for the type of
flow envisioned here, since the ~-h1story of the flow must be traced accurately
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V
at each step . Finally, the method does not require the Inversion of a sparse
banded matrix , as a fully implicit or Crank-Nicol son scheme would. Simple
t r i d ia g o n a l  coeffic~ent matrices are generated at each step which require much
less storage and time for their Inversion when compared with sparse matrices .

The AOl method is a two-step, second-order accurate procedure centered
about the midpoint of the ~ step from i~~ to (I + 2)~~, I.e., at
(i+l )~~, for un iform ~z and ~ grids. An example of its use Is shown
on the following equation modelling either (3.3.3) or (3.3.4).

N1u~ 
+ N2uy + N3u2 N4 + u~ + Uyy (4.2.1)

The two AD! steps are written

~~~~
- (N~)~’~ (U

~~ k 
uj ,k ) + (N2 )~~ ~y

uj,k + (N3)~~ ozL
~j,k (4.2.2a )

- (N ) + ~
2
u* + 6~ 

I— 4 j,k z ‘j, k YU,j,k

~ (N1 )~
’
~ (u~~ ~~

U
~~,k

) + (N2 )~ ’~ ~~~~~ + (N3)~~ 6ZuJ,k (4.2.2b)

- (N )14~ + + 62 i+2— 4 j,k z j ,k yUj k

where the Nm~ 
m < 3 are nonlinear coefficients , N4 is a source term,

and the standard central differencing , including the option of nonuniform
spacing has been used , i . e .,

~ 
— 

(Az _ )2u
~,k+l — 

[(~z~)
2 — (i~zJ

2]u~ k —
z j,k — 

(~z~ )(Az_ )U~z~J +

(4 .2.3a )
2 I — 2 ~ 

(Az)
~4 k÷l — 

[(A z 4) + (AzJ]uj k + (oz+)uLk_l 1
z Uj,k - 

(~ z MM )[(Azj + fAz )J+ - - (4.2.3b)
The pressure gradient portion of N4, since it is a known, prescribed

fi~nction , given by the external flow at all the marching steps, is computed
from

= + (4.2.4 )
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and not simply evaluated at the (*) station , which is only a temporary
integration location , and does not correspond to the physical midpoint (i + 1).
The remaining M~ are given by a second-order extrapolation (of consistent
accuracy with the integration procedure) from previously computed x-stations .
Orig inally, the standard extrapolations were used. These are derivable from
Taylor ’ s series , i . e .,

‘ AX \ AXi+l ~ +~~~~l + i-2o = + Q — 

~~ 
() ~4.2.5a

or

1 AX + AX 
~ 

AX + AX .

= (
~ 
+ Ax + ~x 

)Q - 

(Ax~ + AX )Q (4.2.5b)

depending upon where the variable s are stored. However, since the values of
the dependent variables used in the PEBL equations , (3.3.3)-(3.3.5) were not
normalized by their edge val ues, this procedure yields spurious results near
the edge of the boundary l ayer and in the inviscid portion of the flow. A
simple correction for this difficulty has been found (25), and incorporated
into the PEBI-ADI integration procedure. It consists of incorporating the
known information about the edge velocIties into the linearization so that it
correctly predicts the midpoint values at (I + 1). This Is accomplished by

1 1+2

C 
- 

‘ 
- 

[(1 + Ax~/2AxjQ~ — (AX~/2AXjQ~~
2
]

1+1where the Q in (4.2.6) is the usual value given in (4.2.5a).

In this way , the two momentum equations are decoupled from each other
and the continuity equation (3.3.5), and the integration can proceed wi thout
iteration . After the complete two-step AD! procedure is completed , the solu-
tion obtained is second-order accurate, centered at (I + 1)A ~. It is at this
r~-statIon that the continuity equation is eval uated. The unknown velocity

can be computed at the given c-station successively out from the wall ,
where the boundary condition ~(F,z,0) = 0 holds , to the edge of the computa-
tional domain , and around the cone from the windwa rd to leeward meridian.
This is accomplished by differencing equation (3.3.5) as follows
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1nV~~~12 ,k ~ 
U~~112 k — ~i+l 

buii/ 2 k  — + 
~

+ 
~~ ~~~~~~~~ 

+ i
U
~
:l

y+
~~~~

] 

(4.2.7)

where

1+1 i+l 1+2

~ v ’~ — 
Vi k  

— ~j~l ,k . — i+l — 
uj~JJ2 K —

~ j - l/2 ,k - 6
~

uj l/2 k — 2A~

is defined by (4.2.3a) and all the Indicated differentiations in (3.3.5)
have been performed .

The differencinq (4.2.2) generates tridlagonal matrices for each unknown
at both values of the AD! step1 which are easily sol ved by the familiar
algorithm . The only alteration from the straightforwa rd application of the

integration takes place on the z-impliclt step for the u-velocity . Here, the
boundary conditions to be applied are zero gradient at both boundaries , see
(3.3.6c). Rather than differencing the equation on the boundaries and using
fictitious nodes to fulfill boundary conditions , the integration domain was
l imited to include all but the boundary points . The boundary condition was
then incorporated by using a second-order accurate one-sided difference to
define the values of the first and last points in terms of Its nearest
neighbors as follows :

= 
(Ax 2 + A23)

2u2 k — ~ 2u3,k
,k 

[(AZ2 + AZ3)
2 — AZ~]

(4.2.8)

u J~4~X k  = 

(Az j~~x + A:~,~~ _ 1 )
2u j,

~ X_ l+
_ AZ X u J~~X _ 2~ k

E (Az j~~x Mj i~ x-i AZj~ x ]

The procedure does not destroy the tridiagonal nature of the coefficient
matrix , and has been used with success previously [23].
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V. RESULTS

5.1 Body of Revolu ti on

The test case chosen as a standard for all the body of revolution compar-
Isions to be given below Is the flow past a prolate spheroid , as shown in
figure 2, whose axis ratio, t, equals 1/4.

The solution to the three-dimensional boundary-layer equations, wri tten
in a general orthogonal body-oriented coordinate system requires the prescrip-
tion of the body geometry, and deri vable from that, the external potential flow.
In order to assess the accuracy of the boundary-layer solution , an anal ytically-

prescribed body wi th reasonably simple closed form solutions for the potential
flow was used. This avoids the problems caused by trying to spline fit and
smooth numerically computed surfaces and velocity components . It must be
emphasi zed that this simple body is not necessary for the successful use of
the computer program , and general geometry packages are availabl e [1 ). Thus ,
the calculati ons were performed over a simple body of revolution , namely, the
prolate spheroid. This configuration was previousl y considered by Wang [12] - [14]
who has dociinented the resulting flow f ield at various angles of attack . This
body has extensi ve regions of cross-flow reversal within a still unseparated
region and , in addition , has an unusual separation pattern at moderate angles
of attack which makes it an excellent test case on which to perform three-
dimensional boundary -layer studies . It is felt that the extension to compres-
sible flow will not be more than a mi nor alteration to the procedures developed
here . Similarly, the inc l usion of turbulence can be easil y accomplisned for
three-dimensiona l boundary layers by the means of the eddy-viscosity model
described in Section 2.4, and used in the following section for conical flows .

What is essential is the verification of the methods to be used for such
computations. Hence thi s study dealt with Incompressibl e flow in order to
determine the features of the two numerical techniques proposed.

For the prolate spheroid depicted in figure 2 we can write the equation
of the surface

+ !~~
_ g  1 (5.1.1)

t
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and the incremental distance along the surface

d4 = dr2 + dx2

Thus

- 1 + /dr~t
2

(ai- - 
~~~~~ )

and using eq. (5 .1.1) gives

~ + — 1 )
= 

( l _ x 2 )

But, from figure 2, we have

- dxcos8 - 
~~~

— (5 .1 .2)

Hence

2 1/2
= 

(1 — x ) 1 s1n~ = 
______________________________ 

- xt
+ x2(t~

_ l)j [1 + x2(t2 — 1 ) )  (5.1 .3)
1/2

The metric coefficients are determined from

ds1 = h1 dx ds2 = I’~ de

thus , from figure 2 and eq. (5.1.1),

ds2 = rde = t(l — x2)~~
2do

and from eq. (5.1.2)

dS 1 = dx
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Consequently,
r 2 2 ~l/2

h1 = jl + x (t 
2 

1) 1 h 2 = t(l — x 2 ) 1”2 (5.1.4)
L ( 1— x )  J

and the curvatures are

K = X 
, K = 0  (5.1.5)

[1 + x ( t  —1) ) (l — x )

These geometrical relationships are used in the governing equations of
boundary-layer flow and also in the determination of the potential . From
Faulkner et al. [26),the veloc ity components on the surface of a prolate
spheroid are given by

V s
= V0(t) cosci cosB — V90(t) sinci sine cose (5.1.6)

V
= v 90(t) sinci sine (5.1.7)

where the various angles c~ , ~ and e are depicted In figure ~~, and the
functions V0 and V90 are only functions of t , the thickness of the body,
given  by [tb]

2 3/2
v0 (t) = (1 t ) 

_____ _____ 

(5.1.3)

~ll — t2 — 1/2 t2 ln [(1 + ~ l — t2 )/ (l —~~l — t2 )]

2V0(t)
V90(t) = 2V (t) — 1  

(5.1.9)
0

Equations (5.1.4) - (5.1.9) are all the i nput necessary to the boundary-layer equa-
tions for the flow past a prolate spheroid.

The initial calculation made was simply the prolate spheroid at zero
degrees Incidence , I.e., axisymmetri c flow . While this is a trivial case
for the standard 3DBL procedure (it calculates one attachment-line flow , and
the result is valid at every angular position around the body), it has to be
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demonstrated that the PEBL procedure , wh i ch by its very nature must calculate
all the points around the body , generates axisymetric flow . Consequently,
the PEBL procedure was used for the axi syninetric case using only five points
around the body , i. e., AO 0.78539 (45°), a very crude grid. The grid
spacings across the boundary layer and down the bc’iy were identical to those
used previousl y for 3DBt., i .e., An = 0.3 and AX varying up to 0.1 for
x > -0.5. As i n all cases to be discussed , the initi al data planes necessary
for the extrapolation in (4.2.5) were obtained from the standard boundary-layer
calcula tion .

The results of this cal culation showed that the initiall y axisymmetric
boundary l ayer remained that way until the separation point was reached. The
computed values of w , which are exactly zero for axisyninetric flow, were
all of the order of lO

_8 
(below the round-off error of the single precision

ar it hmet i c of the IBM mac hi ne used). The differences in the u veloc i ty
around the body occurr ed i n the f i f t h  decima l place , again close to round-off
error.

The plot shown in fi gure 3, gives a comparison of f~ , the wal l
shear parameter , obtained by both methods. The curves are effectively Indis-
tingu ishable until the effects of the adverse pressure gradient at the rear of
the body are felt. Here, one would expect the lack of iteration In the PEBI
procedure to generate less accurate results than the 3DBL procedure which uses
a Newton iteration . Nevertheless, the results are fairly good, and the axi-
symmetry Is i ndeed maintained by the PEBL procedure onl y by the imposition of
synilietry conditions , c.f. (3 .2.6c), at the wi ndward and l eeward meridians.

The 3DBL results were next compared with the published results of Wang
for the axisyninetric case [12]. The skin friction (in Wang ’s notation ) down
the body computed by both methods is shown In figure 4. There is a notice-
able difference between the two calculations wi th separation predicted at
x 0.675 and x ~ 0.8 by the 3DBL or PEBL calculation and Wang, respectivel y.
An independent cal culation of this same problem made by Chang [27], substanti-
ates our results .

The next test case considered was chosen to generate just a small amount
of crossflow . The Incidence of the flow was taken to be 2°. The general
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structure of the fl ow near the body is shown in fig. 5. The ordinate repre-

sents the azimuthal position around the body , and the abscissa is the x
coordina te measured along the major axis. The body surface is thus the pl ane
of the figure. Results from two separate calculations , in addition to some
points extra polated from Wang ’s study [l2J are sPown on this figure . The
triangles represent calculations made using the 3L’BL method . To the left of
the triangles , both components of the shear stress , ~ ~u/ay and

“.
~ ~w/ y, are positive . The open triang les represent the grid points at

which the crossflow shear , 
~~~

, reverses sign , as calculated by 3DBL . Hence
the regi on covere d by the triang les represents a regi on of reverse crossf low
in the boundary-layer flow past the prolate spheroid. Computed separation
takes place at the points given by the solid triangles . Beyond 1 300 the grid
was too coarse i n x to detect any se paration for x > 0.4. Note that the

locus of separation points in some sense parallels the line of reverse cross-
flow

T hi s config ura ti on was next calculated us ing the PEBL proce dure . Aga in
on Fig. 5, the open circles represent the first locations at each x-station
where -r~ < 0. The locus of these points has been approximated by the curved
line. It is obvious that it coincides with the prediction of the 3DBL calcu-
lation for the onset of reverse crossflow. There is , however , a lar ge
discrepancy in the predicted separation point. The PEBL procedure first

senses separation along the x = 0.65 li ne almost on the entire lee sur face ,
130° < o < 180°, see straight line on Fig. 5. This includes a region wP,ich

was not access ible to the 3DBL calculation due to its predicted separation .

It should be noted that the region x > 0.65 computed by the 30B1 method for
< 40° was not accessible to PEBL . The discussion of the inability of the

3DBL to compute the entire lee-side region wil l  be postponed unti l the higher
angle of attack case is considered . The region computed by 3DBL which was not
computed by PEBL is  not calculable by the standard PEBL procedure set forth
here . Since all the e stations are coupled together during the calculation ,

when one station encounters separation and cannot advance into the reverse
flow , i t automatically precludes the further advance of all the other stations ,
i.e., onl y the most upstream separation point will be predicted . Thus , as
wi ll be seen aga i n la ter , one point of < 0 stops the calculation . This
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Figure 5. Calculated sur face shear distributions for prolate spheroid at 2°
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is not the case for the 3DBL where, as long as the separation line sweeps
upstream In x in the direction of the e Integration , the calculation can
continue .

To test the PEBL calculation s on their behavior approaching separation ,
Fig. 6 shows a plot of against x. This should give a linear curve
approaching separation . Stations at 160° and 170° are shown as the most
relevant since there the u ve locity f low wi ll most nearly be perpendicular
to the predicted separation line. The figure shows that , at least at these
two stations, the calculation reproduces a square-root singularity at sepa-
ration. A further check on the calculations can be made by using values of
the shear on the two symmetry planes for ~ = 2° interpolated from Wang ’s
calculations. The open squares in Fig. 5 show the location of crossflow
reversal and the sol id squares indicate separation . At e 0°, the 3081
agrees with Wang ’s results , and at e = 180°, the PEBL agreement is also
good despite the lack of iteration .

Comparisons of the streamwlse variation of the two components of shear
for both 3DBL and PEBL calculations are given in Figs. 7 and 8. It is diffi-
cult to make any clear judgements between the methods. When the crossflow
is unidirection al , there is little variation in f” unti l crossflow reversal
occurs. There the variation , and even the trend in some cases, increases .
For the more sensitive crossflow g~ as the adverse pressure gradient
increases for x > 0 , the disagreement increases .

One further point can be made . The separation and crossflow reversal

pat .erns computed for this low angle of attack case , a = 2° , fIt within the

originally conceived structure set forth by Wang in his early paper [12].

When the angle of attack is Increased from 2° to 6°, new features of the
flow emerge , and a clearer understanding of the reasons for some of the
behavior computed for the c~ 

= 2° case can be obtained . The first qeneral
result to consider is again the distribution of the surface shear over the
entire body ; see Fig. 9. As for the 2° case , this figure is a composite of
two separate calculations, PEBL and 3D8t., and also includes data from Wang
who gave a detailed map of the shear for this 6° Incidence case [14]. The
line of crossflow reversal, as computed by Wang, connects the open squares ;
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the oddly shaped line of separation connects the solid squares . The cross-
flow reversal (open triang les) computed by 3DBL approximates the solid line
fairly well; much as was the case for a = 2° . The line of separation as
computed by 30B1, the closed triangles , now unquestionabl y follows the cross-
flow reversal line , as was suspected in the 2° case also , compare Fig. 5.
To determi ne whether thi s pattern i s truly the case , we have the PEBL results
and the results of Wang as a compar i son . Referring to Fi g. 9, both other
methods agree on the general shape and location of the crossflow reversal

line, but the di scre pancy in the true separation line is considerable once a
significant region of reverse crossflow has been traversed . Thus, it appears

that the flow computed using the 3DBL procedures described in Section 4.1 gives
results which are highly dependent on the position of crossflow reversal .
This is not unexpected as it has been shown by many people , e.g., Krause [28],
that the z-dlfferencing shown in Fig. 1 and used in (3.1.5), (3.1.6) is unstable
for any negative crossflow. This did i~ot obviously manifest Itself In the
lower angle of attack case , but as will be seen in the following results to
be presented , the instability is clear . The PEBL calcula tion which proceeds
without difficulty through the reverse crossflow finally computed separated
flow at one point x = 0.375, e = 115° , and stops. As was the case for the

2° calculation , this point is upstream of the computed separation line
of Wang , as has been the case in all the previous calculations . Although
separation did not occur until further downstream, the PEBL procedure did
calcula te unrealistic behavior in the region 120° < e < 140° for x > 3.0
which tends to confirm the upstream Intrusion of the line of separation com-
puted by Wang and indicated on Fig. 9. Much of this can be made more clear
from the fol lowing series of fIgures .

The variation of the two components of wall shear are shown in figures

10 and 11. In all cases the agreement between 3DBL and PEBI is good along
the entire body until the onset of crossf low reversal. Beyond thIs point ,
the shear val ues deviate considerably with the 3OBL computed values showing
an abrupt break in the previous smooth trend. The PEBL calculations continue
with no difficul ty until the adverse pressure gradient makes the extrapola-
tion process somewhat questionable. Close to separation , the computed values
of f ” between 120° < e < 140° show a minimum and then begin to rise. This
can be seen In the e = 135° plot In Fig. 10 and in Fig. 12. This behavior
Is certainly unrealistic and Indicates a breakdown Of the PEBL computation
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in the odd interior region of the flow where Wang predicts separation . A
negative u velocity is sensed by the program at 0 = 115° , x 0.375 , and

the calculation stops . However , prior to this unrealistic behavior , a plot
of vs x shows that the calculated values are approaching separation in

the correct way (with a square-root singularity ) along a broad front of e

just on the lee side of the body , see Fig. 12.

A different manner of looking at the results which brings out other
characteristics of the computed flow is seen in Figs. l3a - l3c . Here the
azimutha l variation of the shear is given at various stations down the body.
The first figure , l3a , shows the shear at a point on the body just prior to
any crossf low se para ti on , x = -0.3. The agreement between both calculat ions
is excellent as it should be since there is no reason for either to be suspect.
Further downstream , at x = 0, the calculations indicate the final third of
the body on the lee surface to contain reversed crossflow as seen in Fig. 9.
Figure 13b indicates good agreement between both 3OBL and PEBL calculations

until this region but shows that although the PEBL calculation is unaffected ,
the 3081 results begin to oscillate until the computer program senses either
separation or nonconvergence of the iterated solution. The final x location
disp layed is at x = 0.3, see Fig. 13c . Here the crossf low reversal exists
on a greater portion of the body surface , and the 3DBL calculat ion proceeds
less far around the body wh ile the PEBL calcula tion continued to the lee surface
wi thout difficulty (not shown on the sca le given). No oscillation occurs as the
program stops computi ng almost immediate ly after the crossflow changes sign .
The abrupt drop at 0 — 90 is attributed to the fact that the ~e grid changed
at the same point where the veloc ity also changed sign .

The behavior of the flow at these three x-statlons can also be seen on
the velocity profiles just off the windwa rd and leeward mer idians . These are
shown In Figs . 14a - 14c . At x = -0.3, a basically standard set of velocity
profi les for U/Ue and W/W e is generated. The boundary layer is thicker
near the lee side , and no unusual behavior is noticed except in the w pro-
file at 175°, which has a slight inflection due to the adverse azimuthal
pressure gradient. By x — 0 the crossflow on the lee side c..~ntains a small
layer of reversed flow. The streamwlse flow on the lee side has become less
full , and the thickness of the boundary layer here has increase d. On the

windward side , the shape and thickness of both u and w profiles have
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changed hardly at all. By the time x = 0.3 has been reached , the reverse
flow la yer on the lee s id e occu pies a cons idera ble port ion of the boundary
layer which has again increased significantl y in thickness. There is some
sl ight difference in the u profiles between x = 0 and x 0.3, but the
major alteration has been in w. Again , on the windward plane , exce pt for a
slight increase in thickness , both profiles are relatively unchanged .

One of the conclusions reached by Wang from his calculations , was that
there was no evidence of vortical flow on the lee side of the body as the
flow approached separation. It was thought that this migh t have been due to
the use of the boundary-layer equations themselves and not truly representa-
tive of the flow field. The PEBI procedure has already been demonstrated as
being capable of capturing a vortex in this sort of flow by Lin & Rubin D0J,[ll]
and in some unpubl i shed work at Douglas , so it was felt that the PEBL calcu-
lation might possibl y yield a vortical pattern in the crossflow. The computed
crossfl ow pattern at x = 0.3 is given in Fig. 15 . Although the crossf low
does exh ibi t reversals i n di rec ti on , there is no evidence for the presence of
a vortex. In fact , our resu lts are remarkably similar to the crossfl ow pat-
tern given by Wang ’ s Fig. 8[14], and , therefore , confirm his conclusions about
the lack of a vortex .

We have shown that a comparison of the 3DBL and PEBL calculati on pro-
cedures produces the same results when the 3DBL method is stable. However,
using the di-fferencing given in Section 5 .1, the 3OBL calculat ion becomes
unrel i ab le when w < 0, in agreement with predictions of stability calcula-
tions. The PEBL procedure Is unconditionally stable and encounters no such
difficulties. Qualitative agreement with the computed results of Wang has
been shown in all cases .

The deficiency of the 3091 method used here can be overcome by changing

the differencing to the zig-zag scheme of Krause [28], which is orecisely

what Wang used for his calculations . The simple box scheme was used here to
elucidate Its behavior under adverse conditions. We are presently investi-
gating two alternate schemes , besides the zig-zag for calculatin g In regions
of reverse cross flow . The inability of the PEBL procedure to calculate
beyond the first encountered point of separation will need further study.
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Perhaps an adaption of one of the inverse methods used in two-dimensional
boundary-layer separation studies may be appl i cable to the PEBL procedure.

Until the initial separation point , however, it seems that the PEBL pro-
cedure and a three-dimensional procedure similar to Wang ’s boundary l ayer
grt’e comparable results. Thus, it might be assumed that the methods are
interchangeable. However , this is not the case. The zig-zag differencing
is  onl y conditionall y stable [28 ]~ and it is possible that regions of severe
crossf low might create instabilities and make the procedure invalid. Related
behavior is found when considering the flow past conical bodies . Cal culat ions
by similarity variables (to be shown in the next section ) cannot progress
further around the cone than the position of crossfl ow reversal . If the flow
is not assume d to be conically similar , and is marched down the cone , as well
as around in the 0 direction, the situation is not altered, i.e., an inte-
gration of the standard boundary-layer equations falls at the crossflow
reversal point [29]. Thus , bodies like blun ted cones and elliptic cones can-
not be comp letel y described except by using the PEBL equations. In fact , the

argument about whether the lee syninetry plane boundary layer can be computed
independently of the rest of the fl ow on the body, has not been settled in any
general way for bodies other than sharp circular cones [29]. For all cases ,
when the inflow from the body to the lee plane makes the independent syninetry
plane calculati on invalid , the use of the PEBI equations is required .

5.2 Conica l Flow

We have used the numerical method of Section 4.1 and the eddy-viscosity
formulation of Section 2.4 to obtain a solution of the system of equations
for conical flow given by (3.2.4) to (3.2.6) and (3.2.11) to (3.2.13) subject

to (3 .2.14). Figu re  16 shows a compar i son of calculated and experimental
results for the data of Rainb lrd [30], which Is for a 12.5-degree half-ang le
cone at an angle of attack of 15.78 degrees In a supersonic stream wi th free-
stream Mach number 1.8. The Reynolds number of the cone , based on its axial
l ength , was 25 x 106 , whIch Indicates that the possible effect of flow
nonuniformities caused by variable transition l ocation upon the measurements
at 0.851 can be neglected .

The computed resul ts shown in Figure 16 were made ~j using both the “old”
and the “new” procedures . According to the comparison of results wi th experi-
m n t , we observe that the results obtained wi th the new procedure give better
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agreement with experiment than the old procedure. For circumferential angles
-
~ = 0 and 450 (see Figs. l6a and 16b), however, there is very little dif-
ference between the computed results obtained by either procedure ; as •
Increases , so does the difference as shown In Figs . l6c and 16d.

A note should be made of the discrepancies In the temperature and
velocity profiles at • 135°. Because of the relativel y high angle of
at tack , the flow beyond about ~ = 120° is subject to an adverse pressure
gra di ent , wh i ch eventuall y leads to separation defined by zero shear stress
component normal to the generator. Al though our calculations with either
procedure predict separation at about ~ = 161° , close to the measured va lue
of • = 159°, the measured boundary layer shows a more rapid thicken i ng than
i s predic ted by calculat i ons . This can be traced to vortex formation , in
which case the ordinary boundary-layer equations are no longer valid anyway.

We conclu de that the similarit y variable proposed by Bradshaw for turbu-
len t flows over tapered wi ngs is also app licable to the ca1cuh~tion of high
Reynolds number turbulent boundary layer on cones at incidence with local
similarity assumptions .

Although the i mprovements obtained by the “new” procedure may seem smal l
in comparison with the empiricism contained in eddy-viscosity l aws and
viscous /inviscid interaction effects, they are nevertheless encouraging that
the local similarity will work for other similar shapes as well. In principle ,
the procedure is strictly applicable to conical bodies with arbitrary cross-
section provided that the radial pressure gradient is very small.

57



V I. REFERENCES

1. Cebeci , I., Kaups , K., and Ramsey , J.A.: A General Method for Calculat-
ing Three-Dimensional Compressible Laminar and Turbulent Boundary Layers
on Arbitrary Wings . NASA CR-2777 (1977).

2. McLean , J.D.: Three-Dimensional Turbulent Boundary-Layer Calculations
for Swept Wings . AI AA Paper No. 77-3 (1977).

3. Kordulla , W.: Investigations Related to the Inviscid-Viscous Interaction
in Transonic Flows about Finite Three-Dimensional Wings. AIAA Paper No.
77-209 (1977).

4. Bradshaw , P., Mi zner , C.A., and Unsworth , K.: Calculation of Compressible
Turbulent Boundary Layers on Straight Tapered Swept Wings . AIAA J. , 14,
399-400 (1976).

5. Moore, F .K.: Laminar Boundary Layer on Cones in Supersonic Flow at
Large Angle of Attack. NACA TN 2844 (1952).

6. Cooke , J.C. : Supersonic Laminar Boundary Layer on Cones. Report No.
66347, RAE , Farnborough (1965).

7. Boericke , R.R.: The Lami nar Boundary Layer on a Cone at Incidence in
Supersonic Flow . AIM J ., 9, 462-468 (1971).

8. Dwyer , H .A. and Sanders , B.R .: A Phys ically Optimum Difference Scheme
for Three-Dimensional Boundary Layers . In Proceedings of the Fourth
International Conference on Numerical Methods in Fluid Dynamics, 144-
150, Springer-Verlag (1975).

9. Kitchens , C.W ., Sedney, R., and Gerber , N .: The Role of the Zone of
Dependence Concept in TP’.-ee-Dimensional Boundary-Layer Cal culations .
In Proceedings of the AIM 2nd Computational Fluid Dynamics Conference,
102-112 (1975)

10. Lin , T.C. and Rubln , S.G.: V iscous Flow Over a Cone at Incidence.
II - Supersonic Boundary Layer. JFM , 59. 593-620 (1973).

11 . Lin , T.C. and Rubi n, S.G.: V i scous Flow Over Spinning Cones at Angl e of
Attack. Proceedings of the AIAA Computational Fluid Dynamics Conference ,
51-62 (1973).

12. Wang , K.C.: Three-Dimensional Boundary Lyaer Near the Plane of Symmetry
of a Sperhoid at Incidence. JFM , 43, 187-209 (1970).

13. Wang, K.C.: Boundary Layer Over a Bl unt Body at High Incidence with an
Open-Type of Separation . Proc. Roy. Soc., Lon don , A340, 33-55 (1974).

14. Wang, K.C.: Boundary Layer Over a Bl unt Body at Low Incidence with
Circumferential Reversed Flow . JFM , 72, 49-65 (1975).

58



15. Roux , B.: Supersonic Laminar Boundary Layer Near the Plane of Symmetry
of a Cone at Incidence . JFM , 51 , 1-14 (1972).

16. Murd ock , J .W . :  The Solution of Sharp-Cone Boundary-Layer Equations in
the Plane of Symmetry . JFM, 54 , 665-678 (1972).

17. Kaups , K., and Cebeci , T.: On the Prediction of Turbulent Boundary Layers
on Cones at Incidence. To be published in Journal of Aircraft (1977).

18. Cebeci , I.: Calculation of Three-Dimensional Boundary Layers . I. Swept
Infinite Cylinders and Small Cross Flow. AIAA J., 12 , 779-786 (1974).

19. Cebeci , T . :  Calculation of Three-Dimensional Boundary Layers. II.
Three-Dimensional Flows in Cartesian Coordinates. AIM J., 13 , 1056-
1064 (1975). 

—

20. Blottner , F.G ., and Ellis, M.A .: Finite-Difference Solution of the
Incompressible Three-Dimensional Boundary-Layer Equations for a Bl unt
Body. Computers and FluIds , 1 , 1 33-158 (1973).

21. Cebeci , T. and Smi th , A .M.O.: Analysis of Turbulent Boundary Layers .
Aca demic Press , New York (1974).

22. Isaacson , E. and Keller , H.B.: Analys is of Numerical Methods . Wi l ey,
New York (1966).

23. Hirsh , R .S.: Numerical Calculation of Supersonic Three-Dimensional Free
Mixing Flows Using the Parabolic-Elliptic Navier-Stokes Equations . NASA
TN D-8l95 (1976).

24 . Peacema n, D .W. and Rachford , H.H., Jr.: The Numerical Solution of Para-
bolic and Elliptic Differential Equations. J. Soc. m d .  & Appi . Math.,
3, 28-41 (1955).

25. Hirsh , P.S.: An Edge Corrected Linearization Techni que for Boundary
Layer Problems . To be published in AIM J. (1977).

26. Faulkner , S.M., Hess , J.L , Smith , A .M.O.,  and Liebeck , R.H.: Charts and
Formulas for Estimating Velocity Fields in Incompressible Flow. Douglas
A ircraft Company Rept. No . LB 32707 (1968).

27. Chang, K.C.: Calculation of Three-Dimensional Boundary Layers on Ship
Forms . Ph .D. Thesis, Univers ity of Iowa (1975).

28. Krause , E.: Comment on Solution of a Three-Dimensional Boundary-Layer
Flow with Separation . AIM J., 7, 575-576 (1969).

29. Rubin , S.G., Lin , T .C . and Tarull i , F .: Symmetry Plane Viscous Layer on
a Sharp Cone . AIM J., 15 , 204-211 (1977).

30. Ralnbird , W.J.: Turbulent Boundary-Layer Growth and Separation on a Yawed
Cone . AIM J., 6, 2140-2146 (1968).

59



APPENDIX A

THE PARA BOLIC-ELLIP TIC BOUNDARY-LAYER EQUATIONS

The standard three-dimensional boundary-laye r equat ions have a wide range
of applicability. However , when there is a region where the velocity changes

rap id l y in the crossflow direction , a s t r a i g h t - forward i n t e g r a t i o n  of the equa-
tions sometimes breaks down . At this point it is necessary to reexamine some
of the approximations that led to the boundary-layer equations to see if any
have become invalid. The major assumption in boundary-laye r theory concerns
the relative size of gradients of the flow quantities . That is , gradients in

one direction are assumed larger than gradients in the other two direct ions .
However , some flows do not fit within the realm of boundary-laye r theory , so
less stringent assumptions must be placed on the Navier-Stokes (NS) equations.
Flows of this type are corner flows [Al ], flows past finite width flat plates

[A2], rectangular jet flows [23], ~~~~~ 
flow s past bodies at moderate inc idence

[io] , [ii], [A4 ] , and , as pointed out in reference 23, winq -tip flows . In these
flows , gradients in a second direction can become important , and must be

accounted for.

It is possible to make a distinction among these fl ows which lie somewhere
between simple boundary layers and solut ions to the complete NS equations.
In some cases it is essential that the pressure field be ca lculated as an
integral part of the solution method . Effect ively, this states that the scale
lei gths In the gradient directions are nearly equal. This leads to the
parabolic -e ll iptic Navier-Stokes (PENS) equations used by references 23 , Al -A4 .
However , there are certain circumstances where the pressure may still be pre-
sumed given by an Inv iscid flow calculation. This Implies that the gradient
in the direction of the presumed boundary layer i s st ill the dominan t fac tor ,
and the Inclusion of a second direction only corrects the flow field locally.
This leads to the par abolic-elliptic boundary-layer (PEBL) equations used by
references 10, 11, and in this report.

The PEBL equations can be derived for the case of laminar Incompressible
flow past an arbitrary body of revolution by considering the Navier-Stokes
equat lo- s In the general body-oriented coordinate system discussed In Section
II. Reducing the qeneral orthogonal equations given In reference A5 using the
fact that h1 h1 (x,~), h2 = h2(x ,~i), h3 = 1 , yields after considerable al gebra
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These are the complete Navier-Stokes equations for the body-oriented coordi-
nate system , no approximations have been made .

The three momentum equations will now be nondimensionalized in order to

more easil y determine the order of magnitude of the various terms in the equa-

tions. The procedure is the same as is used in standard boundary-layer theory

but with one important difference. This appears in the treatment of the

cross-flow veloc i ty, w , and the derivatives in the cross plane , a/so. The
following nondimensional quantities are defined .

- = u__ - _ _v__
U u 6u ‘ 

-

r r r

L ‘ 6L (A.5a)

q ‘r r

These are standard for boundary -layer theory where gradients In the z-direction
are larger than those in the x-direction , i.e., 6 << 1. The subscript r
refers to a suitable reference , and q is PrUr for i ncompress ible fl ow .
The only change from the standard procedure , s ince gradi ents in the cross
plane are being considered to pos~ibl y be large, will be to flag the cross-
plane gradients with a parameter c as follows :

(A.sb )

an d so we must also have

= _W— (A.5c)cu r

Here c represents simply a means of keeping track of o-derlvatives. The
value of this artifice will appear shortly when the nondimen sional equations
are displayed .

Placing the nondimensiona l variable s (A .5) Into the continuity and
momentum equations, (A.l) - (A.4), rearranging terms , and dropping the bar
denoting a nondimensiona l quantity , one obtains
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Followin g the standard procedure of boundary-layer thoery, we now choose
our y-scale such that

(A.lO)

Up to this point , only the Inclus ion of the ~. flag distinguishes this

development from that of ordinary boundary-layer theory . If we were to set

= 1 and then drop terms of 0(6) or higher , the standard three-dimensiona l

boundary-layer (3DBL) equations result. However, it is just these equations

we are trying to modify . They are to be modified due to phenomena in the

cross plane which may cause the e-gradients to become larger than unit order.
The terms affected by these gradients can be identified by the terms flaqged

with an c. The largest of these terms in (A.7) through (A.9) i s of order
in each equation . It is these extra terms we wish to keep in addition

to the three-dimensional boundary-layer terms.

The behavior of the extra gradients will not be uniform throughout the
flow field , so we cannot set one scale for ~ as we did for 6. For example ,
near the windward generator on a cone no additional terms are necessary to
describe the symmetry line flow other than the 3DBL equations; hence,

‘~ 0(1). However , near the lee meridian at moderate angles of attack ,
account must be taken of the inf low to the symmetry line , and so a reasonable
guess is that here, in this boundary region , c ‘~ 0(a). Thus, the procedure
followed in keeping the significant terms in (A.7) through (A.9) is to
keep all terms of 0(1) and 0(62/c2). All other terms are omitted . After
thi s has been done , hav ing identified the terms necessary to account for
cross-flow effects, c is set equal to one since Its true scaling Is unknown .
The resul ting equations contain terms which are of no importance when c Is

truly order one (hence their Inclusion does not alter the fl ow structure),

but It Is just these terms which wtll make a contribution In high s-gradient
regions. Following this procedure in equations ~A.6) through (A.9). yields
the following set of parabolic -elliptic boundary-layer (PEBL) equations , where
the definition of 6 , (R.1O), has been used .
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All the terms above are easily recognized . Those with no Reynolds num-
ber are the ordinary boundary-layer equations , and remaining terms multiplied
by h R are the new ones needed to account for cross-plane phenomena . Thus ,
the equations are now elliptic in two directions (a and y) but still allow

a parabolic march in the x-direction . The pressure is determined from the
externally determined inviscid field. This is by no means the same as having
an additional equation similar to (A.l3), - Instead of (A.14), had the
scale length c been chosen identical to 6 at the outset of the anal ysis.
This leads to the parabolic elliptic Navier-Stokes equations , used by [23],
[A3) - [A4], where the computation of the pressure is an essential part of the
solution. It is precisely the calculation of the pressure that makes MS
calculations difficult. By choosing the PEBL scaling In suitabl e problems ,
this difficulty is overcome . This procedure has been used previously by u n
and Rubin for compressible flow past nonrotating [io] and rotating 1~i] conesat incidence .
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