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I. INTRODUCTION

In recent years, a number of methods have been developed in order to
compute laminar and turbulent three-dimensional boundary layers. Although
some are developed in a general way, most are developed to treat either of
two specific classes of problems, i.e., flows on wings, or flows past bodies
or revolution. Cebeci et al. [1] developed a general method for calculating
the three-dimensional, compressible boundary layer on an arbitrary wing using
the eddy-viscosity concept. Similar calculations have recently been presented
by McLean [2] and by Kordulla [3]. Bradshaw et al. [4] simplified the three-
dimensional equations on a swept tapered wing by assuming conical similarity,
and used a higher order turbulence model to solve for the flow. The history
of flows past bodies of revolution is more extensive, dating back to the first
studies by Moore [5] dealing with flow past a cone. Further studies by Cooke
[6], Boericke [7] and others integrated the conically similar quasi-two-
dimensional equations around the cone. The spinning cone and its attendant
problems were investigated by Dwyer [8] and Kitchens et al. [9]. The diffi-
culties encountered in all the previous works due to behavior near the lee
side of the cone, or crossflow reversal, were effectively overcome by Lin and
Rubin [10], [11] who developed an augmented set of boundary-layer equations
for treating problems of this kind.

The flow past a more general body of revolution, a prolate spheroid, has
been extensively studied by Wang [12] - [14]. Although the cone is a special
case of a general body of revolution, for the prolate spheroid at least, some
of the more troublesome aspects of the cone flow do not appear. The nonexist-
ence of solutions on the lee plane, found by Moore [5] and further investigated
by Roux [15] and Murdock [16], does not seem to apply to the prolate spheroid.
The crossflow separation, which causes the quasi-two-dimensional conical flow
to experience a square-root singularity, does not seem to exert such an
effect on the equations governing the prolate-spheroid flow. This has allowed
Wang to carefully map the attached flow on the prolate spheroid at incidence
by integrating from either the windward or leeward symmetry plane, something

which cannot generally be done on a cone using standard boundary-layer
procedures.
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The general characteristics of the viscous flow past a body of revolu-
tion can be broadly described as follows. Depending on the incidence of the
body, the flow can be thought to consist of three overlapping, and not-at-all
distinct, regimes: (a) low incidence, where no separation occurs and three-
dimensional boundary-layer theory applies; (b) low to moderate incidence,
where the cross flow around the body separates and may possibly produce stream-
wise vortices which, however, still remain within the viscous layer; (c) higher
incidences, where vortices detach from the body and alter the prevailing
inviscid flow. Case (c) requires the complete (and pnssibly unsteady) Navier-
Stokes equations, but case (b) can be described by a simpler set of equations
called here the Parabolic-Elliptic Boundary-Layer (PEBL) equations.

Under the research sponsored by contract N60921-76-C-0089, aspects of
this problem were investigated at Douglas during the past year, with the
emphasis being towards the development of a general computer program for cal-
culating the boundary layer on an arbitrary body of revolution using the clas-
sical three-dimensional boundary-layer equations, i.e., case (a). A parallel
effort used the PEBL approach in order to extend the calculations to case (b).
This report presents the results of the first phase of the above contract.
Calculations were performed on a simple body of revolution, the prolate spher-
oid. For the case of the standard three-dimensional boundary-layer equations,
the prolate spheroid produces a region of reverse crossflow, due to an adverse
pressure gradient, but without a change of sign of the cross-flow edge velocity.
Thus, the method used in [1], where the cross-flow integration direction is
changed when the edge velocity changes sign, cannot be used, and the behavior
of the finite-difference solution technique becomes apparent. The PEBL
approach is used for the first time on a general body with variable metric
coefficients (not simply a cone) and the sensitivity of the procedure to
streamwise separation can be assessed.

A supplementary effort dealt with the incorporation of a new scaling law
into the quasi-two-dimensional conical boundary-layer equations for the
turbulent flow on a cone [17]. A suggestion made by Bradshaw [4], concerning
the choice of similarity variable to be used in the computation, was followed,
and produced noticeably better comparisons with the experimental data. These,

and other results from the various programs will be described in the succeeding
sections.




II. GOVERNING EQUATIONS

2.1 The Boundary-Layer Equations for a General Body of Revolution

In this report we consider the solution of more general three-dimensional
boundary-layer equations than those discussed in our previous studies [1],[18],
[19]. The generalization is due to the inclusion of crossflow diffusion terms. A
detailed derivation is given in Appendix A. These generalized equations allow
for the computation of negative crossflow due to the elliptic nature of the
equations in crossflow plane. By using numerical schemes such as ADI (alter-
nating-direction-implicit) procedures, they provide a means of comparing
solutions with those obtained from standard boundary-layer procedures such as
the Box scheme used in the present study as well as in our previous studies.
For three-dimensional incompressible flows in a curvilinear orthogonal coordi-
nate system, these generalized equations, which for brevity we shall refer to
as PEBL (parabolic-elliptic boundary-layer) equations, are given by

Continuity
8 (hyu) + & (hyw) + & (hsh,v) = 0 (2.1.1)
ax 2 90 1 2y 172 s
x-Momentum
U_ U . W_3u u _ PR N ST T N N
hy ax + hy 36 * Y %y sicas Bl ohy ax * 3y (“ W )
| W R
g (v o Se U™ ) (2.1.2)
2 2
6-Momentum
U_W . W oW w _ By el AW T
hy ax g h, 36 ‘YT oh, 30 * 3y ( o )
1 32 (1 W _Z)
+ e LA e~k
F; 26 \' h, 20
1 au
_ZVFZ_KZS-G- (2.1.3)

Note that if the underlined terms in (2.1.2) and (2.1.3) are set equal to zero,
we recover the usual three-dimensional boundary-layer equations which we shall




refer to as the standard three-dimensional boundary-layer equations. In the
above equations h-l and h2 are metric coefficients and are functions of x
and o, that is,

hy = h](x,e) » hy = hz(x,o) (2.1.4a)

The parameters K] and Kz are known as the geodesic curvatures of the

curves 6 = const. and x = const., respectively. They are given by

PIRRI S RSN | (2.1.4b)
1 h.h, 36 * 2 h,h, ax
12 172
At the edge of the boundary layer, (2.1.2) and (2.1.3) reduce to
u_ au W_ du au
o Sl Foawe Yoms PR (R T a_( L_e)
h] X " h2 36 ueweK'l "N K2 = pﬁ] X i ﬁg'ae o h2 20 (2.1.52)
u_ aw W W aw 3u
Lo P B " AERRETIN W S e pe 1 e
By T, UgWela + Ugky szae+ﬁgﬁ(“’;ﬁ)“2°}w;'<25€
(2.1.5b)

The solution of the system (2.1.1) - (2.1.4) requires both closure assump-
tions for the Reynolds stresses, and appropriate boundary conditions. The
closure model will be discussed in Section 2.4. Some of the boundary conditions
which need to be applied depend upon whether the standard or PEBL equations are

to be solved. In either case, however, edge and wall boundary conditions for
zero mass transfer are:

y=90 uw =0 v=20 (2.1.6a)
y +» T ue(x,e) W > we(x,e) (2.1.6b)

The standard boundary-layer equations also require starting solutions on
two intersecting planes. One of these is the windward plane of symmetry of the
body. The other is chosen as the line x = constant around the nose of the
body where the value of x is equal to the value of x at the stagnation
point. On this line the assumption is made that the flow behaves as if it were
along an azimuthal attachment line. This eliminates the need to trace stream-
lines from the stagnation point around the nose of the body. Since for all the
bodies considered in this report the stagnation line is extremely close to the




nose, the effect of this assumption is not felt after a few x steps downstream
of the starting solution due to the parabolic nature of the boundary-layer
equations.

On the windward plane of symmetry w = 0, but Wy # 0, and all other
o-derivatives are zero. The 6-momentum equation, (2.1.3) is singular on this
line, but by differentiating it with respect to ¢, a complete set of equa-
tions is obtained. Thus, the windward symmetry plane equations are:

Continuity
3 3 g
a7 (hzu) + h]we + 3y (h]hzv) 0 (2.007)
x-momentum
u_. au
u_ au i | R - S [ M
h1 = ay F;'ax + e ( 2y u'v ) (2.1.8)
g-momentum
3w aw u_, aw
u g .4 o i e PR O
hy ax : Fg'we N P hy “ax ;i h, Yoe ~ UeWoeKy
& 5 awe
+ F o A (w'v')e (2.1.9)

Here w, = w/38, wg, = 3W./36. These equations are subject to the following
boundary conditions

y=90 u,w, =0 v=0 (2.1.10a)

y >« u - ue(x) Wy > wee(x) (2.1.10b)
The equations on the azimuthal attachment line are very similar to the
symmetry plane equations except that now the assumption is made that u = 0,
Uy # 0, and all other x derivatives are zero. Note again that this is just
an approximation. Now the x-momentum equation is singular but can be utilized

after differentiation with respect to x. This yields the azimutha) attachment
line equations:

Continuity

9 9
h2ux o (h]w) + 77 (h]hzv) =0 (€1 1%}




3u au au
1 .2 W X X _ e T W, xe
Rt U TR Uxe Y hy TBe T UxeMe
9 au)( T
+ Sy'[ T u'v )X (2.1.12)
z-momentum
W_ oW
W 9w WS el RO O W T ;
-ﬁ'z—~a—'—+v—)7'hzae "’ay(\Ja.v WV) (2.] ]3)
Here g * U/ ox, Weg auelax and the equations are subject to the boundary
conditions
y =0 U W =0 v=0 (2.1.14a)
y > u, > ux(e) w > w(e) (2.1.14b)

The flow at the stagnation point itself is the first point calculated in the
solution procedure. Here a combination of both attachment Tine and symmetry
plane procedures is used to produce the equations for a general three-dimensional
stagnation point boundary layer.

If the PEBL equations are to be solved, rather than the standard equations,
it is necessary to prescribe conditions on two boundary surfaces of the azi-
muthal direction since equations (2.1.2) and (2.1.3) are elliptic in the o
coordinate. On a body of revolution, two symmetry planes exist on the wind-
ward and leeward generators. Thus, at both 6 =0 and 6 = n we have

u. =0 : w=0 (2.1.15)

It is not necessary to solve different symmetry plane equations, as is done
in boundary-layer calculations, to start the calculation in the e-direction.
The equations (2.1.2) and (2.1.3) are simply solved in the entire o-y-plane
subject to the appropriate boundary conditions stated above. An initial data
plane is also required, as in the standard case, for all the calculations

to be made here using the PEBL equations. The standard equations are used to
generate this solution, i.e., (2.1.11) ~ (2.1.14).




2.2 The Boundary Layer on a Conical Surface

If we are specifically interested in boundary layers on conical surfaces,
then we have h] =1 and h2 = x. It follows from (2.1.4b) that K] =0 and
K2 = -1/x. For compressible flow, the standard three-dimensional boundary-
layer equations equivalent to (2.1.1) - (2.1.3) are:

Continuity:
2 (xpu) + 2 (ow) + & (xgv) = 0 (2.2.1)
ax P 20 ay wa
x-Momentum:
3u W AU , — 3u w2 3 au -
°usz+°;se‘*°v—y‘°x—=ii(“5"°“) bl
g-Momentum:
W W W — W w__14d 1. M _ Sier
NS te st Sy tey x do * 3y (u ThEal ) (2.2.3)

Here 6 denotes the polar coordinate in the developed plane; x the coordinate

along the generators; and y the coordinate normal to the surface; with w, u,
v the velocities in the 8, x, and y directions. The boundary conditions
for these equations have already been given as (2.1.6a) and (2.1.6b).

In compressible flow it is also necessary to have the energy equation to
close the system of equations. In the present notation §t becomes:

Energy:
g wal ~—3H 3 |y oH, 1_‘_3_"2*“2_;,1741'
PRX Pxge "ay wyiProy Pr/) oy 2 P

(2.2.4)
where H is the stagnation enthalpy, and Pr the Prandt] number. The

boundary conditions on the enthalpy are

y=0 H = given or aH/ay = given (2.2.5a)
y+o H + H,(x,0) (2.2.5b)

At the windward stagnaticn 1ine, o = 0, the cross-flow momentum equa-
tion is singular. Taking into account the symmetry conditions and differenti-
ating (2.2.3) with respect to 6, we can write it as

e




e 3PS, G N RV ——=_le + 3!2._ (wvh) (2.2.6)
U 3X X LAY G X 4o ay |M ay oW ) £
Noting that w =0, (2.2.1), (2.2.2) and (2.2.4) can be simplified and written
as

%7 (xpu) + Wy + gy-(xEV) = 0 (2.2.7)
e § —r
pug—z+pva—;—=g?(u%3'—puV) (2.2.8)

2
3 - L2 iy 3l <L AL N . oo
ou 2 pvay-ay[Pray‘Pu(] pr)ay(?") pVH] (2.2.9)
where Wy ® aw/36. The boundary conditions for this set of equations is given
by (2.1.10a) and (2.1.10b) plus (2.2.5a) and

¥+ H > Hy(x) (2.2.10)

2.3 Geometry and Coordinate System

Three-dimensional boundary layers develop, in general, on a nondevelopable
surface. This means that the computations cannot be made on a Cartesian coord-
inate system; instead a curvilinear coordinate system must be used. There are
several possible coordinate systems. One possibility is a streamline system.
Here the external streamlines form one family of the coordinate lines, and the
equipotential lines (orthogonal everywhere to the streamlines) form the other
family of the coordinate lines. The use of this system enables the streamwise
and crosswise velocity profiles to be computed easily and is one of the most
popular coordinate systems used in integral methods. However, the determina-
tion of the streamline coordinate system requires a knowledge of the external
flow in considerable detail. In addition, the numerical computation of the
associated geometrical parameters is quite involved. As a result, when a dif-

ferential approach such as ours is used, this coordinate system is not very
attractive.

Another coordinate system, popular for bodies of revolution, is the one
used by Blottner and E11is [20]. Here the coordinate system is determined by
the intersection with the body surface of parallel planes which pass through
an axis containing the stagnation point. The other coordinate lines are




obtained numerically from the orthogonality condition. When this system is
employed, the computations can start immediately from the stagnation point,
pass through the nose of the body and march downstream to the separation point.
Again this coordinate system requires a lot of numerical work to determine the
computational and the geometrical parameters.

At small angles of attack the stagnation point is close to the nose of the
body. A very attractive coordinate system is the body coordinate system, in
which one coordinate, say o, 1is formed by the 1ines x = constant, and the
other coordinate, s, is the line o = constant along the meridional direc-
tion, either measured along the surface or measured along the x-axis. For
numerical work the latter is preferred. It is this body-oriented coordinate
svstem which we shall use in the nresent work, see Section 5.1 for a snecific
example.

2.4 Closure Assumptions for the Reynolds Stresses

The solution of any of the sets of boundary-layer equations derived in
Section 2.1 requires closure assumptions for the Reynolds shear stresses,

-ou'v', -pWw'v'. As in our previous studies we use the eddy-viscosity con-
cept and define

W e i u e oW
u'v €1 3y . WiV = e, o (2.4.1)

Following the formulation of reference 19, we assume that € = ep = gy
and define €n Dy two separate formulas. In the so-called inner region of
the boundary layer, €n is defined by

2 27172
ey = ¢ = L° [(g—;) + (g%)] = L%s(y) (2.4.2)
where 1/2
U 2 W 2 :
L = 0.4y[1 — exp(-y/A)], s(y) = [(-;) + (W)] (2.4.3)
As263 & u, = (w2 (2.4.3b)




In the outer region ¢ s defined by

m ™ 5 = 00168 | [ (ug, —u, )y (2.4.4)
0

where

1/2 1/2
2
Ut = (Ue + wg) > up = (u2 + wz) (2.4.5)

where the inner and outer regions are established by the continuity of the
eddy-viscosity formula.
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IT1. TRANSFORMATION OF THE GOVERNING EQUATIONS

3.1 Transformation of the Standard Boundary-Laver Equations

The boundary-layer equations can be solved when they are expressed either
in physical coordinates or in transformed coordinates. Each coordinate system
has its own advantages. In problems where computer storage becomes
important, the choice of using transformed coordinates becomes necessary, as
well as convenient, since the transformed coordinates allow large steps to be
taken in the x and 6 directions. The reason for this is that the profiles
expressed in the transformed coordinates do not change as rapidly as they do
when they are expressed in physical coordinates. The use of transformed coor-
dinates also stretches the coordinate normal to the wall and takes out much of
the variation in boundary-layer thickness for laminar flows. Since the
standard and parabolic-elliptic equations will be solved by different methods,
and because there are additional terms in PEBL, the transformation of each
set will be considered separately.

For the standard equations, we first define the transformed coordinates by

1/2
ue
X = X » 2 =0 s dn =<-—-) dy (3.].])

\)S-|
and introduce a two-component vector potential such that

= 9% = 3 = — (3%, 3
R R EE e B ae g Nolipy (ax ¥ 5%) (3.1.2)

In addition, we define dimensionless f and g related to y and ¢ by

(ugvsy)'/%h, F(x,2,n) (3.1.3a)

€
]

1/2

-
1

w
= (uevsl) hy ag-g(x.z.n) (3.1.3b)
2

Here s,, which denotes the arc length along the x-coordinate, is defined by

X

Sy -/de (3.1.4)

n




Introducing the expressions (3.1.1) to (3.1.4) into (2.1.2) and (2.1.3) for

the standard equations, we get after considerable algebra,
x-momentum

(bf") + m, ff" - mz(f')z -mgf'g" + mfg - m8(9')2 +my

v s A e B AT |
=% (f X f ax) iy (q 9z f az) (3.1.5)
z-momentum
“‘ n l2 (e ) 1] I2
(bg") + myfg" —my(g')" —myf'g’ + megg" —mg(f')" + my,
N v 9" _ 40 3f (.93;_..31
™o (f 3x g ax) tH%AY 9 az) (3.1.6)
Here primes denote differentiation with respect to n and
) + .
fr=a gt = - b=1+¢ S (3.1.7)
e e
The coefficients m to m,, are given by
S, au Sy au S, ow
1 1 [2 1 e 1 e
m =31+ — =25 > m, = —_— m, = —_—
| S < ue51 ax 1K2 2 ueﬁl X 3 eﬁz Y3
S, ow W S, du
Neppiu Dy e Obu T N
LR vl U0 Mg T TR
el e @
m =w_e_ S] .a_w_e__z_s_l__ale__sK m7-_-S_]w_8.
6 Ug weﬁz 92 ueh2 3z 1™ 2 Ug
w_\2 u
e * s
" (E) KSy "9~ W, KySy (3.1.8)
5
™o * Ry e St T TR L TR Uy B

To transform the symmetry plane equations (2.1.7) - (2.1.9), we use
relations (3.1.1) and (3.1.4) for the coordinates, with the dependent vari-

ables defined as

12




= 3V
hot = 3y v, = 3y 1"

The dimensionless f and g are defined by

v (ue\’s])]/zhzf(x’n)

2 w
(ue\)s] )‘/ h1 G:_e g(x.n)

<
n

Using these variables the symmetry plane equations become

" ! " ' 2 " r2= ' af ; "
(bf") + m, ff —-mz(f )¢+ m6f g +my =m, (f - f

-3 hhv=—(%¥+¢)

(3.1.9)
(3.1.10a)
(3.1.100)

g—:) (31.11)

(bg") + m,fg" —m3(g')2 ~maf'g’ + meag” + my, = myg (f' Q9 _ g ﬁ)

ax 9 x
{3.1.12)
where
1 S] aue S] awe . 5] awe
& = m, = — ST T
S W S
| ze m. =m ey
Wtk a Y% R ™o " hy
ze' 'l
My = My Myp = My + m, (3.1.13)

In the same manner, the attachment line equations (2.1.11) - (2.1.13)

can be transformed by using

1/2
uxe
X =X zZ2=20 dn = W‘T dy (3]]4)
= 3y = 9% i k13
hyu, = 3 v = 2 hyhov (w + az) (3.1.15)

and

v = (uguhy)/Zn f(z,n)

% 172, ‘e
¢ ("xe“hl) h U 9(z,n)
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(3.1.16b)




With these variables, the attachment line equations are

ny u__|2_ to! " - la_f_.__ll
(bf")" + ff" — f mef'g' + megf +m.”-m7(g R f 5-‘21)
(3.1.17)
'I. " |2 " o |a. "
(bg") + fg" —myg'® + megg +m12-m7(a -y 5‘})
where
oo Moy Mg
3 h2 uxe 9
W 3u
1 xe
me = h —e——<—-——|<>
5 1 Voo ueh2 32 1
- 21 % pWN2APR
mg (uxeh1) hy a2 (h] e we) (3.1.18)
h, w
1 "e
m = e
7 hyuye
My = 1+ mg
o |

The general boundary conditions which apply to the three-dimensional boundary-
layer equations are

n=20 fw f; e 1 0 (3.1.19a)
RS a1, g'=1 (3.1.19b)

3.2 Transformation of the Conical Boundary-Layer Equations

It is well known that for laminar flows with nonporous walls and wall
temperatures independent of x, or adiabatic wall conditions, the equations
(2.2.1) to (2.2.4) have similarity solutions (i.e., solutions independent of
x) 1if we define the similarity variable n by

172
u
dn = ( £ ) ody (3.2.1)

“e“ex

In addition, if we introduce a twc-component vectcr potential such that
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» 3% - 2t - _.Jt._l.éi
puUX 3y i PWX 2y ’ pVX g 3.2.2)
and dimensionless functions y and ¢ by
v * (ogugue) /¥ 2(0un) 4 4 = (ogugu) /22 8 g(o,n) (3.2.3)
Ue

then it can be shown that the two momentum equations, (2.2.2) and (2.2.3), and
the energy equation (2.2.4) can be written as

() + 3 ££" + mgf" + ma[(g')? — £'g'] = mz(g' A %g) (3.2.4)

" 3_ " " p___ 2 1
(bg)+2fg + m g9 +m3[ (g)] skl &

= mz( ' 5%- g" —‘1) (3.2.5)

2
Cu '
c_ *PP e 3 8 L) (g 4 m2qian 3 o '
Py (1 + /2 ¢ )E * o (l _'Pr) (F'f" + my9'g )|+ 5 fE' + m, gE

2 v 38T £ 39
mz(g 5 —E ae) (3.2.6)

where primes denote differentiation with respect to n.

The definitions of the terms in (3.2.4) to (3.2.6) are:

v o M L W__ = ﬂ— = + + = ~£—m
t'w a'-e- ’ g L we s E He . b C(] + Em) ’ Em v
2
m m W
2 1 2 d e
C = i s M =M, - £l ( ) ’ ey
bele  Ealh Tete 46 b PRI " U
dw
Y Wb
" ug 46 (3.2.7)

Here we have used the eddy viscosity and turbulent Prandtl number concepts and
have written the turbulence terms by

-ou'v' = pey %% -oW'V' = Pen g% (3.2.8a)
€
VAT = /2',,';' 3;' (3.2.8b)
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Similarly, equations (2.2.6) to (2.2.9) can be transformed and expressed in
a form sin,lar to those given by (3.2.4) to (3.2.6) by using the transforma-
tions given by (3.2.1) to (3.2.3) with slight modification to the following
parameters,

oW, = %% ovx = =y (3.2.9)
1/2.3/2 . 172 el
b = (pguge) " “x7'"f(n) ¢ = (pgugligX) —-;—-'Q(n) (3.2.10)
e
Equations (2.2.6) to (2.2.9) then become
(bf")  + g-ff" + mgf" = 0 (3.2.11)
" ; 3 n " De ] 1
(bg") + 5 fg" + mygg" + my ;——(g) +———fg =0 (3.2.12)
2 '
e

Cu
C +Pr ) 1 " 3 ' '
[P—r(nﬂ o )E H——(l—b?)ff] + 3 FE' + mygE' = 0 (3.2.13)
Here

o (T

The boundary conditions which are valid for either (3.2.4) - (3.2.6) or
(3.2.11) - (3.2.13) are

n=0 fagsfag =0 EQ or Ew given (3.2.14a)

nen f'=9'=E=1] (3.2.14b)

The usual procedure that has been followed in predicting the boundary-
layer development on cones at incidence is to solve the system of equations
given by (3.2.11) to (3.2.13) for 6 =0, and (3.2.4) to (3.2.6) for o > 0
for both laminar and turbulent flows with a mixing-length or eddy-viscosity
formulation. In those calculations it is assumed that the square-root vari-
ation of boundary-layer thickness for laminar flows also applies for turbu-
lent flows.
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Now, however, we do not follow this procedure for turbulent flows;
instead we follow a recent suggestion of Bradshaw et al. [4] and assume
that the velocity profiles u/ue and w/we are similar if we define Y = y/x,
rather than y//x. It foliows then that for any quantity q

a—q) i m) ? (aﬁ) x (3.2.15a)
(3)( y (aX Y oY X X

) . (2a) aY

(ay)x (av)x ay (3.2.15b)

To have similarity (aq/ax)Y = 0; then noting that 3Y/sx = -y/x2 and
aY/3y = 1/x, from (3.2.15), we can write

(Rq/ax)y (aq/aY)x(aY/ax)

(3a/ay),  (aa/aY) (aV/3y) - ~ X (3.2.16)
so that
%‘%%} (3.2.17)

With this assumption, it can be shown that equations (3.2.1) to (3.2.4) can
be written as

L (ow) + g—y (xoV) + 20u = 0 (3.2.18)
D;i%!e‘-+p\;g—;+p':!=—)l('%g'+g_y(u%‘DW) (3.2.20)
53 g [k gl B (5 o] wea

where
v = ?-ulxﬂ (3.2.22)

Similarly, the windward stagnation-line equations can be written as

oW, + -27 XoV + 2pu = 0 (3.2.23)
e 3, 2. LN s
ov e L (u ooy ) (3.2.24)
17
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2
aw W uw 2 aw
¢ d
oV a—e+°x_e p__)_(.e_=_.}(. +a__[u.__e._p(w'vl)e] (3.2.25)

2
coH _3 |u 3H L Y8 p) e
oV Y " 3y [Pr 3y + u(l Pr) > (2 ) oV'H ] (3.2.26)

If we now apply the transformation given by (3.2.1) to (3.2.3) with
pvx defined by

SVX = =2 %—1—91 (3.2.27)

to (3.2.18) to (3.2.21) and the transformation given by (3.2.9), (3.2.10) with
pvx defined by

N

pVX = ~2

xte

o
X (3.2.28)

to (3.2.23) to (3.2.26), it can be shown that the resulting transformed equa-
tions are almost identical to those given by (3.2.4) to (3.2.6) for the gen-
eral case and to those given by (3.2.11) to (3.2.13) for the windward
stagnation line case. The only difference appears in the coefficients of
ff", fg" and fE'; instead of 3/2, the new equations have a coefficient
of 2. It should be noted, however, that the resulting equations for turbu-
lent flows are not strictly similar like the Taminar flow equations because
they were derived under the assumption of constant x. Thus, the equations
are valid for a fixed x and no scaling of solutions is allowed.

3.3 Transformation of the Parabolic-C11iptic Boundary-Layer Equations

Since the PEBL equations should reproduce the 3DBL results in
regions where the cross-flow gradients are not large, the same argument can
be made for using a similarity transformation in these equations too. In the
nondimensional PEBL variables used in Appendix A, the transformation (3.1.1)

tecomes
g 1/2

E= fh]dx ¥ mg n = (E_e_) y £3.3.1)

where u, = u (x,6). Placing this into the PEBL equations (A.11) - (A.13)
and defining a new velocity-like variable, V as

18




Ug /e u W
V = ¢ v(E—) + E; n, *+ ﬁ;’ﬂe {3.3.2)

yields the following equations

X-momentum
uu, + l—»wu a u — Kyuw + K w2 . + Eg-u + 11 u (3.3.3)
3 hz 2R 1 2 ﬁ;'px Edam e =R ;7 2z g
2
-momentum
uw, + l—-ww + !-w — Kuw + K uz & e e + Eg-w $ 2l W
"ok g T o Ml 1 hy P6” E "mn R\.Z V2
2 2 h2
i 4
ZH'EKZUZ> (3.3. )
continuity
” 1/2 1/2
5 R T e v L4 [ B e Al 2 R 1 i
<£> of “<ue> Rall h, 32 (w”e ) i it 2 B

(3.3.5)

The appearance of the Uo factor in the momentum equations (3.3.3) and
(3.3.4) is somewhat unusual and could be eliminated by normalizing the
velocities with their edge values. However, due to the presence of the second
derivatives with respect to 2z now present in the equation, this would intro-
duce more terms than are normally encountered (such as a ue,, term) and
it was deemed advisable to leave the equations as presented above. This led
to a computational problem, to be discussed in Section 4.2, which was solved
by a new technique also described in Section 4.2.

The boundary conditions to be imposed on this transformed set of equa-

tions are
n=20 U=y =20 V=20 (3.3.6a)
nn, u > ue(g.z§ W v»we(ﬁ,z) (3.3.65)
z = 0,n u, =0 w=0 (3.3.6c)
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IV. NUMERICAL METHODS

4.1 Numerical Formulation of the Standard Boundary-Layer Equations

We use the Box method to solve the governing 3DBL equations. This
is a two-point finite-difference method that has successfully been applied
to two-dimensional flows by Keller and Cebeci and to three-dimensional flows by
Cebeci. A detailed description of the method is presented in [1] and [217.
For this reason only a brief description of it will be presented here.

One of the basic ideas of the Box method is to write the governing sys-
tem of equations in the form of a first-order system. Thus, in our case, the
first derivatives of f and g with respect to n are introduced as new
unknown functions. With the resulting first-order system and an arbitrary
rectangular net, we use simple centered difference quotients and averages at
the midpoints of net rectanales and net segments to get second-order accurate
finite-difference equations. Then nonlinear difference equations are linear-
ized by using Newton's method and the resulting linear system is solved by
the block-elimination method discussed by Isaacson and Keller [22].

In our present method we solve the two momentum equations simultaneously.
Essentially the stagnation-line equations and the symmetry plane equations are
two-dimensional flows in the sense that these equations have only two independ-
ent variables, (x,n) or (z,n). On the other hand, the two momentum equa-
tions (3.1.5) and (3.1.6) are three-dimensional flow equations for obvious
reasons. The solution of the two-dimensional flow equations is discussed in
considerable length in references [18], [21'], for this reason we shall
only discuss the solution of three-dimensional-flow ecuations, namely, (3.1.5),
(3.1.6) and their boundary conditions, (3.1.19).

With the introduction of new independent variables wu(x,z,n), v(x,z,n),
w(x,z,n) and t(x,z,n), the equations given by (3.1.5) and (3.1.6) can be
written as

f' =4 (4.1.1a)
u' = v (4.1.1b)
g' = w (4.1.1¢)
W st (4.1.1d)




(bv)"' + m]fv -m2u2 —-msuw + m6vg —-mew2 + m1] =

1]
- |
—

o
—
c
|
XIC
<
|
x |[=h
——

0Z 0z
- - - — mau® . W _ o of
(bt)' + mft —mauw —maw" + megt —mgu® + Mo = Mg (u -t ax)

w Aa)
+m, (w - - (4.1.1F)

We next consider the net cube shown in Figure 1 and introduce the net
points by

Xe * 0 Xn = Xpop * K, n=1, 2, s N

Z, ™ 0 2; =2, 4ty 1= 1,2, 3 (4.1.2)
= e TRRET T i o SRR U

"o 0 nJ "J-l hJ Jj 2 J

The difference equations which are to approximate (4.1.1a) to (4.1.1d)

are obtained by averaging about the midpoint (xn, Z;, "j-]/z)

nfi) (j!nli-]) (j.ﬂ.i)

(j-],ﬂ,i)

z(i)
(J=1,n=1,i-1) (-

Pty i)

Figure 1. Net cube for the difference equations for three-dimensional flows.
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A, (4.1.3a)

E V&Y . ad
—L—Jrl—— Vj_.l/2 (4.].3b)

TR n,i
J _TTTJL - "j-]/z (4.1.3c)
J
n,i n,i
W W. .
R
p = tj_]/2 (4.1.3d)

where, for example,
"~ R ¢ n,i
Uitz = 7 W50+ ugh)

The difference equations which are to approximate (4.1.le,f) are rather
lengthy. To illustrate the differencing of equations similar to (4.1.1e,f),
we consider the following model equation:

' a u v
vitmfy = mgu o+ mow oo (4.1.4)

The difference equations for this equation are

. M n-1/2 (= , n-1/2 — % ~ Y1
‘J“FB‘J“'* (m)i g2 ()02 = (mgdiyy2 Y5172 (“1?“"‘

n-1/2 - Wi
+ (m)i172 Y572 ( rs ‘”) e
where, for example,

- 1 2.0, n,i-1 n-1,i-1 n-1,i
5% (Vj v vj + vJ + vj )
— b iyl n,i-1 n,i n,i-1
] , i n-1,i n,i n-1,i

% =¥ (uj + uy tugly ¢ Ui )

(ml)?:}fg =g L]+ Ty ¢ T+ ]
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The boundary conditions for the system of equations given by (4.1.1) at

X and at z = z; are:

g’
0 uref

: (4.1.6)
; 1,1-1, 92-1,1-1’ wg-l,i-l, : -1,i- 1)’
(f? yi=1 u;,i-l' ?,1-1' g; 1= 1’ wg,i 1’ t? 1-1)’ s (fn -1,1 ug-l,i
n-1,i n-1,i n-1,i ,n-1,i

vj s gj ' W5 3 tJ ) to be known for 0 < j <J, then the differ-

ence equations (4.1.3) and the difference equations for (4.1.1e,f) along the
(4.1.6) yield an implicit nonlinear algebraic system of 6J + 6 equations in
as many unknowns (fg, s vg, gg, wg, tg). We solve this nonlinear system
by means of Newton's method. The resulting linearized system is then solved
by using the block elimination method discussed by Isaacson and Keller [22].

If we assume (f"']’i'], un°]’i ] v

’

4.2 Numerical Formulation of the Parabolic-Elliptic Boundary-Layer Equations

The PEBL equation set (3.3.3) - (3.3.5) is elliptic in the cross-flow
z-n plane, but still allows a parabolic march in the main flow, &, direction.
An implicit numerical procedure was chosen to integrate these governing equa-
tions for a number of reasons. The success of implicit methods on the boundary-
layer equations and parabolic-elliptic Navier-Stokes equations [23] implies
that they should be efficient for the very similar PEBL equations. It is
expected that solutions will be required at arbitrary points along the body;
and so for convenience in the computation, to eliminate the need to check the
step size restrictions of explicit methods, unconditionally stable methods
(which are consistent with the original partial-differential equations of the
problem) are necessary. This leads to the consideration of implicit methods.

The particular method used in this study is the alternating-direction
implicit (ADI) method, used in the form originally proposed by Peaceman and
Rachford [24]. The ADI method is ideally suited for the solution of (3.3.3)-
(3.3.4). There is no stability restriction on the step size, and hence
arbitrary £-steps are permitted. The method has second-order truncation
error in its marching variation, which is also a requirement for the type of
flow envisioned here, since the ¢-history of the flow must be traced accurately
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at each step. Finally, the method does not require the inversion of a sparse
banded matrix, as a fully implicit or Crank-Nicolson scheme would. Simple
tridiagonal coefficient matrices are generated at each step which require much
less storage and time for their inversion when compared with sparse matrices.

The ADI method is a two-step, second-order accurate procedure centered
about the midpoint of the ¢ step from iag to (i + 2)ag, i.e., at
(i+1)ag, for uniform Az and &Ap grids. An example of its use is shown
on the following equation modelling either (3.3.3) or (3.3.4).

N]ux + Nzuy + N3uz = N4 g, uyy (4.2.1)

The two ADI steps are written

1 i4] i 4 ST yith

o Mg Wm0+ Ny oy i+ Ny 60y (4.2.22)
X i+, 2 2 i
= (N4) 5 '3:'( 7 Gyuj’k

1 (n 1+] 1+2 * i+l u1*2 4 i

i Mg g =930+ ()5 syuyi + (Ng)y 8,0 (4.2.2b)
RETUS T S W v

where the Nm. m < 3 are nonlinear coefficients, N4 is a source term,
and the standard central differencing, including the option of nonuniform
spacing has been used, i.e.,

2,i 2 2. i 2 4
8295 i ° (2 )7u) oy = L0020 — (a2 ) Juy = (a2))
3s

z (az JTaz_J{Taz, ) + (sz_]]
s - (4.2.3a)
2, ‘(AZ )"1,k+1 [(az,) + (Az_)]u:j’k + (°z+)"3,k-l]
B T [ (az, ){az_JT(az,) + (az )T
(4.2.3b)

The pressure gradient portion of N4. since it is a known, prescribed

function, given by the external flow at all the marching steps, is computed
from

b )i+l

RRLERIPIURPELG (4.2.4)
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and not simply evaluated at the (*) station, which is only a temporary
integration location, and does not correspond to the physical midpoint (i + 1).
The remaining Nm are given by a second-order extrapolation (of consistent
accuracy with the integration procedure) from previously computed x-stations.
Originally, the standard extrapolations were used. These are derivable from
Taylor's series, i.e.,

{41 _ ax, e O, X
0 = (l + §K;r) (e aX 0 (4.2.5a)
or
5 AX . + AX 5 AX. + AX 4
i+] + - \.i-1 + - i-3
Q =(1+Xzfrmc)0 —(Etfrmc)o (4.2.5b)

depending upon where the variables are stored. However, since the values of
the dependent variables used in the PEBL equations, (3.3.3)-(3.3.5) were not
normalized by their edge values, this procedure yields spurious results near
the edge of the boundary layer and in the inviscid portion of the flow. A
simple correction for this difficulty has been found [25], and incorporated
into the PEBL-ADI integration procedure. It consists of incorporating the
known information about the edge velocities into the linearization so that it
correctly predicts the midpoint values at (i + 1). This is accomplished by

i i+2
Q,H_-I it Qi+] : ¢ [(Qe + Qe )/2]
c [Q + AX+/2AX_)QZAL-(AX+/2AX_)Q:-zi

(4.2.6)

where the Qi+] in (4.2.6) is the usual value given in (4.2.5a).

In this way, the two momentum equations are decoupled from each other
and the continuity equation (3.3.5), and the integration can proceed without
iteration. After the complete two-step ADI procedure is completed, the solu-
tion obtained is second-order accurate, centered at (i + 1)ag. It is at this
g-station that the continuity equation is evaluated. The unknown velocity
V(t,z,n) can be computed at the given g-station successively out from the wall,
where the boundary condition V(t,z,0) = 0 holds, to the edge of the computa-
tional domain, and around the cone from the windward to leeward meridian.
This is accomplished by differencing equation (3.3.5) as follows




i+]
u
= 14 1 i+ i+ |- i T %\ f4
SVi12k ® T 7 Y2k 6 [8eYya12k T\t E‘TETU +T)Y3-172 &
e

u1+1
1 i+ 1% 1
+ Fl; szj_]/z’k - K] L h—z- —{—Tu + wj-l/Z.k (4.?.7)
e
where
i i R
4 vi+1 e j-1,k . g ui#] . Jd=1/2,k 3-1/2,k
n j-1/2,k A"j Y £ 3-1/2,k 2AE

5, is defined by (4.2.3a) and all the indicated differentiations in (3.3.5)
have been performed.

The differencing (4.2.2) generates tridiagonal matrices for each unknown
at both values of the ADI step,which are easily solved by the familiar
algorithm. The only alteration from the straightforward application of the
integration takes place on the Z-implicit step for the u-velocity. Here, the
boundary conditions to be applied are zero gradient at both boundaries, see
(3.3.6c). Rather than differencing the equation on the boundaries and using
fictitious nodes to fulfill boundary conditions, the integration domain was
limited to include all but the boundary points. The boundary condition was
then incorporated by using a second-order accurate one-sided difference to
define the values of the first and last points in terms of its nearest
neighbors as follows:

2 2
3 (82, + b24) Uy~ BZpug

u
1.k [(az, + Az3)2 - Ai%]

(4.2.8)

2 2
(02 ax + 8Zguax 1) Yomax-1,k ~ SZgmaxUoMax-2,k

\ B
{8z jyax * 02 jmax-1)” = 8Zjyay]

Yamax,k ©

The procedure does not destroy the tridiagonal nature of the coefficient
matrix, and has been used with success previously [23].
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V. RESULTS

5.1 Body of Revolution

The test case chosen as a standard for all the body of revolution compar-
isions to be given below is the flow past a prolate spheroid, as shown in
figure 2, whose axis ratio, t, equals 1/4.

The solution to the three-dimensional boundary-layer equations, written
in a general orthogonal body-oriented coordinate system requires the prescrip-
tion of the body geometry, and derivable from that, the external potential flow.
In order to assess the accuracy of the boundary-layer solution, an analytically-
prescribed body with reasonably simple closed form solutions for the potential
flow was used. This avoids the problems caused by trying to spline fit and
smooth numerically computed surfaces and velocity components. It must be
emphasized that this simple body is not necessary for the successful use of
the computer program, and general geometry packages are available [1]. Thus,
the calculations were performed over a simple body of revolution, namely, the
prolate spheroid. This configuration was previously considered by Wang [12] - [14]
who has documented the resulting flow field at various angles of attack. This
body has extensive regions of cross-flow reversal within a still unseparated
region and, in addition, has an unusual separation pattern at moderate angles
of attack which makes it an excellent test case on which to perform three-
dimensional boundary-layer studies. It is felt that the extension to compres-
sible flow will not be more than a minor alteration to the procedures developed
here. Similarly, the inclusion of turbulence can be easily accomplisned for
three-dimensional boundary layers by the means of the eddy-viscosity model
described in Section 2.4, and used in the following section for conical flows.
What is essential is the verification of the methods to be used for such
computations. Hence this study dealt with incompressible flow in order to
determine the features of the two numerical techniques proposed.

For the prolate spheroid depicted in figure 2 we can write the equation
of the surface

X +r.2.=] (5.].])
t
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t
1 L\s2
A
Fiqure 2. Geometry of the prolate spheroid
and the incremental distance along the surface
ds% = dr2 + dx2
Thus
2
(d51 =1+ d_")2
dx dx
and using eq. (5.1.1) gives
2
(ds]) 1 xz(tz -1)
ax. & o XZ)
But, from figure 2, we have
COSB = %’s‘—] (5.1.2)
Hence
a 2) 1/2
= G % -xt
5 [1 + ;[({[—1)] s 2,.2 172
[+ x%(t"=1)] (5.1.3)

The metric coefficients are determined from
ds] = h.ldx d52 = hzde

thus, from fiqure 2 and eq. (5.1.1),

ds, = rdg = t(1 —x2 1/Zdo

2
and from eq. (5.1.2)

1
ds‘ - E'O'S_B’dx




Consequently,

Lo i -yl 2,1/2
- X = =

and the curvatures are

s X =
K2 = B 77 24172 A K.| =0 (5.1.5)
D+ x5 (t"=1)] (O -=x%)

These geometrical relationships are used in the governing equations of
boundary-layer flow and also in the determination of the potential. From
Faulkner et al. [26],the velocity components on the surface of a prolate
spheroid are given by

v
s
V:l = Vg(t) cosa cosB - Vgo(t) sina sing cose (5.1.6)
Vo
. Vgo(t) sina sine (5.1.7)

o«

where the various angles a, 8 and @ are depicted in figure 2, and the
functions Vg and V90 are only functions of t, the thickness of the body,
given by [20] ;

3/2

2
Vo(t) = Ml (5.1.3)
Jl —t2 —172 ¢ 1n [0 +qt = t9)/0 —Jl - t9)]
ZVO(t)

Equations (5.1.4) - (5.1.9) are all the input necessary to the boundary-laver equa-
tions for the flow past a prolate spheroid.

The initial calculation made was simply the prolate spheroid at zero
degrees incidence, i.e., axisymmetric flow. While this is a trivial case
for the standard 3DBL procedure (it calculates one attachment-line flow, and
the result is valid at every angular position around the body), it has to be
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demonstrated that the PEBL procedure, which by its very nature must calculate
all the points around the body, generates axisymmetric flow. Consequently,
the PEBL procedure was used for the axisymmetric case using only five points
around the body, i.e., Ao = 0.78539 (45°), a very crude grid. The grid
spacings across the boundary layer and down the bedy were identical to those
used previously for 3DBL, i.e., 4n = 0.3 and ax varying up to 0.1 for

x > =0.5. As in all cases to be discussed, the initial data planes necessary

for the extrapolation in (4.2.5) were obtained from the standard boundary-layer
calculation.

The results of this calculation showed that the initially axisymmetric
boundary layer remained that way until the separation point was reached. The
computed values of w, which are exactly zero for axisymmetric flow, were
all of the order of 10'8 (below the round-off error of the single precision
arithmetic of the IBM machine used). The differences in the u velocity

around the body occurred in the fifth decimal place, again close to round-off
error.

The plot shown in figure 3, gives a comparison of R the wall

shear parameter, obtained by both methods. The curves are effectively indis-
tinguishable until the effects of the adverse pressure gradient at the rear of
the body are felt. Here, one would expect the lack of iteration in the PEBL
procedure to generate less accurate results than the 3DBL procedure which uses
a Newton iteration. Nevertheless, the results are fairly good, and the axi-
symmetry is indeed maintained by the PEBL procedure only by the imposition of
symmetry conditions, c.f. (3.2.6c), at the windward and leeward meridians.

The 3DBL results were next compared with the published results of Wang
for the axisymmetric case [12]. The skin friction (in Wang's notation) down
the body computed by both methods is shown in figure 4. There is a notice-
able difference between the two calculations with separation predicted at
x 2 0.675 and x » 0.8 by the 3DBL or PEBL calculation and Wang, respectively.

An independent calculation of this same problem made by Chang [27], substanti-
ates our results.

The next test case considered was chosen to generate just a small amount
of crossflow. The incidence of the flow was taken to be 2°. The general
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structure of the flow near the body is shown in fig. 5. The ordinate repre-

sents the azimuthal position around the body, and the abscissa is the x
coordinate measured along the major axis. The body surface is thus the plane
of the figure. Results from two separate calculations, in addition to some
points extrapolated from Wang's study [12] are shown on this figure. The
triangles represent calculations made using the 3LBL method. To the left of
the triangles, both components of the shear stress, S au/ay and

Ty aw/3y, are positive. The open triangles represent the grid points at
which the crossflow shear, Ty reverses sign, as calculated by 3DBL. Hence
the region covered by the triangles represents a region of reverse crossflow
in the boundary-layer flow past the prolate spheroid. Computed separation
takes place at the points given by the solid triangles. Beyond 130° the grid
was too coarse in x to detect any separation for x > 0.4. Note that the

locus of separation points in some sense parallels the line of reverse cross-
flow

This configuration was next calculated using the PEBL procedure. Again
on Fig. 5, the open circles represent the first locations at each x-station
where Ty & 0. The locus of these points has been approximated by the curved
Tine. It is obvious that it coincides with the prediction of the 3DBL calcu-
lation for the onset of reverse crossflow. There is, however, a large
discrepancy in the predicted separation point. The PEBL procedure first
senses separation along the x = 0.65 1line almost on the entire lee surface,
130° < 6 < 180°, see straight 1ine on Fig. 5. This includes a reqgion which
was not accessible to the 3DBL calculation due to its predicted separation.

[t should be noted that the region x > 0.65 computed by the 3DBL method for
0 < 40° was not accessible to PEBL. The discussion of the inability of the
3DBL to compute the entire lee-side region will be postponed until the higher
angle of attack case is considered. The region computed by 3DBL which was not
computed by PEBL is not calculable by the standard PEBL procedure set forth
here. Since all the 8 stations are coupled together during the calculation,
when one station encounters separation and cannot advance into the reverse
flow, it automatically precludes the further advance of all the other stations,
i.e., only the most upstream separation point will be predicted. Thus, as

will be seen again later, one point of ty € 0 stops the calculation. This

33




Fiqure 5.

180

160

140

120

100

80

60

40

20

Calculated surface shear distributions for prolate spheroid at 2°

R I - S S - R R e

incidence; see text for symbol key.

34

0.8




[

is not the case for the 3DBL where, as long as the separation line sweeps
upstream in x in the direction of the o integration, the calculation can
continue.

To test the PEBL calculations on their behavior approaching separation,
Fig. 6 shows a plot of ri against x. This should give a linear curve
approaching separation. Stations at 160° and 170° are shown as the most
relevant since there the u velocity flow will most nearly be perpendicular
to the predicted separation line. The figure shows that, at least at these
two stations, the calculation reproduces a square-root singularity at sepa-
ration. A further check on the calculations can be made by using values of
the shear on the two symmetry planes for o = 2° interpolated from Wang's
calculations. The open squares in Fig. 5 show the location of crossflow
reversal and the solid squares indicate separation. At 8 = 0°, the 3DBL
agrees with Wang's results, and at o = 180°, the PEBL agreement is also
good despite the lack of iteration.

Comparisons of the streamwise variation of the two components of shear
for both 3DBL and PEBL calculations are given in Figs. 7 and 8, It is diffi-
cult to make any clear judgements between the methods. When the crossflow
is unidirectional, there is little variation in f" until crossflow reversal
occurs. There the variation, and even the trend in some cases, increases.
For the more sensitive crossflow g" as the adverse pressure gradient
increases for x >.0, the disagreement increases.

One further point can be made. The separation and crossflow reversal
patierns computed for this low angle of attack case, o =2°, fit within the
originally conceived structure set forth by Wang in his early paper [12].

When the angle of attack is fncreased from 2° to 6°, new features of the
flow emerge, and a clearer understanding of the reasons for some of the
behavior computed for the o = 2° case can be obtained. The first general
result to consider is again the distribution of the surface shear over the
entire body; see Fig. 9. As for the 2° case, this figure is a composite of
two separate calculations, PEBL and 3DBL, and also includes data from Wang
who gave a detailed map of the shear for this 6° incidence case [14]. The
line of crossflow reversal, as computed by Wang, connects the open squares;
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the oddly shaped line of separation connects the solid squares. The cross-
flow reversal (open triangles) computed by 30BL approximates the solid line
fairly well; much as was the case for a = 2°. The line of separation as
computed by 3DBL, the closed triangles, now unquestionably follows the cross-
flow reversal line, as was suspected in the 2° case also, compare Fig. 5.

To determine whether this pattern is truly the case, we have the PEBL results
and the results of Wang as a comparison. Referring to Fig. 9, both other
methods agree on the general shape and Tocation of the crossflow reversal
line, but the discrepancy in the true separation line is considerable once a
significant region of reverse crossflow has been traversed. Thus, it appears
that the flow computed using the 3DBL procedures described in Section 4.1 gives
results which are highly dependent on the position of crossflow reversal.

This is not unexpected as it has been shown by many people, e.g., Krause [28],
that the z-differencing shown in Fig. 1 and used in (3.1.5), (3.1.6) is unstable
for any negative crossflow. This did 1ot obviously manifest itself in the
lower angle of attack case, but as will be seen in the following results to

be presented, the instability is clear. The PEBL calculation which proceeds
without difficulty through the reverse crossflow finally computed separated
flow at one point x = 0.375, 6 = 115°, and stops. As was the case for the
a = 2° calculation, this point is upstream of the computed separation line

of Wang, as has been the case in all the previous calculations. Although
separation did not occur until further downstream, the PEBL procedure did
calculate unrealistic behavior in the region 120° < 6 < 140° for x > 3.0
which tends to confirm the upstream intrusion of the line of separation com-
puted by Wang and indicated on Fig. 9. Much of this can be made more clear
from the following series of figures.

The variation of the two components of wall shear are shown in figures
10 and 11. In all cases the agreement between 3DBL and PEBL is good along
the entire body until the onset of crossflow reversal. Beyond this point,
the shear values deviate considerably with the 3DBL computed values showing
an abrupt break in the previous smooth trend. The PEBL calculations continue
with no difficulty until the adverse pressure gradient makes the extrapola-
tion process somewhat questionable. Close to separation, the computed values
of f" between 120° < 6 < 140° show a minimum and then begin to rise. This
can be seen in the 6 = 135° plot in Fig. 10 and in Fig. 12. This behavior
is certainly unrealistic and indicates a breakdown of the PEBL computation
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in the odd interior region of the flow where Wang predicts separation. A
negative u velocity is sensed by the program at e = 115°, x = 0.375, and
the calculation stops. However, prior to this unrealistic behavior, a plot
of ri vs x shows that the calculated values are approaching separation in
the correct way (with a square-root singularity) along a broad front of 6

just on the lee side of the body, see Fig. 12.

A different manner of looking at the results which brings out other
characteristics of the computed flow is seen in Figs. 13a - 13c. Here the
azimuthal variation of the shear is given at various stations down the body.

The first figure, 13a, shows the shear at a point on the body just prior to

any crossflow separation, x = -0.3. The agreement between both calculations

is excellent as it should be since there is no reason for either to be suspect.
Further downstream, at x = 0, the calculations indicate the final third of
the body on the lee surface to contain reversed crossflow as seen in Fig. 9.
Figure 13b indicates good agreement between both 3DBL and PEBL calculations
until this region but shows that although the PEBL calculation is unaffected,
the 30BL results begin to oscillate until the computer program senses either
separation or nonconvergence of the iterated solution. The final x location
displayed is at x = 0.3, see Fig. 13c. Here the crossflow reversal exists

on a greater portion of the body surface, and the 3DBL calculation proceeds

less far around the body while the PEBL calculation continued to the lee surface
without difficulty (not shown on the scale given). No oscillation occurs as the
program stops computing almost immediately after the crossflow changes sign.

The abrupt drop at 6 = 90 is attributed to the fact that the ae grid changed
at the same point where the velocity also changed sign.

The behavior of the flow at these three x-stations can also be seen on
the velocity profiles just off the windward and leeward meridians. These are
shown in Figs. 14a - 14c. At x = -0.3, a basically standard set of velocity
profiles for u/ue and w/we is generated. The boundary layer is thicker
near the lee side, and no unusual behavior is noticed except in the w pro-
file at 175°, which has a slight inflection due to the adverse azimuthal
pressure gradient. By x = 0 the crossflow on the lee side cuntains a small
layer of reversed flow. The streamwise flow on the lee side has become less
full, and the thickness of the boundary layer here has increased. On the
windward side, the shape and thickness of both u and w profiles have
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changed hardly at all. By the time x = 0.3 has been reached, the reverse
flow layer on the lee side occupies a considerable portion of the boundary
layer which has again increased significantly in thickness. There is some
slight difference in the u profiles between x = 0 and x = 0.3, but the
major alteration has been in w. Again, on the windward plane, except for a
slight increase in thickness, both profiles are relatively unchanged.

One of the conclusions reached by Wang from his calculations, was that
there was no evidence of vortical flow on the lee side of the body as the
flow approached separation. It was thought that this might have been due to
the use of the boundary-layer equations themselves and not truly representa-
tive of the flow field. The PEBL procedure has already been demonstrated as
being capable of capturing a vortex in this sort of flow by Lin & Rubin [0],[11]
and in some unpublished work at Douglas, so it was felt that the PEBL calcu-
lation might possibly yield a vortical pattern in the crossflow. The computed
crossflow pattern at x = 0.3 1is given in Fig. 15. Although the crossflow
does exhibit reversals in direction, there is no evidence for the presence of
a vortex. In fact, our results are remarkably similar to the crossflow pat-

tern given by Wang's Fig. 8[14], and, therefore, confirm his conclusions about
the lack of a vortex.

We have shown that a comparison of the 3DBL and PEBL calculation pro-
cedures produces the same results when the 3DBL method is stable. However,
using the differencing given in Section 5.1, the 3DBL calculation becomes
unreliable when w < 0, in agreement with predictions of stability calcula-
tions. The PEBL procedure is unconditionally stable and encounters no such
difficulties. Qualitative agreement with the computed results of Wang has
been shown in all cases.

The deficiency of the 3DBL method used here can be overcome by changing
the differencing to the zig-zag scheme of Krause [ 28], which is precisely
what Wang used for his calculations. The simple box scheme was used here to
elucidate its behavior under adverse conditions. We are presently investi-
gating two alternate schemes, besides the zig-zag for calculating in regions
of reverse cross flow. The inability of the PEBL procedure to calculate
beyond the first encountered point of separation will need further study.
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Figure 15. Cross-stream velocity vectors within the boundary layer at x = 0.3.



Perhaps an adaption of one of the inverse methods used in two-dimensional
boundary-layer separation studies may be applicable to the PEBL procedure.

Until the initial separation point, however, it seems that the PEBL pro-
cedure and a three-dimensional procedure similar to Wang's boundary layer
give comparable results. Thus, it might be assumed that the methods are
interchangeable. However, this is not the case. The zig-zag differencing
is only conditionally stable [28], and it is possible that regions of severe
crossflow might create instabilities and make the procedure invalid. Related
behavior is found when considering the flow past conical bodies. Calculations
by similarity variables (to be shown in the next section) cannot progress
further around the cone than the position of crossflow reversal. If the flow
is not assumed to be conically similar, and is marched down the cone, as well
as around in the o direction, the situation is not altered, i.e., an inte-
gration of the standard boundary-layer equations fails at the crossflow
reversal point [29]. Thus, bodies 1ike blunted cones and elliptic cones can-
not be completely described except by using the PEBL equations. In fact, the
argument about whether the lee symmetry plane boundary layer can be computed
independently of the rest of the flow on the body, has not been settled in any
general way for bodies other than sharp circular cones [29]. For all cases,
when the inflow from the body to the lee plane makes the independent symmetry
plane calculation invalid, the use of the PEBL equations is required.

5.2 Conical Flow

We have used the numerical method of Section 4.1 and the eddy-viscosity
formulation of Section 2.4 to obtain a solution of the system of equations
for conical flow given by (3.2.4) to (3.2.6) and (3.2.11) to (3.2.13) subject
to (3.2.14). Figure 16 shows a comparison of calculated and experimental
results for the data of Rainbird [30], which is for a 12.5-degree half-angle
cone at an angle of attack of 15.78 degrees in a supersonic stream with free-
stream Mach number 1.8. The Reynolds number of the cone, based on its axial
length, was 25 x 106, which indicates that the possible effect of flow
nonuniformities caused by variable transition location upon the measurements
at 0.85L can be neglected.

The computed results shown in Figure 16 were made by using both the "old"
and the "new" procedures. According to the comparison of results with experi-
m>nt, we observe that the results obtained with the new procedure give better
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agreement with experiment than the old procedure. For circumferential angles
¢ =0 and 45° (see Figs. 16a and 16b), however, there is very little dif-
ference between the computed results obtained by either procedure; as ¢
increases, so does the difference as shown in Figs. 16c and 16d.

A note should be made of the discrepancies in the temperature and
velocity profiles at ¢ = 135°. Because of the relatively high angle of
attack, the flow beyond about ¢ = 120° 1is subject to an adverse pressure
gradient, which eventually leads to separation defined by zero shear stress
component normal to the generator. Although our calculations with either
procedure predict separation at about ¢ = 161°, close to the measured value
of ¢ = 159°, the measured boundary layer shows a more rapid thickening than
is predicted by calculations. This can be traced to vortex formation, in
which case the ordinary boundary-layer equations are no longer valid anyway.

We conclude that the similarity variable proposed bv Bradshaw for turbu-
Tent flows over tapered wings is also applicable to the calcuiation of high
Reynolds number turbulent boundary layer on cones at incidence with local
similarity assumptions.

Although the improvements obtained by the "new" procedure may seem small
in comparison with the empiricism contained in eddy-viscosity laws and
viscous/inviscid interaction effects, they are nevertheless encouraging that
the Tocal similarity will work for other similar shapes as well. In principle,
the procedure is strictly applicable to conical bodies with arbitrary cross-
section provided that the radial pressure gradient is very small.
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APPENDIX A
THE PARABOLIC-ELLIPTIC BOUNDARY-LAYER EQUATIONS

The standard three-dimensional boundary-layer equations have a wide range
of applicability. However, when there is a region where the velocity changes
rapidly in the crossflow direction, a straight-forward integration of the equa-
tions sometimes breaks down. At this point it is necessary to reexamine some
of the approximations that led to the boundary-layer equations to see if any
have become invalid. The major assumption in boundary-layer theory concerns
the relative size of gradients of the flow quantities. That is, gradients in
one direction are assumed larger than gradients in the other two directions.
However, some flows do not fit within the realm of boundary-layer theory, so
less stringent assumptions must be placed on the Navier-Stokes (NS) equations.
Flows of this type are corner flows [A1], flows past finite width flat plates
[A2], rectangular jet flows [23], [A3], flows past bodies at moderate inciderce
(101, [11], [A4], and, as pointed out in reference 23, wing-tip flows. In these
flows, gradients in a second direction can become important, and must be
accounted for.

It is possible to make a distinction among these flows which lie somewhere
between simple boundary layers and solutions to the complete NS equations.
In some cases it is essential that the pressure field be calculated as an ‘
integral part of the solution method. Effectively, this states that the scale
lengths in the gradient directions are nearly equal. This leads to the
parabolic-elliptic Navier-Stokes (PENS) equations used by references 23, A1-A4.
However, there are certain circumstances where the pressure may still be pre-
sumed given by an inviscid flow calculation. This implies that the gradient
in the direction of the presumed boundary layer is still the dominant factor,
and the inclusion of a second direction only corrects the flow field locally.
This leads to the parabolic-elliptic boundary-layer (PEBL) equations used by
references 10, 11, and in this report.

The PEBL equations can be derived for the case of laminar incompressible
flow past an arbitrary body of revolution by considering the Navier-Stokes
equations in the general body-oriented coordinate system discussed in Section
IT. Reducing the general orthogonal equations given in reference A5 using the
fact that h, = h1(x,e), hz = hz(x,u), h3 = 1, yields after considerable algebra
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where K, and K2 are as defined by (3.1.4b) and
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These are the complete Navier-Stokes equations for the body-oriented coordi-
nate system, no approximations have been made.

The three momentum equations will now be nondimensionalized in order to
more easily determine the order of magnitude of the various terms in the equa-
tions. The procedure is the same as is used in standard boundary-layer theory
but with one important difference. This appears in the treatment of the
cross-flow velocity, w, and the derivatives in the cross plane, 3/36. The
following nondimensional quantities are defined.

- _u - _ v - _u
U= e ’ Vi %, s ’ =
u, su, My
_—x -—_
X T > y = - A.5a
L, 5L, (A.5a)
e 108 S i
p= ’ M
9y Pr

These are standard for boundary-layer theory where gradients in the z-direction
are larger than those in the x-direction, i.e., 6 << 1. The subscript r
refers to a suitable reference, and a. is prui for incompressible flow.

The only change from the standard procedure, since gradients in the cross

plane are being considered to possibly be large, will be to flag the cross-

plane gradients with a parameter ¢ as follows:

=g ol
ke s h = tr (A.5b)
and so we must also have
W= W (A.SC)
Here ¢ represents simply a means of keeping track of o-derivatives. The

value of this artifice will appear shortly when the nondimensional equations
are displayed.

Placing the nondimensional variables (A.5) into the continuity and
momentum equations, (A.1) - (A.4), rearranging terms, and dropping the bar
denoting a nondimensional quantity, one obtains
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Following the standard procedure of boundary-layer thoery, we now choose

our y-scale such that

1
T N (A.10)

Up to this point, only the inclusion of the ¢ flag distinguishes this
development from that of ordinary boundary-layer theory. If we were to set

¢ =1 and then drop terms of 0(s) or higher, the standard three-dimensional
boundary-layer (3DBL) equations result. However, it is just these equations
we are trying to modify. They are to be modified due to phenomena in the
cross plane which may cause the g-gradients to become larger than unit order.
The terms affected by these gradients can be identified by the terms flagged
with an ¢. The largest of these terms in (A.7) through (A.9) is of order
62/c2 in each equation. It is these extra terms we wish to keep in addition
to the three-dimensional boundary-layer terms.

The behavior of the extra gradients will not be uniform throughout the
flow field, so we cannot set one scale for ¢ as we did for &. For example,
near the windward generator on a cone no additional terms are necessary to
describe the symmetry line flow other than the 3DBL equations; hence,

e ~ 0(1). However, near the lee meridian at moderate angles of attack,
account must be taken of the inflow to the symmetry line, and so a reasonable
guess is that here, in this boundary region, ¢ ~ 0(8). Thus, the procedure
followed in keeping the significant terms in (A.7) through (A.9) is to
keep all terms of 0(1) and 0(52/e2). A1l other terms are omitted. After
this has been done, having identified the terms necessary to account for
cross-flow effects, ¢ 1is set equal to one since its true scaling is unknown.
The resulting equations contain terms which are of no importance when ¢ is

truly order one (hence their inclusion does not alter the flow structure),

but it is just these terms which will make a contribution in high 6-gradient
regions. Following this procedure in equations (A.6) through (A.9) yields
the following set of parabolic-elliptic boundary-layer (PEBL) equations, where
the definition of &, (A.10), has been used.

64




st

Continuity

1 1
F; Uy = Kyu + ﬁz-we = Kyw + vy =0 (A.11)
x-Momentum
l—-uu + l—-wu + vu, — K,uw + K w2 .- +u_ o+ 11
h] X h2 9 y 1 2 ﬁT'px v * R ;f'uee (A.12)
2

6 -Momentum
l--uw + ! ww, + vw — Kuw + K u2 o p, +w  + 1(1 W, —2 ! u‘
hy " HE' i - 1 F; § My ;7 86 HE'KZ 8
2
(A.13)
y-Momentum
0= py (A.14)

A11 the terms above are easily recognized. Those with no Reynolds num-
ber are the ordinary boundary-layer equations, and remaining terms multiplied
by 1/R are the new ones needed to account for cross-plane phenomena. Thus,
the equaticns are now elliptic in two directions (6 and y) but still allow
a parabolic march in the x-direction. The pressure is determined from the
externally determined inviscid field. This is by no means the same as having
an additional equation similar to (A.13),. instead of (A.14), had the
scale length ¢ been chosen identical to & at the outset of the analysis.
This leads to the parabolic elliptic Navier-Stokes equations, used by [23],
[A3] - [A4], where the computation of the pressure is an essential part of the
solution. It is precisely the calculation of the pressure that makes NS
calculations difficult. By choosing the PEBL scaling in suitable problems,
this difficulty is overcome. This procedure has been used previously by Lin
and Rubin for compressible flow past nonrotating [10] and rotating [j1] cones
at incidence.
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