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Abstract

This thesis presents formal specification and verification techniques for both serial
and parallel programs written In SIMUL.A-like object oriented languages.

These techniques are based on the notion of states of individual objects which are
defined uniformly in serial and parallel computations. They can specify and verify the
behavior of data and procedural objects In mult i-process environments , thus overcoming
some of the difficulties in dealing with parallelism which characterized previous work on
formal specifications for abstract data types. Among others, the specifications and
verifications of a bounded buffer and air line reservation systems are given.

Using a model of a simple post office , we illustrate our specification and
verification techniques for systems, such as operating systems and multi-user data base
systems , which are characterized by complex internal concurrent activities. It is
demonstrated that the specifications of the overall functions of the system which we call
task specifications can be derived from specifications of the Individual behavior and
mutual interaction of the subsystems.

A method of defining states Qf indi!idual objects as mathematical functions is
suggested . - 
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1. Introduction

1.1 Formal Specifications and Verifications

A program specification Is a description of the desired program behavior. It Is
necessary to sp~dfy what task the program is supposed to perform and what effects

(side-effects) are caused by carrying out the intended task.

Program specifications can be written in languages of varying degrees of

formality. Although informal languages, such as natural languages, diagrams, and

combinations of these, help people to convey Intuitive ideas about program behavior, their

inherent ambiguity Is a drawback. In order to rule out the possibility of ambiguous

interpretations, program specifications should be written in formal languages. When

formal specifications might be difficult to understand, they may be accompanied by

_ _ _ _ _ _ _  5-- — - --- - —--- S - --- - - - 5-- - - -



r
5 

-10 -

informal descriptions of program behavior.
Formal specifications play an important role in the construction of reliable

software. They also provide designers and programmers with an exact communication

medium for discussing the properties of program modules In various phases of software

construction, such as Initial design and coding. Furthermore, they can be used as

docUmentation during the maintenance phase. A formal specification can be viewed as a

contract which describes the agreements between the implementors of a program module
and its users. The users of a module rely only on the properties derived from its formal

specifications, while the implementors need only satisfy the requirements stated in the

specifications.

Program verif ication is the process of proving that a given program
(implementation) meets its formal specifications. When a program module M is built on a

collection of submodules, their formal specifications can be used in the verification of M.

Actual programs (implementations) of the submodules need not be used.

1.2 A Model of Parallel Computation

This thesis Is concerned with the techniques for formal specification and

verification of both serial and parallel computations.
In order to discuss specification and verification techniques, we must clearly define

the computation model on which the execution of programs Is based. The computation
model used in this thesis is the actor model of computation(Greif-Hewitt75, Hewitt-Baker77],

which can be roughly characterized as one obtained by generalizing the computation model
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- used in SIMULA-like object-oriented languages1 to include parallelism.

The fundamental objects in our model of computation are actors, which unif y

procedures and data structures. An actor Is a potentially active object which becomes active
when it receives a message. No actor treats other actors as objects to operate on; instead It
sends messa ges (which are also actors) to other actors. Actors behave like data or data

S 

structures as well as functions or procedures. For example, a push-down-stack actor pops
S 

up and returns its top element when it receives a (pop:) message (if it Is not empty), and

when it receives a (push: .) message, it stores s as its new top element. A factorial actor

returns 6 when it receives S.

The only activit y possible in the model is message passing among actors. More

than one transmission of messages may take place concurrently, which models parallel

computations. Since processors and processes can be viewed as actors, multi-processor

information systems and computer networks are modelled by actor systems. In particular,

distributed systems2 and communicating parallel processes can be easily modelled by actors

or systems of actors[Yonezawa-Hewittl7, Hewitt-Baker77].

The concept of an event Is fundamental in describing the model of computation

precisely. An event is the receipt of a message by an actor. A computation is expressed as

a partially ordered set of events, where the order relation represents the temporal precedes
- 

S relation. Unordered events can take place concurrently. Thus the partial order of events

naturally generalizes serial computations (which are totally ordered sets of events) to parallel

I. Besides SI MU LA-67[Dahl-et-a170], CLU(Schaffert -et-a175], ALPH AR D(Wulf-et-a175) and
SMALL-TALK[Learning-Research-Group76) are examples of such programming
languages.
2. Distributed systems are multi-processor Information processing systems which do not rely

on the central shared memory for communication.

-----5 -5-5----SS-- ~~~~~~~ S - -~~~~ - - 5 - - --- --- --- - 
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computations.

1.3 Local State Approach

In this thesis, we propose an approach, called the local state approach, for

specifying the behavior of actors (objects). In general, the behavior of an actor in response

to a message depends upon the past history of messages received by the actor. By defining

the state of an actor A as equivalence classes on the past message histories of A, we can

S specif y the behavior of A in response to a message M In terms of:

(I) the state of A before A receives M,

(2) a set of mutually concurrent events caused by the event where A receives M and

(3) the state of A after A receives M.

Since we assume, in the model of computation, that the order of message arrivals

at the same actor is always total, the state of an actor Is always well-defIned In both serial

and parallel computations. Consequently, the behavior of an actor In both serial and
S 

parallel computations can be specified In a uniform manner.

We use the term “local” to emphasize that our approach does not rely on the

notions of the global clock and the global state of a system.1 The use of global states is

often motivated by the use of non-deterministic serial computations as the underlying

semantic model for parallel computations. This leads to counter-intuItive serialization of

unrelated concurrent events and a large number of possible cases In analyzing properties of

I. The global clock is the unique time reference available within the entire system. The
global state of the system at a given time t (by the global clock) Is a vector of the states of
system components determined at the same time t. 

S 
-- --- - --- - - -5- - - --- -- - - - - - --- 5 - - - - 5 - - - - - -- - -
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the system.

In our approach, the behavior of a system Is specified In terms of the individual

behavior of system components and their mutual Interaction. Such behavior and

interaction are described by the states of the system components determined at their local

times.

1.4 Contributions of the Thesis

Based on the notion of local states, the work presented In this thesis has made

several contributions to the area of program specification and verification.

(I) Formal specifications of Abstract Data Types with Pa rallelism and Side-effects

The importance of abstract data types(Llskov-Zilles74] In the construction of

— 
reliable software has been recognized and two approaches to the formal specification

technique for abstract data types, I.e. algebraic axiomatic(Zilles74, Spltzen-Wegbreit75,

Guttag75] and abstract model[l-Ioarel2, Liskov-Berzlns77] approaches, have been proposed.

Yet none of the techniques of these approaches are able to deal with parallelism and

side-effects. These techniques are only applicable to data objects without side-effects and

they fail to-specify the behavior of data objects which are used In parallel computations

(multi-process environments). Our specification techniques have overcome these limitations.

Formal specifications for an air line reservation system and bounded buffers will be given

as illustrations of our techniques.

(2) Conceptual Representations
S We have developed notational devices called conceptual representations to describe

the states of individual actors (objects, and data structures) at various levels of abstraction.

---S -

~
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The use of conceptual representations reinforces the notion of data and procedural objects

as abstract entities whose Internal structures are hidden. By separating the states of an

object from Its Identity, conceptual representations can express sharing among objects In an

S intuitive, yet rigorous manner. Thus our specification language with Its use of conceptual

representations has flexible and powerful expressiveness.

(3) Symbolic Evaluation of Programs written In Object-Oriented Languages

Symbolic evaluation Is a process which abstractly executes programs on abstract

data . As the major tool for program verification, we have developed a method for

symbolic evaluation of programs written in SIMULA-like object-oriented languages. Our

formalism based on conceptual representations enables us to deal with the difficulties due

to object sharing which often arise In verification of programs written In object-oriented

languages.

(4) Specifications of Systems with High Internal Concurrency and Task Specifications

Little work has been done on specifying and verifying the behavior of a system

characterized by complex concurrent activities of Its subsystems. Operating systems and

S 

multi-user data base systems fall into this category. In order to illustrate our techniques for

dealing with such systems, we give a model of a simple post office where a number of

customers and mail-collectors are represented as Internal concurrent activities. We show

that the specifications of the over-all functions of such a system, which we call task

specif ication s, are derived from the specifications of the ~ndlvIdual behavior and mutual

interaction of its subsystems.

_
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1.5 Outline of the Thesis

Chapter 2 introduces conceptual representatIons, which are extensively used in the
work presented in this thesis. The precise syntax of conceptual representations and their
uses In writing formal specifications of abstract data types without parallelism and
side-effects are exemplified. Further, algebraic axiomatic and abstract model approaches to
the specification of abstract data types are discussed in the light of our approach. (This
chapter does not use the actor model of computation.)

Chapter 3 gives a precise account of the actor computation model on which the

discussion in the subsequent chapters is based. It also describes certain characteristics of the

behavior of actors which must be considered in the development of specification
techniques.

Chapter 4 presents our specification techniques for serial computation. The

separation of the identities of objects from their states is explained and how this Is

incorporated into our formalism is illustrated before our specification language is

Introduced with examples of formal specifications. Several other approaches to program
specification are reviewed.

Chapter 5 describes our method of symbolic evaluation and Illustrates our

verification techniques for serial computations based on the symbolic evaluation method.

The application of symbolic evaluation to other domains Is also discussed.

- 
Chapter 6 extends the specification language Introduced in Chapter 4 to cover

parallel computations and illustrates our techniques for writing formal specifications of

abstract data types !ith . p arallelism and side-effects. The notion of local states of actors

(objects) is discussed in detail in the beginning of the chapter.

Chapter 7 presents our verification techniques for parallel computations. The
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verifications of air line reservation systems and bounded buffers are illustrated.

Chapter 8 contaIns an actor model of a simple post office, which Is an IntuItive
example o(~ a system with high Internal concurrency. We show that the internal activities of

the post office meet Its task specifications.
Chapter 9 makes the concluding remarks and suggests future research. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 55 -~~~~~~~~~~~~~~~
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2. Conceptual Repr e~entat iong

Conceptual representations occupy the central role In the formal specification and
verIfication techniques presented in this thesis. In this chapter, we will explain the basic
Idea of conceptual representations by illustrating how specifications of conventional data
structures are written using conceptual representations. However, as will be seen in the later
chapters, conceptual representatIons are used to describe states of actors of a wide variety.
In the later part of this chapter, existing specification techniques for data structures (data 5

types), such as algebraic axiomatic ones, and an abstract model approach, will be discussed
in relation to the techniques based on conceptual representations.

[

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----rn ~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~ -S - - -
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2.1 Introduction

We will use conceptual representations to specify a wide range of data structures at

various levels of abstraction. The motivatIon in developing conceptual representations is to

provide a specification language which serves as a good interface between programmers

and the computer and also between users and Implementors. A good interface language

should allow programmers to easily express and understand their Intuitive concept of a data

structure and how it behaves for various operations. For example, the ianguage of

diagrams using boxes and arrows is a very good language in which people can exchange

their Intuitive ideas about the sharing relationships among objects. However, such a

language is not rigorous enough for the computer to understand without many hidden

assumptions. The specification language based on conceptual representations introduced In

this chapter is rigorous and yet able to express graphical intuitions about data structures.

Different degrees of awareness about the implementation of a data structure are

required In the different activities of Implementing a system such as the InItial design,

codIng, and the subsequent evolution. Conceptual representations are flexible enough to

express only the details which are important in each activity. As mentioned above, 
S

conceptual representations are not confined to specifying data structures. They are used to

describe states of both procedural and data objects and also used to express views and

summaries of behaviors of such objects. Examples of such conceptual representations will

be found in the later chapters (e.g., Chapter 6 and Chapter 8].

~

5-5

~
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2.2 Conceptua lizat Ion of Data Structures

In this sectIon, we explain syntactic constructs of conceptual representations using

simple examples. The BNF syntax of conceptual representations is given in Figure 2-I at

the end of this sectIon.

2.2.1 Keywords and C.packages

Let us consider a simple data structure, a cell, which contains information that can

be retrieved and updated. In order to express a cell which has its contents, say 10, we use

the following notation

(CELL (coni.nt1 10)).

This Is a conceptual representation of the cell. When this cell is updated with new

contents, 12, its conceptual representation becomes

(CELL (contents: 12))

A word “CELL” in the above conceptual representations is an example of the ke,woids

which express the conceptual types of data structures. The keywords are always spelled In

Italic capital letters.

In addition to keywords, another syntactic construct, conceptua l packages
(abbreviated as c-packages)1 is used to express more detailed Information about data

structures. A notation “(eonl.nhs ...) ” in the conceptual representations for cells Is an example

of c-packages. C-packages are useful to distinguish conceptually different kinds of

I. The syntax of c-packages are borrowed from that of packages in PLASMA
IHewitt-Smith75, Hewitt77)
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components of a data structure. For example, a node in list structures of LISP has two
conceptually different kinds of components, the car-part and the cdT-part. The following

conceptual representation

(NODE (car: 10) (cm 12))

ex presses a node whose car-part and cdr-part are 10 and 12, respectively. (car: 10) and
(cdr: 12) are c-packages. Selectors of packages (e.g. car and cir) are always spelled in the
lower case Italic letters followed by a colon.

When the details or specification of some components of a data structure are 
S

unim portant , but their existence In the data structu re needs attention, question marks may
be placed In conceptual representations. For example, when we want to express a node
whose car-part is IS, but cdr-part may be anything,

(NODE (car: 13) (cdr: I))

may be used. We call the question marks used In this way dumm, element notations.

2.2.2 C-sequences

There are many data structures which are naturally viewed as a linear sequence of
components at some levels of abstraction. Qjieues, stacks, arrays, tables and etc- are
examples of such data structures. To express such conceptual sequences of components in
data structures, we use a syntactic construct, conceptual sequences (abbreviated as
c-sequences) .’

I. Specifications of forms in ALPHARD(Wulf-et-al76) are stated in terms of mathematical
objects such as sequences and sets.
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Let us consider queues to see how c-sequences are used. Programmers envisage a

queue as a lInear sequence of elements which are enqueued at one end and dequeued from
the other end. Suppose that we have a queue consisting of three elements, I, 2, and 3, where

I Is its front element and 3 Is Its rear element. Using a c-sequence (1 2 3], this queue is
expressed by the following conceptual representation.

(QUEUE (1 2 3])

When a new element 4 is enqueued at the rear end of this queue, this queue is expressed *5:

(QUEUE (1 2 3 4]).

2.2.3 Unpack Operations and Dot Notions

In order to express a queue which has an Indefinite number (including zero) of
elements, we use a c-sequence variable, say x, In conceptual representations as follows.:

(QUEUE (ix])

!x is an abbreviation of the “unpack” operation on x.

In general , i<.xpr.uion> Is equivalent to writing oIt all of the elements of the

c-sequence denoted by <.xpression> individually. For examole, suppose that x denotes a
c-sequence (2 3 4]. Then

- [l ix] = [1 1(2 3 4]] a (1234)

whereas

(l x] a (1 (2 3 4]] i~ (1234).

When y denotes an empty c-sequence [I.
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(1 ~,) a (1 ~(]] a (1].

Thus (QUEUE (ii]) Is equivalent to (QUEUE (]) which Is the conceptual representation of

an empty queue.

Let us look at more elaborate examples of conceptual representations of queues

which use unpack operations and c-sequence variables. The two conceptual representations:

(QUEUE (6 lz]) and (QUEUE (ix 9))

ex press a queue whose front element Is 6 followed by the elements of z and a queue whose

last element is 9, respectivel y. Furthermore

(QUEUE (ix 8 iv])

expresses a queue which has 8 as one of its elements. When the elements before and after

8 (I.e. !x and ~~ In the queue are uninteresting, the following conceptual representation may

be used.

(QUE UE f... 8 ...))

“
...
“ inside the c-sequence Is called a dot notation. In general, dot notations are used to

IndIcate only the existence of an indefinite number (Includin g zero) of elemen ts whose

specification Is not important in a c-sequence or c-collection. (Cf. 2.2.4 ) Dummy element

notations may be used as elements of c-sequences. For example, a conceptual representation:

(QUEUE [? 3 4 5])

describes a queue whose front element is unknown (or unimportant), and the rest of whose

elements are 3, 4 and 5, in this order.

-S
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2.2.4 C-collections

Another syntactic construct of conceptual representations Is conceptual collections
S 

(abbreviated as c-collections) which are used to represent a conceptual group of components
in data structures. C-collections are different f rom c-sequences in that the order of
elements in c-collections Is unimportant For example, a c-collectIon (2 3 7) is equivalent to
both (2 7 3) and (7 3 2). C-collections are also different from mathematical sets In that
multiple occurrences of the same elements In c-collections are Important. For example, a
c-collection (2 2 7) is not equivalent to (2 7).

A simple example of conceptual representations using c-collections is

(SET (3 4 5))

which expresses a data structure of the ty pe “set” whose elements are 3, 4, and 5. An
indefinite number of elements of a c-collections can be ex pressed by the unpack operations
and c-collection variables. Thus a general form of the conceptual representation for the
data structure “set” may be expressed as

(SET (Ix)) .

C-collections may be described by using dummy elemen~ notations “?“ and dot notations “_.
in the same way as c-sequences.
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2.2.5 Pattern Match ing

Unpack operations are extremely useful In pattern matching1 of c-sequences and

c-collections. Below we will give basic examples of pattern matchin g, instead of presenting
the matching algorithm.

Suppose that a c-sequence of four numbers ‘1 9 8 4] matches against the following
patterns, where u, v, and w are pattern (or free) variables on c-sequences.

(1) (1 lu], u must be (9 8 4].
(2) (Iv 8 4], v must be [1 9].
(3) (1w ], w must be (1 9 8 4].
(4) (!u 8 Iv], u and v muss be [1 9] and (4], respectively.
(5) (1 9 8 4 lu), u must be [] .

Suppose that the same c-sequence matches against the following pattern s, where M and N
are pattern (or f ree) variabl es on numbers .

(6) CM iu], M and u must be 1 and (9 8 4], respectively.
(7) (!u N], u and N must be (1 9 8] and 4, respectively.

But (1 9 8 4] does not match against the following pattern:

(8) (M N].

Some patterns may have more than one matching case. For examp le, when (1 9 8 4]
matches against

1. The use of pattern matching in our specificatIon and verification techniques will be
exemplified In the process of symbolic evaluation in Chapter 5.

J
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(9) (1 lu M Iv], share are shire. matching cos.u

Case-I : u = [ ] ,  Mz9, v a ($ 4].
Case-2: u = (9 J ,  M.8 , v~~(4].
Case~-3: u~~(9 8], M = 4 , v .f l .
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FIg. 2.1. Syntax of Conceptual Representations in RNF

<conceptual-representation> ::— ( <keyword> ) I ( <keyword> <conceptual-constItuents>- )

<keyword > ::- a word it. the upper case italic font ~

<conceptual-constituents> ::— <an-entity> I <c-sequence> I cc-collection> I <c-package-sequence>

<an-entity> ::— a single conceptual entity, which is often an actor ~

<c-sequence> ::— ( <JuxtaposItion> ]

<c-collection> ::— ( <Juxtaposition> )

<c-package-sequence> ::- <c-package> I <c-package> <c-package-sequence>-

<c-package> ::— ( <selector> <conceptual -constituents > )

<Juxta position > ::. <element> I <element> <Juxtaposition>

<selector> ::— an identifier in she lower case h ale font followed by • c.i~a. t

<element> ::— <empty> I can-entIty> I cc-sequence> I <c-collection> I
<c-package> I <unpacked -c-sequence > I <dot -notatIon > I <dummy-element-notation>

<empty> ::- an empty string ~

<unpacked-c-sequence> ::— l<c-sequence> I !<c-sequence-varlable>

<dot-notation> ::-

<dummy-element-notation> ~- 1

<c-sequence -varia ble> . an identifier In the lower case roman f.isg ~

~~~~~~~~~~ 4 - S S - . . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- --
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2.3 Specif icatIons of Dat a Structures

In this section, we exemplIfy how conceptual representations are used in
specifications of data structures. An abstract data type CLiskov-Zllles74] or a data structure
is specified by the functionality (domains and ranges) of the appli cable operations and the
effects of these operations. If the data structure may be created by users, how it is created
must be also specified. In specifying functionalities, a notation ‘error Is used to denote a
set of error messages which warn users of operations that an error has occurred. We

assume that data structures are not changed by operations which cause error messages.

2.3.1 Queues

As suggested in the previous section, we use conceptual representations of the
fol lowing form to express a queue.

(QUEUE (...])

A complete specification of queues is given in Figure 2.2.
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FIg. 2.2. A Specification of O~ieuu

FUNC TION/ILIT Y:

I) CREATE-QUEUE: ---> queue

creates an empty queue.

S 
- U) ENQUEUE: queue a Item —> queue

;enqueues a new Item at the rear end of the queue.

Ut) DEQUEUE: queue —-> Item a queue or error

;tries to dequeue the front element of the queue.
;if the queue is empty , an error message is produced.

lv) IS-EMPTY: queue ---> bool can

;checks whethe r or not the queue Is empty.

EFFECTS:

(1) CREATE-QUEUE() —--) (QUEUE I])

(2)  ENQUEUE ( (QUE UE (lx]), A) ----> (QUEUE (Ix A] )

(3) DE QUEUE( (QUEUE [])) ----) ERROR

(4) DEQUEUE((QUEUE (A Ix])) -- -> <A , (QUEUE (Ix] )>

(5) IS-EMPT Y((QUEUE (3)) ----> TRUE

(6) IS-EMPTY((Q(/EIJE (A Ix])) —> FALSE

- - -
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2.3.2 Sets

A typical use of conceptual collections In conceptual representations is the data type
‘set”. The following four operations are associated wIth the set type.

FUNCTI ONALITY:

I) CREATE—SET: ———> set

~reates a~ empty set.

U) INSERT: element a set ——— > set
;trles to Insert an element,
;if the element Is already in the set, no effect.

lii) DELETE: element a set ——— > set or error
;tries to delete an element from a set.
1f the element is not in the set, error.

iv) IN?: element a set ---> boolean
S 

~hecks whether or not an element is a member of a set.

The effects of these operations are formally described in FIgure 2.3. Note that the
membership of an element In a set is expressed succinctly by dot notations in c-collections.

- -
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Fig. 2.3. A Specification of Sets

S 

EFFECTS:
• (1) CREATE-SET() ----> (SET II)

(2) INSERT(E, (SET (Ix)))

if a ( ... E ... } ---4 (SET (Ix))
S 

If x~~( ... E ... ) -‘‘4 (SET j Ix EJ)

(3) DELETE(E, (SET (Ix)))
S 

Ifxz(IyE Iz) —-4 (SET -(Iy Iz})
1fx~~( ...E... ) —-> ERROR

(4) IN?(E, (SET (Ix) ))

If a ( ...E ... ) ) TRUE
If xs ’ ( . . . E ... ) ----) FALSE

~



2.3.3 Arrays

The following five operations are associated with the arra y type.

F UNCTIONALITY:
I) CREATE-ARRAY: Integer a Integ er —> arra, or error

;tries to create an empty array with the specified lower and upper bounds.

;the first integer should not be grea ter than the second Integer.

Ii) STORE: array x Integer a Item —> array or error

;tries to store an item with the specified index

;the index should be within the bounds.

UI) FETCH: array x Integer -—> Item or error

;tries to fetch an item with the specified Index

;the index should be withi n the bounds.

lv) BOTTOM: array ---> Integer

;returns the lower bound.

v) TOP: array -—> Integer

;returns the upper bound.

To ex press arrays , we use conceptual representations of the followIng form:

S 
(ARR/JY (low: I) (high: h) (element&~ (...(I A]. .)))

where I and h are the lower and upper bounds, respectively, and an item A with the index I
Is expressed as a c-sequence (I Al in the c-collect ion of the (elemenss ) c-package. The

effects of the operations applicable to an array Is given In FIgure 2.4.

Multi-d imensional arra ys can be expressed easily by modifying c-sequences In

_  _  -~ ~~~ S- - -~~- - - -
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Fig. 2.4. A SpecifIcation of Arrays

EFFECTS:

(1) CREATE-ARRAY(I, h)

If I 5 h, ——-> (ARRAY (low: I) (Mgk h) (.lem RIE ()))

If I > h, “> ERROR beaad rror.

• (2) STORE((/IRRAY (low: I) (hlgk h) (.l.meagE (Ix))), I, A)

If I >  h or I < I, -—> ERROR ;bowsd error.

If I 5 1  5 h and x (1.1 [I TJ 1.2) pohen she i-sh elemeas .1,..d, orbs a.

———> (ARRAY (low: I) (M1h h) (el.meP.IE (1.1 (I A] 1.2)))

If l 5 1 5 h  and x (... (I ?] ... ) wheis sh. i-sh elemeas do.nos .riae.
———> (ARRAY (low: I) (Mgk Ii) (eleraerds: (lx (I A])))

(3) FETCH((ARRAY (low: I) (hi gh: h) (elen~.nsa (Ix)), I)

If I >  h or I < 1, —-> ERROR ;beaad error.

If 1 5 1 5 h  and x~~( ...(l B] ... ) “4 B

If l 5 1 5 h  and x s i(... (l ?] ... ) --4 ERROR whea th. i-sh olow..s ia aoi foaad.

(4) BOTTOM((ARRAY (low: I) (Mgk h) (el.meissa. (...)))) “—) I

(5) TOP((ARR/JY (low: I) (Idgk h) (elem.r4u. (...)))) ‘-4 h
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the (~lemenga: ) c-packa ge to Include more than one index. For example, a two-dImensional
array may be expressed by a conce ptual representation of the followin g form

(ARRAY (low: I) (hisk h) (elements.. ( ... [ i i  A) —.

2.3.4 Symbol Tables

As an example of specifications for more complicated data structures , we give a
specification of symbol tables (Guttag75, London -et-al76]. Symbol tables are often used in
writIng compilers for programming languages which have ALGOL-like block structures. A
symbol table records pairs of an identifier and its attribute. The same Identifier may have
different attributes depending upon wherç the IdentifIer is used in the bloc k structu re. We
assume the following six operations are applicable to a symbol table. No operations except
ENTER-BLOCK are allowed before the most global block is entered. The creation of a symbol S

table does not Imply the entering of the most global block.

FUNCTIONALITY:

I) CREATE-SYMBOL-TABLES ----> symbol-table 
S

;creates an empty symbol table. S

;no block has been entered yet.

II) ENTER-BLOCK: symbol-table ---- symbol-table
set up a new local naming scope.

iii) LEAVE-BLOCK: symbol-tab! > symbol-table or error
;trles to leave the current block.
;lf the current block is outside the most global one, then error. S

;otherwise discard the current block and reactivate the most previous scope.

- S - ~~~~~~~~~~~~~~~~~~~ -
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lv ) ADO: symbol-table x Id a attribute ----> symbol-table or error

;tries to add a pair of an IdentifIer and its attrIbute.
;if the current scope is outside the most global block, then error .
;tf the Identif ier Is already declared In the current block, then error.

v) RETRIEVE: symbol-table a Id ———— > attribute or error
;tries to retrieve the attribute of an identifier in the most recent
;block in which the identifier is declared.
;If It is not found, then error.

As a conceptual representation for the symbol table, we use the followin g notation:

(SYMBOL-TABLE [lx] ).

a is a c-sequence whose elements are empty or c-packages of the form

(b lock: [li])

which conceptually represents a block. The order of c-packages in a corresponds to the
order of blocks. That Is, the last c-package In a corresponds to the most recently entered
block. y Is a c-sequence whose elements ar~ pairs of an Identifier and Its attribute. Such
pairs are expressed by a c-sequence. For example , suppose that In some block Identif iers A
and B are declared to be real and Integer, respectively. Then the conceptual representation
for this symbol table looks like:

(SYMBOL-TABLE ( ...(block: (... (A ,‘..I] ... (B nt.~.r) ...]) ...]).

Using conceptual representations of this form, a specification of symbol tables is written as
depicted in Figure 2.5.



Fig. 2.5. A Specification of Symbol Tables

EFFECTS:

(1) CREATE-SvMBOL-TABLE( ) ---> (SY MBOL-TABLE (])

(2) ENTER-BLOCK((SYMBOL-7’ABLE [lu])) ---> (SYMBOL-TABLE (lu (block: (J)J)

(3) LEAVE-BLOCK((SYMBOL-TABLE [])) --4 ERROR

;leavlng the most global block (without entering).

(4) LEA VE-BLOCK((SYMBOL-TANLE [1w (block: [. ..J) J) ) ~~> (SYMBOL-TABLE (1w])

(5)  ADO ((S YMBOL-TIJ BLE (]) ,  ID, AlT) ---> ERROR
- adding an id-attribute pair without entering the most global block

(6) ADD((5YMBOL-7ABLE (Ir (block: [Ipeir .])]), ID , All )

if pairs = [ ... (ID 1]. .. ] ----> ERROR ;ID is already declared In the current block.
If p.Irs.~~ ( ... (ID T] ... ]

---> (SYMBOL-TABLE (Ir (block (lp.Ir. (ID ATT]J)])

(7) RETRIEVE((SYMBO L-TABLE (It)), ID)

1ff ~ [...(block: (...[ID ?].. .])...] ---> ERROR
;the Identifier is not found in any blocks.

If I = [...(hlock (..41D Alt] lx)) l~J and y � (...(block: ( (ID ?]...]). ..] “4 AlT
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2.4 RelatIon ship to Other Work

In this section, we discuss the relationship of our specification technIques for data

structures presented In this chapter1 to some other work in the same area. We have chosen

to consider an algebra ic axiomatic approach and an abstract model approach because these

two approaches are In clear contrast to ours and also well studied. An excellent survey of 
S

specification techniques for abstract data types Is found In (Liskov-Zilles75]. Other

approaches such as Parnas’s “state machine model” (Parnasl2] are also reviewed In S

[Liskov-Zillesl5].

2.4.1 Algebraic Axiomatic A pproach

Algebraic axiomatic techniques have been studied by a number of researchers

(ZIlles74, Spltzen-Wegbreltl5, Guttagl5, Wegbrelt-Spltzen76]. In this approach, the effects

of operations on an object of the data type being specified are expressed in terms of

equations of the operations. To compare their approach with ours, we present two

algebraic axiomatic specifications, one for queues (which is a modified version of

(Spitzen-Wegbre lt75]) in Figure 2.6 and the other for symbol tables (which a slightly

simplified version of (Guttagl5l) in Figure 2.7.

All the axioms given in their specifications in Figure 2.6 and Figure 2.7 are easily

derived from our specifications of queues in Figure 2.2 and symbol tables in Figure 2.5.

(For the derivation of the axiom (5) In Figure 2.6, see Appendix I.) We believe that S

specifications using concepiuai representations are often easier for programmers to both

I. In this chapter, we assume that data structures or data types are always used in serial
computations. Our techniques for data structures (or abstract data types) with ~iara.llelism
and side-effects will be presented in the later chapters.

- - - -
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FIg. 2.6. An Algebraic Axiomatic Specification of Qpeues

FUNCTIONALITY : omitted.

AXIOMS:

(1) IS-EMPTV(CREATE-QIJELJEO) = TRUE

(2) IS-EMPTY(ENQUEUE(Q, A)) = FALSE

(3) DEQUEUE(CREATE-QUEUEQ) = ERROR ;auempta to dequ.ru.e aDs empty queu .

(4) if IS-EMPTY(Q) then DEQUEUE(ENQUEUE(Q, A)) — <A, Q>

(5) If - IS-ENPTV(Q) A DEQUEUE(Q) = <B, Q’>
then DEQUEUE(ENQUEUE (Q, A)) = <8, ENQUEUE(Q’, A))~

construct and understand than algebraic axiomatic specifications, because In the conce ptual

representation approach we describe directly and explici~y what effects take place in data

structures (at the conceptual level) when the operations are applied, whereas the algebraic
axiomatic specifications- describe the effects of the operations indirectly and Implicitly In
terms of relations (or equations) among the operations. In particular, the axiom (6) for
symbol tables in Figure 2.7 is expressed In terms of a recursion of RETRIEVE. Such Indirect

specifications are often difficult to grasp. Thus the author and reader of an algebraic
axiomatIc specification of a data type may be less confident as to whether or not the

specification completely describes the desired properties of the data type.

Recently a serious problem in the algebraic approach has been pointed
out[MaJster7ll The problem is that there are some classes of abstract data types which
cannot be specified by a finite set of axioms for the operations (equations of the

_ _ _ _ _ _ _ _ _-
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FIg. 2.7. An A lgebraic Axiomatic Specificat ion of Symbol Tables

F UNC7’tONALI TY: omitted .

AXIOMS:

(1) LEAVE-BLOCK(CREATE-SYMBOL-TABLEO) - ERROR

(2) LEAYE-BLOCK( ENTER-BLOCK(symt .b)) = .ymtsb

(3) LEAVE-BLOCK(ADD(symt ab, Id, attrs)) LEAVE-BLOCK(symts b)

(4) RETRIEVE(CREATE-SYMB0L-TABLEO, Id) — ERROR

(5) RETRIEVE(ENTER-BLOCK(symtsb) , Id) = RETRIEYE(symt b, Id)

(6) RETRIEVE(ADD(symtab , Id , st Irs), Idi)

If kI = Idl,
then attn
else RETRIEVE(symt .b , idi)

operations). To avoid this problem, they must use axiom schemata instead of Infinitel y
many axioms. This violates the finiteness of the axiom set whIch Is an Important
assumption of the underlying theory for algebraic specification techniques. Our conceptual
representation approach does not have such a problem, because, as mentioned above , our

techniques describe explicitly what effects the operations cause to data structures. (In
appendIx 11, a data type which cannot be expressed by a finite set of algebraic axioms of

operations Is specif ied by using conceptual representations.)

Furthermore , the current algebraic and axiomatic techni ques do not capture an

S - -S
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important difference between data structures without side-effects and data structures 
~1th

side-effects. (This difference will be explained In Chapter 3.) As will be seen in Chapter
4, the specification technique using conceptual representations can easily express this

S 
dIfference. For further discussions on the algebraic approach, see SectIon 4.5.5, Chapter 4.

2.4.2 Abstract Model Approach

B. Ltskov and V. Berzlns tLiskov-Berzins77] have been developing an abstract
model approach In the area of specification of abstract data types. The construction of Its
mathematical foundation is underway (Berzins76]. In this approach, first a certain set of

well established data types and mathematical objects (e.g., sets, sequences, tuples and etc.] Is
chosen. Then new abstract data types are specified in terms of such chosen data types or
already defined abstract data types.

As an example, we give an abstract model specification of arrays cited from
(Liskov -Berzinslll in Figure 2.8. Objects of the type .rray(t] are represented by the
following tuple:

tup )etlow: integer,
high: Integer,
elements: sequencettupleUndex: integer, value till

Comparing the specification in Figure 2.8 wIth the one given In Figure 2.4 which is based
on the conceptual representations, one is struck by the similarity. In fact, In representing
objects of a new data type, the roles of sequence, sets and tuples in their approach
correspond to those of c-sequences, c-collections and c-packages in our approach. However,
in the abstract model approach, the operations applicable to ObjeCts of a new data ty pe are

L - ~~~~~~ S • 5 • S
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FIg. 2.8. An Abstract Model SpecIficatIon of Arrays

FUNCTIONALITY: omitted.

OPERATIONS:

alloc(il, 12) — if II ~ i2 then (low: II, high: 12, elements c)
else error(”bad array size”)

,rc denotes ea empty uq~.I.ee sad {...) denotes a isipie.

bottom(a) - a.low

top(a) — a.hlgh

store(x, I, a) — if a.low �i � a.high
S then ( low: a.low

high: a.high
elements: addfirst((index: I, valu e x}, a.elements) )

fetch(i, a) — if a.low ~ I � a.high then getval(a.elements. I)
else error(”index out of bounds”)

getvaKelements, i) — If length(elements) > 0 then
it elements1.index — I then elements1.value
else getvaKbutflrst(elements), I)

else UNDEFINED
;elements1 means sh. first Item of the sequence denoted by “elements”

k.



specif Iced In terms of procedures defined on pre-defined data types. Getval, addf irst , and
butflrst In Figure 2.8 are examples of such procedures. In the conceptual representation
approach, we do not use such procedures in specIfyIng the effects of the operations.
Instead, we rely on pattern mechanisms of keywords, c-sequences, c-collectIons and
c-packages, which have been exemplif led by a number of specifications.

As was pointed out In the previous subsection, our approach b extended easily to
cover data structures with sIde-effects. The extendabIlity of the abstract model approach
remains to be seen.

-

~
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3. Behaviors of Aotor s (A Model of Computation )

In this chapter , we introduce the model of deterministic computation on which the

discussion in the rest of this thesis is based. The first section mainly contains definitions
S and Intuitive accounts of various concepts and notations employed in the model of

computation. The second section descrIbes the characteristics which must be considered in

trying to construct formal specifications of computations in the model. This section

Contains the classification of interactions among actors.

- 5- —--S~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3.1 The Actor Model of Computation

The fundamental objects in our model of computation are actors. Computations

are carried out through message passing between actors. An actor is a potentially active

object (procedure) which becomes active when It receives a message. Each actor decides

itself how to respond to messages sent to it. No actor can treat other actors as objects to

operate on: it can only send a message to other actors.’
Messages are also actors. An actor may be created in the course of computation or may

exist in the beginning of a computation. More than one transmission of a message at a

time in an actor system may take place.

A collection of actors which communicate and cooperate with each other in a goal

oriented fashion can be implemented as a single actor. A system of actors can model

various kinds of information processing schemata from ordinary sequential arithmetic or

symbolic computations to highly distributed parallel computations Including computer

networks of varying scales. Furthermore, it can model problem solving activities by a

society of experts[Hewitt77].

A number of concepts In programming systems can be captured by simple concepts

in the actor model of computation. For example, traditionally different kinds of entities

such as data, data structures , files, and procedures are unified as a single kind of object, the

S a .or. Control structures such as recursion, iteration, and coroutines can be viewed as

pz rticular patterns of message passing (Hewiu’?7]. Furthermore, calling a procedure,

returning a value, retrieving and updating data structures, and synchronization and

communication of cooperative parallel processes are achieved by message passing.

I. For example, to get the i-tb element of an array A, an (i-sh:) message Is sent to A instead
of doing a fetch operation A(i].

_ _  _  _
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An implementation of the actor model of computation has been realized as a

programming language PLASMA[Hewitt-Smith7b, Hewitt 7~). The syntax of PLASMA is

so designed that its underlying semantics is transparent.

The above intuitive account of the model of computation will be made more

precise below.

3.1.1 Actors S

An actor consists of two parts, scr ip t (action) and acquaintances. Its script is a

description of how it should respond to messages sent to it. Each actor has a fixed set of
S messages by which It can be activated. When a message that does not belong to this set is

sent to an actor , the response of the actor is undefined. The acquaintances of an actor are

a finite collection of actors that it directly knows about. An actor A can send a message

directly to an actor B only when B belongs to the acquaintances of A. The script of an

actor can be realized by a PLASMA program for the actor. The acquaintances of a newly

created actor C are the set of actors which are denoted by free identifiers in the PLASMA

progra m for C at the time of creation.

3.1.2 Events

An event E Is defined to be the receipt of a message1 actor M by a target actor T.

The event E is expressed by a notation of the form

1. We use the terms “receipt” and “arrival” of a message interchangeably throughout the
thesis.

IL
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(T <- -M] I .

A message contains a request of what the target actor is asked to do and it may also

contains a continuation actor which is the destination where the reply to the request is

supposed to be sent. Messages are often expressed by notations of the form

(request: (re
~~~~~ !> repl y—to: <continuation>].

The request usually consists of a tag which indicates a task to do and the data necessary to

accomplish the task. PLASMA packages are often used as requests. For example, to request
S a queue-actor to enqueue some actor A at the end of the queue, the package (on queue: A) Is

used. To request a queue-actor to send back its front element, the package (dequeue:) is

used. The continuation actor may be omitted in the message when It is unnecessary. For

example, when the purpose of a message is to return the result of a task, or the reply to a

request, the message need not contain a <continuation>. In such cases, messages are expressed

by notations of the form

(reply <result>]

When a continuation C in a message is unimportant or obvious from the context of

discussion, we make only the request part explicit in expressing an event. So the following

abbreviated form is used

(T <= <request>] for [1 <== (request: <r.gu.st> reply-to: C]].

Furthermore, when it is obvious from the context that a message contains only a replying

result, we use the following abbreviated form.

5 5

~ 
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(T <= <result>] for (T <== (reply: r.sult>]].

Note that the above abbreviated forms use single shafted arrows “c. instead of double

shafted arrows “<..“. In the subsequent presentation of this thesis, the terms “request” and

“message” will be used interchangeably when we are not interested in the continuation in a

message.

A primitive event is an event which activates exactly one immediate reply without

causing any intermediate events. From this definition, we can define primitive actors . A

primitive actor is an actor which always causes a primitive event when It is sent a message.

As we have noted above, different control structures in programming languages

are viewed as different patterns of message passing In the actor model of computation. In

fact , such different patterns of message passing correspond to different patterns of

continuation in messages. The patterns of continuation for recursion, and iteration are

found in [Hewjtt77] and for coroutines In (Greif-Hewltt7S]. The fact that continuations are

sent together wit h requests allows the unification of’ control flow and data flow into a

universal flow of information, message transmission. Consequently, this unification allows

us to describe computations solely in terms of events.

3.1.3 Computations

A computation is defined as a partially ordered set of events, where the ordering is

Strict and trans itive . A physical IntuitIon for the ordering Is that an event E precedes

another event E’. We call this ordering the precedes order and denote It by “-->“
. Then a S

computation is a pair <Ev, “-->“
> where Ev is a set of events. The strictness of the ordering

imposes the constraint that any event E does not precedes itself:
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Y E , -~(E --> E).
The partialness of the ordering allows that some events E~ and E~ do not precede each
other , which means that E1 and Ej may take place concurrently. We assume that each such
ordered set of events always has the maximal events in it. This means that every
computation has a set of initial events.

Our assumption to model physically realizable computations requires two kinds of
finiteness properties. First , for any two events E1 and E~ which are ordered by “-->“

, only
finite numbers of event can take place between E

~ and Ej. I.e., the set {EIE1 --> E --> Ej) is
finite . Second, each event E has finitely many immediate successor events. These two
finite properties do not rule out non-terminating computations: they only exclude infinitely S

fast computations.1

The precedes ordering has two suborderings which reflect more detailed physical
properties of computations. Suppose that E is an event in which a target actor T receives a
message actor M. Then the event E triggers a response (or action). This response is a
finite set C of events . We can view that the event E activates the events in C. Thus we
call this type of ordering the activatio n ordering and denote it by “—act ” ) ” . So V EE in C,
E —act- > EE. The activation ordering Is intended to describe the notion of causality in
computations. 

S

Suppose that more than one message is sent to a single actor A in a computation.
In our computation model we assume that one message arrives before another . I.e., no two
messages arrive at the same actor simultaneously. Since each arrival of a message at A Is
an event by definition, if we fix a target actor , we can always introduce an ordering among

I. Hewitt and Baker gave an proof for the impossibility of such infinitely fast
computations in [Hewitt-Baker 77].

_ _ _  
~~~~~~~~~~~-- --S~~~~~~~~S - S S  - - S - - - - --- 55 ---SS - -~~~~~~~~~ _
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events which have A as a target actor by arrival time. We call this ordering the arrival
orderi ng wit/i respect to A and denote It by ““srr—>A”.

The important property of the arrival ordering is that It is a total order: each
event in a computation can have at most one Immediate successor event in terms of the

arrival ordering, whereas it may have more than one Immediate successor event in terms of
the activation ordering.

A nested activity is a computation starting with a request event RQ Of the form

(T <== (request: <request> reply-to: <continuation>]]

and ending with the corresponding reply event RP

[<continuation> <~~ (reply <the—result)]]

The set of events consisting of the nested activit y is the set:

tE~~E ’ RQvE- RP v (RP - - > EAE - - > RQ) )

When a continuation is not contained in the message, the nested activity is undefined.
There are many activities in operating systems and distributed computing systems

that are not nested. It should be pointed out that one may find many non-nested activities
in the real world. The model of a post office given In Chapter 8 Is an example of such
non-nested activities.

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - ~~S-S S- - - - -~~~ _ _ _-
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3.1.4 Level of Detail

The behavior of an actor system can be described at varying levels of detail.

Computing the factorial of 3 can be viewed as a process to Input S and to output 6 at some

level of detail . At this level of detail, an iterative wa y and a recursive way of computing
the factorial of 3 are viewed as the same computation. Some difference between two

implementations of the iterative factorial may be detected at some finer level of details.

There may be many implementations of an actor which satisfy a given specification. Such

implementations are viewed as the same implementation at one level and different ones at

another level. At a finer level, some computations which may be viewed as a serial

computation at a less fine level may be revealed to be parallel computations.

In order to describe the behavior of an actor system we need to choose a level of

detail according to the purpose of description. The description of the behavior of an actor

system at the lowest level of detail is given as a computation <Ev0, “-->“
> where Ev0 is a set

of all events which take place in the actor system. A level of detail is decided by criteria

with which a subset Ev is chosen from Ev0. Since any events E~ and E~ in Ev are also in

Ev0, if E1 and are ordered by “-->“ in Ev0, the same order relation holds in Ev. Thus a

partially ordered set of events Ev is a “sub”-computation of Ev 0. Choosing a subset from

Ev0 is done with various criteria which are decided by the purpose of description. For

example, first we select actors from the set of all actors in the system, and then all events

where the selected actors are involved as targets or messages are chosen from Ev0. Another

example of the criteria is to select events which meet some patterns such as the beginning

and ending events of nested activ ities .

The notion of primitiveness defined in the previous subsection is relative to the

level of detail chosen. The event where the factorial actor receives S Is primitive at the

level of detail where no events taking place before the arrival of 6 at the continuation are

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- 55 ---.=.— -~~~~~ -~~~~~~S -~~~~ -~~~~~~~~~
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counted. An event where a data base receives a query can be viewed as a primitive event

at a very high level of detail. Thus a data base can be considered as a primitive actor at

that level.

3.2 Time Variant Behaviors of Actors

In this section we discuss the characteristics of individual actors which must be

taken into account in formally specifying the behavior of an actor system.

3.2.1 Pure Actors and Impure Actors

All actors are classified into two categories depending upon their behavior. Actors

which belong to one category never change their behavior. They always give the same

reply to the same request. They are called pure actors. Actors which belong to the other

category are called impure actors and their behavior may change with time. They do not

always give the same reply to the same request. The following more precise definitions are

given in terms of nested activi;ies.1

An actor T is pure if, for the same message M, the event (T c—— M]

always causes (precedes) the same reply event.

I. The definitions can be viewed as behavioral definitions of Immutable and mutable
ob jects . S 

S - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~~~~~~~~~~ 
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An actor T is impure (not pure) If there is a message M such that the event
[T <== M] does not always cause (precede) the same reply event .

The “sameness” in the above definitions is used in the following sense: two actors are the
“same ” if  they are be/ta viorly equivalent.1 Two events are the same if they have the same
target actor and the same message actor.

From this definition, it can be said that a pure actor behaves like a mathematical
function. An actor which generates random numbers is impure because it returns a random
number in response to the same message (next-random-number:). A cell-actor is an.-zher

S 
example of a simple impure actor. A cell-actor accepts a message (up date: <n.w—cont~~~)
which updates its contents and a message (consents :) which retrieves its contents. A
cell-actor may change its behavior because it can give different answers to the (contents?)

message, depending upon what it contains at the moment. An actor which behaves like a
function • is a pure actor. The plus-actor always returns the same number, which is the
sum of two numbers sent to it. Another example of a pure actor is a sequence-actor. One
can retrieve elements of a sequence-actor , but one cannot change its elements; instead a
completely new sequence-actor must be created. So a sequence-actor is pure.

3.2.2 Pure Queues and Impure Queues

To illustrate the difference between pure actors and impure actors, let us consider a
pure actor and an impure actor , both of which behave like a queue. Roth pure
queue-actors and impure queue-actors accept the same two kinds of messages: one is (nq: x)

I. For example, number actors which behave like I are behaviorly equivalent each other,
but their identity may be distinct . The LISP functions, EQ and EQUAL, are impure and
pure. respectively.

L1. 
~~ __ ~_~ 
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which is a request to enqueue a new elements x, and the other is (dq:) which is a request to

take out the front ekment of the queue and return it with the remaining queue. However

if the queue is empty, it returns a complaint message (exhausted: ) . The important

difference between a pure queue-actor and an impure queue-actor is whether or not a new

queue-actor is created when (nq: ...) and (dq:) are sent. When (nq: x) is sent to a pure
S queue-actor PQ a new pure queue-actor PO~ which has x as the last element of the queue is

created and returned. The original queue-actor PQ still has the same elements as before.

When (nq: x ) is sent to an impure ~‘~..eue-actor IQ~ x is absorbed inside IQand enqueued at

rea r of the previous elements. So IQitself is extended and returned. No new queue-actors

are created. (See Figure 3.1.)

When (d q:) is sent to a pure queue-actor PQ (which is not empty), a new pure

queue-actor PQ whose elements are all elements of PQ except the front element of PQ is

created and the front element of PQ and the new pure queue-actor PQ~ are returned.

Again the original PQis intact and has the same elements as before. When (dq:) is sent to

1Q(wh ich is not empty) , then the f ront element of lQand lQitselt which now has the rest

of the original elements are returned . No queue-actors are created.

It might be helpful to see a LISP analogy in understanding this difference
between pure queues and impure queues. Suppose that a queue is Implemented as a list L.

Then sending (nq: x) to a pure queue-actor corresponds to (append L (list x)), whose result is

a totally new list constructed from a copy of L and x. Sending (nq: x) to an imp ure

queue-actor corresponds to (nconc L (list x)) whose result does not consist of a copy of L. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~5~~~~~~~
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Fi g. 3.1. Behaviors of pure queues and impure queues

( PQ’

c d ~~~~~~~~



-5-  ~~~~~~~S~~~~~~~S 5 5 ~~~~~~ . ~~~~~~~~~~~~~~~~~_~~~~~~~~~~~~ 5

- 54 -

3.2.3 Sources of Impurity and Uses of Im purity

The change of behavior of an actor A is caused by the change of information
S 

used in computing the reply for a request to A. The change of such information is caused
by the computation taking place before the reply event occurs .

Roughly speaking, the sources which may change the behavior of an actor A can
be divided into two kinds. One is the activation of A initiated by messages which 

~~~~~~~~~~

been ~~~ ~ The previous activations of A change the information stored inside A. For
examp le. a random number generator usually keeps some internal values used to generate a

S 
random number. For the generation of the next random number, such internal values are
changed during the generation of the previous random number. In the case of impure

5 queue-actors , the history of the previous enqueuing and dequeuing operations determines
the reply for the current dequeuing request .

The other kind of source is the computation initiated by messages which ~~
sent to ~~, but to some other actor B. When the computation initiated by a message sent to
B changes information shared by both A and B, the subsequent behavior of A may change.
Sharing of information sometimes happens inadvertentl y. When an actor A is created ,
some internal constituents of A might become known to other actors outside. For example,
suppose that a new array -actor A is created by extending the upper bound of an existing
array-actor B. If B receives a request to change one of its elements, the computation
initiated by the request will change the subsequent behavior of A, because all elements of B
are shared by A. There is another way in which internal constituents of an actor A become
accessible . After an activation of A, the some internal constituents might be released
outside as a result of the activation. Such released constituents become directly accessible
from outside and information stored in them could be changed without sending legitimate
requests to A .
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Uses of an impure queue-actor are “destructive” in the sense that each enqueuing
or dequeuing messages sent the actor changes the current status of the queue. If one wants
to update the queue and still keep the previous status of the queue, the behavior of pure
queue-actors is desirable even if it is costly In terms of both space and time. Sometimes the

impurity of actors are necessar y. For example, in order for concurrently running processes
to communicate with each other , they need some actor which behaves as information
storage through which they may exchange information. Such information storage may be
contained inside each process or external common storage to which concurrent processes
have access . This kind of impurity of actors is Indispensable for communicating parallel
processes.

3.2.4 Four Types of Interactions between Actors

Suppose that an actor M is sent as the request part of a message to a target actor
T. This event initiates a computation where M and T are involved [i.e. an Interaction
between M and Ti. Afte r this computation, there will be no changes in the behavior of M
or T if both M and T are pure actors . If M or T, however , are impure actors , the
subsequent behavior of M or T may be different. Interactions between two actors M and

S T are classified into four types, depending upon the presence or absence of change in their

future behavior.

No-Change -Type: Neither M nor T change their behavior.

The interactions initiated by the following events:

[factorial <= 3]I
[cres ts -array < 43

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S 5~~~~~~~~~~~5 5  S SS ~~~~~~~~~~
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[ merge <~ (ARRAY-I ARRAY-2]]

S are examples of this type. The objective of this type of interaction is creation of
new actors . Neither the factorial actor nor the number-actor 3 change their
behavior , but the result of the computation, a number-actor 6, is created and
returned . The create-array actor always creates an array of the size specified by the
request message. The merge actor creates a new sorted arrays whose elements are
those of the two sorted arrays ARRAY-i and ARRAY-2. In this case, neither

S ARRAY-i nor ARRAY-2 do not change.

Ta rget -ChanEe-Type: T changes its behavior, but M does not.
S This type of interaction often takes places to modify information stored in actors

which behave like data structures . For example,

[CELL <= (update: A)3
[IMPURE-QUEUE <= (enqueue: B)3

are of this type. The behavior of A or B do not change after the Interactions.

Message -Change-Type: M changes its behavior, but T does not.
Examp les of this type of interaction are initiated by events such as:

55 [sort <= ARRAY] J
[empty <~ IMPURE-QUEUE].

When an array -actor ARRAY is sent to the sort actor, the same array-actor ARRAY
whose elements are sorted is returned. In a similar way, IMPURE-QUEUE is emptied
but the empty actor does not change its behavior.
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Target-Message-Change-Type: Both M and T change their behavior.

Examples of this type of interaction are often found in situations where some

in formation is removed from one actor and transfered to another. In Chapter 8, we

will model the activities in a simple post office in terms of actors. The interaction

among customer actors, collector actors, and a mail box actor in the model is of this
type.

I
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4. Specif ying Serial Computations

In this chapter, our specification techniques for serial computations are presented.

Since our model is so constructed that serial computation Is naturally extended to parallel

computation, most of the concepts, notations, conventions and techniques introduced in this

chapter are not only valid but also necessary for the specification and verification of

parallel computations. In the first section, we introduce basic tools for describing the time

variant behavior of actors. In the second section, we briefly discuss the role of conceptual

representations in our model of computation. In the third section, our specification

language for serial computations is explained and some issues of specifications related to

“side-effects ” are discussed. In the fourth section, examples of specifications written in our

language are given.

-

~ 
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4.1 Capturing Time Variant Behavior of Actors

In order for a formal specification language to be effective for our model of
computation, it must be able to describe the time variant behavior of actors. The ability of
our specification language to deal with this aspect of actor behavior is based on concepts
introduced in this section.

4.1.1 History of Messages amid States of Actors

As we have seen in the previous chapter, one source of the time variant behavior
of an actor is the history of computations initiated by messages sent to the actor. If the
whole past history of messages sent to an actor A is known, the subsequent behavior of A
in response to a given message should be predictable. Thus, It is desirable to know the
history of messages to specify the behavior of A. However, it is not practical to enumerate
all possible histories of messages. Two actors with different past histories (sequences) of
incoming messages sometimes show the same subsequent behavior. Thus we can partition
t he set of histories (sequences) of messages sent to A into equivalence classes according to
the subsequent behavior of A. By such equivalence classes, we can define the notion of
states of an actor . That is, the state of an actor A at a given point in time is defined as
equivalence classes on the past histories (sequences) of messages sent to A. If A is in the
same state at a different time, the subsequent behavior of A will be always the same.

The state of an actor which behaves as an information storer is often defined by
the contents of the stored information . For example, the state of a cell-actor C at a time is
defined by the contents B of the cell. This definition of states is a special case of our
definition by equivalence classes on past message histories . For the contents of the cell can
be viewed as the most recent update message (update: B). The (update: B) message



S 
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represents the class of histories (sequences) of messages sent to C which have an (update: B)

as the most recent update message.

Some kinds of states are not naturally expressed by the contents of stored

information . For examp le, states of a data base which is being accessed by a number of

concurrent processes are not expressed naturally by some stored information in the data

base. The states where processes are updating or retrieving information in the data base

may be expressed as certain monitoring mechanisms attached to the data base, but such

mechanisms are dependent on the implementation of the data base. When the states of a

data base are defined externall y [i.e. independently of implementation], our definition of

states is quite useful. The state of an air line reservation system discussed in Chapter 6 and
that of a post office in Chapter 8 are examples of states of actors which are accessed by
concurrent processes .

Equivalence relations which determine states (i.e. equivalence classes) are chosen

according to the purposes and level of the detail of the specification. States which are

different at some levels of the detail of the specification may be the same at other levels.

In Section 6.4, Chapter 6, we will discuss an alternative way of defining states of

actors by continuous functions.

4.1.2 Situations

To incorporate the notion of states into the formalism for specification and
verification , we need a notion of situat ions. A situation is the 

~
ç
~[ state of an actor system

at an instance of the local time.l A notion of situations which assumes the global state and

global time reference has been proposed in the area of Artificial

I. We will discuss the local time in detail in Section 6.1.2, Chapter 6.

- 5 -  -~~~ S _~~~5 ~~~S 5~~~~~~ ~~~~~~~~
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Intelligence[McCarthy-Hayes6g, Hewitt75]. Our model of computation allows parallelism S

which is realized by concurrent message passing. Since instances of concurrent message
passing (i.e. events) may take place totally independently, it is quite unnatural to assume the
global time reference and global states of the system. [Local computations carried out by a
PDP-lO at CMU are irrelevant to computations carried out by a PDP-iO at Stanford even if
two computers are connected through the ARPA network .] S

In our formalism, states of actors and actor systems are always used with reference
to situations. From this viewpoint, situations can be considered as references of the local
time. For example, the contents of a cell-actor C changes from time to time according to the
update messages which have been most recently sent to C. Suppose that the contents of C
is 3 in a situation S where C receives (update: 4) message. Then in the next situation 5’
where C receives the message (contenta :), the contents of C is 4. (See Figure 4.l)

By using a symbol S to denote a situation, we express the contents of C in the
situation in the following manner

(contents C) = 3 in S

We call a symbol such as B, which is used to refer to a situation, a situationa l tag.

Fig. 4.1.

~~~~~~~~~~~~~~~~~~~~~ 
<= (update: 4) ~
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Uses of situational tags considerably increase the expressive power of our

formalism. For example, suppose that we have two impure queue-actors, queue- i and

queue-2, and that some event takes place in a situation 5pre~ 
Let denote the

situation after that event. Then the question and assertion of whether or not the length of

queue-i is equal to that of queue-2 in 
~~~~ 

is stated as follows:

(length queue—i) = (length queue-2) in

By distributing the situational tag 
~~~~ 

the same statement can be made in the following S

two different ways:

((length queue-i) ~“ 8post~ 
= ((length queue-2) In Sp~~

) or

(length (queue—i in 5pO5t~ 
= (length (queue-2 ~“

Since situational tags allow us to relativize facts , relations between facts holding in different
situations can be easily stated in our formalism. For example, an assertion that the length S

of queue—i in ~~~~ is greater than the length of queue-i in 8pre is stated as:

((length queue i) in 5post~ 
> ((length queue-i) in 8pre~ 

S

This kind of assertion is quite useful to show the termination of programs. Furthermore a

question about the identity of the queues is easily stated as:

(queue-i in 5post~ 
is-eq (queue-2 in 8pre~ 

S

Situations are frequently referred to as the time of message arrival, namely at the
time when an event takes place. We use the following notations to refer to such situations. 

5

S - ~~ - -~~~~~
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Sil([T <== M]), Sit(<.vent>)

4.i.3 States , Identities and Conceptual Representations

An actor may change its state from situation to situation and different actors may
have the same state in the same situation. Thus, in developing a specification language, we

must distinguish the state of an actor from its identity .1

In order to describe ~~~ of actors in our specification language , we use

conceptual representations introduced in Chapter 2. IdentitIes of actcrs are expressed by
syntactic constructs different from conceptual representations. The most general form to
express the fact that an <actor> has a state ex pressed by a <conceptual repruent.t.on> in a

<situation> is as follows.

(<actor> is—a <conceptual—representation )) in <situation>

For example, suppose that the state of an impure queue-actor Q which has three elernerus A

B and C is expressed by a conceptual representation:

(IMP LJRE - QUEL/E [A B C])

Then the fact that Q has the above state In a situation S is expressed as

(Q is-a (I MPUR E- QUE UE [A B C ] ) )  in S

It is very important that the role of conceptual representations in our specification

I. We assume that the identity of an actor never changes. 



r -~~~ 5555 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S . -- S _ S ~_ 5~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S -

-64 -

language is to describe only states of actors , but not to represent identities of actors. [When

we introduced conceptual representations to give formal specifications of data structures in

Chapter 2, the separation of states from identities was not made clear .]

A predicate “ia-a” is used to associate the state of an actor with its identity. In

order to differentiate identities of actors, a predicate “is-eq” and its negation form “nol-eq

are used. Since many actors may have the same state in the same situation, when the

following assertion holds,

(Q’ ia-a (IMP URE-Q UEUE [A B C])) in 8,

it may or may not be the case that

(Q’ is-eq Q).

When the sharing of actors is ~nvolved , the separation of states from identities in
the formalism considerably simplifies the process of keeping track of changes in situations.

For ~‘~~irnple. suppose that two different cell-actors G and H contain the same impure

queue- actor Q in a situation S. This is expressed as:

(G ia-a (CELL (contents: Q)) )

(H ia-a (CELL (contents: Q)))

(Q ia-a (IMPURE-QUE UE (A B C]))

Then in the situation S. an actor C is enqueued at the rear of Q. A description of the next
situat ion B’ can be obtained simply by changing the state of Q into

(Q ia-a (IMPURE-QUEUE (A B C D]))

- - - - 5 - -~~~~--- -- - -- ----~~~~~~~~~~~~~ _ —  - -~~~
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and the assertions about C and H need not be modified.1 This is an example of our
technique of manipulating assertions which will be discussed extensively in the next
chapter .

4.2 Types, Views and Conceptual Representations

Before going into the details of our specification language, it would be interesting
to consider the roles of conceptual representations in the actor model of computation.

Actors are the only objects in the model of computation. Actors are untyped . We
do not assume that actors are intrinsically classified into subcategories such as types and
modes. There are two reasons for this. One is that actors are objects in an abstract model
of computation, not objects in programming languages which often have types and modes
for reasons of reliability and implementation efficiency . Another reason, which is more
fundamental , is that we like to emphasize the behavioral view of actors. That is to say, we

like to be able to use two actors interchangeably and indistinguishably as long as they show

the sa me behavior with respect to some purposes and environments where they are
pr itni r i l y used. Also the same actor should be able to behave quite differently for different

purposes and in different environments . In other words, we should be able to take a
multiple view for individual actors . We believe that such multiple views encourage one to
employ flexible distribution of computing power and intelligence such as polymorphic
operators tGreif-Hewi tt75] and the negotiation style of programming using coroutines in

writing programs for distributed systems [Yonezawa -Hewitt77] and Artificial Intelligence

S I. To insure the validity of these assert ions in B’, we need certain rules which will be
discussed in Section 5.1.3, Chapter 5.
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research EHewittl5]. Thus it seems beneficial to allow a single actor to have a broad role
which would be narrowed by imposing a strict type on it.

Concep tual representations provide us with the means to express not only states of
actors , but also multip le views and summaries of behaviors Such views and summaries
expressed by conceptual representations facilitate the understanding and implementation of
the behavior of actors.

4.3 A Specification Language

In this section , we exp lain basic constructs ~~ our specification language for serial
co rn pzlrat i ons and also discuss some issues of the time variant behavior of actors related to

specification languages. The specification language presented In this section will be
extended to include parallel computations in Chapter 6.

4.3.1 Specifications of Events

A “specification ” of an event is a formal description of effects caused by an event
which takes place in an actor system. Roughly speaking, the effects of an event E are

described by the next event caused by E and assertions which hold in the situation where

the next event takes place. The choice of the next event from the set of the subsequent
events caused by E is determined by the level of detail and the purpose of the specification.

A general form of specification for an event in our specification language is

written in the following notations:

~~~ - 1L4 - :  -
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<event: E

(Caw- i:
<pr e-cond: ... assertions ... >

<caused-ev ent: E’ >

<post-cond: ... assertions ... >)

>

£ is the event whose effects are described. Since the effects of E may vary depending

upon the situation where E takes place , the description of the effect may be divided into

more than one case. The assertions in the (pre-cond.~...> clause state the prerequisite which

has to be satisfied in the situation where E takes place. When the prerequisite is satisfied ,

the event E’ in the <caused-event:...> clause always takes ~~~ and the assertions in the

<post -con d: ...> clause hold in the situation where E’ takes place. More formally,

for E,
if <assert ions—in—precond) in Sit (E)

then JE’
such that E --> E’ and <assertions-in-postcond> in Si t(E ’)

The prerequisite stated in each (Case-i:...) clause must be mutually exclusive. From this , the

above notation can always specif y the effects of an event deterministically. The <event: ...>
clause need not contain all possible cases where E might take place. [In other words, the

logical union of the prerequisites for each case need not be universally true.) W hen E does

not takes place in any of the stated cases, we assume that the caused effects are undefined .

The scope of names and variables in the above notation is always local to each (Case -i:..)

clause. That is, the same names and var iables in different (Case-i: ...) clauses do not have

to refer to the same object. Names and variables appearing in the expression which

~ 

•~~~~~L
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represents the event E are global to each (Case-i:. ..) clause.

Though the above notation Is broadly applicable, we often use abbreviated forms
for events whic h initiate nested activities (cf. Section 3.1.3, Chapter 3). Suppose that the
event E is of the form:

[T < [ r equea t: M repiy-so: C]~

and the corresponding caused event E’ is of the form:

~ C < [reply: R]]I

where R is the actor which is received by the continuation actor C in the message of E.
Then we may use the following abbreviated form:

<event: [T < PVI]J

(Case-i:
( pre-cond: ... assertions ...)
<retur n: R >
<post—cond: ... assertions ...>)

>

For examp le, the effects of an event where a cell-actor C which has the contents B receives
the retr ievin g message (contents:) is written using the abbreviated form as follow. [Note that
there is only one case to be specified in this example. So the (Case-i:...) flotation can be
omitted.) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-69 -

<event: ~C < (contents:)]
S (pre-cond: (C is-a (CELL (contents: B))) >

<return: B >

S <posi- cond: (C is-a (CELL (contents: B)))>>

Other abbreviated forms are obtained by omitting <pre-cond:...>, <caused-event:...>,

<rcturn:... > or <pos:~-cond:...> clauses. When an event has no prerequisite, the <pre-cond:...>

clause may be omitted . For example, the creation of a cell-actor does not have any
prerequisites . Its specification is written as follows:

<even t: Q:create—ce ll <~ A]
<r eturn: C~ >

<post-con d: (C is-a (CELL (consents: A))) >>

where create—cell is an actor which creates a new cell-actor and A is its initial contents.

In general, in our specification language, underlined words such as create-cell are
constant symbols which always denote a fixed actor. Non-underlined words which denote
an actor are free variables and can be used as pattern variables in the process of symbolic
evaluation which we will discuss in the next chapter. The notation <actor>* means that an
<actor> is newly created and is not is-eq (cf. Section 4.1.3) to other actors created before.

When one is not interested in the assertions holding in a situation where the
caused event takes place, the <post-cond:...> clause may be omitted. Furthermore when one is
not interested in the caused event , the <caused -event:..) or <return: ...> clauses may be omitted
too. For examp le, when the contents of a cell-actor is updated, what event is caused or
whether the caused event might take place or not are sometimes not important. In such
cases , a specification of the update event may be written as follows.

L. - - - . — S . S ~~~ - -~~~- -- 5 - -4
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<event: (C < (update: A)]
<pre-cond: (C is-a (CELL (contents: B))) >

<post-cond: (C is-a (CELL (contents: A))) >>

4.3.2 Specifications of’ Actors (Contracts)

Every actor has its own finite fixed set of message types that it can accept. For

examp le, a cell-actor accepts two types of messages , (contents:) and (update: <new-element >),

and a queue-actor accepts two types of messages, (nq: <new-element> ) and (dq:). A

specification of an actor A must contain the specifications of all events , each of which is
the receipt of one type of messages that A can accept. It should also contain the

specification of the event where A is created, if it is possible to create A during

computations.

As an exam ple, let us specif y the behavior of pure queue-actor (cf. Section 3.2.2,

Chapter 3) in our specification language. First, we describe the creation of a pure

queue-actor.

<event: (create-pure-queue <= []]
S <return: Q* )

< po st- cond: (Q is-a (PURE-QUEUE (1)) >>
This tells us the following three things:

I) A new pure queue-actor Q is created by an event where the create-pure-queue actor

receives an empty sequence actor (] .

2) The creation event has no prerequisite.

3) States of a pure queue-actor is expressed by conceptual representations of the form:

(PURE-QUEUE[ ...]) in the specification.

L S~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - ~~~~ -~~~~~~~ S~~S
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Next , we specify the enqueue event where a pure queue-actor receives (nq: <element >).

<event: (Q < (nq: A)]

<pre-cond: (Q ia-a (PURE-QUEUE (Ix])) >
<return: QQ* >

<post—co nd:
(QQ is-a (PURE-QUEUE [Ix A]))
(Q is-a (PURE-QUEUE (Ix])) >>

This tells us that:
S I) A new pure queue-actor QQ is created and returned,

2) A becomes the last element of QQ and the rest of QQ’s elements are the same as those
of Q, and

3) The state of Q does not change.

The specification of the dequeue event can be written in a similar way.

In addition to specifications of events associated with an actor A being specified,
the specification of A may include some related information which is necessary or helpful

for using and understanding the specification. Definitions of auxiliar y conceptual
representations used in the specification, definitions of attributes or properties of A and
certain rules1 concerning the validity of assertions used in the specification are examples of
such information contained in the specification. In the case of a pure queue-actor , for

example, the following definition of a property “length” may be given in the specification.

S <property: length-of (Q) a length[i.x]
u;herc (Q is-a (PURE-QUEUE [ I x ] ) )  >

l.~’ngt h-of is the newly defined property of a pure queue-actor and length is a function

I. Such rules will be explained in the next chapter.



predefined on conceptual sequences. This definition says that length-of of a pure

queue-actor in a situation where its states is expressed as (Q is-a (PURE-QUEUE (Ix))) is

obtained by calculating length[ !x].

We often use the term “contract ” instead of’ “specification” to emphasize the fact

tha t it is an agreement or a “treaty ” between the implementors of an actor (module) and its

designers or clients , and also between its implementor and its users. Users of a module M

should rely only on properties stated in the contract of M. On the other hand, when

implementors construct the module M, they are required to satisf y only what is stated in the

contract of M. In the process of symbolic evaluation of a program which uses a module N,

only properties of N which are derived from the contract of N should be used. In Figure

4.2, we give a contract of pure queue-actors. It should be noted that the scope of names

and variables in contracts are always local to specifications of events, definitions, and rules.

For examp le, Q in the first <event:..) clause in Figure 4.2 does not necessarily denote the

same actor as Q in the second <event:..) clause.

4.3.3 Validity of Assertions in Specifications

There are two important assumptions about assertion in specifications of events.

One assumption is that states of actors which are not explicitly stated In specifications are

unknown. That is, we assume that we do not know how an event E effects actors which are

not mentioned in the specification of the event E. This assumption requires that effects of

an event should be stated in specifications as explicitly as possible in accordance with the

level of detail of the specifications. The other assumption is that assertions are usually

valid only in the situations where they are stated . If the state of an actor A is given in a

<prc-coit d:...> clause of the specification of an event E and the state of A is not given in the

5---- - --  ~~ - - ~~~~~~~~~~~~~~~~~~ - - - - - -~~~~ -~~~~~~~ - ~~~~5S~~ - -~~~~~
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Fig. 4.2. A Contract for Pure Queues

<event: [create-pure—queue <~ []]
<return: Q*)
<post-con d: (Q ia-a (PURE-QUEUE [])) >>

<event: [Q < (nq: A)]
<pre-cond: (Q is-a (PURE-QUEUE [Ix])) >
<return: QQ* >
<post-cond:

(QQ is-a (PURE-QUE UE [Ix A)))
(Q ia-a (PURE-Q UEUE (I x ] ) )  > >

<event: [Q < (d q:)]
(case-I:

(pre-cond: (Q is-a (PURE-QUEUE []) )  >
<return: (exhausted:) >
<po st-cond: (Q is-a (PURE-QUEUE [])) > )

(case-2:

<pr e-cond: (Q ia-a (PURE-QUEUE [B I~D) >
<return: (dequeued: BB (rest:QQ*)) >
<post -cond:

(QQ is-a (PURE-QUE UE [Iy]))
(Q is-a (PURE-QUE UE [B !y])) > ) >

<properey ten gth-of(Q) Jength[!x]
where (Q is-a (PURE-Q UEUE [ I x ] ) )  )

_ -
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corresponding <post-coed:...> clause , we assume that the state of A after the event E is

~nknown. It may or may not remain unchanged. For example, the state of a pure

queue-actor after the enqueue event does not change. As stated in the contract of pure

queue-actors in Figure 4.2, the assertion about the state of a pure queue-actor:

(Q is-a (PURE-QUEUE [ I x ] ) )

is repeated in the <post-cond:...> clause. Since a pure queue-actor does not change its state

after the creation (from the definition of “purity”], this repetition of the assertion may be

superfluous. But there is no way of knowing whether or not the actor being specified is

pure.

4.4 Examples of Specifications

In this section, several other characteristic examples of specifications (contracts)

written in our specification language are given. Some of the specifications given here are

followed by the corresponding PLASMA implementations.

4.4.1 A Contract for Impure Queues

In contrast to the contract for pj
~~ 

queue-actors in Figure 4.2, we give a contract

for impure queue-actors in Figure 4.3. As discussed in Section 3.2.2, an impure queue-actor
never creates a new queue-actor in response to (nq:...) or (dq:) messages: instead it changes its
own state.
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Fig. 4.3. A Contract for Impure Queues

<event: (create-impure-queue <= (]]
<return: 0* >
<post-con ditions: (Q is-a (IMPURE-QUEUE [])) > >

<event: (0 < (nq: A)]
<pre-conditions: (Q is-a (IMPURE—QUEUE (Ix])) >
<return: Q >

<post-conditions: (Q ia-a (IMPURE-QUEUE [Ix A))) > >

<event: [Q < (dq:)]j
(cas e— I:

<pre -condi tions: (Q is-a (IMPURE-QUEUE [])) >
<return: (exhausted:) >
<post-conditions: (Q is-a (IMPURE-QUEUE (3)) >

(case-2:
<pre-condisions: (Q is-a (IMPURE-QUEUE (B !y])) >
<return: (dequeued: B (rest: Q)) >
<post-cond itions : (Q is-a (IMP URE-QUEUE (Ix ])) > )>

4.4.2 A Specificatio n for a Message-Change Interact ion

As an example of specifications for the Message-Change Type Interaction (cf.

Section 3.2.4, Chapter 3), a contract for an actor which empties the elements of one impure

queue-actor into another impure queue-actor is given in Figure 4.4. A PLASMA

implementation of an actor which satisfies the contract above is given in Figure 4.5. This

implementation will be verified against the above contract by the technique of symbolic

evaluation in Chapter 5.

- S - S ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ j
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Fig. 4.4. A Contract for empty-one-queu.-into-another

(event: (empty-one-queue-into-another <= (Qi Q2]]

<pre-cond:
(Qi is-a (lAS PURE-QUEUE (!x i] ))
(Q2 ia-a (IMPURE-QUEUE [1x2]))
(Qi not-eq Q2) >

<return: (done: [Qi Q2]) >
<post—co nd:

(Qi is-a (IMPURE-QUEUE []))
(Q2 is-a (IMP URE-QUE UE [!x2 lxi])) >>

Fig. 45. A PLASMA of .mpty-one-queu .-int o-another

(.mply-orie-queu.-into-another E

(a> (=qi =q2] ,two impure queues are received by empty-one-queue-into-another
;and bound to qi and q2.

(rules (qi < (dq:)) ;the dequeuing message is sent to qi.
(a> (exhausted:) ;if qi is empty, t he complaint message is received

(done: (qi q2])) ,then emptied qi and extended q2 are returned.
(a> (dequeued: =iront-of-qi ;if qi Ia not empty, t he front element of qi and

(rest: =dequ.u.d-qi)) ;the remaining queue are received
;and bound to front-of-qi and d.qu.u.d-qi.

(q2 <= (nq: front-of-qi)) ;front-of-ql is enqueued at rear of q2.
(.mpty—on.-qu.u.-into-anoth.r <a (dequeu.d-ql q2])) )))

;d.queu.d-ql and q2 are sent to empty-one-queu.-into-anoth.r.
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4.4.3 A Specification for a Target-Message-Change Interaction

As an examp le c f  specifications for the Target-Message-Change Type interaction
(cf . Section 3.2.4, Chapter 3), we give a specification for an interaction between a vender
who sells some goods and a customer who buys the goods. The state of a vender who has
some amount of money and goods with him is expressed by conceptual representations of
the form

(VENDER (bills: {..j)(goods: { . . .}))

The state of a customer who is carrying some amount of money and belongings is expressed
by conceptual representations of the form

(CUSTOMER (bills: (..3)(belongings: (...J))

Their in teraction is described by the event specification in Figure 4.6.

Fig. 4.6. A Specification for an Interaction Between a Vender and a Customer

<evel,(: (V < C]
<pre-cond:

(V Is—a (VENDER (bills: (Ibs)) (goods: (!g Is))))
(C is-a (CUSTOMER (bills: (tbc !m)) (belongings: (I.p))))>

<return: C >

<post -cond:
(V is-a (VENDER (bills: (lbs !mJ) (goods: (Ig))))
(C is-a (CUSTOMER (bills: { ‘.bc)) (belongings: (I~ Is))))
(worth[ !s] = total—amount[!ni]) >>

—— - -
~~
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~
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4.4.4 Contracts for Generators

A generator is an actor which behaves like a sequence of the possible answers to

some problem. When It receives a (next:) message, a next answer is generated. As

examples, we consider two actors which successively generate increasing squares. One is a

pure generator -actor , called a “port -of-squares”, and the other is an impure one, called a

“stream of squares”. A contract for each generator is given in Figure 4.7 and Figure 4.8. In

the first event specifications in both contracts, I and u denote the lower bound and the

S upper bound, respectively .

Fig. 4.7. A Contract for Port-of-S quares

<event: (create—port—of—squares <a (I u]]
<pre-cond: (I ~ u) )
<return: PS~ > 

S

<~) oM-cond: (PS is-a (PORT-OF-SQ(JiIRES (low: I) (high: u))) >>

<event: (PS < (next:)]
(Case-I :

<pre-rond: (PS is-a ( PORT-OF-S QU/J RES (low: Ic) (hi gh: Ic)) ) >
<return: (exhausted:) >
<pos t-cond: (P S is-a (PORT-OF-S QU/I RES (low: Ic) (high: Ic)) ) ) )

(Case-2:
<pre-cond:

(PS ia-a (PORT-OF-S QU/JR ES (low: I) (high: u)))
(I < u) >

<return: (12 PSS*] >

<post-con d:
(PSS is-a (PORT-OF-SQU/J RES (low: I + 1) (high: u)))
(PS ia-a (PORT-OF-S QU/JRES (low: I) (high: u)))> ) > 
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Fig. 4.8. A Contract for Stream-of-S quares

<event: [create—stream—of—squares <= (I u]]
<pre-cond: (I � u) >

S (re turn: SS~ >

<post -cond: (SS is-a (STRE/IM- OF-S QIJ/ IRES (low: I) (hig h: u))) >>

<eve, tt: (Ss < (next:)]
(Case-I:

<prc-cond: (SS is-a (STRE/JM-OF-SQU/JRES (low: Ic) (high: Ic))) >
<return: (exhausted:) >

<post -cond: (SS is-a (STRE/IM-OF-SQU/IRES (low: Ic) (high: Ic))) >)

(Case-2:
<pro-cond:

(SS is-a (STRE/IM-OF-SQUiIRES (low: I) (high: u)))
(l < u) >

<return: (I2 SS ] )
S

. 
(post —cond:

(SS is-a (STRE/JM- OF- S QU/J RES (low: I + 1) (high: u))) >) >

--_-~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~ 5 -~~~~
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4.4.5 A Contract for average

In this subsection , we g ive a contract for actors whose behavior depends directl y on

the histor y of incoming messages. Obviously such actors are impure. An examp le given
here is a contract for the ‘~avera ge” actor , whic h returns the average of all the numbers

which have been sent to it. The contract is given in Figure 4.9.

The conce ptual representation ( l I VE R/ I C E  (...] ) for the actor exp licitly represents

the histor y (sequence) of all the numbers which have been received by the actor. This idea

is similar to that of Clint[1973] who has introduced a “mythical pushdown stack ” to have the

history recorded as a kind of comments in program texts to aid the verification of

programs. The function average-of in the contract in Figure 4.9 is defined on conceptual

sequences.

Fig. 4.9. A Contract for average

(q’ V~ flt ~[create— average <a I~
(ret urn: A* >
< p ost - eoud: (A is-a ( /J V E R/ I GE  (I]))) >>

<even t: (A < (mite-element: N)]J
<pr e-cond: (A is-a (lI VER/IC E [ l x ] ) )  >

(return: A )
< po st-cond: (A is-a (iIVERIICE (lx N])) >>

<even t: (A < (average:)] I
<pre-cond: (A is-a (lI VER/I CE (!xJ)) >
<return : average—of [~x] > -

<p ost- cond: (A ia-a (l I VER/ICE ( l x ] ) )  >>



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --T’”!, -r~~’~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ?~~~~~~~~~ !~•S• ? 5 ;  : r~~ -~~

- 81 -

4.5 Relationship to Other Work

At this point in our exposition, it would be useful to discuss our specification
techniques for serial computation in relation to other work in this area.

4.5.1 Behavioral Specifications

Based on the actor model of computation, I. Greif and C. Hewitt [Greif-Hewltt ’75.
Greif 75] have developed the behavioral approach to the specification technique. In their

a pproach, the behavior of an actor (or an actor system) is specif ied in the form of axiom
about events and the precedes order relation. Axioms describe the kinds of events that can
or must take place and the order in which these events can or must occur. Axioms describe

conditions w hich must be satisfied by computations.

This approach can deal with the time variant behavior of actors and parallelism,

but makes no use of the notion of states of an actor A [which we have defined as

equivalence classes of messages sent to A]. Therefore , for exam ple, in writing axioms which

specify responses to a message sent to A, t he previous history of computations of A must be

written out ex plicit ly. The lack of the notion of states in their approach makes

specifications long and difficult to understand. In particular , axioms for the behavior of

impure actors which behave like uata structures tend to be ver y complicated and unnatural.

[Imagine the axioms for impure queue-actors.] The reader of such specifications of a data

sti-ucture could understand only through reinterpreting axioms in terms of his intuitive

notion of states of the data structure. In our approach, states of actors play the central roles

in specifications and they are described by conceptual representations concisely, clear ly and

yet rigorously.

_  S ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ --~~~~~~~ —
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4.5.2 Burstall’s Work

By extending Floyd-Hoare[Floyd67, Hoare69] approach , R. Burstall[l972) has
proposed some specification and verification techniques which are able to deal with list
processing languages with “side-effect ” primitives such as rplaca and rplacd. To cope with
the problem of side-effects in list struct ures, he uses a special notation for linear list
structures. For example, a list structure:

x y

L__... >La I 1 - -- — ‘— >LbJ I >Lc r— —-....i

is ex pressed In his notation as follows.

(x a.,> y _b...c_> nil)

Though one might find some similarity between Burstall’s notations and those based upon
conce ptual representations , it is dif ficult to accommodate his notations to a wide variety of
data structures.

4.5.3 Rich and Shrobe’s Wor k

C. Rich and H. Shrobe have developed a specification language for LISP which is
used in their LISP understanding system[Rich-Shrobe76]. In theIr system, the reasoning
techniques used to deal with the problem of side-effects in LISP are along the same lines as
ours. However , the clear separation of identities of objects froln\ states of objects (cf.

- ~- -~_- - --_ ---~~~~-- S_ --5 -- - --- ~~~~S-



S 5~_~_5_~S•___ 5_ - . ~~~~~~~~~~~~~ 
- - -

-83 -

Section 4.1.3) is not realiied in their formalism. Thus specifications in their language tend
to be long and are difficult to use for other programming languages. For examp le, let us
look at an example of specification given in (Rich-Shrobel6].

(Spec-for: SWAP
(I np u t :  PAIR-i)
(Output:  PAI R - 2)
(Assert .

( I D  PAIR-i PAIR-2)
(LEFT PAIR-2 (RIGh T PAIR-i])
(RiGh T PAIR-i (LEFT PAIR-i])))

SWAP operates on a LISP pair to exchange its left element and right element . No new pairs

at e created by this operation. In the specification above, names PAIR-i and PAIR-2 denote

the same pair object P, which is stated by the first assertion in the (Assert:...) clause . The

reason why they need to use two different names for the one object P is to distinguish the

state of P before the operation from that of P after the operation. In our specification

language the SWAP operation can be written without introducing a different name for P.

Using a conceptual representation which describes the state of a pair object , a specification

for SWAP is given as follows.

<event: [SWAP < ~ll
(,) rc-con d: (P is-a (P/h R (left: A) (right: B) ))  >
<post -cond: (P is-a (P/ h R (le ft: B) (right: A))) >> 

A5 . ______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .iAA~A~~~~~~~~~__ -~~~ .~~ - — . - - - S
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The traditional Floyd-Hoare approach[FIoyd6l, Hoare69, Hoare72, Igarashi-et-a175,

Suzuki’75] to the specification and verification of programs has been limited in its ability to

deal with programs which change their behavior. For example, the sharing of data

structures in simple ALGOL-like languages is difficult to treat . Suppose that in the

following code x anct~ y are two- and one-dimeiisional arrays, respectively.

y - x [3 ,] ; ;a slice of x is shared by y.
x(3, 4] X[3, 4) + 1;

Their assignment rule cannot derive the correct value of y[ 4] after the above code is

executed. The reason is that the value (i.e. state)1 of an program variable is not

distinguished from its identity .

Furthermore , the lack of the separation of states from identities makes it difficult

for their approach to deal with specification and verification of programs written in

SIMULA-l ike object -oriented languages. For examp le, their formalism is Inadequate to

deal with the following simple piece of SIMULA code:

queue-i : - new create-irrnpure-qu.ueØ;

queue-2 : - queue-1.enqueue(2);

queue-2 .enqueue(3);.

In the next chapter we will demortstrate how this kind of code is treated in our formalism.

I. In the traditional Floyd-Hoare approach, variables in assertions denote literal program
variables. Thus the value of a program variable should be considered as its state .

- - --- - 5 - .  -
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4.5.5 Algebraic Specification Techniques

As discussed in Section 2.4.1, Chapter 2, algebraic techniques [Zillesli, Guttag’75)

have been developed for the specification of abstract data types[Liskov-Zilles’74). In the
S algebraic approach, all operations and procedures are specified as functions , which leads to

a serious problem; the purity and Impurity (cf. Section 3.2.1, Chapter 3) of data structures

cannot be easily distinguished.
S 

As an example, let us consider an algebraic specification of queues given in
[Guttag75). Important operations on a queue are ADD and REMOVE, whose functionality is
as follows.

ADD : Queue x integer ----> Queue
REMOVE : Queue --- > Queue

The essential part of the specification is given by the following equation:

REMOVE(ADD(q, i)) = ADD(REMOVE(q), i) (*)

where q is not an empLy queue. In their interpretation, operations such as ADD and REMOVE
S always create new objects and cause no side-effects to the objects that they operate on.

Equations of operations such as (*) define congruence relations over the word algebra

constructed from the operations and objects. Thus in their approach, algebraic techniques

are used to specify the behavior of only pure actors (Immutable objects).

There is another interpretation. If we consider the domain and range of

operations as sets of states of objects, equations (axioms) of the operations can define

congruence relations over the states of objects. In this interpretation, algebraic techniques

can be used ~j~jy~ for impure actors (mutable objects) 

- -  -.5--S .. - -
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In either interpretation, the algebraic approach has difficulties In dealing with
S both Iure actors and impure actors simultaneously. Techniques developed by J. Spitzen

- and B. Weg breit (Spitzen-Wegbre it75, Wegbre it-Spitzen76] have the same problem of

distinguishing the purity and impurity of data structures.

I
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5. Verif ying Serial Comput ations

In this chapter, our verification techniques for serial computations are presented.
The first section describes the method of symbolic evaluation which is the major
instrument in our verification techniques. It also contains a detailed explanation of our
reasoning method which can be employed in environments where computations may cause
side-effects . The next two sections describe o ‘r verification methods, each of which is
applied to different types of actors. Then, to close the chapter , we reflect on our method of
symbolic evaluation and discuss its application to other areas .
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5.1 Symbolic Evaluation

In this section, we will describe our basic method of symbolic evaluation , the major

instrument of our verification techniques. A simple example of symbolic evaluation of

PLASMA code which involves sharing of actors with side-effects is given at the end of the

section. Although in this thesis we consider symbolic evaluation primarily as a tool for

program verification , it is also useful for other purposes such as program testing,

debugging. optimization, dependency analysis, perturbation analysis etc. The chapter

concludes with a discussion of some potential applications.

5.1.1 Overview

Symbolic evaluation is a process which abstractl y [symbolically) executes programs

on abstract [symbolic, as opposed to “concrete ”] data. When a program takes numerical

input, the symbolic evaluation of the program does not deal with concrete numbers such as

123, 1776, and 1984, but rather with symbolically expressed numbers such as “ni”, “n2”, and

m .

Though symbolic evaluation is an extension of ordinary execution of programs, it

differs from ordinary execution in the following points.

(1) The only properties of input that can be used are the ones specif iced as the

prerequisites of a module being symbolically evaluated. [E.g., input numbers are

required to be positive integers.]

(2) When the symbolic evaluation of a module M encounters an invocation of some

module N, the specification [contract) of N is used to continue the symbolic

evaluation . The implementation of N is not used.

- - 5 . - - 5 - - - 

j
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Symbolic evaluation can be viewed as a mechanization of the process of a human
programmer tracing a program without using concrete values to understand the
computations expressed by the program.

In symbolic evaluation, the code of a module is interpreted step by step according
to either pre-defined semantics of language primitives or specifications of modules invoked
in the module. Each such step is triggered by the symbolic evaluation of an expression iii

the code which corresponds to an event [cf. Section 3.1.2, Chapter 3). The state of the
progra m [code] at each moment before and after an interpretation step is referred to as a

situation . The symbolic evaluator 1 has a data base to record what events occur, what facts
hold and what is assumed in each situation. Facts that hold in a situation S are recorded
as assertions associated with S.

Since each expression is interpreted on abstract data, when a conditional expression

is inter preted, the subsequent symbolic execution path must split in the usual

fashion[Deutch l973). For example, consider the symbolic evaluation of

if (P x) then ... else

After the symbolic evaluation of the expression (P x), the symbolic execution path sp lits into
two branches: one for the then-c lause and the other for the else-clause. To start the

subsequent symbolic evaluation, (P x) must be assumed for the then-clause and -‘(P x)

the else-clause . If the evaluation of (P x) has no side-effects , the assertions holding in the
situation where (P x) is evaluated are inherited for both clauses.

In essence, symbolic evaluation is a process which abstractly evaluates the code

I. In this chapter , we assume that symbolic evaluation is carried out by a hypothetical
system.

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
.- 

~~~~~~~~~~~~~~~~~~ -—-~~~~- -- - ~~~~~~~~~~~~~~~~~~
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Fig. 5.1. A Situational Tree
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S forward along the execution path and produces a tree structure whose nodes correspond to

situations. At each node of the tree, a~sertions which hold in the corresponding situations

are entered. We call this structure a situational tree . [See Figure 5.1.) The assertions

entered in the situational tree are used as the primary source of information for answering

questions about the implementation. As we shall later see, verification of implementations is

carried out by using such situational trees.

5.1.2 Partial Descriptions of Situations

In order to illustrate how assertions are handled in a situational tree , we

symbolicall y eva luate the following piece of code.

~~5 5 ~

(queue-i <= (nq: 6))  ;queue—i receives a message (nq: 6)
- 5’- -

(queue-I < (nq: 8)) ;queue-1 receives a message (nq: ~ )

-5” -

S — — s —— s~ i~~S ~~~~~~~~~~~~~~ - _~.~ sb._.~S_S S 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ A5-5 -
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S. S’, and 5” denote situations before or after the events corresponding to

statements in the code. We assume that two distinct impure queues, queu.-i and queu.—2

have been created before the situation S and assertions about states of the two queues are

alread y entered at the node for S in a situational tree. See the diagram below.

S : (queue-i is-a (IMPURE-QUEUE [3 7 i i )) )

I (queue-2 is-a (IMPURE-QUEUE [2 4] ) )

With these assumptions , the first statement in the code which expresses an event

~ gueue-1 <= (nq: 6)]~ is interpreted. To know what effects are caused by this event , the

symbolic evaluator first looks for an assertions about the state of queue—i at the node for S
in the situational tree. It finds t hat the state [or conceptual type] of queue—i is expressed as

(IMPURE-QUEUE [3 7 11))

From the for m of the conceptual representation lt.e., f r om “ ( UP URE- QUFAJ E”j, the contract

for impure queues in Figure 5.2 is referred to.

The event expression [Q <= (nq: A)]1 in the second <event:...> clause in the contract

for impure queues in Figure 5.2 matches against the event ~gueue-i <= (nq: 6)]I. Also the

assertion

(Q ia-a (IMPURE-QUEU E (lx]))

in the <ev ’ni:...> clause matches against the assertion

(queue-i is-a (IMPURE-QUEUE [3 7 11]))

which has been entered at t he node for S. Thus the whole second (cvent:...d Jause can be

instantiated as follows.

_.

~ 

- — ~~~~~~~~~~~~~~~~ - A~~S~~ ~~~~~~~~ss
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Fig. 5.2. A Contract for Impure Queues

<event: ~ create—impur e—queue (= [)]
(return: Q* >
< pose- cond: (Q is-a ( IMPURE-Q UEUE [])) > >

<event: EQ < (nq : A)]
( p r e-cond: (Q ia-a ( I M P U RE - Q U E U E  [ l x ) ) )  >
<r etu rn: Q >
< po s t -cond: (0 is-a ( IMP URE-QUEUE [ lx  A])) > >

<event: [ Q (= (d q:)]
( c a s e — I :

< p r e-cond : (0 is-a (I M P U R E-  Q UEUE [])) >
<r eturn: (e~hatLs tcd:) >
< po a t-coud: (Q ia-a (I M P U R E - Q U E U E  [3)) >

(casc -2 :
< p r e-cond: (Q is-a ( IMPURE-Q UEUE [B !y])) >

5 (r eturn: (dequ cued: B (res t : Q ) )  >
< po st.-cond: (Q is-a ( IMPURE-Q UEUE [ ly ] ) )  > ) >

< event: ~ q~~.ue— 1 < (uq: 6 )]
<pre-cond: (queue-i is-a ( IMP URE-QUEUE (3 7 ii]))>
<re t urn:  queue—i >
<poai -con d: (queue—i ia-a ( IMPURE-QUE UE [3 7 11 6]))>>

The symbolic evaluator enters the assertion in the above <post-cond:...> clause at the node

~T~or the next situation 5’. Also it records what event took place between the two situations.
See the tipper diagram in Figure 5.3. The second statement in the code expresses an event

queue-i <= (nq: 8)] , which A s interpreted in the same way as above. The effect of this
event is recorded at the node for the next situation 5” as shown in the lower diagram of

-- - .-- ,“ - —— - - S~~-- -- - -- -- - .
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An important point in the manipulation of assertions described above is that the

assertion about the other impure queue actor , qu.u.-2, is left untouched, neither copied nor

modified in going from S to 5’ and 5”. As the diagrams in Figures 5.3 show , the
situational tree thus generated by the symbolic evaluation does not contain assertions about

the states of queue-2 at the nodes for B’ and 5”. In general, a situational tree generated

Fi g. 5.3.

S : (queue-i is-a ( IMP URE-Q UEUE [3 7 11]))
I (queue-2 is-a (IMPURE-Q UEUE [2 4]))

~gueue-1 <= (nq: 6)]

(queue-i is-a (IMPURE-QUE UE [3 7 ii 6]))

(queue-i is-a ( IMPURE-QUEUE (3 7 11]))
I (queue-2 is-a ( IMPURE-QUEUE [2 4]))

~ queue- i <= (nq: 6)]

8’ : (que ue-i is-a (IMPURE-Q UEUE (3 7 11 6]))

[queu e- i < (nq: 8)]

8” (queue-i is-a (I MPURE-QUEUE [3 7 11 6 8)))

— —
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by symbolic evaluation is only a partial description of situations. When one needs to know

states of actors or relations holding in a situation, which are not explicitly asserted at the

corresponding node in the situational tree, one must rely on the reasoning method described

in the next subsection.

5.1.3 The Method of Reasoning (Uses of the Trans-situational Rules)

in this subsection, we will illustrate how situational trees are used for the reasoning
in our formalism. In general, questions about a given situation are answered by reasoning

backward. That is, to answer questions such as whether some assertions hold in a situation
S or in what states some actors are in 8, a situational tree is looked at from the node for S
to previous situations.

For example, suppose that a situational tree shown in Figure 5.4 Is given and we
want to know the state of Q in a situation S~. First we try to find some assertion which
describes the state of Q at the node (or the situation 87. Since the given situational tree

does not have any assertions about Q at the node for 87, we look for assertions about Q
backward along the branch of the situational tree. (See the dotted line in Figure 5.4.) An
assertion

(Q ia-a (IMPURE-QUEUE (2 5 4]))

is found at the node for 83. However, all we know at this point is that the assertion holds
An 83. but we are not sure that the assertion holds in 87, because some events which

destroy the validity of this assertion in 8~ might have occured between 83 and 87. So we

must check on such events .

in order to know what events nullify the validity of assertion, each event
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Fig. 5.4. Reasoning Backward

S3: (Q Is-a (IMPURE-QUEUE (2 4 5]))

/ \~
specification in the contract for Impure queues shown in Figure 5.2 is examined. If in the
specification for an event E the state of Q stated in the (pre-cond:...> clause is different from
the one in the corresponding <post-cond:... clause, the event E nullifies the validity of the
assertion. In fact , (Q = (dq:)]j and [ Q <~ (nq:...)] ~ turn out to be such nullif ying events.

The process of finding the nullifying events can be saved if the contract contains
an explicit statement which indicates such events. For this purpose, we may add the

following clause to the contract for impure queues.1

<for-assertion: (Q is-a (lA! PURE-QUEUE (...]))
<only—affcct ing-evcnts-arc :

((Q (= (nq:...)] ~, IEQ < (dq:)] ) >>

This statement says that the validity of assertions of the form
(Q is-a (iMPURE-QUE UE (...]))

I. <for-assertion:...> clauses do not have to be placed in contracts for actors. They can be
placed in some global place to which the symbolic evaluator have access.
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is destroyed only by the set of events appearing In the (out y-affecting...) clause.2

In our formalism, assertions of the form

(<actor) is-a <conc.ptu.l—r.pru.ntation )

can be inherited from an ancestor situation to a descendant situation S
~ 
if the following

two conditions are met:

j (I) The events specified In the corresponding <for-assertion:...) clause do not take

place between 5, and S~.
(2) At the node for the descendant situation S~. no assertions about the <actor>

have been entered which use the same form of conceptual representation as used in

the assertion being inherited from 5,,
By virtue of the second condition, we do not have to keep adding events to the

<for-assert ion...> clause every time we implement a new actor which changes the state of the

<actor . For example, suppose that an actor .mptying-qu.u. which empties the elements of

an impure queue-actor Is implemented and that its specification is given as follows:

<nve;lt: (emptyin~-gueua <~ Q]~<prc-cond: (Q is-a (IMPURE-QUEUE [ hi)) >
<post-cond: (Q is-a (IMPURE-QUEUE (]))>>

When the PLASMA expression (.mptying-qu.u. <= Q) is symbolically interpreted in a

situation S where (Q is-a (IMPURE-QUEUE (1 2 3])) holds, the assertion
(Q ia-a (I MPUR E -QUEUE (] )) is entered at the node for the next situation 5’. If we did not
have the above condition (2), the assertion (Q is-a (IMPURE-QUEUE (1 2 3])) could be

2. Note that this reasoning is valid only for serial computations. It is not valid if’ there are
concurrent events.
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inherited to 5’. To prevent this invalid inheritance without the condition (2), we would
need to add the event [emptying-queue <= Q]J to the list of nullifying events.

In general, the rule which indicates what conditions guarantee valid inheritances of
assertions from one situation to another is called a trans -s ituat ional rule. For particular
assertions or particular f orms of assertions , appropriate trans-situational rules are necessary

for correct reasoning. The (f or-assert ion:...> clauses given in contracts are one type of
t rans -situational rules. In Section 5.1.5, some examples of trans-situational rules are listed.
The reasoning using trans-situational rules described here is a procedural approach to
McCarthy’s frame problem (McCarthy-Hayes69]. We will discuss this issue in Section 5.4.

5.1.4 Variables and Identifiers

In this subsection, we will explain how names for actors are handled in symbolic
evaluation for programs written in PLASMA. The technique given here allows us to deal

efficiently with the problem of both identity and sharing of actors.

Names in PLASMA fall into two classes: variables and identif iers. A variable x

can be declared and also initialized with the value of an expression <El> by the following
form of statements

(lo t Cx initially <El>)...)

The value of x can be changed only by executing expressions of the form

Cx <E2>).

Occurrences of x in programs except in the above form stand for the value of x. A
variable x is usually implemented by a cell actor, but in that case an expression x in code
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does not stand for the cell actor itself’, but rather for the contents of the cell actor. In

symbolic evaluation, to state that a (variable> has an <actor> as Its value In some situation,

assertions of the following form are used.

((vari able) has-value (actor> )

When the symbolic evaluator Interprets an expression

Cx ‘-
in a situation 8, the following assertion

Cx has-value B)

is entered at the node for the next situation, where B is the value of’ CE> in S.

An identifier is declared and bound to an actor In the course of program

execution. To express that an Cid.ntili.r> is bound to an Cactor>, we use assertions of the

form

((id ntil..r a <actor))

F In the symbolic evaluation of a module M, an identifier x used In the code of M can be

alwa ys regarded as the actor that it is bound to, because one identifier is not bound to more

than one actor throughout the symbolic evaluation of M. This Is guaranteed by:

(I) the restriction on the syntax of PLASMA that no names are declared more than

once inside a module, and

(2) the fact that symbolic evaluation passes over each expression in a module

exactly once.1

1. This fact is true only when symbolic evaluation is used for program verification.
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When more than one symbol (here, symbols mean ones denoting actors in contracts

H (such as Q in Figure 5.2) as well as indentifiers in programs] denotes the same actor, we use

assertions of’ the form

(<symbol—i> is-eq (symbol—2))

As an identifier can be regarded as the actor that it is bound to, the relation “is-eq and ~~
“

can be used indistinguishably. Since the relation “ is-eq” is an equivalence relation, it forms

an equivalence class of identifiers in programs and symbols denoting actors in contracts.

Every member of such an equivalence class denotes the same actor. In symbolic evaluation,

one identifier (or symbol) Is chosen from each class (e.g., the one which Is first used among

the members of’ the class] and any uses or occurrences of other members in the same class

are always considered as those of the chosen one. To record the state of an actor A, the

symbolic evaluator always uses the one chosen identifier or symbol for A throughout all the

situations. This arrangement eases the handling of shared actors In symbolic evaluation.

To illustrate the use of identifiers and symbols explained above, let us consider

the following piece of code. This code is a PLASMA version of the SIMULA code given

in Section 4.5.4, Chapter 4 as an example which is difficult for the Floyd-Hoare technique.

-S o-
(lea (queue-i a (create-impure-queue ))

then —

(let (qu.ue-2 a (qu.u.-i < (nq: 2)))

then

(queue-2 <= (nq: 3))

~S3 •

~~O’~ ’~~3 denote situations before or after the events corresponding to statements in the
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code In what follows the notation

in S : ...<.ss.rtion ...

means that (assertion>s are entered at the node for In a situational tree.

The event [creat.-impur.-qu.u. <= [ ] J takes place in S~. By virtue of the

contract for impure queues in Figure 5.2, we know an empty impure queue-actor is created.
Then the let statement binds the identifier queue-i to the empty queue-actor. We may use
a symbol Q for the newly created actor and record this event by two assertions

(Q is-a (IMPURE-Q UEUE [ 1))
(q~eue-i a Q),

but one assertion suffices. Namely,

in Si: (queue-i is-a (IMPURE-QUEUE (]))

The second statement of the above PLASMA code is interpreted by using the

following event specification instantiated from the clause in the contract for impure queues

<event: [q!ieu.-i < (nq: 2)]
( prr -cond: (queue—I is-a (IMPURE-QUEUE [] )) >
(return: queue-i >
(posi-cond: (queue-i Is-a (IMPURE-QUEUE (2]))>>

The state of queue-i is changed as described by the assertion in the (post-coed:...) clause
and queue-i is returned. The let statement tells us that the returned queue-i Is bound to
queue-2. Thus

I n  82 :  (queu.-1 ia-a (IMPURE-Q UEUE [2]))
(queue-i Ia-eq qu.u.-2) )
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In interpreting the third statement , since we know that queue-2 and queue—i denote

the same impure actor , the event [q~ioi~~2 <= (nq: 3)] stands for [queue-i (= (nq: 3)] .

Thus the change in the state of queue-i is recorded as

in 53 : (queue-i is-a (IMP URE-QUEUE [2 3]))

Any references to queu.-2 in the interpretation of the subsequent statements in the code are
treated as the references to queue-i.

5.1.5 Examples of Trans-Situational Rules

In this subsection, we will give the trans-situational rules which will be used In the
examp les of symbolic evaluation in this thesis

(~:~) Assertions of the form ((identifier> a <actor>)

which state that <identifier> is bound to <actor>, can be passed unchanged between any two
situations within the scope of (identifier>.

(:) Assertions of the form (<actori is—eq <actor2>) and ((actori> not—eq (actor2>),
which state the identity of actors, can be always inherited from one situation to another
without any conditions. -

( :) Assertions of the form

(<c—sequencel> = <c-sequence2>) and ((c—sequ.nc.i> � <c—s.qu.nce2>),

which state the equality of conceptual sequences appearing in conceptual representations,
can also be Inherited without any conditions. (Note that <c-.equ.ncei> and <c-.equ.n ce2>

are not sequence-actors but mathematical sequences. All mathematical facts can be
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inher ited without any conditions. This is a special case.]

(‘:) Assertions of the form ((actor> ia—a (SEQUENCE (!x]))

which state that <actor) is a sequence-actor whose elements are Ix, can be Inherited without

any conditions because a sequence-actor is a pure actor which never changes its state.

(:‘) Assertions of the form (<variable) has—value <actor>)

which state that <variable) has <actor> as its value in some situation 5, can be inherited to a

situation T if no assignments to this <variable> take place between S and T. (Cf. Section

5.1.4.)

5.2 Verification of Acto rs Behaving as Procedur es

Methods of verification reflect methods of specification. Roughly speaking, two

methods have been employed in the specification technique presented in the previous

chapter.

One method is to specify the behavior of an actor A in terms of the states or the

changes in the state of ~~~~ 
actors which are sent to A, or which are created during the

invocations of A. In this method, the state of A is not used in specifying the behavior of

A. Most actors which behave purely, as “procedures” are specified by this method. A

typical examp le of such actors is empty-one-queue-into-another. (See Section 4.4.2, Chapter

4.] In general, this method applies to the specifications of the actors which are ta rgets in

the No-Change-Type and Message-Change-Type interactions introduced in Section 3.2.4,

Chapter 3.

The other method is to specify the behavior of an actor B in terms of the changes

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~
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in the state of B itself. Actors which behave as “information storage”, such as data

str uctures and generators , are specified by this method.

In this section, we will illustrate our verification techniques for actors behaving like

procedures . whose behaviors are specified by the first method mentioned above. The

verif ication techniques corresponding to the second specification method will be discussed

in the next section. However, since actors are essentially procedural objects whose

implementations are written as programs, most of the techniques that will be discussed in

this section [such as the handling of recursion, loop, case splitting and convergence) are

necessary bases for the verification of information-storage-like actors.

5.2.1 Symbolic Evaluation iii the Context of Specifications

In order to verif y an implementation of an actor against its specification, symbolic

evaluat ion of the implementation [i .e. code or script) is carried out in the context of the

specification . In our formalism, a specification of an actor which behaves like a procedure

is expressed by a specification of the event which initiates the invocation of the actor. A

specification consists of the preconditions for the incoming message (i.e. input), and the

postconditions to be satisfied by the result of the invocation. Thus the symbolic evaluation

of the implementation is started with the assumption that the preconditions are satisfied.

Under this assumption the symbolic evaluation is carried out and then the results of the

symbolic evaluation are examined as to whether they satisfy the postconditions given in the

specification.

Below we will demonstrate the verification of an implementation of

empty-one-queue-into-another (hereafter empty] against its contract. Its contract and

PLASMA code are given in Figure 5.5. The code Is augmented with situational symbols

J
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Fig. 5.5. A Contract and Implementation of empty-one-queue-into-another

<eeu!nt: [empty—one-queue-into-another <= (Q I. Q2]]
<pre-vond:

(Qi ia—a (IMPURE-QUEUE (lxi]))
(Q2 is-a (IMP URE-QUEUE (!x2]))
(Qi not-eq Q2) >

<return: (done: (Qi.Q2]) >
<post—cond:

(Qi is-a (IMPURE-QUEUE I ] ) )
(Q2 is-a (IMP URE-QUEUE [!x2 lxi])) >>

(empty—one-queue-into-another
(a> [=qi =q2] ;two impure queues are received by empty-one-queue-into—another

;and qi and q2 are bound to them.
- 5received-queues -

(rules (qi <= (dq:)) . ;:he dequeuing message is sent to qi.

(a> (ex hausted:) ;if qi is empty, the corn plaint message is generated
- 5.xhausted-qi -

(done : (qi q2]) ) ;then emptied qi and extended q2 are returned.

(a) (next: =front—of—q i ;if qi is not empty, front of—qi
(rest: =d.queued-qi)) ;and dequeued-qi

;arc bound to the front element of qi and the remaining queue, respectively.
- 5dequeued-qi -

(q2 < (uq: front-of-qi)) ;front-of-qi is enqueued at roar of q2.

- 5enqueued~q2 -

(empt y-one-queue-into-another (a [dequeu.d-ql q2])) ) ))
;dequeued-ql and q2 are sent to .mpty-one-queu.-into-another.
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wh ich denote situations before/after events corresponding to each statement. Note that this
implementation contains a conditional branch and a recursion, the handling of which will
be explained below.

First , the preconditions of empty in its contract are entered in the data base.

£i~ 5j,,jjj 11
(Qi is-a (IMPURE-Q UEUE ( !xi]))
(Q2 is-a (IMPURE-QUEUE (1x2]))
(Qi Iloi-eq Q2)

After the symbolic pattern matching is performed, identifiers qi and q2 are bound to Qi
and Q2, respectivel y. So this is recorded in the data base as the following assertions.

ui 8received quoueg
(qiaQi)
(q~~a Q2)

Then the PLASMA expression (qi <= (dq:)) in the rules-statement is interpreted. The
dequeuing message (dq:) is sent to Qi that qi is bound to. To know the result of this
event , the symbolic evaluator must consult the <event...> clause for the dequeuing in the
contract:

<event: [Qi <= (d q: ) ]j
(case- it

<pre-cond: (Qi is-a (IMPURE-QUE UE (])) >
<return: (ex hausted:) >
<p oss-cond: (Qi is-a (IMPURE-QUE UE [) )) > )

(case-2:
<prc-cond: (Qi is-a (IMPURE-QU E UE [B fy])) )
<return: (next: B (rest: Qi)) >
<poat-cond: (Qi ia-a (IMPURE-QUEUE (li])) >) >
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(Note that the above clause is an instantiation of the event...> clause for the dequeulng in

the contract for impure queues in Figure 5.2, which Is obtained by substituting Qi for Q.]

Now the symbolic evaluator has to consider two cases: where Qi is empty and where Qi is

not empty. (See the situational tree for this example in Figure 5.6.)

Case L 1QJ~ ~~ (IMPURE- Q UE UE [.]~

In this case , the contract specifies that the (exhausted:) message should be returned. This

message matches against the first (a>...)-statement inside the (rules...) statement. To follow

this path , xi = (] must be assumed. So at the node for 8.xh.u ;ted qi’ the following

assertions are entered.

Lii

(xl = ( ] )
(Qi is-a (IMPURE-QUEUE (] ) )

Then the result of the invocation, the message (done: (qi q2]), is returned in 5exhausted—ql
For this result , there are three postconditions stated in the contract of empty:

Fig. 5.6.

1initial

5received’ queu.s

8exhausted-qi 5dequeue-qt

8enqueu.d-q2



ri: (done: (Qi Q2]) must be returned

r2: (Q1 ~~ (IMPURE -QUE UE [] ) )  must hold , and

r3: (Q2 is-a (IMPURE- QUEUE (!x2 lxi])) must hold.

It is easy to show that each postcondition is satisfied in Sexhausted_qi:
(::~) for ri, since the trans -situational rules for binding allow the Inheritance of the

assertions (gi a Qi) and (ga a Q2) from 5received qu.ues to 8.xhausted.-qi’
the required message is returned in 8exhausted-ql’

(:~) for r2, the assertion (Qi is-a (IMPURE-Q UEUE [ ) ) )  Is entered at the node for

Sexhausted_q1~ and

(‘:~) for r3, the two facts guarantee that the requirement is satisfied:

(I) (Q2 is-a (IMPURE-QUEUE [1*2])) can be inherited from 8initial to

Sexhausted_qi by using the trans-situational rule for

(Q2 is-a ( IMPURE-QUEU E (...])) [which is obtained by instantiating the

<for-ass er t ion:...> clause in the cont~act for impure queues. Cf. Section 5.1.3.1

This inheritance is legitimate because neither [Q2 <= (nq:...)~ nor

[Q2 < (dq:) J have happended and no assertions of the form

(Q2 is-a (IMPURE-QUEUE (...])) have been entered at the node for

5exhausted—q i~
(2). [1*2] = [1*2 !xl] holds in 8exhaust.d~qi because xi = () holds in

8exhausted—ql ( (!x2 lxi] = (1*2 I I] ]  (!x2] )

Therefore (Q2 is-a (1AIPURE-QUE(JE [!x2 1*1])) holds in 5exhaueted~ql• Thus Case-I is

verified.
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Case-2~ iQI ~~ (1MPURE-OUEUE [k hill

In this case, the contract for impure queues tells us that (next: B (rest: Qi)) Is the result of

(qi < (dq:)) where the following assertions are assumed.

(xi = (B !y])
(Qi ia-a (IMPURE-QUEUE [Ix]))

The result (next: B (real: Qi)) is matched against the pattern in the second (a>...) statement

inside the (rules...) statement. At the node for 5disqueued~qi’ the binding information is

also entered together with the above assumption.

lii

(front-of-qi a 8)
(dequeued gl a Qi)
(xi = (8 Ix])
(Qi is-a (IMPURE-QUEUE [lx]))

Then the PLASMA expression (q2 <= (nq: front-of-ql)) Is Interpreted in this situation.

Since q2 is bound to Q, and front-of-ql is bound to B [from the trans-situational rule for the

binding), the event taking place is [02 = (nq: B)3 . To know the effects of this event, the

system refers to the second <event:...> clause in the contract for impure queues in Figure 5.2.

The state of Q2 in 5dequeue-qi is obtained from the assertion

(Q2 ~~~ (I *IPLJR E- QUEUE (!x2])) at the node for 8,rntiaI~ 
Because it can be inherited to

Sdequeued~ql for the same reason as ex plained above in the case of Its Inheritance from

S initial to 8dequeu.d ql~ 
Thus the second event:...> clause Is Instantiated as follows. (Note

the substitutions of Q2 for Q, *2 for x and B for A.)

L
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<event: (Q2 < (nq: B)~
<pre-cond: (Q2 ia-a (IMP URE-Q UEUE [ !x2] )) >
<retur n: Q2>
<post~eotid: (Q2 ia-a (IMP URE-QUEUE [!x2 B] )) >>

The assertion in the (poss-cond:...> clause is entered at the node for

Ut 5enqueued-q2 (Q2 ia-a (IMPURE -QUEUE [!x2 B]))

Now the last PLASMA statement (empty = (dequ.u.-ql q23) is interpreted. From the

binding information, the corresponding event Is [empty <= [Qi Q2]~ . To know the effects
of this event , the contract for empty in Figure 5.5 is referred to. Since we are trying to

verify the code against this contract , this is a “recursive”1 use of the contract. The

preconditions stated in this contract must be satisfied before it can be used. In fact, the

assertions:

(Qi is—a (IMPURE- QUEUE (lx])) and (Qi not-eq Q2)
can be inherited from 5dequeued-qi by the trans-situational rules for

(Qi is-a (IMPURE-QUEUE (...])) and (<actori> not—eq <actor2>),
respectively. Thus the following assertions hold in

(Qi is-a (IMPIJRE-QUELJE (lx]))
(Q2 ia-a (IMPURE-QUEUE [!x2 B)])
(Qi not-eq Q2)

Therefore the preconditions of empty are satisfied . Now the postcondltions of the contract

for empty guarantee that (done: (Qi Q2]) is returned and that the following assertions:

I. Recursion and iteration in symbolic evaluation are discussed In Appendix III.
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(Qi is-a (IMPURE-QUEUE [ ] ) )  and
(Q2 ia-a (IMPURE-QUEUE (!(!x2 B] ly])) hold.

hold in the situation following 8enqueued q2• Facts about c-sequences:

(![!x2 8] lx] = [!x2 B lx],
[!x2 B lx] = [!x2 !xl], if xl = (B lx].

are used to simplif y the above assertions. That is, since xi = (B ly] can be inherited from
8dequeued-ql by the trans-situational rule for (<c-.equenc.D = <c-s.qu.nce2>), it follows

that

(QI is-a (IMPURE-Q UEUE [] ) )
(Q2 is—a (IMPURE-QUEUE (!x2 lxi])).

Thus the post-conditions for empty-one-queue-into-another are also satisfied in Case-2.

Though it has been shown that both Case-I and Case-2 meet the postconditions for
empty, we cannot conclude that the implementation of empty in Figure 5.5 satisfies its
contract , because the convergence of the invocation of the implementation is not
guaranteed, although it Is explicitly required by the contract. (Recall the meaning of
<return:...> clauses given in the previous chapter.] For after splitting into two cases at the
(rules...) statement , the symbolic evaluation for both Case-i and Case-2 Is resumed under the

assumption that the control has reached the points corresponding to Sexhausted...qi and

8dequeued-ql Therefore, to demonstrate that the above assumption Is always guaranteed
is another part of the verification process. This issue is discussed in Appendix IV.
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5.3 Verification of Actors Behaving as Information Storage

In this section, we will present our specification techniques for actors whose
behaviors are specified In terms of their own states (or changes in their own states].
Specifications of actors which behave as “information storage” such as data structures and
generators (Section 4.4.4) are often written in terms of their own states. For the verification
of implementations of these actors, symbolic evaluation is still the major Instrument and all
the techniques presented in the previous section are still employed. In addition, however,
special considerations are necessary in dealing with conceptual representations of the actors
being verified. We will discuss such considerations in the next subsection.

5.3.1 Implementation Invariants

The specification of impure queue actors in Figure 5.2 is written in terms of the
changes ~n their sta tes before and after their invocations, and thei r states are expressed by

conceptual representations of the following form.

(IMP URE-QUEUE [ ...] )

When some program which contains invocations of impure queue actors is symbolically
evaluated , conceptual representations of the above form are used only to record states of the
impure queue actors. One need not pay attention to what those conceptual representations
really stand for , as long as they represent the states of the impure queue actors at the
conceptual level. However , when an implementation (script or code) of an impure queue
actor Q itself is verified against its specification, what the conceptual representation

ex presses in terms of the implementation, or more precisely, how the state of Q expressed by

_ _ _ _  .~~~~~~~~~~~~~~~~ -
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the conceptual representation corresponds to the states of the constituents of Its

implementation, must be considered.

Suppose that the PLASMA implementation of an impure queue actor given in
Figure 5.7 is to be verified against the contract in Figure 5.2. In this implementation, the
elements of the queue are kept as the elements of a sequence actor that is the value of the
variable queuees. This could be ex pressed by the diagram in Figure 5.8, where boxes

represent actors and arrows express the know-about relations. This diagram is only a
partial and static description of the Implementation, yet it illustrates an invariant or

Fig. 5.7. A PLASMA Implementation of an Impure Queue Actor

(create-impure-queue a
(a) (] ;cr .ate-impure -qu.ue receives an empty sequence.
(let (queuees initial ly []) ;a variable queu.es is declared

then ;and i,iitlalixed with an empty sequence.
(the-queue-itself a ;a queue-actor denoted by the-queue— itself is defined

by the casea-statcmene given below.
(cases

(a> (flq: =new-element) ;whon an en queue message with an element is received,
;new-.l.ment is bound to the element.

(queuees ~
- (!queue.s new-element]) ~a new sequence-actor whose elements are

;the unpack of the value of qusuees and new-element
;is created and stored in queuees.

the-queue-itself) ;and then the-queue—itself is returned.

(a> (dq:) ;w hen a dequcue message is received ,
(rules queuees ;i f the value of queuees

(a> (] (exhausted:) ) ;is empty, then she message is returned.
(a> [=front !=rest] ;if it is a non-empty sequence, front and rest

;aro bound to its first element avid she rest of Its elements , respective ly.
(queuees ‘- rest) ;the value of qu.ue.s is updated.
(next: front (rest: the—queu e—itself )) ) )) )))) ;(nexl:...) is returned.

L ~~~~~~~ -. . . .
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integrity condition which must be satisfied among constituents of the Implementation. The
following imp lementation invariant statement can express the diagram more formally.

<I mp lemc,,sag j on—Invariant :
if (the-queue-itself is-a (IMPURE-QUEUE (Ia]))

Men
(qMouees has-value S)
(S is-a (SEQUENCE C!.])) >

This says: when the state of the actor denoted by the-qu.u.-itself is expressed by the
conceptual representation

(IMPUR E-QUEUE [ I. ]) ,

the variable queuees has the value which is alwa ys some sequence actor S whose elements
are expressed by (I.]. (SEQUENCE (!a]) is the conceptual representation for such a sequence

Fig. 5.8.

queuees

tP
~~.Z zJe

a1 ‘ ‘ an~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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actor.

An Implementation invariant describes the mappinz from the states of an actor

(the “specification space”) to the states of the constituents of a given implementation for the

actor (the “implementation space”).1 Suppose that the behavior of an actor A is specified by

the state of A before or after its invocation. Then an implementation invariant is used in

the verification of A in the following way.

First , the state S of A before the invocation Is translated into the state 11(5) of the

constituents of the implementation by a given implementation invariant I!. Then the

implementation (code] is symbolically evaluated and the states of the constituents after

the invocation are obtained. Next, by using the implementation invariant again, the

state S’ of A, specified as the one after the invocation, is translated Into the state LI(S1)

of the constituents. Finally, the states of the constituents obtained by the symbolic

evaluation are checked to see if they satisfy those translated states. (See Figure 5.9.)

in genera l, given a sta te T of an actor A and an implementation I for A, an

implementation invariant for I tells us the relations which must be satisfied by the states of

the constituents of I to realize the state T. Therefore implementation invariants may be

one-to-man y mappings. In such a case, when symbolic evaluation of an implementation is

started , onl y such relations (holding among the states of the constituents of an

implementations) are assumed: exact states of each constituent are ~~ used. An examp le of

the one-to-many mapping cases is found in Section ‘7 4.2, Chapter 7. Implementation

invariants are similar to the inverse of Hoare’s abstract functions (Hoare72], and also serve

as concrete (representation ) invariant : which he used additionall y in proving correctness of

I. A state in the implementation space is a vector of states of the constituents of the
implementation.

_ _  _ _  
~~~~..
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Fig. 5.9. Verification of an actor A Behaving like Information Storage

.cInvocation> .~.,~~ ,,,
- S

<Implementation Invariant>

<specif icanon Space>

<Implementation Space>

Symbolic evaluation>

Il(S) LI(S1)

representations of data structures. Interpretation functions between two formal theories

studied by R. Nakaj ima (Nakajima-et-a177] seem closely related to implementation

invariants.

5.3.2 Establishing Event Specifications

An implementation of an actor which behaves as “Information storage” is verified

by establishing each event specification associated with the actor. In this subsection, we will

illustrate this by using an impure queue-actor as an example. 

_ _  -
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The verification of the implementation of an impure queue-actor is carried out by-

symbolic evaluation . To aid in the exposition of the symbolic evaluation, we augment the

PLASM A code in Figure 5.7 with situational symbols as shown in Figure 5.10. This code is

verified against the contract in Figure 5.2. Below we will establish the two <event:...) clauses

in the contract , which specif y the creation and enqueueing evt’fls. The dequeuing event

can be established similarly.

Establishing ~~ cREATION specification

In the first <event:...) clause in the contract in Figure 5.2:

<event: [create-impure-queue <= (]]J
<returns: Q*) )
<post-cond: (Q is-a (iMPUR E-QUEUE (] ) )  >>,

there are no pre-conditions for this event. Thus no assertions are entered in the data base

for the initial situation.

in Spre_creation : empty

The let statement in the code declares and initializes a variable qu.u.es with an empty

sequence NS. To record this, the following assertions are entered.

hi 8initialized~queuees
(queuees has-value NS)
(NS is-a (SEQUENCE fl))

Then in this situation an actor whose script (i.e. code) is given as the (cases... ) statement

after (the-queue-itself a ... is newly created and returned. This actor is denoted by

the-queue-itself . The contract for the creation requires two things: (1) that the returned
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Fig. 5.10.

(create-impure-queue a
(a> (] ;creat.-impure-queue receives an empty sequence.

( let (queuees initiall y [ ] )  ;a variable queuees is declared

t hen ;and initialized with an empty sequence.
— Sinitialized_queuees

(the-queue-itself a ;a queue-actor denoted by the-queue-itself is defined
;by the cases-statemen t given below.

(cases

(a> (nq : =new-element) ;when an en queue message with on element is received ,
;new-eI.m.nt is bound so the element.

— Sreceived..nq -

(queuees +- (!queuees new—element]) ;a new sequence-actor whose elements
;are the unpack of the value of queueu and new-element

;is created and is stored in queuees.
— Supdated_queuees..nq —

the-queue-itself) ;and then the-qu.u.-its.lf is returned.

(a> (dq:) ;when an dequeue message is received,

— S race ived-dq
(rules queuees ;if the value of queuees

(a> (] ;is an empty sequence,

— 5empty queuees —

(exhausted:) ) ;then the complaint message is returned.

(~> (=front !=rest~ ;if it is a non-empty sequence, front and rest
;are bound to its first element and the rest of its elements, respectively.

— 5non~empty .queuees
(queuees .- rest) ;ihe value of queue .s is updated.

— 8upciated-queuees-dq —

(dequcued: front (rest: the—queue—itself )) ) )) )) )) ;(nerg:...) is returned.
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actor Q be newly created and (2) that (Q Is-a (IMPURE-QUEUE (])) holds. Since the

returned actor is the-queue-itself , what we need to show is that

(the-queue-itself is-a (IM PUR E- QUEL E U)) holds. This assertion is translated into the

following assertions using the assertions in the where-clause in the implementation invariant

statement given in the previous subsection. (Note that the assertions in the whore-clause

are instantiated by substituting an empty sequence (] for ta.)

(gueuees has-value S)
(S is-a (SEQUENCE []))

These two assertions are matched against the two assertions entered at the node for

5initialized-queuees Therefore it is concluded that the returned actor the—queue-itse lf has

the correct internal structure prescribed by the implementation invariant. So the result of

the event [create -impure -queue <= (]] meets its specification.

Establishing çj~ ENQU EU INC specification

From the instantiation of the event specification for enqueueing:

<event: [the—queue-itself < (nq: A)]I
<prc-eond: (the-queue—itself is-a (IMPURE-QUEUE [Ix])) >
<r eturns: the—queue-itself >
< post -cond: (the-queue-itsel f is-a (IMPURE-QUEUE [Ix A])) >>

which is obtained by substituting the-queue-itself for Q in the contract for

(iMPURE -Q UEUE [... ] ) in Figure 5.2, it is assumed that

(the-queue-itself is-a (KM PUR E -QUEUE [ ! x ] ) )

holds in the initial situation . By the implementation invariant statement, this assumption is

translated into the following two assertions: [Note that x is substituted for a in the

_ _  ~~~~~~~~~~~~~~~~~~~~
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hi Sinitialized_queuees
(queuees has-value 5))
(S is-a (SEQUENCE [Ix]))

Now the message (nq: A) is sent to th.-queu.-its.lf. This message matches against the first

clause of the case statement. So new-element is bound to A.

ui  5received~nq : (new-element a A)

Then the value of queuees is updated by a newly created sequence-actor NS with its

elements ( !queuees new-element]. The value of queu.es in 8r.ceived ’i~ 
is obtained by

inheriting from 5initiaJizad~queuee;’ because no updating events took place between the two

situations . Thus the value is a sequence-actor S. !qu.uees is the result of the unpack

operation on S, which is !x. [Note that the sequence actor is pure. Therefore its state can be

inherited from 8initialized-queuees~ 
So the state of the new sequence-actor NS £5 expressed

by (SEQUENCE (Ix A]). For the assignment of NS to queueas, the new assertion

(queuees has-value NS) is entered in the data base. So the following assertions hold in the

next situation .

~i 5updated-queuees-nq :
(queuees has-value NS)
(NS is-a (SE QUENCE (!x A]))

The code tells us that the-queue-itself is returned in this situation. The specification for the

itqueuing requires that the-queue-itself be returned and that

(the-queue-itself is-a (IMPURE-QUEUE (Ix A])).

~

-- -.-~~~~~ —--- _  -~~~.
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So this assertion is translated into the following assertions by the implementation invariant .

(q~euees has-value S)
(S is-a (SE Q UENCE Ux A] ) )

These assertions are obviously matched against the assertions entered at the node for

5updated-queuees-nq So the enqueuing event meets its specification.

5.4 Discussions Related to Symbolic Evaluation

The method of symbolic evaluation presented An this chapter has many interesting

facets and significant implications for other research areas besides program verification. In
this section , we first reflect on our approach to verification based on symbolic evaluation in

the light of other existing approaches . We then discuss the applications of symbolic
evaluation. Finally, our reasoning method eniploy’;d in symbolic evaluation will be

discussed in the context of McCarthy’s frame problem.

5.4.! Situational Descriptions vs. Predicate Transformations

Program verification methods based on the Floyd-Hoare proof rules [Floyd67.
I-loare69) or predicate transfor mers [Manna69, Dij kstra’76] can be summarized as follows:

Given a set of predicates P holding in a situation 8, the proof rules or the predicate
transformer generate a set of predicates P’ [from P] which hold in the next 1 situation

1. For the case of the proof rules, the next situation is the temporal successor situation, and
for Dijkst ra ’s predicate transformers , it Is the predecessor situation.
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S,.

The choice of predicates holding in S determines the generated set of predicates for S’.
Those choices are made so that desired assertions may be shown to hold in 8’. This
approach is schematically described in Figure 5.11. Note that the predicate transformers
work backwards .

Fig. 5.!!. Floyd-Hoare-Dijkstra Predicate Transformation A pproach

<.Proof Rules>

<Dijkstra ’s Predicate Transformer>

- - - 

Predi~~~~~~~
g

I
<EVENT)
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In contrast to the approach above, our approach is:

Given a descrept~on D of a situation 8, symbolic evaluation produces a descrip tion D’
of the [forwardly) next situation by using contracts and trans-situational rules.

A description of a situation is a collection of assertions about states of actors which are
expressed by conceptual representations . Predicates which hold in a situation are derived
from the description of the situation. This approach, which we call the “situational
description” approach, is schematically described in Figure 5.12.

Conceptual representations not only express states of individual actors in a system.
but they can also describe how the individual actors are interrelated at various levels. Thus
the description of situations in terms of conceptual representations is powerful in dealing
with sharing. Furthermore, descriptions of each situation provide us with sources of
various information about a program, which Is quite useful for other applications in the
areas of mechanical program analysis.

5.4.2 A pp lications of Symbolic Evaluation

Symbolic evaluation based on formalisms different from ours has been studied for
various purposes such as proving properties of programs (Boyer-Mocre75], program testing
and debugging (Boyer-et-a 175, K ing 76i program transformation and improvement
(Bursrall-Darlington75] etc .

Our method of symbolic evaluation can be used in constructing a software system
called a Programming Apprentice (Hewitt-Smith 75, Rich-Shrobe76), which aids expert
programmers in various aspects of programming activities such as verification, debugging,
and refinement of programs . In the Programming Apprentice, the purpose of symbolic 

~~~~~~~~~~~~~~~~~~~~~~ -
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Fig. 5.12. The Siluat ionai Description Approach
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eva luation is not simpl y to verify programs against thei r specifications. By symbolic

evaluation , we tr y to gather information about dependencies between program modules.

Such information is used to understand Implications of proposed changes in both
specifications and implementations in the subsequent evolutional development of the

programs.

For instance, suppose that the implementation of empty-one-queue-into-another used
as an exam p le of program verification is sent p~~ queue actors instead of impure queue
actors . Using the contracts for pure queue actors in Figure 4.2 in Chapter 4, our method of
symbolic evaluation can easily trace and record the behavior of the implementation. The
situational tree produced during the symbolic evaluation aids us in modifying the
implementation so that it may accept both impure and pure queue actors. Another simple
examp le might be the analysis of the behavior of the same implementation when it is sent
the same impure actor. (That is, one of the preconditions, (Qi fbi-eq Q2) is forgotten.)

Furthermore, as reported in (Yonezawa -Hewitt76), the efficiency of the implementation of
impure queue actors in terms of consumed storage can be revealed by using assertions of

the form

(<act or—i> knows-aboia <actor2 >)

in the process of symbolic evaluation.

The situational description approach based on our method of symbolic evaluation
appears to be quite powerful in .piIr~uing these ends. The symbolic evaluator in C. Rich
and H. Shrobe’s system [Rich-Shrobe76], which understands LISP programs, is based on a
method similar to ours.
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5.4.3 The Frame Problem

In the context of Artif icial Intelligence, J. McCarthy and P. Hayes

lMcCarthy-Hayes69) pointed out a problem, called the frame problem, which arises in

formalizing effects of actions or events taking place in a complex world. A typical example

of the frame problem is found in formalizing the effects of actions of a robot in a block

world where the robot carries out various physical tasks. Suppose that the robot has moved

a block B to a certain location. With this action, the location of B changes, but most of the

properties of the blocks, such as color, height, and volume, and relations holding among

other blocks, do not change. To formalize the action “move”, it is necessary to specify not

only which of these properties and relations will change (and how they will change), but

a lso which properties or relations will not change. Since the robot is supposed to perform a

number of different actions, for each action such changes in properties and relations in

both positive and negative must be specified. In most cases, rather a small number of

properties and relations change as the result of a single action, while the rest of them do

not. Thus the number of such specifications will be unbearably large for a practical system

if the tasks of the robot and the world In which It works become complicated.

The same problem arises in the context of program specification and verification .

In particular , the frame problem becomes serious when one tries to construct program

verification or understanding systems which must deal with actors whose behavior may

change with time. To specify the effects of computations [or events), the no-changes as well

as the changes in the states of objects in a system must be described even if the objects do

not partici pate in the computations. If we described the changes and no-changes of all the

objects in the system in a straightforward wa y, the same serious problem would arise.

As presented in the first section in this chapter (5.1.2, 5.1.3), we take a procedural

approach to this problem. Our reasoning method based on trans-situational rules is

k.. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - .
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powerful in coping with the problem in the domain of Artificial Intelligence as well. R.

Waldinger has independently proposed an approach similar to ours for dealing with certain

issues in program synthesis and has discussed its application to Artificial Intelligence

(Waldinger77i. Those who are interested in comparative studies of the existing approaches

to the frame problem should see (Sandwalll2, Hayes73, Hewitt7b, Waldlnger77].



- 127 -

6. Specif ying Parallel Computations

In this chapter, the specification language Jntroduced in Chapter 4 Is extended to
cover parallel computation. Formal specifications of abstract data type objects which are
used in multi-process environments are written in the extended language. Examples for
illustrating our specification techniques include air line reservation systems and bounded
buffers . An alternative definition of states of actor (objects) Is discussed at the end of the
cha pter. 

• • .~~~~~~~~ •~~~~~ -j
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6.1 Introduction

In this section, we will discuss the characterisitics of parallel computation which

make its specification method different from that for serial computation. Our specification

techniques for parallel computations will be described in the subsequent sections of this

chapter.

6.1.1 Communicating Parallel Processes

In a serial computation, activations of actors take place sequentially and one at a

time. Thus it is modelled as a set of linear ordered events with each event causally related

to one another . [Recall the definition of computations in Chapter 3.) In a parallel

computation , however , more than one activation may take place concurrently. Some events

are causall y related to each other, but some may not be. Therefore, a computation is

modelled as a set of partial~1 ordered events. A sequence of causally related events can be

viewed as a “process”. From this view point, parallel computations Involve multip le

processes and serial computations a single process .

If , in a parallel computation, concurrent processes do not interact with each other ,

i.e., no events are causall y related between processes, the computation can be viewed as a

collection of mutually independent serial computations.

However , there are many reasons for the necessity of interaction between
concurrently running processes: If arguments in a procedure call are evaluated in parallel .
a process which executes the procedure body must wa it until all the parallel evaluations of

the arguments are completed. In air line reservation systems and inventory control systems.
concurrent processes interact with each other by retrieving and updating various

information in data bases. In operating systems, concurrent processes interact through
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sharing resources such as main/secondary memories and I/O peripherals.

In order for such interactions (or cooperations) to be effective and efficient ,

concurrent processes must communicate and synchronize with each other. Therefore in

specifying interesting behaviors of parallel computations, we need techniques which are

able to deal with communication and synchronization between processes. In our model of

computation, such communication and synchronization is realized by changing states QL
certain actors. [Cells, buffers and data bases are examples of such actors.) Therefore the

central issue in the method for specification of parallel computations is to deal with the

behavior of actors which are used for communication and synchronization.

States of actors are extensively used in specif ying parallel computations as well as

serial computations. But states of actors in parallel computations [or multi-processor

environments) need to be dealt with much more carefully than those in serial computations.

We will discuss this issue in detail in the next subsection.

6.1.2 Local States

In describing behaviors of parallel computations, there have been many

attempts[M ilner73, Kahnl4, Ashcroft75, Cohen75, Owicki75, Keller7S, Owicki-G ries76,

Flon-Suzuki7l, Lamport77) to use the notion of the global states of an entire system. The

global state of a system at a given time is expressed essentially by a vector of states of the

subsystems . The use of the global states is often motivated by the use of non-deterministic

serial computations for the semantic model for parallel computations. In order to study

properties of a subsystem, this approach leads to counter-intuitive serialization of

concurrent events taking place in unrelated subsystems and it forces us to consider not only

~
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changes in other subsystems but also the order in which such changes take place. Thus the

number of cases to be examined tends to be ex ponentially large, but almost all changes in

other subsystems are irrelevant to the subsystem under consideration.

In our approach, we do 
~~ 

rely on such notions as the global state and the global 
4

clock [uniform time reference). Rather we take a local and relativistic view. We assume

only the local states of individual actors. [Cf. Section 1.3, Chapter 1.) The local state of an

actor is determined only at the local time associated with the actor. Thus, when the state of

a computer at some site of a computer network is determined, we do not assume that the

states of computers at other sites can be defined. The state of an actor is determined at the

time when the actor receives a message. This timing is particularly important and useful in

parallel computations because it is a well defined moment in a distributed system. [The

moments of message transmission at scattered computer sites are difficult to compare with ¶

each other .] Recall that the ordering of arrival of messages with respect to a given actor

[arrival subordering) is total in our model of computation. [Cf. Section 3.1.3, Chapter 3)

In Section 4.1.1, Chapter 4, we have defined states of an actor as equivalence classes

of past histories of messages sent to the actor. As discussed before, this definition

subsumes , in serial computations, traditional definitions for data-storing objects, whose

states are determined by their current information content. Such traditional definitions are . 4

inadequate in parallel computations (or multi-process environments). For example, imagine

a data base system which is concurrently accessed by a number of users. If the state of the

data ba se were defined as its stored data, its state at the time of the arrival of an access

request could not be determined, because the stored information might be being changed by

previously arrived requests. Also determining the information content inside the data base

at the time when a request arrives at the data base is incompatible with our relativistic view

introduced above. [Imagine a data base system where an access request may be received by 

--- 
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a computer site located at one side of the continent while actual data may stored at the

other side.)

States of an actor defined as equivalence classes of the past message histories are

‘i~ 
affected by the actual activations of the actor. Also the order of arrival of messages is

linear (total). These two facts are essential to our specification techniques for parallel

computations because they guarantee that states thus defined are always well defined even

if the actor is being activated by the previously arrived messages. In the later sections,

examp les that illustrate the significance of our state definition will be found. In particular ,

a model of interaction between a post office and customers in Chapter 8 will provide an

intuitive example.

6.2 Extending the Specification Language

• Specifications of the behavior of actors in parallel computations are written in a

wa y similar to that in which the behavior of actors in serial computations is specified .

That is, when given the state of an actor , the behavior of the actor is specified by the

resulting state changes and the subsequently caused events. However the major difference

lies in how the states of actors change and how such changes are expressed. To distinguish

such difference , the specification language introduced for serial computations in chapter 4

needs to be extended .

• . •
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6.2.1 Instantaneous State Changes

Let us try to write a formal specification of a cell actor . A cell actor is used to store

information. It accepts updating messages of the form (up date: <new—contents )) and

retrieving messages of the form (contents:). Its behavior is expressed informally as follows:

“In response to a (cont ents:) message,
a cell actor returns (contents> which was contained

in the most recently arrived (upda te:...) message if such a message exists ,
otherwise it returns its initial contents ”

We would like to express this behavior by using the states of the cell.1 To express a

state of a cell actor , we use conceptual representations. For examp le,

(CELL (contents: A))

expresses the state which is defined as a class of histories of messages whose most recent j .
updating message is of the form (update: A). If the cell were used only in serial

computations . we could specify this behavior by the following two event specifications:

<event : ~C < (contenhs :)] 1
( prc — ro n d: (C is—a (CELL (contents: A))) >
<return: A >
< po st —ren d:  (C is—a (CELL (contents: A) ) )  > >

(q’~~r 1r t :  ~C (= (update: B) ] !
<,,r c-ron d: (C is-a (CELL (contents: A))) >

B >
<1,ost —r end: (C is—a (CELL (contents : B))) > >

Unfortunatel y, the above event specif ications do not precisely ex press the behavior of a cell

in parallel computations , because the states of C expressed in the <post -cond:...> clauses are

I. I. Greaf and C. Hewitt gave a specification of cells which is expressed by axioms about
events in (Greif -Hewitt75, Greif75).

J
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the states at the time A or B are returned , but the state of the cell may be changed by the
upd.~ing messages subsequently arriving before A or B are returned.

In order to eliminate this impreciseness in the above event specifications. the
following two points should be made clear. First , states of a cell ex pressed by the
conceptual representations must be interpreted strictly in terms of equivalence classes of
histories of incoming messages. They should not be interpreted to ex press the current
contents of the cell . The second point, which logically follows from the first one, is that in
order to be consistent with the definition of the states expressed by the conceptual
representations , the state of the cell must change instantaneously when an (up date:...)

message arrives .

In general, in specifying behaviors of actors in parallel computations through their
state changes , the fact that ~~~ change instantaneously must be taken into account.

6.2.2 <Ncxi-cond:...> Clauses

To express the instantaneous state changes in specifications, we introduce a new
specification language construct , <nert-cond;... > clauses. This is usually used in event
specifications of the following form.

<e vent: [T < M]j
<pre-cond: ... >
<nex t—cond : ... <assertion>... >
< caus ed-event: E >>

This means: when an event lET <== M]~ takes places, if the preconditions are satisfied , the
<assertio n>s in the <nex i-cond: ...> clause hold immediately after the event [T <== M]! and
continue to hold at least until one of the actors appearing in the <ass.rtion s receives the 

- - -•-~~ --•.-. ~~~~~~~~~~~
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next message . For examp le, if the <assertion >s mention T or M, they continue to hold at least

until T or M receives its next message. The assertions in the <nezi-cond:...> clause can be

viewed as the preconditions for the next event. A <noxe-cond:...> clause differs from a

<pnst-roiid:...) clause an that assertions in the <post-cond:...> clause hold at the time the

cot responding caused event take place, but may not hold before the caused event . When a

<ia e ’a t - re , , d: . . . > clause is used in specif ying serial computations , its meaning is identical to

that for a <po .q—r ond:...> clause. The event E in the <caused-evc,u:...> clause must take place
eventual l y. It is often the case that c~ ,~urrent events are caused by [T <== M]. In such a
case , we use clauses of the form <caused-events: ~~~~~~~~ Other interpretation rules for

event specifications , such as those for absent clauses , abbreviated forms and scope rules for

symbols in clauses are the same as for serial computations. [Cf. Sections 4.3.1 and 4.3.3,

Chapter 4]

Using this new construct , a specification of the behavior of a cell in parallel

Fig. 6.1. A Specif icat i on of a Cell

<eve,t t: lEcreate-cell <= A]
<r eturn: C~ >

< i, ost—con d: (C is—a (CELL (contents: A))) >>

< eve, sI: [C < (contents:)] !

< p r e—ron d : (C is—a (CELL (contents : A))) >

<m’ii—rond: (C is—a (CELL (contents: A))) >
<return: A >>

< C l o u t:  EEC < (up dat e: B)]
< p r e—r on d : (C is—a (CELl . (con ten ts : A))) >

<ne~ t— co , id: (C is—a (CELL (contents: B))) >
(r eturn: B >>

~ IIIL •.. —~
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computations is written as depicted in Figure 6.1. <Return:...> clauses are used as an
abbreviated form of a <caus ed-eve nt:...> clause. When a cell actor is created by the
create—cell actor receiving the initial contents, we need not use a <next-cond:...> clause in
expressing the state of the newly created cell, because before the new cell is released nothing
can happen to change the state of the cell. It should be pointed out that the equivalence
relation defining the states of a cell (which are expressed by conceptual representations) is
expressed incremen tall y by the <pro-cond:...> and <noxt-cond:...> clauses in the specification in
Figure 6.1.

6.3 Examples of Specifications

In th i s  sec t ion , we will discuss three specifications as examples. The first example
is a specification of a simple air line reservation system. This example illustrates how the

behavior of systems which process requests on a first-come-first-served basis is specified by
our technique. In the second examp le [a specification of semaphores], we will see how

processes which have requested some actor for resource usages that have not yet been

granted are dealt with in expressing the state of the actor . The third example is a
completely external [i.e. implementation independent] specification of a bounded buffer
which requires us to express “non-first-come-first-served ” scheduling of requests.

As was mentioned before , an actor model of a simple post office is studied in
Chapter 8. It is shown that overall task specifications of the post office can be derived by
specif ications of the individual behavior and mutual interaction of actors in the model.

L. . -. •. . —•~~~~-~~~ -.--~~~~~~~~~~~~~~ -_ _ _ _ _ _  ,~~~~~~ . , ..•- “ ~~~~~~~~~~~~~
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6.3.1 Modelling an Air Line Reservation System

As an example, let us consider an air line reservation system. For the sake of

simplicity, we assume that only one flight is available in the system . A number of travel

agencies [parallel processes] try to reserve or cancel seats for the flight concurrently. We
model1 the air line reservation system as a flight actor F which behaves as follows. The

flight actor F accepts two kinds of messages ,

(reser,,e-a-seat: <passenger—name>) and (cancel-a-seat: (passenger—name>).

When F receives (rcscr ve-uz -seat :...) , if free seats are left , the passenger name is appended to
the passenger name list for the flight and the number of free seats is decreased by one, and

a message (ok -its-reserved:) is returned. Otherwise a message (no-more-seats:) is returned.

When F receives (cancel-a-seat:...), if the passenger name is found in the passenger name
list, a message (ok-it s-can celLed:) is returned and the passenger name is deleted from the

passenger name list and the number of free seats is increased by one. Otherwise a message
(thc-pass rnaer-na m e-not- found:) is returned. Furthermore requests by (reserve-a-seat:...) and

(castCs’! -n-seas:...) are processed on a firsr-come-fusr-served basis.

To write a formal specification of the air line reservation system, we need to
describe the states of the flight actor. For this purpose, we use the following conceptual
representation

( F I . I GJ I  T (seats— f ree: <m>) (pass eng er- name—list: !pn lj))

which describes the state of •a flight actor. The number of free seats is <m) and { !pnl) is

1. E. A. Ashcroft[1975) gave a flowchart program which models an air line reservation
system. In his program, each user (or agency) has its own copy of the request handling
program and all the copies are connected with a single fork operation. Furthermore, the
number of users must be fixed.

_ _  _  _ _
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the passenger name list for the flight The formal specification of the air line reservation

system using this conceptual representation is depicted in Figure 6.2.

Since the states ex pressed by conceptual representations in the specification are

defined as equivalence classes of histories of messages sent to F, the number of free seats

and the passenger name list given in the conceptual representations does not necessarily

correspond to those that are actuall y stored in the system.1 From the view point of a

message arriving at F, the states expressed by conceptual representations in <pre-cond:...>

clauses are virtual. That is to say, those conceptual representations express the information

that will be true after all the messages previously arrived at F are processed, although

currently some of those messages may be being processed or some may even be suspended

in the request queue. Therefore , only air line reservation systems in which the reserve and

cancel requests are processed on a first-come -first-served basis satisf y the specification in

Figure 6.2.

It is easy to specify the behavior of air line reservation systems which deal with

more than one flight and can add and remove flights. To do so, one may use conceptual

representations which express the flight information for each flight. For examp le,

(RESE RV/ I TION—SYSTE M {... (flig ht-i: (seats-free: <n >)(pas seng er -n ame—list : f~pnlfl) ...) )

may suffice. In this case, the reservation system thus specified processes the reserve and

cancel requests on a flight-w ise first-come-first-served basis. This implies that requests for

different flights may not be processed on a first-come-first-served basis. The technique to

specify the flight-wise first-come-first-served processing can be applied in specifying file

I. If the processing of requests were so fast that each request might be processed before the
next one arrives , the information ex pressed in the conceptual representations would
correspond to what is actually stored in the system.
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Fig. 6.2. A Specification of an Air Line Reservation System

<eve,,t: [create—flight < S]
< p r e-eond: (S > 0) >

(return: F* >

< post —cosa d: (F is—a (F I J GI I T (seats—free: S )  (pass oner—name—list: {J ) ) ) >>

(e? ’emIi: [ F  < (reserve-a-seat: NAME)]!
(rn ~e- I:

F . <1 rc—con d: (F is-a (F LI Gh T (seats—free: 0) (passenge r—name-list : {!pnl))))>
<n ext-r end: (F is—a (FLI Gh T (seats—free: 0) (passenger—name— list: 1!pnl))))>
<r etur n: (n o—mor e—seats:) >)

(c ase-2:
<p r c-r ond:

(F is—a (b’LIGII T (seats—free: N) (passenger—name—list: {!pnlD))
(N > 0) >

(nexi-r on d: (F is-a (bI . IGI I T (seats—free: N — 1) (passenger—name—list: {!pn l NAME)) ) ) >
<r eturn: (ok—its—reserved:) >) >

(event: [F <= (cancel-a-seat: NAME)]
( c ase—I :

< pr e-r oud:
(F is-a ( VI . IG I I T  (seats-free: N) (passenger-name-list: flpnl))))
(pnl � {... NAM E ...}) >

< next—r end: (F is-a (FI . I GII T (seats—free: N)  (pass enger—name—list: {!pnlfl))>
(r ein rut : (t he—passen g cr—name—not—fo und: ) >)

(ease -2:
< p r e—rnn d:

(F is-a (l ’I .I GII T (seats-free: N) (passenger-name-list: (!pnll NAME !pnl2})))>
< lIex t -re nd: (F is—a (FI . I GII T (seats-free: N + 1) (p asso nger—narne--Ii s i: {!pnll !pnl2fl))>
<r etur n: (ok-its—cancelle d:) > ) >
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systems , large data base systems , and disk -head scheduling systems [Hoare74) as long as

individual files and disk tracks are used on a first-come -first-served basis.

6.3.2 A Specification of Semaphores

The behavior of semaphores can be easily specified by our techniques. The state

of a semaphore is described by conceptual representations of the following form.

(SEAl/I  P I I ORE (counter: <n>) (waiting-q: [!q]))

where <n> is the number of processes that can still enter the critical section it guards and

(!q) is the queue of processes waiting to enter the critical section. A specification of a

sema phore is depicted in Figure 6.3.

A message sent to a semaphore consists of a request (i.e., either P-operation or

V-operation], and a continuation actor which will be activated when the request to the

semaphore is granted. The continuation can be viewed as a process that will be awakened.

As stated in the Case-2 of the second event specification [for P-operation), when the counter

is zero, no message is sent to the continuation. Hence the <caused-event:...> clause has no

events . In the Case-I of the third event specification (for V-operation], two events,

[C < (go-ahead:)] and [first ( (go-ahead:)] are caused concurrently.
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Fig. 6.3. A Specification of Semaphores

<event: [crea te-semaphore < N]!
<pre-cond: (N ~ 0) >
<return: S~ >

<p os t-r an d: (S is-a (SEAt/ I P I IORE (counter: N) (waising-q: []))) >>

el ’ent: [S <= (request: (P - op :) , rep1 rio: C]]
(Case- I:

< pr e—ron d:
(S is-a (SEA ! I I P I I O RE  (counter: N) (waiti ng- q: (] ) )
(N> 0) >

< next-r a nd: (S is-a (SE M / I P I I O RE  (counter: N — 1) (waiting-q: f l ) ) )  >
<rn u.wd-rven: : [C < (go-ahead: )] >)

(Case -2:

<,,r e—cond: (S is—a (SEA! / I P I I ORE (counter: 0) (waiti ng—q: [ U.q] ) ) )  >
< next-rond: (S is-a (SEA! / I P I I ORE (counter: 0) (wai ting-q: (lq C])) ) >
<ea,; .ced—events: ( )  > ) >

< event: (S  == [request: (V-np :), r ep ly-to: C)]
( Ca se-I :

< p r e-ro nd: (S is-a (S E M / I P I I O R E  (counter: 0) (waiting-q: (first ~r.stfl)) >
< n ext-ra nd: (S is-a (SE M/ I P I I O R E  (counter: 0) (wai ting-q : (!r.st]))) >
<r nu.ced-eve,a u: ([C < (go-ahead: ) ] , [first < (go-ahead:)] }>)

( Case-2 :
< ,, r e—ro nd: (S is—a (SE A I / J P I I O R E  (counter: N) (wa it ing—q: (] )) ) >
< next-r ond : (S is-a (SE M / J P I I O R E  (counter: N + 1) (wai ting—q: ( ] ) ) )  >
<r eused-event: (C < (go-ahead: )] ! > ) > 
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6.3.3 A Specification of a Bounded Buffer

As a simple exam ple of specifications for actors which do scheduling of incoming
requests , we specify a desirable behavior of a character buffer of a fixed size N with which
concurrent processes communicate to one another.

A buffer actor B accepts two kinds of requests, (remove:) and (append: <character>),
and it can hold at most N characters. Characters are appended or removed from the
buffer on a first -in-first-out basis. But requests are not necessarily granted on a
first-come-first-served basis, because a character should be appended only when the buffer

is not full and it should be removed only when the buffer is not empty. This implies that
when the buffer is empty, (remove:) requests must be suspended until the buffer becomes
non-empty by an (append:...) request arriving later. Similarly, when the buffer is full,

(append:...) requests must be suspended until the buffer becomes non-full. Therefore, in

determining external states of the buffer , we must take into account such suspended
requests (waiting processes).

To express the states of the buffer , we use conceptual representations of the
following form.

(IIOUNDEI) -BUFFER (q~: (...] )(q
~ (...] ) (string : (...]))

and q,. denote queues of suspended messages for (append:...) and (remove:) requests,

respectivel y. String denotes the string storage used as a buffer. [Remember that the states

expressed by the conceptual representations are defined in terms of the equivalence classes

of the past message histories . So q0, ~ 
and s tring do not necessarily correspond to the

queues of requests which are actually suspended or the string of characters which are
actua lly stored.]

In figures 6.4 and 6.5, we give a specification for the behavior of this bounded
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buffer . The first event specification in Figure 6.4 describes how the buffer is created.

Note that the two queues 
~~ and as well as the string storage are empty when the buffer

is created.

The second event specification in Figure 6.4 describes the behavior of the buffer

in response to a message M for a (remove:) request. Note that the message M explicitly

contains a continuation C. There are three cases depending upon the state of the buffer B

at the time when the message M arrives. Case-I is the one in which the string storage is

empty, and no messages for (append:...) requests are suspended [i.e., q6 = []), and messages

Fi g. 6.4. A Specification of a Bounded Buffer of Size N (Creation and Removing a
Character)

<eve ns: (create-bounded-buffer <= (]]
<r eturn: B*>
<pos t-re nd: (B is-a (BOUNDED- B UFFER (q~: (])(q,. (]) (stri ng : ( ]) ) ) >>

<event: [B < M]
u,here M = [request: (remove:) reply-to: C]

(Ca.ce—l:
<p r c-cond: (B is-a (B OUNDED-B UFFER (q 0: (] ) ( q ,. (!y])(atring: (]))) >
<next-ren d: (B is-a (HOUNDED-BUFFER (q~: (])(q,. (!~ M])(string: (]))) >
<caused -events: ( )  >)

( Case-2:
<pr e-co nd: (B is-a (BOUNDED-BUFFER (q 0: [] ) ( q ,. ( ] ) (sir ing: IX !s]))) >
<next-re nd: (B Is-a (BOUNDED-B UFFER (q~: (]) (q , (] )( s trin g : (!s])))>
< caused-event: [C < (removed: X) ]  >)

(Caae-3:
<pre-c and:

(B ia-a (BOUNDE D-BUFFER (q~: (MM !x] ) (q ,.~ (] ) (st r ing : (X !s])) )
(length([X !s]) = N)
(MM = (request: (append: X X )  rep ly—to: CC]) >

<next-r ond: (B is-a (BOUNDED-BUFFER (q~: ( !x] ) ( q ,. (]) (s tr ing:  (!s XX])) ) )
(cause d-events: ((C < (removed: X)] , (CC < (app end- don e : )) J)>) >
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for (remove:) requests may or may not be suspended, (i.e., 
~ 

= (!y31 
]. In this case , the

message N is enqueued at the end of q,. and no events are caused. When the string storage
is not empty and both q,. and q0 are empty (Case-2), the first character X in the string

storage is deleted and sent back to the continuation C as a reply message (removed: X).

Case-3 is the one in which the string storage is full [i.e., l.ngth([X is]) = N), at least one

message for an (append:...) request is suspended [i.e., q0 = [MM !x] ) and no messages for

(remove:) requests are suspended. In this case, the following change in the state of B

happens: the first element MM in which is of the form

(req u est: (append: XX ) repl y-to: CC], is deleted from the queue, the character XX is added at

the end of the string storage, and the first character X in the string ~torage is deleted.

Then, two events are caused concurrentl y: (C <= (removed: X)]J where X is sent to the

continuation C and (CC < (append-do,ie:)] where the acknowledging message for the

message MM for an (append:...) request is sent to the continuation CC. (Cf. the remarks

below .)

The behavior of the buffer in response to messages for (append :...) requests is

described by the event specifications given in Figure 6.5. This event specification and the

one for (remove :) requests in Figure 6.4 are symmetrical: By exchanging the roles of q0 and

and the conditions ex pressing the upper bound and lower bound of the length of the

buffer , one is obtained from the other.

It should be pointed out that the six cases for the state of the buffer considered in

the event specifications in Figure 6.4 and 6.5 are mutually exclusive and enumerate all cases

of the states which the buffer can be in if it is created with 
~r’ ~~ 

and the string storage

I. Recall that (!y] can be an empty conceptual sequence. Cf. Sections 2.2.3 and 2.3.5, in
Cha pter 2.
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empty. One should be reminded that the states of the buffer are defined in terms of

eqwva lence classes of past histories of messages sent to it and that the state changes

described in the specification are instantaneous as they are expressed by assertions in the

<next-r end:... > clauses . Thus, q,. can be non-empty only if string is empt y and can be

non-empty only if string is full, and consequently, ~ and qg cannot be non -empty at the

same time.

From the specification given in Figures 6.4 and 6.5, it is easy to observe the

Fig. 6.5. A Specification of a Bounded Buffer (Appending a Character)

<event: (B  < M] J
where N = (request: (append: X) reply-to: C]

( Cas e-I:
< p r e—con d:

(B is-a (BOUNDED-BUFFER (q~: ( !x] ) ( q ,. (])(s tr ing : ( !s ] ) ) )
(Ieng th (( !s]) = N)>

< next-cond: (B is-a (BOUNDED-BUFFER (q~: [ !x M] ) (q ,. [])(s tring : (~s3))) >

<eaused —events: (}  >)
(Casc -2:

<pr e-ro nd:
(B is—a (BOUND E D—BUFFER (q~: (] ) (q , (] )( s t r i ng:  ( !s ] ) ) )
(length([!s]) < N) >

< next -cond: (B is-a (BOUNDED-BUFFER (q~: (] ) ( q , ( ])( s tr ing : [5s X]))) >
<m used -event: [C < (append-done: ) ] ! >)

(Case—3:
< p ,r e-coud:

(B is-a (BOUNDED-BUFFER (q 0: (] ) ( q ~ (MM iy])(atr ing : ( ] ) ) )
(MM = (request: (remove:) rep ly-to: CC])>

<, iext-eond: (B is-a (BOUNDED-BUFFER (q g : [] ) ( q ~ (!y])( s t r ing :  I ] ) ) )  >
< caused-ev ents: ((C < (append-done: )] , (CC < (removed: X ) ] J ) > ) >
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following property of the bounded buffer: It is always the case that the character removed
in response to the n-th (remove:) request is the one which was appended by the n-th
(app end:...) request. More formally,

Property (First-In-First-Out)
Let E~ = [B <= (request: (remove:), rep ly—to: Ci]]!

denote the i-th event where B receives a (remove:) request, and
El = (B <== (request: (append: X~)~ rep ly-to: ?] ]

denote the j-th event where B receives an (append:...) request. —

For any n > 0, if both E~ and E~ exist ,
then there exist an event E - (c~ <== (reply: (removed: X~)]] such that E~ -act -> E.

6.4 Behavioral Equations

As noted in the beginning of the previous section, our specification method is
roughly summarized as:’

Given a state of an actor A, the behavior of A in response to a message M is
expressed by the new state of A and the finite concurrent events caused by the
event [A <~~ = M]J .”

The method suggests to us that a state of A can be viewed as a certain mathematical
f u n c t ion VA whose domain is a set M of actors (or messages) and whose range is a direct
product of a set of states of A and a finite power set P (T x M) of a direct product
of a set T of target actors and M. [Note that T x M corresponds to a set of events .)

FA : M ----> SA X P (T X M) .

1. For the sake of simplicity, we do not take into account the states of the message M and
the actors involving in the caused events.
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Whether or not the function VA exists as a well defined mathematical object needs

to be proved , but we do believe that the following isomorphism would be shown to hold by

a certai n domain construction for similar to that for the lambda calculus done by D.

Scott[1972].

SA ~~ 
(M ----> SA X P ( T X M)) .

where ( ----> ) denotes a set of continuous functions with a specified domain and range.

The construction of such domains will establish the mathematical meanings of actor states

which a re described by conceptual representations.

The above isomorphism is inspired by the notion of processes proposed by R.

Milner [MiIner~3). Extending the work of D. Scott , R. Milner has expressed the meaning

of a pi-ogram by the notion of processes. He defines his notion of processes by the

following isomorphism.

P~~~ (V - - - - > P x V )

which says that a set P of processes is isomorphic to a set of continuous functions from a

domain V of values to a direct product of P and V. There are fundamental differences

between his approach and ours, due to the framework of the two approaches. Our

approach is based on the computation model in which a computation is defined as a

partiall y ordered set of events and for each actor , a total order (called an arrival ordering)

is defined. In Milner’s ap proach , a computation is defined as a composition of processes in

which parallelism is expressed as a non-deterministic choice of processes by “oracles”. The

introduction of oracles forces us to consider uninteresting details of the interleaving of

concurrent processes . Furthermore , the lack of arrival ordering makes it difficult to deal

with the issues of fairness and starvation.

C. Hewitt and H. Baker [Hewitt-Baker ’17) have shown that the behavior of a



actor can be defined as the minimal fixpoint of a continuous functional . This result does
not apply to the whale set of actors. Thus we hope that the approach exemplified by the
above isomorp hism will be able to deal with the whole class of determinate actors.



- - - 

~~
,.—.--- , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ .- —~~~~~~ — .~---~~~~ -- .—-. —.-,-~~~— —.-~~ .- - -~~

- 148 -

7. Verif ying Ps~ra11e1 Computations

In this chapter , our techniques for verification of actors which are used in parallel

computations (in multi- process environments) are presented. In the first section, a special

class of actors which are used for synchronization and scheduling of requests is described.
To illustrate the verification techniques, an air line reservation system and a bounded
buffer which are implemented with such a class of actors are considered in the subsequent
sections
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7.1 Introduction

As noted earlier , if , in a parallel computation, concurrent processes do not interact

with each other , the parallel computation can be viewed as a collection of mutually

independent serial computations and its specification is given as the collection of

specif ications for the serial computations . The verification of such a parallel computation

is nothing but a repetition of the verifications of serial computations. Consequently no

special techniques in addition to those for serial computations are required.

In the previous chapter , we have developed specification method s which are

app lied- to computations in which interactions among concurrent processes are involved.

Since interactions between processes are performed by sending messages to certain kinds of

act o~ ~~. our specification methods focus upon the behaviors of such actors . We have given

vailous specifications for such actors. But those specifications merely express the behavior

that users or implementors of such actors assume or hope they have. There is no guarantee

that actually implemented actors behave correctl y with respect to their specifications.

In this chapter , we first discuss how such actors are implemented and then explain

how they are verified . As examp les, we will verify implementations of an air line

reservation system and a bounded buffer.

7.2 Serializers

In our model of computation, we use a special class of actors , called

s er ia l i ze r s [A tk  ins on -Hew it t ’77), to realize synchronization and scheduling of message

tiansmission s in a uniform and modular fashion. In this section we explain the concept of
— ser ia lizers and give precise specifications for their behavior. The language constructs for
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seria lizei-s , and their relationship to other synchronization primitives such as monitors

(Brinc h-H a nsen7~, Hoare74l, are discussed In CAtkinson-Hewitt l7).

7.2.1 Concept of Serializers

The purpose of a serializer is to enforce orderly uses of resource-like actors [such

as I/O devices , message buffers, directories , files, data base systems e.t .c.) by concurrently

running processes: Some resources must be used one at a time to guarantee correct

functioning of hardware , some should be used on a certain priority basis for special

demands and efficiency reasons , and some should receive messages in a proper order for

maintaining their integrity .

In order to control access to a resource, we encase the resource in a serializer to

intercept the messages sent to it. Any processes which need to use the resource can send a

request message to it freel y, but all requests are first received by the serializer . The

seria lizer sends the requests to the resource at an appropriate 
~~~ 

depending upon the

physical requirements of the resource and the scheduling and priority adopted for the

resource. No request message arrives at the the resource directly. We call the arrival of

such a request message at the serializer, a seria/i zer request and the arrival at the resource

of a request message which is sent by the serializer , a resource request.

In order for a seria lizer to properly perform such synchronization and scheduling

of reques ts , it must know var ious information such as what state the resource is in, which

requests are being suspended , and which are being granted. To keep such information
ac curate , the reply (or results) produced upon the completion of the use of the resource is

first sent to the serializer , and some of the information kept in the serializer is updated , and

then the serializer returns the reply as a response for the original serializer request. We call

L _ __ _ _ _ _ _
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the former event a resource repl y and the latter a ser ial izer reply.

serializer  request
- 

resource request

resource reply .)  .-i~
serializer reply 

- ]  2-~-.,

~~~~~~~~~~~~~~~_ _ _ _ _ _ _

Thus a typical sequence of events associated with the use of the resource encased

by a seria lizer starts with a seria lizer request and then the resource request is made when it

is appropriate. The resource reply follows upon the completion of the use of the resource ,

and finally the seria lizer reply takes place as a response to the original seria lizer request.

The diagram above shows this sequence of events .

7.2.2 Behavior of Serializer s

As was mentioned above, a serializer maintains certain kinds of information to

make resource requests take place in such a way that desirable resource usage is

accomplished . To store and update such information , a serialzer may have three types of

information storage: queues , crowds arid cou nte rs. Below we look into the behavior of a

seria lizer in more detail by exp laining the functions of such information storage .

Oueues in a serializer are used to store request messages which have arrived at the

L - - -
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ser ia lizer , but whose corresponding resource requests have not yet taken place. They also

r ecord the order of the arrivals of such request messages. A serializer may have more than

one queue to sort out request messages by their types. (For examp le, requests for reading

data are stoi-ed in a queue different from the one for write requests.) Suppose that a

message [request: RQ repl y—to: C) arrives at a serializer C. (This is a serializer request

event.) if the request RQ should not be sent to the resource encased by C at that time, the

message (requcat: RQ reply-so: C] is put at the rear of a queue in C. Later on , when the

message is at the front of the queue and certain conditions for synchronization or

scheduling are met , the messa ge is removed from the queue and a new message

(r eque .~I: RQ reply-to: BR] is created and sent to the resource. This is a resource request

event. RQ is the request contained in the original message sent to G. BP is a newl y created

actor , called a buck passer , which has the following special properties:

(I) BR remembers (knows about) the serializer G by which it is created.

(2) BP remembers the continuation 1 C contained in the original message sent to C.

(
~) BR shares the same arrival ordering with the serializer C.2

The third property means that the order between the arrival of a message at C and the

arrival of a message at BR is always defined. (More intuitively, BR and C share the same

arbiter.) Since BR is sent to the resource as the continuation in the message for the resource

request , BR eventually receives a reply from the resource , if the resource replies. This is a

resource reply event . Although we explained in the previous subsection that the reply from

the resource is sent to the serializer C, the above account is more accurate . However , the

I. See Sections S.l.2 and 3.1.3. in Chapter 3 for the definition of continuation.
2. The model of computation defined in Chapter 3 does not assume this kind of
“combined” arrival ordering. This assumption is solely for the simplicity of explanation.
By letting the buck passer BR send itself to the seria lizer C together with the message it
received , this assumption can be eliminated. See appendix V.

~

----

~ 
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pievious explanation is justified by the property of the buck passer BR which shares the

same arrival ordering with the serializer C.

Crowds in a serializer are used to store buck passers which are created when

requests are sent to the resource by the serializer. The existence of some buck passer BR in

a crowd indicates that the corresponding use of the resource has not been completed yet,

because BR is taken out from the crowd only when BR receives the reply from the resource

(which means the completion of the resource usage). (It is the third property of a buck

passer described above that allows the serializer to eliminate the buck passer from the

crowd upon the arrival of the reply at the buck passer.] More than one crowd may be used

in a seria lizer to distinguish the types of resource requests being granted. For example, by

having two crowds , a seria lizer encasing some file is able to know whether the file is

currentl y being read or written .

Let us consider the behavior of a serializer in a resource reply event. Suppose that

a buck passer GP in a crowd CR receives a reply RP from the resource. If certain

synchronization and scheduling conditions are met , the serializer takes out the front element

(r eq u es t :  RQ repl y-so: C] from one of the queues, and a new request message of the form

[ r e que s t:  RQ rep l y-so: NBP) is created and sent to the resource. When the new request

message is created , a new buck passer NBP (which remembers C) is created and put in a

ci-owd (which may be different from the crowd CR). At the same time, the old buck passer

BP is deleted from CR. The serializer has another responsibility. It must send the reply RP

(j tist recei ved by the buck passer BR) to the continuation remembered by BR. This is the

sei- ializer reply event. Recall that BR is created for remembering the continuation originally

contained in the message sent to the serializer.

Counters in a seria lizer are used to record various numbers about events associated

with the seiializer. For examp le, a counter records the difference between the numbers of
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resource reply events of various kinds. A simple example of the uses of a counter will be
found in Section 7.4.

7.2.3 O n e-at-at-Ti m e Serializer (An Example)

The behavior of serializers informally exp lained in the previous subsections can be
rigorousl y specified in our formalism. To illustrate how their behavior is expressed in our
formalism , we give a formal specification of a simple serializer called one-at-a-time in
Figure 7.l. A resource encased by this serializer is used, at most, by one process at a time,
and on a first-c ome-first-served basis.

The first event specification in Figure 7.1 says that when an actor
create-one-at-a-t ime receives a resource R, it creates a serializer G which has one queue and
one crowd , both of which are initially empty.

The behavior of G in response to a request message depends on the state of C. If
both the queue and crowd are empty ((Caae-I:) of the second event specification in Figure
7.1]. a buck passer BR is created and put in the crowd and a request message containing BR
as the contiiiuation is sent to the resource R. Otherwise (Case—2:), the request message is
enqueued and no event is caused,

The third event specification says that when a buck passer BR which is inside the
crowd of C receives a reply message, if the queue of C Is empty (Cazo-l:),1 BR is deleted

I. Being able to check whet her or not the queue of C is empty relies on the assumption that
the state of G can be determined at the time when the buck passer BR receives a message.
This assum ption is implied by one of the general properties of buck passers that a buck
passer shares the arrival ordering with the serializer by which it is created. In Appendix

a specification of one-at-a-time serializers which does not rely on this assumption is
given.

—

~

-- .- .~~~~--- ~~~~—--_ - - -~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fi g. 7.1. A Specification of a One-at-a-Tim e Scheduler

<eie,it: j[create -one— at-a—t ime < R]
<ret ur n : G* )

< ,,ost-rond: (C is-a (Oi VE-/I T-/J -TIM.ls’ (queue: (J)( crowd: {~) (resource: R)~ >>

< eveII t :  ( C (~~ N]
where N = [requ est: RQ reply-to: C]

(Case - I :
< pr e-ron d:  (G is-a (ONE -/I T- / i -TIME (queue: (] )( c rowd: (} ) (resource: R))) )

(C ic -a (Oj \ ’E—/JT-/I-TIME (queue: [])(crowd: {BP*})(resource: Ri))
(BR is-a (BUCK-P /ISSER (continuation: C) (serializer: C))) >

<r oused-event: (R  <== (request: RQ reply-to: BR] ]  >1
( Case-2:

< pr e-cond: (C is-a (ONE-/I T—/ I - T I M E  (queue: (!x] )(c rowd : {BP))(resourc e: R I )) )
<;ie~ t-ro,id: (C is-a (ONE-/I T-/I -TIME (queue: (!x M])(crowd: (BPJ)(resource: R))) >
<roused—eve,,S.c: (} >)>

<even s: (BP <~~ (rep ly: A)]1
where (BR is-a (JS UCK-P /I SSER (ro ntinua lion : C)(a er ial ixer : C) ) ) )  )

( Case -I :
< p r e-r ond: (G is-a (ONE-/I T-/ I - T I M E  (queue: (])(crowd : {BP))(resource : RH ) )
<nex t-rend: (C is-a (ONE-/I T-/I -TIME (queue: [])(crow d: j}) (rc source: R))) >
<r ouse d-event: (C < [rep ly: A]] ))

(Ca.ce- 2 :
<i;re-eond:

(C is-a ( O NE - / I T -/ I - T I M E  (queue: (WM !x])(crowd: (BPf l (r esource: Ri))
(WM = [reque s t: RQ rep l y-to: CC]) >

<n ext—re nd:
(G is-a (ONE—/I 1 ’-/ J - T I M E  (queue: (!x]) (crowd:  (N B P *})( res ource: R)))
(NBP is-a ( H U C K-P / I S SE R  (continuation: CC) (ser ializer: C) ) )  >

(C <== (rep ly: A]] , [R < (request: RQ reply—to: NBPJ]j ) ))>
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f mom the ci-owd and the reply message is sent back to the continuation C remembered by BP.

If the queue is not empty (Case-2:), the front element WM which is a suspended request

message sent to G before is dequeued and a newly created buck passer NBP rep laces BR in

the crowd. Then a serializer reply event (C <== (reply: A]] and a resource request event

(R < (r equ e. c t: RQ repl y-so: NBP]] take place concurrently.

Before ending this section, we should mention several properties of the

one-at-a-t in) e serializer which are easily derived from the specification given in Figure 7.1.

If a resource R is encased by a one-at-a-time serializer before R becomes known to

other actors , there is no way to access the resource directly.1 In order to access the resource ,

first a request must be sent to the one-at-a-time serializer. This property holds for 
~~~ ~~~~~

of se i- ial izer (not just for one-at-a-time serializers). We call this property the resource

confinement of serializers . More formally,

Proi:eit i (Resource Confinement of Serializers)
Let E~ = (create-a-resource <== [request: I reply - to: create-a-ser ialize~]] and

= (create -a—s er ializer <== (request: R rep l y—to: C)] such that E0 -act-> E1,
where I is used for the creation of a new resource R.

and let C be a serializer created by E1.
If there exists no event EE [A <== [request: R reply-So: 7]]

such that E0 ---> EE ---> E~,
then for any event ER [R <~~ [request: RQ repl y-to: 7]] ,

there always exists an event E (G <== [request: RQ reply-to: 7]]
such that E -act-> ER.

We need to give the definition of an assertion (A is-used-serially) to state the

propeit ies of one-at -a-time serializers. If the assertion (A is-used-serially ) holds, an actor A

I. We assume that the creator of R does not release any information which makes it
possible to have access to R.
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does not receive any message until the current invocation of A is completed. Consequently,
if the invocation is not completed , no more messages arrive at A. More formally,

Definition (A is-u sed—seriall y)
If there exists an event E~ 

= (A <== (request: RQ 1 rep ly-to: C1]] ,
then
if there exists another event E~ = (A <= [request: RQ1 reply-to: Ci]]such that i � j  and E

~ 
-arr ->A 5

then there must exist EE1 = [C1 < =  [ reply: ?]]J

such that E ---> EE
~ 

---> 5
Property-I (Serial Use of Resource)

If an resource actor R encased by a one-at-a-time serializer, then (R is-used-ser iall y) holds .

This property is derived from the fact that the number of buck passer actors in the crowd

of the serializer is always one at most.

Def in i t i on  (A is-guaranlee d -to-reply)

For an event E — (A < (request: RQ reply -to: C]],
there always exists an event EE [C <== (rep ly: 7]] such that E -act-> EE.

Property- U (Guaran teed Resource Access)
Suppose that the resource actor R encased by a one-at-a-time serializer C satisfies

the following condition: if (R is-used-seriall y), then (R is-guaran teed-io-rep l y).
Then, for any event E = (G <== (request: RQ repl y-to: ?)] ,

there always exists an event ER (R <== [request: RQ reply-to: 7]] such that E -act-> ER.

This property is derived from Propert y-I by induction on the number of messages that
have alread y arrived at C.
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Property- Ill (First Come First Resource Access)
Undei- the same premise given in Property -Il,

for any E1. E~ where Ek — [C <== (request: RQk rep ly-to: Ck]] , k — i, J.
if Ei --->G EJ.

then ER
~ 

---> E~
where ERk — (R <== (request: RQk reply-to: 7]], k — i, j .

This property is derived from the fact that requests sent to C are recorded in the queue of

which preserves the order of arrival.
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7.3 Verif ying Implementations of Actors I

In this section, we discuss our techniques for the following class of verification

problems.

“Given an actor A which shows some behavior in serial computations (i.e., when it

is used seriall y). Suppose that an actor B is implemented as a one-at-a-time
seria lizer encasing the actor A. Then we would like to verif y that even if B is sent
messages concurrently, B shows the same behavior as A does in serial computations .”

This problem is not trivial because the states of A and B which are used to describe their
behavior in specifications are expressed by different conceptual representations. The
essential part of the verification is the use of the mapping (implementation invariant)
between two diff erent conceptual representations. The technique illustrated below is an
extens ion of the one used for the verification of actors behaving as information storage
discussed in Section 53, Chapter 5. The verification of implementations using more
complicated seria lizers is discussed in the next section (7.4).

In what follows , as an example of such verification problems, we will demonstrate
that the implementation of an air line reservation system given below meets its specification
depicted in Figure 7.2 (which is the same one given in Figure 6.2 in Chapter 6).

7.3.1 Ai m Impleiimeimtat ion of an Air Line Reservation System

We implement an air line reservation system which is supposed to meet the
specification in Figure 7.2 in two steps. First , we implement a flight ~~~ ~~~~ which
satisfies the specification in Figure 7.2 as long as it is used serially. Then it is encased by a

one-at -a-time serializer. [The flight data actor corresponds to the actor A in the above

problem statement. )

The code given in Figure 7.3 is an implementation of such a flight data actor . It
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Fig. 7.2. A Specification of aim Air Line Reservation System

<Curt i s :  [ c reate—fl i ght < S]
< pre -roii d: (S > 0) )

<re tu rn: F* >
<1,ost—eon d: (F is—a (b ’LI GII T (seats— free: 5) (passenger—name—list: flH)>>

<event: (F <= (r e.cerve -a-sea t: NAME)]
( ease—I :

< p r e—rond: (F ic-a (F I ~IGl 1T (seats—free: 0) (passenger—name—list: {!p n l}) ) ) >
< n e i- t—cond: (F is—a (F I ~IGI I T  (seats—free: 0)  (passenger—name—list: {!pril})))>
<ret ur n: (ne—more—seat s :) >)

(r asr- 2:
< 1, r e—ron d:

(F ic-a (l ’~I iGII T (seats-free: N)  (passenger-name-list: (!pnl})))
(N > 0) )

<next-r end: (F is-a (F l IG h T (seats-free: N — 1) (passenger—name-list: (!pnl NAME))))>
<return: (ok—its—reserv ed:) >) >

<eve,,I: [F <= (cance l-a-seat: NAME)]
(race-i :

< 1ir r —r o,i d:
(F is-a (F L I G h T (s eats-free:  N) (passenger—name—list: (!pnl})))
(pn l � ( . .  NAME ...fl>

<,u ’ti-r ond: (F is-a (bL I GI I T (seats-free: N) (p asaen gcr—na me—liat: { !pnl ))))>
< ret ,, r ut : (t be—pa sse ng er—na me—not—found:) >)

(ra .ce-2:
< p re —r on d :
(F i c —O ( F I . I G I I T  (seats-free: N) (p assc, iger -na me—list : {!pnll NAME !pnl2))))>

< suex t  -r end: (F is—a (F1 ~IG h1 T (s eats—free: N + 1) (passenger—name—list: (!pnll !pnl2D))>
< ret u rn: (ok— its—canc elled:) > ) >
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Fi g. 7.3. A Code For a Flight Data

(crea te—f l i ght—data =s) a
(let ( s ea t s—f ree  in it iall y s) ;a variable s. ets—f r. e is init ialized to ;.

(passenger—n ame— list initiall y (create—empty—set))
i/t en ;a variable passenger— is initialized to an empty set.

(cases
(~> (re.cervc-a-seat: =name) ;whcn a (reserve—...) message is received ,

(rules (sea ts—free = 0) ;if the value of seat s—free is 0
(a > y es (no-mor e-seats:)) ;then a (no—more—seats:) is returned.
(a > no ;otherw ise

(sea ts—free ~ (sea ts—free — 1)) ;the value of seats—free is decreased by one
(add name Sn passenger-name-list) ;namo is added to t h e  l i .ci.
(ok- its-re se r ved:))))  ;a message (ok-it s-reserved:) is r eturn ed.

(a > (cancel -a- .cea t: =name) ;whon a (cancel-...) message is received ,
(rules (name in passenger-name-list) ;if name is found in the passelige r name list,

(a> yc.c ;t hcn
(d~l~t~ name f r o m  passenger-name-list) ;name is deleted from the list
(sea ts—free ‘- (seats—free + 1)) ;the value of seat s—free is increase d hy one
(ok- it s-ca nce lled:)) ; (ok- it s—cancelled:) is ret ur ned.

(a> no (the-p a.cso;igc r-namc-not- found:)) )) )) ;othorwise (the-passenger—...) is returned.

should be noted that if the flight data actor were sent more than one message concurrently,
anomalous results would be caused . For example. if (reserve-a-seat:...) and (cancel-a-seat:...)
message are sent concurrentl y, (no-lnorc-s eatu :) message might be returned even if there are
still vacant seats. Therefore this actor must be used serially.

We give a specification of this actor in Figure 7.4. Though this specification looks
similar to that for the air line reservation system in Figure 7.2, there are important
diffferences. In this specification conceptual representations of the following form are
used. -

(l~ LIGII  T-D/J T/l (seats-f ree: ?) (p ass eng or -na me-lj s t : {..j))

_ _ _ _ _  a-
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Fig. 7.4. A Specification of A Flight Data Actor

<Cve,,(: [c reate—f l i&ut—data <= S]J
< 1, r e—ro,td : (S > 0) >
(rrt,’rn: FD* >
<1,o.ct-r .o, ud: (FO is -a (FI.IGIIT-D/I Tul (seats- free: S)  (p assoner —name—list: {})))>>

<ci r rus : [FD <= (re.;erve-a- .ceat: NAME)]
tu her~ (FO is- u.cc d-se riall y)

( ra ce - I :
<pre-roud: (FD is-a (FLIGIIT— D “T/J (seats- free: 0) (p assongcr— name—list : (!pnl))))>
<re turn: (,uo—,norc—seats: ) >)
<,,o.ct-ro,,d: (FD ic-a (b LI GII T—D /I T/J  (seats-free: 0) (passenger—narno-list: (!pnl))))>

(ca.ce- 2:
<pre—ron d:

(FO ic-ri (F L I G I I T - D / I T/ J  (seats-free: N) (passonger-name—list: {!pnt))))
(N > 0) >

(rv ’fu ,rtu: ( ok —i t . c— r ~~er,,~d:) >

t~ U is - a (F LIG 1IT-DIJT/) (seats- free: N — 1) (passenger-name-list: {!pnl NAME))))>)>

<ei’e,,t : [FO ( (cancel -a-seat: NAME)]
where (FD i c—u s ed— s eria l l y )

(case - i :
<pre-ro,id:

(FD is-a (J ’ LIGIJT— D/J TJJ (seats— free: N) (passenger—name—list: (!pnl})))
(pnl � { . . .  NAME . ..} )>

<ret,, n u t  (t he—pa .csen gcw—na inc—not—fou n d:)  )
< p os t - r end:  (F is-a (F l .I GII T-D/I T/ i  (seats—free: N) (passonger—name —list: (!pnl))))>

(rase-2:
<p re-cosi d:

(FO ic-a (FLIG I I T-D/J T/ i  (seats- free: N) (pas senger-name-list: (!pnll NAME !pnI2~~))>
<ret , , r f l :  (o k—i g s—c a rucel le d :)  >
<po.ct— co iu d :

(FO is -a (I• LIGII T-D/I T/ J (seats- free: N + 1) (pa uengor-name—list : {!pnll !pnI2})))>)>

¼~~~ w ~~
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Notice that assertions of the form (FD is-uscd-scrial ly) are given in the where clauses of the

second and third event specifications. This means that those event specifications are valid

only if FO is used serially. Furthermore, <post -cond: ...> clauses are used instead of

<n e- is-r en d:... > -clauses. This means that assertions in the <post-cond:...> clauses hold at the

time when the caused events ta ke place.

The following property holds for the flight data actor because all the <event:...>

clauses have the cor responding <return:...> clauses. This property is used in the verification

in the next subsection.

Property- IV: If (FD is-used-serially), then (F D is-guaranteed-to-rep ly) .

7.3.2 Verification of the Air Line Reservation System

The implementation is comp leted by encasing the flight data actor by a

one-at-a-time ser ializer. That is, the implementation of the create—fli ght actor is expressed

by the following PLASMA code:

(create—fli ght =s) a (create—one — at—a—time (create—flight—data s)).

Below we demonstrate t hat the above code meets the specification of the air line reservation

system shown in Figure 7.2. The symbolic evaluation of the code

(create-one-at—a-time (create-fli ght—dat . 5))

reve als the following facts:

(I) an actor FD is created by ~create-f Iizht-data <= sJj [from the specification in Figure

7.4 ),

(2) a ser ializer G is created by I[create—one—at-a-time <= FDJ [from the specification in

— - — ~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘— ~~~~-~~-i~~ ~~~~~~~~~~~~~~~~~~~ -~~ - - - ~~~~~~~~~
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Figure 7.1.1 and

(
~) the two actors satisf y the following assertions immediately after the creation of C.

(G is-a (ONE-/IT-/l-TIME (queue: (])(crow d: (})(resource : FD)))

(F D is-a (F I , I C J I  T-D/J T/ J  (seats-free: s)(passenger -name-list: a) ) )

We will establish that G satisfies the specification of the flight actor (air line

reservation system) given in Figure 7.2. The specification of the flight actor C is wr itten in

terms of conce ptual representations of the form:

(G is-a (F LIG h T (sea ts—free:  ?)(passenger -n amc-h is t: ( . . .})))  ( *)

(Notice that F in the specification is instantiated as G.) On the other hand, C is

imp lemented as a one-at-a-time serializ er that encases the flight data actor FD, which is

ex pressed by the following two assertions:

(G is-a (ONR-/l T-/1- T1AKE (queue: (...])( crowd: {...})( rcsource: FD ) ) )

(FD is-a (FLI GI J 1’ -D / J T/ i  (seats-free: ?) (pass enger —name- l ist : {. . . })) )  ( **)

This means that we have çj~~ views of G: an externa l view expressed by (*) and an internal

implementation expressed by (**) above. In order to show that the implementation satisfies

the specification written in terms of the external view , we must establish a certain relation

between the two views. Such a relation is similar to implementation invariants used in the

verification of an actor behaving as information storage [Cf. Section 5.3, Chapter 5).

The relation we need Is:

‘.1! G satisfies the assertion
(G ic-a (FJ~IGIIT (.ceass-f rec: N) (passcngcr-namn-list: {fpnlJ)))

in a situation where G receives a message (request: RQ reply-to: ?],
then FO always satisfies the asSertion

(FD ic- a (Vl . I GI I T- D IJ T/ J  (seats-free: N) (pass enger-name-list: { !pnl})))
in the situation where FO receives a message [request: RQ repl y—to: ?].

~ IIlL . ...._.._ ......L — — c ~~~~~~.. -~~~~~~~ - - . - -
~ 

- - - -~~~~~~~
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We actuall y prove the validity of this relation in the next subsection 7.3.3; this relation is

assumed in the subsequent discussion . The following is the formal statement of the above
relation .

<j n~ p lc ’rneninz t ion—invariant :

if ( G ic -a (FL (G lIT (seats- free: N) (passenger-name-Un: { !pnl}))) In S
w here S = Sit(( G <== (request: RQ rep l y—to: ?]])

t hen
(FO is-a (F l ~I GlI T—D/l T/i (seats-free: N) (passenger— name—lis t : (!pnl)))) I n 5’

where 5’ = Sit(( FD <~~ (request: RQ reply—to: ?]]) >.

- 
- 

Sif (E) expresses the situation where an event E takes place. The I rnpl emena Uon invariant

can be viewed as the counterpart of an “invariant ” in parallel process environments , which

was first introduced by CAR.  Hoare [Hoare 1972) to show correctness of implementations

of data structures used in serial ccrnputations. (See the remarks in Section 5.3.1, Chapter 5.)

Now let us demonstrate the verification of the implementation against the

following event specification given in Figure 7.2.

<event :  (F <= (re.cer ve-a-seat: NAME)]
(race- i:

<p r e—c on d: (F is-a (FI.IGIIT (seats— free: 0) (passenger—name—list: (!pnl})))>
< v,e i t—r op u d: (F is—a (F L I G h T (seats- free: 0) (passenger—name-list: { !pnl))))>
<return: (n o—: n or e—sea ts :) >)

(rase -2:
<pr e—r o ri d:

(F is-a ( l•1~lGlI1’ (seats—free: N) (passe nger—name—list: (I.p nl})))
( N> 0) >

<ss er t - co , i d: (F is-a (ELIGJI T (seats— free: N — 1) (passenger—name-list: {!pnl NAME))))>
<return: (o k— i t .c— r ese rv e d :)  >) >

There are two cases to be considered . We only consider the (Caso-2...) clause. The

.—.--

~

_- ..~~ a.._ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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one-a t-a-time seria lizer C receives a (reserve-a-seat: NAME) request RQ. Since the flight data

actor FD is guaranteed to reply if it is used serially (from Property -IV), the specification for

a one—at—a—time guarantees that the (reserve-a-seat: NAME) request RQ is received by FD (from

Property-Il). To know the state of the flight data actor FD at the time of the arrival of RQ,

the above implementation invariant is used. Since the state of G at the time of the arrival

of RQ at C is described as:

(C is-a (b’LIGII T (seats- free: N) (passenger-name-list: {!pnl)))),

the state of FD at the time of the arrival of M at FD is described as

-
. (FD is-a (b’LI GII T—I) / J T/ J  (seats—free: N) (pasaeiiger—name-l ist : (!pnl }))).

Then the ( Ca.ce -2...) clause in the <event:...> clause of the specification for flight-data actors

in Figure 7.4 is referred to. Since the precondition that FD must be used serially is satisfied

(from Property-I), the (Case-2...) clause of the specification for flight data actors in Figure

7.4 tells us that

( I )  (ok- i t s—reserved:)  is returned , and

(2) the state of FD is now expressed as:

(FO is-a (b’IJGII T-D/J T/i  (seat—free: N — 1) (passenger-name-list: ~ pnl NAME)))) .

(1) is what the <return:...> clause in the above event specification requires.t To complete the

demonstration , we must show that the assertion

(C is-a (FLiG h T (seat-free: N - 1)  (passenger-name-list: (!pnl NAME))))

in the <nexi-cond:...> clause of the above event specification holds when C receives the next

1. More precisel y, (ok-its-reserved:) is first sent to the serializer C and then C returns it.

~ 

- - -
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message RQ’. To do so, again the implementation is used. It translates the above
requirement as follows:

(FD is-a (H.I GII T-D/JT/J (scat— free; N — 1) (passenger-name—list: (!pnl NAME))))
holds when FD receives RQ’.

This is guaranteed by (2) because FO does not change its State until the next message RQ’
arrives at FO. Thus Case-2 is shown. Case-I may be shown analogously. The event
specification for [G <= (cancel -a-seat: NAME))] is also established analogously.

The demonstratio n above assumes that no one can have access to the flight data
actor FD exce pt through the serializer C. This assumption always holds because the flight
data actor FD created by (create-f light-data <~ s] is sent directl y to the create—one—at—a—time
actor and never released outside the newly created one—at—a—tim. serializer C. [Cf. the
PLASMA code in the beginning of this subsection and Property (Resource Confinement of
Seria lizers).]

7.3.3 Establishing the Implementation Invariant

The verification in the previous subsection relies critically on the use of the
following implementation invariant. In this subsection we will establish the validity of this

implementation invariant .

< I rnp leinenta t ion—invar ia nt:
if (G i.c—a (FLIG lIT (seats-free: N) (passon g er—name—list : (!pnl}))) In S

where ~ = Si t ( (C <~~ [request: RQ rep ly— to: ?])
then

(FD i.c-a (F LI GJ I T-D/I TIJ (seats-free: N) (passenger-name-list: ( !pnl}))) in 5’
where 5’ = Sit (( FD < =  [request: RQ reply—to: ?]) >.

(Proof) The proof is done by induction on the number M of messages which have already
arrived at C.



r 
- -

- 168 -

<Induction Rase>
M = 0: Since no message has arrived before, when the first message

[ re q ,s ess :  RQ reply-to: C] arrives at C, C is in the same state as it was in at the time of its
creation . So the state of C is expressed as

(G ic-a (b I . IG II T (seats-free: S) (p ass engcr —name -li st : { } ) ) ) .
Since C is created as a one-at-a-time seria lizer and its queue and crowd are initially empty,
the state of C is a lso expressed as

(G is-a (SERi /JL IZER (queue: [ fl (crowd: { )) (r esource: F D ) ) )  and

(FD is-a (FliGht T-D/J7’ / J (seats-free: S )(passe nger -na me—lis t : U)))
Then from the “guaranteed resource access ” property of C (Property-Il), the following event
is caused.

[FO <== [re quest: RQ repl y-to: ?]]
When this event occurs , ED is still in the same state as it was in at the time of its creation
because “r esource confinement ” property of serializers is satisfied. So the state of the ED is
expressed as

(FD is-a (Fl ~bGIl T-D II T/J (seats-free: S )(p ass enge r—n a me-l ist :
Hence the induction base is proved.

<Induction Hypothesis>
M k: We assume that the following relation holds.
if (G ic—a (F LIGh T (seats-fre e: N) (passenger-name— list: (!pnl)))) holds

in S i( ([ G <~~ [request: RQR rep ly-to: ?]] )
z’/ i en (ED is-a (FLIGII T-D/I T/l (seats-free: N)  (pass enger-na me-h i*t: (!pnl)))) holds

ii~ Sit(( ED <= (request: RQk rep ly-to: ?]] -

<Induction 
~.ciz>

M k ~ 1: Let us assume that the antecedent of the Induction Hypothesis holds. Then we
must do a ca se analysis according to the type of the request of k-th event.

Case-i: RQ k = (reserve-a-seat: NAME), and N> 0.
The stare of C immediately after the k-th event [C <== [request: RQK reply-to: 1)] is

expressed as
(G is-a (Fl.i GII T (seats—free: N — ~) (p asseng er- narne —list : (!pnl NAME))))

(b y the specification of the flight actor in Figure 7.2).
This is the stat e of C when the k • I st message [request: RQk+l reply-to: ?]]j arrives at C.
By the “guaranteed resource access ” property of C, the event

£ = [FO <== (request: RQk reply-to: ?]
always takes place. From the induction hypothesis , the state of ED at the time of this event
E is expressed as

(ED is-a (F IJGIIT-D/I T/J (seats-free: N)  (passonger-name- l ist : (!pnl))))
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Therefoi c , by the specification for ED in Figure 7.4, the state of ED after the invocation
initiated by the event E is expressed as

(ED ic-a (I ’ i . IG I I T-J ) / I T/J  (.ccats-f reo: N — 1) (passenger-name-list:  (!pnl NAME))))
We now claim that this is indeed the state of ED at the time the k + I st message
[reqrse.ct : RQk+l rep ly-to:  ?] arrives at FD. This claim is justified by the fact that no message
ar r i ves  at FD between [request : RQk reply-to: ?) and [request: RQK+I rep ly-so: ?]. This fact is
guaranteed by two properties of a one-at-a-time serializer, the “Confinement of resource”
and the “First Come First Resource Access ” (Property-Ill).

Other cases are shown in a similar fashion. (End of Proof)

The above proof relies on the following facts:

(I) W hen the one-at-a-time serializer C encasing the flight data actor ED is created , each

component [such as seats- free and passenge r-name-list) of the conceptual

representation expressing the external state of G is the same as the corresponding

component of the conceptual representation expressing the state of ED.

(2) As the specifications for C and ED show , such components of conceptual

representations for G and ED change in the same way in response to the same

request , provided that ED is used serially.

(3) The serial use of the resource encased by a one-at-a-time serializer.

(4) The “Resource Confinement ” property of serializers.

(5) The “First Come First Resource Access” property of a one-at-n-time serializer.

7.4 Verifying Implementations of Actors II

In the previous section , we discussed the verification of implementations which use

one-ma-time seria lizers. The resource actor encased by a one-at-a -time serializer receives

requests in the same order as the one-at-a -time serializer does. That is , the one-at-a-time

seria lizer have the first come first resource access property [Property-Ill in Section 7.2]. In

- _ _ _ _ _ _ _ _ _ _
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this section , we will discuss the verification of Implementations using seria lizers which do

not have the f irst come first resource access property . The heart of verification in this case

is the use of implementation invariants , as It was in the case for implementations using

one-at-a-t ime serializers. To find an appropriate implementation invariant for a given

implementation requires human ingenuity. In what follows, we will explain the verification

of an implementation of a bounded buffer against the specification depicted in Figure 7.5.

[This specification is identical to the one given in Figures 6.4 and 6.5.]

7.4.1 An Imp lementation of A Bounded Buffer

We consider the following PLASMA implementation of a bounded buffer.

(create—bounded—buffer []) (criat.-buffer-gcheduler (create—string—stora ge []))

Namely, the bounded buffer of length N is implemented as a serializer B which encases a

str ing storage actor S where S is created by [create-string-storage = ()]j and B is created by

(create-buffer-schedu ler <= S]. Note that S is encased by B without becoming known to

other actors . Thus the resource confinement property of serializers is satisfied.

The behavior of the string storage actor S is described by the specification in

Figure 7.6. Its states are expressed by conceptual representations of the following form.

(STRING-STOR/JG E (...])

When it is created , it contains no character. It accepts (append: <character>) and (remove:)

messages. As stated by assertions of the form (S is-us ed-ser ially) in the where clauses, the

behavior described in the specification is guaranteed only when S is used serially.

The creation of the seria lizer B is described by the following event specification.
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Fi g . 7.5. A Specification of A Bounded Buffer

< er e:i t: [create-bounded-buffer < (]]
<ret u rn:
<po.ct -eond: (B is-a (BOUNDED—BUFFER (q~: [])(q,. [])(string: U))) >>

<even t: [ B < M~
where M = [ requ est :  (remove:) rep ly-to: C]

( Cas e—I :  <pr e-co t i d:  (B is-a (HOUNDED-BU F FER (q~: [ ] ) ( q ,.: [ ! y) ) (s t  ring: []))) >
<i ie i i -e o n d: (B ic-a (H O U N D E D - B U F F E R  (q~: [] ) ( q ,. [ !y  M])( st r ing :  I ] ) ) )  >
(cause d-eve, its: (} >)

(Ca .ce-2 : < j , r e-r ond:  (B ic-a (B O U N D E D - B U F F E R  (q~ : [ ] ) ( q ,. [] ) (a t r i ng :  [X Is]))) >
<ne ~ t-e ou d: (B is—a (BOUNDED—BUFFER (q 0: [ ] ) ( q ,. [ ]) (s tr ing:  [ ! s ] ) ) )  >
<caused -event: [C < (removed: X) ]  >)

((.a~ u’- i. < p re—r on d: (B ic- a (HOUNDED—BUFFER (q~: [MM !x])(q~ [])(str ing: [X Is))))
(length([X Is)) = N)

(MM [ r e quest :  (append: XX ) reply-to: CC]) >
(nex t - i - mid :  (B is-a (BOUNDE D-BUFFER (q ~ : [ !x] ) ( q ,~ [] ) (st r i ng:  Us XX]))) >
(raused-q ’, r ~n~~: {1J C  < (removed: X)]J , [CC < (append-done:)]J } >) >

~ .~ i r , i t -  : B <= ~~~

hv ’,c M = [r  “,1u,- c~ : (append: X )  rep ly- to: C]
(( ru ic 1 ‘ j . r r  ,—mi d -  (B is a (BOUNDED—BUFF ER (q~: [!x])(q,. (])(string: (Is])))

( Ien g th([~ s]) = N) >
;i” i I u ’ i i d  (B is-a (HOUNDED—BUFFER (q~: [Ix M])(q~ [] ) (st r ing : [!s]))) >

e ta  i t ’d- - c, cfll,: { ) >)
cc ~- r .  u-on d (B is -a  (H O U N D E D — B U F F E R  (q~: [ ] ) ( q ,. [] ) (s t r ing:  [Is])))

( l e ng th([ !s]) < N) >
<nt - i t - r a nd :  (B ic-a (B O U N D E D — B U F F E R  (q~ : (] ) ( q ,. [ )) (s t r in g :  [Is X]))) >
~u ui , srd ~e t : r , i t  [c < (eppe ; , d—d o n e : )]  >)

(Ca ~ 
- <prc ro , id: (B ic—a ( H O U N D E D -  B U F F E R  (q ~ : (] ) (q r: (MM I y]) (s t r i ng :  U)))

(MM = [ r e q u es t :  (remove:) reply-to: CC]) )
‘‘ie tt  - rnuu ’l : (B i c -a (I IOUNDFI) -BUF FER (q~ : [ ] ) ( q ,. [ !y] ) ( s t r i n g :  (] ) ) )  >
<eeu~c d eu - c u tS :  ([C < (ezppend -done:)] ,  [cc <= (removed: X)] ) >) >
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Fi g. 7.6. A Specif icat ion of a String Storage of Length N

<event: (create— ;tring—;tor g <~ U]
<retur n : S~ >
<post-ean d: (S is-a (STRING-STOR/I GE [ ] ) ) >>

<event: [ S  < (append: X) ]
where (S is—us ed-serial l y)

(Case-I: <pre-cond: (S is-a (STRING-STORf lGE (Ix]))
(Iength(x) < N) >

<return: (appen d—done:) >
<pos t-con d: (S is-a (STRING-STOR/1 GE [Ix X]))>)

(Case-2: <pre-cond: (S is-a (STRING-STOR/IG E (Ix]))
(teng th(x) ~ N) )

<return: (storage—ful l : )  >
<pos t-co nd: (S is-a (STRING-STOR/I GE (Ix]) ) >) >

<event: (s < (remove:)]
where (S is-used-seriall y)

(Case- I: (pre-cond: (S is-a (STRIN G-STOR/J GE [X Ix ])) >
<return: (removed: X )  >
<pos t-cond: (S is-a (STRfNC-STOR/I GE [ Ix Xj J ) )

(Case-2: < p r e-cond: (S is-a (STRING-STOR/I GE U)) >
<return: (storage- empty : ) >
<pos t-cond: (S is-a (STRING-STO R/I GE [ ] ) ) >) >

<event: [create-buffer-scheduler < S]j
< ,we-cond: (S is-a (STRING-STOR/JGE (Ix])) >
<retu rn: B* >
<po . ct—eond:

(B is -a (SCIIED UI.ER (counter: O) ( ~a: (])(~~ (])(crowd: (})(resource: S)))
(S ic-a (STRINC-STOR/ICE (lx])) >>

As express ed by the conceptual representation in the <poa-cond:...> clause, this ser iahzer has

a counter (initiall y 0), two queues , 
~~ 

and 
~i ,. 

(both are initially empty) and a crowd (also

- ~~~~~~~~~~~~.-
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initially empty). The counter is used to record the number of characters stored in the string
storage. The crowd is used to contain buck passers . The existence of a buck passer An the
crowd indicates that the resource is being used . 

~a and are used to record suspended
(append:...) and (remove: ) requests , respectivel y.

The behavior of the serializer B in response to (append:...) and (remove:) requests
are described the event specifications depicted in Figure 7.7 and Figure 7.8, respectivel y.
Let us look at the behavior of B when it receives a message M of the form

[request: (appen d: X )  rep l y—to: C].

Case-I: if no (appen d:) requests are suspended [i.e. 
~ia is empty), the string storage S Is

not being used [i.e. the crowd is empty], and there is room for the new character X [Ic < N),
then the (a~,peu d: X ) request with a newl y created buck passer BP which remembers the
original continuation C is sent to S. The state change of B reflects this: the counter is
increa sed by one and the crowd now contains the buck passer BP.

Case-2: if the conditions for Case-i do not hold, the message M is enqueued at the rear
of

Figure 7.7 also includes the specification of the event in which the reply
(a~’pe nd-doue:) from S in response to an (append:)  request is received by the buck passer BP

which is currentl y stored in the crowd of B. When BP receives (append-done:), the request
suspende d iri the front element of either ?r or is picked up and sent to the string
storage. If both queues are not empty, ?r has priority over 

~
‘a There are three cases for

th is event. Note that ~he counter Ic indicating the current length of the string storage

cannot be 0 when BP 1 eceives an (appen d-done:) rep ly, because a new character has been

just appended befc ’-re the rep ly is produced .

Case-I: if no (re,no; ; e.) requests are suspended [i.e. 
~
1r is empty), and either the str ing

storage is full [i.e. Ic = N] or no (append:...) requests are suspended [I.e., 
~a is not empty), then

the i ep ly is returned to the original continuation remembered by the buck passer P, but no
rnrs~s~~e is sent to 5.

Case-2 : if there are some suspended (remove:) requests [i.e. er is not empty), then the the
front element M of is taken out , and the corresponding (remove: ) request is sent to S with

III ~ -~~~~~ --— -—- —--~~~ ~~— - - - -  ~~~~~~~~~ -- - ~~~~~ ‘-~~~~~~~~~ —-- .—--- --— . -,- - - -— - - -
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Fig . 7.7. The Beh avior of the Schedu ler in response to an (/ ipp end:..) Request

et’e,II: [B <== M] where M (request: (append: X)  rep l y- to: C]
(Ca.ce-l:

<p re — ro i i d :  (B is-a (SCh EDULER (counter: k)(
~ a: (])(~~ ( !y] ) (c ro wd: (} ) (res o ur cc:  S)))

(K < N) >
<, iei~t -rand: (B i.c-a (SCI I ED UI .E R (ro usite r: K + 1)(

~a: (])(?,. (I.y])(crowd: {BP *))(resour ce: S)))
(BP ic-a (BUCK-P/JS SER (co ?Itj nu a t ion: C)(se r ia l ize r :  B)))>

<rau.cu ’d-eve,u: [ S  < (request: (append: X )  rep ly-to: BP]] > )
(Ca se-2:

<pre-rond: (B ic-a (SCh EDULER (counter: k)(
~a: [!x))(~~ (!y ])( crowd : (.Iz))(resource: S)))

(V (x � []) (z � H) (K = N)) >
(n ex t - m ud: (B is-a (SCh EDULER (counter: K) (

~ a: [Ix M])(~~ [ !y))( crowd: { !z})(resource: S)))>
<mause d—eve nt .c: (} >)>

<f.,t.(,tlt: [OP <= [ r e~, ly : (ap peu d—don e :) ) ] J
u here (BP is-a (H U C K- P / I S SE R  (cont inua tj o, i: C)(ser ializer : B)))

(Ca.ce- I:

<pr i ’— ’oi id : (B ic-a (SCh ED ULER (coun ter: k)(
~3a: [!x])(~~ [])(crowd: (BP J) (r es our ce :  S)))

(v (k = N) ( 0 < k < N  A x = [ ] ) ) >
<next - r and :  (B is-n (SCh ED ULER (counter: K) (

~ a: [!x])(~~ (])( crowd: {}) (r esource: 5))) >
<ra u.ced-e r ent : [C <== (reply: (appcud- dôiie:)]] >)

(Case-2:

<pre- mond: (B i.c-a (S CIIJ - ; D Ui.E R (counter: K)(?a: [!x])(~~ [M !y])( crowd: (BP})( re s our ce: S)))
( K >  0)

(M = [ r equ e s t :  ( remov e :)  rep l y—to: CC] )>
<n e t t - ~ o,id: (B ic-a (SChIE I.~tJLER (counter: K — 1)(~a: [!x))(? ,.: [ ! y ] ) ( r ro w d:  {NBP*})(resource: S)) )

(N OP is -n (I lL —C K - P/J SS ER (c.o,it inuation: CC)( se rial iz er : B)) ) >
<man crd -eve n ts :  ([s <== [ r eque s t:  (re m ove:) rep ly-to: NBP]] [C <~~ (rep ly: (append-done: ) ) ]  }>)

(Case- .3:
( p re - r osi d:  (B is -n (SCIIEDUJ .KR (counter: K)(

~~
: [M !x))(~,. [])(crowd: (BPD(rrsource: S)))

(0 < K < N)
(M = [ r eque,c t:  (append: XX ) rep ly- to: CC]) >

<nex t-ra nd: (B is-a (SCbIEIJ UI~ER (couliter: K + 1)(? a: [!x])(? ,. [ ]) (c r owd:  (NBP*)Xresource: S)))
(NBP i,c-a (HUCK-P/J SSER (continuation: CC) (.cerial iz er: B))) >

(ca us ed-e vent s :  ([S < =  (request: (append: X X )  rep l y—to: NBP]] [C < (rep ly: (app cnd-don e:)]] } ) ) > 

____.--__ - - -~~~~ -~~~~~~~~~~~~~~~~~~ - - - - - - ~~~~~~~~~
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Fi g. 7.8. The Behaviors of the Scheduler iii response to a (Rem ove:..) Request

<event: (B <== M] where M = [request: (remove:) rep ly-to: C]
(Cn.s~- 1:

<~,re-mond : (B ic-n (SCIIEDU 1.ER (counter: K)(e~: [Ix])(~ ,.: [])(crowd: {})(resource: S)))
(K > 0) >

<n ex t- r an d: (B is-a (SCh EDUL ER (counter: K — 1)( ~~ : [!x])(~~ [ ] ) (cro wd:  {BP *P (r esour ce: S) ) )
(OP is-a (I ? UCK-P /1 SSE R (continuation: C)(seri ah izer: B)))>

<mau .ced -c ent: [S <= [r eques t: (remove:) rep l y-to: BP]] >)
( Ca.ce-2:

< pre-cand: (B is-a (SCbJEDLJLER (counter: K) (
~a: [!x])(~ ,. (!yj)(crowd: {!z))(reaourcc: 5)))

(v (y � []) (z � {} ) (K = 0))>
<n ext-eo , i d :  (B is-a (SCh EDULER (counter: K) ( ~0: [Ix])(~,.: [!y M])(crowd: (!z))(resourcc: 5)))>
<m use d— eve nts: { }> ) >

<event: [BP <== (rep l>: (removed: X ) ] ]
where (OP is-a (BUCK-P/JSSE R (continuation: C)(sor ial izer: B ) ) )

(Ca.c e—I:
( p re-cond: (B i.c—a (SCIIEDU1~ER (coun ter: K)(

~ a: [])(~~ [ !y])(crowd : {BP) Xreso urce: 5) ) )
(v (K =0 )  ( Q < K < N  A y = [ ] ) ) >

<neit -ro nd: (B i.c-a (SCh EDULER (counter: K)(
~a: [])(~~ [ Iy ])( crowd: (}) (resource: S))) >

< rau. ce d—eve, it:  [C <~~ (repl y: (remove d: X ) ] ]  >)
( Ca,ce-2: -

( j ire- r ond: (B ic-a (SC11EDU I ~ER (counter: K) (
~Ia

: (M Ix))(~,. [!y])(crowd: (BP))(resource: S)))
(K N)

(M = (requ es t:  (append: XX ) reply—to: CC])>
<nex t - rond:  (B i c -a  (SCh EDULER (counter: K + 1)(

~a: [!x])(~~ ( !y) ) (cro wd: {NBP *}) (resour ee: S)))
(NBP is-a (1U1C .1 < - P / J S S E R  (e.ontinuation: CC) (ser i ai iz er:  B))) )

(eat ’ ,ce d-eveu t.c: ((S <== [ request:  (app end: X X )  rep ly- to: NaP]] [C < (reply: (removed: X))] )>)
(Cr, se— .?:

<p re-rond: (B ic-n (SCh EDULER (counter: k)( c ia: [ ] ) (
~~ [M Iy] ) (crowd: (BP))(resource: S)))

( 0 < k < N)
(M = (request:  (remove:) rep l y-to: CC)) >

<nex t- ran d: (B is-a (SCh EDULER (count er: K — 1)(~~: (])(~~ [Iy])(crowd: (N BP*J)(reaourcn: 5)))
(NBP is-a ( I I UCK- P/JS SER (continuation: CC) (se ria l ixer : B))) >

<mnusc d-e ve, i ts :  ([S <== [ r equ est :  (re m ove:) reply-to: Nap]] [C <=~ (rep ly : (removed: X) ] ] ) >) >
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a new buc k i~asser NBP and concurrentl y the rep ly is sent to the original continuation C.
Cace- ~: it no (re,no ve:) requests are suspended [i.e. 

~~~ 
is empty), there are some sus pended

(np~wi i r I : ...) requcst [i.e. 
~~ 

is not empty], and t here is room for a new character in S [i.e.,
0 ( k < N]. then the (append:.. .) request at the front of ea is granted and sent to S with a
new buck passer NBP, and concurrentl y the rep ly is returned to the original continuation C.

It should be noted that all the three cases are mutually exclus ive and enumerate all

cases of the states w hich B can be in when BP receives a [reply: (append-done:)] message.

The behavior of B in response to (remove:) is describ~d in Figure ‘7.8 in a similar way; the

roles of ~ and ~3,. are symmetrical and conditions expressing the upper bound for the

counter is re placed by the lower bound. has priority over 
~ r when a buck passer BR

receives a (removed: ?) from the string storage.

7.4.2 %‘c r if i c a t t o n  of a Bounded B uf f e r

In oider to show that the implementation of the bounded buffer giv n in Figures
7.7 and 7.8 satisfies the specification given in Figure 7.5, we need the implementation

invariant which is the mapping between t he states of a bounded buffer used to write its

specification and the states used for describing the implementation. More precisely. we

need the ma pping from the set of states , called the “specification space”, expressed by

conce ptual representations of the form -

(HOUNDED- BUF FER (q~: [. ..)) (q ,. (.. .])( t i r ing: [ ...] ) )

to th e set of states , ca lled the “implementation space”, expressed by conceptual

representations of the form

(SCIIED UI,ER (counter: ?) (
~a: [...])(

~~,. [. , .] ) (cro wd: (...}) (resourc e: S))

For this purpose , we use the following implementation invariant: 
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If a bounded buffer B is in the state (of the specification space)
which is ex pressed by the conceptual representation

(B OUNDED— B UFF ER (q~: ( !x ] ) ( q ,. (I.y] ) ( s t r i ng :  (!s]))

then
B is in 

~
j  the states (of the implementation space)

which are expressed by the conceptual representation
(SCIbEDULER (counter: K) ( ~ 0: [lxx l x ] ) (

~ r [lyy !y])(crowd: {!z}) (resour ce: S) ) ,

and the following constraints must be satisfied

(1) [Istored—in(S) !characters—appended(xx)] = (lchar .cters —removed (yy ) !s]
(2) Iength(stored-in(S)) = K

characters-appended(xx) means the sequence of characters that will be appended by the

sequence of (appen d:...) requests denoted by xx. cheracter.-r.mov.d(yy) means the sequence

of characters that will be removed by the sequence of (remove:) requests denoted by yy.

stored-in(S) means the sequence of characters stored in the string storage S.

Note that and share x and and cj,. share y at their tails. and 
~
1r denote

the queues of requests whic h are actuall y waiting inside the scheduler. Thus xx and yy in

and  
~Ir denote the sequences of actually suspended requests that are considered (at the

external specification level) to have already been processed. [x and y have not been

processed yet .) The first constraint in the above implementation invariant says: the

concatenation of the character string that is actually stored in S and the sequence of

characters that wi ll be appended by xx is equal to the concatenation of the sequence of

characters that will be removed by yy and the character string that is considered (at the

external specification level) to be stored in string. The second constraint says that the

counter Ic indicates the length of the character string stored in S.

Since, for given x, y and s, only the relation (or constraints) that must be satisfied

by xx , yy and K is specified, the above implementation invariant defines a one-to-many

_ _  - -~~.—- - —-—— —— - .~~~~~~~~~. —- --. - -
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correspondence from the specification space to the implementation space. (Cf. Section 5.3.1,
Cha pter 5) Namely, for a given state U in the specification space, the implementation
invariant 11 give a set 11(U) of the corresponding states An the implementation space. See
the diagram below .

<Specification Space> U ~~~~~~~~~~~~~~~~~~~~IE~U~ <Implementation Space>

To ver ify the implementation against the specification in Figure 7.5, for each event
specification in the specification , the implementation must be verified . The diagram in
Figure 7.9 illustrates the verification for an event E = [a <== N]. T and T’ are the states
of the bounded buffer B given in the <pre- cond:...> and <nexi-cond:...> clauses (of the event

specification for E), respectivel y. 11(T) and 11(T’) are the sets of states (in the
imp lementation space) obtained by applying the implementation invariant II to T and T’,
respectively.

To establish the event specif ication , we must first show that if the bounded buffer
B is in a state belonging to 11(T) before the event E, B is in a state belonging to I1(T’)
immediately after E. To show this, we do not have to deal with individual states in 11(T)
and 11(T’). We use the relations among the constituents of the implementation which define

11(T) and JflT’). [Of course, such relations are obtained from the constraints given in the
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Fi g. 7.9. Establishing an Event Specification

E [B <== N]
T T’

<Specification Space>

<Implementation Space>

x
- V

Il(S) II(S’) 

-----. .. - - - - - -
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implementation invar iant .) By using the description of the Implementation given in

Figures 7.7 and 7.8, we obtain (from the defining relation for 11(T)) the relation which

defines the set X of states in which B can be immediatel y after E. We check to see whether

or not the obtained relation satisfies the defining relation for II(T’), i.e., we check whether

or not X is a subset of 1l(T’). If the obtained relation satisfies the defining relation for

1l(T’), it is verified that the state of B immediately after the event E is T’ in the

specification space.

But this does not mean that the implementation satisfies the <ncxt-cond:...> clause.

We iiiust show that t he state of B in the specification space does not change until the next

request message (either (append:...) or (remove:)) arrives at B, because at the implementation

level (i.e., when B is considered as a scheduling serializer), a buck passer in the crowd of B

may receive a reply message from the string storage S and consequently, the state of B

which is currently one of states belonging to X may not belong to 11(T1) after such a reply

event. Therefore we must also show that the state of B stays inside I1(T’), which means

that such rep ly events do not change the state of B in the specification space. To do so, we

check if the relation defining the set V of states in which B can be immediatel y after the

resource re ply event satisfies the defining relation for lI(T’).

To complete the verification of the event specification , we must show that the

events given in the <cause d -cvcnts:...> clause eventually take place. To do so, we use the fact

that the sequence of requests xx in 
~a and the sequence of requests yy in 

~i r are eventually

removed and sent to S. This is easil y done by checking the implementation given in

Fig ‘.ires 7.7 and 7.8 and the specification of the string storage given in Figure 7.6.
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8. Modellin g a Post Office

In this chapter, we discuss an actor model of a simple post office which is an
intuitive exam ple of systems , such as operating systems and multi-user data base systems ,
which are characterized by complex concurrent internal activities. In the first section, an

informa l description of the post office is followed by formal specifications of the
individual behavior and mutual interaction of the components of the model. In the second
section , the specification of the overall functions (task specifications) of the post office is
stated forma lly. In the last section, we demonst rate that the task specifications are satisfied
by the in div i dua l behavior and mutual interaction.

hIL . -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 182 -

8.1 A Model of a Simple Post Office

In this section , we present the actor model of a simple post office. The behavior

of each component in the model is described by our specification techniques and the overall

properties and effects of the post office as a whole are stated formally. Furthermore, using

this mode l as an example, we wou ld like to shed light on some of the interesting issues

related to distributed information processing systems.

8.1.1 Overview of the Model

An informa l description of activities in a simple post office is:

A iiurnber of customers and mail collectors visit the post office, possibly simultaneously.
The post off ice has only one door for customers and collectors. Inside the post office , there
is a counter sect ion whic h has several counters and a mail box corner which has a mail box.
After a customer enters the post office through the door, if he needs stamps, he goes to the
counter section , otherwise he goes to the mail box corner. At the counter section , a customer
gets the stam ps he needs and then , if he is carr ying letters , he goes to the mail box corner ,
othei v~’ice lie goes out of the post office through the door. Customers are served at the
coiiiit i- r sixtion on a first-come-first-served basis , but the time spent at the counter varies
from person to person. At the mail box corner , a customer puts all the letters he has been
carry in g in the mail box and goes out through the door. A collector also enters the post
of f ice through the door and then goes to the mail box corner. At the mail box corner , the
colkc tcit collects all the mail in the mail box after waiting in the queue, if t here is one, and
t hen lie ca r r ies the collected mail Out of the post office through the door. Customers and
collectors make a single queue at the mail box corner and arrive and leave the corner on
f i rs t - u - f i rs t -out  basis.

W e model Uiis post office with five kinds of actors: customer actors , collector

actors . t h e  door actor , the counter section actor , and t he mail box corner actor. [See Figure

SI] The movement of customers and collectors is modelled as message-passing where

i1~essagcs arc customer and collector actors and targets are the door actor , the counter section

actor aiid the mail box corner actor. Components of the office , collectors and customers

II -~~~~~~
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Fi~ . 8.1. customers , collectors

door

I 
— _ i

I I

I I

I I

i I

I I

counter section mail box corner

have their own local time. Thus, ar rivals of customers and collectors at these components

are in general mutually independent. Furthermore, we assume that the walking speed of

customers and collectors ma y vary from person to person. So, for example, a customer

arrivin g at the door after another customer may arrive at the counter section before him.

This corres ponds to the fact that the actor model of computation assumes nothing about the

duration of messa ge-passing ~ cept its finiteness. Besides such concurrent events , services

at different counters are carried out concurrently, and of course depositing and collecting

the mail in the mail box corner takes place independently of the activities at the counter

section.

In the subsections that fo llow, forma l specifications of the behavior of each actor

wil l be given and we will state the task specifications that describe the overall properties

_ _  _ _  _
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and effects that are created by the interaction and individual behavior of the component

actors .

8.1.2 Interactions at the Door

To f o r m a l l y describe the activities in the post office, first we need to define the

states of actors in the model.

For a customer , there are two internal factors which determine his behavior: the

letters he carries and t he number of stamps he needs at a given time. Thus we express the

states of a customer actor by conceptual representations of the following form.

( C USTOMER (letier s: {... }) (s- stampz- nceded: ?))

For a collector , the effects of interactions wit h other actors are expressed by the collected

mail. So the state of a collector actor is expressed by conceptual representations of the

following form.

(COL1~ECTOR (collected-ma il: {...f l)

We cannot define the state of the post office as a whole in terms of’ the states of its

cOniponel- its , because people can be in transit between the components. Customers and

collectors may be constantly entering and exiting through the door while other customers

and collectors may be changing the states of the mail box corner by depositing and

removing the mail. Only the local states of the component actors are well defined.

However , we can use the state of the door actor to describe useful aspects of the state of the

w hole post office if it is defined as below.

The state of the door actor must be defined as an equivalence class of histories of

messa ge sent to it. The informal description of the model tells us that customers and

~ 

-
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collectors arrive at the door when they enter and exit from the post office. So we assume
that the door actor accepts four kinds of messages:

(ci i  .c t or n er —rl i ie r ing: <customer>), (cust omer—exiting: <customer>),

(ro l l er t or—el t te r ing:  <collector>), and (co ll ect or—exi t ing : <collector>).

Thus the states of the door actor are defined in terms of these kinds of messages. Since the

states of customer and collector actors are well defined at the time they arrive at the door

actor , their states can be used to define the state of the door actor. This means that the

information available in conceptual representations for customer and collector actors can be

used.

We define the state of the door actor at the time of message arrival by

(I) the set of all customers inside the post office ,

(2) the set of all collectors inside the post office and

(3) the set of all mail inside the post office.

These three sets are sufficient to characterize useful aspects of the state of the post office as

a whole and yet well defined as information local to the door actor , because, for exam ple,

the set of mail inside the post office is determined by the difference between letters brought

in and letters taken out through the door by customers and coflectors. We express the states

of the door actor by conceptual representations of the following form. The key word .

POSi’-OF FICE , reflects the intention that they serve as the states of the whole post office.

(PO S 7 ’-OF FJ CE (mail: ~... J)( cu~torncrs : (...}) (collect ors : {. . . })))

A formal specification of the effects of interactions between the door actor and

customer and collector actors is depicted in Figure 8.2. One should note the

<causq ’d- e, ’,’,u:...> clauses : After a customer actor arrives at the door actor , a message

(ao-io-cou,iter-secij on-j f-necessary:) instructs him to decide where to go next. Other
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Fig. 8,2 . A Specificat ion of Interactions at the Door

<eip n e: (the—dOOr <= (r ust omer-el i t cr i ug:  C)]~ (sp-1)
< p r r—r o i t d :

(the—door i.c-a (P OST-OFF I CE (mail : { !m})(customers: I.cs})(colleciors: ( !cls))))
(C ic - a (CUS1’OMER (let ter s :  ( !L)) ( s —of —st ampa— nee d e d:  N))) >

<next -rand:
(the—door is-a (P OST—OF FICE (mail:  (Im l l}) (cust omer s :  (Ic; C})(collectors: (!clsD))
(C i.c-a (CUSTOMER (letters: ( !l))( s—o f—sia mpa -ne eded: N))) >

<ra use d-ev q ’,,t: (C < (go-io-co untcr-secti on-i f-necessary : )] >>

<i’,’e,,l: (the-door < (customer-exit i , Ig : C)~ (sp-2)
< p r e—c ond:

(the—door Li -a (POST—OFFICE (mail: (Imi II !m2})( customcr s: (!csl C !cs 2})(coUector a: (!c Is D))
(C ic -a (CLJ .S i’o M E I ~’ (letter s: { Il})(s—of -stamps-needed: N))) >

<,iex t—ro,, d:
(the— door ic-a (POST-O F FICE (mail: (Imi 1m2))(cusz omer s: (!csl !cs2D(coUeetors: 11th))))
(C ic—a (CUS TOMER (lette r.c: ) (#—of—z ta mps—nce de d: N))) >

< caused -et ’r , it: (street <= C] >>

<event: (the-door <= (co llec or-cntering: CL)] (sp-S)
< p r r—r nn d :

(the—door  ic-a (POST-OFFICE (mail: (!m) )( cus tomer s : { !cs))(coUect or i : (Id;))))
(CL ic-a (COI. l.ECTOR (collected-mail:  ( 1 c m) ) ) )  >

<ne r i— rn  ~i

(the—door i c -a (POST—OFFICE (mail: ( !m !cm))( cust omcrs : (lcs))(collectors: lIds CL))))
(CL ic-n (COl.I .ECTO R (collected-mail: (1cm))))>

<ra us rd - e ien t :  (mail-box-corner < (collectors: CL)] >>

<Client: (the-door <= (collector- exiting: CL)] (sp-4)
< p r e—r ond :

(the—door ic- a (POST— OI ’~FICE (mail :  (Imi 1cm !m2))(customers: {!cs))(collectors: (Icisi CL !cl2D))
(CL Li-a (COI .I ~ECTOR (coll cctc d—mail:  (1cm)))) >

< n eil  —r an d:
(the—door i.c-a (P OST-OI ”F ICE (,nail: (Imi !m2} )(customers: !cs))(coilectors: (‘.cIsl !cls2D))
(CL i.c— n ((.OLI,ECTC.IR (col le c ted—mail:  (1cm)))) >

<rause d-et p ns :  (street < CL] >>

- -  _ __ .---- A
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<rrw .cc d—e,v’n::.. .> clauses indicate where a customer or collector actor is sent after it arr ives at
the door. In particular , customers and collectors are sent to the street actor after they exit
from the post office.

8.1.3 Interactions at the Counter Section

Upon entering the post office , a custome r must decide where he should go, i.e. to
the counter section or the mail box corner. The decision is made in response to a message
(go- t o -c ou nle r_ .ccct ion-if_ necc.~ary:), according to whether or not he needs stamps. This

behavior of the customer is expressed by the following event specification.

<e vels i :  (C < (go-to-counter-sect ion-if-necess ary:)] (sp-5)
(Ca s e-I :

<p r e—cond :
(C i.c-a ( CUSTOM ER (letters: (II) )( ‘—of -s tamps-needed: N)))
(N > 0 ) >

<;ieri -cond: (C is-a (CUSTOMER (let ters: ( ! l } ) ( ~—of-sta mps— nec ded: N)))>
<cau.ce d-eve,it: (counter—section <~ (customer: C)] >)

(Ca.ce-2:
<pre-cond: (C is-a (CUSTOMER (letters: {Il)) (s—o f-s tamps-nceded: 0 ) ) )  >
< nert- cond : (C is-a (CUSTOMER (letters: {! l}) ( t— of  -s tamps -needed: 0)))>
<ralLi e d -event: (mail-box—corner < (cus tomer: C)] >)>

Two points should be made. about the specification above. First, the customer C sends
himself to the counter section or the mail box corner. Second, the customer C does not

chan ge his state as described in the <next -cond:...> clauses.

The effects of interaction between customers and the counter section are described

by the following simple event specification.

A . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~ - . . .~~~~
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<( ‘ ,p, It :  (counter—section < (eus totner: C)] (sp &)
<pre- ’ns i d: (C i.c-a (CUS1’OMER (letters: ( ! l )) ( .— o f —s tamps-ne eded: N))) >
<nevi-eon d: (C is-a (CU STOMER (lett ers: (ll))(~-of-atamps-nce ded: 0))) >
< m u  .ced-c vent: (C <= (go—to— mail-box-corner — i f—neces s ary:) ] >>

This specif ication might look too simple. Of course , by using conceptual representations

for the counter section which include more detailed information, we could express various

activi t ies and interactions such as customers waiting in a queue, and buying stamps at a

counter . Also , we cou ld define the state of the counter section in a way similar to that in

which we defined the sates of the door actor. But for our present purpose, the event

specification above is sufficient.

When a customer leaves the counter section, he must again decide where to go

next , the mail box corner or t he door. The decision is made in response to a message

(go- :o-, i ta il -hox-i f-ne ce.csa ry :) ,  according to whether or not he is carr ying letters. This is

expressed as follows.

<el - ru t :  (C <= (go-to—mail-box-cor ner- i f—n ecessary:) ] (sp-7)
(Ca.ce-l:

< pre— con d :
(C ic- a (CUS T O M E R  (let ters: ( ! l}) ( t - o f  -s tamps-needed: N)) )
(( II) � (}) >

<m ’xt-co nd : (C is-a (CUSTOMER (letters: ( ! $ ) ) ( s - -o f  -stamps-need ed: N))) >
<rau.crd -e t ru t :  (mail—box—corner <~ (customer: C)~ >)

(Cr, .ce-2:
<pre—caiid: (C ic-a (CUS T O M E R  (let ters:  (} ) ( t — o f  -stamps -need ed: N))) >
<next -ran d: (C is—a (CUSTOMER (letters: ( )) (s- o f  -s tamps—needed: N))) )

<cau.ced-eve,it : (the—door <~ (cus tomer-exiting: C)]  >) >

Note that no conditions are made for the number of stamps needed N in the

preconditions in the above specification. [See, Section 8.1.5.)

_ _ _ _ _

~

—,--

~

-

~ 
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8.1.4 Iiiteractioj i at t h e  Mail Box Corner

To complete the local specifications , we must specify the interaction between the

mail box corner and its users. An important fact stated in the informal description of the
model is that customers and co llectors wait An the same queue before the mail box and that

they deposit or collect mail on a first-in-first-out basis. This fact allows us to define the

state of the mail box corner by the set of letters brought by the customers who arrived at

the mail box corner after the collector who arrived most recentl y. Letters brought do not

necessaril y mean letters that are already put in the mail box. They may still be carried by

customers in the waitin g queue. We use conceptual representations of the following form

for the mail box corner. (M/1IL-BOX-CORNER (posted-mail: (. . .))) The interaction is

described by the event specifications in Figure 8.3.

Fi g. 8.3. A Specification of the Interact ions at the Mail Box Corner

<e vent: (mail—box—corner <= (customer: C)] (sp-8)
< pr e-rnn d:

(mail — box—c o rnor is-a (M/1 I I ~-iI OX- CORNER (posted-mail :  { I.m ) )))
(C ic-a (CUSTOMER (letters: { U} ) ( s— o f  -stamps-needed: N) ) )  >

<:Irx t — ran d:
(mai l - box-cor n er  ic-a ( f l . f / J I L- BOX - CORN ER (posted-mail: Urn II))))
(C ic-a (CU STOMER ~let ters: {} ) ( *— o f—st a m ps-needed: N))) >

<rau .cr d-et . en t : (the—door <~ (custo m er-ex it ing: C)] >>

<d ent: (mai l—box—corner <= (co llectors: CL)] (sp 9)
< p r e-man d:

(mail-box—corner ic-a (P, I /J I I~-B OX—C ORNER (posted-mail :  ( I m) ) ) )
(CL ic-a (COI.l.ECTO R (col lected-mail :  (1cm)))) >

<nex t—r an d:
(mail-box-corner ic-a (Al/I lL-BOX-CORNER (posted-mail: {})))
(CL Li a (COLLECTOR (collect ed-mail:  (1cm !m)))) >

<rau.c,’d-e,p,,i: (the—door <= (collector-exiting: CL)] >>

— _____
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8.1.5 Ass u m ptions of No Im plicit Interactions

In addition to the above specifications of local interactions, we must make the

following assum ptions of global nature to describe the post office model completely.

Assum ption-I
Customer and collector actors do not receive any messages except those explicitly
stated in the event specifications sp-l to sp-9.

Assumption-Il
The counter section actor and the mail box corner actor interact with only the
customer and collector actors which have entered through the door. The door
actor interacts with only the (cuatomer—exiting:...) and (collector—exiting:...) messages
which contain collector or customer actors which have entered through the door.
(No customer or collector actor can arrive directly at these actors without going
through the door.)

The f i rst  assumption implies that customer or collector actors do not change their states

immediately after an event E until the event caused by E, where E is one of the events

specified by sp-l to sp-9. For examp le, immediately after the event

(counter-section <= (ruitomer: C)J, the state of a customer C which is stated in the

<nt’ .~g-rnu d:...> clause of the event specification sp-6 do not change until C receives the

(go-to-nsnil-hnx -eor,ier . ..) message. Thus, in the events specification sp-7, the number N of

stamps needed (by the customer C) is zero, because it was zero immediately after

(counter-section <= (euttomer: C)~ as stated in the <next-cond:...> clause of sp-6. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
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8.2 Task Specifications

We have specified the individual behav ior and mutua l interaction of actors in the

post off ice model. These specifications are local in nature. In this section , we will state

some of the overall (global) task specifications of the post office that should be implied by

the local specifications. It is important that such task specifications be stated in terms of

externally visible actors because the function of the post office should be specified and

understood without knowledge of the details of what is going on Inside. These actors are

the door actor, and customer and collector actors which are outside the post office.

Four task specifications of the post office are In order. For each task specification,

an informal statement is followed by the formal one.

The first task specification is expressed in terms of a customer’s two states: one

before he enters the post office and one after he exits. This may be considered as a

specification of the function of the post office from the view point of a customer.

Task -I (Customer is Guaranteed to Return without Letters)
If a customer visits the post office, he must eventually leave there. When he leaves the

post office, he must not be carr ying letters and he does not need stamps.

<evcm: (the-door <= (cus:omer-cntcnng: C)]I
<pre-co nd: (C is-a (CUSTOMER (letters: ( !l ))( s— of -stamps—needed: N))) )
<ra uscd-c,ieng: (street < C]~ >
<;,osi-cond: (C ia-a (CUSTOMER (letters: j})(s—of-aeamps-needed: 0))) >>

The second task specification is the collector version of the first one
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Task -Il (Collector is Guaranteed Not to Lose Any Mail)
If a collector visits the post office, he must eventually leave there. When he leaves the

post office , he must be carrying the newly collected mail (which may be empty] in addition
to the mail he brought into the post office.

<~~t ’eug: (the—door <= (collcetor-entering: CL)]j
(prr -eond: (CI. is-a (COLLE CTOR (coUected-mail: (!cml}))) >
<rau wd-evcnt: (str ..t <~ CL )]I )

<post -cond: (CL is-a (COLLECTOR (collected—mail: (...!cml...fl)) >

The next task specification is expressed in terms of the interaction between

customers and collectors through a set of letters. This may be considered as a specification

of the function of the post office from the view point of individual letters.

Task-Ill (Guaranteed Collection of Mail)
Suppose that a set { !m} of letters is brought into the post office by a customer C.
Then if there is a collector CL who enters the post office after the customer C leaves,

then there always exists a collector CLL (who may be the collector CL) who brings the set
Urn) of letters out of the post office to the street.

For an event Ec_enter = (the-door <= (cusiomer-enteri ng: C)]
where (C ia-a (CUSTOMER (letters:flm})(s—of -slampa-nooded: N))),

if there exists an event Ecl...nter = (the-door <= (collector-entering: CL)]I
such that Ec_ent.r —act— > Ecl enter ~

1rr
~>th._door Ec_.~t

where Ec exj t = (the-door <= (cu.seomer-exiting: C)]J,
then there must exist an event Ecll_$tr..t = [street <= CLL]

such that (CLL is-a (COLLECTOR (collected-mail: {..jm...J))).

It should be noted that the mail of a customer C could be collected even if no collector

enters the post office before C leaves. But in this case there must be some collector which

arrives at the mail box corner after C arrives there. (Of course this cannot be stated in the

task specification because the mail box corner which is an internal component of the post

office should not be mentioned in the task specifications.)
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The next task specification is expressed in terms of the states of the-door (more

precisely, sets of mail inside the post office) at different times. This task specification is
derived from Task-Ill.

Task -IV (No Stagnation of Mail)
Let UM, UC and UCL respectively be the set of letters, the set of customers, and the set

of collectors inside the post office in a given situation S. If there is a collector CL who
enters the post office after all the customers UC and all the collectors UCL (who were
inside the post office in the situation S) leave the post office, the set of letters which are

— inside the post office after the collector CL leaves does not share any letters with the set UM
of letters (that were inside the post office in the situation S).

Suppose that
(the—door j ~i-a (POST-OFFICE (mail: {!rn})(customerE (!cs})~collecgora. (!cls}))) holds

in S = Sit[[the-door <= M]].
If there exists an event E = (the-door <= (collector-entering: CL)]

such that
for an y customer C~ in (!c.) and any collector CU in (!cls},

the following ordering relations hold
E~. ~

arr
~
)th..doo, E and E’i. —arr —>th. ..4~~,. E

when E~. = (the-door <= (customer-exiling: C1)]
E’i. = (the-door <= (collector-existing: CLI)].

then for any event EE ~ [th.-door <= MM]
such that E 

~arr~
)th._~~Or E’ ~

arr
~>th._~~ r EE or E’ ~ LE

where E’ = [th.-door ( (collector-exiting: CL)],
it is the case that

(the-door is-a (POST-OfFICE (mail: (!rnm})(cu seomer s: (..)flcollecgors: (...)))) holds
in Si t (EE] where Urn) fl (!mrn) = 

----- --~~~-- --~~~~~~~-- - -
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8.3 Verification for the Task Specifications

In this Section we will demonstrate that the event specifications, which are given in

Sect 8.1 as the description of the behavior of Individual actors in the model and their

interaction, satisf y the task specifications in the previous section. Also, some of the

interesting properties of the event specifications given in Section 8.1 will be revealed in the

course of the verification.

8.3.1 Verification for Customer’s Guaranteed Return without Letters

First we will verif y the following task specification. Some of the properties

observed in the process of the verification will be used later in the verification for other

task specifications.

Task-I (Customer’s Guaranteed Return without Letters)
<evrnt: (the—door <= (customer-entering: C)]

<p re-coni: (C is-a ~ USTOMER (letters: {VJX.-of-atempa-needed: NJ)) )
<caus rd -event: (street = c~ >

< po st -cond: (C is-a (CUSTOMER (letters: (})( s—of-seansp s-need ed: 0) ) ) ) >

(Verif ication) This task specification is established by tracing sequences of events which
involve a customer actor. Such sequences are obtained by checking causal relations among
events described by the event specifications given in Sect 8.1. Tracing such a sequence can
be done by examining (local) states of actors participating in each event, but certain
cautions are necessary in dealing with the state of th.—door actor which represents external
state of the whole post office. Furthermore, it should be noted in the following
demonstration that the reasoning from one event to another crucially depends on
Assumption-I in Section 8.1.5. Namely, we assume that the state of a customer C does not
change from an event E to the next event caused by E. Below this assumption will be used
without being mentioned.

First we assume that an event Eenter takes place as described below.
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Eentcr : (the-door <= (cust om er-entering: C)]
where (C ia-n (CUSTOMER (letters: 1!l))(,—of -stamps-needed: N)))

(the—door is-a (POST-OFFICE (mail: (!rn})(customers: {!cs))(collectors: (!cls))))

The event Eenter and the first assertion are assumed by the task specification to be
verif ted, and the second assertion is assumed in the <pre-cond:...> clause in the event
specification sp-i. Note that as sp-i specifies, the state of the-door immediately after this
event is expressed as

(the—door ia-a (POST-OFFICE (mail: Urn !l))(customers: (!cs C}) (collectors: (!cls})))
which means that the customer C is now inside the post office. The <caused-event:...> and
<nrxt -rend:...> clauses of sp-i tell us what will happen to C next and what state C will be in.

Ed~~lSIOfl l: (C <= (go-to-count er-section-if-nccessary )]
where (C is-a (CUSTOMER (letters: (!l})(s—of-atamps-needed: N)))

To know what event will take place after Edecisiofl l, the event specification sp-5 is referred
to. Two cases need to be considered: (I) Ecounter is caused if N> 0 and (2) Emall box IS

caused if N = 0.

Ecounter: (counter-section < (customer: C)]
where (C is-a (CUSTOMER (letters: Ul})(s—of -stamps-needed: N))) , (N > 0).

The event specification sp-6 tells that the following event Edecision2 is caused by Ecounter
and that the number of stamps needed becomes zero.

Edecision..2: CC <= (go-io-mail-box-corner-if-necessary )]
where (C is-a (CUSTOMER (letters: (!l})(s- of-sta mps-nceded: 0 ) ) )

To know what event will take place next, the event specification sp-7 is referred to. We
need a case analysis: (I) Email_box is caused if I � (} and (2) Eexit is caused if I = (}.

Email box : (rnail-box-corn.r < (customer: C)]
where (C is-a (CUSTOMER (letters: (!I))(e-of -stamps-needed: 0)))

Note that En.iail box is also caused by Edecisiofl l as well as Edeclsiofl 2. Both Edecision..I
and Edecision 2 insure that the number of stamps needed Is zero. On the other hand, the
letters {!I) the customer C is carrying may or may not be empty, because Edeclsiofl_2 insures
that I is not empty, but Edecjsion..I does not. The event specification sp-8 tells us the next
event Eexit .
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Eexit : (the-door <= (euseo,ner-exi ting:C)]
where (C ia-a (CUSTOMER (letter&~ fl) (e—of-stamps-nee ded: N)))

(the—door ia—a (POST—OFFICE (mail: (..j)(customera: (...C...})(collectors: (...})))

The first assertion is guaranteed by the <nert-cond:...> clause of the event specification sp-8.
The second assertion that the customer C is still Inside the post office must hold in order
for the event specification sp-2 to be applied. This assertion is guaranteed by the following
facts:

(I) Examining all the event specifications sp-I through sp-9, events of the form
(the-door <= (customer-exiting: C)] are the only way for C to exit from the post office
(i.e. to eliminate C from the (customers: (..3) component of the conceptual representation
for the door actor).

(2) An event of the form (the-door <= (customer-exi ting: C)] have not taken place since
C entered the post office.

Now the event specification sp-2 insures the following event Estreet will happen and the
assertion wil l hold.

Estreet : (street < C]
where (C ia-a (CUSTOMER (letters: fl) (a ’—of -stamps-needed: 0)))

The causal relations among the events Eenter through Estreet are illustrated as
follows

Eenter > Edecision..1 “ >  Email..box > ~~~ ~~~~
> Estreet

• *I I —
I I — —

Eco~~ter ~~
> Edeci~i~~ 2

Since all the event specifications used in the above discussion guarantee that the events
given in their <caused-event:...> clauses always take place, Estreet is guaranteed to take place.
And the state of the customer C in the situation Estreet is exactly what is required by the
task specification . (End of Verification)

The second task specification given in the previous section can be verified in the 
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same way as above. In face, applications of the event specifications sp-3, sp-9 and sp-4 in

this~ order will do. It should be noted that in using the event specification sp-4, a

justification similar to the one we made, in the reasoning from 
~~~~ 

to Estreet , for

applying the event specification sp-2 is necessary.

8.3.2 Ver ification for Guaranteed Collection of Mail

Task-Ill (Guaranteed Collection of Mail)

For an event Ec_enter = (the-door < (customer-entering: C)]j
where (C ia-a (CUSTOMER (Ietters:( ~m}) (s.-of-stamps-needed: 7))),

if there exists an event Ecl. enter [the door <= (collector-entering: CL)]
such that Ec_enter ‘-act-> Ec_exit ‘“‘>the_door Eci_.nt.r

where Ec_exit = (the-door <= (customer-exiting: C)],
then there must exist an event E = (street <= CLI]

such that (CIL is-a (COLLECTOR (collected-mail: (...!m...)))) holds.

To verif y this task specification, we rely on the following lemma which is easily

derived from the event specifications given in Sect 8.1. This lemma guarantees that if a

customer enters the post office carrying a set {!l) of letters, he always arrives at the mail

box cor ner carr ying the same set of mail.

Lemma
For an event Ec_enter = (the-door <= (customer-entering: C)]

where (C is-a (CUSTOM ER (letters: { !l } )(s—of-seamps-needed: 7))),
there always exists an event Ec..m.j l_bOx = [mail-box—corner <= (customer: C)]

where (C ia-a (CUSTOMER (letters: (!l)) (s— of -stamps-needed: 7)))
such that Ec. enter —act— > Ec_mail_box.

This was justified during the verification of the first task specification.

(Note that Eenter > Email box in the demonstration of Task-I.] 
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(Verification of Task-Ill)
Suppose that an event Ec .nt.r (th.-door <~ (customer-entering: C)] takes place

where
(C is—a (CUS1’OMER (letters: (! l )) (s- of -stamps-needed: 7)))

holds. By the above lemma, an event Ec_maii,.i~ox = E mail box corner <= (customer: C)]
always takes place and the same assertion

(C is—a (CUSTOMER (letters: { ! I} )( s— of —stamps-needed: 7) ) )

still holds. Her e we assume that the following assertion holds when Ec majJ_box takes place.
(mail-box-corner is- a (5 1 / I IL -BOX- CORNER (posted-mail: I

Then, by the event specification sp-8, the assertion
(mail-box-corner ia-a (AIIIIL-BOX-CORNER (posted-mail: (!pm II))))

holds immediately after Ec...maii~~ x and until the next message arrival at the
mail-box-corner . Sp-8 also guarantees that 

~~~~ 
= [the-door <= (customer-exiting: C)] will

take place.
Then suppose that the following event takes place 

~f ~~~~
Ed _enter (the-door <= (collector-entering: CL)]

where (CL is-a (COLLECTOR (collected-mail: {!cmD)) holds. By the event specification sp-3,
Ecl maiI_box = (mail-box-corner <= (collectors: CL)]

takes Place where (CL ia-a (COLLECTOR (collected—mail: {!cm}))) still holds. At this point ,
the ordering of the events which have already occurred is expressed as follows.

Ec_enter —act— > Ec_mail_box —act— > Ec_exit ‘-arr~>th._door Ed _enter —act— > Edl_mai;..box

The important fact here is that Ec_maj l box precedes Ecl...mail...~~x. We shall consider two
cases:
Case-I: If any collectors do not arrive at the mail box corner between Ec_m.il..box and
Ed _mail_box. the state of the mail box corner at the time of Edl mail_box is expressed as

(mail-box-corner is-a (MIJIL-IJOX-CORNER (posted-mail: (...!pm...!l...})))
because customers arriving between Ed_mail_box and Ecl_ma,l..box only deposit, but never
collect mail. Then as the event specification sp-9 states, the collector CL collects all the mail
{ - - .  !pm-..!l...) and then go to the door.
Case-2: If there are collectors who arrive at the mail box corner between Ed_mail_box and
Ed _mail_box, then the first one among such collectors will collect the mail which includes UI)
and ( !pm} and then go to the door. 
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In both cases, some collector carr ying (!l), say CLI, arrives at the door from the
mail box. To insure that the collector CLL goes out to the street , the two assertions given in
the < p r c-eoi,d:...> clause of the event specification sp-4 must be satisfied . One assertion says
that CLL must be one of the collectors who appear in the conceptual representation of the
door actor at the time CLL arrives, namely, the following must hold.

(the-door ia-a (POST-OF FICE (maj l:{...})( customers:(...))(co llectors: (...CLL...)))).
Assumption-Il in Section 8.1.5 guarantees that this assertion holds, because it assumes that
all the collectors arriving at the door from the mail box corner must have entered through
the door, so by sp-3 CLI. must appear in the (collectors:...) component of the conceptual
representation of the door. This completes the verification. Note that Assumption-I was
used throughout the above demonstration. (End of Verification)

The last task specification “No Stagnation of Mail” can be verified by using

already established task specifications. As was done in this task specification, let us suppose

that the state of the post office is expressed by the following assertion.

(the—door is-a (POST-OFFI CE (mail: !m)) (cuatomers: { !cs})(collectors: { !cls))))

Then it is the case that every letter I which is an element of the mail I!m) inside the post

office is brought in either by a customer or by a collector. If I is brought in by a customer ,

we can use the third task specification which has been just established above. If I is

brought in by a collector, the second task specification “Collector is Guaranteed Not to Lose

Any Mail” insures that I will be brought out by the same collector that brought $ into the

post office. So both cases are proved. 



— 
- 200 -

- 0. Conclusions and Future Research

In this thesis, we have presented the local state approach to specification and
verification techniques for both serial and parallel computations. As stated in the
Introduction (Chapter 1). the work reported here has made four major technical

contributions. In concluding the thesis, we would like to first review these contributions
and then discuss their implications in the light of our projections for future research.
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9.1 Summary and Conclusions

As was demonstrated in Chapters 4 and 6, the local state approach provides
powerful and convenient specification techniques for abstract data types with parallelism

and side-e ffects with which previous techniques had failed to deal.

As the post office model in Chapter 8 illustrates, specification techniques based on
local states enable us to describe the complex internal concurrent activities of a system , such
as an operating system or a multi-user data base system, in terms of the individual behavior

of its subsystems and their mutual interaction. In order to ex press the overall functional

behavior of such systems (task specifications), the use of local states turns out to be not only
useful , but crucial . In addition, however , we sometimes need to state tempora l ordering

const r aints among events that are difficult to express in terms of the state changes of
individual subsystems. For this purpose we have used an event -oriented specification
language[Greif -Hewittl5, Hewitt -Baker77] in which the ordering concepts in the underlying
computation model can be talked about directly. Thus, with the complementary use of the
ordering constraint statements , the effectiveness and versatility of the local state approach
in specif ying the behavior of systems with high internal concurrenc y is strengthened.

To describe the states of individual data and procedural objects, we have
developed a system of notation called conceptual representations. Based on this notational
device , we have presented a formalism for specification and verification . As was seen

throughout the thesis , this formalism allows us to ex press states of individual objects
dirc ctty and explicitly. Thus we believe that specifications written in our formalism are
easy to understand and are less error-prone in their completeness and consistency, as

compared with those written in other formalisms. Moreover , the separation of the states of
an object from its identity makes It possible for conceptual representations to express

_ _ _ _ _ _ _ _ _  -- ~~- - -  ~~~ - - ~~- -~~~~~ -~~~~~~~ - —4
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s / r a 7 i n g sti uctures among objects and multiple instances of a class of objects.

The ability of our formalism to express sharing structures and multiple class

instalir iat ion enabled us to develop a method for symbolic evaluation of programs wr itten

in object-oriented ~anguages, which has not been attempted before. The developed method

is used for verification of serial computations and has suggested an approach to mechanical

program analysis (Section 5.4, Chapter 5).

9.2 Future Research

We have defined the states of an individual object (actor) as equivalence classes on

the past histories of messages (operations) sent to the object. Local states thus defined are

ex pressed by conceptual representations which mathematically comprise sequences,

collections and tuples. On the other hand, the state of an object can be identified with a

mathematical function which is obtained as a solution of the behavioral equations

introduced in Section 6.4, Cha pter 6. So far the relationships between the above two

interpretations of states have not been made clear. We foresee that the investigation of

these relations will reveal very rich mathematical structures and that, consequently, the

properties of implementation invariants (Section 5.3.1, Chapter 5) which we have left

informal will be understood precisel y.

The techniques exemplified by the model of a simple post office can be applied to

the specif ication and verification of various distributed information processing systems .

Furthermore , the techniques used in this thesis have a direct application in the area of

business automation. We expect that actor-like procedural objects will enormously increase

the flexibility and sect~rity of message and document systems by replacing “paper” forms

_ _  - - -—- -~~~~~~ -- - --—~ - - - - - - -    ---- ~~~~~
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and letters and “paper” documents with “active” (procedural) counterparts that are sent to

work stations in computer networks. Moreover , we can apply our techniques to the

specification and verification of object-oriented simulation and system description

languages such as the DELTA system[Ho$baek-Hassen-et-a1771.

The verification process for parallel computations described in this thesis is

informal . The formalization of such a process is desirable. For this purpose, a formal

specification language in which 
~~~ 

local states of objects and ordering constraints of

events can be ex pressed in a coherent fashion must be developed, together with sound and

powe rful inference rules which are effective in dealing with the partial ordering of events.

Wi th such a formal system available, we will be able to construct practically useful software

tools which assist us in the construction of parallel programs and distributed message

pacsing systems. Various important properties, such as no-deadlock, no-starvation, and the

property that a system meets its specifications, will be mechanically analyzed with such

software tools. 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~~- ~~~~-
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Appendix I - Derivation of Axiom (5)

The following axiom which was given An the algebraic specification of queues in

Figure 2.6, Chapter 2.

Axiom~~
- if -‘IS-EMPTY(Q) A OEQUEUE(Q, A) • (B, Q’>

Men DEQUEUE(ENQUEUE(Q, A)) = (B, ENQUEUE(Q’, A))

This is derived from the following specification of queues based on conceptual

representations (which is identical to the one given In Figure 2.2, Chapter 2, except that the
functionality of the operations is omitted].

(El) CREATE-QUEUE() ---- (QUEUE [] )

(E2) ENQUEUE((QUEUE (!x]), A) “---> (QUEUE [Ix A] )

(E3) DEQUEUE((QUEUE I))) ----> ERROR

(E4) DEQUEUE((QUEUE [A Ix])) ----> <A , (QUEUE [Ix] ) )

(E5) IS-EMPTY((QUEUE (])) ----> TRUE

(E6) IS-EMPTY((QUEUE [A Ix])) ----> F I I LSE

(Derivation)

(I) -‘IS-EMPTV(Q) ;given as the premise of the axiom.

(2) DEQUEUE(Q) = (B, Q’) given as the premise of the axiom.

From (I) and (E6), Q must be of the form

(QUEUE [front—.l.m.nt Irest])

From (2) and (E4), front-.l.m.nt • B and Q’ contains [ treat]. Thus (3) and (4)
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hold.

(3) Q • (QUEUE [B Ir.st))
(4) Q’ = (QUEUE (!r.st])

(5) DEQUEUE(ENQUEUE(Q, A)) glven in the consequence of the axiom.

= DEQUEUE(ENQUEUE((QUEUE (B Irut]), A) ;from (3).

= DEQUEUE((QUIWE [B treat A])) ;from (E2).

= <B, (QUEUE [treat A)))) ;from (E4).

= <B, ENQUEUE((QUEUE (!rut]), A)> ;from (E2).

= <B, ENQUEUE(Q’, A)> ;from (4).

Hence, DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q’, A)> (End of Derivation)

_
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Appendix II - Limits of Algebraic Specification

To show the existence of abstract data types which cannot be expressed by a finite

set of axioms in the algebraic approach, M. E. Majster(1977] gave a stack type which allows

us to look at any stack elements by using a position information I. The functionality of this

type is as follows.

CREATE: ---> stack ;creates an empty stack.

PUSH: stack X item ---> stack or error
- ;tries to insert an item at the top.

;if i is not pointing to the top, undefined
;otherwise i points to the new top item.

DOWN: stack ---> stack or error
;tries to increment i by one.
;if i already points to the bottom item, error.

POP: stack ---> stack or error
;tries to remove the top item.
;if i is not pointing to the top, error
;otherwise, I points to the new top Item.

READ: stack ---> stack or error
;tries to read the Item pointed by i.
;it stack is empty, error.

RETURN: stack --~~
> stack or err or

;tries to cause i to point to the top item.
;if stack is empty, error.

_ _ _ _ _ _ _ _ _  
_ _
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Unfortunately, the axioms for these operations cannot be characterized finitely.
For example, we need infinitely many axioms expressed as follows.

~~~~~~~~~~~~~~~~~~~~~~ (PUSH)’1(i1,...,i,~)

for all m > 0 and m < n

wher. PUSH”(i1,...,i~) PUSH(...PUSH(CREATEO, i1)..., ‘n1

This data type can be easily specified by using conceptual representations of the
following form.

(STIJ CK(p ositio n i)(i:ems: [...] ))

The ( p o.~iI i o,~:...) component keeps the position information and the conceptual sequence in
the (ilc:,u:...) represents stack elements. A specification based on the conceptual
representations Es given below.

(1) CREATE() ——- > (STIJ CK(p oa isi ou : l)(iiems: (]))

(2) PUSH((ST/JCK(posit ion: i) ( ieem~: (Is])), I)
if i = 1 ——— > (ST/JCK(poüiio,i: i) (items: [I Is]))
otherwise —-— > ERROR

(3) DOWN((STIJCK (poa ition: i) (ileml : [Is]))
if I < length[!s] ——— > (ST/JCK(posit ion: i + 1)(ite,n [Is] ))
otherwise “--> ERROR
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(4) POP((Si’ilCK(poaiiion: i)Utema: [Is]))
if I = 1 and ~ = (I treat] ———> (ST/1 CK(p oaiii or ~’ l) Wenw (Irut]))

otherwise ——— > ERROR

(5) READ((STIJCK(poaition: ?)(itema: [])) ~~~~> ERROR

(6) READ((ST/JCK(posiiion: i) ( itoms: [lxi I 1x2])) ——— > I

where l.ngth[lxl] = I — I

( 7)  RETURN((STi1CK(p os it ion: i)(ieen*a: [Is]))

~fs =[] ---> ERROR

otherwise ———> (ST/JCK(position. 1)(isema: [Is]))
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Appendix Ill — Recursion, Iteration and Loop Invariants

The handling of recursive invocations of modules in symbolic evaluation has been

illustrated in the example of empty-one-qu.u.-into-anoth.r in Section 5.2.1, Chapter 5. in

general, recursive invocations are treated as the same as ordinary invocations of modules.

When a [recursive) invocation of a module M is encountered in symbolic evaluation, the

contra ct of M is referred to and the specified results and postconditions are used to

continue the symbolic evaluation after making sure that all the preconditions of M are

satisfied.

Iterations in implementations can be handled almost in the same way, because the

iteration construct in PLASMA allows us to treat an iteration as a module. Thus if

specifications of such modules are supplied, loops can be treated as ordinary modules.

Another way of dealing with iterations is to rely on assertions which hold every

time the control reaches the beginning point of a loop. Such assertions are called loop

in va riant s or inductive ass ertio ns[Fl oy d6 7 , Hoare69]. Since loop invariants are usually not

derived from the process of symbolic evaluation, they must be supplied externally.

Symbolic evaluation of the part of a code which follows such assertions is carried out under

the assumption that the assertions hold in the situation corresponding to the beginning

point of the loop. To illustrate this technique, we will consider a simple example. 
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Fig. 111.1. An Iterative Version of .mpty-on.-qu.u.-into-anoth.r

(.mpty-one-queu.-into-another-a a
(
~> (=ql =q2]
((qi q2] =>

(loop
(~> [=qql qq2]

**(rules (qql <= (dq:))
(E> (~r hau~isc d:)

- Sexhausted_qql -

(do rn?: (qql qq2]))
(~> (=front-of-qql =d,queued-qql]

- Sdequeued_qqi -

(qq2 <= (nq: fr ont-ot- qq l))
(loop <= (dequeued-qql qq2])) ))))))

In Figure 111.1, an iterative version of .mpty-on.-qu.u.-into-anoth.r-a is given.

The loop invariant for ioop which holds at the point where ** is placed in the code is

(lxxi !xx2] = (lxi 1x2]

where xx i  and xx2 are the elements of the impure queues which are bound to qql and qq2,

respectively, and xl and x2 are the elements of the impure queues bound to qi and q2,

respectively. This invariant is ex pressed In our formalism as follows.

-4
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< loop— I uva r irziu : [lxxi !xx2) = (lx i !x2]
where

II in Sit((~~~~~<= [QQ1 QQ2]J ]

(QQ 1 is-a (IMPURE-QU E UE [lxx i]))

I - -  (QQ2 is-a (IMPURE-QUEUE (I.xx 2])),

in Sit[[empty-one-gueue-into-another-a ~ (Qi Q2]~ ]

(Qi is-a (IMPURE-QUEUE (lxi]))
(Q2 is-a (IMPURE-QUEUE [!x2])) )

Given the above invariant, it is easily demonstrated that the implementation in Figure 111.1

satisfies the contract for empty-one-queue-into-another given in Figure 5.5 in Chapter 5.

The key point of the demonstration is that when the control reaches S.xh.u;t.d..qql the

impure queue QQ1 that qql is bound to is empty, i.e. xxi = (]. Therefore, the elements of

the impure queue QQ2 that qq2 is bound to, which are expressed as xx2 , are equal to [lxi

!x2] because [!xxi !xx2] = [lxi !x2] (from the invariant), and xx i = [ ]  imply xx2 = (lxi

!x2]. The rest of the demonstration can be carried out almost In the same way as that for

the recursive version shown in Section 5.2.1, Chapter 5.
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Appendix IV - Convergence of empty-one-queue-into-another

Most event specifications written in our specification language contain

< r oused-event:...> or <return:...> clauses. As explained in Section 4.3.1, Chapter 4, the existence

of these clauses in an event specification indicates that an event E stated in such a clause is

required to take place. Thus, to verif y an implementation against specifications , we have to

demonstrate that the event E always takes place, as well as that the postconditions are

satisfied.

As an examp le, let us consider the convergence of the implementation of

empty-one-queue-into-another [hereafter empty] given in Figure 5.5 in Chapter 5. (The

following discussion is based on the symbolic evaluation of the implementation presented in

Section 5.2 1, Chapter 5.] For the demonstration of the convergence, we need to show that

the control always reaches the situation 8exhausted-qi’ provided that the two actors sent to

empt y are distinct and both are impure queue actors.

If the impure queue bound to qi becomes empty during the recursive invocation of

empty. Sexhausted_qi can be reached. Thus it is sufficient to show that the length of the

impure queue eventually becomes zero, Since the length of the impure queue is an

arbitrary non-negative integer when it arrives at empty for the first time, we need to show

that its length decreases at its every subsequent arrival at empty. What has to be shown can

be stated in our formalism as follows.

C h’n,~’.h-o f (q 1) in 5received~queues~i c— gr eate r— : han (*)
( lrua:h-of(dequeue-ql) ~n

To show this , the situational tree produced by the symbolic evaluation of the

implementation is examined . Length-of on impure queues is defined as

— - -  --~~~~~-- - - -~~~-~~~~~ - - - -. - ~~~~~~~~- -~— 
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< prop erty: Iengih-of( Q) l.ngth(x)
where (Q is-a (IMPURE-QUEUE [Ix])) >

By using assertions about Qi and Q2 in conjunction with the binding information for qi

and dequeued-qi, we obtain the following facts.

length-o f (qi) = length(xi) ~fl Sreceived_qu.uet, 
-

Ier,gth-of(dequeue-qi) = length(y) lii S.~~ueued_q2

Since xl = [ B !y] holds, the desired relation (*) is shown.

Note that the precondition that Qi and Q2 are distinct actors was used in obtaining

the assertion about the state of Qi in S.flqueu._q2. This precondition guarantees that (Q2

< (nq:...) ] does not change the state of Qi, and hence that assertion could be inherited

f r o m  8dequeued qi 

- --~ .-- -
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Appendix V - Another Specification of One-a-at-Time Serlalizers

Another specification of one-at-a -time serializers is given as the following four
event specifications. The first event specification is concerned with the creation of a

one-at-a -t ime serializer. The second one describes the event where the serializer receives a

request . A buck passer actor BP is created and placed in the crowd. Note in (Case-i:...)

clause that UP is sent to the resource R as the continuation of the message in the caused
event. A reply from the resource is always sent to a buck passer 91’. This Is described in

the third event specification. Then the buck passer sends the reply from the resource to the
serializer G which created UP. The fourth event specification describes how the reply sent

from the buck passer is handled by a serializer.

<ev ent: ~ cre ate— o ne—a t—a— tim e <= R]
<ret ur n : G~ >
<p o.ct-r o nd: (G is-a (ONE-/I T-/ i - T I ME  (queue: [] )(c rowd: ())(rcaource: R))) >>

<e,’en:: [G <==
w here M = [request: RQ reply-to: C]

(Case-I:
< p r r-r ond: (C ic-a (ONE-/I T- /l—TIAI E (queue: [])(crowd: f l) (ro source: R))) >
<ne is — m ud:

(C is -n (ONI ~-/J T- / l - T I M k  (queue: (])(rrowd: (BP *J)( resourc e: R)))
( UP  ic-a ( IS UCK-P / I SSER (r ont i,Iuat ion : C)(seriolizer : G) ) )  >

~~~~~~~~~~~~~~~~ [ R  <~~ [request: RQ rep ly -so: BP]~ 
))

(Ca ce-2:
< i,r e-eoud: (C is-a (ONE -/I T-/ I - T I M E  (queue: (!x]) (crowd: jBP )) (re a our ce : R))) >
(ne~-s -eond: (G is-a (ONE-/IT-/I-TIME -(queue: [lx M])(crowd: {BP))(resource: R))) )
< cause d —e,~e,us: (} >)>

_
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<ev ent: (BP <~~ (repl y: A3~
<pr e-cond: ( UP is-a (I II JCK -P /I SSER (continua sion: C)(scriallzer: G))) )
<caused-evens: [C <= [rep ly: (buck: A (continuation: C) (buck-passer: BP))]~ >>

<event: [C <== [reply: (buck: A (continuation: C) (buck-passer: BP))]J
( Cas e-I :

<pre-cond: (C is-a (ONE-/IT-Il-TIME (queue: [])(crowd: (BP))fresource: R))) >
<iie, .t-cond: (C is-a (ONE- / IT—f l -TIME (queue: (])(crowd: (})(resourc.: R))) >
<caus r~j -events: [C < [reply: A]]j >)

ill
<prv,—eond:

(C is-a ( O NE -/ I l -/ I - T I ME  (queue: [WM lx])(erowd: (BP))(resource: R)))
(WM = (request: RQ reply-to: CC]) >

<n ers—eond:
(C is-a (ONE -/ I T-/ I -TIME (queue: [lx] )(cro wd: (NBP*fl(reso urce: R)))
(N UP is-a (IJ UCK -p /J SSER (continuation: CC)(ser ializer : C)))) >

<caused-ev ents: { [C < =  [reply : A]~ , [R < [request: RQ repl y—to: NaP]] ) >)> 

~~~~---~~~ - -- - - -~~~~~~~~~~-~~~~ - —----~~~~~~~~~~~~~~~~~~ - -
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