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Abstract

This thesis presents formal specification and verification techniques for both serial
and parallel programs written in SIMULA-like ob ject oriented languages.

These techniques are based on the notion of states of individual ob jects which are
defined uniformly in serial and parallel computations. They can specify and verify the
behavior of data and procedural ob jects in multi-process environments, thus overcoming
some of the difficulties in dealing with parallelism which characterized previous work on
formal specifications for abstract data types. Among others, the specifications and
verifications of a bounded buffer and air line reservation systems are given.

Using a model of a simple post office, we illustrate our specification and
verification techniques for systems, such as operating systems and multi-user data base
systems, which are characterized by complex internal concurrent activities. It is
demonstrated that the specifications of the overall functions of the system which we call
task specifications can be derived from specifications of the individual behavior and
mutual interaction of the subsystems.

A method of defining states of individual objects as mathematical functions is
suggested. '
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1. Introduction

1.1 Formal Specifications and Verifications

A program specification is a description of the desired program behavior. It is
necessary to specify what task the program is supposed to perform and what effects
(side-effects) are caused by carrying out the intended task.

Program specifications can be written in languages of varying degrees of
formality.  Although informal languages, such as natural languages, diagrams, and
combinations of these, help people to convey intuitive ideas about program behavior, their
inherent ambiguity is a drawback. In order to rule out the possibility of ambiguous
interpretations, program sp&ifications should be written in formal languages. When

formal specifications might be difficult to understand, they may be accompanied by
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informal descriptions of program behavior.

Formal specifications play an important role in the construction of reliable
software. They also provide designers and programmers with an exact communication
medium for discussing the properties of program modules in various phases of software
construction, such as initial design and coding. Furthermore, they can be used as
documentation during the maintenance phase. A formal specification can be viewed as a
contract which describes the agreements between the implementors of a program module
and its users. The users of a module rely only on the properties derived from its formal
specifications, while the implementors need only satisfy the requirements stated in the
specifications.

Program verification is the process of proving that a given program

(implementation) meets its formal specifications. When a program module M is built on a

collection of submodules, their formal specifications can be used in the verification of M.

Actual programs (implementations) of the submodules need not be used.

1.2 A Model of Parallel Computation

This thesis is concerned with the techniques for formal specification and
verification of both serial and parallel computations.

In order to discuss specification and verification techniques, we must clearly define
the computation model on which the execution of programs is based. The computation
model used in this thesis is the actor model of computation[Greif-Hewitt75, Hewitt-Baker77),

which can be roughly characterized as one obtained by generalizing the computation model




used in SIMULA-like ob ject-oriented Ianguagesl to include parallelism.

The fundamental objects in our model of computation are actors, which unify
procedures and data structures. An actor is a potentially active ob ject which becomes active
when it receives a message. No actor treats other actors as ob jects to operate on; instead it
sends messages (which are also actors) to other actors. Actors behave like data or data
structures as well as functions or procedures. For example, a push-down-stack actor pops
up and returns its top element when it receives a (pop:) message (if it is not empty), and
when it receives a (push: e) message, it stores e as its new top element. A factorial actor
returns 6 when it receives 3.

The only activity possible in the model is message passing among actors. More
than one transmission of messages may take place concurrently, which models parallel
computations. Since processors and processes can be viewed as actors, multi-processor
information systems and computer networks are modelled by actor systems. In particular,
distributed systems2 and communicating parallel processes can be easily modelled by actors
or systems of actors[Yonezawa-Hewitt77, Hewitt-Baker77].

The concept of an event is fundamental in describing the model of computation
precisely. An event is the receipt of a message by an actor. A computation is expressed as
a partially ordered set of events, where the order relation represents the temporal "precedes”
relation. Unordered events can take place concurrently. Thus the partial order of events

naturally generalizes serial computations (which are totally ordered sets of events) to parallel

I. Besides SIMULA-67[Dahl-et-al70], CLU[Schaffert-et-al75}, ALPHARD[Wuif-et-al75] and
SMALL-TALKI(Learning-Research-Group76) are examples of such programming
languages.

2. Distributed systems are multi-processor information processing systems which do not rely
on the central shared memory for communication.




computations.

1.3 Local State Approach

In this thesis, we' propose an approach, called the local state approach, for
specifying the behavior of actors (ob jects). In general, the behavior of an actor in response
to a message depends upon the past history of messages received by the actor. By defining
the state of an actor A as equivalence classes on the past message histories of A, we can
specify the behavior of A in response to a message M in terms of:

(1) the state of A before A receives M,
(2) a set of mutually concurrent events caused by the event where A receives M and
(3) the state of A after A receives M.

Since we assume, in the model of computation, that the order of message arrivals
at the same actor is always total, the state of an actor is always well-defined in both serial
and parallel computations. Consequently, the behavior of an actor in both serial and
parallel computations can be specified in a uniform manner.

We use the term "local” to emphasize that our approach does not rely on the
notions of the global clock and the global state of a system.l The use of global states is
often motivated by the use of non-deterministic serial computations as the underlying
semantic model for parallel computations. This leads to counter-intuitive serialization of

unrelated concurrent events and a large number of possible cases in analyzing properties of

I. The global clock is the unique time reference available within the entire system. The
global state of the system at a given time t (by the global clock) is a vector of the states of
system components determined at the same time t.

i s B -
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the system.
In our approach, the behavior of a system is specified in terms of the individual
behavior of system components and their mutual interaction. Such behavior and

interaction are described by the states of the system components determined at their local

times.

1.4 Contributions of the Thesis

Based on the notion of local states, the work presented in this thesis has made

several contributions to the area of program specification and verification.

(1) Formal specifications of Abstract Data Types with Parallelism and Side-effects

The importance of abstract data types[Liskov-Zilles74]) in the construction of
reliable software has been recognized and two approaches to the formal specification
technique for abstract data types, ie. algebraic axiomatic[Zilles74, Spitzen-Wegbreit75,
Guttag75] and abstract model[Hoare72, Liskov-Berzins77] approaches, have been proposed.
Yet none of the techniques of these approaches are able to deal with parallelism and
side-effects. These techniques are only applicable to data ob jects without side-effects and
they fail to specify the behavior of data objects which are used in parallel computations
(multi-process environments). Our specification techniques have overcome these limitations.
Formal specifications for an air line reservation system and bounded buffers will be given

as illustrations of our techniques.

(2) Conceptual Representations
We have developed notational devices called conceptual representations to describe

the states of individual actors (ob jects, and data structures) at various levels of abstraction.
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The use of conceptual representations reinforces the notion of data and procedural ob jects
as abstract entities whose internal structures are hidden. By separating the states of an
ob ject from its identity, conceptual representations can express sharing among ob jects in an
intuitive, yet rigorous manner. Thus our specification language with its use of conceptual

representations has flexible and powerful expressiveness.

(3) Symbolic Evaluation of Programs written in Ob ject-Oriented Languages

Symbolic evaluation is a process which abstractly executes programs on abstract
data. As the major tool for program verification, we have developed a method for
symbolic evaluation of programs written in SIMULA-like ob ject-oriented languages. Our
formalism based on conceptual representations enables us to deal with the difficulties due
to ob ject sharing which often arise in verification of programs written in ob ject-oriented

languages.

(4) Specifications of Systems with High Internal Concurrency and Task Specifications
Little work has been done on specifying and verifying the behavior of a system
characterized by complex concurrent activities of its subsystems. Operating systems and
multi-user data base systems fall into this category. In order to illustrate our techniques for
dealing with such systems, we give a model of a simple post office where a number of
customers and mail-collectors are represented as internal concurrent activities. We show
that the specifications of the over-all functions of such a system, which we call task
specifications, are derived from the specifications of the individual behavior and mutual

interaction of its subsystems.




1.5 Outline of the Thesis

Chapter 2 introduces conceptual representations, which are extensively used in the
work presented in this thesis. The precise syntax of conceptual representations and their
uses in writing formal specifications of abstract data types without parallelism and
side-effects are exemplified. Further, algebraic axiomatic and abstract model approaches to
the specification of abstract data types are discussed in the light of our approach. (This
chapter does not use the actor model of computation.)

Chapter 3 gives a precise account of the actor computation model on which the
discussion in the subsequent chapters is based. It also describes certain characteristics of the
behavior of actors which must be considered in the development of specification
techniques.

Chapter 4 presents our specification techniques for serial computation. The
separation of the identities of objects from their states is explained and how this is
incorporated into our formalism is illustrated before our specification language is
introduced with examples of formal specifications. Several other approaches to program
specification are reviewed.

Chapter 5 describes our method of symbolic evaluation and illustrates our
verification techniques for serial computations based on the symbolic evaluation method.
The application of symbolic evaluation to other domains is also discussed.

Chapter 6 extends the specification language introduced in Chapter 4 to cover
parallel computations and illustrates our techniques for writing formal specifications of
abstract data types with parallelism and side-effects. The notion of local states of actors
(ob jects) is discussed in detail in the beginning of the chapter.

Chapter 7 presents our verification techniques for parallel computations. The

|
|
|
|
|
|
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verifications of air line reservation systems and bounded buffers are illustrated.
Chapter 8 contains an actor model of a simple post office, which is an intuitive

example of a system with high internal concurrency. We show that the internal activities of

the post of fice meet its task specifications.

Chapter 9 makes the concluding remarks and suggests future research.
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2. Conceptual Representations

Conceptual representations occupy the central role in the formal specification and
verification techniques presented in this thesis. In this chapter, we will explain the basic
idea of conceptual representations by illustrating how specifications of conventional data
structures are written using conceptual representations. However, as will be seen in the later
chapters, conceptual representations are used to describe states of actors of a wide variety.
In the later part of this chapter, existing specification techniques for data structures (data
types), such as algebraic axiomatic ones, and an abstract model approach, will be discussed
in relation to the techniques based on conceptual representations.




2.1 Introduction

We will use conceptual representations to specify a wide range of data structures at
various levels of abstraction. The motivation in developing conceptual representations is to
provide a specification language which serves as a good interface between programmers
and the computer and also between users and implementors. A “good” interface language
should allow programmers to easily express and understand their intuitive concept of a data
structure and how it behaves for various operations. For example, the “language™ of
diagrams using boxes and arrows is a very good language in which people can exchange
their intuitive ideas about the sharing relationships among objects. However, such a
language is not rigorous enough for the computer to understand without many hidden
assumptions. The specification language based on conceptual representations introduced in
this chapter is rigorous and yet able to express graphical intuitions about data structures.

Different degrees of awareness about the implementation of a data structure are
required in the different activities of implementing a system such as the initial design,
coding, and the subsequent evolution. Conceptual representations are flexible enough to
express only the details which are important in each activity. As mentioned above,
conceptual representations are not confined to specifying data structures. They are used to
describe states of both procedural and data objects and also used to express views and
summaries of behaviors of such objects. Examples of such conceptual representations will
be found in the later chapters [e.g., Chapter 6 and Chapter 8]




2.2 Conceptualization of Data Structures

In this section, we explain syntactic constructs of conceptual representations using
simple examples. The BNF syntax of conceptual representations is given in Figure 2.1 at
the end of this section.

2.2.1 Keywords and C-packages

Let us consider a simple data structure, a cell, which contains information that can
be retrieved and updated. In order to express a cell which has its contents, say 10, we use

the following notation
(CELL (contents: 10)).

This is a conceptual representation of the cell. ~When this cell is updated with new

contents, 12, its conceptual representation becomes
(CELL (contents: 12))

A word "CELL" in the above conceptual representations is an example of the keywords
which express the conceptual types of data structures. The keywords are always spelled in
italic capital letters.

In addition to keywords, another syntactic construct, conceptual packages
(abbreviated as c-pachages)' is used to express more detailed information about data
structures. A notation "(contents:..)" in the conceptual representations for cells is an example

of c-packages. C-packages are useful to distinguish conceptually different kinds of

l. The syntax of c-packages are borrowed from that of packages in PLASMA
[(Hewitt-Smith75, Hewitt77]

S—
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components of a data structure. For example, a node in list structures of LISP has two

conceptually different kinds of components, the car-part and the cdr-part. The following

conceptual representation
(NODE (car: 10) (cdr: 12))

‘expresses a node whose car-part and cdr-part are 10 and 12, respectively. (car: 10) and
(cdr: 12) are c-packages. Selectors of packages (eg. car and cdr) are always spelled in the
lower case italic letters followed by a colon.

When the details or specification of some components of a data structure are
unimportant, but their existence in the data structure needs attention, question marks may
be placed in conceptual representations. For example, when we want to express a node

whose car-part is 13, but cdr-part may be anything,
(NODE (car: 13) (cdr: 1))

may be used. We call the question marks used in this way dummy element notations.

2.2.2 C-sequences

There are many data structures which are naturally viewed as a linear sequence of
components at some levels of abstraction. Queues, stacks, arrays, tables and etc. are
examples of such data structures. To express such conceptual sequences of components in
data structures, we use a syntactic construct, conceptual sequences (abbreviated as

c-uquenccs).'

I. Specifications of forms in ALPHARD[Wulf-et-ai76) are stated in terms of mathematical
ob jects such as sequences and sets.
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Let us consider queues to see how c-sequences are used. Programmers envisage a
queue as a linear sequence of elements which are enqueued at one end and dequeued from
the other end. Suppose that we have a queue consisting of three elements, 1, 2, and 3, where
1 is its front element and 3 is its rear element. Using a c-sequence [1 2 3], this queue is

expressed by the following conceptual representation.
(QUEUE [1 23))
When a new element 4 is enqueued at the rear end of this queue, this queue is expressed as:

(QUEUE [1 2 3 4)).

2.2.3 Unpack Operations and Dot Notions

In order to express a queue which has an indefinite number (including zero) of

elements, we use a c-sequence variable, say x, in conceptual representations as follows:

(QUEUE [&x))

Ix is an abbreviation of the "unpack” operation on x.
In general, I<expression> is equivalent to writing oyt all of the elements of the

c-sequence denoted by <expression> individually. For example, suppose that x denotes a
c-sequence [2 3 4] Then

M) =[10234)] = [1234)
whereas
(1x] = [1[234]] # [1234)

When y denotes an empty c-sequence [},

o 1P g b
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(1ty) = [11(]] = (1}

Thus (QUEUE (ly)) is equivalent to (QUEUE []) which is the conceptual representation of
an empty queue.
Let us look at more elaborate examples of conceptual representations of queues

which use unpack operations and c-sequence variables. The two conceptual representations:
(QUEUE(6 1z])  and  (QUEUE (12 9))

express a queue whose front element is 6 followed by the elements of z and a queue whose

last element is 9, respectively. Furthermore
(QUEUE [!x 8 ty))

expresses a queue which has 8 as one of its elements. When the elements before and after

8 (i.e. Ix and ly) in the queue are uninteresting, the following conceptual representation may
be used.

(QUEUE (.. 8 ..])

".." inside the c-sequence is called a dot notation. In general, dot notations are used to
indicate only the existence of an indefinite number (including 2ero) of elements whose
specification is not important in a c-sequence or c-collection. (Cf. 224 ) Dummy element

notations may be used as elements of c-sequences. For example, a conceptual representation:
(QUEUE [? 3 4 5))

describes a queue whose front element is unknown ( or unimportant), and the rest of whose

elements are 3, 4 and 5, in this order.

TS RE TN A= N
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2.2.4 C-collections

Another syntactic construct of conceptual representations is conceptual collections
(abbreviated as c-collections) which are used to represent a conceptual group of components
in data structures.  C-collections are different from c-sequences in that the order of
elements in c-collections is unimportant. For example, a c-collection {2 3 7} is equivalent to
both {2 7 3} and {7 3 2}. C-collections are also different from mathematical sets in that
multiple occurrences of the same elements in c-collections are important. For example, a

c-collection {2 2 7} is not equivalent to {2 7}.

A simple example of conceptual representations using c-collections is
(SET {3 4 5})

which expresses a data structure of the type "set” whose elements are 3, 4, and 5. An
indefinite number of elements of a c-collections can be expressed by the unpack operations
and c-collection variables. Thus a general form of the conceptual representation for the

data structure “set” may be expressed as
(SET {Ix}).

C-collections may be described by using dummy element notations "?" and dot notations *.."

~ in the same way as c-sequences.
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2.2.5 Pattern Matching

Unpack operations are extremely useful in pattern matchlngl of c-sequences and
c-collections. Below we will give basic examples of pattern matching, instead of presenting
the matching algorithm.

‘ Suppose that a c-sequence of four numbers '1 9 8 4] matches against the following

patterns, where u, v, and w are pattern (or free) variables on c-sequences.

(1) [1 ), u must be [9 8 4).

(2) [tv 8 4), v must be [1 9].

(3) [iw], w must be (1 9 8 4].

(4) [tu 8 Bv), u and v must be [1 9] and [4), respectively.

(5) [1984}u) u must be [].

Suppose that the same c-sequence matches against the following patterns, where M and N

are pattern (or free) variables on numbers.

(5) (M u}, M and u must be 1 and [9 8 4], respectively.
(7) [N}, uand N must be [1 9 8] and 4, respectively.

But [1 9 8 4] does not match against the following pattern:
(8) [MN]

Some patterns may have more than one matching case. For example, when [1 9 8 4]

" matches against

. The use of pattern matching in our specification and verification techniques will be
exemplified in the process of symbolic evaluation in Chapter 5.




-95-

9 M
{1 SuM lv], there are three maiching
cases:

Case-1: u
=[}, M=9
il , ve[8
c'n-: u=[9), M=38, vl[[:].l
: u=[98], M=4, ve(}
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Fig. 2.1. Syntax of Conceptual Representations in BNF

<conceptual-representation> := ( <keyword> ) | ( <keyword> <conceptual-constituents> )
<keyword> ::= % a word in the upper case italic font %

<conceptual-constituents> ::= <an-entity> | <c-sequence> | <c-collection> | <c-package-sequence>
<an-entity> := % a single conceptual entity, which is often an actor %

<c-sequence> := [ <juxtaposition> ]

<c-collection> ::= { <juxtaposition> }

<c-package-sequence> := <c-package> | <c-package> <c-package-sequence>

<c-package> ::= ( <selector> <conceptual-constituents> )

<juxtaposition> ::= <element> | <element> <juxtaposition>
<selector> ::= % an identifier in the lower case italic font followed by a colon. %

<element> := <empty> | <an-entity> | <c-sequence> | <c-collection> |
<c-package> | <cunpacked-c-sequence> | <dot-notation> | <dummy-element-notation>

<empty> := % an empty string %

<unpacked-c-sequence> := [<c-sequence> | J<c-sequence-variable>
<dot-notation> ::= ..

1 | <dummy-element-notation> ::= ?

<c-sequence-variable> := % an identifier in the lower case roman font %
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2.3 Specifications of Data Structures

In this section, we exemplify how conceptual representations are used in
specifications of data structures. An abstract data type [Liskov-Zilles74] or a data structure
Is specified by the functionality (domains and ranges) of the applicable operations and the
effects of these operations. If the data structure may be created by users, how it is created
must be also specified. In specifying functionalities, a notation “error” is used to denote a
set of error messages which warn users of operations that an error has occurred. We

assume that data structures are not changed by operations which cause error messages.

2.3.1 Queues

As suggested in the previous section, we use conceptual representations of the

following form to express a queue.

(QUEUE [..])

A complete specification of queues is given in Figure 2.2.




Fig. 2.2. A Specification of Queues

FUNCTIONALITY:
i) CREATE-QUEUE: ===} queue

i)

iif)

iv)

EFFECTS:
(1)

(2)

(3)

4)

(5)

(€)

iCreates an empty queue.

ENQUEUE: queue x item --> quéuc

ienqueues a new item at the rear end of the queue.

DEQUEUE: queue ---> item x queue or error
itries to dequeue the front element of the queue.
iif the queue is empty, an error message is produced.

IS-EMPTY: queue -—-> boolean
ichecks whether or not the queue is empty.

CREATE-QUEUE() ---=> (QUEUE[))
ENQUElUE((OUEUE (¢x]), A) ====> (QUEUE [ix A))
DEQUEUE((QUEUE [])) =--=> ERROR
DEQUEUE((QUEUE [A Ix])) ====> <A, (QUEUE [Ix]»
IS-EMPTY((QUEUE [])) =-==> TRUE

IS-EMPTY((QUEUE [A x))) ====> FALSE




s

23.2 Sets

A typical use of conceptual collections in conceptual representations is the data type
“set”. The following four operations are associated with the set type.

FUNCTIONALITY:
i) CREATE-SET: ===) Sset

icreates an empty set.

i) INSERT: element x set =-=> set

stries to insert an element,

if the element is already in the set, no effect.
ili) DELETE: element x set =-=> set or error

stries to delete an element from a set.
;if the element is not in the set, error.

iv) IN?: element x set =-=> boolean

xchecks whether or not an element is a member of a set.

The effects of these operations are formally described in Figure 23. Note that the

membership of an element in a set is expressed succinctly by dot notations in c-collections.




Fig. 2.3. A Specification of Sets

EFFECTS:
(1) CREATE-SET() ---=> (SET {})

(2) INSERT(E, (SET {ix})

if xu{.E.] === (SET (1))
if xh{..E.} ====) (SET {Ix E})

(3) DELETE(E, (SET {ix}))

fx={lyEl} == (SET {ly la})
fxMw{.E..} =--=-> ERROR

(8) INT(E, (SET {ix})

if x={. .E.} ====> TRUE
if x#{..E.} === FALSE




<A
2.3.3 Arrays

The following five operations are associated with the array type.

: FUNCTIONALITY:

1) CREATE-ARRAY: integer x integer -—-> array or error
itries to create an empty array with the specified lower and upper bounds.
ithe first integer should not be greater than the second integer.

ii) STORE: array x integer x item ----> array or error
itries to store an item with the specified index
ithe index should be within the bounds.

\ iii) FETCH: array x integer ---> item or error
itries to fetch an item with the specified index
ithe index should be within the bounds.

iv) BOTTOM: array ---> integer

;returns the lower bound.

v) TOP: array -—-> integer

;returns the upper bound.

To express arrays, we use conceptual representations of the following form:

R R EEEESBB B

(ARRAY (low: 1) (high: h) (elements: {..[i A)..})

——

where | and h are the lower and upper bounds, respectively, and an item A with the index |
is expressed as a c-sequence {i A] in the c-collection of the (elements: ) c-package. The
effects of the operations applicable to an array is given in Figure 2.4.

Multi-dimensional arrays can be expressed easily by modifying c-sequences in
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Fig. 2.4. A Specification of Arrays

EFFECTS:

(1) CREATE-ARRAY(I, h)
if 1$h, ===> (ARRAY (losw: 1) (high: h) (elements: {}))
if 1>h, ===> ERROR sbound error.

(2) STORE((ARRAY (losw: |) (high: h) (elements: {Ix})), i, A)

if i>hor i<l, =-=> ERROR ;bound error.

if 1SiSh and x = {lel [i 7] te2} swhen the i-th element already exists.
===>  (ARRAY (low: |) (high: h) (elements: {fe1 [i A) t02}))

if 1S$ishand xw{..[i7])..} swhen the i-th element does not exist.

===>  (ARRAY (low: l) (high: h) (elements: {Ix [i A]}))

(3) FETCH((ARRAY (losw: 1) (high: h) (elements: {ix}), i)
if i>hor i<i, ---> ERROR bound error.
{f 1$iSh and x={..[iB]..} == B
if 1§iShand x{..[i?]..} ==~> ERROR ;when the i-th element is not found.

(4) BOTTOM((ARRAY (loso: 1) (high: h) (elements: {...}))) ===> |

() TOP((ARRAY (low: |) (high: h) (elements: {..}))) ===> h
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the (elements: ) c-package to include more than one index. For example, a two-dimensional

array may be expressed by a conceptual representation of the following form

(ARRAY (low: 1) (high: h) (elements: { ... [i j A) ... }))

2.3.4 Symbol Tables

As an example of specifications for more complicated data structures, we give a
specification of symbol tables [Guttag75, London-et-al76). Symbol tables are often used in
writing compilers for programming languages which have ALGOL-like block structures. A
symbol table records pairs of an identifier and its attribute. The same identifier may have
different attributes depending upon where the identifier is used in the block structure. We
assume the following six operations are applicable to a symbol table. No operations except
ENTER-BLOCK are allowed before the most global block is entered. The creation of a symbol
table does not imply the entering of the most global block.

FUNCTIONALITY:

i) CREATE-SYMBOL-TABLE:  =-==> symbol-table
icreates an empty symbol table.

ino block has been entered yet.

i) ENTER-BLOCK: symbol-table =-~==> symbol-table
;set up a new local naming scope.

iii) LEAVE-BLOCK: symbol-table =--=> symbol-table or error
itries to leave the current block.
iIf the current block is outside the most global one, then error.

;otherwise discard the current block and reactivate the most previous scope.
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iv) ADD: symbol-table x id x attribute -=-=> symbol-table or error
itries to add a pair of an identifier and its attribute.
;If the current scope is outside the most global block, then error.
iif the identifier is already declared in the current block, then error.

v) RETRIEVE: symbol-table x td ====> attribute or error
itries to retrieve the attribute of an identifier in the most recent
;block in which the identifier is declarad.

;if it is not found, then error.

As a conceptual representation for the symbol table, we use the following notation:
(SYMBOL-TABLE [!x)).
x is a c-sequence whose elements are empty or c-packages of the form
(block: [1y))

which conceptually represents a block. The order of c-packages in x corresponds to the
order of blocks. That is, the last c-package in x corresponds to the most recently entered
block. y s a c-sequence whose elements are pairs of an identifier and its attribute. Such
pairs are expressed by a c-sequence. For example, suppose that in some block identifiers A
and B are declared to be real and integer, respectively. Then the conceptual representation

for this symbol table looks like:
(SYMBOL-TABLE [ ..(block: (... [A real] ... [B integer] ..]) ..)).

Using conceptual representations of this form, a specification of symbol tables is written as

depicted in Figure 25.
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Fig. 2.5. A Specification of Symbol Tables

EFFECTS:

(1) CREATE-SYMBOL-TABLE() =--=> (SYMBOL-TABLE [))
(2) ENTER-BLOCK((SYMBOL-TABLE [8u))) --=> (SYMBOL-TABLE [fu (block: [))))

(3) LEAVE-BLOCK((SYMBOL-TABLE ())) ---> ERROR
sleaving the most global block (without entering).

(4) LEAVE-BLOCK((SY MBOL-TABLE [iw (block: [..])])) ) =-=> (SYMBOL-TABLE [iw))

(5) ADD((SYMBOL-TABLE []), ID, ATT) --=> ERROR
;adding an id-attribute pair without entering the most global block

(6) ADD((SYMBOL-TABLE [Ur (block: [Ipairs)))), 1D, ATT)
if pairs=[..[ID?]..] =-=-> ERROR ;ID is aiready declared in the current block.

if pairs [ .. (ID?]..]
===> (SYMBOL-TABLE [!r (block: [Ipairs [ID ATT]])))

(7) RETRIEVE((SYMBOL-TABLE [1t)), ID)
if t v [..(block: [..[ID ?]..])..] ===> ERROR
ithe identifier is not found in any blocks.

if t = [...(block: [..{ID ATT] Ix]) ly] and y # [..(block: [..[ID 1])..])..] =-=> ATT |




2.4 Relationship to Other Work

In this section, we discuss the relationship of our specification techniques for data
structures presented in this chmpterl to some other work in the same area. We have chosen
to consider an algebraic axiomatic approach u;d an abstract model approach because these
two approaches are in clear contrast to ours and also well studied. An excellent survey of
specification techniques for abstract data types is found in [Liskov-Zilles75l Other
approaches such as Parnas’s “state machine model” [Parnas72] are also reviewed in

(Liskov-Zilles75).

2.4.1 Algebraic Axiomatic Approach

Algebraic axiomatic techniques have been studied by a number of researchers
[Zilles74, Spitzen-Wegbreit75, Guttag75, Wegbreit-Spitzen76). In this approach, the effects
of operations on an object of the data type being specified are expressed in terms of
equations of the operations. To compare their approach with ours, we present two
algebraic axiomatic specifications, one for queues (which is a modified version of
[Spitzen-Wegbreit75]) in Figure 26 and the other for symbol tables (which a slightly
simplified version of [Guttag75]) in Figure 2.7.

All the axioms given in their specifications in Figure 26 and Figure 2.7 are easily
derived from our specifications of queues in Figure 2.2 and symbol tables in Figure 25.
[For the derivation of the axiom (5) in Figure 26, see Appendix 1] We believe that

specifications using concepiuai representations are often easier for programmers to both

I. In this chapter, we assume that data structures or data types are always used in serial
computations. Our techniques for data structures (or abstract data types) with parallelism
and side-effects will be presented in the later chapters.
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Fig. 26. An Algebraic Axiomatic Specification of Queues

FUNCTIONALITY: omitted.

AXIOMS:
(1) IS-EMPTY(CREATE-QUELE()) = TRUE

(2) IS-EMPTY(ENQUEUE(Q, A)) = FALSE

(3) DEQUEUE(CREATE-QUEUE()) = ERROR ;attempts to dequene an empty queue.

(8) if IS-EMPTY(Q) then DEQUEUE(ENQUEUE(Q, A)) = <A, Q>

(5) if ~IS-EMPTY(Q) A DEQUEUE(Q) = <B, Q>
then  DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q', A

construct and understand than algebraic axiomatic specifications, because in the conceptual
representation approach we describe directly and explicitly what effects take place in data
structures (at the conceptual level) when the operations are applied, whereas the algebraic
axiomatic specifications describe the effects of the operations indirectly and implicitly in
terms of relations (or equations) among the operations. In particular, the axiom (6) for
symbol tables in Figure 2.7 is expressed in ‘terms of a recursion of RETRIEVE. Such indirect
specifications are often difficult to grasp. Thus the author and reader of an algebraic
axiomatic specification of a data type may be less confident as to whether or not the
specification completely describes the desired properties of the data type.

Recently a serious problem in the algebraic approach has been pointed
out[Majster77]. The problem is that there are some classes of abstract data types which

cannot be specified by a finite set of axioms for the operations (equations of the
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Fig. 2.7. An Algebraic Axiomatic Specification of Symbol Tables

FUNCTIONALITY: omitted.
AXIOMS:

1) LEAVE-BLOCK(CREATE-SYMBOL-TABI.E()) = ERROR

(2) LEAVE-BLOCK(ENTER-BLOCK(symtab)) = symtab

(3) LEAVE-BLOCK(ADD(symtab, id, attrs)) = LEAVE-BLOCK(symtab)
(4) RETRIEVE(CREATE-SYMBOL-TABLE(), id) = ERROR
(5) RETRIEVE(ENTER-BLOCK(symtab), id) = RETRIEVE(symtab, id)
(6) RETRIEVE(ADD(symtab, id, sttrs), id1)

if id=idi,

then attrs
else RETRIEVE(symtab, id1)

operations). To avoid this problem, they must use axiom schemata instead of infinitely
many axioms. This violates the finiteness of the axiom set which is an important
assumption of the underlying theory for algebraic specification techniques. Our conceptual
representation approach does not have such a problem, because, as mentioned above, our
techniques describe explicitly what effects the operations cause to data structures. (In
appendix II, a data type which cannot be expressed by a finite set of algebraic axioms of
operations is specified by using conceptual representations.)

Furthermore, the current algebraic and axiomatic techniques do not capture an
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important difference between data structures without side-effects and data structures with

side-effects. (This difference will be explained in Chapter 3)  As will be seen in Chapter
4, the specification technique using conceptual representations can easily express this

difference. For further discussions on the algebraic approach, see Section 4.55, Chapter 4.

2.42 Abstract Model Approach

B. Liskov and V. Berzins [Liskov-Berzins77] have been developing an abstract
model approach in the area of specification of abstract data types. The construction of its
mathematical foundation is underway (Berzins76). In this approach, first a certain set of
well established data types and mathematical ob jects [e.g., sets, sequences, tuples and etc] is
chosen. Then new abstract data types are specified in terms of such chosen data types or
already defined abstract data types.

As an example, we give an abstract model specification of arrays cited from
[Liskov-Berzins77] in Figure 28. Objects of the type array[t] are represented by the
following tuple:

tuplellow: integer,
high: integer,
elements: sequenceltuplelindex: integer, value: t]]]
Comparing the specification in Figure 2.8 with the one given in Figure 2.4 which is based
on the conceptual representations, one is struck by the similarity. In fact, in representing
objects of a new data type, the roles of sequence, sets and tuples in their approach
correspond to those of c-sequences, c-collections and c-packages in our approach. However,

in the abstract model approach, the operations applicable to ob jects of a new data type are
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Fig. 2.8. An Abstract Model Specification of Arrays

FUNCTIONALITY: omitted.

OPERATIONS:
alloc(il, 12) = if i1 < i2 then {low: il, high: i2, elements: <>}
else error("bad array size”)
;<> denotes an empty sequence and {...} denotes a tuple.
bottom(a) = alow
top(a) = a.high
store(x, i, a) = if alow s i s a.high
then { low: a.low
high: a.high
elements: addfirst({index: i, value: x}, a.elements) }
fetch(i, a) = .‘ if a.low < i < a.high then getvak(a.elements, i)
else error("index out of bounds”)
getval(elements, i) = if length(elements) > 0 then

if elementsi.index « i then elements;.value
else getvakbutfirst(elements), i)
else UNDEFINED
;elements; means the first item of the sequence denoted by "elements”
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specificed in terms of procedures defined on pre-defined data types. Getval, addfirst, and
butfirst in Figure 2.8 are examples of such procedures. In the conceptual representation
approach, we do not use such procedures in specifying the effects of the operations.
Instead, we rely on pattern mechanisms of keywords, c-sequences, c-collections and
c-packages, which have been exemplified by a number of specifications.

As was pointed out in the previous subsection, our approach is extended easily to
cover data structures with side-effects. The extendability of the abstract model approach

remains to be seen.
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3. Behaviors of Actors (A Model of Computation)

In this chapter, we introduce the model of deterministic computation on which the
discussion in the rest of this thesis is based. The first section mainly contains definitions
and intuitive accounts of various concepts and notations employed in the model of
computation. The second section describes the characteristics which must be considered in
trying to construct formal specifications of computations in the model. This section

contains the classification of interactions among actors.
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3.1 The Actor Model of Computation

The fundamental ob jects in our model of computation are actors. Computations
are carried out through message passing between actors.  An actor is a potentially active
ob ject (procedure) which becomes active when it receives a message. Each actor decides
itself how to respond to messages sent to it. No actor can treat other actors as ob jects to
operate on: it can only send a message to other actors.!

Messages are also actors. An actor may be created in the course of computation or may
exist in the beginning of a computation. More than one transmission of a message at a
time in an actor system may take place.

A collection of actors which communicate and cooperate with each other in a goal
oriented fashion can be implemented as a single actor. A system of actors can model
various kinds of information processing schemata from ordinary sequential arithmetic or
symbolic computations to highly distributed parallel computations including computer
networks of varying scales. Furthermore, it can model problem solving activities by a
society of experts[Hewitt77]. .

A number of concepts in programming systems can be captured by simple concepts
in the actor model of computation. For example, traditionally different kinds of entities
such as data, data structures, files, and procedures are unified as a single kind of ob ject, the
aclor. Control structures such as recursion, iteration, and coroutines can be viewed as
particular patterns of message passing [Hewitt77). Furthermore, calling a procedure,
returning a value, retrieving and updating data structures, and synchronization and

communication of cooperative parallel processes are achieved by message passing.

I. For example, to get the i-th element of an array A, an (i-th:) message is sent to A instead
of doing a fetch operation Al[i).

1
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An implementation of the actor model of computation has been realized as a
programming language PLASM A[Hewitt-Smith75, Hewitt77). The syntax of PLASMA is
so designed that its underlying semantics is transparent.

The above intuitive account of the model of computation will be made more

precise below.

3.1.1 Actors

An actor consists of two parts, script (action) and acquaintances. Its script is a
description of how it should respond to messages sent to it. Each actor has a fixed set of
messages by which it can be activated. When a message that does not belong to this set is
sent to an actor, the response of the actor is undefined. The acquaintances of an actor are
a finite collection of actors that it directly knows about. An actor A can send a message
directly to an actor B only when B belongs to the acquaintances of A. The script of an
actor can be realized by a PLASMA program for the actor. The acquaintances of a newly
created actor C are the set of actors which are denoted by free identifiers in the PLASMA

program for C at the time of creation.

3.1.2 Events

An event E is defined to be the receipt of a mes:agel actor M by a target actor T.

The event E is expressed by a notation of the form

. We use the terms “receipt” and "arrival” of a message interchangeably throughout the
thesis.
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[T<«=M].

A message contains a request of what the target actor is asked to do and it may also
contains a continuation actor which is the destination where the reply to the request is

supposed to be sent. Messages are often expressed by notations of the form
[request: <request> reply-to: <continuation>].

The request usually consists of a tag which indicates a task to do and the data necessary to
accomplish the task. PLASMA packages are often used as requests. For example, to request
a queue-actor to enqueue some actor A at the end of the queue, the package (enqueue: A) is
used. To request a queue-actor to send back its front element, the package (dequeue:) is
used. The continuation actor may be omitted in the message when it is unnecessary. For
‘example, when the purpose of a message is to return the result of a task, or the reply to a
request, the message need not contain a <continuation>. In such cases, messages are expressed

by notations of the form
[reply: <resuit>]

When a continuation C in a message is unimportant or obvious from the context of

discussion, we make only the request part explicit in expressing an event. So the following

abbreviated form is used

[ 7 <= <request>] for [T ¢== [request: <request> reply-to: C]].

Furthermore, when it is obvious from the context that a message contains only a replying

result, we use the following abbreviated form.




- 46 -

[T <= <resuld>] for [T <== [reply: <resuld>]].

Note that the above abbreviated forms use single shafted arrows "<=" instead of double
shafted arrows “<==". In the subsequent presentation of this thesis, the terms "request” and
"message” will be used interchangeably when we are not interested in the continuation in a
message.

A primitive event is an event which activates exactly one immediate reply without
causing any intermediate events. From this definition, we can define primitive actors. A
primitive actor is an actor which always causes a primitive event when it is sent a message.

As we have noted above, different control structures in programming languages
are viewed as different patterns of message passing in the actor model of computation. In

fact, such different patterns of message passing correspond to different patterns of

~continuation in messages. The patterns of continuation for recursion, and iteration are

found in [Hewitt77]) and for coroutines in [Greif-Hewitt75). The fact that continuations are
sent together with requests allows the unification of control flow and data flow into a
universal flow of information, message transmission. Consequently, this unification allows

us to describe computations solely in terms of events.

3.1.3 Computations

A computation is defined as a partially ordered set of events, where the ordering is
strict and transitive. A physical intuition for the ordering is that an event E precedes
another event E'. We call this ordering the precedes order and denote it by "-->". Then a
computation is a pair <Ev, "-->"> where Ev is a set of events. The strictness of the ordering

imposes the constraint that any event E does not precedes itself:
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VE, ~E --> E).
The partiainess of the ordering allows that some events E; and Ej do not precede each
other, which means that E; and Ej may take place concurrently. We assume that each such
ordered set of events always has the maximal events in it. This means that every
computation has a set of initial events.

Our assumption to model physically realizable computations requires two kinds of

finiteness properties. First, for any two events E; and Ej which are ordered by "-->", only
finite numbers of event can take place between E;and Ej' Le, the set {E|[E; --> E --> Ej} is
finite. Second, each event E has finitely many immediate successor events. These two
finite properties do not rule out non-terminating computations: they only exclude infinitely
fast computations.l

The precedes ordering has two suborderings which reflect more detailed physical
properties of computations. Suppose that E is an event in which a target actor T receives a
message actor M. Then the event E triggers a response (or action). This response is a
finite set C of events. We can view that the event E activates the events in C. Thus we
call this type of ordering the activation ordering and denote it by "-act->". So V EE in C,
E -act-> EE. The activation ordering is intended to describe the notion of causality in
computations.

Suppose that more than one message is sent to a single actor A in a computation.
In our computation model we assume that one message arrives before another. le, no two

messages arrive at the same actor simultaneously. Since each arrival of a message at A is

an event by definition, if we fix a target actor, we can always introduce an ordering among

I. Hewitt and Baker gave an proof for the impossibility of such infinitely fast
computations in [Hewitt-Baker77).
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events which have A as a target actor by arrival time. We call this ordering the arrival
ordering with respect to A and denote it by "-arr=>,".

The important property of the arrival ordering is that it is a total order: each
event in a computation can have at most one immediate successor event in terms of the

arrival ordering, whereas it may have more than one immediate successor event in terms of ﬁ

the activation ordering. ]

A nested activity is a computation starting with a request event RQ of the form
[T <== [request: <request> reply-to: <continuation>]]
and ending with the corresponding reply event RP
[ <continuation> ¢== [reply: <the-resuit>]]
The set of events consisting of the nested activity is the set:
{EYE=RQVE=RPV(RP ->EAE->RQ)}

When a continuation is not contained in the message, the nested activity is undefined.
There are many activities in operating systems and distributed computing systems
that are not nested. It should be pointed out that one may find many non-nested activities

in the real world. The model of a post office given in Chapter 8 is an example of such

non-nested activities.
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3.1.4 Level of Detail

The behavior of an actor system can be described at varying levels of detail.
Computing the factorial of 3 can be viewed as a process to input 3 and to output 6 at some
level of detail. At this level of detail, an iterative way and a recursive way of computing
the factorial of 3 are viewed as the same computation. Some difference between two
implementations of the iterative factorial may be detected at some finer level of details.
There may be many implementations of an actor which satisfy a given specification. Such
implementations are viewed as the same implementation at one level and different ones at
another level. At a finer level, some computations which may be viewed as a serial
computation at a less fine level may be revealed to be parallel computations.

In order to describe the behavior of an actor system we need to choose a level of
detail according to the purpose of description. The description of the behavior of an actor
system at the lowest level of detail is given as a computation <Ev(, "-->"> where Evj is a set
of all events which take place in the actor system. A level of detail is decided by criteria
with which a subset Ev is chosen from Ev(. Since any events E; and E, in Ev are also in

J
Evg, if Ej and E; are ordered by "-->" in Evg, the same order relation holds in Ev. Thus a

J

partially ordered set of events Ev is a "sub"-computation of Evy. Choosing a subset from
Evg is done with various criteria which are decided by the purpose of description. For
example, first we select actors from the set of all actors in the system, and then all events
where the selected actors are involved as targets or messages are chosen from Evy. Another
example of the criteria is to select events which meet some patterns such as the beginning
and ending events of nested activities.

The notion of primitiveness defined in the previous subsection is relative to the

level of detail chosen. The event where the factorial actor receives 3 is primitive at the

level of detail where no events taking place before the arrival of 6 at the continuation are
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counted. An event where a data base receives a query can be viewed as a primitive event
at a very high level of detail. Thus a data base can be considered as a primitive actor at

that level.

3.2 Time Variant Behaviors of Actors

In this section we discuss the characteristics of individual actors which must be

taken into account in formally specifying the behavior of an actor system.

3.2.1 Pure Actors and Immpure Actors

All actors are classified into two categories depending upon their behavior. Actors
which belong to one category never change their behavior. They always give the same
reply to the same request. They are called pure actors. Actors which belong to the other
category are called impure actors and their behavior may change with time. They do not
always give the same reply to the same request. The following more precise definitions are

given in terms of nested activities.)

An actor T is pure if, for the same message M, the event [T <== MJ

always causes (precedes) the same reply event.

. The definitions can be viewed as behavioral definitions of immutable and mutable
ob jects.
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An actor T is impure (not pure) if there is a message M such that the event

[ T <== MJ] does not always cause (precede) the same reply event.

The “sameness” in the above definitions is used in the following sense: two actors are the
“same” if they are behaviorly eqm’valent.l Two events are the same if they have the same
target actor and the same message actor.

From this definition, it can be said that a pure actor behaves like a mathematical
function. An actor which generates random numbers is impure because it returns a random

number in response to the same message (next-random-number:). A cell-actor is ancther

example of a simple impure actor. A cell-actor accepts a message (update: <new=content>)
which updates its contents and a message (contents:) which retrieves its contents. A
* cell-actor may change its behavior because it can give different answers to the (contents?)
message, depending upon what it contains at the momer—lt. An actor which behaves like a
function + is a pure actor. The plus-actor always returns the same number, which is the
sum of two numbers sent to it. Another example of a pure actor is a sequence-actor. One

can retrieve elements of a sequence-actor, but one cannot change its elements; instead a

completely new sequence-actor must be created. So a sequence-actor is pure.

3.2.2 Pure Queues and Impure Queues

'f To illustrate the difference between pure actors and impure actors, let us consider a
pure actor and an impure actor, both of which behave like a queue. Both pure

queue-actors and impure queue-actors accept the same two kinds of messages: one is (nq: x)

I. For example, number actors which behave like | are behaviorly equivalent each other,
but their identity may be distinct. The LISP functions, EQ and EQUAL, are impure and
pure, respectively.
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which is a request to enqueue a new elements x, and the other is (dg:) which is a request to
take out the front element of the queue and return it with the remaining queue. However
if the queue is empty, it returns a complaint message (exhausted:). The important
difference between a pure queue-actor and an impure queue-actor is whether or not a new
queue-actor is created when (nq: ..) and (dq:) are sent. When (nq: x) is sent to a pure
queue-actor PQ, a new pure queue-actor PQ’ which has x as the last element of the queue is
created and retumed.- The original queue-actor PQ still has the same elements as before.
When (nq: x) is sent to an impure queue-actor IQ, x is absorbed inside 1Q and enqueued at
rear of the previous elements. So IQ itself is extended and returned. No new queue-actors
are created. (See Figure 3.1.)

When (dq:) is sent to a pure queue-actor PQ (which is not empty), a new pure
queue-actor PQ’ whose elements are all elements of PQ_except the front element of PQ is
created and the front element of PQ and the new pure queue-actor PQ’ are returned.
Again the original PQ_ is intact and has the same elements as before. When (dq:) is sent to
IQ (which is not empty), then the front element of 1Q and 1Q itself which now has the rest
of the original elements are returned. No queue-actors are created.

It might be helpful to see a LISP analogy in understanding this difference
between pure queues and impure queues. Suppose that a queue is implemented as a list L.
Then sending (nq: x) to a pure queue-actor corresponds to (append L (list x)), whose result is
a totally new list constructed from a copy of L and x. Sending (ng: x) to an impure

queue-actor corresponds to (nconc L (list x)) whose result does not consist of a copy of L.
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Fig. 3.1. Behaviors of pure queues and impure queues
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3.2.3 Sources of Impurity and Uses of Impurity

The change of behavior of an actor A is caused by the change of information
used in computing the reply for a request to A. The change of such information is caused
by the computation taking place before the reply event occurs.

Roughly speaking, the sources which may change the behavior of an actor A can
be divided into two kinds. Qne is the activation of A initiated by messages which have
been sent to A. The previous activations of A change the information stored inside A. For
example, a random number generator usually keeps some internal values used to generate a
random number. For the generation of the next random number, such intérnal values are
changed during the generation of the previous random number. In the case of impure
queue-actors, the history of the previous enqueuing and dequeuing operations determines
the reply for the current dequeuing request.

The other kind of source is the computation initiated by messages which are not
sent to A, but to some other actor B. When the computation initiated by a message sent to
B changes information shared by both A and B, the subsequent behavior of A may change.
Sharing of information sometimes happens inadvertently. When an actor A is created,
some internal constituents of A might become known to other actors outside. For example,
suppose that a new array-actor A is created by extending the upper bound of an existing
array-actor B. If B receives a request to change one of its elements, the computation
initiated by the request will change the subsequent behavior of A, because all elements of B
are shared by A. There is another way in which internal constituents of an actor A become
accessible. After an activation of A, the some internal constituents might be released
outside as a result of the activation. Such released constituents become directly accessible

from outside and information stored in them could be changed without sending legitimate

requests to A.




- 55 -

Uses of an impure queue-actor are "destructive” in the sense that each enqueuing
or dequeuing messages sent the actor changes the current status of the queue. If one wants
to update the queue and still keep the previous status of the queue, the behavior of pure
queue-actors is desirable even if it is costly in terms of both space and time. Sometimes the
impurity of actors are necessary. For example, in order for concurrently running processes
to communicate with each other, they need some actor which behaves as information
storage through which they may exchange information. Such information storage may be
contained inside each process or external common storage to which concurrent processes

have access. This kind of impurity of actors is indispensable for communicating parallel

processes.

3.2.4 Four Types of Interactions between Actors

Suppose that an actor M is sent as the request part of a message to a target actor
T. This event initiates a computation where M and T are involved [ie. an interaction
between M and T]. After this computation, there will be no changes in the behavior of M
or T if both M and T are pure actors. If M or T, however, are impure actors, the
subsequent behavior of M or T may be different. Interactions between two actors M and

T are classified into four types, depending upon the presence or absence of change in their

future behavior.

No-Change-Type: Neither M nor T change their behavior.

The interactions initiated by the following events:

[ factorial <= 3]

[ create-array <= 4]
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[ merge <= [ARRAY-1 ARRAY-2]]

are examples of this type. The objective of this type of interaction is creation of
new actors. Neither the factorial actor nor the number-actor 3 change their
behavior, but the result of the computation, a number-actor 6, is created and
returned. The create-array actor always creates an array of the size specified by the
request message. The merge actor creates a new sorted arrays whose elements are
those of the two sorted arrays ARRAY-1 and ARRAY-2. In this case, neither
ARRAY-1 nor ARRAY-2 do not change.

Target-Change-Type: T changes its behavior, but M does not.
This type of interaction often takes places to modify information stored in actors

which behave like data structures. For example,

[ CELL <= (update: A)]
[ IMPURE-QUEUE <= (enqueue: B)]

are of this type. The behavior of A or B do not change after the interactions.

Message-Change-Type: M changes its behavior, but T does not.

Examples of this type of interaction are initiated by events such as:

[ sort <= ARRAY]
[ empty <= IMPURE-QUEUE].

When an array-actor ARRAY is sent to the sort actor, the same array-actor ARRAY
whose elements are sorted is returned. In a similar way, IMPURE-QUEUE is emptied

but the empty actor does not change its behavior.
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Target-Message-Change-Type: Both M and T change their behavior.

Examples of this type of interaction are often found in situations where some
information is removed from one actor and transfered to another. In Chapter 8, we
will model the activities in a simple post office in terms of actors. The interaction

among customer actors, collector actors, and a mail box actor in the model is of this

type.




4. Specifying Serial Computations

In this chapter, our specification techniques for serial computations are presented.
Since our model is so constructed that serial computation is naturally extended to parallel
computation, most of the concepts, notations, conventions and techniques introduced in this
chapter are not only valid but also necessary for the specification and verification of
parallel computations. In the first section, we introduce basic tools for describing the time
variant behavior of actors. In the second section, we briefly discuss the role of conceptual
representations in our model of computation. In the third section, our specification
language for serial computations is explained and some issues of specifications related to

"side-effects” are discussed. In the fourth section, examples of specifications written in our

language are given.
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4.1 Capturing Time Variant Behavior of Actors

In order for a formal specification language to be effective for our model of
computation, it must be able to describe the time variant behavior of actors. The ability of
our specification language to deal with this aspect of actor behavior is based on concepts

introduced in this section.

4.1.1 History of Messages and States of Actors

As we have seen in the previous chapter, one source of the time variant behavior
of an actor is the history of computations initiated by messages sent to the actor. If the
whole past history of messages sent to an actor A is known, the subsequent behavior of A
In response to a given message should be predictable. Thus, it is desirable to know the
history of messages to specify the behavior of A. However, it is not practical to enumerate
all possible histories of messages. Two actors with different past histories (sequences) of
incoming messages sometimes show the same subsequent behavior. Thus we can partition
the set of histories (sequences) of messages sent to A into equivalence classes according to
the subsequent behavior of A. By such equivalence classes, we can define the notion of
states of an actor. That is, the state of an actor A at a given point in time is defined as
equivalence classes on the past histories (sequences) of messages sent to A. If A is in the
same state at a different time, the subsequent behavior of A will be always the same.

The state of an actor which behaves as an information storer is often defined by
the contents of the stored information. For example, the state of a cell-actor C at a time is
defined by the contents B of the cell. This definition of states is a special case of our
definition by equivalence classes on past message histories. For the contents of the cell can

be viewed as the most recent update message (update: B). The (update: B) message
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represents the class of histories (sequences) of messages sent to C which have an (update: B)
as the most recent update message.

Some kinds of states are not naturally expressed by the contents of stored
information. For example, states of a data base which is being accessed by a number of
concurrent processes are not expressed naturally by some stored information in the data
base. The states where processes are updating or retrieving information in the data base
may be expressed as certain monitoring mechanisms attached to the data base, but such
mechanisms are dependent on the implementation of the data base. When the states of a
data base are defined externally [i.e. independently of implementation], our definition of
states is quite useful. The state of an air line reservation system discussed in Chapter 6 and
that of a post office in Chapter 8 are examples of states of actors which are accessed by
concurrent processes.

Equivalence relations which determine states (i.e. equivalence classes) are chosen
according to the purposes and level of the detail of the specification. States which are
different at some levels of the detail of the specification may be the same at other levels.

In Section 6.4, Chapter 6, we will discuss an alternative way of defining states of

actors by continuous functions.

4.1.2 Situations

To incorporate the notion of states into the formalism for specification and

verification, we need a notion of situations. A situation is the local state of an actor system

1

at an instance of the local time." A notion of situations which assumes the global state and

global time reference has been proposed in the area of Artificial

1. We will discuss the local time in detail in Section 6.1.2, Chapter 6.
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Intelligence[McCarthy-Hayes69, Hewitt75]. Our model of computation allows parallelism

which is realized by concurrent message passing. Since instances of concurrent message

passing (i.e. events) may take place totally independently, it is quite unnatural to assume the
global time reference and global states of the system. [Local computations carried out by a
PDP-10 at CMU are irrelevant to computations carried out by a PDP-10 at Stanford even if
two computers are connected through the ARPA network.]

In our formalism, states of actors and actor systems are always used with reference
to situations. From this viewpoint, situations can be considered as references of the local !
time. For example, the contents of a cell-actor C changes from time to time according to the
update messages which have been most recently sent to C. Suppose that the contents of C
is 3 in a situation 8 where C receives (update: 4) message. Then in the next situation 8°
where C receives the message (contents:), the contents of C is 4. (See Figure 4.1)

By using a symbol 8 to denote a situation, we express the contents of C in the

situation in the following manner
(contents C)=3 in S

We call a symbol such as 8, which is used to refer to a situation, a situational tag.

Fig. 4.1.

[C <= (update: 4)]

Y
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Uses of situational tags considerably increase the expressive power of our
formalism. For example, suppose that we have two impure queue-actors, queue-1 and
queue-2, and that some event takes place in a situation spre' Let spost denote the
situation after that event. Then the question and assertion of whether or not the length of

queue-1 is equal to that of queue-2 in spost is stated as follows:

(length queue=-1) = (length queue=-2) in spost'

By distributing the situational tag Spost' the same statement can be made in the following

two different ways:

((length queue-1) in 8 ((length queue=-2) in S or

post! post)

(length (queue-1in S

(length (queue=-2 in S

post) post)

Since situational tags allow-us to relativize facts, relations between facts holding in different
situations can be easily stated in our formalism. For example, an assertion that the length

of queue-1 in Spmt is greater than the length of queue-1 in spre is stated as:

((length queue-1) in spost) > ((length queue=-1) in spre)

This kind of assertion is quite useful to show the termination of programs. Furthermore a

question about the identity of the queues is easily stated as:

(queue-1 in Spost) is-eq (queue-2inS_ )

pre

Situations are frequently referred to as the time of message arrival, namely at the

time when an event takes place. We use the following notations to refer to such situations.
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Sit([ T ¢<== M]), Sit(<event>)

4.1.3 States, Identities and Conceptual Representations

An actor may change its state from situation to situation and different actors may
have the same state in the same situation. Thus, in developing a specification language, we
must distinguish the state of an actor from its ldentity.'

In order to describe states of actors in our specification language, we use
conceptual representations introduced in Chapter 2. Identities of actcrs are expressed by
syntactic constructs different from conceptual representations. The most general form to
express the fact that an <actor> has a state expressed by a <conceptual representation> in a

<situation> is as follows.
(<actor> is-a <conceptual-representation>) in <situation>

For example, suppose that the state of an impure queue-actor Q which has three elements A

B and C is expressed by a conceptual representation:
(IMPURE-QUEUE [A B C))
Then the fact that Q has the above state in a situation 8 is expressed as
(Q is-a (IMPURE-QUEUE [ABC)) in 8

It is very important that the role of conceptual representations in our specification

1. We assume that the identity of an actor never changes.
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language is to describe only states of actors, but not to represent identities of actors. [When
we introduced conceptual representations to give formal specifications of data structures in
Chapter 2, the separation of states from identities was not made clear.]

A.predicate "is-a" is used to associate the state of an actor with its identity. In
order to differentiate identities of actors, a predicate "is-eq” and its negation form "not-eq”
are used. Since many actors may have the same state in the same situation, when the

following assertion holds,
(Q' is-a (IMPURE-QUEUE [ABC))) in 8,

it may or may not be the case that

(Q' is-eq Q).

When the sharing of actors is involved, the separation of states from identities in
the formalism considerably simplifies the process of keeping track of changes in situations.
For example, suppose that two different cell-actors G and H contain the same impure
queue-actor Q in a situation 8. This is expressed as:

(G is-a (CELL (contents: Q)))
(H is-a (CELL (contents: Q)))
(Q is-a (IMPURE-QUEUE [A B C)))

Then in the situation 8, an actor D is enqueued at the rear of Q. A description of the next

situation 8’ can be obtained simply by changing the state of Q into

(Q is-a (IMPURE-QUEUE [A B C D))
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and the assertions about G and H need not be modified.! This is an example of our

technique of manipulating assertions which will be discussed extensively in the next

chapter.

4.2 Types, Views and Conceptual Representations

Before going into the details of our specification language, it would be interesting
to consider the roles of conceptual representations in the actor model of computation.

Actors are the only ob jects in the model of computation. Actors are untyped. We
do not assume that actors are intrinsically classified into subcategories such as types and
modes. There are two reasons for this. One is that actors are ob jects in an abstract model
of computation, not ob jects in programming languages which often have types and modes
for reasons of reliability and implementation efficiency. Another reason, which is more
fundamental, is that we like to emphasize the behavioral view of actors. That is to say, we
like to be able to use two actors interchangeably and indistinguishably as long as they show
the same behavior with respect to some purposes and environments where they are
primarily used. Also the same actor should be able to behave quite differently for different
purposes and in different environments. In other words, we should be able to take a
multiple view for individual actors. We believe that such multiple views encourage one to
employ flexible distribution of computing power and intelligence such as polymorphic
operators[Greif-Hewitt75] and the negotiation style of programming using coroutines m.

writing programs for distributed systems[Yonezawa-Hewitt77] and Artificial Intelligence

I. To insure the validity of these assertions in 8°, we need certain rules which will be
discussed in Section 5.1.3, Chapter 5.
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research[Hewitt75]. Thus it seems beneficial to allow a single actor to have a broad role
which would be narrowed by imposing a strict type on it.

Conceptual representations provide us with the means to express not only states of
actors, but also multiple views and summaries of behaviors Such views and summaries
expressed by conceptual representations facilitate the understanding and implementation of

the behavior of actors.

4.3 A Specification Language

In this section, we explain basic constructs . our specification language for serial
computations and also discuss some issues of the time variant behavior of actors related to
specification languages. The specification language presented in this section will be

extended to include parallel computations in Chapter 6.

4.3.1 Specifications of Events

A "specification” of an event is a formal description of effects caused by an event
which takes place in an actor system. Roughly speaking, the effects of an event E are
described by the next event caused by E and assertions which hold in the situation where
the next event takes place. The choice of the next event from the set of the subsequent
events caused by E is determined by the level of detail and the purpose of the specification.

A general form of specification for an event in our specification language is

written in the following notations:




(Case-i:
{pre-cond: ... assertions ... >
<caused-event: E' >

{post-cond: ... assertions ... )

T

E is the event whose effects are described. Since the effects of E may vary depending
upon the situation where E takes place, the description of the effect may be divided into
more than one case. The assertions in the <pre-cond:..> clause state the prerequisite which
has to be satisfied in the situation where E takes place. When the prerequisite is satisfied,
the event E’' in the <caused-event:.> clause always takes place and the assertions in the

<post-cond: ..> clause hold in the situation where E’ takes place. More formally,

for E,
if <assertions-in-precond> in Sit(E)
then 3 F

such that E --> E' and <assertions-in-posicond> in Sit(E’)

The prerequisite stated in each (Case-i:...) clause must be mutually exclusive. From this, the
3 above notation can always specify the effects of an event deterministically. The <event: ..>
clause need not contain all possible cases where E might take place. [In other words, the
logical union of the prerequisites for each case need not be universally true] When E does
not takes place in any of the stated cases, we assume that the caused effects are undefined.
The scope of names and variables in the above notation is always local to each (Case-i:..)

clause. That is, the same names and variables in different (Case-i: ...) clauses do not have

to refer to the same object. Names and variables appearing in the expression which
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represents the event E are global to each (Case-i:...) clause.
Though the above notation is broadly applicable, we often use abbreviated forms
for events which initiate nested activities (cf. Section 3.13, Chapter 3). Suppose that the

event E is of the form:
[T <== [request: M reply-to: C]]
and the corresponding caused event E’ is of the form:
[C <== [reply: R]]

where R is the actor which is received by the continuation actor C in the message of E.

Then we may use the following abbreviated form:

Cevent: [T <= M]

(Case-i:
{pre-cond: ... assertions ..>
Sreturn: R >

{post-cond: ... assertions ...>)

For example, the effects of an event where a cell-actor C which has the contents B receives
the retrieving message (contents:) is written using the abbreviated form as follow. [Note that

there is only one case to be specified in this example. So the (Case-i:..) notation can be

omitted.]
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<event: [ C <= (contents:)]
{pre-cond: (C is-a (CELL (contents: B))) >
{return: B >
<post-cond: (C is-a (CELL (contents: B)))>>
Other abbreviated forms are obtained by omitting <pre-cond:..>, <caused-event:..>,
Creturn:.> or <{post-cond:..> clauses. When an event has no prerequisite, the <pre-cond:..>

clause may be omitted. For example, the creation of a cell-actor does not have any

prerequisites. Its specification is written as follows:

<event: [ create-cell <= A]
<return: C* >
<post-cond: (C is-a (CELL (contents: A)))>>
where create-cell is an actor which creates a new cell-actor and A is its initial contents.

In general, in our specification language, underlined words such as create-cell are
constant symbols which always denote a fixed actor. Non-underlined words which denote
an actor are free variables and can be used as pattern variables in the process of symbolic
evaluation which we will discuss in the next chapter. The notation <actor>* means that an
<actor> is newly created and is not is-eq (cf. Section 4.1.3) to other actors created before.

When one is not interested in the assertions holding in a situation where the
caused event takes place, the <post-cond:..> clause may be omitted. Furthermore when one is
not interested in the caused event, the <caused-event:..> or <return: ..> clauses may be omitted
too. For example, when the contents of a cell-actor is updated, what event is caused or
whether the caused event might take place or not are sometimes not important. In such

cases, a specification of the update event may be written as follows.
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<event: [ C <= (update: A)]
<pre-cond: (C is-a (CELL (contents: B))) >
<post-cond: (C is-a (CELL (contents: A))) >>

4.3.2 Specifications of Actors (Contracts)

Every actor has its own finite fixed set of message types that it can accept. For
example, a cell-actor accepts two types of messages, (contents:) and (update: <new-element>),
and a queue-actor accepts two types of messages, (nq: <new-element>) and (dq:). A
specification of an actor A must contain the specifications of all events, each of which is
the receipt of one type of messages that A can accept. It should also contain the
specification of the event where A is created, if it is possible to create A during
computations.

As an example, let us specify the behavior of pure queue-actor (cf. Section 3.2.2,
Chapter 3) in our specification language. First, we describe the creation of a pure

queue-actor.

<event: [ create-pure-queue <= []]
Sreturn: Q* >
<post-cond: (Q is-a (PURE-QUEUE [])) »

This tells us the following three things:
1) A new pure queue-actor Q is created by an event where the create-pure-queue actor
receives an empty sequence actor [].
2) The creation event has no prerequisite.
3) States of a pure queue-actor is expressed by conceptual representations of the form:

(PURE-QUEUEL...]) in the specification.
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Next, we specify the enqueue event where a pure queue-actor receives (nq: <element).

<event: [ Q <= (nq: A)]
<pre-cond: (Q is-a (PURE-QUEUE [!x])) >
Sreturn: QQ* >
<post-cond:
(QQ is-a (PURE-QUEUE ([ix A]))
(Q is-a (PURE-QUEUE [!x])) »

This tells us that:
1) A new pure queue-actor QQ is created and returned,
2) A becomes the last element of QQ and the rest of QQ’s elements are the same as those
of Q, and
3) The state of Q does not change.
The specification of the dequeue event can be written in a similar way.

In addition to specifications of events associated with an actor A being specified,
the specification of A may include some related information which is necessary or helpful
for using and understanding the specification. Definitions of auxiliary conceptual
representations used in the specification, definitions of attributes or properties of A and

certain rulesl

concerning the validity of assertions used in the specification are examples of
such information contained in the specification. In the case of a pure queue-actor, for

example, the following definition of a property “length” may be given in the specification.

<property: length-of(Q) = length[!x]
where (Q is-a (PURE-QUEUE [x))) >

Length-of is the newly defined property of a pure queue-actor and length is a function

I. Such rules will be explained in the next chapter.
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predefined on conceptual sequences. This definition says that length-of of a pure
queue-actor in a situation where its states is expressed as (Q is-a (PURE-QUEUE [!x])) is
obtained by calculating length[!x].

We often use the term "contract” instead of "specification” to emphasize the fact
that it is an agreement or a "treaty” between the implementors of an actor (module) and its
designers or clients, and also between its implementor and its users. Users of a module M
should rely only on properties stated in the contract of M. On the other hand, when
implementors construct the module M, they are required to satisfy only what is stated in the
contract of M. In the process of symbolic evaluation of a program which uses a module N,
only properties of N which are derived from the contract of N should be used. In Figure
4.2, we give a contract of pure queue-actors. It should be noted that the scope of names
and variables in contracts are always local to specifications of events, definitions, and rules.
For example, Q in the first <event:.> clause in Figure 4.2 does not necessarily denote the

same actor as Q in the second <event:..> clause.

4.3.3 Validity of Assertions in Specifications

There are two important assumptions about assertion in specifications of events.
One assumption is that states of actors which are not explicitly stated in specifications are
unknown. That is, we assume that we do not know how an event E effects actors which are
not mentioned in the specification of the event E. This assumption requires that effects of
an event should be stated in specifications as explicitly as possible in accordance with the
level of detail of the specifications. The other assumption is that assertions are usually
valid only in the situations where they are stated. If the state of an actor A is given in a

<pre-cond:..> clause of the specification of an event E and the state of A is not given in the




Fig. 42. A Contract for Pure Queues

<event: [[create-pure-queue <= []]
<return: Q¥)
<post-cond: (Q is-a (PURE-QUEUE [}])) > >

<event: [Q <= (ng: A)]
<pre-cond: (Q is-a (PURE-QUEUE [ix])) >
<return: QQ¥ >
{post-cond:
(QQ is-a (PURE-QUEUE [!x A)))
(Q is-a (PURE-QUEUE [Ix])) >>

<event: [Q <= (dq:)]
(case-1:
<pre-cond: (Q is-a (PURE-QUEUE [])) >
<return: (exhausted:) >

<post-cond: (Q is-a (PURE-QUEUE [])) >)

(case-2:
<pre-cond: (Q is-a (PURE-QUEUE [B ly])) >
<return: (dequeued: BB (rcu:QQ*)) >
<post-cond:
(QQ is-a (PURE-QUEUE [ty])
(Q is-a (PURE-QUEUE [B ty])) > »

<property: length-of(Q) = length[ix]
where (Q is-a (PURE-QUEUE (Ix))) >
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corresponding <post-cond:..> clause, we assume that the state of A after the event E is
unknown. It may or may not remain unchanged. For example, the state of a pure
queue-actor after the enqueue event does not change. As stated in the contract of pure

queue-actors in Figure 4.2, the assertion about the state of a pure queue-actor:
(Q is-a (PURE-QUEUE [!x]))

is repeated in the <post-cond:..> clause. Since a pure queue-actor does not change its state
after the creation [from the definition of "purity"], this repetition of the assertion may be
superfiuous. But there is no way of knowing whether or not the actor being specified is

pure.

4.4 Examples of Specifications

In this section, several other characteristic examples of specifications (contracts)
written in our specification language are given. Some of the specifications given here are

followed by the corresponding PLASM A implementations.

4.4.1 A Contract for Impure Queues

In contrast to the contract for pure queue-actors in Figure 4.2, we give a contract
for impure queue-actors in Figure 43. As discussed in Section 3.2.2, an impure queue-actor
never creates a new queue-actor in response to (nq:..) or (dq:) messages: instead it changes its

own state.
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Fig. 43. A Contract for Impure Queues
E <event: [ create-impure-queue <= []]

Sreturn: Q* >
<post-conditions: (Q is-a (/IMPURE-QUEUE [])) > >

<event: [Q <= (nq: A)]

b <pre-conditions: (Q is-a (/M PURE-QUEUE [!x])) >
Sreturn: Q >

<post-conditions: (Q is-a (IMPURE-QUEUE [Ix A))) >>

<event: [Q <= (dqg:)]

| (case-1:

<pre-conditions: (Q is-a (IMPURE-QUEUE [})) >
<return: (exhausted:) >

<post-conditions: (Q is-a (IMPURE-QUEUE [])) >)

(case-2:
<pre-conditions: (Q is-a (IMPURE-QUEUE [B Yy])) >
<return: {(dequeued: B (rest: Q)) >
<post-conditions: (Q is-a (/M PURE-QUEUE [y])) > »

4.4.2 A Specification for a Message-Change Interaction

As an example of specifications for the Message-Change Type interaction (cf.
Section 3.2.4, Chapter 3), a contract for an actor which empties the elements of one impure
queue-actor into another impure queue-actor is given in Figure 44. A PLASMA
implementation of an actor which satisfies the contract above is given in Figure 45. This
implementation will be verified against the above contract by the technique of symbolic

evaluation in Chapter 5.
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Fig. 4.4. A Contract for empty-one-queue=-into-another

<event: [ empty-one-queue-into-another <= [Q1 Q2]
{pre-cond:
(Q1 is-a (IMPURE-QUEUE ['x1)))
(Q2 is-a (IMPURE-QUEUE [x2)))
(Q1 not-eq Q2) >
<return: (done: [Q1 Q2]) >
<post-cond:
(Q1 is-a (IMPURE-QUEUE []))
(Q2 is-a (IMPURE-QUEUE [1x2 ix1])) »

Fig. 4.5. A PLASMA of empty-one-queue-into-another

(empty-one-queue-into-another =

(=> [=q1 =q2] ;two impure queues are received by empty-one-queue-into-another
sand bound to q1 and q2.

(rules (q1 <= (dq:)) sthe dequeuing message is sent to ql.
(=> (exhausted:) sif ql is empty, the complaint message is received
(done: [q1 q2))) sthen emptied ql and extended q2 are returned.

(=> (dequeued: =front-of-q1 sif ql is not empty, the front element of q1 and

(rest: =dequeued-q1)) sthe remaining queue are reccived

sand bound to front-of-q1 and dequeued-ql.

(g2 <= (nq: front-of-q1)) sfront-of-ql is enqueued at rear of q2.

(empty-one-queue-into-another <= [dequeued-q1 q2])) ) ))
;dequeued-ql and q2 are sent to empty-one-queue-into-another.
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4.4.3 A Specification for a Target-Message-Change Interaction

As an example of specifications for the Target-Message-Change Type interaction
(cf. Section 3.2.4, Chapter 3), we give a specification for an interaction between a vender
who sells some goods and a customer who buys the goods. The state of a vender who has

some amount of money and goods with him is expressed by conceptual representations of

the form

(VENDER (bills: {..})(goods: {..}))

The state of a customer who is carrying some amount of money and belongings is expressed

by conceptual representations of the form
(CUSTOMER (bills: {..})(belongings: {..}))

Their interaction is described by the event specification in Figure 4.6.

Fig. 4.6. A Specification for an Interaction Between a Vender and a Customer

<event: [V <= C]

Cpre-cond: .
(Vis-a (VENDER (bills: {3bs}) (goods: {1g Is})))

(C is-a (CUSTOMER ills: {3bc Ym}) (belongings: {1p})))>

<return: C >

{post-cond:
(Vis-a (VENDER (bills: {3bs Im}) (goods: {1g})))
(C is-a (CUSTOMER (bills: {3bc}) (belongings: {1p 1s})))
(worth[1s] = total-amount[Im]) »
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4.4.4 Contracts for Generators

A generator is an actor which behaves like a sequence of the possible answers to
some problem. When it receives a (next:) message, a next answer is generated. As
examples, we consider two actors which successively generate increasing squares. One is a
pure generator-actor, called a “port-of-squares”, and the other is an impure one, called a
"stream of squares”. A contract for each generator is given in Figure 4.7 and Figure 4.8. In L
the first event specifications in both contracts, | and u denote the lower bound and the 7

upper bound, respectively.

Fig. 4.7. A Contract for Port-of-Squares

<event: [ create-port-of-squares <= [l u]]
<pre-cond: (I {u)>
<return: PS* >
<post-cond: (PS is-a (PORT-0F-SQUARES (low: 1) (high: u))) >>

<event: [PS <= (next:)]

(Case-1:
<pre-cond: (PS is-a (PORT-OF-SQUARES (low: k) (high: K))) >
<return: (exhausted:) >
<post-cond: (PS is-a (PORT-OF-SQUARES (low: k) (high: K))) >)

(Case-2:

{pre-cond:
(PS is-a (PORT-OF-SQUARES (low: 1) (high: u)))
(l < wu)>

lreturn: [I2 Pss*] »

{post-cond:
(PSS is-a (PORT-OF-SQUARES (low: | + 1) (high: u)))
(PS is-a (PORT-0F-SQUARES (low: 1) (high: u))) ) >
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Fig. 4.8. A Contract for Stream-of-Squares

<event: [[create-stream-of-squares <= [I u]]
<pre-cond: (I u)>
<return: SS¥ >
<post-cond: (SS is-a (STREAM-0OF-SQUARES (low: 1) (high: u))) >

<event: [SS <= (next:)]

(Case-1:
<pre-cond: (SS is-a (STREAM-0OF-SQUARES (low: k) (high: k))) >
<return: (exhausted:) >

<post-cond: (SS is-a (STREAM-0F-SQUARES (low: k) (high: k))) >)
(Case-2:

{pre-cond:
(SS is-a (STREAM-0F-SQUARES (low: 1) (high: u)))
(I < u >
return: [I12 SS) >
{post-cond:
(SS is-a (STREAM-OF-SQUARES (low: | + 1) (high: u))) >) >




- 80 -

4.4.5 A Contract for average

In this subsection, we give a contract for actors whose behavior depends directly on
the history of incoming messages. Obviously such actors are impure. An example given
here is a contract for the "average" actor, which returns the average of all the numbers
which have been sent to it. The contract is given in Figure 4.9.

. The conceptual representation (AVERAGE [..]) for the actor explicitly represents
the history (sequence) of all the numbers which have been received by the actor. This idea
is similar to that of Clint[I973] who has introduced a "mythical pushdown stack” to have the
history recorded as a kind of comments in program texts to aid the verification of

programs. The function average-of in the contract in Figure 4.9 is defined on conceptual

sequences.

Fig. 4.9. A Contract for average

<event: [[create-average <= 1]
<return: A% >

<post-cond: (A is-a (AVERAGE [I]))) »

<event: [[A <= (new-element: N)]
¢pre-cond: (A is-a (AVERAGE [¥x))) >
<return: A >

{post-cond: (A is-a (IWVERAGE [Ix N])) »

<event: [[A <= (average:)]
<pre-cond: (A is-a (AVERAGE [ix])) >
<return: average-of[Ix] >
<post-cond: (A is-a (AVERAGE [!x])) »




4.5 Relationship to Other Work

At this point in our exposition, it would be useful to discuss our specification

techniques for serial computation in relation to other work in this area.

4.5.1 Behavioral Specifications

Based on the actor model of computation, I. Greif and C. Hewitt [Greif-Hewitt75,
Greif75] have developed the behavioral approach to the specification technique. In their
approach, the behavior of an actor (or an actor system) is specified in the form of axiom
about events and the precedes order relation. Axioms describe the kinds of events that can
or must take place and the order in which these events can or must occur. Axioms describe
conditions which must be satisfied by computations.

This approach can deal with the time variant behavior of actors and parallelism,
but makes no use of the notion of states of an actor A [which we have defined as
equivalence classes of messages sent to A]. Therefore, for example, in writing axioms which
specify responses to a message sent to A, the previous history of computations of A must be
written out explicitly. The lack of the notion of states in their approach makes
specnfica'tions long and difficult to understand. In particular, axioms for the behavior of
impure actors which behave like data structures tend to be very complicated and unnatural.
(Imagine the axioms for impure queué-actors.] The reader of such specifications of a data
structure could understand only through reinterpreting axioms in terms of his intuitive
notion of states of the data structure. In our approach, states of actors play the central roles

in specifications and they are described by conceptual representations concisely, clearly and

yet rigorously.




4.5.2 Burstall's Work

By extending Floyd-Hoare[Floyd67, Hoare69] approach, R. Burstall{l972] has
proposed some specification and verification techniques which are able to deal with list
processing languages with “side-effect” primitives such as rplaca and rplacd. To cope with
the problem of side-effects in list structures, he uses a special notation for linear list

structures. For example, a list structure:

is expressed in his notation as follows.
(x =3=y y b€y nip)

Though one might find some similarity between Burstall's notations and those based upon

conceptual representations, it is difficult to accommodate his notations to a wide variety of

data structures.

4.5.3 Ric.h and Shrobe’s Work

C. Rich and H. Shrobe have developed a specification language for LISP which is
used in their LISP understanding system[Rich-Shrobe76). In their system, the reasoning
techniques used to deal with the problem of side-effects in LISP are along the same lines as

ours. However, the clear separation of identities of ob jects from states of ob jects (cf.

\
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Section 4.1.3) is not realized in their formalism. Thus specifications in their language tend
to be long and are difficult to use for other programming languages. For example, let us

look at an example of specification given in [Rich-Shrobe76).

(S pec-for: SWAP
(Input: PAIR-1)
(OQutput: PAIR-2)
(Assert:
(ID PAIR-1 PAIR-2)
(LEFT PAIR-2 [RIGIIT PAIR-1])
(RIGHT PAIR-1 [LEFT PAIR-1])))

SWAP operates on a LISP pair to exchange its left element and right element. No new pairs

are created by this operation. In the specification above, names PAIR-1 and PAIR-2 denote

the same pair object P, which is stated by the first assertion in the (Assert..) clause. The
reason why they need to use two different names for the one object P is to distinguish the
state of P before the operation from that of P after the operation. In our specification
language the SWAP operation can be written without introducing a different name for P.
Using a conceptual representation which describes the state of a pair ob ject, a specification

for SWAP is given as follows.

<event: [ SWAP <= P]
<pre-cond: (P is-a (PAIR (lefi: R) (right: B))) >
<post~cond: (P is-a (PAIR (left: B) (right: A))) »
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4.5.4 Floyd-Hoare Approach

The traditional Floyd-Hoare approach[Floyd67, Hoare69, Hoare72, Igarashi-et-al75,
Suzuki75] to the specification and verification of programs has been limited in its ability to
deal with programs which change their behavior. For example, the sharing of data
structures in simple ALGOL-like languages is difficult to treat. Suppose that in the

following code x and: y are two- and one-dimeiisional arrays, respectively.

y + x[3, ]; ;a slice of x is shared by y.
x[3, 4] « x[3, 4] + 1;
Their assignment rule cannot derive the correct value of y[4] after the above code is
executed. The reason is that the value (ie. state)l of an program variable is not
distinguished from its identity.
Furthermore, the lack of the separation of states from identities makes it difficult
for their approach to deal with specification and verification of programs written in
SIMULA-like ob ject-oriented languages. For example, their formalism is inadequate to

deal with the following simple piece of SIMULA code:

queue-1 : - new create-impure-queue();
queue-2 : - queue-1.enqueue(2);

queue-2.enqueue(3);.

In the next chapter we will demonstrate how this kind of code is treated in our formalism.

I. In the traditional Floyd-Hoare approach, variables in assertions denote literal program
variables. Thus the value of a program variable should be considered as its state.
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4.5.5 Algebraic Specification Techniques

As discussed in Section 2.4.1, Chapter 2, algebraic techniques [Zilles74, Guttag75]
have been developed for the specification of abstract data types[Liskov-Zilles74). In the
algebraic approach, all operations and procedures are specified as functions, which leads to
a serious problem; the purity and impurity (cf. Section 3.2.1, Chapter 3) of data structures
cannot be easily distinguished.

As an example, let us consider an algebraic specification of queues given in
(Guttag75]. Important operations on a queue are ADD and REMOVE, whose functionality is

as follows.

ADD : Queue x Integer ----> Queue
REMOVE : Queue ---> Queue

The essential part of the specification is given by the following equation:
REMOVE(ADD(q, i)) = ADD(REMOVE(q), i) (x)

where q is not an emp.y queue. In their interpretation, operations such as ADD and REMOVE
always create new objects and cause no side-effects to the objects that they operate on.
Equations of operations such as (%) define congruence relations over the word algebra
constructed from the operations and ob jects. Thus in their approach, algebraic techniques
are used to specify the behavior of only pure actors (immutable ob jects).

There is another interpretation. If we consider the domain and range of
operations as sets of states of objects, equations (axioms) of the operations can define

congruence relations over the states of objects. In this interpretation, algebraic techniques

can be used only for impure actors (mutable ob jects)
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In either interpretation, the algebraic approach has difficulties in dealing with

both pure actors and impure actors simultaneously. Techniques developed by J. Spitzen
and B. Wegbreit [Spitzen-Wegbreit75, Wegbreit-Spitzen76] have the same problem of

distinguishing the purity and impurity of data structures. i
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6. Verifying Serial Computations

In this chapter, our verification techniques for serial computations are presented.
The first section describes the method of symbolic evaluation which is the ma jor
instrument in our verification techniques. It also contains a detailed explanation of our
réasoning method which can be employed in environments where computations may cause
side-effects. The next two sections describe ¢ 'r verification methods, each of which is
applied to different types of actors. Then, to close the chapter, we reflect on our method of

symbolic evaluation and discuss its application to other areas.
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5.1 Symbolic Evaluation

In this section, we will describe our basic method of symbolic evaluation, the ma jor
instrument of our verification techniques. A simple example of symbolic evaluation of
PLASMA code which involves sharing of actors with side-effects is given at the end of the
section. Although in this thesis we consider symbolic evaluation primarily as a tool for
program verification, it is also useful for other purposes such as program testing,
debugging, optimization, dependency analysis, perturbation analysis etc. The chapter

concludes with a discussion of some potential applications.

5.1.1 Overview

Symbolic evaluation is a process which abstractly [symbolically] executes programs
on abstract [symbolic, as opposed to "concrete”] data. When a program takes numerical
input, the symbolic evaluation of the program does not deal with concrete numbers such as
123, 1776, and 1984, but rather with symbolically expressed numbers such as "nl", "n2", and
‘m.

Though symbolic evaluation is an extension of ordinary execution of programs, it
differs from ordinary execution in the following points.

(1) The only properties of input that can be used are the ones specificed as the
prerequisites of a module being symbolically evaluated. [E.g., input numbers are
required to be positive integers.]

(2) When the symbolic evaluation of a module M encounters an invocation of some
module N, the specification [contract] of N is used to continue the symbolic

evaluation. The implementation of N is not used.
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Symbolic evaluation can be viewed as a mechanization of the process of a human
programmer tracing a program without using concrete values to understand the
computations expressed by the program.

In symbolic evaluation, the code of a module is interpreted step by step according
to either pre-defined semantics of language primitives or specifications of modules invoked
in the module. Each such step is triggered by the symbolic evaluation of an expression in
the code which corresponds to an event [cf. Section 3.1.2, Chapter 3). The state of the
program [code] at each moment before and after an interpretation step is referred to as a
situation. The symbolic evaluator! has a data base to record what events occur, what facts
hold and what is assumed in each situation. Facts that hold in a situation 8 are recorded
as assertions associated with 5.

Since each expression is interpreted on abstract data, when a conditional expression

is interpreted, the subsequent symbolic execution path must split in the usual

fashion[Deutch 1973). For example, consider the symbolic evaluation of
if (P x) then ... else ...

After the symbolic evaluation of the expression (P x), the symbolic execution path splits into
two branches: one for the then-clause and the other for the else-clause. To start the
subsequent symbolic evaluation, (P x) must be assumed for the then-clause and ~(P x) ¢«
the eise-clause. If the evaluation of (P x) has no side-effects, the assertions holding in the
situation where (P x) is evaluated are inherited for both clauses.

In essence, symbolic evaluation is a process which abstractly evaluates the code

I. In this chapter, we assume that symbolic evaluation is carried out by a hypothetical
system.
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Fig. 5.1. A Situational Tree

forward along the execution path and produces a tree structure whose nodes correspond to
situations. At each node of the tree, assertions which hold in the corresponding situations

are entered.  We call this structure a situational tree. [See Figure 51] The assertions

entered in the situational tree are used as the primary source of information for answering
questions about the implementation. As we shall later see, verification of implementations is

carried out by using such situational trees.

5.1.2 Partial Descriptions of Situations

In order to illustrate how assertions are handled in a situational tree, we

symbolically evaluate the following piece of code.

-f -
(queue-1 <= (nq: 6)) ;queue=-1 receives a message (nq: 6)
| 7 i
(queue-1 <= (nq: 8)) ;queue=1 receives a message (ng: 8)

-8”-
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S, 8’ and 8” denote situations before or after the events corresponding to
statements in the code. We assume that two distinct impure queues, queue-1 and queue-2
have been created before the situation § and assertions about states of the two queues are

already entered at the node for 8 in a situational tree. See the diagram below.

I

S : (queue-1 is-a (IMPURE-QUEUE [3 7 11)))

|  (queue-2 is-a (IMPURE-QUEUE (2 4]))

I
With these assumptions, the first statement in the code which expresses an event
[ queue-1 <= (nq: 6)] is interpreted. To know what effects are caused by this event, the

symbolic evaluator first looks for an assertions about the state of queue=-1 at the node for 8

in the situational tree. It finds that the state [or conceptual type] of queue-1 is expressed as
(/MPURE-QUEUE [37 11])

From the form of the conceptual representation (ie., from "IMPURE-QUEUE"], the contract
for impure queues in Figure 5.2 is referred to.
The event expression [ Q <= (nq: A)] in the second <event:..> clause in the contract

for impure queues in Figure 52 matches against the event [ queue-1 <= (nq: 6)]. Also the

assertion
(Q is-a (IMPURE-QUEUE [%x]))
in the <ewent:..> clause matches against the assertion
(queue-1 is-a (IMPURE-QUEUE [3 7 11]))

which has been entered at the node for 8. Thus the whole second <event:..> clause can be

instantiated as follows.
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Fig. 5.2. A Contract for Impure Queues

<event: [ create-impure-queue <= []]
<return: Q¥ >
<post-cond: (Q is-a (IMPURE-QUEUE[])) > >

<event: [Q <= (nq: A)]
(pre-cond: (Q is-a (IMPURE-QUEUE [ix])) >
<return: Q D
<post-cond: (Q is-a (IMPURE-QUEUE [ix A)])) >>

Cevent: [[Q <= (dq:)]
(case-1: -
<pre-cond: (Q is-a (IM PURE-QUEUE [))) >
Sreturn: (exhausted:) >

<post-cond: (Q is-a (IMPURE-QUEUE [))) > )

(case-2:
<pre-cond: (Q is-a (IMPURE-QUEUE [B ly])) >
Creturn: (dequeued: B (rest: Q) >
<post-cond: (Q is-a (IMPURE-QUEUE [iy])) > »

<event: [ queue-1 <= (nq: 6)]
<pre-cond: (queue-1 is-a (/MPURE-QUEUE [3 7 11]))

{return: queue-1 >
{post-cond: (queue-1 is-a (IMPURE-QUEUE [37 11 61))»

The symbolic evaluator enters the assertion in the above {post-cond:..> clause at the node
“or the next situation §”. Also it records what event took place between the two situations.
See the upper diagram in Figure 53. The second statement in the code expresses an event
Taueve-1 <= (nqg: 8)], which is interpreted in the same way as above. The effect of this

event is recorded at the node for the next situation 8” as shown in the lower diagram of
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Figure 53.

An important point in the manipulation of assertions described above is that the
assertion about the other impure queue actor, queue-2, is left untouched, neither copied nor
modified in going from S to 8’ and 8”. As the diagrams in Figures 53 show, the
situational tree thus generated by the symbolic evaluation does not contain assertions about

the states of queue-2 at the nodes for 8” and 8. In general, a situational tree generated

Fig. 5.3.

e
S : (queue-1 is-a (IMPURE-QUEUE [3 7 11)))
| (queue-2 is-a (IMPURE-QUEUE [2 4)))
|
[ queue=1 <= (nq: 6)]
; m
S’ : (queue-1 is-a (IMPURE-QUEUE [3 7 11 6]))

S‘ : (queue-1 is-a (IMPURE-QUEUE [3 7 11)))

| (queue-2 is-a (IMPURE-QUEUE [2 4)))
{EM <= (nq: 6)]

Sl’ : (queve-1 is-a (IMPURE-QUEUE [3 7 11 6)))
ﬂ!g&e-_l <= (nq: 8)]

SI” : (queue-1 is-a (/IMPURE-QUEUE [3 7 11 6 8))
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by symbolic evaluation is only a partial description of situations. When one needs to know
states of actors or relations holding in a situation, which are not explicitly asserted at the
corresponding node in the situational tree, one must rely on the reasoning method described

in the next subsection.

5.1.3 The Method of Reasoning (Uses of the Trans-situational Rules)

In this subsection, we will illustrate how situational trees are used for the reasoning
in our formalism. In general, questions about a given situation are answered by reasoning
backward. That is, to answer questions such as whether some assertions hold in a situation
8 or in what states some actors are in 8, a situational tree is looked at from the node for S
to previous situations.

For example, suppose that a situational tree shown in Figure 5.4 is given and we
want to know the state of Q in a situation S7. First we try to find some assertion which
describes the state of Q at the node for the situation 87. Since the given situational tree
does not have any assertions about Q at the node for 8, we look for assertions about Q
backward along the branch of the situational tree. [See the dotted line in Figure 54.) An

assertion
(Q is-a (IMPURE-QUEUE [2 5 4)))

is found at the node for 8;. However, all we know at this point is that the assertion holds
in 85, but we are not sure that the assertion holds in §,, because some events which
destroy the validity of this assertion in 8, might have occured between S5 and 8. So we
must check on such events.

In order to know what events nullify the validity of assertion, each event
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Fig. 5.4. Reasoning Backward |

83: (Q is-a (IMPURE-QUEUE (2 4 5)))

specification in the contract for impure queues shown in Figure 5.2 is examined. If in the
specification for an event E the state of Q stated in the <pre-cond:..> clause is different from
the one in the corresponding <post-cond:.> clause, the event E nullifies the validity of the
assertion. In fact, [Q <= (dq:)] and [Q <= (ng:..)] turn out to be such nullifying events.
The process of finding the nullifying events can be saved if the contract contains
an explicit statement which indicates such events. For this purpose, we may add the

following clause to the contract for impure queues.l

<for-assertion: (Q is-a (IMPURE-QUEUE [..]))
<only-affecting-cvents-are:
{[Q <= (nq:..)], [Q <= (dg)]} »
This statement says that the validity of assertions of the form

(Q is-a (IMPURE-QUEUE [..)))

l. <for-assertion:..> clauses do not have to be placed in contracts for actors. They can be
placed in some global place to which the symbolic evaluator have access.
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is destroyed only by the set of events appearing in the <only-affecting..> clause.2

In our formalism, assertions of the form

(<actor> is-a <conceptual-representation>)

can be inherited from an ancestor situation Si to a descendant situation 8 j if the following
two conditions are met:
(I) The events specified in the corresponding <for-assertion:..> clause do not take
place between 8, and 8§ i
(2) At the node for the descendant situation Sj, no assertions about the <actor>
have been entered which use the same form of conceptual representation as used in
the assertion being inherited from 8.

By virtue of the second condition, we do not have to keep adding events to the
<for-assertion..> clause every time we implement a new actor which changes the state of the
<actor>. For example, suppose that an actor emptying-queue which empties the elements of
an impure queue-actor is implemented and that its specification is given as follows:

<event: [emgtzigg-g.ueue <=Q]
<pre-cond: (Q is-a (IMPURE-QUEUE [¥x)))>

<post-cond: (Q is-a (/M PURE-QUEUE []))»
When the PLASMA expression (emptying=queue <= Q) is symbolically interpreted in a
situation 8§  where  (Q is-a (IMPURE-QUEUE [1 23]))) holds, the assertion
(Q is-a (IMPURE-QUEUE [])) is entered at the node for the next situation 8°. If we did not
have the above condition (2), the assertion (Q is-a (IMPURE-QUEUE [1 2 3])) could be

2. Note that this reasoning is valid only for serial computations. It is not valid if there are
concurrent events.
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inherited to 8”. To prevent this invalid inheritance without the condition (2), we would

need to add the event [ emptying~queue <= Q] to the list of nullifying events.

In general, the rule which indicates what conditions guarantee valid inheritances of
assertions from one situation to another is called a trans-situational rule. For particular
assertions or particular forms of assertions, appropriate trans-situational rules are necessary
for correct reasoning. The <for-assertion:.> clauses given in contracts are one type of
trans-situational rules. In Section 5.5, some examples of trans-situational rules are listed.
The reasoning using trans-situational rules described here is a procedural approach to
McCarthy’s frame problem [McCarthy-Hayes69). We will discuss this issue in Section 5.4.

5.1.4 Variables and Identifiers

In this subsection, we will explain how names for actors are handled in symbolic
evaluation for programs written in PLASMA. The technique given here allows us to deal
efficiently with the problem of both identity and sharing of actors.

Names in PLASMA fall into two classes: variables and identifiers. A variable x

can be declared and also initialized with the value of an expression <E1> by the following

form of statements
(let (x initially <E1>)...)
The value of x can be changed only by executing expressions of the form
(x & <ED).

Occurrences of x in programs except in the above form stand for the value of x. A

variable x is usually implemented by a cell actor, but in that case an expression x in code
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does not stand for the cell actor itself, but rather for the contents of the cell actor. In
symbolic evaluation, to state that a <variable> has an <actor> as its value in some situation,

assertions of the following form are used.
(<variable> has-value <actor>)
When the symbolic evaluator interprets an expression
(x « <EY).

in a situation 8, the following assertion

(x has-value B)

is entered at the node for the next situation, where B is the value of <E> in 8.
An identifier is declared and bound to an actor in the course of program

execution. To express that an Cidentifier> is bound to an <actord>, we use assertions of the

=) 0 s Ao

form

(<identifier> = <actor>)

In the symbolic evaluation of a module M, an identifier x used in the code of M can be
always regarded as the actor that it is bound to, because one identifier is not bound to more
than one actor throughout the symbolic evaluation of M. This is guaranteed by:
() the restriction on the syntax of PLASMA that no names are declared more than
once inside a module, and

(2) the fact that symbolic evaluation passes over each expression in a module
1

pagiic ot 3

exactly once.

I. This fact is true only when symbolic evaluation is used for program verification.
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When more than one symbol [here, symbols mean ones denoting actors in contracts
(such as Q in Figure 5.2) as well as indentifiers in programs] denotes the same actor, we use

assertions of the form
(<symbol-1> is-eq <symbol-2>)

As an identifier can be regarded as the actor that it is bound to, the relation "is-eq” and "="
can be used indistinguishably. Since the relation "is-eq" is an equivalence relation, it forms
an equivalence class of identifiers in programs and symbols denoting actors in contracts.
Every member of such an equivalence class denotes the same actor. In symbolic evaluation,
one identifier (or symbol) is chosen from each class [eg., the one which is first used among
the members of the class] and any uses or occurrences of other members in the same class
are always considered as those of the chosen one. To record the state of an actor A, the
symbolic evaluator always uses the one chosen identifier or symbol for A throughout all the
situations. This arrangement eases the handling of shared actors in symbolic evaluation.
To illustrate the use of identifiers and symbols explained above, let us consider
the following piece of code. This code is a PLASMA version of the SIMULA code given

in Section 4.5.4, Chapter 4 as an example which is difficult for the Floyd-Hoare technique.

-8 -
(let (queue~-1 = (create-impure=-queue ))
then - Sl -
(let (queue-2 = (queue-1 <= (nq: 2)))
then = SZ -
(queue=2 <= (nq: 3))
-8;-

8,484 denote situations before or after the events corresponding to statements in the
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code. In what follows, the notation
in Sm 1 ..<assertion)...
means that <assertionds are entered at the node for 8 in a situational tree.

The event [create-impure-queue <= []] takes place in 8y. By virtue of the

contract for impure queues in Figure 5.2, we know an empty impure queue-actor is created.
Then the let statement binds the identifier queue-1 to the empty queue-actor. We may use

a symbol Q for the newly created actor and record this event by two assertions

(Q is-a (IMPURE-QUEUE [)))
(queue-1 = Q),

but one assertion suffices. Namely,
in 8, : (queue-1 is-a (IMPURE-QUEUE [}))

The second statement of the above PLASMA code is interpreted by using the

following event specification instantiated from the clause in the contract for impure queues

<event: [ queue-1 <= (nq: 2)]
{pre-cond: (queue=-l is-a (IMPURE-QUEUE [))»
<return: queue-1 >

{post-cond: (queue-1 is-a (IMPURE-QUEUE [2)))»
The state of queue-1 is changed as described by the assertion in the <post-cond:..> clause

and queve-1 is returned. The let statement tells us that the returned queue-1 is bound to

queue-2. Thus

in 8, : (queue-1 is-a (IMPURE-QUEUE [2)))
(queue-1 is-eq queue-2)
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In interpreting the third statement, since we know that queue-2 and queue-1 denote
the same impure actor, the event [[queue-2 <= (nq: 3)] stands for [ queue-1 <= (nq: 3)].

Thus the change in the state of queue-1 is recorded as
in 83 : (queue-1 is-a (IMPURE-QUEUE [2 3)))

Any references to queue-2 in the interpretation of the subsequent statements in the code are

treated as the references to queue-1.

5.1.5 Examples of Trans-Situational Rules

In this subsection, we will give the trans-situational rules which will be used in the

examples of symbolic evaluation in this thesis

()  Assertions of the form (<identifier> = <actor)
which state that <identifier> is bound to <actor>, can be passed unchanged between any two

situations within the scope of <identifier>.

() Assertions of the form (<actorl) is-eq <actor2>) and (<actorl> not-eq <actor2>),
which state the identity of actors, can be always inherited from one situation to another

without any conditions. .

(x) Assertions of the form

(<c-sequencel> = <c-sequence2>) and (<c-sequencel> ¥ <(c-sequence2>),
which state the equality of conceptual sequences appearing in conceptual representations,
can also be inherited without any conditions. [Note that <c-sequencel> and <c-sequence2>

are not sequence-actors but mathematical sequences. All mathematical facts can be
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inherited without any conditions. This is a special case.]

(+) Assertions of the form (<actor> is-a (SEQUENCE [!x]))
which state that <actor> is a sequence-actor whose elements are Ix, can be inherited without

any conditions because a sequence-actor is a pure actor which never changes its state.

(«) Assertions of the form (<variable> has-value <actor?)
which state that <variable> has <actor> as its value in some situation 8, can be inherited to a
situation T if no assignments to this <variable> take place between 8 and T. (Cf. Section

514.)

5.2 Verification of Actors Behaving as Procedures

Methods of verification reflect methods of specification. Roughly speaking, two
methods have been employed in the specification technique presented in the previous
chapter.

One method is to specify the behavior of an actor A in terms of the states or the
changes in the state of other actors which are sent to A, or which are created during the
invocations of A. In this method, the state of A is not used in specifying the behavior of
A. Most actors which behave purely. as "procedures” are specified by this method. A
typical example of such actors is empty-one-queue-into-another. [See Section 4.4.2, Chapter
4] In general, this method applies to the specifications of the actors which are targets in
the No-Change-Type and Message-Change-Type interactions introduced in Section 3.2.4,
Chapter 3.

The other method is to specify the behavior of an actor B in terms of the changes
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in the state of B itself. Actors which behave as "information storage”, such as data
structures and generators, are specified by this method.

In this section, we will illustrate our verification techniques for actors behaving like
procedures, whose behaviors are specified by the first method mentioned above. The
verification techniques corresponding to the second specification method will be discussed
in the next section. However, since actors are essentially procedural objects whose
implementations are written as programs, most of the techniques that will be discussed in
this section [such as the handling of recursion, loop, case splitting and convergence] are

necessary bases for the verification of information-storage-like actors.

5.2.1 Symbolic Evaluation in the Context of Specifications

In order to verify an implementation of an actor against its specification, symbolic
evaluation of the implementation [i.e. code or script) is carried out in the context of the
specification. In our formalism, a specification of an actor which behaves like a procedure
is expressed by a specification of the event which initiates the invocation of the actor. A
specification consists of the preconditions for the incoming message [ie. input], and the
postconditions to be satisfied by the result of the invocation. Thus the symbolic evaluation
of the implementation is started with the assumption that the preconditions are satisfied.
Under this assumption the symbolic evaluation is carried out and then the results of the
symbolic evaluation are examined as to whether they satisfy the postconditions given in the
specification.

Below we will demonstrate the verification of an implementation of
empty-one-queue-into-another [hereafter empty] against its contract. Its contract and

PLASMA code are given in Figure 55. The code is augmented with situational symbols




- 104 -

Fig. 5.5. A Contract and Implementation of empty-one-queue=-into-another

<event: [ empty-one-queue-into-another <= [Q1 Q2]]
{pre-cond:
Q1 is-a (IMPURE-QUEUE [1x1])
(Q2 is-a (IMPURE-QUEUE [!x2)))
(Q1 not-eq Q2) >
<return: (done: [Q1.Q2)) >
<{post-cond:
(Q1 is-a (IMPURE-QUEUE [)))
(Q2 is-a (IMPURE-QUEUE [1x2 1x1])) »

(empty~one-queue~-into-another =

(=> [=ql =q2] ;two impure queues are received by empty-one-queue-into-another
sand ql and q2 are bound to them.

& Sreceived-queues e
(rules (q1 <= (dq:)) ; sthe dequeuing message is sent to ql.
(=> (exhausted:) sif ql is empty, the complaint message is generated

1 soxhausted-ql Z
(done: [q1 q2]) ) sthen emptied q1 and extended q2 are returned.
(=> (next: =front-of-q1 sif ql is not empty, front-of-q1
(rest: =dequeued=-ql)) sand dequeued-ql

;are bound to the front element of q1 and the remaining quecue, respectively.

7 Sdequeuod-ql 5
(g2 <= (nq: front-of-q1)) sfront~of-ql is enqueued at rear of q2.

-S

enqueued-q2 ~

(empty-one-queue-into-another <= [dequeued-ql q2])) ) ))
;dequaued-q1 and q2 are sent to empty-one-queue-into-another.
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which denote situations before/after events corresponding to each statement. Note that this
implementation contains a conditional branch and a recursion, the handling of which will

be explained below.

First, the preconditions of empty in its contract are entered in the data base.

in Bjniia :
(Q1 is-a (IMPURE-QUEUE [1x1]))
(Q2 is-a (IMPURE-QUEUE {x2}))

(Q1 not-eq Q2)

After the symbolic pattern matching is performed, identifiers q1 and q2 are bound to Q1

and Q2, respectively. So this is recorded in the data base as the following assertions.

in Sreceived-queues &
(a1 =Q1)

(92 = Q2)

Then the PLASMA expression (q1 <= (dq:)) in the rules-statement is interpreted. The
dequeuing message (dq:) is sent to Q1 that ql is bound to. To know the result of this
event, the symbolic evaluator must consult the <event..> clause for the dequeuing in the

contract:

1 ; <event: [Q1 <= (dq:)]
{case-1:
P <pre-cond: (Q1 is-a (IMPURE-QUEUE [})) >
: <return: (exhausted:) >
{post-cond: (Q1 is-a (IMPURE-QUEUE [))) > )
(case-2:
{pre-cond: (Q1 is-a (IMPURE-QUEUE (B ly])) >
<return: (next: B (rest: Q1)) >
<post-cond: (Q1 is-a (IMPURE-QUEUE [ly]))>) >
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[(Note that the above clause is an instantiation of the <event..> clause for the dequeuing in
the contract for impure queues in Figure 5.2, which is obtained by substituting Q1 for Q]
Now the symbolic evaluator has to consider two cases: where Q1 is empty and where Q1 is

not empty. (See the situational tree for this example in Figure 56.)

Case I: (Q1 is-a (/MPURE-QUEUE [1))

In this case, the contract specifies that the (exhausted:) message should be returned. This
message matches against the first (=>..)-statement inside the (rules..) statement. To follow
this path, x1 = [] must be assumed. So at the node for soxhoustod-ql' the following

assertions are entered.

in Sexhausted-qi :
(x1 =[]

(Q1 is-a (IMPURE-QUEUE [])

Then the result of the invocation, the message (done: [q1 q2)), is returned in S“h.w'.d.ql.

For this result, there are three postconditions stated in the contract of empty:

Fig. 5.6.
Sinitial ’
|
/sncoivod-quouos
\
Sexhaustod-ql Sdoquouo-ru
sonquouod-qz
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rl: (done: [Q1 Q2]) must be returned
r2: (Q1 is-a (IMPURE-QUEUE [))) must hold, and

r3: (Q2 is-a (IMPURE-QUEUE [#x2 8x1])) must hold.
It is easy to show that each postcondition is satisfied in soxhaushd-qf
() for ri1, since the trans-situational rules for binding allow the inheritance of the

assertions (g1 = Q1) and (g2 = Q2) from S to S

received-queues exhausted-q1’

the required message is returned in 8 g1, cted-q1-

(:) for r2, the assertion (Q1 is-a (/IMPURE-QUEUE [))) is entered at the node for

sexhausted-ql' and
(+) for r3, the two facts guarantee that the requirement is satisfied:
() Q2 is-a (IMPURE-QUEUE [%x2])) can be inherited from 8; ...,
S

(Q2 is-a (IMPURE-QUEUE [..])) [which is obtained by instantiating the

to

exhausted-q1 by using the trans-situational rule for
<for-assertion:..> clause in the contract for impure queues. Cf. Section 513.].
This inheritance is legitimate because neither [Q2 <= (nq:..)] nor
[Q2 <= (dq:)] have happended and no assertions of the form
(Q2 is-a (IMPURE-QUEUE [..])) have been entered at the node for
s

(2) [1x2) = [1x2 Ix1] holds in soxhaustod-ql because x1 = [] holds in
sexhaustod-ql' ([3x2 Ix1] = [8x2 ¥[]] = [#x2] )

exhausted-q1-

Therefore (Q2 is-a (IMPURE-QUEUE [1x2 1x1))) holds in soxhcustod-ql' Thus Case-l is

verified.
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Case-2: (Q1 is-a (IMPURE-QUEUE [b 1y])

In this case, the contract for impure queues tells us that (next: B (rest: Q1)) is the result of

(91 <= (dq:)) where the following assertions are assumed.

(x1 = (B ty))

(Q1 is-a (IMPURE-QUEUE [%y))
The result (next: B (rest: Q1)) is matched against the pattern in the second (=>..) statement
inside the (rules..) statement. At the node for sdoquouod-qt- the binding information is

also entered together with the above assumption.

in Sdequeucd-ql ¢

(front-of-q1 = B)

(dequeued-ql = Q1)

(x1 = [B y])

(Q1 is-a (/MPURE-QUEUE [3y)))
Then the PLASMA expression (q2 <= (nq: tront-of-ql)) is interpreted in this situation.
Since q2 is bound to Q, and front-of=ql is bound to B [from the trans-situational rule for the
binding], the event taking place is [Q2 <= (ng: B)]. To know the effects of this event, the
system refers to the second <event:..> clause in the contract for impure queues in Figure 5.2.

The state of Q2 in is obtained from the assertion

Sdequouo-ql
(Q2 is-a (IMPURE-QUEUE [ix2])) at the node for Simm. Because it can be inherited to
sdoqueued-ql for the same reason as explained above in the case of its inheritance from
siniml to Sdequouod-ql' Thus the second <event:..> clause is instantiated as follows. [Note

the substitutions of Q2 for Q, x2 for x and B for A.]
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<event: [ Q2 <= (nq: B)]
<pre-cond: (Q2 is-a (IMPURE-QUEUE [8x2))) >
Sreturn: Q2>
<post-cond: (Q2 is-a (IMPURE-QUEUE [Ix2 B))) »

The assertion in the <post-cond:..> clause is entered at the node for sonquouod-qZ'

in 8 gnqueved-q2: (Q2 is-a (IMPURE-QUEUE [ix2 B))

Now the last PLASMA statement (empty <= [dequeue-ql q2}) is interpreted. From the
binding information, the corresponding event is [ empty <= [Q1 Q2]]. To know the effects
of this event, the contract for empty in Figure 55 is referred to. Since we are trying to
verify the code against this contract, this is a "recursive”l use of the contract. The
preconditions stated in this contract must be satisfied before it can be used. In fact, the

assertions:

(Q1 is-a (IMPURE-QUEUE [ty])) and (Q1 not-eq Q2)

can be inherited from 84oq,,6yed-q1 DY the trans-situational rules for

(Q1 is-a (/MPURE-QUEUE [..])) and (<actor1> not-eq <actor2)),

respectively. Thus the following assertions hold in Sonqueuo-qz

(Q1 is-a (IMPURE-QUEUE [1y])
(Q2 is-a (IMPURE-QUEUE [x2 B)))
(Q1 not-eq Q2)
Therefore the preconditions of empty are satisfied. Now the postconditions of the contract

for empty guarantee that (done: [Q1 Q2]) is returned and that the following assertions:

I. Recursion and iteration in symbolic evaluation are discussed in Appendix III.
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(Ql is-a (IMPURE-QUEUE [})) and

(Q2 is-a (IMPURE-QUEUE [}[!x2 B] ty))) hold.
hold in the situation following S,nqueu.d_qz. Facts about c-sequences:

(i[2x2 B] 1y] = [#x2 B ly),

[Ix2 B ly] = [#x2 Ix1], if x1 = [B 1y].
are used to simplify the above assertions. That is, since x1 = [B ly] can be inherited from
Sdoquoued-ql by the trans-situational rule for (<c-sequencel> = <c-sequence2>), it follows
that

(Q1 is-a (IMPURE-QUEUE []))

(Q2 is-a (IMPURE-QUEUE [!x2 1x1))).

Thus the post-conditions for empty-one-queue=-into-another are also satisfied in Case-2.

Though it has been shown that both Case-1 and Case-2 meet the postconditions for
empty, we cannot conclude that the implementation of empty in Figure 55 satisfies its
contract, because the convergence of the invocation of the implementation is not
guaranteed, although it is explicitly required by the contract. [Recall the meaning of
<return:.> clauses given in the previous chapter.] For after splitting into two cases at the
(rules...) statement, the symbolic evaluation for both Case-l and Case-2 is resumed under the

assumption that the control has reached the points corresponding to 8 and

exhausted-q1
Sd.q“u.d_ql. Therefore, to demonstrate that the above assumption is always guaranteed

is another part of the verification process. This issue is discussed in Appendix IV.




5.3 Verification of Actors Behaving as Information Storage

In this section, we will present our specification techniques for actors whose
behaviors are specified in terms of their own states [or changes in their own states).
Specifications of actors which behave as "information storage” such as data structures and
generators [Section 4.4.4) are often written in terms of their own states. For the verification
of implementations of these actors, symbolic evaluation is still the ma jor instrument and all
the techniques presented in the previous section are still employed. In addition, however,
special considerations are necessary in dealing with conceptual representations of the actors

being verified. We will discuss such considerations in the next subsection.

5.3.1 Implementation Invariants

The specification of impure queue actors in Figure 5.2 is written in terms of the
changes in their states before and after their invocations, and their states are expressed by

conceptual representations of the following form.
(IMPURE-QUEUE [..])

When some program which contains invocations of impure queue actors is symbolically
evaluated, conceptual representations of the above form are used only to record states of the
impure queue actors. One need not pay attention to what those conceptual representations
really stand for, as long as they represent the states of the impure queue actors at the
conceptual level. However, when an implementation [script or code] of an impure queue
actor Q itself is verified against its specification, what the conceptual representation

expresses in terms of the implementation, or more precisely, how the state of Q expressed by
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the conceptual representation corresponds to the states of the constituents of its
implementation, must be considered.

Suppose that the PLASMA implementation of an impure queue actor given in
Figure-5.7 is to be verified against the contract in Figure 52. In this implementation, the
elements of the queue are kept as the elements of a sequence actor that is the value of the
variable queuees. This could be expressed by the diagram in Figure 5.8, where boxes
represént actors and arrows express the know-about relations. This diagram is only a

partial and static description of the implementation, yet it illustrates an invariant or

Fig. 57. A PLASMA Implementation of an Impure Queue Actor

(create-impure-queue =

=[] ;create-impure=queue receives an empty sequence.
(let (queuees initially []) sa variable queuees is declared
then ;and initialized with an empty sequence.
(the-queue-itself = sa queue-actor denoted by the-queue-itself is defined
; by the cases-statement given below.

(cases
(=> (nqg: =new-element) swhen an enqueue message with an element is received,
;new=-element is bound to the element.
(queuees « [lqueuees new=-element]) ia new sequence-actor whose clements are
sthe unpack of the value of queuees and new-element
sis created and stored in queuees.
the-queue-itself) sand then the-queue-itself is returned.
(=> (dq:) swhen a dequeue message is received,
(rules queuees sif the value of queuees
(=> [1 (exhausted:) ) sis empty, then the message is returned.
(=> [=front i=rest] sif it is @ non-empty sequence, front and rest
sare bound to its first element and the rest of its elements, respectively.
(queuees « rest) sthe value of queuees is updated.

(next: front (rest: the=-queue-itself)) ) )) )))) s(next:...) is returned.
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integrity condition which must be satisfied among constituents of the implementation. The

following implementation invariant statement can express the diagram more formally.

<Implementation-Invariant:

if (the-queue-itself is-a (/MPURE-QUEUE [$a)))
then

(queuees has-value S)
(S is-a (SEQUENCE [!a))) >

This says: when the state of the actor denoted by the-queue-itself is expressed by the

conceptual representation
(IMPURE-QUEUE [%a)),

the variable queuees has the value which is always some sequence actor $ whose elements

are expressed by [1a). (SEQUENCE [!a)) is the conceptual representation for such a sequence

Fjg. 5.8.

queuees

Value
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actor.
An implementation invariant describes the mapping from the states of an actor
(the “specification space”) to the states of the constituents of 2 given implementation for the
actor (the “implementation space").l Suppose that the behavior of an actor A is specified by

the state of A before or after its invocation. Then an implementation invariant is used in

the verification of A in the following way.

First, the state S of A before the invocation is translated into the state II(S) of the
constituents of the implementation by a given implementation invariant II. Then the
implementation [code] is symbolically evaluated and the states of the constituents after
the invocation are obtained. Next, by using the implementation invariant again, the
state S’ of A, specified as the one after the invocation, is translated into the state II(S’)
of the constituents. Finally, the states of the constituents obtained by the symbolic

evaluation are checked to see if they satisfy those translated states. [See Figure 5.9.]

In general, given a state T of an actor A and an implementation 1 for A, an
implementation invariant for I tells us the relations which must be satisfied by the states of
the constituents of I to realize the state T. Therefore implementation invariants may be
one-to-many mappings. In such a case, when symbolic evaluation of an implementation is
started, only such relations (holding among the states of the constituents of an
implementations) are assumed: exact states of each constituent are not used. An example of
the one-to-many mapping cases is found in Section 7.4.2, Chapter 7. Implementation
invariants are similar to the inverse of Hoare’s abstract functions (Hoare72], and also serve

as concrete (representation) invariants which he used additionally in proving correctness of

l. A state in the implementation space is a vector of states of the constituents of the
implementation.




=115 -

Fig. 5.9. Verification of an actor A Behaving like Information Storage

<Invocation>

<Implementation Invariant>

<S pecification S pace>

<Implementation S pace>

Symbolic evaluation> \
®

1K(S) IK(S)

_representations of data structures. Interpretation functions between two formal theories
studied by R. Nakajima [Nakajima-et-al77] seem closely related to implementation

invariants.

5.3.2 Establishing Event Specifications

An implementation of an actor which behaves as “information storage” is verified
by establishing each event specification associated with the actor. In this subsection, we will

illustrate this by using an impure queue-actor as an example.
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The verification of the implementation of an impure queue-actor is carried out by
symbolic evaluation. To aid in the exposition of the symbolic evaluation, we augment the
PLASMA code in Figure 5.7 with situational symbols as shown in Figure 510. This code is
verified against the contract in Figure 52. Below we will establish the two <event:..> clauses
in the contract, which specify the creation and enqueueing events. The dequeuing event

can be established similarly.

Establishing the CREATION specification

In the first <event:..> clause in the contract in Figure 5.2:

<event: [[ create-impure-queue <= []]
{returns: Q*) >
<post-cond: (Q is-a (IMPURE-QUEUE [])) »,

there are no pre-conditions for this event. Thus no assertions are entered in the data base

for the initial situation.

in Spro-crealion & empty

The let statement in the code declares and initializes a variable queuees with an empty

sequence NS. To record this, the following assertions are entered.

inS;

initialized-queuees *
(queuees has-value NS)

(NS is-a (SEQUENCE []))
Then in this situation an actor whose script (i.e. code) is given as the (cases..) statement
after (the-queue-itself = .. is newly created and returned. This actor is denoted by

the-queue-itself. The contract for the creation requires two things: (I) that the returned
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Fig. 5.10.
(create-impure-queue =
=] ;create-impure=queue receives an empty sequence.
(let (queuees initially []) sa variable queuees is declared
then ;and initialized with an empty sequence.

= Sinitialized-queuees s
(the-queue-itself = sa queue-actor denoted by the-queue-itself is defined
;by the cases-statement given below.
(cases
(=> (nq: =new-element) swhen an enqueue message with an element is reccived,
;new=-element is bound to the element.

i Sreceivod-nq -
(queuees « [lqueuees new-element]) ;a new sequence-actor whose elements

;are the unpack of the value of queuees and new-element
;is created and is stored in queuees.

= Supda\ed-queuoos-nq 3
the-queue-itself) sand then the-queue-itself is returned.

= (dq:) swhen an dequeue message is reccived,

i Sreceived-dq -
(rules queuees sif the value of queuees
= (] ;is an empty sequence,

-85 empty-queuees ~

(exhausted:) ) sthen the complaint messago is returned.
=> [=front I=rest] if it is a non-empty sequence, front and rest
;are bound to its first element and the rest of its elements, respectively.

- Snon-empiy-queuees >

(queuees + rest) sthe value of queuees is updated.

b supdated-quauus-dq e
(dequeued: front (reat: the-queue-itseif)) ) )) )) )) s(next:...) is returnad.

sl
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actor Q be newly created and (2) that (Q is-a (IMPURE-QUEUE [])) holds. Since the
returned actor is  the-queue-itself, ~what we need to show is that
(the-queue-itselt is-a (IMPURE-QUEUE [])) holds. This assertion is translated into the
following assertions using the assertions in the where-clause in the implementation invariant
statement given in the previous subsection. [Note that the assertions in the where-clause

are instantiated by substituting an empty sequence [] for fa]

(queuees has-value S)

(S is-a (SEQUENCE (1)
These two assertions are matched against the two assertions entered at the node for
Sinitialized-queuees- Therefore it is concluded that the returned actor the-queue-itself has
the correct internal structure prescribed by the implementation invariant. So the result of

the event [ create-impure-queue <= []] meets its specification.

Establishing the ENQUEUING specification

From the instantiation of the event specification for enqueueing:

<event: [ the-queue-itself <= (ng: A)J
<pre~-cond: (the-queue-itself is-a (IMPURE-QUEUE [Ix])) >

<returns: the-queue-itselt >
<post-cond: (the-queue-itself is-a (/M PURE-QUEUE [!x A])) »

which is obtained by substituting the-queue-itself for Q in the contract for

(IMPURE-QUEUE [..]}) in Figure 5.2, it is assumed that

(the-queue-itself is-a (IMPURE-QUEUE [!x}))
holds in the initial situation. By the implementation invariant statement, this assumption is

translated into the following two assertions: [Note that x is substituted for a in the
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invariant statement.]

in8S;

initialized-queuees *
(queuees has-value S))

(S is-a (SEQUENCE [!x]))
Now the message (nq: A) is sent to the-queue-itself. This message matches against the first

clause of the case statement. So new-element is bound to A.

in Sroceived-nq : (new-element = A)

Then the value of queuees is updated by a newly created sequence-actor NS with its

elements [!queuees new-element]. The value of queuees in S is obtained by

received=-nq
inheriting from Sinma"“d_queu“s, because no updating events took place between the two
situations. Thus the value is a sequence-actor S. lIqueuses is the result of the unpack
operation on S, which is Ix. [Note that the sequence actor is pure. Therefore its state can be

inherited from S.

lnitialized-queueos‘] So the state of the new sequence-actor NS is expressed

by (SEQUENCE [!x A)). For the assignment of NS to queuees, the new assertion
(queuees has-value NS) is entered in the data base.  So the following assertions hold in the

next situation.

in Supdated—queuees-nq u
{queuees has-value NS)

(NS is-a (SEQUENCE [1x A]))

The code tells us that the-queue-itself is returned in this situation. The specification for the

" nqueuing requires that the-queue-itself be returned and that

(the~queue-itself is-a (IMPURE-QUEUE [ix A})).
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So this assertion is translated into the following assertions by the implementation invariant.

(queuees has-value S)
(S is-a (SEQUENCE [x A)))
These assertions are obviously matched against the assertions entered at the node for

Supdated_queu“s_nq. So the enqueuing event meets its specification.

5.4 Discussions Related to Symbolic Evaluation

The method of symbolic evaluation presented in this chapter has many interesting
facets and significant implications for other research areas besides program verification. In
this section, we first reflect on our approach to verification based on symbolic evaluation in
the light of other existing approaches. We then discuss the applications of symbolic
evaluation.  Finally, our reasoning method employ:d in symbolic evaluation will be

discussed in the context of McCarthy's frame problem.

5.4.1 Situational Descriptions vs. Predicate Transforinations

Program verification methods based on the Floyd-Hoare proof rules [Floyd67,

Hoare69] or predicate transformers [Manna69, Di jkstra76] can be summarized as follows:

Given a set of predicates P holding in a situation 8, the proof rules or the predicate

transformer generate a set of predicates P' [from P] which hold in the next! situation

I. For the case of the proof rules, the next situation is the temporal successor situation, and |
for Dijkstra's predicate transformers, it is the predecessor situation. J
|
8
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The choice of predicates holding in 8 determines the generated set of predicates for S°.
Those choices are made so that desired assertions may be shown to hold in 8°. This

approach is schematically described in Figure 5.1l. Note that the predicate transformers

work backwards.

Fig. 5.11. Floyd-Hoare-Dijkstra Predicate Transformation Approach

<pProof Rules>
<Dijkstra's Predicate Transformer>

predicates predicates
holding W holding
in S i in S'
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In contrast to the approach above, our approach is:

Given a description D of a situation 8, symbolic evaluation produces a description D'

of the [forwardly] next situation by using contracts and trans-situational rules.

A description of a situation is a collection of assertions about states of actors which are
expressed by conceptual representations. Predicates which hold in a situation are derived
from the description of the situation. This approach, which we call the "situational
description” approach, is schematically described in Figure 5.12.

Conceptual representations not only express states of individual actors in a system,
but they can also describe how the individual actors are interrelated at various levels. Thus
the description of situations in terms of conceptual representations is powerful in dealing
with sharing.  Furthermore, descriptions of each situation provide us with sources of
various information about a program, which is quite useful for other applications in the

areas of mechanical program analysis.

5.4.2 Applications of Symbolic Evaluation

Symbolic evaluation based on formalisms different from ours has been studied for
various purposes such as proving properties of programs [Boyer-Moocre75), program testing
and debugging [Boyer-et-al?5, King7), program transformation and improvement
(Burstall-Darlington75] etc.

Our method of symbolic evaluation can be used in constructing a software system
called a Programming Apprentice [Hewitt-Smith75, Rich-Shrobe76), which aids expert
programmers in various aspects of programming activities such as verification, debugging,

and refinement of programs. In the Programming Apprentice, the purpose of symbolic
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Fig. 5.12. The Situational Description Approach

PREDICATES PREDICATES
holding holding
in 8 i ot

CONTRACTS

TRANS-SITUATIONAL RULES

representations

e NC@

representations

description of S é 5 description of S'
in terms of conceptual ‘ in terms of conceptual




" " " = . G — —

- 12¢ -

evaluation is not simply to verify programs against their specifications. By symbolic
evaluation, we try to gather information about dependencies between program modules.
Such information is used to understand implications of proposed changes in both
specifications and implementations in the subsequent evolutional development of the
programs.

For instance, suppose that the implementation of empty-one-queue-into-another used
as an example of program verification is sent pure queue actors instead of impure queue
actors. Using the contracts for pure queue actors in Figure 4.2 in Chapter 4, our method of
symbolic evaluation can easily trace and record the behavior of the implementation. The
situational tree produced during the symbolic evaluation aids us in modifying the
implementation so that it may accept both impure and pure queue actors. Another simple
example might be the analysis of the behavior of the same implementation when it is sent
the same impure actor. [That is, one of the preconditions, (Q1 not-eq Q2) is forgottenj
Furthermore, as reported in [Yonezawa-Hewitt76), the efficiency of the implementation of
impure queue actors in terms of consumed storage can be revealed by using assertions of
the form

(Cactor=1> knows-about <actor2>)
in the process of symbolic evaluation.

The sitdational description approach based on our method of symbolic evaluation
appears to be quite powerful in pursuing these ends. The symbolic evaluator in C. Rich
and H. Shrobe’s system [Rich-Shrobe76], which understands LISP programs, is based on a

method similar to ours.
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5.4.3 The Frame Problem

In the context of Artificial Intelligence, J. McCarthy and P. Hayes
(McCarthy-Hayes69] pointed out a problem, called the frame problem, which arises in
formalizing effects of actions or events taking place in a complex world. A typical example
of the frame problem is found in formalizing the effects of actions of a robot in a block
world where the robot carries out various physical tasks. Suppose that the robot has moved
a block B to a certain location. With this action, the location of B changes, but most of the
properties of the blocks, such as color, height, and volume, and relations holding among
other blocks, do not change. To formalize the action "move”, it is necessary to specify not
only which of these properties and relations will change [and how they will change), but
also which properties or relations will not change. Since the robot is supposed to perform a
number of different actions, for each action such changes in properties and relations in

both positive and negative sense must be specified. In most cases, rather a small number of

properties and relations change as the result of a single action, while the rest of them do
not. Thus the number of such specifications will be unbearably large for a practical system
if the tasks of the robot and the world in which it works become complicated.

The same problem arises in the context of program specification and verification.
In particular, the frame problem becomes serious when one tries to construct program
verification or understanding systems which must deal with actors whose behavior may
change with time. To specify the effects of computations [or events], the no-changes as well
as the changes in the states of ob jects in a system must be described even if the ob jects do
not participate in the computations. If we described the changes and no-changes of all the
ob jects in the system in a straightforward way, the same serious problem would arise.

As presented in the first section in this chapter [5.1.2, 51.3), we take a procedural

approach to this problem. Our reasoning method based on trans-situational rules is
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powerful in coping with the problem in the domain of Artificial Intelligence as well. R.
Waldinger has independently proposed an approach similar to ours for dealing with certain
issues in program synthesis and has discussed its application to Artificial Intelligence
[Waldinger77). Those who are interested in comparative studies of the existing approaches

to the frame problem should see [Sandwall72, Hayes73, Hewitt75, Waldinger77).
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D A . A T

6. Specifying Parallel Computations

, In this chapter, the specification language introduced in Chapter 4 is extended to

cover parallel computation. Formal specifications of abstract data type objects which are

used in multi-process environments are written in the extended language. Examples for
illustrating our specification techniques include air line reservation systems and bounded

buffers. An alternative definition of states of actor (ob jects) is discussed at the end of the

chapter.
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6.1 Introduction

In this section, we will discuss the characterisitics of parallel computation which
make its specification method different from that for serial computation. Our specification
techniques for parallel computations will be described in the subsequent sections of this

chapter.

6.1.1 Communicating Parallel Processes

In a serial computation, activations of actors take place sequentially and one at a
time. Thus it is modelled as a set of linear ordered events with each event causally related
to one another. [Recall the definition of computations in Chapter 3] In a parallel
computation, however, more than one activation may take place concurrently. Some events
are causally related to each other, but some may not be. Therefore, a computation is
modelled as a set of partially ordered events. A sequence of causally related events can be
viewed as a “process”. From this view point, parallel computations involve multiple
processes and serial computations a single process.

If, in a parallel computation, concurrent processes do not interact with each other,
i.e, no events are causally related between processes, the computation can be viewed as a
collection of mutually independent serial computations.

However, there are many reasons for the necessity of interaction between
concurrently running processes: If arguments in a procedure call are evaluated in parallel,
a process which executes the procedure body must wait until all the paraliel evaluations of
the arguments are completed. In air line reservation systems and inventory control systems,
concurrent processes interact with each other by retrieving and updating various

information in data bases. In operating systems, concurrent processes interact through
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sharing resources such as main/secondary memories and 1/O peripherals.

In order for such interactions [or cooperations) to be effective and efficient,
concurrent processes must communicate and synchronize with each other. Therefore in
specifying interesting behaviors of parallel computations, we need techniques which are
able to deal with communication and synchronization between processes. In our model of

computation, such communication and synchronization is realized by changing states of

certain actors. [Cells, buffers and data bases are examples of such actors.] Therefore the

central issue in the method for specification of parallel computations is to deal with the
behavior of actors which are used for communication and synchronization.

States of actors are extensively used in specifying parallel computations as well as
serial computations. But states of actors in parallel computations [or multi-processor
environments] need to be dealt with much more carefully than those in serial computations.

We will discuss this issue in detail in the next subsection.

6.1.2 Local States

In describing behaviors of parallel computations, there have been many
attempts[Milner73, Kahn74, Ashcroft75, Cohen75, Owicki75, Keller76, Owicki-Gries76,
Flon-Suzuki77, Lamport77] to use the notion of the global states of an entire system. The
global state of a system at a given time is expressed essentially by a vector of states of the
subsystems. The use of the global states is often motivated by the use of non-deterministic
serial computations for the semantic model for parallel computations. In order to study
properties of a subsystem, this approach leads to counter-intuitive serialization of

concurrent events taking place in unrelated subsystems and it forces us to consider not only
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changes in other subsystems but also the order in which such changes take place. Thus the
number of cases to be examined tends to be exponentially large, but almost all changes in
other subsystems are irrelevant to the subsystem under consideration.

In our approach, we do not rely on such notions as the global state and the global
clock [uniform time reference). Rather we take a local and relativistic view. We assume
only the local states of individual actors. [Cf. Section 1.3, Chapter 1] The local state of an
actor is determined only at the local time associated with the actor. Thus, when the state of
a computer at some site of a computer network is determined, we do not assume that the
states of computers at other sites can be defined. The state of an actor is determined at the
time when the actor receives a message. This timing is particularly important and useful in
parallel computations because it is a well defined moment in a distributed system. [The
moments of message transmission at scattered computer sites are difficult to compare with
each other.] Recall that the ordering of arrival of messages with respect to a given actor
(arrival subordering] is total in our model of computation. [Cf. Section 3.1.3, Chapter 3]

In Section 4.L1, Chapter 4, we have defined states of an actor as equivalence classes
of past histories of messages sent to the actor. As discussed before, this definition
subsumes, in serial computations, traditional definitions for data-storing ob jects, whose
states are determined by their current information content. Such traditional definitions are
inadequate in parallel computations [or multi-process environments). For example, imagine
a data base system which is concurrently accessed by a number of users. If the state of the
data base were defined as its stored data, its state at the time of the arrival of an access
request could not be determined, because the stored information might be being changed by
previously arrived requests. Also determining the information content inside the data base
at the time when a request arrives at the data base is incompatible with our relativistic view

introduced above. [Imagine a data base system where an access request may be received by
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a computer site located at one side of the continent while actual data may stored at the
other side.)

States of an actor defined as equivalence classes of the past message histories are
not affected by the actual activations of the actor. Also the order of arrival of messages is
linear (total). These two facts are essential to our specification techniques for parallel
computations because they guarantee that states thus defined are always well defined even
if the actor is being activated by the previously arrived messages. In the later sections,
examples that illustrate the significance of our state definition will be found. In particular,
a model of interaction between a post office and customers in Chapter 8 will provide an

intuitive example.

6.2 Extending the Specification Language

Specifications of the behavior of actors in parallel computations are written in a
way similar to that in which the behavior of actors in serial computations is specified.
That is, when given the state of an actor, the behavior of the actor is specified by the
resulting state changes and the subsequently caused events. However the ma jor difference
lies in how the states of actors change and how such changes are expressed. To distinguish
such difference, the specification language introduced for serial computations in chapter ¢

needs to be extended.




6.2.1 Instantaneous State Changes

Let us try to write a formal specification of a cell actor. A cell actor is used to store
information. It accepts updating messages of the form (update: <new-contents>) and

retrieving messages of the form (contents:). Its behavior is expressed informally as follows:

“In response to a (contents:) message,
a cell actor returns <contents> which was contained
in the most recently arrived (update:..) message if such a message exists,
otherwise it returns its initial contents”

We would like to express this behavior by using the states of the cell! To express a
state of a cell actor, we use conceptual representations. For example,
(CELL (contents: A))
expresses the state which is defined as a class of histories of messages whose most recent
updating message is of the form (update: A). If the cell were used only in serial

computations, we could specify this behavior by the following two event specifications:

<event: [ C <= (contents:)]
<pre-cond: (C is-a (CELL (contents: A))) >
<rclurn:‘A >
<post-cond: (C is-a (CELL (contents: A))) > >

<event: [ C <= (update: B)]
¢pre-cond: (C is-a (CELL (contents: A))) >
lreturn: B >
<post-cond: (C is-a (CELL (contents: B))) > >

Unfortunately, the above event specif ications do not precisely express the behavior of a cell

in parallel computations, because the states of C expressed in the <post-cond:..> clauses are

I. I. Greif and C. Hewitt gave a specification of cells which is expressed by axioms about
events in [Greif-Hewitt75, Greif 75].
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the states at the time A or B are returned, but the state of the cell may be changed by the
updating messages subsequently arriving before A or B are returned.

In order to eliminate this impreciseness in the above event specifications, the
following two points should be made clear. First, states of a cell expressed by the
i conceptual representations must be interpreted strictly in terms of equivalence classes of

histories of incoming messages. They should not be interpreted to express the current

—

contents of the cell. The second point, which logically follows from the first one, is that in

order to be consistent with the definition of the states expressed by the conceptual
representations, the state of the cell must change instantaneously when an (update:...)

A message arrives.

B In general, in specifying behaviors of actors in parallel computations through their

state changes, the fact that states change instantaneously must be taken into account.

6.2.2 <Next-cond:..> Clauses

To express the instantaneous state changes in specifications, we introduce a new
specification language construct, <mext-cond:.> clauses.  This is usually used in event

specifications of the following form.

<event: [ T <== M]
{pre-cond: >
<next-cond: .. <assertion>.. >
{caused-cvent: E >
This means: when an event [T <== M] takes places, if the preconditions are satisfied, the

<assertion>s in the <next-cond: ..> clause hold immediately after the event [T <== M] and

continue to hold at least until one of the actors appearing in the <assertion>s receives the
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next message. For example, if the <assertion>s mention T or M, they continue to hold at least
unttl T or M receives its next message. The assertions in the <next-cond:..> clause can be
viewed as the preconditions for the next event. A <next-cond:.)> clause differs from a
(poA.ﬂ-rmld:...) clause in that assertions in the <{post-cond:.> clause hold at the time the
corresponding caused event take place, but may not hold before the caused event. When a
<next-cond:.> clause is used in specifying serial computations, its meaning is identical to
that for a <post-cond:..> clause. The event E in the <caused-event:.> clause must take place
eventually. It is often the case that concurrent events are caused by [ T <== M]]. In such a
case, we use clauses of the form <caused-events: {..<event>..}>. Other interpretation rules for
event specifications, such as those for absent clauses, abbreviated forms and scope rules for
symbols in clauses are the same as for serial computations. [Cf. Sections 4.3.1 and 433,
Chapter 4]

Using this new construct, a specification of the behavior of a cell in parallel

Fig. 6.1. A Specification of a Cell

<event: [ create-cell <= A]
<return: C¥ >
<post-cond: (C is-a (CELL (contents: A))) »

<event: [ C <= (contents:)]
<pre-cond: (C is-a (CELL (contents: A))) >
<next-cond: (C is-a (CELL (contents: A))) >
Sreturn: A >

<event: [ C <= (update: B)]
<{pre-cond: (C is-a (CELL (contents: A))) >
<next-cond: (C is-a (CELL (contents: B))) >
{return: B O
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computations is written as depicted in Figure 6.. <Return:.> clauses are used as an
abbreviated form of a <caused-cvent:.> clause. When a cell actor is created by the
create-cell actor receiving the initial contents, we need not use a <mext-cond:.> clause in
expressing the state of the newly created cell, because before the new cell is released nothing
can happen to change the state of the cell. It should be pointed out that the equivalence
relation defining the states of a cell (which are expressed by conceptual representations) is

expressed incrementally by the <pre-cond:..> and <next-cond:..> clauses in the specification in

Figure 6.1.

6.3 Examples of Specifications

In this section, we will discuss three specifications as examples. The first example
is a specification of a simple air line reservation system. This example illustrates how the
behavior of systems which process requests on a first-come-first-served basis is specified by
our technique. In the second example [a specification of semaphores), we will see how
processes which have requested some actor for resource usages that have not yet been
granted are dealt with in expressing the state of the actor. The third example is a
completely external [i.e. implementation independent] specification of a bounded buffer
which requires us to express "non-first-come-first-served” scheduling of requests.

As was mentioned before, an actor model of a simple post office is studied in
Chapter 8. It is shown that overall task specifications of the post office can be derived by

specifications of the individual behavior and mutual interaction of actors in the model.
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6.3.1 Modelling an Air Line Reservation System

As an example, let us consider an air line reservation system. For the sake of
simplicity, we assume that only one flight is available in the system. A number of travel
agencies [parallel processes] try to reserve or cancel seats for the flight concurrently. We
modell the air line reservation system as a flight actor F which behaves as follows. The
flight actor F accepts two kinds of messages,

(reserve-a-seat: <passenger-name>) and (cancel-a-seat: <passenger-name>).

When F receives (reserve-a-seat:..), if free seats are left, the passenger name is appended to
the passenger name list for the flight and the number of free seats is decreased by one, and
a message (ok-its-reserved:) is returned. Otherwise a message (no-more-seats:) is returned.
When F receives (cancel-a-seat:..), if the passenger name is found in the passenger name
list, a message (ok-its-cancelled:) is returned and the passenger name is deleted from the
passenger name list and the number of free seats is increased by one. Otherwise a message
(the-passenger-name-not-found:) is returned. Furthermore requests by (reserve-a-seat:..) and
(cancel-a-sear...) are processed on a first-come-first-served basis.

To write a formal specification of the air line reservation system, we need to
describe the states of the flight actor. For this purpose, we use the following conceptual

representation
(FLIGHT (seats-free: <m>) (passenger-name-list: {3pnl}))

which describes the state of a flight actor. The number of free seats is <m> and {lpnl} is

L. E. A. Ashcroft(l975] gave a flowchart program which models an air line reservation
system. In his program, each user (or agency) has its own copy of the request handling
program and all the copies are connected with a single fork operation. Furthermore, the
number of users must be fixed.
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the passenger name list for the flight The formal specification of the air line reservation
system using this conceptual representation is depicted in Figure 6.2.
Since the states expressed by conceptual representations in the specification are

defined as equivalence classes of histories of messages sent to F, the number of free seats

-and the passenger name list given in the conceptual representations does not necessarily

correspond to those that are actually stored in the system.l From the view point of a
message arriving at F, the states expressed by conceptual representations in <pre-cond:..>
clauses are virtual. That is to say, those conceptual representations express the information
that will be true after all the messages previously arrived at F are processed, although
currently some of those messages may be being processed or some may even be suspended
in the request queue. Therefore, only air line reservation systems in which the reserve and
cancel requests are processed on a first-come-first-served basis satisfy the specification in
Figure 6.2.

It is easy to specify the behavior of air line reservation systems which deal with
more than one flight and can add and remove flights. To do so, one may use conceptual

representations which express the flight information for each flight. For example,
(RESERVATION-SYSTEM {..(flight-i: (scats-free: <n>)(passenger-name-list: {ipni})) ...})

may suffice. In this case, the reservation system thus specified processes the reserve and
cancel requests on a flight-wise first-come-first-served basis. This implies that requests for
different flights may not be processed on a first-come-first-served basis. The technique to

specify the flight-wise first-come-first-served processing can be applied in specifying file

1. If the processing of requests were so fast that each request might be processed before the
next one arrives, the information expressed in the conceptual representations would
correspond to what is actually stored in the system.
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Fig. 6.2. A Specification of an Air Line Reservation System

<event: [[create~flight <= 5]
<{pre-cond: (S > 0) >

<return: F¥ >
<post-cond: (F is-a (FLIGIIT (scats-free: S) (passener-name-lisi: {})))»>

<event: [F <= (reserve-a-seat: NAME)]
(case-1:
<pre-cond: (F is-a (FLIGHT (scats-free: 0) (passenger-name-list: {1pni})))>
<next-cond: (F is-a (FLIGHT (seats-free: 0) (passenger-name-list: {1pni})))>
{return: (no-morc—mau:) ))
(case-2:
<pre-cond:
(F is-a (FLIGIHT (scats-free: N) (passenger-name-list: {ipnl})))
(N>0) >
T <next-cond: (F is-a (FLIGIIT (seats-free: N = 1) (passenger-name-list: {§pnl NAME})))>
Sreturn: (ok-its-reserved:) >)»

; <event: [[F <= (cancel-a-seat: NAME)]
(case-1:
<{pre-cond:
(F is-a (FLIGHT (scats-free: N) (passenger-name-list: {3pnl})))
: (pni # {.. NAME ..}
,L <next-cond: (F is-a (FLIGIT (seats-free: N) (passenger-name-list: {1pni})))>
<return: (the-passenger-name-not-found:) >)
(case-2:
<pre-cond:
* ' (F is-a (FLIGIIT (seats-free: N) (passenger-name-list: {Ipnil NAME 8pni2})))»
<next-cond: (F is-a (FLIGIHT (scats-free: N + 1) (passenger-name-list: {1pnil Ipni2})))
Creturn: (ok-its-cancelled:) > ) >
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systems, large data base systems, and disk-head scheduling systems [Hoare74) as long as

individual files and disk tracks are used on a first-come-first-served basis.

6.3.2 A Specification of Semaphores

The behavior of semaphores can be easily specified by our techniques. The state

of a semaphore is described by conceptual representations of the following form.
(SEMAPHORE (counter: <n>) (waiting-q: [1q]))

where <n> is the number of processes that can still enter the critical section it guards and
(%q] is the queue of processes waiting to enter the critical section. A specification of a
semaphore is depicted in Figure 6.3.

A message sent to a semaphore consists of a request [i.e, either P-operation or
V-operation], and a continuation actor which will be activated when the request to the
semaphore is granted. The continuation can be viewed as a process that will be awakened.
As stated in the Case-2 of the second event specification [for P-operation], when the counter
1S zero, no message is sent to the continuation. Hence the <caused-ecvent:..> clause has no
events. In the Case-1 of the third event specification [for V-operation], two events,

[C <= (go-ahead:)] and [ first <= (go-ahead:)] are caused concurrently.




Fig. 6.3. A Specification of Semaphores

<event: [ create-semaphore <= NJ
<pre-cond: (N2 Q) >
Creturn: S¥* >
<post-cond: (S is-a (SEMAPIIORE (counter: N) (waiting-q: []))) »

<event: [ S <== [request: (P-op:), reply-to: C]]
(Case-1:
{pre-cond:
(S is-a (SEMAPIORE (counter: N) (waiting-q: [])) )
(N>0) >
<next-cond: (S is-a (SEMAPHORE (counter: N = 1) (waiting-q: []))) >
<caused-event: [[C <= (go-ahead:)] )
(Case-2:
<pre-cond: (S is-a (SEMAPIIORE (counter: 0) (waiting-q: [1q]))) >
<next-cond: (S is-a (SEMAPIIORE (counter: 0) (waiting-q: [iq C]))) >
Ccaused-cvents: {} > ) >

<event: [ S <== [request: (V-op:), reply-to: C]]
(Case-1:
¢pre-cond: (S is-a (SEMAPIORE (counter: 0) (waiting-q: [first Irest]))) >
<next-cond: (S is-a (SEMAPIIORE (counter: 0) (waiting-q: [irest]))) >
<caused-events: {[C <= (go-ahead:)]), [first <= (go-ahead:)] })>)
(Case-2:
<pre-cond: (S is-a (SEMAPIIORE (counter: N) (waiting-q: [])))
<next-cond: (S is-a (SEMAPIHORE (counter: N + 1) (waiting-q: []))) >
<caused-event: [[C <= (go-ahead:)] > »
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6.3.3 A Specification of a Bounded Buffer

As a simple example of specifications for actors which do scheduling of incoming
requests, we specify a desirable behavior of a character buffer of a fixed size N with which
concurrent processes communicate to one another.

A buffer actor B accepts two kinds of requests, (remove:) and (append: <character>),
and it can hold at most N characters.  Characters are appended or removed from the
buffer on a first-in-first-out basis. But requests are not necessarily granted on a
first-come-first-served basis, because a character should be appended only when the buffer
is not full and it should be removed only when the buffer is not empty. This implies that
when the buffer is empty, (remove:) requests must be suspended until the buffer becomes
non-empty by an (append:..) request arriving later. Similarly, when the buffer is full,
(ab,mnd:...) requests must be suspended until the buffer becomes non-full. Therefore, in

determining external states of the buffer, we must take into account such suspended

requests (waiting processes).
To express the states of the buffer, we use conceptual representations of the

following form.
(BOUNDED-BUFFER (q,4: [..)q, [..))(string: [..]))

7, and g, denote queues of suspended messages for (append:.) and (remove:) requests,
respectively. String denotes the string storage used as a buffer. [Remember that the states
expressed by the conceptual representations are defined in terms of the equivalence classes
of the past message histories. So q,, q, and atring do not necessarily correspond to the
queues of requests which are actually suspended or the string of characters which are
actually stored.]

In figures 6.4 and 6.5, we give a specification for the behavior of this bounded

driic.
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buffer. The first event specifi'cation in Figure 6.4 describes how the buffer is created.
Note that the two queues q, and g, as well as the string storage are empty when the buffer
is created.

The second event specification in Figure 6.4 describes the behavior of the buffer
in response to a message M for a (remove:) request. Note that the message M explicitly
contains a continuation C. There are three cases depending upon the state of the buffer B
at the time when the message M arrives. Case-1 is the one in which the string storage is

empty, and no messages for (eppend:..) requests are suspended [ie, q, = (]}, and messages

Fig. 64. A Specification of a Bounded Buffer of Size N (Creation and Removing a
Character)

<event: [ create-bounded-butfer <= []]
<return: B*)
<post-cond: (B is-a (BOUNDED-BUFFER (q,: [q, [])string: [1)) »

<event: [B <= M]
where M = [request: (remove:) reply-to: C]
{(Case-1:
<pre-cond: (B is-a (BOUNDED-BUFFER (q,: [ a,: [Yy)string: [ >
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [q,: [ty M](string: [])) >
<caused-events: {} >) :
(Case-2:
<pre-cond: (B is-a (BOUNDED-BUFFER (q,: [a, [))(string: [X 1s])) >
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [ a,: [string: (1)) >
<caused-ecvent: [[C <= (removed: X)] >)
(Case-3:
<pre-cond:
(B is-a (BOUNDED-BUFFER (q,: [MM IX])qz [](string: [X is]))
(length([X Is]) = N)
(MM = [request: (append: XX) reply-to: CC]) >
<next-cond: (B is-a (BOUNDED-BUFFER (qg4: [#x])q,: (I)string: [Is XX]))) >
<caused-cvents: {[[C <= (removed: X)], [ CC <= (append-done:)]} >) >
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for (remove:) requests may or may not be suspended, [ie, q, = [!y]l 1. In this case, the
message M is enqueued at the end of g, and no events are caused. When the string storage
is not empty and both q. and q, are empty (Case-2), the first character X in the string
storage is deleted and sent back to the continuation C as a reply message (removed: X).
Case-3 is the one in which the string storage is full [i.e, length([X 1s]) = N), at least one
message for an (append:..) request is suspended [i.e., 9 = [MM Ix] ] and no messages for
(remove:) requests are suspended. In this case, the following change in the state of B
happens:  the  first element MM in g, which is of the form
[request: (append: XX) reply-to: CC), is deleted from the queue, the character XX is added at
the end of the string storage, and the first character X in the string storage is deleted.
Then, two events are caused concurrently: [C <= (removed: X)]] where X is sent to the
continuation C and [CC <= (append-done:)] where the acknowledging message for the
message MM for an (append:.) request is sent to the continuation CC. (Cf. the remarks
below.)

The behavior of the buffer in response to messages for (append :..) requests is
described by the event specifications given in Figure 65. This event specification and the
one for (remove:) requests in Figure 6.4 are symmetrical: By exchanging the roles of q, and
7, and the conditions expressing the upper bound and lower bound of the length of the
buffer, one is obtained from the other.

It should be pointed out that the six cases for the state of the buffer considered in
the event specifications in Figure 6.4 and 6.5 are mutually exclusive and enumerate all cases

of the states which the buffer can be in if it is created with g, q,, and the string storage

1. Recall that [ly] can be an empty conceptual sequence. Cf. Sections 2.2.3 and 235, in
Chapter 2.
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empty. One should be reminded that the states of the buffer are defined in terms of
equivalence classes of past histories of messages sent to it and that the state changes
described in the specification are instantaneous as they are expressed by assertions in the
<next-cond:.> clauses. Thus, g, can be non-empty only if string is empty and q, can be

non-empty only if string is full, and consequently, q, and g, cannot be non-empty at the

same time.

From the specification given in Figures 6.4 and 65, it is easy to observe the

Fig. 6.5. A Specification of a Bounded Buffer (Appending a Character)

<event: [B <= M]
where M = [request: (append: X) reply-to: C]
(Case-1:
<{pre-cond:
(B is-a (BOUNDED-BUFFER (q,: [¥x))(q,: [])(string: [is])))
(length([is]) = N) >
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [1x M])gq,: [])(string: [is])) >
<caused-cvents: {} >)
(Case-2: A
<pre-cond:
(B is-a (BOUNDED-BUFFER (qg4: [Dq,z [I)string: [1s])))
(length([1s]) < N) >
<next-cond: (B is-a (BOUNDED-BUFFER (qg: [Iq, [D(string: [is X]))) >
<caused-event: [[C <= (append-done:)] >)
(Case-3:
<pre-cond:
(B is-a (BOUNDED-BUFFER (q,: [INq,; (MM ByD(string: (1))
(MM = [request: (remove:) reply-to: CC]) >
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [q, [y](string: [])) >
<caused-cvents: {[[ C <= (append-done:)], [CC <= (removed: X)]} >) >
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following property of the bounded buffer: It is always the case that the character removed
in response to the n-th (remove:) request is the one which was appended by the n-th

(append:...) request. More formally,

Property (First-In-First-Out)

Let Ef = [ B <== [request: (remove:), reply-to: Ci]]
denote the i-th event where B receives a (remove:) request, and
E:] = [B <== [request: (append: Xj), reply-to: 1]]
denote the j-th event where B receives an (append:..) request.
For any n > 0, if both Ef and EZ exist,

then there exist an event E = [Cn <== [reply: (removed: Xn)]] such that E,’; -act-> E.

6.4 Behavioral Equations

As noted in the beginning of the previous section, our specification method is

roughly summarized as:|

"Given a state of an actor A, the behavior of A in response to a message M is
expressed by the new state of A and the finite concurrent events caused by the
event [A <== M]."
The method suggests to us that a state of A can be viewed as a certain mathematical
function Fp whose domain is a set M of actors (or messages) and whose range is a direct

product of a set 84 of states of A and a finite power set P (T x M) of a direct product

of a set T of target actors and M. [Note that T x M corresponds to a set of events.)

FA: M Sy SAXP(TXM).

I. For the sake of simplicity, we do not take into account the states of the message M and
the actors involving in the caused events.

lx . — - — _' ; - ki . i e
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Whether or not the function F, exists as a well defined mathematical ob ject needs
to be proved, but we do believe that the following isomorphism would be shown to hold by
a certain domain construction for SA similar to that for the lambda caicuius done by D.

Scott[1972].
SA S M - SA xP(T xM)).

where ( ====> ) denotes a set of continuous functions with a specified domain and range.
The construction of such domains will establish the mathematical meanings of actor states
which are described by conceptual representations.

The above isomorphism is inspired by the notion of processes proposed by R.
Miiner [Milner73). Extending the work of D. Scott, R. Milner has expressed the meaning
of a program by the notion of processes. He defines his notion of processes by the

following isomorphism.
P2V «-> P xV)

which says that a set P of processes is isomorphic to a set of continuous functions from a
domain V of values to a direct product of P and V. There are fundamental differences
between his approach and ours, due to the framework of the two approaches. Our
approach is based on the computation model in which a computation is defined as a
partially ordered set of events and for each actor, a total order [called an arrival ordering]
is defined. In Milner’s approach, a computation is defined as a composition of processes in
which parallelism is expressed as a non-deterministic choice of processes by "oracles”. The
introduction of oracles forces us to consider uninteresting details of the interleaving of
concurrent processes. Furthermore, the lack of arrival ordering makes it difficult to deal
with the issues of fairness and starvation.

C. Hewitt and H. Baker [Hewitt-Baker77] have shown that the behavior of a pure
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3 actor can be defined as the minimal fixpoint of a continuous functional. This result does

not apply to the whole set of actors. Thus we hope that the approach exemplified by the

above isomorphism will be able to deal with the whole class of determinate actors.




7. Verifying Parallel Computations

In this chapter, our techniques for verification of actors which are used in parallel

computations (in multi-process environments) are presented. In the first section, a special

class of actors which are used for synchronization and scheduling of requests is described.
To illustrate the verification techniques, an air line reservation system and a bounded
buffer which are implemented with such a class of actors are considered in the subsequent

sections.
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7.1 Introduction

As noted earlier, if, in a parallel computation, concurrent processes do not interact
with each other, the parallel computation can be viewed as a collection of mutually
independent serial computations and its specification is given as the collection of
specifications for the serial computations. The verification of such a parallel computation
i1s nothing but a repetition of the verifications of serial computations. Consequently no
special techniques in addition to those for serial computations are required.

In the previous chapter, we have developed specification methods which are
applied to computations in which interactions among concurrent processes are involved.
Since interactions between processes are performed by sending messages to certain kinds of
acto. s, our specification methods focus upon the behaviors of such actors. We have given
various specifications for such actors. But those specifications merely express the behavior
that users or implementors of such actors assume or hope they have. There is no guarantee
that actually implemented actors behave correctly with respect to their specifications.

In this chapter, we first discuss how such actors are implemented and then explain
how they are verified. As examples, we will verify implementations of an air line

reservation system and a bounded buffer.

7.2 Serializers

In our model of computation, we use a special class of actors, called
serializers[Atkinson-Hewitt77], to realize synchronization and scheduling of message
transmissions in a uniform and modular fashion. In this section we explain the concept of

serializers and give precise specifications for their behavior. The language constructs for
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serializers, and their relationship to other synchronization primitives such as monitors

(Brinch-Hansen73, Hoare74], are discussed in [(Atkinson-Hewitt77].

7.2.1 Concept of Serializers

The purpose of a serializer is to enforce orderly uses of resource-like actors [such
as 1/O devices, message buffers, directories, files, data base systems e.t.c.] by concurrently
running processes: Some resources must be used one at a time to guarantee correct
functioning of hardware, some should be used on a certain priority basis for special
demands and efficiency reasons, and some should receive messages in a proper order for
maintaining their integrity.

In order to control access to a resource, we encase the resource in a serializer to
intercept the messages sent to it. Any processes which need to use the resource can send a
request message to it freely, but all requests are first received by the serializer. The
serializer sends the requests to the resource at an appropriate time depending upon the
physical requirements of the resource and the scheduling and priority adopted for the
resource. No request message arrives at the the resource directly. We call the arrival of
such a request message at the serializer, a serializer request and the arrival at the resource
of a request message which is sent by the serializer, a resource request.

In order for a serializer to properly perform such synchronization and scheduling
of requests, it must know various information such as what state the resource is in, which
requests are being suspended, and which are being granted. To keep such information
accurate, the reply (or results) produced upon the completion of the use of the resource is
first sent to the serializer, and some of the information kept in the serializer is updated, and

then the serializer returns the reply as a response for the original serializer request. We call
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Thus a typical sequence of events associated with the use of the resource encased
by a serializer starts with a serializer request and then the resource request is made when it
is appropriate. The resource reply follows upon the completion of the use of the resource,
and finally the serializer reply takes place as a response to the original serializer request.

The diagram above shows this sequence of events.

7.2.2 Behavior of Serializers

As was mentioned above, a serializer maintains certain kinds of information to
make resource requests take place in such a way that desirable resource usage 1Is
accomplished. To store and update such information, a serialzer may have three types of
information storage: queues, crowds and counters. Below we look into the behavior of a
serializer in more detail by explaining the functions of such information storage.

Queues in a serializer are used to store request messages which have arrived at the
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serializer, but whose corresponding resource requests have not yet taken place. They also
record the order of the arrivals of such request messages. A serializer may have more than
one queue to sort out request messages by their types. (For example, requests for reading
data are stored in a queue different from the one for write requests) Suppose that a
message [request: RQ reply-to: C] arrives at a serializer G. (This is a serializer request
event.) If the request RQ should not be sent to the resource encased by G at that time, the
message [request: RQ reply-to: C] is put at the rear of a queue in G. Later on, when the
message is at the front of the queue and certain conditions for synchronization or
scheduling are met, the message is removed from the queue and a new message
[request: RQ reply-to: BP] is created and sent to the resource. This is a resource request
event. RQ is the request contained in the original message sent to G. BP is a newly created
actor, called a buck passer, which has the following special properties:
(1) BP remembers (knows about) the serializer G by which it is created.

(2) BP remembers the continuation!

C contained in the original message sent to G.

(2) BP shares the same arrival ordering with the serializer G2
The third property means that the order between the arrival of a message at G and the
arrival of a message at BP is always defined. [More intuitively, BP and G share the same
arbiter.] Since BP is sent to the resource as the continuation in the message for the resource
request, BP eventually receives a reply from the resource, if the resource replies. This is a

resource reply event. Although we explained in the previous subsection that the reply from

the resource is sent to the serializer G, the above account is more accurate. However, the

I. See Sections 3.1.2 and 3.1.3. in Chapter 3 for the definition of continuation.

2. The model of computation defined in Chapter 3 does not assume this kind of
“combined” arrival ordering. This assumption is solely for the simplicity of explanation.
By letting the buck passer BP send itself to the serializer G together with the message it
received, this assumption can be eliminated. See appendix V.
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previous explanation is justified by the property of the buck passer BP which shares the
same arrival ordering with the serializer G.

Crowds in a serializer are used to store buck passers which are created when
requests are sent to the resource by the serializer. The existence of some buck passer BP in
a crowd indicates that the corresponding use of the resource has not been completed yet,
because BP is taken out from the crowd only when BP receives the reply from the resource
(which means the completion of the resource usage). (It is the third property of a buck
passer described above that allows the serializer to eliminate the buck passer from the
crowd upon the arrival of the reply at the buck passer.] More than one crowd may be used
in a serializer to distinguish the types of resource requests being granted. For example, by
having two crowds, a serializer encasing some file is able to know whether the file is
currently being read or written.

Let us consider the behavior of a serializer in a resource reply event. Suppose that
a buck passer BP in a crowd CR receives a reply RP from the resource. If certain
synchronization and scheduling conditions are met, the serializer takes out the front element
[request: RQ reply-to: C] from one of the queues, and a new request message of the form
[request: RQ reply-to: NBP] is created and sent to the resource. When the new request
message 1S created, a new buck passer NBP (which remembers C) is created and put in a
crowd (which may be different from the crowd CR). At the same time, the old buck passer
BP is deleted from CR. The serializer has another responsibility. It must send the reply RP
(just received by the buck passer BP) to the continuation remembered by BP. This is the
serializer reply event. Recall that BP is created for remembering the continuation originally
contained in the message sent to the serializer.

Counters in a serializer are used to record various numbers about events associated

with the serializer. For example, a counter records the difference between the numbers of
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resource reply events of various kinds. A simple example of the uses of a counter will be

found in Section 7.4.

7.23 One-at-at-Time Serializer (An Example)

The behavior of serializers informally explained in the previous subsections can be
rigorously specified in our formalism. To illustrate how their behavior is expressed in our
formalism, we give a formal specification of a simple serializer called one-at-a-time in
Figure 71. A resource encased by this serializer is used, at most, by one process at a time,
and on a first-come-first-served basis.

The first event specification in Figure 7.1 says that when an actor
create-one-at-a-time receives a resource R, it creates a serializer G which has one queue and
one crowd, both of which are initially empty.

The behavior of G in response to a request message depends on the state of G. If
both the queue and crowd are empty [(Case-1:) of the second event specification in Figure
71], a buck passer BP is created and put in the crowd and a request message containing BP
as the continuation is sent to the resource R. Otherwise (Case-2:), the request message is
enqueued and no event is caused,

The third event specification says that when a buck passer BP which is inside the

crowd of G receives a reply message, if the queue of G is empty (Case-1:)) BP is deleted

I. Being able to check whether or not the queue of G is empty relies on the assumption that

the state of G can be determined at the time when the buck passer BP receives a message.
This assumption is implied by one of the general properties of buck passers that a buck
passer shares the arrival ordering with the serializer by which it is created. In Appendix
V. a specification of one-at-a-time serializers which does not rely on this assumption is
given.
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Fig. 7.1. A Specification of a One-at-a-Time Scheduler

<event: [ create-one-at=a-time <= R]

<return: G¥ >
<post-cond: (G is-a (ONE-AT-A-TIME (queue: [))crowd: {})(resource: R))) >>

<event: [[G (== M]]
where M = [request: RQ reply-to: C]
(Case-1:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {})(resource: R))) >
<next-cond:
(G is-a (ONE-AT-N-TIME (queue: [])(crowd: {BP*})(resource: R)))
(BP is-a (BUCK-PASSER (continuation: C)(serializer: G))) >
¢caused-event: [ R <== [request: RQ reply-to: BP]] >)
(Case-2:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [¥x))(crowd: {BP})(resource: R))) >
<nevt-cond: (G is-a (ONE-AT-A-TIME (queue: (8 M])(crowd: {BP})resource: R}}) >

{caused-events: {} )

<event: [ BP <== [reply: A]]
there (BP is-a (BUCK-PASSER (continuation: C)(serializer: G)))) >
(Case-1:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {BP})(resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {})(resource: R))) >
¢caused-event: [[C <== [reply: Al] »)
(Case-2:
<pre-cond:
(G is-a (ONE-AT-A-TIME (quewe: [WM 1x])(crowd: {BP})(resource: R)))
(WM = [request: RQ reply-to: CC]) >
<next-cond:
(G is-a (ONE-AT-A-TIME (queue: [¥x])(crowd: {NBP*})(resource: R)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: G))) >
<caused-events: { [ C <== [reply: A)] , [R <== [request: RQ reply-to: NBP]] } >»

e




- 156 -

from the crowd and the reply message is sent back to the continuation C remembered by BP.
If the queue is not empty (Case-2:), the front element WM which is a suspended request
message sent to G before is dequeued and a newly created buck passer NBP replaces BP in
the crowd. Then a serializer reply event [ C <== [reply: A]] and a resource request event

[ R <== [request: RQ reply-to: NBP]] take place concurrently.

Before ending this section, we should mention several properties of the
one-at-a-time serializer which are easily derived from the specification given in Figure 7.1.

If a resource R is encased by a one-at-a-time serializer before R becomes known to
other actors, there is no way to access the resource directly.l In order to access the resource,
first a request must be sent to the one-at-a-time serializer. This property holds for any kind

of serializer (not just for one-at-a-time serializers). We call this property the resource

confinement of serializers. More formally,

Property (Resource Confinement of Serializers)

Let Ep = [ create-a-resource <== [request: I reply-to: create-a-serializer]] and

E; = [ create-a-serializer <== [request: R reply-to: C]] such that Eq -act-> Ej,

where I is used for the creation of a new resource R.

and let G be a serializer created by E;.

If there exists no event EE = [[A <== [request: R reply-to: 7]]
such that Eg ---> EE ---> Ej,
then for any event ER = [R <== [request: RQ reply-to: ?]1],
there always exists an event E = [ G <== [request: RQ reply-to: 7]]
such that E -act-> ER.

We need to give the definition of an assertion (A is-used-serially) to state the

properties of one-at-a-time serializers. If the assertion (A is-used-serially) holds, an actor A

I. We assume that the creator of R does not release any information which makes it
possible to have access to R.
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does not receive any message until the current invocation of A is completed. Consequently,

if the invocation is not completed, no more messages arrive at A. More formally, ;

Definition (A is-used-serially)
If there exists an event E; = [A == [request: RQ; reply-to: C;]],
then
if there exists another event Ej = [ A <== [reques:: RQ‘- reply-to: Cj]]]
such that i# j and E; -arr->p Ej- ‘
then there must exist EE; = [ C; <== [roply: ?]]
such that E  ---> EE; ---> Ej' ?

Property-1 (Serial Use of Resource)
If an resource actor R encased by a one-at-a-time serializer, then (R is-used-serially) holds.

This property is derived from the fact that the number of buck passer actors in the crowd

of the serializer is always one at most.

Definition (A is-guaranteed-1o-reply)
For an event E = [ A <== [request: RQ reply-to: C]], :
there always exists an event EE = [C <== [reply: 7]] such that E -act-> EE.

Property-Il  (Guaranteed Resource Access)

Suppose that the resource actor R encased by a one-at-a-time serializer G satisfies 1
the following condition: if (R is-used-serially), then (R is~guaranteed-to-reply).

Then, for any event E = [ G <== [request: RQ reply-to: 7]],
there always exists an event ER = [R <== [request: RQ reply-to: 7]] such that E -act-> ER. i

This property is derived from Property-I by induction on the number of messages that

have already arrived at G.
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Property-111  (First Come First Resource Access)
Under the same premise given in Property-lI,
for any E,, Ej where Ey = [ G <== [request: RQy reply-to: C ], k = i, j,
it Ej g Ej
then ER; ---> Ej
where ER} = [R <== [request: RQy reply-to: 7]], k = i, j.

This property is derived from the fact that requests sent to G are recorded in the queue of

which preserves the order of arrival.
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7.3 Verifying Implementations of Actors |

In this section, we discuss our techniques for the following class of verification
problems.

“Given an actor A which shows some behavior in serial computations (i.e, when it

is used serially). Suppose that an actor B is implemented as a one-at-a-time

serializer encasing the actor A. Then we would like to verify that even if B is sent
messages concurrently, B shows the same behavior as A does in serial computations.”

This problem is not trivial because the states of A and B which are used to describe their
behavior in specifications are expressed by different conceptual representations. The
essential part of the verification is the use of the mapping (implementation invariant)
between two different conceptual representations. The technique illustrated below is an
extension of the one used for the verification of actors behaving as information storage
discussed in Section 53, Chapter 5. The verification of implementations using more
complicated serializers is discussed in the next section (7.4).

In what follows, as an example of such verification problems, we will demonstrate
that the implementation of an air line reservation system given below meets its specification

depicted in Figure 7.2 (which is the same one given in Figure 6.2 in Chapter 6).

7.3.1 An Implementation of an Air Line Reservation System

We implement an air line reservation system which is supposed to meet the

specification in Figure 7.2 in two steps. First, we implement a flight data actor which

satisfies the specification in Figure 7.2 as long as it is used serially. Then it is encased by a
one-at-a-time serializer. [The flight data actor corresponds to the actor A in the above
problem statement.]

The code given in Figure 7.3 is an implementation of such a flight data actor. It
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Fig. 7.2. A Specification of an Air Line Reservation System

<event: [ create-flight <= S
<pre-cond: (S > 0) >
Creturn: F¥ )
<post-cond: (F is-a (FLIGHT (scats-free: S) (passenger-name-list: {})))»>

<event: [[F <= (reserve-a-scat: NAME)]
(case-1:
<pre-cond: (F is-a (FLIGHT (seats-free: 0) (passenger-name-list: {ipni})))>
<next-cond: (F is-a (FLIGHT (scats-free: 0) (passenger-name-list: {!pni})))>
<return: (no-more-seats:) )
(case-2:
{pre-cond:
(F is-a (FLIGIT (seats-free: N) (passenger-name-list: {1pni})))
(N>0) >
<next-cond: (F is-a (FLIGHT (scats-free: N = 1) (passenger-name-list: {1pnl NAME})))>
<return: (ok-its-reserved:) >)

<event: [[F <= (cancel-a-seat: NAME)]
(case-1:
{pre-cond:
(F is—a (FLIGHT (seats-free: N) (passenger-name-list: {ipni})))
(pnl # {... NAME ..}»>
<next-cond: (F is-a (FLIGHT (scats-free: N) (passenger-name-list: {1pni})))>
<return: (the-passenger-name-not-found:) >)
(rase-2:
{pre-cond:
(F is~a (I'LIGHT (seats-free: N) (passenger-name-list: {Ipnil NAME Ipni2})))>
<next-cond: (F is-a (FLIGIHT (scats-free: N + 1) (passenger-name-list: {1pnil 1pni2})))>
<return: (ok-its-cancelled:) > ) >




Fig. 7.3. A Code For a Flight Data

(create-flight-data =s) =

(let (seats-free initially s) ;a variable sests=free is initialized to s.
(passenger=-name-list initially (create-empty-set))

then s¢ variable passenger- is initialized to an empty set.

(cases

(> (reserve-a-seat: =name) ;when a (reserve-..) message is received,

(rules' (seats-free = 0) ;if the value of seats-free is O

(=> yes (no-more-seats:)) sthen a (no-more-seats:) is returncd.

(= no sotherwise

(seats-free + (seats=free - 1)) sthe value of seats=free is decreased by one

(add name to passenger-name-list) sname is added to the list.

(ok-its-reserved:)))) ;a message (ok-its-reserved:) is returned.

(=> (cancel-a-seat: =name) ;when a (cancel-...) message is received,

(rules (name in passenger-name-list) sif name is found in the passenger name list,

(= yes sthen

(delete name from passenger-name-list) sname is deleted from the list

(seats-free + (seats-free + 1)) sthe value of seats-free is increased by one

(ok-its-cancelled:)) ;(ok-its-cancelled:) is returned.

(=> no (the-passenger-name-not-found:)) )) )) ;otherwise (the-passenger-...) is returned.

should be noted that if the flight data actor were sent more than one message concurrently,
anomalous results would be caused. For example, if (reserve-a-seat:..) and (cancel-a-scat:..)
message are sent concurrently, (no-more-seats:) message might be returned even if there are
still vacant seats. Therefore this actor must be used serially.

We give a specification of this actor in Figure 7.4. Though this specification looks
similar to that for the air line reservation system in Figure 7.2, there are important

diffferences. In this specification conceptual representations of the following form are

used.

(FLIGIIT-DATA (seats-free: ?)(passenger-name-list: {..}))
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Fig. 7.4. A Specification of A Flight Data Actor

<event: [ create-tlight-data <= S]]
<pre-cond: (S > 0) >

<return: FD¥ >
<post-cond: (FD is-a (FLIGIIT-DATA (scats-free: S) (passener-name-list: {})))»>

{event: [FD <= (reserve-a-secat: NAME)]
where (FD is-used-serially)
(case-1:
<pre-cond: (FD is-a (FLIGIIT-DTA (scats-free: 0) (passengor-name-list: {ipni})))>
<return: (no-more-seats:) >)
<post-cond: (FD is-a (FLIGHT-DATA (scats-free: 0) (passenger-name-list: {¥pni})))> )
(case-2:
{pre-cond:
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {3pnl})))
(N>0) >
<return: (ok-its-reserved:) >
¢ rond:

(O is-a (JLIGHT-DATA (scats-free: N = 1) (passenger-name-list: {1pnl NAME})))>)>

<event: [FD <= (cancel-a-seat: NAME)]
where (FD is-used-serially)
(case-1:
<{pre-cond:
(FD is-a (FLIGHT-DATA (seats-free: N) (passenger-name-list: {ipni})))
(pnl # {... NAME ..}
<return: (the-passenger-name-not-found:) >
<post-cond: (F is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {1pni})))> )
(case-2:
<pre-cond:
(FD is-a (FLIGIIT-DATA (seats-free: N) (passenger-name-list: {Ipni1 NAME !pni2})))>
<return: (ok-its-cancelled:) >
{post-cond:

(FD is-a (FLIGHT-DATA (seats-free: N + 1) (passenger-name-list: {ipnil Ipni2}))))>
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Notice that assertions of the form (FD is-used-serially) are given in the where clauses of the
second and third event specifications. This means that those event specifications are valid
only if FD is used serially. Furthermore, <post-cond: ..> clauses are used instead of
<{neat-cond:.> -clauses. This means that assertions in the <{post-cond:..> clauses hold at the

time when the caused events take place.
The following property holds for the flight data actor because all the <event:..>

clauses have the corresponding <return:..> clauses. This property is used in the verification

in the next subsection.

Property-1V:  If (FD is-used-serially), then (FD is-guaranteed-to-reply).

7.3.2 Verification of the Air Line Reservation System

The implementation is completed by encasing the flight data actor by a
one-at-a-time serializer. That is, the implementation of the create-flight actor is expressed

by the following PLASMA code:
(create-flight =s) = (create-one-at-a-time (croato-fli;ht-dda s)).

Below we demonstrate that the above code meets the specification of the air line reservation

system shown in Figure 7.2. The symbolic evaluation of the code
(create-one-at-a-time (create-flight-data s))

reveals the following facts:

(1) an actor FD is created by [ create-flight-data <= s] [from the specification in Figure
4.},

(2) a serializer G is created by [ create-one-at-a-time <= FD] [from the specification in
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Figure 7.1.] and
(3) the two actors satisfy the following assertions immediately after the creation of G.
(G is-a (ONE-AT-A-TIME (quoue: [])(crowd: {})(resource: FD)))
(FD is-a (FLIGHIT-DATA (scats-free: s)(passenger-name-list: {})))
We will establish that G satisfies the specification of the flight actor (air line
reservation system) given in Figure 7.2. The specification of the flight actor G is written in

terms of conceptual representations of the form:
(G is-a (FLIGIHT (scats-free: 7)(passenger-name-list: {...}))) (%)

(Notice that F in the specification is instantiated as G) On the other hand, G is
implemented as a one-at-a-time serializer that encases the flight data actor FD, which is
expressed by the following two assertions:

(G is-a (ONE-AT-A-TIME (queue: {..))(crowd: {..})(resource: FD)))

(FD is-a (FLIGHT-DATA (scats-free: ?)(passenger-name-list: {...}))) (%)
This means that we have two views of G: an external view expressed by (%) and an internal
implementation expressed by (x*) above. In order to show that the implementation satisfies
the specification written in terms of the external view, we must establish a certain relation
between the two views. Such a relation is similar to implementation invariants used in the
verification of an actor behaving as information storage [Cf. Section 5.3, Chapter 5].

The relation we need is:

"I G satisfies the assertion
(G is-a (FLIGIT (seats-free: N) (passenger-name-list: {§pni})))
in a situation where G receives a message [request: RQ reply-to: 7],
then FD always satisfies the assertion
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {ipnl})))
in the situation where FD receives a message [request: RQ reply-to: 7]. "
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We actually prove the validity of this relation in the next subsection 7.3.3; this relation is
assumed in the subsequent discussion. The following is the formal statement of the above

relation.

mplementation-invariant:
if (Gis-a (FLIGIIT (seats-free: N) (passenger-name-list: {1pnl}))) in 8
where 8 = Sit([ G <== [request: RQ reply-to: 7]])
then
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {1pni}))) in 87
where 8 = Sit([FD <== [request: RQ reply-to: 7 ».

Sit(E) expresses the situation where an event E takes place. The implemenation invariant

can be viewed as the counterpart of an "invariant” in parallel process environments, which
was first introduced by C.A.R. Hoare [Hoare 1972] to show correctness of implementations

of data structures used in serial computations. (See the remarks in Section 5.3.1, Chapter 5.)

Now let us demonstrate the verification of the implementation against the

following event specification given in Figure 7.2.

{event: ﬂ:F <= (reserve-a-scat: NAME)]
(case-1:
<pre-cond: (F is-a (FLIGIIT (scats-free: 0) (passenger-name-list: {1pni})))»
<next-cond: (F is-a (FLIGIIT (scats-free: 0) (passenger-name-list: {1pni})))>
<return: (no-more-seats:) )
(case-2:
{pre-cond:
(F is-a (FLIGHT (secats-free: N) (passenger-name-list: {ipni})))
(N>0) >
<next-cond: (F is-a (FLIGHT (scats-froe: N = 1) (passenger-name-list: {1pnl NAME})))>

<return: (ok-its-reserved:) >

There are two cases to be considered. We only consider the (Case-2..) clause. The
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one-at-a-time serializer G receives a (reserve-a-seat: NAME) request RQ. Since the flight data
actor FD is guaranteed to reply if it is used serially (from Property-I1V), the specification for
a one-at-a-time guarantees that the (reserve-a-seat: NAME) request RQ is received by FD (from
Property-I1). To know the state of the flight data actor FD at the time of the arrival of RQ,
the above implementation invariant is used. Since the state of G at the time of the arrival

of RQ at G is described as:
(G is-a (FLIGIHT (scats-free: N) (pauang}or-namo-liu: {ipni}))),
the state of FD at the time of the arrival of M at FD is described as
(FD is~a (FLIGHT-DATA (scats~free: N) (passenger-name-list: {3pnl}))).

Then the (Case-2..) clause in the <event:.> clause of the specification for flight-data actors
in Figure 7.4 is referred to. Since the precondition that FD must be used serially is satisfied
(from Property-I), the (Case-2..) clause of the specification for flight data actors in Figure

7.4 tells us that

(1) (ok-its-reserved:) is returned, and
(2) the state of FD is now expressed as:

(FD is-a (FLIGHT=-DATA (scat-free: N = 1) (passenger-name-list: {Ipnl NAME}))).

(1) is what the <return:.> clause in the above event specification requires.| To complete the
demonstration, we must show that the assertion

(G is-a (FLIGHT (scat-free: N = 1) (passenger-name-list: {3pnl NAME})))

in the <next-cond:..> clause of the above event specification holds when G receives the next

I. More precisely, (ok-its-reserved:) is first sent to the serializer G and then G returns it.
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message RQ. To do so, again the implementation is used. It transiates the above
requirement as follows:
" (FD is-a (FLIGIIT-DATA (seat-free: N = 1) (passenger-name-list: {3pnl NAME})))
holds when FD receives RQ". "

This 1s guaranteed by (2) because FD does not change its state until the next message RQ'
arrives at FD.  Thus Case-2 is shown. Case-l may be shown analogously. The event
specification for [G <= (cancel-a-seat: NAME))] is also established analogously.

The demonstration above assumes that no one can have access to the flight data
actor FD except through the serializer G. This assumption always holds because the flight

data actor FD created by [ create-flight-data <= s] is sent directly to the create-one=-at=a-time

actor and never released outside the newly created one-at-a-time serializer G. [Cf. the
PLASMA code in the beginning of this subsection and Property (Resource Confinement of

Serializers).]

7.3.3 Establishing the Implementation Invariant

The verification in the previous subsection relies critically on the use of the
following implementation invariant. In this subsection we will establish the validity of this
implementation invariant.

{mplementation-invariant:
if (Gis-a (FLIGHT (scats-free: N) (passenger-name-list: {ipni}))) in S
where € = Sit([ G <== [request: RQ reply-to: 7])
then
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {3pnl}))) in S°
where 87 = Sit([ FD <== [request: RQ reply-to: 7)) >.

(Proof) The proof is done by induction on the number M of messages which have already
arrived at G.
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<Induction Base>
M = 0: Since no message has arrived before, when the first message
[request: RQ reply-to: C] arrives at G, G is in the same state as it was in at the time of its
creation. So the state of G is expressed as
(G is-a (FLIGHT (scats-free: S)(passenger-name-list: {}))).
Since G is created as a one-at-a-time serializer and its queue and crowd are initially empty,
the state of G is also expressed as
' (G is-a (SERIANLIZER (queue: [))(crowd: {})(resource: FD))) and

(FD is-a (FLIGIIT-DATA (scats-free: S)(passenger-name-list: {})))
Then from the “guaranteed resource access” property of G (Property-1I), the following event
is caused.

[ FD == [request: RQ reply-to: 7]

When this event occurs, FD is still in the same state as it was in at the time of its creation
because "resource confinement” property of serializers is satisfied. So the state of the FD is
expressed as

(FD is-a (FLIGHT-DATA (seats-free: S)(passenger-name-list: {})))
Hence the induction base is proved.

<Induction Hypothesis>
M = k: We assume that the following relation holds.
if (Gis-a (KFLIGIHT (seats-free: N) (passenger-name-list: {1pni}))) holds
in Sit([ G <== [request: RQy reply-to: 211
then (FO is-a (FLIGIHT-DATA (scats-free: N) (passenger-name-list: {§pni}))) holds
in Sit([FD <== [requeat: RQ, reply-to: ?]] :

<Induction Step>

M =k +1: Let us assume that the antecedent of the Induction Hypothesis holds. Then we
must do a case analysis according to the type of the request of k-th event.

Case-l: RQy = (reserve-a-seat: NAME), and N> 0.

The state of G immediately after the k-th event [G <== [request: RQy reply-to: 1]] is

expressed as
(G is~a (FLIGHT (scats-free: N = 1) (passenger-name-list: {§pnl NAME})))
(by the specification of the flight actor in Figure 7.2).
This 1s the state of G when the k + | st message [request: RQy+1 reply-to: 71] arrives at G.
By the "guaranteed resource access” property of G, the event
E = [FD <== [request: RQ, reply-to: 7]
always takes place. From the induction hypothesis, the state of FD at the time of this event
E is expressed as
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {1pni})))
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Therefore, by the specification for FD in Figure 7.4, the state of FD after the invocation
initiated by the event E is expressed as
(FD is-a (FLIGIIT-DATA (scats-free: N = 1) (passenger-name-list: {1pnl NAME})))

We now claim that this is indeed the state of FD at the time the k + | st message
(request: RQuyq reply-to: 7] arrives at FD. This claim is justified by the fact that no message
arrives at FD between [request: RQy reply-to: 7] and [request: RQy 4y reply-to: 7). This fact is
guaranteed by two properties of a one-at-a-time serializer, the "Confinement of resource”
and the "First Come First Resource Access” (Property-III).

Other cases are shown in a similar fashion. (End of Proof)

The above proof relies on the following facts:

(I) When the one-at-a-time serializer G encasing the flight data actor FD is created, each
component [such as seats-free and  passenger-name-list] of the conceptual
representation expressing the external state of G is the same as the corresponding
component of the conceptual representation expressing the state of FD.

(2) As the specifications for G and FD show, such components of conceptual
representations for G and FD change in the same way in response to the same
request, provided that FD is used serially.

(3) The serial use of the resource encased by a one-at-a-time serializer.

(4) The "Resource Confinement” property of serializers.

(5) The "First Come First Resource Access” property of a one-at-a-time serializer.

7.4 Verifying Implementations of Actors |

In the previous section, we discussed the verification of implementations which use
one-at-a-time serializers. The resource actor encased by a one-at-a-time serializer receives
requests in the same order as the one-at-a-time serializer does. That is, the one-at-a-time

serializer have the first come first resource access property [Property-III in Section 7.2]. In




|
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this section, we will discuss the verification of implementations using serializers which do
not have the first come first resource access property. The heart of verification in this case
is the use of implementation invariants, as it was in the case for implementations using
one-at-a-time serializers. To find an appropriate implementation invariant for a given
implementation requires human ingenuity. In what follows, we will explain the verification
of an implementation of a bounded buffer against the specification depicted in Figure 7.5.

[T his specification is identical to the one given in Figures 6.4 and 6.5.]

7.4.1 An Implementation of A Bounded Buffer
We consider the following PLASMA implementation of a bounded buffer.
(create-bounded-buffer []) = (create-buffer-scheduler (create-string-storage []))

Namely, the bounded buffer of length N is implemented as a serializer B which encases a

string storage actor S where S is created by [ create-string-storage <= []] and B is created by

[ create-buffer-scheduler <= S]. Note that S is encased by B without becoming known to

other actors. Thus the resource confinement property of serializers is satisfied.
The behavior of the string storage actor S is described by the specification in

Figure 76. Its states are expressed by conceptual representations of the following form.
(STRING-STORAGE [...])

When it is created, it contains no character. It accepts (append: <character>) and (remove:)
messages. As stated by assertions of the form (S is-used-serially) in the where clauses, the
behavior described in the specification is guaranteed only when § is used serially.

The creation of the serializer B is described by the following event specification.
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Fig. 7.5. A Specification of A Bounded Buffer

<ewvent: [ create-bounded-buffer <= [1]
<return: B¥>

<post-cond: (B is-a (BOUNDED-BUFFER (q,: [D(q, [string: [1))) >

<event: [B <= M]
where M = [request: (remove:) reply-to: C)

(Case-1: <pre-cond: (B is-a (BOUNDED-BUFFER (94 [Dlaz [YyDlstring: [)) >
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [)q,: [ty M]))(string: []))) >
{eauvsed-events: {} D)

(Case-2: <pre-cond: (B is-a (BOUNDED-BUFFER (qa: [])(q'_' [Dstring: [X 1s]))) >
<next-cond: (B is-a (BOUNDED-BUFFER (qa: [])(q,; [1)(string: [1s]))) >
<caused-cvent: [ C <= (removed: X)] >)

(Case-3: <pre-cond: (B is-a (BOUNDED-BUFFER (74 [MM 5x])(g,: [D(string: [X 1s])))

(length([X ¥s]) = N)

(MM = [request: (append: XX) reply-to: CC]) >
next-cond: (B is-a (BOUNDED-BUFFER (q4: [#x](q, [D(string: [1s XX]))) >
<caused-events: {[[C <= (removed: X)], [CC (= (appcnd-done:)]]} >

Covent: EB (= M] ‘
where M = [request: (append: X) reply-to: C]
(Case I <pre-cond: (B is-a (BOUNDED-BUFFER (qq: [!x])q,: [])(string: [s]))) i
(length([¥s]) = N) > 3
“next-cond: (B is-a (BOUNDED-BUFFER (qg: [8x M])q,: [])(string: [is]))) > '1
Ceaused-events: {} D) !
(Case-2: <pre-cond: (B is-a (BOUNDED-BUFFER (qa: [])(q,.-‘ [D(string: [1s])))
(length([¥s]) < N) >
next-cond: (B is-a (BOUNDED-BUFFER (q4: [Wq,: [D(string: [1s X]))) >
<caused-event: [ C <= (append-done:)] >)
(Case-3: <pre-cond: (B is-a (BOUNDED-BUFFER (q,: [D(g,: [MM Sy]D(string: [1)))
(MM = [request: (remove:) reply-to: CC]) >
next-cond: (B is-a (BOUNDED-BUFFER (qa: (Dl [tyD(string: [1)) >
¢caused-cvents: {[C <= (append-done:)], [CC <= (removed: X)]} ») >
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Fig. 7.6. A Specification of a String Storage of Length N

<event: [ create-string=storage <= [J]
Creturn: S¥)
<post-cond: (S is-a (STRING-STORAGE [])) »

<event: [S <= (append: X)]
where (S is-used-serially)
(Case-1: <pre-cond: (S is-a (STRING-STORAGE [ix])
(length(x) < N) >
<return: (append-done:) >
<post-cond: (S is-a (STRING-STORAGE [ix X])) >)
(Case-2: <pre-cond: (S is-a (STRING-STORAGE [!x]))
(length(x) 2 N) >
Creturn: (storage-full:) >
<post~cond: (S is-a (STRING-STORAGE [x])) >) >

<event: [[S <= (remove:)]
where (S is-used-serially)

(Case-1: <pre-cond: (S is-a (STRING-STORAGE (X Ix])) >
Creturn: (removed: X) >
(post-cond: (S is-a (STRING-STORAGE (ix X])) >}

(Case-2: <pre-cond: (S is-a (STRING-STORAGE [])) >
<return: (storage-empty:) >
<post-cond: (S is-a (STRING-STORAGE [])) ») >

<event: [[ create-buffer=scheduler <= 5
<pre-cond: (S is-a (STRING-STORAGE [!x])) >

<return: B¥ >

<{post-cond:
(B is-a (SCHHEDULER (counter: 0)(q ,: [1)(g 2 [1)(crowd: {})resource: $)))

(S is-a (STRING-STORAGE [¥x])) »

As expressed by the conceptual representation in the <post-cond:..> clause, this serializer has

a counter (initially 0), two queues, §, and G, (both are initially empty) and a crowd (also
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titially empty). The counter is used to record the number of characters stored in the string
storage. The crowd is used to contain buck passers. The existence of a buck passer in the
crowd indicates that the resource is being used. G, and q, are used to record suspended
(append:..) and (remove:) requests, respectively.

The behavior of the serializer B in response to (append:..) and (remove:) requests
are described the event specifications depicted in Figure 7.7 and Figure 7.8, respectively.
Let us look at the behavior of B when it receives a message M of the form

[request: (append: X) reply-to: C}.

Case-l: if no (append:) requests are suspended [ie. G, is empty), the string storage S is
not being used [i.e. the crowd is empty), and there is room for the new character X [k < NJ,
then the (append: X) request with a newly created buck passer BP which remembers the
original continuation C is sent to S. The state change of B reflects this: the counter is
increased by one and the crowd now contains the buck passer BP.

Case-2: if the conditions for Case-l do not hold, the message M is enqueued at the rear

of G,

Figure 7.7 also includes the specification of the event in which the reply
(append-done:) from S in response to an (append:) request is received by the buck passer BP
which is currently stored in the crowd of B. When BP receives (appond-done:), the request
suspended in the front element of either §. or G, is picked up and sent to the string
storage. If both queues are not empty, G, has priority over §,. There are three cases for
this event. Note that the counter k indicating the current length of the string storage
cannot be 0 when BP ieceives an (append-done:) reply, because a new character has been
Just appended before the reply is produced.

Case-l: if no (remove:) requests are suspended [i.e. §. is empty), and either the string
storage is full [ie. k = N] or no (append:..) requests are suspended [i.e., @q is not empty], then

the reply is returned to the original continuation remembered by the buck passer P, but no
message is sent to S.

Case-2: if there are some suspended (remove:) requests [ie. §,. is not empty), then the the
front element M of §_ is taken out, and the corresponding (remove:) request is sent to S with
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Fig. 7.7. The Behavior of the Scheduler in response to an (Append:.) Request

<event: [B <== M]] where M = [request: (append: X) roply-to: C)
(Case-1:
Cpre-cond: (B is-a (SCHIEDULER (counter: kK)(G ,: [1)(q: [ty])(crowd: {})(resource: S)))
(k <N)>
<next-cond: (B is-a (SCIHEDULER (counter: k + 1)(7 ;¢ [(D(G ¢ [y)(crowd: {BP*})(resource: $)))
(BP is-a (BUCK-PASSER (continuation: C)(serializer: B)))>
<caused-cvent: [ S <== {request: (append: X) reply-to: BP]] »)
(Case-2:
<pre-cond: (B is-a (SCHEDULER (counter: k)(G ,: [Ix])(G [ty]erowd: {§z})(resource: S)))
(vix#[D(@#{})k=N) >
<next-cond: (B is-a (SCHHEDULER (counter: kK)(q ,: [ MING : [ty])(crowd: {1z})(resource: $)))>
<caused-events: {} >»

<event: [ BP <== [reply: (append-done:)]]
where (BP is-a (BUCK-PASSER (continuation: C)(serializer: B)))
(Case-1:
<pre-cond: (B is-a (SCHHEDULER (counter: k)(q ,: [!x])(ar' [D(crowd: {BP})(resource: S)))
(v(k=N) (0O<KK<KN A x=[]) )>
<next-cond: (B is-a (SCHEDULER (counter: k)(G,: [$x])(G [))(crowd: {})(resource: S))) >
<caused-cvent: [C <== [reply: {append-done:)]] >)
(Case-2:
Cpre-cond: (B is-a (SCIIEDULER (counter: k)G ,: [I])(G 2 [M ly])(crowd: {BP})(resource: S)))
(k> 0)
(M = [request: (remove:) reply-to: CC])»
<next-cond: (B is-a (SCHHEDULER (counter: k = 1)(q ¢ [¥x])(G 2 [ty]crowd: {NBP*})(resource: S)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>
Ceaused-cvents: {[[S <== [request: (remove:) reply-to: NBP]] [C <== [reply: (append-done:)]] }>)
(Case-3:
¢pre-cond: (B is-a (SCIIEDULER (counter: k)(G ,: [M X])(G: [1)(crowd: {BP})(resource: S)))
(0 <k <N)

(M = [request: (append: XX) reply-to: CC)) >

<nexi-cond: (B is-a (SCHEDULER (counter: k + 1)(7 ,: [¥x])(§: [])(crowd: {NBP*})(resource: S)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>

<caused-cvents: {[S <== [request: (append: XX) reply-to: NBP]] [C <== [reply: (append-done:)]] 1)
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Fig. 7.8. The Behaviors of the Scheduler in response to a (Remouve:..) Request

<event: [ B <== M] where M = [request: (remove:) reply-to: C]

t (Case-1:
f <pre-cond: (B is-a (SCHEDULER (counter: k)(q,: [Ix])(G: [])crowd: {})(resource: S)))
(k>0)>
[ <next-cond: (B is-a (SCHHEDULER (counter: k = 1)(q ,: [#x]N(§ . [D{crowd: {BP*})(resource: S)))

(BP is-a (BUCK-PASSER (continuation: C)(serializer: B)))>
¢caused-cvent: [ S <== [request: (remove:) reply-to: BP]] )
(Case-2:
<pre-cond: (B is-a (SCIHHEDULER (counter: k)(q ,: [2x])(q 2 [ty])erowd: {§z})(resource: S)))
(viy#[D@E#{})(k=0))p
<next-cond: (B is-a (SCHHEDULER (counter: k)(G,: [#x])(§,: [ty M])crowd: {}z})(resource: $)))>
{caused-cvents: {P)H

<event: [ BP <== [reply: (removed: X)]]|
] where (BP is-a (BUCK-PASSER (continuation: C)(serializer: B)))
(Case-1:
<pre-cond: (B is-a (SCIHEDULER (counter: k)G ,: [ING: [8y])(crowd: {BP})(resource: S)))
(vik=0) (0<K<N A y=[]) )>
<next-cond: (B is-a (SCIHHEDULER (counter: k)G ,: [ING: [tyINerowd: {})resource: S))) >
<caused-event: [C <== [reply: (removed: X)]] >)
(Case-2:
<pre-cond: (B is-a (SCHHEDULER (counter: k)(G 4 [M I]))(G . [y])crowd: {BP})(resource: S)))
(k <N) \
(M = [request: (append: XX) reply-to: CC])>
Cnext-cond: (B is-a (SCHEDULER (counter: k + 1)(§: [Ix])(G 2 [ty])crowd: {NBP*})(resource: S)))
(NBP is-a (BUCK-PASSER (continuation: CC){(serializer: B))
<caused-events: {[S <== [request: (append: XX) reply-to: NBP]] [C <== [reply: (removed: X)]] }>)
(Case-3:
<pre-cond: (B is-a (SCHEDULER (countor: k)(§,: [1(G,: [M Yy])crowd: {BP})(resource: S)))
(0 <k <N)

(M = [request: (remowve:) reply-to: CC)) >

<next-cond: (B is-a (SCHHEDULER (counter: k = 1)(g 4 [1)(q,: [1y])(crowd: {NBP*})(resource: S)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>

¢eaused-events: {[ S <== [request: (remove:) roply-to: NBP]] [ C <== [reply: (removed: X)]] )
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a new buck passer NBP and concurrently the reply is sent to the original continuation C.
Case-3: if no (remove:) requests are suspended [i.e. G is empty], there are some suspended
(append:..}) request [ie. G, is not empty), and there is room for a new character in $ lie.,
0 < k < N, then the (append:..) request at the front of G, is granted and sent to S with a
new buck passer NBP, and concurrently the reply is returned to the original continuation C.
It should be noted that all the three cases are mutually exclusive and enumerate all
cases of the states which B can be in when BP receives a [reply: (append-done:)] message.
The behavior of B in response to (remove:) is described in Figure 7.8 in a similar way; the
roles of G, and 4§, are symmetrical and conditions expressing the upper bound for the
counter is replaced by the lower bound. @, has priority over §, when a buck passer BP

receives a (removed: ?) from the string storage.

7.4.2 Verification of a Bounded Buffer

In order to show that the implementation of the bounded buffer given in Figures
7.7 and 7.8 satisfies the specification given in Figure 75, we need the implementation
invariant which is the mapping between the states of a bounded buffer used to write its
specification and the states used for describing the implementation. More precisely, we
need the mapping from the set of states, called the "specification space”, expressed by

conceptual representations of the form
(BOUNDED-BUFFER (q4: [.){q,: [..D{string: [..])

to the set of states, called the “implementation space”, expressed by conceptual

representations of the form

(SCHEDULER (counter: 7)(q g2 [.)(G: [..])crowd: {..})(resource: S)).

For this purpose, we use the following implementation invariant:




-1 <

" If a bounded buffer B is in the state (of the specification space)
which is expressed by the conceptual representation
(BOUNDED-BUFFER (q,: (%])q,: [tyD(string: [1s]))

then
B is in one of the states (of the implementation space)
which are expressed by the conceptual representation

(SCHEDULER (counter: k)(q 4 [Ixx b]NG 2 [yy YyDlcrowd: {8z})(resource: S)),
and the following constraints must be satisfied

(1) [istored=in(S) Icharacters-appended(xx)] = [Icharacters=removed(yy) Is]
(2) length(stored=-in(S)) = k "

characters-appended(xx) means the sequence of characters that will be appended by the
sequence of (append:..) requests denoted by xx. characters-removed(yy) means the sequence
of characters that will be removed by the sequence of (remove:) requests denoted by yy.
stored-in(S) means the sequence of characters stored in the string storage S.

Note that q, and G, share x and q, and G, share y at their tails. §,and G, denote
the queues of requests which are actually waiting inside the scheduler. Thus xx and yy in
d, and 6, denote the sequences of actually suspended requests that are considered (at the
external specification level) to have already been processed. [x and y have not been
processed yet] The first constraint in the above implementation invariant says: the
concatenation of the character string that is actually stored in S and the sequence of
characters that will be appended by xx is equal to the concatenation of the sequence of
characters that will be removed by yy and the character string that is considered (at the
external specification level) to be stored in string. The second constraint says that the
counter k indicates the length of the character string stored in S.

Since, for given x, y and s, only the relation (or constraints) that must be satisfied

by xx, yy and k is specified, the above implementation invariant defines a one-to-many

—————




-178 -

correspondence from the specification space to the implementation space. (Cf. Section 531,
Chapter 5) Namely, for a given state U in the specification space, the implementation
invariant 11 give a set 1I(U) of the corresponding states in the implementation space. See

the diagram below.

<Specification Space> U <Implementation Space>

To verify the implementation against the specification in Figure 7.5, for each event
specification in the specification, the implemeﬁtation must be verified. The diagram in
Figure 7.9 illustrates the verification for an event E = [B <== M]. T and T are the states
of the bounded buffer B given in the ¢pre-cond:..> and <next-cond:..> clauses (of the event
specification for E), respectively. II(T) and IIT’) are the sets of states (in the
implementation space) obtained by applying the implementation invariant Il to T and T,
respectively.

To establish the event specification, we must first show that if the bounded buffer
B is in a state belonging to II(T) before the event E, B is in a state belonging to II(T")
immediately after E. To show this, we do not have to deal with individual states in II(T)
and TI(T"). We use the relations among the constituents of the implementation which define

H(T) and TT"). [Of course, such relations are obtained from the constraints given in the
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Fig. 7.9. Establishing an Event Specification

E=[B<¢==M]

<Specification Space>

<Implementation Space>

1I(S) 1K(s")
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implementation invariant] By using the description of the implementation given in
Figures 7.7 and 7.8, we obtain (from the defining relation for 1I(T)) the relation which
defines the set X of states in which B can be immediately after E. We check to see whether
or not the obtained relation satisfies the defining relation for II(T’), i.e., we check whether
or not X is a subset of II(T’). If the obtained relation satisfies the defining relation for
IKT"), 1t 1s verified that the state of B immediately after the event E is T’ in the
specification space.

But this does not mean that the implementation satisfies the <next-cond:..> clause.
We must show that the state of B in the specification space does not change until the next
request message (either (append:..) or (remove:)) arrives at B, because at the implementation
level (ie, when B is considered as a scheduling serializer), a buck passer in the crowd of B
may receive a reply message from the string storage S and consequently, the state of B
which 1s currently one of states belonging to X may not belong to II(T") after such a reply
event. Therefore we must also show that the state of B stays inside 1(T’), which means
that such reply events do not change the state of B in the specification space. To do so, we
check if the relation defining the set Y of states in which B can be immediately after the
resource reply event satisfies the defining relation for II(T’).

To complete the verification of the event specification, we must show that the
events given in the <caused-cvents:..> clause eventually take place. To do so, we use the fact
that the sequence of requests xx in g, and the sequence of requests yy in §, are eventually
removed and sent to S. This is easily done by checking the implementation given in

Figures 7.7 and 7.8 and the specification of the string storage given in Figure 7.6.
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8. Modelling a Post Office

In this chapter, we discuss an actor model of a simple post office which is an
intuitive example of systems, such as operating systems and multi-user data base systems,
which are characterized by complex concurrent internal activities. In the first section, an
informal description of the post office is followed by formal specifications of the
individual behavior and mutual interaction of the components of the model. In the second
section, the specification of the overall functions (task specifications) of the post office is
stated formally. In the last section, we demonstrate that the task specifications are satisfied

by the individual behavior and mutual interaction.

e ciag.
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8.1 A Model of a Simple Post Office

In this section, we present the actor model of a simple post office. The behavior
of each component in the model is described by our specification techniques and the overail
properties and effects of the post office as a whole are stated formally. Furthermore, using
this model as an example, we would like to shed light on some of the interesting issues

related to distributed information processing systems.

8.1.1 Overview of the Model

An informal description of activities in a simple post office is:

A number of customers and mail collectors visit the post office, possibly simultaneously.
The post office has only one door for customers and collectors. Inside the post office, there
1s a counter section which has several counters and a mail box corner which has a mail box.
After a customer enters the post office through the door, if he needs stamps, he goes to the
counter section, otherwise he goes to the mail box corner. At the counter section, a customer
gets the stamps he needs and then, if he is carrying letters, he goes to the mail box corner,
otherwise he goes out of the post office through the door. Customers are served at the
counter section on a first-come-first-served basis, but the time spent at the counter varies
from person to person. At the mail box corner, a customer puts all the letters he has been
carrying 1 the mail box and goes out through the door. A collector also enters the post
of fice through the door and then goes to the mail box corner. At the mail box corner, the
collector collects all the mail in the mail box after waiting in the queue, if there is one, and
then he carries the collected mail out of the post office through the door. Customers and
collectors make a single queue at the mail box corner and arrive and leave the corner on
first-in-first-out basis.

We model this post office with five kinds of actors: customer actors, collector
actors, the door actor, the counter section actor, and the mail box corner actor. [See Figure
81] The movement of customers and collectors is modelled as message-passing where
messages are customer and collector actors and targets are the door actor, the counter section

actor and the mail box corner actor.  Components of the office, collectors and customers
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have their own local time. Thus, arrivals of customers and collectors at these components
are in general mutually independent. Furthermore, we assume that the walking speed of
customers and collectors may vary from person to person. So, for example, a customer
arriving at the door after another customer may arrive at the counter section before him.
This corresponds to the fact that the actor model of computation assumes nothing about the
duration of message-passing € cept its finiteness. Besides such concurrent events, services
at different counters are carried out concurrently, and of course depositing and collecting
the mail in the mail box corner takes place independently of the activities at the counter
section.

In the subsections that follow, formal specifications of the behavior of each actor

will be given and we will state the task specifications that describe the overall properties
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and effects that are created by the interaction and individual behavior of the component

actors.

8.1.2 Interactions at the Door

To formally describe the activities in the post office, first we need to define the
states of actors in the model.

For a customer, there are two internal factors which determine his behavior: the
letters he carries and the number of stamps he needs at a given time. Thus we express the

states of a customer actor by conceptual representations of the following form.
(CUSTOMER (letters: {...}) (s~stamps-needed: 7))

For a collector, the effects of interactions with other actors are expressed by the collected
mail.  So the state of a collector actor is expressed by conceptual representations of the

following form.
(COLLECTOR (collected-mail: {..}))

We cannot define the state of the post office as a whole in terms of the states of its
components, because people can be in transit between the components. Customers and
collectors may be constantly entering and exiting through the door while other customers
and collectors may be changing the states of the mail box corner by depositing and
removing the mail. Only the local states of the component actors are well defined.
However, we can use the state of the door actor to describe useful aspects of the state of the
whole post office if it is defined as below.

The state of the door actor must be defined as an equivalence class of histories of

message sent to it. The informal description of the model tells us that customers and
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collectors arrive at the door when they enter and exit from the post office. So we assume
that the door actor accepts four kinds of messages:

(customer-entering: <customer>), (customer-exiting: <customer>),

(collector-entering: <collector>), and (collector-exiting: <collector>).
Thus the states of the door actor are defined in terms of these kinds of messages. Since the
states of customer and collector actors are well defined at the time they arrive at the door
actor, their states can be used to define the state of the door actor. This means that the
information available in conceptual representations for customer and collector actors can be
used.

We define the state of the door actor at the time of message arrival by

(1) the set of all customers inside the post office,

(2) the set of all collectors inside the post office and

(3) the set of all mail inside the post office.
These three sets are sufficient to characterize useful aspects of the state of the post of fice as
a whole and yet well defined as information local to the door actor, because, for example,
the set of mail inside the post office is determined by the difference between letters brought
in and letters taken out through the door by customers and collectors. We express the states
of the door actor by conceptual representations of the following form. The key word,

POST-0OFFICE, reflects the intention that they serve as the states of the whole post of fice.
(POST-0FFICE (mail: {..})(customers: {..})(collectors: {...})))

A formal specification of the effects of interactions between the door actor and
customer and collector actors is depicted in Figure 82. One should note the
{caused-event:.> clauses: After a customer actor arrives at the door actor, a message

(go-to-counter-section-if-necessary:) instructs him to decide where to go next. Other
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Fig. 8.2. A Specification of Interactions at the Door

<event: [ the-door <= (customer-entering: C)J (sp-1)
{pre-cond:
(the-door is-a (POST-OFFICE (mail: {§m})(customers: {ics})(collectors: {icls})))
(C is-a (CUSTOMER (letters: {81})(#-of-stamps-needed: N))) >
<next-cond:
(the-door is-a (POST-OF FICE (mail: {¥m ¥})(customers: {8cs C})(collectors: {icls})))
(C is-a (CUSTOMER (letters: {1})(#-of-stamps-needed: N))) >
<caused-cvent: [[C <= (go-to-counter-section-if-necessary:)] >

<event: [ the-door <= (customer-exiting: C)] (sp-2)
<pre-cond:
(the-door is-a (POST-OFFICE (mail: {¥m1 3| ¥m2})(customers: {lesl C Ycs2})(collectors: {Icis})))
(C is-a (CUSTOMER (letters: {M})(#-of-stamps-needed: N))) >
{next-cond:
(the-door is-a (POST-OFFICE (mail: {Iml Im2})(customers: {Ics1 Ycs2})(collectors: {iclis})))
(C is~a (CUSTOMUER (letters: {U})#-of-stamps-needed: N))) >
<caused-cvent: [[street <= C] »

<event: [ the-door <= (collector-entering: CL)] (sp-3)
<{pre-cond:
(the-door is-a (POST-OFFICE (mail: {¥m})(customers: {3¢s})(collectors: {¥cis})))
(CL is-a (COLLECTOR (collected-mail: {em}))) >
{next-cond:
(the-door is-a (POST-OFFICE (mail: {Im Yem})(customers: {dcs})(collectors: {3cls CL})))
(CL is-a (COLLECTOR (collected-mail: {§em}))) >
<caused-cvent: [ mail-box-corner <= (collectors: CL)] »

<event: [ the-door <= (collector-exiting: CL)] (sp-4)
{pre-cond:
(the-door is-a (POST-OFFICE (mail: {Iml Ycm Im2})(customers: {ics})(collectors: {icisl CL ¥ci2})))
(CL is-a (COLLECTOR (collected-mail: {¥em}))) >
<next-cond:
(the-door is-a (POST-OFFICE (mail: {m1 Im2})(customers: {ics})(collectors: {icisl lcis2})))
(CL is-a (COLLECTOR (collected-mail: {Yem}))) >
<caused-cvent: [[street <= CL] »
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Ccavsed-event:..> clauses indicate where a customer or collector actor is sent after it arrives at
the door. In particular, customers and collectors are sent to the street actor after they exit

from the post office.

8.1.3 Interactions at the Counter Section

Upon entering the post office, a customer must decide where he should go, ie. to
the counter section or the mail box corner. The decision is made in response tc a message
(go-to-counter-section-if-necessary:), according to whether or not he needs stamps. This

behavior of the customer is expressed by the following event specification.

<event: [ C <= (go-to-counter-section-if-necessary:)] (sp-5)
(Case-1:
{pre-cond:
(C is-a (CUSTOMER (letters: {31})(#-of-stamps-neceded: N)))
(N>0)>
<next-cond: (C is-a (CUSTOMER (letters: {31})(#-of-stamps-needed: N)))>
<caused-ecvent: [ counter=section <= (customer: C)] »)
(Case-2:
<pre-cond: (C is-a (CUSTOMER (letters: {11}){e-of-stamps-needed: 0))) >
<next-cond: (C is-a (CUSTOMER (letters: {8})(#-of-stamps-needed: 0)))>
<caused-event: [ mail-box=corner <= (customer: C)] >)>

Two points should be made about the specification above. First, the customer C sends
himself to the counter section or the mail box corner. Second, the customer C does not
change his state as described in the <next-cond:..> clauses.

The effects of interaction between customers and the counter section are described

by the following simple event specification.
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<event: [ counter=section <= (customer: C)J (sp-6)
<pre-cond: (C is-a (CUSTOMER (lotters: {}})(#-0f-stamps-noeded: N))) >
<next-cond: (C is-a (CUSTOMER (lotters: {11})(#-0f-stamps-needed: 0))) >
¢caused-event: [ C <= (go-to-mail-box-corner-if-necessary:)] >

This specification might look too simple. Of course, by using conceptual representations
for the counter section which include more detailed information, we could express various
activities and interactions such as customers waiting in a queue, and buying stamps at a
counter. Also, we could define the state of the counter section in a way similar to that in
which we defined the sates of the door actor. But for our present purpose, the event
specification above is sufficient.

When a customer leaves the counter section, he must again decide where to go
next, the mail box corner or the door. The decision is made in response to a message
(go-to-mail-box-if-necessary:), according to whether or not he is carrying letters. This is
expressed as follows.

<event: [ C <= (go-to-mail-box-corner-if-necessary:)] (sp-7)

(Case-1:
{pre-cond:
(C is-a (CUSTOMER (letters: {11})(#-of-stamps-needed: N)))
{up#{h>
<next-cond: (C is-a (CUSTOMER (letters: {}1})(#-of-stamps-needed: N))) >
<caused-event: [ mail-box=corner <= (customer: C)] »)
(Case-2:
<pre-cond: (C is-a (CUSTOMER (letters: {})(#-of-stamps-needed: N))) >

<next-cond: (C is-a (CUSTOMER (letters: {})(#-of-stamps-needed: N))) >
<caused-event: [ the=door <= (customer-exiting: C)] >)»

Note that no conditions are made for the number of stamps needed N in the

preconditions in the above specification. [See, Section 8.15.]
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8.1.4 Interaction at the Mail Box Corner

To complete the local specifications, we must specify the interaction between the
mail box corner and its users. An important fact stated in the informal description of the
model is that customers and collectors wait in the same queue before the mail box and that
they deposit or collect mail on a first-in-first-out basis. This fact allows us to define the
state of the mail box corner by the set of letters brought by the customers who arrived at
the mail box corner after the collector who arrived most recently. Letters brought do not
necessarily mean letters that are aiready put in the mail box. They may still be carried by
customers in the waiting queue. We use conceptual representations of the following form
for the mail box corner.  (MAIL-BOX-CORNER (posted-mail: {..}))  The interaction is

described by the event specifications in Figure 83.

Fig. 83. A Specification of the Interactions at the Mail Box Corner

<ewvent: [ mail-box=corner <= (customer: C)] (sp-8)
<{pre-cond:
(mail-box-corner is-a (MAIL-BOX-CORNER (posted-mail: {im})))
(C is-a (CUSTOMER (letters: {}1})(#~of-stamps-needed: N))) >
{next-cond:
(mail-box=corner is-a (MAIL-BOX-CORNER (posted-mail: {Im 11})))
(C is-a (CUSTOMER iletters: {})(#-of-stamps-needed: N))) >
<caused-cvent: [ the=door <= (customer-exiting: C)] >

<event: [ mail-box-corner <= (collectors: CL)] (sp-9)

{pre-cond:
(mail-box=corner is-a (MAIL-BOX-CORNER (posted-mail: {¥m})))
(CL is-a (COLLECTOR (collected-mail: {¥cm}))) >
<{next-cond:
(mail-box-corner is-a (MAIL-BOX-CORNER {posted-mail: {})))
(CL is-a (COLLECTOR (collected-mail: {¥em Im}))) >
<caused-cvent: [ the=door <= (collector-exiting: CL)] >
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8.1.5 Assumptions of No Implicit Interactions

In addition to the above specifications of local interactions, we must make the

following assumptions of global nature to describe the post of fice model completely.

Assumption-I
Customer and collector actors do not receive any messages except those explicitly

stated in the event specifications sp-1 to sp-9.

Assumption-II
The counter section actor and the mail box corner actor interact with only the

customer and collector actors which have entered through the door. The door
actor interacts with only the (customer-exiting:..) and (collector-exiting:...) messages
which contain collector or customer actors which have entered through the door.
(No customer or collector actor can arrive directly at these actors without going
through the door.)

The first assumption implies that customer or collector actors do not change their states
immediately after an event E until the event caused by E, where E is one of the events
specified by sp-l to sp-9. For example, immediately after the event
[ counter-section <= (customer: C)], the state of a customer C which is stated in the
<next-cond:..> clause of the event specification sp-6 do not change until C receives the
(go-to-mail-box-corner..) message. Thus, in the events specification sp-7, the number N of
stamps needed (by the customer C) is zero, because it was zero immediately after

[ counter-section <= (customer: C)] as stated in the <next-cond:..> clause of sp-6.
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8.2 Task Specifications

We have specified the individual behavior and mutual interaction of actors in the
post office model. These specifications are local in nature. In this section, we will state
some of the overall [global] task specifications of the post office that should be implied by
the local specifications. It is important that such task specifications be stated in terms of
externally visible actors because the function of the post office should be specified and
understood without knowledge of the details of what is going on inside. These actors are
the door actor, and customer and collector actors which are outside the post of fice.

' Four task specifications of the post office are in order. For each task specification,

an informal statement is followed by the formal one.

The first task specification is expressed in terms of a customer's two states: one
before he enters the post office and one after he exits. This may be considered as a
specification of the function of the post office from the view point of a customer.
Task-1 (Customer is Guaranteed to Return without Letters)

If a customer visits the post office, he must eventually leave there. When he leaves the
post office, he must not be carrying letters and he does not need stamps.

<event: [ the-door <= (customer-entering: C)]
<pre-cond: (C is-a (CUSTOMER (letters: {}1})(#-of-stamps-needed: N))) >
<caused-event: [ street <=C] >
<post-cond: (C is-a (CUSTOMER (letters: {})(#-of-stamps-needed: 0))) >

The second task specification is the collector version of the first one
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Task-Il (Collector is Guaranteed Not to Lose Any Mail) |
If a collector visits the post of fice, he must eventually leave there. When he leaves the

post of fice, he must be carrying the newly collected mail [which may be empty] in addition
to the mail he brought into the post office.

At . ) & TZA RIS NSO 4 -

,'1 <event: [ the-door <= (collector-entering: cul

| <pre-cond: (CL is-a (COLLECTOR (collected-mail: {Icm1}))) >
<caused-event: [ street <= CL )] >
<post-cond: (CL is-a (COLLECTOR (collected-mail: {..Jem1..}))) »

The next task specification is expressed in terms of the interaction between
customers and collectors through a set of letters. This may be considered as a specification

of the function of the past office from the view point of individual letters.

Task-1I1 (Guaranteed Collection of Mail)
Suppose that a set {Im} of letters is brought into the post office by a customer C.
Then if there is a collector CL who enters the post office after the customer C leaves,
then there always exists a collector CLL (who may be the collector CL) who brings the set
{Im} of letters out of the post office to the street.

For an event E_pner = [ the-door <= (customer-entering: C)J
where (C is-a (CUSTOMER (letters:{im})(#-of-stamps-needed: N))),
if there exists an event Ej.gnter = [ the=door <= (collector-entering: CL)]

such that Ec_gnter ~2¢t=> E¢l-gnter "3 the-door Ec-exit
where E._g,it = [the-door <= (customer-exiting: C)],
then there must exist an event E¢ji_sireet = [ street <= CLL]
such that (CLL is-a (COLLECTOR (collected-mail: {...im...}))).
It should be noted that the mail of a customer C could be collected even if no collector

enters the post office before C leaves. But in this case there must be some collector which

arrives at the mail box corner after C arrives there. (Of course this cannot be stated in the |

task specification because the mail box corner which is an internal component of the post

of fice should not be mentioned in the task specifications.)
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The next task specification is expressed in terms of the states of the-door (more 1

precisely, sets of mail inside the post office) at different times. This task specification is

derived from Task-III.

Task-1V (No Stagnation of Mail)

Let UM, UC and UCL respectively be the set of letters, the set of customers, and the set
of collectors inside the post office in a given situation S. If there is a collector CL who
enters the post office after all the customers UC and all the collectors UCL (who were
inside the post office in the situation S) leave the post office, the set of letters which are
inside the post office after the collector CL leaves does not share any letters with the set UM
of letters (that were inside the post office in the situation S).

Suppose that
(the-door is-a (POST-OF FICE (mail: {im})(customers: {ics})(collectors: {!cis}))) holds
in S = Sit[[[ the-door <= M] ].

If there exists an event E = [ the=door <= (collector-entering: CL)]

such that
for any customer C; in {lcs} and any collector CLj in {!cls},
the following ordering relations hold
Eci 'll’l")“‘._door E and Eclj 'lﬂ")"‘..mr E
where Eci = [ the-door <= (customer-exiting: C;)]

Eclj = [ the=door <= (collector-existing: CLj)].
then for any event EE = [[ the-door <= MM]
such that E =arr=>y,o_goor E' “arr=>4pe.door EE or E' = EE

where E' = [ the-door <= (collector-exiting: CL)],
it is the case that

(the-door is-a (POST-OfFICE (mail: {{mm})(customers: {..})(collectors: {...}))) holds i
in Sit[EE] where {Im} N {Imm}= ¢

T
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8.3 Verification for the Task Specifications

In this section we will demonstrate that the event specifications, which are given in
Sect 81 as the description of the behavior of individual actors in the model and their
interaction, satisfy the task specifications in the previous section. Also, some of the
interesting properties of the event specifications given in Section 8.1 will be revealed in the

course of the verification.

8.3.1 Verification for Customer’s Guaranteed Return without Letters

First we will verify the following task specification. Some of ‘the properties
observed in the process of the verification will be used later in the verification for other

task specifications.

Task-1 (Customer’s Guaranteed Return without Letters)
<event: [ the=door <= (customer-entering: C)]
<pre-cond: (C is-a (CUSTOMER (letters: {81}){(s-of-stamps-needed: N}}} >
<caused-event: [ street <= C] >
<post-cond: (C is-a (CUSTOMER (letters: {})(s-of-stamps-needed: 0))) »

(Verification) This task specification is established by tracing sequences of events which
involve a customer actor. Such sequences are obtained by checking causal relations among
events described by the event specifications given in Sect 81. Tracing such a sequence can
be done by examining (local) states of actors participating in each event, but certain
cautions are necessary in dealing with the state of the-door actor which represents external
state of the whole post office. Furthermore, it should be noted in the following
demonstration that the reasoning from one event to another crucially depends on
Assumption-I in Section 8.5. Namely, we assume that the state of a customer C does not
change from an event E to the next event caused by E. Below this assumption will be used
without being mentioned.

First we assume that an event E takes place as described below.

enter
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Eonter: [ the-door <= (customer-entering: C)]
where (C is-a (CUSTOMER (letiers: {11})(#-of-stamps-needed: N)))
(the-door is-a (POST-OFFICE (mail: {¥m})(customers: {!cc})(collcclon; {icls})))

The event E, ... and the first assertion are assumed by the task specification to be
verified, and the second assertion is assumed in the <pre-cond:.> clause in the event
specification sp-l. Note that as sp-l specifies, the state of the-door immediately after this
event is expressed as

k| (the-door is-a (POST-OF FICE (mail: {¥m 31})(customers: {8cs C})(collectors: {3cls})))
which means that the customer C is now inside the post office. The <caused-event:..> and
<next-cond:..> clauses of sp-l tell us what will happen to C next and what state C will be in.

oo

F Edecmon-l: [c <= (go-to-counter-section-if-necessary:)]
; where (C is-a (CUSTOMER (letters: {}1})(e-of-stamps-needed: N)))

To know what event will take place after Ejqcision-» the event specification sp-5 is referred
to. Two cases need to be considered: (I) E_ g, nter is caused if N> 0 and (2) E
caused if N=0.

mail-box %

Ecounter: [ counter-section <= (customer: C)]
where (C is-a (CUSTOMER (letters: {11})(#-of-stamps-needed: N))), (N > 0).

The event specification sp-6 tells that the following event Eggision-2 is caused by E

counter
! and that the number of stamps needed becomes zero.

Ejecision-2° [ C <= (go-to-mail-box-corner-if-necessary:)]
where (C is-a (CUSTOMER (letters: {31})(e-of-stamps-needed: 0)))

To know what event will take place next, the event specification sp-7 is referred to. We
need a case analysis: (I) E,..1-box is caused if | # {} and (2) Egyjt is caused if | = {}.

Enail-box: ([ mail-box-corner <= (customer: C)]
where (C is-a (CUSTOMER (letters: {11})(s-of-stamps-needed: 0)))

T — T

Note that E,a1-box 1S also caused by Ejecision-1 38 Well as Egecision-20 BOth Egecision-1
and Egecision-2 insure that the number of stamps needed is zero. On the other hand, the
letters {11} the customer C is carrying may or may not be empty, because Ejqcision-2 insures
that | is not empty, but Ejecision-1 908 not. The event specification sp-8 tells us the next

event Eexit‘

|
E
I
I
|
|
I
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Eeyir: [the-door <= (customer-exiting:C)]
where (C is-a (CUSTOMER (letters: {})(e-of-stamps-needed: N)))
(the-door is-a (POST-OF FICE (mail: {..})(customers: {..C...})(collectors: {...})))

The first assertion is guaranteed by the <noxt-cond:..> clause of the event specification sp-8.
The second assertion that the customer C is still inside the post office must hold in order
for the event specification sp-2 to be applied. This assertion is guaranteed by the following
facts:
(1) Examining all the event specifications sp-1 through sp-9, events of the form
[ the-door <= (customer-exiting: C)] are the only way for C to exit from the post office
i (i.e. to eliminate C from the (customers: {..}) component of the conceptual representation
for the door actor).
(2) An event of the form [[the-door <= (customer-exiting: C)] have not taken place since
C entered the post office.
Now the event specification sp-2 insures the following event Egreet Will happen and the
assertion will hold.

 Egreer: [street<=C]
: where (C is-a (CUSTOMER (letters: {})(s-of-stamps-needed: 0)))

The causal relations among the events Egp.or through Eg e are illustrated as

follows

I —— .o - " —— . ——

, Eenter > Egecision-I > Email-box ™ Eexit > Egtreet
.

, | ? *
' ' P
] ' = =
v -

Ecounter > Egecidion-2

Since all the event specifications used in the above discussion guarantee that the events
given in their <caused-event:..> clauses always take place, E; qq, is guaranteed to take place.
: And the state of the customer C in the situation Egireet is exactly what is required by the
| task specification. (End of Verification)

The second task specification given in the previous section can be verified in the
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same way as above. In fact, applications of the event specifications sp-3, sp-9 and sp-4 in
5 this order will do. It should be noted that in using the event specification sp-4, a
Justification similar to the one we made, in the reasoning from Eg. t0 Eg ee for

applying the event specification sp-2 is necessary.

8.3.2 Verification for Guaranteed Collection of Mail

Task-1I1 (Guaranteed Collection of Mail)

For an event Ec_gnter = [ the=door <= (customer-entering: C)]
where (C is-a (CUSTOMER (lctters:{im})(s-of-stamps-needed: 7))),
if there exists an event Egj_gnter = [ the-door <= (collector-entering: CL)]

such that Ec_gnter 2¢t=> Ec_gyit ===>the-door Ecl-enter
where E¢_q,it = [the-door <= (customer-exiting: C)],
then there must exist an event E = [ street <= CLL]] 4
such that (CLL is-a (COLLECTOR (collected-mail: {..Im..}))) holds.

To verify this task specification, we rely on the following lemma which is easily
derived from the event specifications given in Sect 81. This lemma guarantees that if a

customer enters the post office carrying a set {!l} of letters, he always arrives at the mail

box corner carrying the same set of mail. -

Lemma

For an event E _gper = [the-door <= (customer-entering: C)]
where (C is-a (CUSTOMER (letters: {81})(#-of-stamps-needed: ?))),
there always exists an event E..pyaij-pox = [ mail-box=corner <= (customer: C)]
where (C is-a (CUSTOMER (letters: {31})(s-of-stamps-needed: 7)))

such that Ec_gnter ~2¢t=> Ecomail~box:

This was justified during the verification of the first task specification.

(Note that Egper => Email-box in the demonstration of Task-I.]
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(Verification of Task-I1I)
Suppose that an event E._gner = [ the-door <= (customer-entering: C)] takes place
where
(C is-a (CUSTOMER (letters: {31})(#-0f-stamps-needed: 7)))

holds. By the above lemma, an event E

always takes place and the same assertion
(C is-a (CUSTOMER (letters: {31})(#-of-stamps-needed: 7)))
still holds. Here we assume that the following assertion holds when E._....i.pox takes place.
(mail-box-corner is-a (MAIL-BOX-CORNER (posted-mail: {1pm}))).
Then, by the event specification sp-8, the assertion
(mail-box-corner is-a (MAIL-BOX-CORNER (posted-mail: {Ipm 8})))

holds immediately after E._ . .i-pox and until the next message arrival at the
mail-box-corner. Sp-8 also guarantees that Ec-exit = [’tho-door <= (customer-exiting: C)] will
take place.

Then suppose that the following event takes place after E.. g4t
Ecl-enter =L the-door <= (collector-entering: CL)]
where (CL is-a (COLLECTOR (collected-mail: {§cm}))) holds. By the event specification sp-3,
B etsaibetig ™ [ mail=box-corner <= (collectors: CL)]

takes place where (CL is-a (COLLECTOR (collected-mail: {}¢m}))) still holds. At this point,

the ordering of the events which have already occurred is expressed as follows.

c-mail-box = [ mail-box-corner <= (customer: C)J]

Ec-enter ~2t"> Ecomail-box “2¢t> Ec-gxit =" >the-door Eci-enter “*!=> Ecl-maii-box

The important fact here is that E . i-pox Precedes Eqjpoiicpox: We shall consider two
cases:
Case-lI: If any collectors do not arrive at the mail box corner between Ec_m.“_b” a
Ecl-mail-box: the state of the mail box corner at the time of E |.mail-box IS €XPressed as
(mail-box-corner is-a (M/1/L-BOX-CORNER (posted-mail: {..1pm...1I...})))
because customers arriving between E._, . po. and Eciomail-box ONy deposit, but never
collect mail. Then as the event specification sp-9 states, the collector CL collects all the mail
{..8pm..1l..} and then go to the door.
Case-2: If there are collectors who arrive at the mail box corner between E .. ..i_po, and
Ecl-mail-box: then the first one among such collectors will collect the mail which includes {11}
and {!pm} and then go to the door.

nd
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i In both cases, some collector carrying {}}, say CLL, arrives at the door from the
4 mail box. To insure that the collector CLL goes out to the street, the two assertions given in
| the <pre-cond:..> clause of the event specification sp-4¢ must be satisfied. One assertion says
‘ that CLL must be one of the collectors who appear in the conceptual representation of the
door actor at the time CLL arrives, namely, the following must hold.

(the-door is-a (POST-OF FICE (mail:{..})(customers:{..})(collectors:{..CLL..}))).
Assumption-II in Section 8.15 guarantees that this assertion holds, because it assumes that |
‘ all the collectors arriving at the door from the mail box corner must have entered through
§ the door, so by sp-3 CLL must appear in the (collectors:..) component of the conceptual
representation of the door. This completes the verification. Note that Assumption-I was
used throughout the above demonstration. (End of Verification)

The last task specification "No Stagnation of Mail” can be verified by using
already established task specifications. As was done in this task specification, let us suppose
that the state of the post office is expressed by the following assertion.

(the-door is-a (POST-OF FICE (mail: {Im})(customers: {¥cs})(collectors: {icis})))
Then it is the case that every letter | which is an element of the mail {Im} inside the post
office is brought in either by a customer or by a collector. If | is brought in by a customer,
we can use the third task specification which has been just established above. If | is
brought in by a collector, the second task specification "Collector is Guaranteed Not to Lose
Any Mail" insures that | will be brought out by the same collector that brought | into the

post of fice. So both cases are proved.
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9. Conclusions and Future Research

In this thesis, we have presented the local state approach to specification and
verification techniques for both serial and parallel computations. As stated in the
Introduction (Chapter 1), the work reported here has made four major technical

contributions. In concluding the thesis, we would like to first review these contributions

and then discuss their implications in the light of our projections for future research.
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9.1 Summary and Conclusions

As was demonstrated in Chapters 4 and 6, the local state approach provides
powerful and convenient specification techniques for abstract data types with parallelism
and side-effects with which previous techniques had failed to deal.

As the post office model in Chapter 8 illustrates, specification techniques based on
local states enable us to describe the complex internal concurrent activities of a system, such
as an operating system or a multi-user data base system, in terms of the individual behavior
of its subsystems and their mutual interaction. In order to express the overall functional
behavior of such systems (task specifications), the use of local states turns out to be not only
useful, but crucial. In addition, however, we sometimes need to state temporal ordering
constraints among events that are difficult to express in terms of the state changes of
individual subsystems. For this purpose we have used an event-oriented specification
language[Greif-Hewitt75, Hewitt-Baker77] in which the ordering concepts in the underlying
computation model can be talked about directly. Thus, with the complementary use of the
ordering constraint statements, the effectiveness and versatility of the local state approach
in specifying the behavior of systems with high internal concurrency is strengthened.

To describe the states of individual data and procedural objects, we have
developed a system of notation called conceptual representations. Based on this notational
device, we have presented a formalism for specification and verification. As was seen
throughout the thesis, this formalism allows us to express states of individual ob jects
directty and explicitly. Thus we believe that specifications written in our formalism are
easy to understand and are less error-prone in their completeness and consistency, as
compared with those written in other formalisms. Moreover, the separation of the states of

an object from its identity makes it possible for conceptual representations to express
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sharing structures among ob jects and multiple instances of a class of ob jects.

The ability of our formalism to express sharing structures and multiple class
instantiation enabled us to develop a method for symbolic evaluation of programs written
in ob ject-oriented languages, which has not been attempted before. The developed method
1s used for verification of serial computations and has suggested an approach to mechanical

program analysis (Section 5.4, Chapter 5).

9.2 Future Research

We have defined the states of an individual ob ject (actor) as equivalence classes on
the past histories of messages (operations) sent to the object. Local states thus defined are
expressed by conceptual representations which mathematically comprise sequences,
collections and tuples. On the other hand, the state of an object can be identified with a
mathematical function which is obtained as a solution of the behavioral equations
introduced in Section 6.4, Chapter 6. So far the relationships between the above two
interpretations of states have not been made clear. We foresee that the investigation of
these relations will reveal very rich mathematical structures and that, consequently, the
properties of implementation invariants (Section 53.1, Chapter 5) which we have left

informal will be understood precisely.

The techniques exemplified by the model of a simple post office can be applied to
the specification and verification of various distributed information processing systems.
Furthermore, the techniques used in this thesis have a direct application in the area of
business automation. We expect that actor-like procedural ob jects will enormously increase

the flexibility and security of message and document systems by replacing “"paper” forms




=203 -

and letters and “paper” documents with "active” (procedural) counterparts that are sent to
work stations in computer networks. Moreover, we can apply our techniques to the
specification and verification of object-oriented simulation and system description

languages such as the DELTA system{Holbaek-Hassen-et-al77).

The verification process for parallel computations described in this thesis is
informal. The formalization of such a process is desirable. For this purpose, a formal
specification language in which both local states of objects and ordering constraints of
events can be expressed in a coherent fashion must be developed, together with sound and
powerful inference rules which are effective in dealing with the partial ordering of events.
With such a formal system available, we will be able to construct practically useful software
tools which assist us in the construction of paralle! programs and distributed message
passing systems. Various important properties, such as no-deadlock, no-starvation, and the

property that a system meets its specifications, will be mechanically analyzed with such

software tools.
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Appendix | - Derivation of Axiom (5)

s ' The following axiom which was given in the aigebraic specification of queues in
i Figure 2.6, Chapter 2. i

Axiom (5)
‘ if -~IS-EMPTY(Q) A DEQUEUE(Q, A) = <B, Q"»
| then DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q', A)>

This is derived from the following specification of queues based on conceptual
representations [which is identical to the one given in Figure 2.2, Chapter 2, except that the

functionality of the operations is omitted).

(E1) CREATE-QUEUE() ---=> (QUEUE [))
(E2) ENQUEUE((QUEUE [x]), A) ====> (QUEUE [ix A))

(E3) DEQUEUE((QUEUE [))) ====> ERROR

(E4) DEQUEUE((QUEUE [A x])) ====> <A, (QUEUE [Ix]»
(ES) IS-EMPTY((QUEUE [))) ====> TRUE

(E6) IS-EMPTY((QUEUE [A ix])) ====> FALSE

(Derivation)
(1) -~IS-EMPTY(Q) ;given as the premise of the axiom.
(2) DEQUEUE(Q) = ¢<B, Q" igiven as the premise of the axiom.

From (1) and (E6), Q must be of the form
(QUEUE [front-element [rest])
From (2) and (E4), front-element = B and Q' contains [lrest). Thus (3) and (4)

B ——
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hold.
(3) Q = (QUEUE [B Irest))
(4) Q' = (QUEUE [trest))
(5) DEQUEUE(ENQUEUE(Q, A)

= DEQUEUE(ENQUEUE((QUEUE (B Irest)), A)

= DEQUEUE((QUEUE [B Yrest A))

= <B, (QUEUE [lrest ADD

= B, ENQUEUE((QUEUE [trest]), AP

= <B, ENQUEUE(Q", A»

;given in the consequence of the axiom.
sfrom (3).

sfrom (E2).

sfrom (E4).

;from (E2).

;from (4).

Hence, DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q', A) (End of Derivation)
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Appendix |l - Limits of Algebraic Specification

To show the existence of abstract data types which cannot be expressed by a finite

set of axioms in the algebraic approach, M. E. Majster(1977] gave a stack type which allows

us to look at any stack elements by using a position information i. The functionality of this

type is as follows.

CREATE:  ---> stack iCreates an empty stack.

PUSH: stack X item ---> stack or error
itries to insert an item at the top.
;if i is not pointing to the top, undefined
;otherwise i points to the new top item.

DOWN: stack ---> stack or error
jtries to increment i by one.
;if i already points to the bottom item, error.

POP: stack ---> stack or error
itries to remove the top item.
;if i is not pointing to the top, error
;otherwise, i points to the new top item.

READ: stack ---> stack or error
jtries to read the item pointed by i.
;if stack is empty, error.

RETURN: stack ---> stack or error
itries to cause i to point to the top item.
;if stack is empty, error.
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Unfortunately, the axioms for these operations cannot be characterized f initely.
For example, we need infinitely many axioms expressed as follows.
| RETURN(DOWN)™(PUSH)"(iy ...ip) = (PUSH)"iy ..,i,)

forallm>0andm<n

where  PUSHiy,..,iy) = PUSH(..PUSH(CREATE(), iy ).., iy)

This data type can be easily specified by using conceptual representations of the

following form.
(STACK (position: i)(items: [...]))

The (position:..) component keeps the position information and the conceptual sequence in

the (items:.) represents stack elements. A specification based on the conceptual

representations is given below.

(1) CREATE() =-=> (STACK(position: 1)(items: []))

(2) PUSH((STACK (position: i)(items: [1s])), I)
if i=1 ===> (STACK(position: i)(items: [I $s)))
otherwise ===> ERROR

(3) DOWN((STACK (position: i)(items: [1s]))
if i <length[ls] ===> (ST/ICK(position: i + 1)(items: [1s]))
otherwise ~==> ERROR




(4) POP((STACK (position: i)litems: [1s]))

ifi=1ands=[Ilrest] =-=> (STACK(position: i)(items: [irest]))
otherwise ==-=> ERROR

(5) READ((STACK (position: ?)(items: [])) =~-=> ERROR

(6) READ((STACK (position: i)(items: [Ix1 I Ix2])) ===> 1
where length[ix1] =i~-1

(7) RETURN((STACK (position: i)(items: [1s]))
ifs=[] ---> ERROR
otherwise ===> (STACK(position: 1)(items: [!s]))
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Appendix lll - Recursion, Iteration and Loop Invariants

The handling of recursive invocations of modules in symbolic evaluation has been

illustrated in the example of empty-one-queue-into-another in Section 5.2.I, Chapter 5. In
general, recursive invocations are treated as the same as ordinary invocations of modules.
When a [recursive] invocation of a module M is encountered in symbolic evaluation, the
contract of M is referred to and the specified results and postconditions are used to
H continue the symbolic evaluation after making sure that all the preconditions of M are
satisfied.

Iterations in implementations can be handled almost in the same way, because the
iteration construct in PLASMA allows us to treat an iteration as a module. Thus if
specifications of such modules are supplied, loops can be treated as ordinary modules.

Another way of dealing with iterations is to rely on assertions which hold every
time the control reaches the beginning point of a loop. Such assertions are called loop
invariants or inductive assertions[Floyd67, Hoare69). Since loop invariants are usually not
derived from the process of symbolic evaluation, they must be supplied externally.
Symbolic evaluation of the part of a code which follows such assertions is carried out under

the assumption that the assertions hold in the situation corresponding to the beginning

point of the loop. To illustrate this technique, we will consider a simple example.
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Fig. 1111 An Iterative Version of empty-one-queue=-into-another

(empty-one-queue=-into-another=-a =
(=> [=q1 =q2]
([q1 q2] =>
(loop =
(=> [=qql =qq2]
*K
(rules (qq1 <= (dq:))
(=> (exhausted:)

" Sexhausted-qqi =

(done: [qql qq2)))
(=> [=front-of-qql =dequeued-qql]

3 Sdequeued-qql &
(qq2 ¢= (nq: front-of-qqi))
(loop <= [dequeued-qq1 qq2])) )M))

In Figure IILI, an iterative version of empty-one-queue-into-another-a is given.

The loop invariant for loop which holds at the point where %x is placed in the code is
[Ixx1 Ixx2] = [Ix1 Ix2]

where xx1 and xx2 are the elements of the impure queues which are bound to qq1 and qq2,
respectively, and x1 and x2 are the elements of the impure queues bound to q1 and q2,

respectively. This invariant is expressed in our formalism as follows.
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<loop-Invariant: [Ixx1 3xx2] = [Ix1 #x2]
where

in Sit[[loop <= [QQ1 QQ2]]]
(QQ1 is-a (IMPURE-QUEUE [#xx1)))
(QQ2 is-a (IMPURE-QUEUE [!xx2))),
in Sit[[ empty-one-queue-into-another-a <= [Q1 Q2]]]

(Q1 is-a (/M PURE-QUEUE [!x1)))
(Q2 is-a (IMPURE-QUEUE [}2])) >

Given the above invariant, it is easily demonstrated that the implementation in Figure IIL1
satisfies the contract for empty-one-queue-into-another given in Figure 55 in Chapter 5.
The key point of the demonstration is that when the control reaches soxhlushd-qql' the
impure queue QQ1 that qql is bound to is empty, ie. xx1 = []. Therefore, the elements of
the impure queue QQ2 that qq2 is bound to, which are expressed as xx2, are equal to [!x1
1x2] because [Ixx1 Ixx2] = [Ix1 Ix2] (from the invariant), and xx1 = [] imply xx2 = [ix1
1x2]. The rest of the demonstration can be carried out almost in the same way as that for

the recursive version shown in Section 5.2.1, Chapter 5.
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Appendix IV - Convergence of empty-one-queue-into-another

Most event specifications written in our specification language contain
<caused-event:.> or <return:.> clauses. As explained in Section 4.3.1, Chapter 4, the existence
of these clauses in an event specification indicates that an event E stated in such a clause is
required to take place. Thus, to verify an implementation against specifications, we have to
demonstrate that the event E always takes place, as well as that the postconditions are
satisfied.

As an example, let us consider the convergence of the implementation of
empty-one-queue-into-another [hereafter empty] given in Figure 55 in Chapter 5. [The
following discussion is based on the symbolic evaluation of the implementation presented in
Section 521, Chapter 5] For the demonstration of the convergence, we need to show that

the control always reaches the situation § provided that the two actors sent to

exhausted-ql’
empty are distinct and both are impure queue actors.
If the impure queue bound to ql becomes empty during the recursive invocation of

empty, S -q1 €an be reached. Thus it is sufficient to show that the length of the

exhausted
impure queue eventually becomes zero. Since the length of the impure queue is an
arbitrary non-negative integer when it arrives at empty for the first time, we need to show
that its length decreases at its every subsequent arrival at empty. What has to be shown can
be stated in our formalism as follows.

(length-of(@1) in B qcoived-queues )

is-greater-than (%)

( length-of(dequeue=-ql) in sonquouod'qz )

To show this, the situational tree produced by the symbolic evaluation of the

implementation is examined. Length-of on impure queues is defined as
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<praperty: length-of(Q) = length(x)
where (Q is-a (IMPURE-QUEUE [¥x])) >
By using assertions about Q1 and Q2 in conjunction with the binding information for qil

and dequeued-ql, we obtain the following facts.

length-of(ql) = length(x1l) in srecoivod-quouos'

length-of(dequeue-q1) = lengthly) in Sonquouod-qz

Since x1 = [B ly] holds, the desired relation (%) is shown.
Note that the precondition that Q1 and Q2 are distinct actors was used in obtaining

the assertion about the state of Q1 in 8 e-q2- 1 his precondition guarantees that [ Q2

enqueu
<= (nq:..)] does not change the state of Q1, and hence that assertion could be inherited

from Sdequeued-ql
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Appendix V - Another Specification of One-a-at-Time Serializers

Another specification of one-at-a-time serializers is given as the following four
event specifications. The first event specification is concerned with the creation of a
one-at-a-time serializer. The second one describes the event where the serializer receives a
request. A buck passer actor BP is created and placed in the crowd. Note in (Case-I:...)
clause that BP is sent to the resource R as the continuation of the message in the caused
event. A reply from the resource is always sent to a buck passer BP. This is described in
the third event specification. Then the buck passer sends the reply from the resource to the
serializer G which created BP. The fourth event specification describes how the reply sent

from the buck passer is handled by a serializer.

<event: [ create-one-at-a-time <= R]
<return: G¥ >

<post-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {})(resource: R))) >

<event: [ G <== M]
uhere M = [request: RQ reply-to: C)
(Case-1:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {})(resource: R))) >
{next-cond:
(G is-a (ONE-AT-A-TIME (queue: [1)(crowd: {BP*})(resource: R)))
(BP is-a (BUCK-PASSKER (continuation: C)(serializer: G))) >
<caused-events: [R <== [request: RQ reply-to: BP]] >)
(Case-2:

<pre-cond: (G is-a (ONE-AT-NA-TIME (queue: [Ix]))(crowd: {BP})(resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (queue: [¥x M])(crowd: {BP})(resource: R))) >
<caused-events: {} P
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<event: [ BP <== [reply: Al]
{pre-cond: (BP is-a (BUCK-PASSER (continuation: C)(serializer: G))) >
Ccaused-cvent: [ G <== [roply: (buck: A (continuation: C) (buck-passer: BP)I1»

<event: [ G ¢<== [reply: (buck: A (continuation: C) (buck-passer: BP))]]
(Case-1:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [])(crowd: {BP})(resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (queue: [})(crowd: {})(resource: R))) >

<caused-events: [[C <== [reply: A]] >)
(Case-2:

<{pre-cond:

(G is-a (ONE-AT-A-TIME (queue: [WM Ix])(crowd: {BP})(resource: R)))
(WM = [request: RQ reply-to: CC]) >
<next-cond:
(G is-a (ONE-AT-N-TIME (queue: [$x))(crowd: {NBP*})(resource: R)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serialiser: G)))) >
<caused-events: { [C <== [reply: A]] , [R <== [request: RQ reply-to: NBP]] } >»
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