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1 INTRODUCTION

1.1 GENERAL
1.1.1 Overview
Meteorological observing station density increases have improved
weather analysis and forecast accuracy. Many uninhabited regions of the
world exist, especially over ocean and polar regions, that can be in- f
terrogated remotely from satellites to obtain weather information. The
Defense Meteorological Satellite Program (DMSP) has provided routine
observations of weather phenomena on a scale never before attainable.
Improvements in the aviation weather variables of cloud, fog, and
significant weather depiction have been obtained. The advent of multi-
frequency infrared radiometric sensors, operating on absorption/emission
bands of atmospheric constituents, has opened new horizons for remotely
probing the vertical structure of the atmosphere. This has been especially
true for remotely probing the vertical temperature profile which plays an
important role in specifying atmospheric stability that is so important to
numerical weather prediction. Performance of present methods for remotely
deriving temperature profiles from satellites has been questioned. Even
for cloud free lines of sight, large errors exist in attempting to retrieve
air temperatures from satellite radiance data. These large errors are

especially noticeable in the lower troposphere near the surface and in
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the tropopause region separating the troposphere from the stratosphere.
It is the source of these large errors and the identification of promising
corrective methods that received emphasis in this study.

Two methods of approacl'_l taken in this study included analytical
and statistical techniques. An analysis was made of Air Force Global
Weather Central's (AFGWC) "SOUNDER" computer program package for
operationally retrieving temperature profiles from 12-hour forecast and
satellite data inputs. A Geo-Atmospherics Corporation (GAC) research
version of SOUNDER was developed and used to perform a sensitivity
analysis of the response of SOUNDER to accurate and contaminated
data, error source discrimination criteria, solution convergence pro-
cedures, sensor noise and errors, water vapor, and underlying surface
effects. A statistical analysis was made on a large two week February
1975 northern hemisphere data base at Air Force Geophysics Laboratory
(AFGL). Data files of cloud free satellite soundings and "nearby ground
truth" grid point temperature analyses were generated and used to
derive and verify stepwise regression equations for retrieving air tempera-
tures from satellite data.

Serious sources of large errors were identified, especially those
due to underlying surface effects, and promising methods for error re-

duction were demonstrated. Significant reductions in the rms error at

16




all levels in the atmosphere were obtained with the statistical models.
The remainder of this report provides background information, details
of SOUNDER, discussion of analytical and satistical results, and a

list of conclusions and recommendations.

1.1.2 Background
The problem of obtaining vertical temperature profiles from
passive satellite sensors has been the object of much study for almost

20 years. Kaplan (1)

first suggested that spectral measurements in
the 15y m COZ band could be used for temperature soundings. The
first experimental verification came 10 years later with the iaunch of
the Nimbus 3 satellite. Since that time, a number of other satellites
capable of such measurements have been launched, including the SSE
package utilized in the DMSP, A
The ability to perform accurate soundings on a world-wide
basis is an imporcant element in meeting the desire of the Air Force
to achieve a continuous world-wide weather analysis and prediction

capability. Temperature profiles are also an element in predicting

likelihoods of cloud type and cover,
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1.1.3 Approaches to Temperature Inversion

Two basic approaches are used for temperature inversion.
These may be classified as:

(1) Atomistic Approach

(2) Holistic Approach

The atomistic approach is based on the use of micromodels.
All known physics is used, including equations of radiative transfer,
hydrostatic equation and Planck's equation. Mixing ratios of the various
atmospheric constituents are computed and explicit calculations are made
to include the effects of temperature on liquid water content. Computations
are based either on physical laws or empirically derived relations. Modi-
fications are made on the microsystem level in order to obtain a better

€2)

microsystem (subsystem) model. The minimum-information method is an

exampie of an atomistic method of temperature retrieval. Other examples

(3) (4)

are Chahine's method and Smith's nonlinear iterative method.
The holistic approach utilizes an information model. Models

are built up which best fit the needs of the application at hand. For

the temperature inversion problem, holistic methods are statistical in

nature and are based on achieving the best inversions as determined via

testing on an independent data base. Examples of holistic inversion methods

)

are the statistical eigenvector method (Smith and WOolf)( : and regression
analysis.

It should be mentioned that some methods are a combination of
atomistic and holistic methods. For example, the '"full statistical"

method (Fritz et al.)( 6 )

uses botli transmittance functions and temperature
and radiance covariance matrices. It should be pointed out, however, that
the minimum-information method is not a holistic approach even though it is
usually thought of as a special case of the "full statistical" approach.

This is due to the fact that the scalar '"noise-to-signal power'" ratio is

selected on the basis of expected calibration errors and expected errors in
the guessed radiances (Smith, Woolf and Fleming)f 2) In the holistic
approach, this parameter would be chosen, for example, to minimize the mean-

squared prediction errors in the vertical temperature profiles, using an

independent data base for performance testing.
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Based on this discussion, it is clear that the essential
difference between the two methods is the way in which models are built
up. Every temperature inversion technique requires a model which relates
the measured radiances and the vertical temperature profile. The model
may or may not include other parameters, such as season, latitude, scanning
pattern, initial forecast field, and so forth. The essential difference
in the methods is that, in the atomistic approach the model is developed
based on physical models using little or no actual data. On the other hand,
the holistically-derived model is based on analysis of a significant amount
of actual data for which independent verification may be obtained.

Neither the atomistic nor the holistic approach offers a
panacea for all problems and the choice of method depends upon both the
nature of the problem and the availability of a representative data base.
For initial development, an atomistic approach is almost mandatory, since
little or no actual data is available. However, as data becomes available,
the use of a holistic method should be considered.

The development of methods for temperature retrieval has, in
fact, followed this path. The most widely used technique is the minimum-
information technique, used in conjunction with the empirical correction
technique of Weinreb and Flemingﬁ 7)) Empirical and physical models are
used for computation of the transmittances. Several hybrid techniques were

then tested. Fleming and Smith( 8)

compared the iterated '"full statistical"
method to the iterated minimum-information method, the iterative nonlinear
method of Chahine( 9 )and a general nonlinear iterative method. Experimental
evaluation indicated that the "full statistical' method gave the best overall
performance. This is an interesting result since this is the only method,

of the four analyzed, which included statistical information based on actual
data in the model.

In another related study, Crosby and Weinreb( 10 )compared the
performance of the "full statistical" method and the minimum-information
method for December-January data. Their results indicated that minimum
information retrievals were uniformly worse, with rms differences of up to
1°K in the region between 200 and 300 mb and about 1/2°K above 300 mb.

However, there was also a degradation of about 1°K at 800 mb.
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Malkevich, et al.( 12)

used empirical orthogonal functions in

a linear regression model to estimate temperature profiles. The empirical
functions were found by using the kernel function of the integrated form of
the equation of radiative transfer.

Recently there has been an increasing interest in the use of
statistical methods. Smith and Woolf( S )used a statistical eigenvector
method for estimation of vertical profiles of temperature, moisture and
cloudiness. Comparisons with the minimum-information method indicated that
the rms error in predicting cloud-free brightness was significantly reduced
with the statistical eigenvector method. Klein, Kyle and Smith( 12)
compared the minimum-information and statistical eigenvector methods on
operational SSE data and concluded that, on the basis of the data studied,
neither could be strongly recommended over the other. The statistical
eigenvector solution was better for tropical soundings and in the lower
troposphere. At mid-latitudes, the minimum-information solution was better
between 250 and 500 mb but poorer elsewhere.

In yet another study, Smith( 13 )

investigated the effect of mea-
surement noise on both the minimum-information and statistical eigenvector
retrievals. Both were found to be very sensitive to noise, if the model did
not account for the noise. The sensitivity was substantially reduced when

the noise was accounted for, however.
1.2 METHODS OF ANALYSIS

1.2.1 Theoretical Model for Temperature Retrieval

through a Cloudless Atmosphere

For a non-scattering cloud-free atmosphere in local thermodynamic

equilibrium, the integral form of the radiative transfer equation is

N(v) = B[v,T(ps)] T(v,ps)

x(p.)
s
e dt(v,p)
JO B[v,T(p)] ax(p) dx (p) (1.1)
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where
N(v) = outgoing spectral radiance within a spectral window
centered at frequency Vv
B[v,T] = Planck radiance for temperature T at frequency v
T(v,p) = transmittance of the atmosphere above pressure p
x(p) = arbitrary monotonic function of p
Py = atmospheric pressure at the earth's surface
The objective is to solve (1.1) for T(p) given a finite set
of radiance measurements N(vl), N(vz),....N(vk). One significant
problem in (l1.1) is the nonlinear dependence of B[v,T(p)] on T(p):
Clv3
B[v,T(p)] = — —72;—- - (1.2)
exp —5?57— -1

where Cl, C2 are known coijstants. The problem may be linearized by noting
that, in the infrared region and at terrestrial temperatures, the variation
of B due to changes in v is much less than the variation due to T.

The variables may be separated by first computing the brightness

temperature TB(v) from (1.2):

T, () = B L [v,N(v)]
€.V
- C (1.3)
clv3
n N (V) + 1

The variables may then be separated by normalizing the measured spectral

radiance to the black-body equivalent at a reference frequency vr:
N ) & Blv,T ()] 1.4)
r r’' B

Then a normalized version of (l.1) may be solved:

Nr(v) = B[“r’T(Ps)]T(“’Ps)

X(ps)
_dt(v,p)
= JO B[vr,T(p)] ax (p) dx (p) (1.5)
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In this form, the equation is linear in Br(p) = B[vr,T(p)]. Once Br(p)
has been found, the temperature profile estimate is found by using Planck's
equation:

T(p) = BT [v_,B ()] (1.6)

1.2.2 Minimum Information Method

In the minimum information method, (l.5) is written in a
perturbed form by using the initial guessed profile. Denoting the first

guess profile by To(p), we have from (l.5):

No(v) = B[vr,TO(ps)]

x?pq)
: dT(v,p)
J dx (p) dx(p? (e 7)

B[vr.io(p)]
o

Then it is assumed that To(pq) = T(ps) by virtue of the fact that accurate

surface temperature estimates are available from the "window channel" mea-

surements. With this assumption, the perturbed equation is

AN(v) = Nr(\)) - NO(\))
x(pg)
N - dt(v,p)_
i ’M A};l\)rvl(l))l dX(p) d‘((P) (1_.8)
where
HB[vr,T(p)l = B[vr,F(p)] - B[vr,TO(p)] (1.9)
Now by using numerical quadratures, (1.8) can be written in the form
n, g N(v,)
1 1
= ? lij bi; < (R T B0 (NGRS, (1.10)
where
b. = IVA»B \ 'T .) 1.11
§ = OBIVLTR)] (1.11)

and rij is computed as a function of x(p) and the integration rule.

In practice x is chosen to be proportional to p2/7, which gives essentially

e
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equally-spaced intervals. Then, using trapezoidal integration:

LT
1 7 4,4 5 3=l

ij T1,3-1 - T4,341 5 1<9<L (1.12)

where Tij = T(Vi’pj) and pj is ordered monotonically increasing with j.
Thus j=1 corresponds to the top of the atmosphere (10 mb in this study),
while j=L denotes the 1000 mb pressure level. For DMSP, L = 70.

It is convenient to write (1.10) in vector form as
n=7TIb (1.13)

where n is an M-dimensional column vector of radiance variations, b is an
L-dimensional column vector of brightness temperature variations and I is the
matrix of transmittance functions. Since, in practice, L > M, the problem of
inverting (1.13) to find b is ill-conditioned and the solution is non-unique.
However, once a solution for b is found, the temperature profile can be found
by using (1.1), (1.9), and (1.6).

In order to find an appropriate value of b, consider the
following generalized least squares problem. We wish to fiud b to
minimize

1

J) = b B b 4 a-TE) R'l(n-l‘b) (1.14)

where E and R are positive definite symmetric matrices. The value of

b which minimizes J(b) is
b = EPT(TET® 4 R) 'n (1.15)

This equation may be interpreted in terms of Bayesian estimation theory
if several assumptions are made. Assume that b is a zero mean Gaussian
random variable with covariance matrix E. Similarly assume that n - I'b
is a zero-mean Gaussian random variable with covariance matrix R. Then
g is the conditional mean of b given n and is also the minimum-variance
estimate of b. Eq. (1.15) is also in the form of the measurement update

(14 ),

equation for the celebrated Kalman Filter (Kalman In practice
the values of E, R and T will not be known precisely and the random
variables will not in general be Gaussian. Nevertheless, this technique

can yield quite good performance. In the vertical temperature retrieval
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literature, (1.1) forms the basis of the '"full statistical" method

) ; -
(6 " and is generally used several times in an attempt

(cf. Fritz et al.
to iteratively converge to the correct solution.
The minimum information method uses a special case of (1.15)

and is found by setting

1 (1.167)
Then

Ee =1
bmi F(ETS 1) n (1.17)

where y = Oé/oé is the '"moise-to-signal' power ratio. This solution was

considered by Foster (1.15) who noted that it corresponded to a maximum

entropy ensemble in which there is a minimum of information regarding the

statistical characteristics of the random variables b and n. This is

equivalent to the assumption of isotropic scattering about the mean for

each random variable and further that the random variables, under the

Gaussian assumption, are independent.

(10 )investigated problems of this type and suggested

the use of a trial solution. The final solution would then be constructed

to minimize the deviation from the trial solution. The elements of this

process are present in both the "full statistical" and the minimum-informa-

tion solutions. As E > 0 (or y>®) for fixed R, b > 0 and the estimated

temperature profile approaches the initial guessed profile. This also

holds if R » « with E held fixed. In this case either the confidence in

the initial guessed profile is high or the measurements are extremely bad.
The opposite situation occurs when confidence in the initial guess

is low (E » «, with R fixed) or the measurements are extremely good (R =+ 0,

with E fixed). 1In either case y~+0 and b is obtained via the pseudoinverse:

§ = EF(rErT) In (1.18)

Note that n = Fg, thus satisfying (1.13), and in addition the
weighted cost

gy =bT EL b (1.19)
is minimized.

This method is also closely related to the method of Backus and

Gilbert( 17) who investigated the non-uniqueness problems associated with
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determination of fine geophysical structure from gross earth data measurements.

In their method, they find a solution b which minimizes the quadratic cost
~ R -1 -
(b-bﬂ) W (b—bo) (1.20)

where b, is the guessed brightness profile and W is a positive-definite
symmetric weighting matrix. They also constrain the estimated measurements
to correspond to the actual measurements:

a®) =T (1.21)

Ly
wnere n denotes the vector of actual radiance measurements. The solution

is found by using the following iteration:

IV

[ m , - ‘—1
4 e T tOT™ ]
% - 86 - e® e, -5%)) (1.22)
where 1
%! - 31‘ ‘ (1.23)
db .
lg(k)

Note that G(k) Y I from (1.13). This iteration is thus similar in form
to the '"full statistical" approach except that an additional term
(;(k)(b0 - p&

& o v T = g cd 2 e ] "
n(b) * n, while in the full statistical or minimum-information approach

) is present. However, the fundamental difference is that

(1.21) is never satisfied. It is interesting to note that in their numerical
studies, Backus and Gilbert simplified (1.22) by assuming bO = g(k). This
is precisely what is done in the iterated '"full statistical' and minimum-
information methods, namely, at each step, the best estimate of the initial
profile is set to the estimate on the previous iteration. With this assump-
tion, the method of Backus and Gilbert reduces to (1.18) under the assump-

() _

tions W= E and G [. It is interesting to note that their method does
not explicitly account for statistical uncertainty in the measurements as

do the "full statistical" and minimum-information methods.
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The minimum-information solution is seen to offer a compromise
between using the initial guess profile and matching the guessed and measured
radiances. The virtue of using the first guess profile is that erroneous
atmospheric waves which may be generated as a result of ill-conditioning
are suppressed. However, this smoothing effect can lead to biases in the
troposphere under partially cloudy conditions.( 2)

The DMSP temperature retrievals are performed in the SOUNDER
program, in which up to five iterations of (l.17) are made. Using the

notation

¢c=rert +ynL

: z th . :
, the iterations proceed as follows. On the k iteration

* * (k- n, Ak~
pHEY _ E=1) o 2lerll

+ C[n

J

x
where T 1is the brightness temperature computed from the temperature
profile via Planck's equation, n is the measured spectral radiance vector,

~ (k~ * (k-
and n =k (&=L

is the predicted radiance found from T and the radiative
transfer model. The surface temperature estimate is not iterated. The
iteration terminates when the radiance deviation in each channel falls

below a preset threshold. In DMSP, all thresholds are set equal. It should
be pointed out that this may lead to problems, since the uncertainty

associated with each channel is not the same. Inspection of individual

iterations reveals that channels 1,2,3 are almost invariably the last to
meet the threshold requirement, which is in intuitive agreement with the fact
that expected errors for these channels are greater. This may induce errors

larger than necessary in the temperature estimates above 200 mb.

1.2.3 Regression Analysis

The use of regression analysis is a powerful tool in analyzing
the relationships between sets of variables of different types. 1In the

present problem, we are interested in analyzing the relationship of vertical

temperature profiles, actual measured spectral radiances, initial forecast
fields (first guess fields) =nd the TTPACK analysis.
The several objectives of *“he analysis were:
(1) Investigate the information content of the initial
forecast field and spectral radiances relative to

vertical temperature profiles.
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(2) Perform a validation study of the minimum-information
technique relative to an optimum linear processor.

(3) Develop methods for improving the minimum-information
technique.

(4) Perform analyses to determine robustness of estimators.

It was decided that regression analysis would be used for developing
statistical models rather than principal components (statistical eigenvector
methods) for several reasons. First, a weakness of the principal components
methods is that it depends on the units of measurement. If a variable is
measured in such small units that its numerical values dominate those of the
other variables, the first principal component will essentially reflect the
behavior of this variable. This is sometimes handled by normalizing each
variable to zero mean and unit variance. However, the correct weighting to
be given to each variable is not clear, since it depends on the nature of
the problem. The most significant variables might be given higher
weighting. 1In the sounding problem, this is equivalent to saying that
accurate temperature retrievals may be more important in certain pressure
regions than in others. Secondly, by working in the natural units of the
problem, the results are made easier to interpret. Thirdly, the first few

() (13 ) ooked

sufficiently similar to the transmission functions to indicate that regression

principal components computed by Smith and Woolf and Smith
models may be competitive in practice. Finally, the objectives of this
study were limited to investigation of the minimum-information solution and
methods of improvement rather than investigation of the many possible
alternatives to temperature retrievals.

1.2.3.1 Regression Models

Two different regression models were utilized in an attempt to
assess the performance of the minimum information solution. For temperature,

; = EDY A
the estimate for the i— level is

= 13 8
Mo Jem B .+ 3 B f b lE .00
1 =1 ij 0j kel ik 'k i
where Toj is the first guess at the j£h level and ry is the measured spectral
radiance for the kgb'channel. The coefficients dij‘ Bik and Yi are determined

by means of a stepwise regression technique in which only the most significant




coefficients are retained in the model. The units for temperature are °C
: . 2 -1.-1
and the units for the radiances are ergs (ecm - sec - ster - c¢m ) .
For estimating heights, the model is
4 13
B o= ) 8. i+
j=1 9

:
|
|
|
!
|
|
|
|

8
L . g ) T k .
k£1 €k 1k Ti, 1=1, .04 l3

where Hoj is the first guess height ({in ft) at the j'-t-h level. The regression

coefficients 6ij’ €k and T, are found by the same stepwise regression |

method used for the temperature estimates. The regression method used

was performed by the program RLSEP, which was available at AFGL as part

of the International Mathematical Statistics Library (IMSL). :
It is important to point out that the regression method implicitly

takes into account empirical linear correction techniques, such as the method

C7)

of Weinreb and Fleming. In this method the observed systematic
disagreeement between temperature inversions and RAOBs is reduced by employing
a linear correction to the spectral radiances. With the usual relation
between brightness temperature and radiances given as

b = Cn,

Weinreb and Fleming proposed adding a term to n to give

b' = C(n + 6n)

The value of &n was then found using a least squares fit to a set of
actual RAOB data. This method is used in the AFGWC SOUNDER program. The necessity
of using such a technique is an indication of the use of statistical methods

in present use and of the usefulness of statistical techniques in general.

1.2.3.2 Stepwise Regression

In computing linear regression models, it is important to deter-
mine the effect of using different subsets of independent variables. It is
desirable to use only those variables which significantly reduce the regres-
sion errors. Overfitting can lead to models which are overly sensitive to
noise. Stepwise regression provides a partial automation of the variable
selection process. It is based on a technique which in the process of
computing an ordinary regression on m predictors obtains, at essentially no
extra expense, m intermediate regressions which are useful in determining

functional relationships between the dependent variable (temperature or height)

28




and several selected subsets of the total set of independent variables,
or predictors. In the simplest case, one variable is added at each step.
There are several meaningful statistical criteria which may be used to
determine which predictor variable to add to the model:

(i) add the predictor whose F-to-enter statistic has the

largest value.

(ii) add the predictor that gives the greatest decrease in the

residual sum of squares.

(iii) add the predictor which gives the greatest increase in the
multiple correlation between the dependent variable and the
predictors.

The F-to-enter statistic for a predictor is the F-statistic for
testing the significance of the regression coefficient the predictor would
have if it were added. All four of these criteria are, in fact
mathematically equivalent; however the F-to-enter statistic was used in
programs utilized in this study.

In addition to adding variables it is also desirable to provide
for removal of variables. It may happen that recently added variables
may in combination render a variable entered at an earlier state statistically
insignificant. Removal of variables is based on an F-to-remove test.

In the stepwise regression procedure, the test for removal of predictors is
first made for each predictor already in the model. If a predictor is removed,
the program proceeds to the next step. If no predictor is removed, the step
continues with the addition of a predictor. The stepwise regression

procedure terminates when no predictor is either deleted or added at a

step. The details of the stepwise regression procedure may be found, for

example, in Draper and Smith.( 18 )

1.2.4 Discussion of DMSP Analysis

A simplified information flow diagram for the DMSP minimum-
information technique is shown in Fig. 1.1, depicting the major inputs,
outputs, computing blocks and parameters.

As a result of investigating the minimum-information techniques
and discussions with AFGL and AFGWC personnel, several possible sources of

error have been defined. 1In approximate order of decreasing significance
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they are:

(1) Clouds. Currently, the DMSP software selects a

(2)

(3)

(4)

(5)

(6)

The

single candidate sounding from each 240 nautical mile

grid point to generate the clear column radiance file.

This candidate is chosen purely on the basis of the ratio

of the observed radiance of an upper air channel to the
window channel. While this test is employed to eliminate
cloudy areas, discussions with AFGL personnel indicated that
considerable cloud contamination may occur. Future work will
be necessary to define and evaluate cloud contaminant reduc-
tion techniques, such as the adjacent field method.

Water Vapor Correction. The transmittance functions of

the atmosphere are not updated for the contribution of

water vapor arising from changes in the temperature of the

profile (via a constant mixing ratio assumption) as the algorithm

proceeds.

CO2 Transmittance. Errors in Tcoz cause errors in the

inversion process since this parameter is used directly

in the inversion. At present, no temperature dependence is

assumed.

Temperature Profile Adjustment. The principal sources of

error here appear to be the problem of determining the trans-
mittance matrix [ accurately and defining a more complete
error model.

Empirical Corrections. This technique is used to correct

for bias before the inversion is performed.

Channel Width/Frequency. Errors in assumed channel center

frequency and width cause errors in the computed temperature
profile.

Other possible sources of error include level conversion,
layer spreading, and earth location.

minimum-information solution which is being used for temperature

inversion is a prime candidate for a source of a significant percentage of the

observed errors. One of the assumptions employed in the model is that the




errors associated with each IR channel have equal variances. (cf. Section
1.2.2). The accuracy of this assumption is questionable. Another assump-
tion, which is more questionable, is that the temperature estimation errors
associated with each pressure level are of equal variance. It is further
assumed in the model that all errors (both radiance measurement and tempera-
ture inversion) are uncorrelated. This assumption does not appear to be met
in practice.

The transmittance matrix I' is formed by taking differences of the
transmissicn functions, so that errors in the transmission functions translate
directly in errors in the transmittance matrix. One source of error is the
assumption that T is independent of temperature. Also, I' is determined using
models of water vapor transmittance, ozone transmittance and CO2 transmittance
and thus is dependent on accuracy of all of the models.

The minimum-information solution may be modified by doing several
things. First, the adequacy of the noise models should be validated. This
has been done by performing statistical analyses on the data available at
AFGL. Covariance matrices for both the measurements and estimation errors
have been estimated.

The matrix ' can also be adjusted to achieve better performance.

Two criteria can be used; (1) variance matching, (2) whiteness tests.
Variance matching is easier to perform, but whitening the residuals (differ-
ence between measurement (radiance) and estimated measurement (brightness
temperature), is a more powerful approach. A hybrid approach which is
similar to whitening the residuals is used in the sequel to study the proper-
ties of the minimum-information method.

Another problem with the minimum-information method is that it
is, in its present form, an ad hoc approach. From a Bayesian point of
view, only a single iteration need be taken since the model is linear with
no dynamics and a single vector measurement. This problem has been addressed
implicitly in this study by comparing minimum-information retrievals with

statistical non-iterative methods.




2 MINIMUM INFORMATION TECHNIQUE AT AFGWC

The minimum information technique is part of an AFGWC soft-
ware system called E-package or EPKG., Most of the subprogram
components of the system are written in the language of FORTRAN V
and in the particular dialect which is resident on the UNIVAC 1100 Series
Operating System. Extensive use has been made of the unique features
of FORTRAN V and 1100 Operating System in the EPKG. Because of this,
implementation of the EPKG on other systems would be a very involved
process and difficult, particularly if undertaken by one not familiar with
the UNIVAC Operating System and FORTRAN V.

The procedures, calculations, etc. which constitute the mini-
mum information technique are embodied in the main program SOUNDER
and its associated subprograms of the EPKG. An annotated flow diagram
showing the major procedural and computational steps in SOUNDER is
given in section 2.1. The functions of the simpler subprograms called
by SOUNDER are described on the flow diagram. The functions of the
more complex subprograms are described in sub-sections of 2.1 verbally,

diagrammatically or by a combination of these forms.
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2.1 MAIN PROGRAM SOUNDER

The following annotated flow diagram shows the major pro-
cedural and computational steps in SOUNDER which relate to the im-
plementation of the minimum information technique. The operations of
SOUNDER which deal with the locating or addressing and storage and
retrieval of data from the AFGWC data bases are not shown. The
decision criteria described as well as the values quoted for constants
and test variables were those in use in the operational version at AFGWC
as of 1 April 1977.

Various levels of detail have been used in describing the
operations in SOUNDER and its subprograms. The general guidance used
in determining the level of description detail was the specificity and/or
uniqueness of the operation to the implementation of the minimum in-
formation technique at AFGWC, For example, subprogram elements
ITERAT, H2O0TAU, and COFWGT are described in considerable detail as
they constitute the essence of the minimum information technique. On
the other hand, subprogram elements THKNES, MANTMP, and TRPFIN
which employ techniques familiar to most meteorologists for the deter-

mination of thicknesses, the height and temperatures of mandatory




levels and the location of the tropopause from lapse rate changes are

described very briefly. In between these two extremes are subprogram

clements INITMP and SMOOTH which, although for the most part use
conventional meteorological procedures, also have a few somewhat
unique but critical functions in the implementation of the minimum in-

formation technique.
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Determine satellite index number for
current bird, number of radiance sets
to be processed and read in first
guess statistics for the bird.

Read in D matrices which are used to
compute a statistical correction to be
added to the satellite measured
radiances.

Read in C matrices for C Matrix
temperature retrieval technique.

The data items contained in the radiance
set are described in Table 2.1.




Subroutine THROW performs the following
“unctions:

THROW 1 - Terminates analysis of a sounding
whose underlying surface was land

2 - Terminates analysis of a sounding
whose zenith angle exceeds 60°

3 - Determines zenith angle index number
of stored CO, transmission function

Abnormal
Return

Subroutine TRAMIS determines the drum
sector addresses of the CO, and Oy
TRAMIS transmission functions for the satellite,
month of the year, latitude and zenith
angle of the sounding and then inputs these
functions from mass storage. A description
of the stored transmission functions is
given in Table 2.2

Subroutine INITMP uses stored climato-
logical profiles and AFGWC analysis

SMOOTH ﬂ———ﬂ INITMP temperature fields to construct first guess
i profiles. Subroutine SMOOTH smoothens

the transition from the climatologically
derived and analysis sections of the
first guess profile.

Abnormal
Return

37




=3 =
I '
;f H2OTAU — —d
LL PU— p——
f—"
'i COFWGT —

==

|

D,

ITERAT

a8

Subroutine ITERAT executes the specific
procedures of the minimum information
technique to retrieve the temperature
profiles.

Subroutine H2OTAU calculates the com=-
bined carbon dioxide, water vapor and
ozone transmission function for channel
] through 7.

Subroutine COFWGT generates the
coefficient matrix
see Ref. 2 equation 12.

ne THKNES

S vetweo ind heights ot

“alculates the

thickn
the latory levels from the

emperature profile and an

retrieve

assumed water vapor profile.

S




NO

Retrieve
Temperatures
by C Matrix

Solution

Bl

[
J CMTEMP |

<«

| MaNTMP ’

TRPFIN

i ]

39

YES

Subroutine CMTEMP retrieves the
temperature profile by the
statistical C matrix solution
technique,

Subroutine MANTMP calculates
temperatures at the mandatory
levels by interpolation between
the computational levels.

Subroutine TRPFIN determines the
tropopause level in the final
temperature profile,




Table 2.1 Data Items in a Radiance Set of the READYRADIANC File

Name

Description

Latitude Belt No.

Longitude
Latitude
Minutes

Hemispheric Indicator

3D-NEPH Location

Julian Hour
Channel Radiances
Zenith Angle

Terrain Height

Surface Indicator

Mandatory Level
Analysis Data

An integer from 1 to 45 denoting the

4 degree latitude belt in which the
sounding was made. North Pole is belt
no. 1, South Pole is belt no. 45
Longitude of sounding

Latitude of sounding

Minutes after the hour of sounding

Indicator which shows the hemisphere of
the sounding

The 3D-NEPH box no, I and J coordinates
of sounding

Julian hour of the sounding
Measured radiances for the eight channels
Zenith angle for the measured radiances

Terrain height at the location of the
sounding

Indicator denoting the type of surface
(sea, land, ice) underlying the sounding

AFGWC analysis temperature and D values
for the fifteen mandatory levels from
1000 mb. to 10 mb.
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Name

Description

Tropopause Data

Dummy Block Station
Number

bz

AFGWC analysis tropopause temperature
and pressure

A number which identifies the satellite

from which the sounding was made and

additionally denotes information relevant
to the filing of the sounding data
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Table 2.2 Description of the Stored Carbon Dioxide and Ozone

Transmission Functions

Carbon Dioxide Ozone

No. of atmospheric pressure levels at

which transmission from the satellite

is specified 70 70
No. of satellites 4 L8
No. of channels 6 6
No. of atmospheres 6 5
No. of zenith angles IS 68 ok

* (Ozone transmissions are not satellite specific

** (Ozone transmission is specified for 0° zenith angle only

Satellites - WX6530, WX8531, WX9532,

Carbon Dioxide Atmospheres - 15° N Annual, 30° N Winter
30° N Summer, U.S. Standard
60° N Winter, 60° N Summer

Ozone Atmospheres -

WX1534

Tropical, Mid-latitude summer,

Mid-latitude winter, High latitude

summer, High latitude winter
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2.1.1 Subprogram Element INITMP

Subroutine INITMP builds the first guess temperature profile.
The temperatures and heights are specified at 70 computational levels
which are related to pressure by the equation
N = ap2/7 + 8 (2.1)
where
N = computational level number (integer)
P = pressure (mb)
@ = 9.9587402862
B = =-1.6716270699
The constants @ and 3 are determined by requiring that

SO mib

il

N =1 when P

1000 mb.

]

and N = 70 when P

For the computational levels above 10 mb., temperatures corres-
ponding to one of six climatological atmospheres listed in Table 2.3
are used. The particular climatological profile selected is determined
by the month and latitude of the sounding.

For the computational levels which correspond to the mandatory
levels from 10 mb. down to 1000 mb., the AFGWC analysis tempera-

tures and D values are used for the first guess temperatures and heights.,




Table 2.3 Climatological Temperature Profiles Used Above 10 mb.

i 152 N or S Annual
2. 30° N Winter
A, 30° N Summer
4. 45° N Spring, Fall
8l 60° N Winter
6. 60° N Summer

If a superadiabatic lapse rate results in 850 to 1000 mb. layer,

the temperature at 1000 mb. is reduced by 1°C while the temperature
at 850 mb. is increased by .5°C. Successive replications of this
procedure are made until the lapse rate in the layer is no longer
superadiabatic.

INITMP calculates the temperatures at the computational levels
between the mandatory levels. The interpolation algorithm for the
temperature at a computational level lying between any two mandatory
levels which do not bracket the tropopause is given by

Tj = Tm = (T = Tm-1) * Ry

where _ o (P} = In (Pp3) (2.2)

o In {Py) - In (Pm—l)




Ti, P{ = temperature, pressure at the computational
level

Tm. Pm = temperature, pressure at the first mandatory
level below the computational level

Tm—ll Pn-1 = temperature, pressure at the first
mandatory level above the computa-
tional level

The interpolation algorithms used when the mandatory levels m and m-1

bracket the tropopause are given by

In (Pj) - In (Pp-1)
In (Pt) - In (Pp-1)

Ty = Tm-1 + (Tg = Tm-1) * (2.3)
when the computational levels lie above the tropopause and

In (Py) = 1n (B3
m = %) * G ey - n (B

(2.4)

when the computational levels lie below the tropopause. Tt and P; are

the temperature and pressure of the tropopause.
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2.1.2 Subprogram Element SMOOTH

Subroutine SMOOTH passes a three point smoother thru the first
guess temperature profile from level 21 upward to level 10. The
purpose of this is to remove any discontinuity that might exist between
that portion of the first guess temperature profile obtained by interpo-
lation of the AFGWC mandatory level temperatures and the climatological
first guess data used above 10 mb. The smoothing algorithm is given
by

Tp = Wi ™ By + Wo g * Ty & Wi 3 * Ty 4g (2.5)

The weights Wj,i are given in Table 2.4.

Table 2.4 First Guess Temperature Profile Smoother Weights

i Wi i Ws,i W3 i
12 .1 .8 .1
13 ol s Sl
14 1 .7 .2
15 i «0 .3
16 .1 .5 .4
T el .4 9
18 e w5 2
19 oD ) il
20 2 .7 ol
21 .1 .8 .1
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2.1.3 Subprogram Element ITERAT

Abnormal
Return

%\nrma 1

Return from

7

Calculate Planck _]
Function at Reference
Frequency for all ‘
! Computational Levels
l and Surface

S0 SR

r Convert Measured
Radiance to Equivalent
| Radiances at Reference

L Frequency

—

Compute Contribution of

Underlying Surface to

Calculated Radiance at
Satellite Level

Calculate transmission functions due to

water vapor, ozone and carbon dioxde
at computational levels 1| through 70 for

channels | thrcugh 7.

If abnormal return from H2OTAU, execute
abnormal return to SOUNDER,

Compute the coefficient matrix C
(Equation 12, Ref. 2 )

Planck function for the surface level
and computational level 70 (1000 mb
level) are equal.

Calculate equivalent radiative temperature
for each measured radiance, then calculate
Planck radiance for these temperatures at
the reference frequency.

BSFC (NU) = BSURF * TRAN (70, NU)
where
BSFC (NU) = Calculated radiance at
satellite level for
channel NU
BSURF = Planck Radiance of under-
lying surface at reference
frequency and temperature
of level 70
TRAN (70, NU) = Transmission, surface
to satellite for frequency of channel
NU.
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( Compute Atmospheric
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"
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DELWND
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70

¥ BNUO(L)*DTRAN(L,NU)
L-1

CRAD (NU)

where
CRAD(NU) = Calculated Atmospheric

Radiance at Satellite lewl,

channel NU

Planck Radiance at the

reference frequency at the

L level

DTRAN(L, NU) = Transmission difference
through the L level at
frequency of channel NU

BNUO(L) =

NA
DRBAR(D) + 3
=1

DR(I) D(1, N*(SRAD(]) - RBAR(]))

wnere

DR(D) Correction to be added to
equlv llk nt measuread racdiance
of channel I
D(,]) = “"D" matrix
DRBAR(I) = Mean radiance correction
vector
SRAD(]) = Equivalent measured radiance
of channel J
RBAR(]) = Mean radiance vector

DELWND = SRAD(NR)- BSFC(NR)-CRAD(NR)
where
SRAD(NR) = "D" matrix corrected
equivalent measured radiance
of window channel NR
BSFC(NR) , CRAD(NR)described previously

If the calculated window channel difference
1s less than ~CLDDIF, the sounding 1s
assumed to be too cloud contaminated near
the surface for further analysis and an
abnormal return to SOUNDER is executed.
CLDDIF 1s currently set equal to 1.1,




Abnormal
Return

Compute Sum Square |

and Maximum of l
Deviations of

Measured from ‘

|

Calculated Radiances
e |

A
_~"Maximun!

Number of
Iteration

Abnormal
Return

YES

NO

Use Coefficient _1
Matrix C on Radiance \
Deviations to !
Compute New Planck
Profile

49

If calculated window channel difference is greater
than HOTSFC, execute an abnormal return to
SOUNDER as the sounding cannot be processed
further either because the underlying surface
temperature 1s too hot or the initial temperature
profile guess 1s bad. HOTSFC is currently set
equal to 1.1

If the sum squares of the deviations SMSQ is
less than or equal to SNOIS and the maximum
deviation DEVMAX is less than EPS, jump to 15
and compute final temperature profile. SNOIS
1s currently equal to 1.5 and EPS equal to .5.

Abnormal return to SOUNDER if maximum number
of 1terations have been performed.

The coefficient matrix € computea in COFWGT is
used on the vector of deviations of calculated
from measured radiances to compute a new Planck
Function Profile.




Temperature Profile

l Compute [inal
| el N2

| from Planck Function
1

Profile

50

|
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Return to SOUNDER
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2.1.4 Subprogram Element HZOTAU

o=

Calculate
Water Vapor
Path Lengths in
the Layers

¥y

e —
i Calculate
} P, T& Pw
| Terms
| Vapor

in Water
ransmission

S, S

Calculate
Water Vapor

Tre

1ssion for
Window Channel

|
|
|
|
|
- IS, |

RSN AR

| Calculate Water |
Vapor Transmission |
o —~ |

for Channels |

|

|

|

4, Sand 6

[

Water

(’Abmxmq l\: “Vapor Trans.,

at Any Level
~ RETURN _/ vES )

N o

Entry Point H20TAU

ibroutine LSUBS

Calculates the saturation vapor pressure,
average temperature, and associated
temperature functions for the “water
vapor layers". The "water vapor layers"”
start at level 43 and end at level 70.

Using a fixed relative humidity profile for 3
the water vapor layers (See Table 2.5)
calculate water vapor pressure in each
layer ar

1the amo

water vapor
traversed in the layers given the zenith
angle of the sounding.

Calculate for each of the water vapor
layers t

pressure, temperature and
water vapor path length dependent terms
of the water vapor transmission functions.

Calculate the water vapor transmission

for the window channel, 1.e. channel 7,

3t comg nal levels 44 through 70.
Levels 1 through 43 set transmission
equal to 1.

itialize transmission for channels 4, 5
and & at all computational levels to 1.
Calculate water vapor transmission at
computational levels 48 through 70.

Test calculated water wapor transmissions.,
If transmission at any level is negative,
execute abnormal return to ITERAT,
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Imtialize
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e o o

e et
Imitialize
Transmissions at
Levels 1 through 43
l for Channels 4, 5 & 6

|
|

Calculate Intermediate
ssion Values at
Levels 44 through 70
Lfor Channels 4, 5 & 6

Transm

|
J

B B Lo A

Calculate Final
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All Levels, Channels |
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e S |

~~ Trans.
&t Any Level
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Negative”
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Normal )
Return

Initialize transmissions for channels 1,
2 & 3 at all computational levels to
CQOy transmissions.

Initialize transmissions for channels 4,
5 & b at computational levels 1 through
43 to CO, transmission.

Calculate intermediate transmission
values equal to product of CO; and
H, O transmissions at levels 44
through 70 for channels 4, 5 & 6.

Calculate TRAN, final transmission
TRAN = TRANI * TRANO SEC®

TRANI = 1nitial or intermediate value
TRANO = ozone transmission
Gl = zenith angle

If transmission at any level for any
channel is negative, execute abnormal
return to ITERAT.




Table 2,5
Relative Humidity Profile in the Water Vapor Layers
[ ) I i A T _ « e
Computational | Average " Relative | Computational | Average | Relative
Level No. | Layer ! Humidity | Level No. | Layer | Humidity
| Pressure | . | Pressure !
3 = i T t
| | | | |
43 : i o l
| 198.860 | 158 | | 511.467 | .476
44 ; | ‘ 58 |
5 214.694 | .190 i 542.359 .491
45 ' i ! 59 |
| 231.409 | .226 | 574.562 | .507
46 | ; f 60 |
| 249.034 1 .257 | 608.107 022
47 | { | 61 j
: 267.597 | .282 ‘ 6431629 1 533 :
48 ! 1 62 :
| 287129 | 318 | | 679.361 | .544
49 1 ; 63 | ;
| 307.658 | .343 \ | 717.136 + 902
50 : 1 1 64 |
: 329.215 | .364 | | 756.388 .588
51 ' >
52
53
54
99
56
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Subprogram Element COFWGT

Calculate Tran
Differences
DTRAN(K, ])

, level N

Smallest
AA(L, D) -

1SS

DTRAN(K,J) = TRAN(K-1,])-TRAN(K*1,])
where

TRAN(I,]) = transmission at the
I computational
leval and J channel

N(K,D*
DTRAN(X,])
n equation (12)







2.2 GAC RESEARCH VERSION OF SOUNDER
The Geo-Atmospherics Corporation's (GAC) Research Version of
SOUNDER is a modification of the SOUNDER program which was opera-

tional at AFGWC on 1 April 1977. Implementation of the minimum

information technique in the research version is identical to that in the
operational version. Major modifications that were made involved the
input/output of data. Exercising GAC's research SOUNDER provides
information attainable on weaknesses and strengths of the operational
version of SOUNDER.

The GAC research version like the operational version is
written in FORTRAN V and must be run on a UNIVAC 1100 Series System.
The program requires 44K words decimal to load. The three data files

required are the carbon dioxide iransmissions, ozone transmissions and

the EPKG statistics. A new main program was written which generates
a READYRADIANC file from user supplied radiances, first guess tempera-
tures, and heights.

Additional outputs were incorporated into SOUNDER in the re-
search version. They include the normalized measured radiances,

radiances calculated from the guess profiles, D matrix corrected radiances,

and various differences in these quantities.




The single greatest value in the GAC research version of
SOUNDER, however, lies not so much in the revised program itself,
but rather in the research capabilities built into the operation and
functions of various elements of the program. Research modifications
have enabled one to easily modify any of the preselected data or
operations incorporated in SOUNDER such as the assumed water vapor
profiles and the CLDDIF, HOTSFC, SNOIS and EPS test values.

Other more complex modifications such as the decoupling of
underlying surface temperatures from the 1000 mb temperature and
provisions for forecast data inputs allow considerable flexibility in
deriving operational sensitivity and performance relative to available
data inputs.

The GAC research version of SOUNDER is a powerful tool for
exploring hardware and software deficiencies and improvements upon

routine operational performance.




3 ANALYTICAL ERROR ANALYSIS

3.1 DATA BASES
3.1.1 General

Three data bases used in this study were derived from satellite
infrared radiometers, radiosonde observations (RAOB), and Air Force
Global Weather Center's (AFGWC) 12-hour numerical forecast field. In
operational practice, the forecast data are used to obtain a first-guess
temperature profile for use with the multi-channel radiometric data to
obtain a retrieved temperature profile using the minimum 1lnformation
technique. This procedure is described In a detailed step by step manner
in section 2 of this report. RAOB data were collected for only those
locations where a clear (cloud-free) satellite sounding was possible
within 60 nautical miles and one hour in time of one another. All satellite
data were<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>