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sequence of cycles , each cycle consisting of two phases , a

conjugate gradient phase and a restoration phase.

The conjugate gradient phase involves a single iteration

and is designed to decrease the value of the functional while

satisfying the constraints to first order . During this iter-

ation, the first variation of the functional is minimized ,

subject to the linearized constraints . The minimization is

performed over the class of variations of the control and the

parame ter which are equidistant fr om some cons tant multiple

of the corresponding variations of the previous conjugate

gradient phase. For the special case of a quadratic functio-

nal subjec t  to linear constraint s, various orthogona.lity and

conjucjacy conditions hold.

~ The restora tion phase involves one or more itera tions and

is designed to restore the constraints to a predetermined ac-

curacy , while the norm of the variations of the control and the

parameter is minimized , subjec t to the linearized constraints.

The restora tion phase is terminated whenever the norm of the

cozisLraint error is less thdn some predetermined tolerance.

The sequen tial conjugate gradient—restoration algorithm is

characterized by two main properties. First , at the end of each

cycle , the trajec tory satisfies the constraints to a given ac-

curacy. Second , the conjugate gradient stepsize and the restor—

ation stepsize can be chosen so that the restoration phase pre—

serves the descent property of the conjugate gradient phase. .~
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Sequential Conjugate Gradient-Restoration Algorithm

for Optimal Control Problems

1with Nondifferential Constraints, Part 1, Theory

by

J.R. CLOUTIER2, B . P .  MOHANTY 3
, and A . MIELE4

Abstract.  A sequential conjugate  gradient-restorat ion algor i thm

is developed in order to solve optimal control problems involving

a functional subject to differential constraints , nondifferential

constraints, and terminal constraints. The algorithm is composed

of a sequence of cycles , each cycle consisting of two phases , a

conjugate gradient phase and a restoration phase.
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The conjuga te  gradient phase involves a sing le i t e r a t i o n

and is designed to decrease the value of the functional while

satisfying the constraints to first order. During this iter-

ation , the f irs t var iat ion of the func t ional is min im ized , sub-

ject to the linearized constraints. The minimization is

performed over the class of varia tions of the control and the

parameter which are equidistant from some constant multip le of

the corresponding variations of the previous conjugate gradient

phase. For the special case of a quadratic functional subject

to linear constraints , var ious orthogonal i ty  and conjugacy

conditions hold.

The res toration phase involves one or more iterations and

is designed to restore the constrain ts to a predetermined

accuracy, while the norm of the variations of the control and

the parameter is mi nimized , subject to the linearized constraints.

The restoration phase is terminated whenever the norm of the

constraint error is less than some predetermined tolerance .

The sequential conjugate gradient—restoration algorithm is

characterized by two main properties. First, at  the end of each

conjugate gradient-restoration cycle , the trajectory satisfies

the constra in ts  to a given accuracy ; thus , a sequence of feasible

suboptimal solutions is produced . Second , the conjugate gradient

stepsize and the restoration stepsize can be chosen so that the

restoration phase preserves the descent property of the conjugate

gradient phase ; thus , the val ue of the f unc tiona l at  the end of 

~~~~~~~~~ - -- ~~-~~~~~~-“ ~~- -
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any cycle is smaller than the value of the functional at the

beginning of that cycle. Of course , restarting the algorithm

might be occasionally necessary .

To facilitate numerical integrations , the interval of

integration is normalized to unit length . Variable-time

terminal conditions are transformed into fixed—time terminal

conditions. Then , the actual time at which the terminal bound-

ary is reached becomes a component of a vector parameter being

optimized .

Convergence is at tained whenever both the norm of the

constra int error and the norm of the error in the opt imal ity

conditions are less than some predetermined tolerances. Seve—

ral numer ical examples ill ustrating the theory of this paper

are given in Part 2.

Key Words. Optimal control , gradient methods, conjugate-gradient

methods , nume rical methods , computing methods , gradient-restoration

algorithms , sequential gradient—restoration algorithms, sequen tial

conjugate gradient-restoration algori thm s, nondifferential cons—

traints ..

\ ~~~~_ ± 
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1. Introduction

Approximately  ten years  ago , conjuga te  g rad ien t  techniques

began appearing on the optima l control scene . In 1967 , Lasdon

et al ( R e f .  1) extended the con juga te  g r a d i e n t  method developed

b F le tcher  and Reeves for  ma thema t i ca l  p rog ramming  problems to

optima l control  problems . About the same t ime , H o r w i t z  and

Sarachik  ( R e f .  2 )  extended Davidon ’ s method to a real  Hu bert

space and applied the extension to a con t ro l  problc~ w i t h  qua-

dra t ic  cost and l i n e a r  c o n s t r a i n t s .  S h o r t l y  t h e r e a f t e r , Lasdon

(Ref . 3) and Tripathi and Narendra (Ref. 4) also derived exten-

sions of Davidon ’ s method .

One common l i m i t a t i o n  of the above al g o r i t h m s  is tha t they

are not applicable directly to constrained control problems

(that  is , problems involving t e rmina l  c o n s t r a i n t s  and/or  bounds

on the sta te or the control) . However , these a l : !o r i thm s can

handle ind irec tly const rained control problem s, after conversion

of these problems to unconstrained form ; this conversion is

usually achieved by means of pena l ty  fu nc t ions.

Conjugate gradient algorithms which can solve direc tly

certain types of constrained control problems were presented in

Refs. 5—8. Sinnott and Luenberger constructed an algorithm for

solving problems with linear terminal co nstr ain ts (Ref . 5);

Heideman and Levy developed an algorithm for problems with ar-

bitrary terminal constraints (Refs. 6-7); and Pagurek and

------- ~-
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Woodside constructed an algorithm for problems with bounded

controls (Ref. 8).

In the area of ordinary gradient methods , Miele et al

(Ref. 9) developed a sequential gradient-resLration

algorithm for optimal control problems where the state x(t),

the control u ( t ), and the parameter 11 must satisfy not

only differential constraints and terminal cons traints ,

but also nondifferential constraints everywhere along the in-

terval of integration. The importance of Ref . 9 lies in that

(i) many optimization problems arise directly in the form con-

sidered there , (ii) problems involving equality constraints

can be reduced to that form through suitable transformat ions ,

and (iii) problems involving inequality constraints can be re-

duced to that form through suitable transformations. Thus , an

extremely large class of problems can be handled. This includes

problems with bounded control , bounded state , bounded time rate

of change of the state , as well as problems where a bound is

imposed on some function of the parameter , the control , the state ,

and the time rate of change of the state.

This report combines the ideas of Ref. 6 and those of Ref. 9

The result is a sequential conjugate gradient-restoration algo-

rithm which can handle constrained minimization problems , char-

acter ized by the presence of nondifferential constraints , without

resorting to penalty functions. The algorithm is composed of a
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sequence of cycles , each cycle consist ing of two phases , a

conj ugate gradient phase and a restoration phase.

The conjugate grad ient phase involves a si ng le itera t ion

and is designed to decrease the value of the func tional whi le

satisf ying the constraints to first order . During this iter-

ation , the f i r s t  var ia t ion of the func t ional is mi n imized

subject to the linearized constraints. The minimization is

performed over the class of va r i a t ions  of the contro l and the

parameter  which are equ id i s t an t  f rom some cons t an t  m u l t i p l e  of

the corresponding v a r i a t i o n s  of the previous c o n j u g a t e  g r ad i en t

phase.

The res torat ion phase involves  one or more i t e r a t ions  and

is desi gned to restore the cons t r a in t s  to a predetermined accu-

racy while the norm of the variations of the co ntrol and the

parameter is minimized , subjec t to the linear ized constraints.

The sequential conjugate gradient—restoration algorithm is

characterized by two main properties. First , at the end of

each conjugate gradient-restoration cycle , the tra jectory satis-

fies the constraints to a given accuracy; thus , a sequence of

feasible suboptimal solutions is produced . Second , the conju-

gate gradient stepsize and the restoration stepsize can be

chosen so tha t the restora tion phase preserves the descent

property of the conjugate qradient phase ; thus , the val ue of

the func tional at the end of any cycle is sma l l e r  tha n the value

of the functiona l at the beginning of that cycle. Of course,
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restarting the algorithm might be occas ionally necessa ry. For
a discussion of the basic properties of the sequential  gradient-
restoration algorithm , see Ref. 10.
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2. Formulation of the Problem

Consider the probl em of min im iz ing the f unct ional

iJ  f
~~
(x ,u ,~~~,

0)d0 + [g~~(x,~~~,())J

with respect to the state x(C’), the control u(0), and the para-

meters 
~~ 

and r which satisfy the differential constraint

dx/de = 
~~* 

(X r U , ’
~T~~ , O ) ,  0 <  0 <  T , (2)

the nondifferential constraint

S~~
(x ,u ,~~~,

0) 0, 0 < 0 <  T , ( 3 )

and the boundary conditions

(x)
0 = given , [

~~*
(x ,

~~*l
0)I

T 
= 0. (4)

In the above equations , the functions 
~~ 

and g~ are

scalar , the function 
~~ 

is an n-vector , the f u n c t i o n  S~ is a

k—vec tor , and the function ~~~ is a q—vector. The independent

var iable is th e ac tua l  t ime f ) , while the dependent variables

are the state x (an n-vector), the control u (an rn-vector)

the parameter TT
* 

(a pt —vector) , and the parameter ~ (a scalar )

_ _ _ _ _ _ _ _ _ _  - - - -4
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At the initial time 0= 0 , the n components of the vector x are

spec i f i ed . At the final time 0= i , q scalar relations are

specified , wher e q < n + p
~ 

if T is f ixed and q < n + p~ + 1 if T is free.

To facilitate the implementation of the algorithm on a

digital computer , we replace the actual time 0 with the nor-

malized time t. The latter is defined in such a way that the

interval of integration has unit- length . Thus, in normalized

form, t= 0 denotes the time at which the initial boundary (4-1)

is left and t = l  denotes the time at which the terminal bounda-

ry (4—2) is reached . The following linear relation allows the

passage from the normal ized time t to the actual time 0:

0< t< l .  (5)

The fact that the normalized final time is fixed (t=l)

does not cause any loss of generality in the problem . If the

actual final time is free , i simp ly becomes a paramet er to be

optimized in the transformed problem . In view of this , we

define the augmented parameter 7r ( a p-vector) ,

Tr = 7r
* 
or ir= (6)

where ( 6 — l ) holds if -r is fixed and (6—2) holds if : is f r e e .

In addi t ion  to the n o r m a l i z e d  t i m e  t and the pa ramete r  ii ,
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we define the following functions:

f ( x , u , Tr , t )  = Tf ~~(x , u , -rr~~, T t )  , 0< t < 1, ( 7 )

~~(x , u , ir , t )  — TI
~ *

(X,U,T1*, Tt) , 0< t < 1, (8)

S(x,u,Tr ,t)—S* (x ,u ,1T~~.Tt ), 0 < t < l , ( 9)

g(x,ir ,t) — g ~~(x ,Tr~~,Tt), (10)

i~ (x ,ir ,t) = p ~~(x ,7r~~,Tt) . (11)

Under the above transformations and definitions , problem

(l)—(4) can be reformulated as follows . Minimize the functional

1
i f  f ( x ,u ,~~,t)dt + [g(x,~~,t ) ]

1 
( 12)

Jo

with respec t to the state x ( t ) , the control u (t), and the para-

meter ~ which satisfy the differential cons traint

0 < t < l , (13)

the nondifferential constraint

S(x,u ,r ,t) = 0, 0< t< 1, (14 )

and the boundary condi tions

(x)
0 

= g iven , [~~(x,~~,t)]1
= 0. (15)
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From calcul us of var i a t i ons, we know tha t  the problem

(l2)—(15) is one of the Bolza type ; it can be recast as tha t

of minim izing the augmented functional5

(A T
~~~+H ) dt+ (G)1

0

rl
= (A Tx)l + ~ (H_3~

T
x) dt+ (G) (16)

0 ) o

with respect to the state x(t), the control u(t) , and the

parameter -
~ which satisfy (l3)—(15) , where the functions H and

G are g iven by

Fl = f _ A T
~ + ~T5, G = g + ~~~ ( 17 )

and where )~(t) is a variable Lagrange multiplier (an n-vector),

r (t) is a variable Lagrange multi plier (a k-vector), and p is

a constant Lagrange multiplier (a q—vector)

The optimal solution must satisfy (l3)— (l5) ari d the  f i r s t —

orde r  ~~ t inr —ility c o n d it i o n s , namely ,  the Euler equations

‘
- I

= 11 , ii = 0, I H dt + (G ) = 0 (18)X U J o  1 1) 1

51n ~~~ (1I~) , it is tacitly assumed that the initial condition
(15— 1 ) is satisfied . Th second form of Eq. (16) arisy s after
the cusf rnii-v int l qration by !arts i_ s performed .
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and the following natural condition arising from the transver—

sality condition:

( A + G ) 1 = 0 .  ( 19)

Summarizing, we seek functions x (t), u ( t ), ii and multipl iers

X(t) , p(t) , p which satisfy the constraints (13)-(15) and the

optimality conditions (20)— (23)

O < t < l , ( 2 0 )

O < t < l , (21)

(f ~ — ~~~A + S p)dt + (g~ + ~~
p )  = 0 , ( 2 2 )

(A + g ÷ 
~~~~~ 

0. (23)

2.1. Approximate Methods. Since the differential system

(l3)-(15) and (20)—(23) is generally nonlinear , some iterative

technique must be employed in its solution . For this purpose ,

let us define the scalar functionals P and Q, which denote the

constraint error and the error in the optimality conditions ,

respectively. We have

1 1

~=J N ( ~~~~~ ) d t +~~ N ( s ) d t + N ( ~~)1 ( 2 4 )
0 •0  
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Q =  S N ( A _ f + ~~~X _ s P ) d t ÷ J  N ( f
~~

_
~~~A + 5 p ) d t

+ N ( f —  ~~~A + S  p ) d t + ( g +
~

J I
~

)
~]  

+N (A+g +~~ p) 1, (25)

where N (b) denotes the norm squared of a vector , i.e.,

N (b )  = bTb (2 6)

for a given vector b.
Note tha t, for the opt imal solut ion, P = 0  and Q=0. For

an approximation to the optimal solut ion ,

p~~ ~~~ c�~ ( 2 7 )

where and are small , preselected numbers.

___________  -4
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3. Construction of the Sequential Conjugate Gradient-

Restorat ion Algorithm.

The sequential conjugate gradient-restoration algorithm

is an iterative technique which includes a sequence of cycles
6having the following properties.

Property 3.1. The functions x(t), u ( t ) , ~ available

both at the beginning and at the end of each cycle must be

feasible; tha t is , they must be Consistent with the constraints

(13)— (15) within the preselected accuracy (27—1).

Property 3.2. The functions x (t), u(t), ~ produced at the

end of each cycle must be characterized by a value of the

functional I [see Eq. (12)1 which is smaller than that associ-

ated with the functions available at the beginning of the

cycle.

Property 3.3. The functions x(t), u(t) , ir produced at the

end of each cycle must be characterized by a value of the

augmented functional J [see Eq. (16)] which is smaller than

that associated with the functions available at the beginning

of the cycle.

6
Note that Property 3.3 is a consequence of Properties 3.1 and
3.2. Conversely, Property 3.2 is a consequence of Properties
3.1 and 3.3.

_ _ _ _ _ _ _ _ _  -- -----4
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To achieve the above properties , each cycle is made of

two phases, a conjugate gradient phase and a restoration phase.

Conjugate Gradient Phase. This phase is started only

when the constraint error P satisfies Ineq. (27-1). It involves

a single i teration , which is designed to decrease the value of

the func tional I or the augmented functional J, while satisfy-

ing the constraints to first order. During this iteration , the

first variation of the functional I is minimized , subject to

the linearized constraints. The minimization is performed over

the class of variations of the control and the parameter which

are equidistant from some constant multiple of the corresponding

var iations of the previous con j u gate gra dient phase.

Restoration Phase. This phase is started only when the

constraint error P violates Ineq . (27-1). The restoration phase

involves one or more iterations. In each restorative iteration ,

the objective is to reduce the constraint error P, while the cons-

traints are satisfied to first order and the norm of the

variations of the control and the parameter is minimized . The

restoration phase is terminated whenever Ineq . (27-1) is

sa t i s f i ed.

Remark. During each conjugate gradient iteration or res-

torat ive i teration , use of nonlinear equations must be avoided .

Therefore , the exact feasibility equations (13)-(l5) are re-

placed by their corresponding linearized approximatioris.These
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linearized approximations do not include forcing terms in the

conjugate gradient phase , while they do include forcing terms

in the restoration phase.

Notation. For any iteration of the conjugate gradient

phase or the restoration phase , the following terminology is

adopted : x(t), u(t), r denote the nominal functions; x(t), u(t) ,

iT denote the varied functions ; and L~x (t ) ,  tiu(t), Mr denote the

displacements leading from the nominal functions to the varied

functions. These quantities satisfy the definitions

x (t) =x(t) +Ax(t), u(t) =u(t) +~~u(t ), ir = r + L ~ir. (28)

If the variations appearing in (28) are linear in the stepsize

cx , where cx> 0, they take the form

Ax(t) =aA(t), L~u(t) = czB(t), Mr=aC , ( 2 9 )

with the implication that

x(t) =x(t) + c*A(t), ~~(t) =u(t) +aB(t), ~i = i r+cx C. (30)

The func t ions  A x ( t ), A u ( t ) ,  ti ir must be determined so as to

produce some desirable effec t at every iterat ion , namely, the

decrease of the functionals I and/or J and/or P. Thus , the

_ _ _ _ _ _ _ _ _ _ _ _  
- ---4
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following descent properties are required:

I < I , and/or J < J , and/or P < P , ( 31)

where I,J,P are associated wi th  the nominal fu nctions and I ,J,

are associated with the varied functions. Inequalities

(31—1) and (31—2) characterize the conjugate gradient phase ,

and Ineq . (31—3) characterizes the restoration phase.

In turn , relations (31) can be enforced at every itera—

tion providing the stepsize ~~. is s u f f i c i e ntly small  and the

functions A (t), 3(t), C are chosen so tha t

61 < 0, and/or 6J < 0, and/or ~ P < 0, (32)

where the symbol 6 (...) denotes the first variation. Inequali-

ties (32—1) and (32—2) characterize the conjugate gradient

phase , and Ineq . (32-3) characterizes the restoration phase.

Clear ly ,  every iteration includes two basic operations:

(a ) the determination of functions A (t) , B(t), C consistent wi th

the first variation requirements (32); and (b) the determination

of the stepsize a consistent with the total variation require-

ments (31).

Outline. In Section 4, we describe the equations of the

restoration phase; we show how nominal functions consistent with

the feasibility equations (13)-(15) can be obtained . In

L - - - - -
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Section 5, we describe the general equations of the conjugate

gradient phase ; the linear case (case where the constraints

are linear) is treated in Section 6; the linear—quadratic case

(case where the f unc tional is quadratic and the cons traints

are linea r ) is treated in Section 7 ; here , we show that cer-

tain general conjugacy and orthogonality conditions hold.

A lways with r e f erence to the conju gate gradient  phase , the

nonh inear-nonquadratic case (case where the functional is

nonquadratic and/or the cons traints are nonlinear ) is treated

in Section 8; here , we discuss the implementation of a

first—order algorithm (this is an algorithm which uses first

derivatives at most) . In Section 9, we discuss the descent

property of a complete conjugate gradient-restoration cycle.

In Section 10, we present a summary of the sequential conju-

gate gradient—restoration algorithm . Finally, in Section 11,

we list the safe guards necessary to its implementation on a

dig ital computer.
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4. Restoration Phase

As sta ted befo re , the restoration phase is started only

when the constraint error P violates Ineq . (27—1) . The resto-

ration phase involves one or more iterations. In each restora-

tive iteration , the objective is to reduce the constraint error

p , while the constraints are satisfied to first order and the

norm of the variations of the control and the parameter is

minimized. The restoration phase is terminated whenever Ineq .

(27—1) is satisfied .

There are two situations where the restoration phase is

employed : (a) at the very beginning of the algori thm , one needs

to genera te nom inal func tions con~ istent with the feasibility

equations (13)-(l5); and (b) subsequently, one needs to correct

possible constraint violations occurring during a conjugate

gradient phase: these constraint violations are due to the fact

that Eqs. (l3)—(l5) are considered only in linearized form

during a conjugate gradient phase.

Linearized Equations. Let x(t), u(t), denote nominal func-

tions not satisfying (13)—(15), and let x(t), u(t), TI denote varied

functions satisfying(l3)—t 15). To first order , the perturba—

tions .x(t), L \ u ( t ),  ~~ mus t sa ti s fy  the linear ized constra int

equations

- :
T x - ~~~~ - ~T1~~ + a ( ~ — ~) 0, 0< t < 1 (33)x U TI — — ‘
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STA x + S TAu + STt~1 T + c x S = 0 , 0 < t < l , ( 3 4 )

(.~x) = 0, (~~~Ax + + cxr~) 1 = 0, (35)

where ~ denotes a scaling factor (restoration stepsize) in the

range 0 < c x < l .

Descent Property. The linearized equations (33)-(35)

admit an infinite number of solutions. Each of these solutions

is characterized by a descent property in the constraint error

P. This can be seen by computing the first variation of the

fu nct ional  ( 24 )

+2J ST(ST~x + S
T
~u + s

TATI )dt+2 [~~
T
(~
T A x +~~~LTI)]

1 (36)

and by observing tha t, when the perturbations defined by (33)-(35)

are employed , the first variation of the constraint error (36)

becomes

6 P = — 2 1p . ( 3 7 )

Since P > 0 , Eq. (37) shows that iSP < 0. Hence , for a sufficien-

t ly  sma ll , a decrease in the constraint error P is guaranteed .

_ —--- -~~~~~~~~~~~~~~~ .
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Auxiliary Minimization Problem. Since Eqs. (33)—(35) ad-

mit  an infinite number of solutions, an additional requirement must

be introduced in order to uniquely define the restorative itera-

tion. More specifically, we require that restoration be

accomplished with the least-square change of the control and

the par ame ter ( R e f .  10) . Thus , we seek the minimum of the

quadra t ic  f u n c t i o n al

K= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (38)

with respect to the perturbations Ax(t), ~u(t), ~~ which satisfy

the linearized constraints (33)- (35)

Special Variations. From calculus of variations , we know

that the problem represented by (33), ( 34 ) ,  ( 3 5 ) ,  (38) is one of the Boiza

type . In this connection , let A C t )  denote a variable Lagrange

multi plier associated with the differential constraint (33)

let c (t) denote a variable Lagrange multiplier associated with

the nondifferential constraint ( 3 4 ) ;  and let p denote a constant

Lagrange multiplier associated with the final condition (35—2).

With this understanding , the Euler equations optimizing t1x(t),

Mr and the natural condition arising from the transver-

sality condition are written as

0 < t < l , (39)x x - - 

- _- _ - - _ _ - _ - - _ -  - - --— - _
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~U i (
~~~~~

’
~~

_ S C), 0< t< 1, (40)

Id 1
M r = i I j (;~~-\- S . -)dt - ( -

~
.
~~

) 1l (41)
L

0 J

( A  + . ~i )  1 = 0. (42)

Summarizing , we seek variations Ax(t), lu(t), ~-r and multi pliers

~.(t), ~—(t), p which  sat~ sfv the constraints (33)—(35) and the

optirualitv conditions (39)—(42).

Basic_Fu n c t i ~~ns .  If the definitions (29) are invoked .

the stt~r size  ~ can be eliminated , and Eqs.  (33)—(35) and

(39)— (42) can be r wr-itten as

A -  ~~A -  ;~~B- ;
T
C + Cx - ~ ) =0 , 0 < t < l , (43)

S
TA + S TB + S TC + S = O , 0 < t < l , (4~1)

(A)
0 = 0 , ( T

~.+
TC + c ) = O  (45)

0 < t < 1 , ( 4 6 )

B — * S p = 0, 0 < t < 1, (47)
U U — —

(1

c ÷ J  ( — ~~~ + S Jdt+ (4 p )
1

= 0, ( 4 8 )
0

( ; ~ = 0. (49)

Equ- tions (43)—(49) u n i que l y define the basic functions A (t),
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13(t) , C as well as the multipliers \(t), p (t), p of the restora-

tion phase .

Solution Technique. Let y denote the (n+p)-vector

IA ( 0 ) 1
~‘ 

J C ] 
(50)

Let a sweep be defined as a forward integration of the system

(43)—(49) obtained by (a) assigning a particular value to the

vector y, (b) employing Eqs. (43), (44), (45—1), (46), (47), and

(c) bypassing Eqs. (45—2), (48), (49)

Let n + p + l  independent sweeps be executed . More speci-

f i call y, the first n + p  sweeps are executed by choosing the

n + p  linearly independent vectors y to be the columns of the

identity matrix of order n +p. The last sweep is executed by

choosing y as the null vector. In this way , we obtain the

particular solutions (Refs. 11—14)

A. (t), B. (t), C., A . (t), . ( t ) ,  i = 1,2, ...,n ÷ p + 1. (51)

L 

Then , we introduce the n + p + 1 undetermined , scalar con-

stant k. and form the linear combinations

A(t) = k.A .(t), 13(t) = 
~
k
~
B.(t), C= ~k.C., (52)

A (t) - k. \ .(t), p ( t )  ~k.p .(t), (53 )

- -

~

-

~

- -- --_ --- - - _ -_ ~~
_ - _ _ - _ _ - - - _ - __

~~ 
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where the summation is taken over the index i. The n + p +  1

coefficients k
~ 

and the ci compon ents of the vector p are

obtained by forcing the linear combinations (52)— (53) to

satisfy Eqs. (45—2), (48), (49), together with the normalization

condition (Refs. 11-14)

i~k. = 1. (54)
i

Stepsize. With the basic functions A(t), B(t), C known ,

we consider the one—parameter family of solutions (30) . For

this one—parameter family, the constraint error (24) becomes a

function of the form

P=P( ct ) . (55)

Then , the stepsize must be selected so that the inequality

P(cx) <P (O) (56)

is satisfied while keeping

(57)

Satisfaction of Ineqs. (56) and (57) is guaranteed for ~ suffi-

c i e n t l y  sma l l . A n y  violation of the above inequalities 

_ _ _
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necessitates a reduction in the stepsize. Such a reduction can

be obtained by employing a bisec t ion  process , starting f r om the

reference stepsize

(58)

This reference stepsize has the following property : it yields

one—step restoration for the limiting case where the constraints

(13)— (lS) are linear.
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5. Conjugate Gradient Phase: General Case

As stated bef ore , the conjugate gradient phase is star ted

only when the constraint error P satisfies Ineq . (27—1). It

involves a single ite ra t ion , which is designed to dec rease the

value of the funct ional I or the augmented functional J, whi le

satisfying the constraints to first order . During this itera-

tion, the f irst var iation of the functional I is m inimized ,

subject  to the l inear ized  cons t ra in t s .  The m i n i m i z a t i o n  is

performed over the class of var ia t ions  of the control and the

parameter which are equid istant from some constant multiple of

the cor respond ing variations of the previous conjugate gradient

phase.

For the sake of clarity, the general structure of the con-

jugate gradient phase is given first in this section. The linear

case is treated in Section 6, and the linear-quadratic case

is treated in Section 7. Then , the extension to the nonlinear—

nonquadratic case is given in Section 8.

Linearized Equations. Let x(t), u(t), ~ denote nominal
7 — -,

functions satisfying (13)—(l5), and let x(t), u ( t ), r denote

7
These nominal functions can be obtained by employing the res-
toration algorithm of Section 4.
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varied functions also satisfying (13)—(l5). To first order ,

the perturbations ~.x(t), ~\u(t), Mr must satisfy the linearized

constraint equations

Ax - ~~Ax - ~~ Au - = 0, 0 < t 1, (59)

S
T

AX + sT~~ + sT~ 1~ = 0, 0 < t < 1, (60)X U — —

(Ax) = 0, (~
TAx + ~

T
Ar)

1 = 0 . (61)

Note the difference between Eqs. (33)— (35) and Eqs. (59)— (6l).

While the former are nonhomogeneous , the latter are homogeneous

in the perturbations Ax(t), Au (t), Mr .

Auxiliary Minimization Problem. Since the linearized

equations (59)-(6l) admit an infinite number of solutions ,

some additional requirementmust be introduced in order to

uniquely define the conjugate gradient iteration. More spe-

cif ically, we consider the first variation of the functional

(12)

= ~ (f~ Ax + + f~~~~~~~~i i ) d t+  (q~ Ax + g~ A~ )1 (62)

and the isoperimetric cor-.straint

~- 1
K = ( A u  - 

~~~ 
T 
~ u - i i )  dt + (

~~ 
— ~~ 

T 
~ 

— f A q ) ,  (63)
0 

-



28 A AR — l 2 6

where K and 8 are undetermined constants. The symbols

~~~(t) ,  t~G(t), L~ denote the variations associated with the

previous conjugate gradient iteration. Therefore , because

of ( 2 9 ) , we have

~~ (t )  
~~~(t), Ai3(t) = ‘

~~1~~( t ) ,  ~~~~= ~~~~~ . ( 64)

Then, we seek the minimum of the linear functional (62) with

respect to the perturbations Ax (t), Au(t), Mr which satisfy the

linearized constraints (59)-(6l) and the quadratic isoperi-

metric constraint (63).

Special Variations. From calculus of variations, we

know that the problem represented by (59)- (63) is one of the

Bolza type with an added isoperimetric constraint on the

variations of the control and the parameter . In this connec-

tion, let X(t) denote a variable Lagrange multiplier associated

with the d i f f e r e ntial constraint (5 9); let p (t )  denote a

variable Lagrange multiplier associated with the nondifferen-

tial constraint (60); let p denote a constant Lagrange

mul t iplier associated with the final condition (61-2); and let

l/2a denote a constant Lagrange multiplier associated with the

isoperimetric constraint (63). With this understanding , the

Euler equations optimizing t.x(t), Au(t), ATI and the natural

condition arising from the transversality condition are

wr i t t en  as

— — - -~~~—
- - - - -
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A - f  ~~~~A - S p = 0 , 0 < t < l , (65)

(Au _ BAu)/ u + f
u

_
~~u

A + S up = 0 , 0 < t < l , (66)

(1
(Mr — i~A r ) / -~ + j ( f  — ~~~~A + S

TI
P)dt + (g + ‘; p )

1 
= 0, (67)

(68)

Summarizing , we seek var iat ions  ~x(t), Au(t), Mr and multipliers

\(t), p(t), p , 1/2- which satisfy the constraints (59), (60), (61),

(63) and the optimality conditions (C5)- (68).

Basic Functions. Let the definitions (29) be invoked

fo r both the present  co n j u gate gradient phase and the previous

conjugate gradient phase. Let the directional coefficient y

be defined as

= V (ct/ u.) . (6 9)

With this understanding , the stepsize i can be eliminated , and

Eqs. (59)— (6l) and (65)— (68) can be rewritten as

A _ ~~
TA _ ~~

TB_ ~~
TC O , 0 < t < l , (70)

S
TA + S TB + S TC = 0 , 0 < t < l , (71)X U TI — —

(A)0 = 0 , (~,TA + ~,
TC)1 = 0 , (72)
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A — f  + 4  ~ — S  p = 0 , 0< t < l , (73)
X X X - -

B — ~~B + f  —~~~ A + S  p = 0 , 0 < t < l , ( 7 4 )
U u u - -

C — yC + (f — 4 - A  + S
TI
p)dt + (g + 

~ ir~~ l 
0, (75)

0

(~~+ g + ~~~p)
1 O. (76)

For a given value of the direct ional coe f f i c i en t  y, Eqs.

(70)—(76) uniquely define the basic functions A(t), 3(t ) ,  C as

well as the multipliers X(t), p(t), p of the conjugate gradient

phase.

Isoperimetric Constant. In the lightof (29) and (69), the iso-

perimetric functional (63) takes the form

r l -
~2 

(B - B)T(B - yB)dt + (C - C)T (C - ~~C)j . ( 7 7 )
L

If the basic functions A(t), B(t), C are consistent with (70)— (76),

the error in the optimality conditions (25) reduces to

1

(B 8)T(~ yB)dt+ (C yC)T(C yC) . (78)
0

Consequently, the following relation ties the isoperimetric

cons tant , the s tepsize, and the error in the op t imali ty  con-

d it ions:

(79)

L - - -
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C l e a r l y ,  to assign values to the isoperimetric constant

is the same as a s s i g n i n g  va lues  to the s t eps i ze .  h owever ,

there is no clear-cut way of determining a priori convenient

v~ilues for the isoperimetric constant. Therefore , the imple-

mentation of the conjugate gradient algorithm becomes simpler

if one avoids evaluating in terms of K through (79) and

assigns values to directly.

Descent Property . Next , consider the augmented functio-

nal (16) and its first variation

~~~~~~~ 
+ S

x 
— ~)

T/\Xdt +J ~~ 
— 4-0A + S p ) udt

+ S i)dt + ~~~ + c -
TI

P )
ll 

Mr + [(~ + g +  c ~)T?~~ . (80)

When the perturbations defined by (29) and (70)—(76) are

emp loyed , Eq. (80) becomes

1L~- 1
-~J = - a l  ~ (B— B)TBdt+ (~~_ y~~)

T~~ (81)
L•’o J

Upon invokinq Eq. (78) and defining the quantity

ç l

~ (13 B)TBdt + (C- ~C)
TC , (82)

J O

we see that E q .  (81) can 1)0 rewritten as
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6J —ct (Q+yZ) . (83)

For the first iteration of the conjugate gradient phase ,

one sets

y = 0 , ( 84 )

with the implication that

iSJ -aQ . (85)

Since Q> 0, Eq. (85) shows that 6J<0. Hence , for u. sufficien-

t ly  small , a decrease in the augmented functional J is

guaranteed .

For subsequent  i t e ra t ions, one sets -
~ ~ 0. More specifi-

cally, the directional coefficient must be such that

> 0, (86)

and its proper value is discussed in Section 7 . At any ra te ,

Eq. (83) shows that óJ<0 providing

Q + y Z > 0 , (87)

where Q is given by (78) and Z is given by (82). Hence , for
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ct s u f f i c i e n t ly small , the decrease in the augmented f un c t i o n a l

J is guaranteed as long as Ineq . (87) is satisfied . If Ineq .

(87) is violated , the descent property on J no longer holds ,

and the conjugate gradient phase must be restarted by resetting

the directional c o e f f i c ie n t  y a t the level ( 84)

Solution Technique. Now , assume that a particula r value

is g iven to the di rectional coef f ic ient y .  Let y denote the

(n + p) -vector

A (0)
(88)

C

Let a sweep be d e f i n e d  as a forward in tegra t ion  of the system

(70)-(76) obtained by (a) assigning a particular value to the

vector y, (b) employing Eqs. (70), (71), (72—1), (73), (74), and

(c) bypassinq Eqs. (72—2), (75), (76).

Let n + p + 1 independent sweeps be executed . More speci-

f ic al l y , the first n + p  sweeps are executed by choosing the

n + p  linearl y independent vectors y to be the columns of the

identity matrix of order n + p . The last sweep is executed by

choosing y as the null vector. In this way, we obta in  the

particular solutions (Refs. 11—14)

A . ( t ) ,  13 ( t ) ,  C., A (t), .(t), i = 1,2,.. .,n+ p+ 1. (89)

--
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Then , we introduce the n + p + l  undetermined , scalar cons-

tants k. and for~u the l inea r combinatio ns
1

A (t) = : k . A ( t ) ,  B ( t )  = 
~
k.B

~
(t ), C= Ek.C~ , (90)

~ (t) = 
~
k.A

~~
(t), ~ (t) = Ek~ p .(t), (91)

where the summation is taken over the index i. The n + p + l

coefficients k. and the q components of the vector p are

obtained by forcing the linear combinations (90)-(91) to satisfy

Eqs. (72—2), (75), (76), together with the norrcialization cond i-

tion (Refs. 11—14)

(92)
I-

General Solution. Next , assume that two particular Va—

lues are given to the directional coeff icient y, for instance ,

~ 
0 and r’** = l . (93)

Assume tha t the previous solution techn ique is employed twice,

and denote by

~~ 
it ), C~~, ~ 

(t) ,  
~~ 

(t), 
~~ 

(94)

and
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A
~~~~~~~~

( t ) ,  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

( t ) ,  
~~~ 

(95)

the particular solutions of (70)— (76) corresponding to (93—1)

and (93—2), respec tivel y. Simple manipulations , omitted for

the sake of brevity, show that the general solution of

(70)—(76), valid for any value of the directiona l coefficient

~- , can be written as

B (t) B~(t)+ y [B~~(t)—[3~ (t)],

C = C~~ + (c
~~ — Ca ), (96)

~(t) = k (t)+~~
[T
~**

(t)_A
* (t)], (t) 

~~~~~~~~~~~~~~~~~~~~~

= + ~ ~~~~~~ ~~~~ . (97)

As a conclusion , the general solution of (70)—(7t) requires

that two sweeps of n + p + 1 integrations be executed , one lead-

ing to the particular solution (94) and one leadin T to the

particulai solution (95). However , iI the constraints are li-

near , the  (leneral solution of (70)— (76) requires on i y one sweep

of n + p + 1 inteqrations , that leading to the particular solu-

tion (94), as is shown in Section 6.

Ste~~size and Directional Coefficient. After the general

solut :or ((,f)_ (97) is kn~~wn , t I n -  n e x t  stc-’J) is te determine the 
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proper values of the stepsize u and the directional coefficient

~~ . A logical scheme is that of determining these quantities

so tha t  the augmented f u n c t i o n a l  (16) is minimized .

For the varied functions x(t), u(t), ~~, let the augmented

functional (16) be written in the form

i~~~l~~ T T TJ (X
~~~) + l  (f- -k ~~

+ p S—\ x)dt+(q+ ~T~ ) (98)

In view of ( 3 0 )  and (96 ), the varied functions x(t), u (t), ii cons-

titute the two—parameter family

x(t) x(t)+
~~ {A~~(t) +y[A ~~~(t)-A ~(t)1~ , (99-i)

~ (t) =u (t) + ~~ 
(t) + [B~~ (t)-B~ 

(t) I , (99-2)

= TI + a[C
~ 

+ ~ (C~~ — Ci)] . (99—3)

On the other hand , the multipliers A (t), (t), p constitute the

one—parameter family (97) . Upon using (97) and (99) , we see

tha t the augmented functional (98) takes the form

(100)

Therefore , the op t i m u m  values of a and y satisfy the relations

_ _ _ _ _
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J ( i ,y) = 0, J~~(u.~~~) = 0 . (101)

In principle , one can solve Eqs. (101) usinq an exact

search , as done in Ref . 15 for mathematical programming prob-

lems. The resulting algorithm constitutes the extension to

optimal control problems of the memory-gradient method of

Re f .  15. However , the simultaneous determination of i. and y rn ig h t

be e u p e nsi ve  cornputationally; this being the case , we f o l l o w

a different road . First , we determine an approximate value of

the directiona l coefficient ~~~ , based on the consideration of

the linear-quadratic case (Section 7) . Once ~~
- is known , the

two—parameter family (100) reduces to the one-parameter family

J = J ( - i )  . (102)

Then , the optimun~ stepsize (~ satisfies the relation

J ( - c )  = 0, (103)

whose numerical solution can be arrived at in a variety of

ways. For examp le , within the frame of the linear—quadratic

case , the n u m e r i c a l  s o lu t i on  of ( 1 0 3 )  can be ob ta ined  w i t h

q u a d r a t i c  i n te r p o l a t i o n  (Sec t ion  8 ) . On the other hand , within

the f r a n i e o f  the nonlinear-nonquadr atic care , the numerical

_ _ _ _ _ _ _ _ _ _ _ _ _ _  --.4
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solution of (103) can be obtained with cubic interpolation

(Section 8 ).

_ _ _ _ _ _  -~~~~~~~~~~~-~~~~~~~~~~- - ~~~~~~~~~ ~~~~~~ - _  - -_ ~~~~~~~~~- -
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6. Conjugate Gradient Phase: Linear Constraints

In the prev ious  sect ion , we derived some genera l  rela-

t ions  which  are valid for the conjugate gradient phase ,

regardless of the analytical form of the functiona l (12) and

the constraints (l3)—(15). In this section , we give the parti-

cular relations which are valid if the constraints are linear.

General Solution. Under the linearity assumption for the

constraints , consider the system (70)—(76) which defines the

basic functions A ( t ) , 13(t), C as well as the multipliers -\ (t),

p (t), ~i. By substitution , IL can be verified tha t the particu—

lar solutions (94) and ( q 5 )  satisfy the relations

B~~~
(t)-B

~
(t) B(t), C

~~—C~ =c , (104)

~~~
(t)— \

~
(t)= 0, 

~~~
(t)— -~~

(t) =0 , p
~~~— ~~~ 

= 0 . (105)

As a consequence , Eqs . (96)—(97) take the simp ler fo rm

B ( t ) = B ~~~( t ) + - ~B(t), C = C ~~ + -
~ C , ( 1 0 6 )

‘ (t) = 
~~ 

(t), n ( t )  = 
~ 

(t), p = . (107)

rho inu l ic i ion ‘t (1 P6) —(107) is the following : under the

ion ~~~~ int ir const ~int s , the jeneral lution of

(70) — (7 ) ‘ . i  n in w h e  el I a i - - 1 1 -xecti t I n~ only one sweej
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(instead of two) of n + p + 1  integrations , namely ,  the sweep

necessary to generate the par t icular solution ( 9 4 ) .  This is

the solution corresponding to (93-1), namely, the solution

associated with the ordinary gradient method of Ref. 9.

Isoperimetric Constant. Under the linearity assumption

for the constraints , Eq. (79) still holds , but  the error in

the opt imal i ty  condi t ions ( 7 8 )  s imp l i f i e s  to

1
Q= J B~B~dt+C~C~ . (108)

0

Descent Property. Under the linearity assumption for

the constraints , Eq. (83) still holds , but the functional (82)

sim p l i f ies to

p1
Z = 

j 
B~~Bdt + C~C . (109)

0

Local Orthogonality Conditions. Under the linear-

i ty assumption fo r the constra in ts ,the two—parameter famil y (99)

sim p l i f i es to

x(t) =x(t) +a[A
~~
(t) + ~A(t) ), (110-1)

u (t) = u(t) + u[B~ 
(t) + ~R (t) 1~~ 

( 110-2)

iT = -
~
- - z  (C

~~ 
+ 1 C) . (110—3)
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Next , we consider the augmented f u n c t i o n a l  ( 9 8 )  and

observe that, for the two—parameter family (110) , it takes the

form (100). Therefore , the optima l values of the stepsize a

and the directional coefficient y satisf y the relations (101).

Because of the assumed linearity of the constraints (l3)— (15),

Eqs. (101) take the particular form

p1

~ ~~x X 
+ S~~ 

— \)TAdt ~~
j ~~u 

:~~ + S
0~~

)T
Bdt

+{~~
(f  

1T~ 
+ S~ p)dt +~~~~~~+ ] T~~ 

~~ 
~~~ 

~ P)
T
A]l = 0 , (111)

J x~~ x
A + — A )

T
~~~~dt + u~~ u~ 

+ S p ) TBdt
0 0

+ 

[
~~~~(f ~~

_ ;  \ + S p )dt + ~~~~~+ 1 p )
1]

~~~~ + [ ( A +~~~~~+ ç n) T
A]~ = 0, (112)

w i t h  the imp l i ca t i on  t h a t

~~~ :~— :~~\ +s~~ — ~)
T
A*dt+J

o
(~ u~ u

\ ÷ S p ) TB~ dt

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C~~ + [ (A + ~~~~+~~I ll ) T
A~

]1
= O .  (113)

Because  of the linearity of the constraints (l3)—(l5) and after

invoking Eqs. (70)—(72) , one can show tha t Ugs. (lll )— (ll3)

hold for any distribution el Laqranqe ‘ntiiti pl icrs. In particu—
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lar , they hold if k(t), ~ (t), p are replaced by ~ (t), p (t), ~~.

This yields the supplementary relations

~ x~~ x~ 
+ — ~)

T 
Adt+J 

~~u~~ u + S
u~~~~~~

t

[

~~l ~~~~ 
+ S~~~)dt + (

~~~~ + ~~~J)~~~ 

T
C [(\÷ e +  ~ ~~)

T

AIl 
= 0, (114)

(f - -~ 
- + S - \ ) ~ z~dt + 1( 7  - + ~ 

~~~~
X x x j u U u

~~~~~~ 1~~~d~ + (
~~~~ + 

~ + [
~~~

+

~~~

+ ‘~~~~~ )~~~A] 1 
= 0 , (115)

~~x x~ 
+ S a  — )TA d t  

~ J~~~
u ~

‘u~ 
+ S~~~)

T
B.dt

‘ TI 
S

71
2)dt + (g+ ~r~~)i] 

C* +[(A + 
~~~~~~~~~ 

~ 
~~~

) A
*j ~ 

= 0. (116)

Next , we combine Eqs. (1l4)—(116) with Eqs. (/3)—(76 ) written

for the next iteration . This leads to the followinq local

or thogonal i ty  c on d i t i o n s :

~ r3~ 13dt+C~ C = o , ( 117-1)
0

J

l
B~ B d t 4 c ~ C = O , (117-2)
0

S

i
B
~
B
~d t + C ~ C~~=0. (117-3)0
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h ere , the adjective local is employed to mean that Eqs. (117)

involve vectors 13(t), C which are solutions of (70)— (76) compu-

ted for the present iteration and the previous iteration; they

also involve vectors B
~~(t), C~ which are solutions of (70)-(76)

for —
~ = 0 computed for the present iteration and the nex t  i ter-

a t ion .~
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7. Conjugate Gradient Phase: Quadratic Functional and

Linear Constra in ts

In the previous section , we assumed that the constraints

( l 3 ) — ( l 5 )  are  l i nea r  and arr ived at the local o r thogona l i t y

cond i t ions  ( 1 1 7) .  In th i s  section , we retain the constraint

l inear ity hypothesis and further asssume that the functional

(12) is quadratic.

For the sake of compac tness , let y and E denote the

vectors

x A

u , E =  B . (118)
Ti C

Let f
y 

and g
~ 

denote the grad ients  of the f u nction s f and g

with respect to the vector y :

f gx x

f
y 

= g
~ 

= 0 . (119)

0

Under the assumpt ion  tha t the func t ions  f and g are quadra t i c

in their  respective a rguments , the fo l lowing  exact re la t ions

can be established :

f = f + af E , g = g + cxg E , (120)y y yy y y yy
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wh or .

f f f g 0 gxx xu x a xx x i

f = f f f , g = 0 3 0 . (121)yy ux uu uiT yy

f f f g 0 gT X  U IITI - TIX n i T

L:ith this understanding , Eqs. (lll)- (ll3) become

S
i 1

— \)T~~~~÷ ( f —  
~~~ 

+ S p )~~Bdt
0 0

1 1  iT 1 i
+ L ( f—  \ + S p )dt + 

~~~~~~ ~~~ u )
1j 

c 
~~~

+z [~~
’
ETf Edt + (13T0 E)

l] 
0, (122)

5 ( f  
~~~~ 

+ S~~~~ 
- \)~~Adt + J ( f _

~~~A + S p ) TBdt

+ z [ ~~
1

E T f~~~~d t +  (E Tgy
~j )

l] 
= 0 , ( 1 2 3 )

S (f — \ +S ~ — \) TA dt+ (f — A +S )TB dtx * u u u *

+ 
T I 

\ +  S p ) d t  + 
~~~Tl~~~’ I~~ ~÷ ~~~~ 

;
~~~~~~~~~ )~~~

A
*] ~~

+ i: Tf I ~* IL ~ ETg~ ,j~~~
1] 

= o. (124)
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Upon invoking Eqs. (73)—(76), we see that  Eqs. (122)- (l24) can

be rewritten as

B~ Bdt + C~ C_a
[
~~E

T
fyy Edt+ (E

T
gyy E)i] 

= 0 , ( 1 2 5 — 1 )

B~ ñdt +C~ C- ~ E T f~~,Edt +(ETgyyE)1] 
= 0 , ( 1 2 5 — 2 )

5 B~ B~ dt  + C~ C~ - ~[5’ETfYY
E~ Ut+ (E

T
gy 

E
~
)
1]= 0. (125—3)

Local Conjugacy Condition. Next, we emp loy the local

or thogona l i ty  condi t ion (117—1) written for the present itera-

tion , and observe that (125—2) yields the local conjugacy

condi t ion

1

J E
T
f~~ Edt + (ETg~~ E)1 =O. (126)

Here , the ad jec tive local is emp loyed to mean that  Eq. ( 12 6)

involves vectors 13(t), that is , vectors A (t), B(t), C , which are

solutions of (70)- (76) computed for the present iteration and

the previous iteration.

Stepsize. After observing that

(127)

and riaking use of the local conjucjacy condition (126), we see
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that Eq. (125—3) can be rewritten as

5 B ~ B*d t + C~ C*
_
~~
[
~~E

TfyyEdt+ (E
T
g~~,E)1] 

= 0 .  ( 1 2 8 )

This equation enables one to compute the optimum stepsize ~,

once the value of the directional coefficient ~ is known.

Directional_ Coefficient. After invokine Eq. (127) , we see

that the local conjueacy condition ( 12 6 ) becomes

~~~~f~~ Edt ± (E~~ L )
1

+~~~
[

~~~E
T
f ~dt+ (E

Tq~~~~)j =0. (~~29)

If we employ Eu . (128) written for the previous iteration ,

Eq. (129) becomes

-
, 

~~~
B

~~
B *L 1 t + C  *1+~[5 f~7~ Edt+ (E~~ yy E)i]=0 (130)

and , in t he  light of Eqs. (120), can be rewritten as

-
~ 

B
~ B~

dt + ~~c~]+5 
E~~( f ~~

_ f~~)dt +[E~~ c~
_ 

~~ = 0 .  ( 1 3 1 )

If Eqs. (70)—(7( - ) and (ll7)— (ll9) are employed , the fellow—

1 I T j  relations can be shown to hold:

1 1

S E~~~ Jt + (r~ 
~ 5 B

~~
-
~~
Jt + C~ C~ = 0 , 

(132)L
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5E~ f dt+ (E~~ y
)
1
=0 . (133)

As a consequence , Eq. (131) becomes

~[ 5B ~ B*dt+C~C*] 
- [ 5 B

~ B*
dt+C

~ C*] 
= 0 (134)

and can be r ewr i t t en  as

= Q/Q , (135)

where

p 1

B~
’
B~

d t+C
~
’
C~ , (136)

0

(1

Q = j  B
~
B
~
dt+C

~ C~ 
(137)

0

denote the er rors in the opt imal ity cond it ions for  the pr esent

iteration and the previous iteration , respec t ive ly .  These

quantities are known , since they involve vec tors B
~ 
(t), C

~

which are solutions of (70)- (76) for y = 0 computed for the

present iteration and the previous iteration.

Descent Property. Because of the local orthogonality

condition (117—1) written for the previous iteration , Eq. (109 )

y ie lds

z = 0. (138)
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As a consequence , t he  first variation of the augmented fun-

ctional (83) reduces to

j  = — -
~~~~~ , (139)

d u n e t he error in the e t  loality condition Q is given by Eq.

(136). Euuation (139) holds for any conjugate gradient iter-

ation and shows tha t , since , - 0, we have ~J 0. h ence , for

i s ~ffic -~nt ~y small , a decrease in the augmented functional J

i S  ~;uarantc :-J . fn conclusion , for the linear—quadratic case ,

the rest lit orocedure mentioned in 13ection 5 never occurs.

Tb is means that the directional coeffici ent is set at the

level (84) onl > for t he  first iteration.

(e:ieral )rthogonality_and_Conjugacy Conditions. Assume

now that the algori thai described by Eqs. (70)— (76) and (110)

is employed , startin~i with a feasible nominal solution. Fur-

ther , assune that the first conjugate j’adient iteration is

done with

= 0 , (140)

meaning tha t th is is an ordinary gradient iterati- :Dn. Under

these assumptions and with reference to tile linear—quadratic

case , one can ae ner a l i :e  the local orthoqonality conditions

(117) and the local c on j a q acy condition (126) as follows :

_ _ _ _ _ _ _ _ _ _ _  - —a
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5B ~ Bpdt+C~cp 0 , (14l l)

5 B~ B~~ dt + C
~
C
~P = 0 , (141-2)

0

and

J E
T f E d t +  (E Tg E ~~) 1= 0 , ( i 4 . ~

where the subscript p denotes any iteration preceding t l a

present iteration. While these equations do not guarant e

convergence in a finite number of steps , they do guarantee t :  .t

the algorithm generates a sequence of linearly indepentent

vectors E(t), that is , a sequence of linearly independent vii—

n ations per unit stepsize A(t), B(t), C. 

- -- -~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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8. ColT j  uqat : h - T l u i e n t  Ph ase : Practical Implementa t i-a n

In t h i s  sec t ion , we summarize the results of Sections

5—7 , a nd sue l u s t  p r a c t i c a l  way s  of u t i l i z i n i these r e s u l ts ,

w h i l e  a v o i d i n  t i lL  use of second derivatives. This is an

essent ia l  c h a rac t e r i s t i c  of  a f l i r t  — T r i e r  mci boH .

A u x i l i a r y  F u n c t i o n s .  Thc f i r s t  s tep is to solve L s .

(7 0) — ( 7 6 )  for ~ f~~c ti  t ious v a lu c  of t h e  u ir e c t~ on a l  c o e f f i  —

c ient , na m el y ,

(1 4 3 )

Th is y ields the  f o l l o w i nu  liiieor , tiw~ — oint boun i a r v — v a l u e

problem:

- ~~~~~~~~~~~ - 
TB - ~

TC~ = 0 , 0 < t < 1, ( 14 4 )

STA~~+ S
T B~~+ S

TC~~= O , 0 < t < l , ( 1 4 5 )

0 , ( 146)

0 < t < i , (147)

B~~+ f — ~~~~\~~ + S p ~~= O , 0 < t ~.l , (148)

~~ 1

C~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(149)

0

+ 0~~~~~ ~~
- 
~~~ 

= 0. (150)

_ _ _ _ _ _  

— --4
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Using the solu tion techni que of Sect ion 5, we obtain the fol-

lowing auxiliary functions and multipliers :8

A~~(t), B~~
(t) , C~~,A~~(t), p~~(-t), ~~ . (151)

Directional C o e f f i c i e nt .  The second step is to compute

the actual value of the directional coefficient

For the first conjugate gradient phase , we set

-y = 0, (152)

meaning that the conjugate gradient iteration is an ordinary

gradient iteration. For subsequent conjugate gradient phases ,

we set

(153)

whe re

B
~
B
~
dt+c

~
c
~ (154-1)

0

p1

Q = ~~~ 
B~ B~ d t ÷ C ~ C~ ( 154-2)

0

denote the errors in the optimality conditions at the beginning

8These functions and multi pliers are identical with those
solving the li nea r , two-point boundary—value problem asso-
ciated with the ordinary gradient phase of Ref. 9.
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of the present conjugate iradient phase and at the beg i n n i ng

of the previous conju~ ate ~radicnt phase , respe c t i v e l y .

Note that t h e  directional coefficient (153) is accepta-

ble on ly if

0 , (155)

where J (0) is given by hg . ( 1 6 0) . i f m oe . (155) is viola-

ted , then the d~ rcctienai coeffic i :it (153) ust be discarded

and replaceQ by the value (152) . This  1 - T a l i n that the algorithm

must be restarted by repiacine i~h’~ conjugate gradient phase

with an ordinary gradient phase.

Basic Functions. The third step is to compute the basic

functions l\(t), 3(t), C and the multipliers X (t), p (t), p . This

is done w i t h  the f o l lo w i n g  f o rmu las :

A( t)=A
~~
(t) + A ( L ) ,  B ( t ) = B ~~( t ) + - ~B ( t ) ,  C = C ~~+ 1 C , (156)

= 
~
(t), (t) = p

~~
(t), p = 1

* 
. (157)

Stepsize. With the basic functions A(t), B(t), C known ,

we consider the one-parameter family of solutions (30) . For

this one—parameter family, the augmented functional (16) takes

the fo rm

= (~~T~~) 1 + - 
T 

+ 
T 5 ~

T
~~) d t  + + T~~ (158)

- - --4
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w i t h  the impl i ca t ion  tha t

1 1

TI ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[5 ( f ~ 7Ti A +S~1 -)dt + 
~~a 

+ 7 y~~)
i] 

C +  [(~ ~~q~~~~7 p)T?1 , (159)

and with the further implication that

- -
~~~~ 

=- (Q+y Z), (160)

where

p 1

~ 
B
~

i3
~
dt+C

~ C~ , (161)
0

2= ~ B~ Bdt+C~ C . (162)
J o

Note that

Z = 0  (163)

in the linear-quadratic case and that

Z/0 (164)

in the beneral case.

In addition to the augmented functional , the constraint

error (24) must be monitored during the conjugate gradient

phase . For the one-parameter family of solutions (30), the

- - — -  --• --
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functional (24) takes the form

-. ci . ~l
P( ~. )  = ~ N (x — ~)dt + N(S)dt + N L )

1 
, (165)

~~ 
Jo

where N ( b ) denotes the norm siuarcd of the vector b .

~c i t h  thcse p r e l i m i n a r i e s  in mind , the stepsize must

oe se lected so t h e t the  f o l l o w in g  i n e q u a l i t i e s  are  s a t i s f i e d :

J~ ( ),/J~ (0) H 
( 1 ( 1 )

J( 
~ ) < J ( 0 )  , ( 1 6 7 )

subject to

~~ ( L i ( a )  0 , (168)

where and P~ are preselected numbers. While L
3 

is a

small number , i~~~~ need not be necessarily small.

Quadratic Intc-rr )ohation. In the linear—quadratic case ,

satisfaction of (l66)—(l67) can be achieved by using quadratic

interpolation. The procedure is as follows.

Let the function (158) be written in the quadratic form

3 ( 1 )  = k
0 + k1 l * k2~

2 
, (169)

with the m l l ication that

3 ( ~ ) = k
1 

2k 1 , ( t )  2 k ) . (170)
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Therefore , the coefficients k
0 and k1 are given by

k0
=J(0), k1 =J (0) . (171)

The c o e f f icien t k 2 C.In he computed by evaluating the augrnen-

ted functional at s e e  . ef e r e n c e  stepsize , for instance , -~ = 1.

If this is done, one concludes that

k2
=J(l) -3(0) -3 (0) . (172)

~\ L t h  the coefficients known , the optimum value of a can be

computed  f rom the r e l a t i o n

~r (a )  = 0 , (173)

which implies  t ha t

( 174 )

In the linear quadratic case , the representation of the

augmented functional (158) by means of the quadratic form

(169) is exact. Therefore , the quadratic interpolation pro-

cess is employed only once (one-step quadratic interpolation) .

Cubic Interpolation. In the general case , it is better

to try to achieve satisfaction of (l66)-(l67) with cubic

interpolation. The procedure is as follows .

We consider the reference stepsize k and the sequence

of stepsizes

- -
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= ~ 0, k , 2k , 4k , 8k, ..j . (175)

For every element of the sequence (175), we compute the quan-

tities (158)— (l59). We denote by a
l and t

2 the smal l est

consecut ive elements in the sequence (175) such that the fol-

lowing inequalities are satisfie d

~~ < 0 , ~ (~~~ ) ~- 0 . (176)

The n, assuming that the derivative J (~~)is continuous , a relative

minimum of 3(a) occurs for a value :1
0 such that

11 ~ (~~~ < 
2 (177)

In order to find the minimum of 3 ( a)  numerically, we ap-

proxima te the fu n c t i o n  3 (t) with the cubic forn

3(a) = K
0 

+ k
1 t + k2a

2 
+ k3a

3 
, (178)

with the implication tha t

J (a) = k
1 + 2k

2- t + 3k
3 

2 
, 

I I  
(a) = 2k

2 
+ 6k

3 z . (179)

The co e f f i cien ts k
1 are computed by forc i ng the cubic f unc t ion

(178) and its derivative to satisfy the exact values of the

o r d i n a t e  J (~~) and the slope J ( )  at 0 1 and 12 ; that is , the

c o e f f i c i e n t s  k 1 are computed from the conditions
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(l~~0-l)

~ 1 2) = k
0 

+ k
1o2 

+ k
2 ~ + k

3- t ~ , (180—2)

= k~ + 2k 2 
~ 

+ 3k
3 ~~ , (180-3)

3 ( i a ) = k1 
+ 2k2 2 + 3k

3 
1~~ . (180 4)

With the coefficients known , the optimum value of ~ can be

computed from the relation

(~~~) = 0 , (181)

which implies that

= (1/3k~~) [-k 2
+ (k ~~- 3k

1
k
3

) ]  . (182)

Then , two possibilities arise , depending on the sign of

J ( t )  at the P0iflt~ t
O .

(i) J (0  ) 0 , (183-1)

(ii) 3 
~°o~ 

< 0 . (183-2)

In Cisc (i), the cubic interpolation process is repeated

betwien and . In Case I i i ~ ,it is repeated between - t 0 and -t 2

The process is conti nued until m eg . (166) is satisfied .
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Limiting Case. If the solution of Eqs. (180) is such

tha t

k3 = O  , (184)

the optimal stepsize 1
0 cannot be computed with Eq. (182),

since both the numerator and the denominator vanish simulta-

neously. This difficulty can be bypassed by observing that

the limiting case (184) means that the cubic approximation

(178) is being replaced by the quadratic approximation (169)

As a consequence , the optimal stepsize of the cubic approxi-

mation (182) must be replaced by the optimal stepsize of the

quadratic approximation (174).

In vractice , two cases are possible:

(i) k~ c4 , (185-1)

(ii) k~ ~:4 (185-2)

where c 4 is a small , ereselected number. In Case (i), the

optima l stepsize t~~ ‘iust be computed with Eq. (182) . In Case

( i i )  , the oetua1 stepsize ~ must  be computed with (174)

Re m a r k .  For m ore  det a i is c o n cer n in i  the o n e — d i m e n s i o n a l

aearch for thu conjugate Iradient steesize , t he  reader  i s

referred to E e f . 16.
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9. Descent Property of a çycle

While  the stepsizes employed in the conju gate gra dient

phase and the restora tion phase are not necessar ily smal l , a

descent property can be proven for  a complete conjugate

gradient—restoration cycle under the assumption of small step-

sizes.

Let the subscript g denote the conjugate gradient phase ,

and let the subscript  r denote the restoration phase. Simple

manipulations , om itted for  the sake of brevi ty ,  show that the

con juga te  g rad ien t  cor rec tions and th e restora tion correct ions

have the followi ng or der s of magni tude :

(t) = O (tg)~ u
9 
(t) = 0 (a g

) ~1l
g 

= 0 (O
g
) (186)

‘ X ( t )  = O( t
r

t
~~
) ~ r

( t )  0 ( t r 1~~ 
A i
r 
= 0(0 02) . ( 187)

For s u f f icien t ly  small , the res tora tion cor rect ions

are neg ligible with respect to the conjugate gradient correc-

tions. Therefore , providing the con jugate  grad ient  pha se has

a descent property on 3(a) (this is guaranteed throug h the

selection of the directiona l coefficient ~ ) ,  the restoration

phase preserves the descent property of the conjugate gradient

phase.

Mor e spec i f ica l l y ,  le t the subscr ipts 1, 2, 3 deno te

the values of the functional I at the beginning of the

c o n j u g a t e  g r a d i e n t  phase , at the end of the conju—
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gate gradient  phase , and at the end of the subsequent restora-

t ion phase. We note that I~ and 12 are not comparable , since

the cons t ra in t s  are not sa t i s f i ed  to the same accu racy.  On

the other hand , not onl y I~ and 13 are comparable , but the

conjugate gradient stepsize t1g can be selected so that

1
3 

< I~ . (188)

This constitutes the descent property of a complete conjugate

gradient—restoration cycle.

If Ineq. (188) is satisfied , the next conjugate gradient-

restoration cycle can be started . If Ineq . (188) is violated ,

one must return to the previous conjugate gradient phase and

bisect the c o n j u g a t e  gradient s teps ize  0
g 

until , after resto-

ration , m eg . (188) is satisfied . That the above procedure

leads to satisfaction of Inec’. (188) is guaranteed by two

circumstances: first , the fact that the directional coefficient

has been chosen consis tently with Ineq . ( 1 5 5 ) ;  second , the

fact tha t, for small , the restoration corrections (187) are

negligible by comparison with the conjugate gradient correc-

tions (186).

— -- ----——
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10. Summary of the A lgorithm

A sequential conjugate qradient-restoration algorithm

has been developed in order to solve optimal control problems

involving a functional (12) , subject to differential cons-

traints (13), nondifferential constraints (14), and terminal

constraints (l5). The algorithm is composed of a sequence of

cycles , each cycle consisting of two phases , a conjugate

gradient phase and a restoration phase.

Decision Variables. The major decision variables con-

trolling the algorithm are the constraint error P, given by

Eq. (24), and the optinalitv condition error Q, given by Eu.

(25)

Depending on the value of 1’, two cases are possible:

(i) P , (189)

(ii) 
-
~ 
L l . ( 1 9 0 )

In Case ( i )  the algorithm executes a restoration phase. In

Case (ii) the algorithm computes the optimality condition

error Q.

Dependii -~ on the ~alue of Q, two subcases of Case (ii)

are possible: 
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( i i i )  - i ‘ > 
~2 

( 191)

(iv) P < 
~~~~ , ~ 

L
2 . (192)

In Case (iii) , the algorithm executes the conjugate gradient

phase . In Case (iv) , the algorithm stops: convergence has

been achieved .

Iterations. Each iteration of the conjugate gradient

~--hase or the restoration phase is described by the following

relations :

x (t) =x (t)-1- 1A(t) , d (t)=u(t) + B(t) , ~ i+  tC , (193)

which tie the nominal functions and the varied functions.

Therefore , each iteration includes two distinct operations:

the determination of the basic functions A(t), B (t), C and

the determination of the stejlsize

Restoration Phase. The restoration phase includes one

or more restorative iterations. A restorative iteration is

started whenever the constraint error P satisfies Ineq . (189)

In each restorative iteration , the basic functions A (t),

3(t), C are determined by solving the linear , two—point

b o u n d a r y - v a l u e  p rob lem (43)- (49) using the method of particu-

lar solutions. This requires executing n + p + 1 independent

sweeps of the system (43)—(49)

The st~~~s ize  m u s t  be determined so that the following

_
_ _  ~~~~~~~~~~~~ - - -~~
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inequalities are satisfied :

P(t ) <P(0), ~ ( a )  > 0 - (194)

For this purpose , a bisection process , starting from the

reference stepsize

t
O 

= 1 , (195)

is employed .

In thc course of a restorative iteration , the reduction

of the constraint error is guaranteed . h owever , there is no

guarantee that the constraint error is reduced below the

threshold (190) characterizing the beLlinning of the next con-

jugate gradient phase. In other words , after Ineqs. (194)

have been satisfied , two cases are possiblc:

(i) P (a~ > , (196)

(ii) F (t ) 
~ 

- (197)

In Case (i) , a further restorative iteration is initiated

employing as nominal functions the varied functions of the

orevious restorative iteration. In Case (ii) the restora-

tion phase is t e r m i n a t ed , and the next conjugate qradient

phase is started .

Clearl y, each restoration phase includes a variable
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number of restorative iterations , depending on the particular

problem and the nominal functions employed . Generally speak-

ing , the number of restorative iterations per restoration

phase decreases in subsequent cycles of the sequential con-

jugate gradient—restoration algorithm and approaches zero as

the algorithm proceed s toward convergence.

Conjugate Gradient Phase. The conjugate gradient phase

involves a sing le iteration. This single iteration is started

whenever the constraint error P satisfies Ineq . (190) -

In each conjugate gradient iteration , the first step is

to compute the auxiliary functions A~~
(t), B~~

(t), C~ corresponding

to the fictitious value

0 ( 1 9 8 )

of the direc tional coefficient. These auxiliary functions are

determined by solving the linear , two—point boundary—value

problem (l44)— (l50) using the method of particular solutions.

Once more , this requires executing n + p + 1 independent sweeps

of the system (l44)— (l50).

With the auxiliary functions known , the basic f u n ct ions

are determined with the relations

B(t)=B~~
(t)+

~~
B (t) , C = C~ + 1 C , (199)

where ~ denotes the actual value 
of the directional

c o e f f i c i e n t .  This directional coefficient is set at one of
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the following levels:

( i )  = 0 , ( 2 0 0 )

( i i )  = Q/Q , (201)

where (200) holds for the -first conjugate gradient iteration

and (201) holds for any subsequent conjugate gradient itera-

tion.

Prior to accepting the directional coefficient (200) or

(201), a check must be made. For the choice ( 2 0 0 )  or (201),

is the slope of the augmented functional J~~(0) negative? In

other wo rds , does the descent property of the gradient phase

ho ld?

Con~~e r n i ng Case ( i ) ,  two subcases are possible:

( i i i )  = 0 , 3 (0) 0 , ( 2 0 2 )

(iv) y = 0  , 3 ( 0 )  > 0 .  ( 2 0 3 )

In Case (iii), the directional coefficient (200) is accepted ,

and the algorithm completes the ordinary gradient phase . In

Case (iv), the descent property of the ordinary gradient phase

does not hold , and the value of the augmented functional can-

not be reduced , owing to numerical inaccuracies; hence , this

constitutes a noncon”ergence condition for the al gorithm as a

whole.

I- -  -~~—--- - - ---— — -‘ ‘~~~ - - — - - - -~~~~~~~~~~~~
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Concerning Case (ii), two subcases are possible:

(v) y = .),‘Q 0 , ( 2 0 4 )

(vi) = ./C , 3 ( 0 )  0 - (205)

In Case (v), the directional coefficient (201) is accepted ,

an-i the algorithm completes the conjugate gradient phase. In

Case (v i ) ,  the directional coefficient (201) is rejected , and

is replaced by the directional coefficient (200) - This means

tha t the algorithm is restarted with an ordinary gradient

phase , characterized by = 0 -

After the directiona l coefficient has been selected , the

functions (199) are known , and the one—parameter famil y of

solutions (193) can be formed . Then , the conjugate gradient

stepsize . must be determined through a one-dimensional search

on the augmented functional J (t)in such a way that the fol—

lowing inequalities are satisfied :9’1°

J 2~~~~/J 2
( Q )  < E

3 (206)

9
Note that m eg. (208) prevents the c o n s t r a i n t  error P from
becoming too large during the c o n j u g a t e  gradient phase.
10
For the details of the one-dimensional search technique
leading to the satisfaction of (207)-(209), see Ref. 16.

L - - - - - ---~~~~~- -
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and

3 ( e )  < 3 ( 0 ) ,  ( 2 0 7 )

P ( a )  < P~ ( 2 0 8 )

~ (a) > 0 - (209)

For thi s purpose , the cubic interpolation procedure of

Section 8, is employed , with an optional switch to quadratic

interpolation , if needed .

Conjugate Gradient-Restoration Cycle. Generally speak-

ing , the first cycle of the algorithm is a half cycle , in

that it includes a restoration phase only. Every subsequent

cycle is a complete cycle , in that it includes both a conju-

gate gradient phase and a restoration phase.

Between the endpoints of a complete conjugate gradient-

restoration cycle , the fo l l owing descent property must be

sa t i s f i ed:

13 < I~ , (2 1 0 )

where I~ denotes the va lue  of the f u n c t i o n a l  (12) at the

beg inn ing  of the cycle and 1
3 

denotes the value  of (12 ) at

the end of the cycle .

If Ineq . (210)  holds , the next  c o n j u g a t e  g r a d i e n t —

res tora t ion  cycle can be s t a r t ed . If Ineq . (210) is violated ,

_ _ _  - -  - - -
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one must return to the previous conjueate gradient phase and

bisect the conjugate gradient stepsize until , after restora-

tion , Ineq . (210) is satisfied .
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11. Remarks  and S a f e g u a r d s

In t h i s  f i n a l  sect ion , we include miscellaneous consi-

derations , relevant to the computer implementation of the

sequential conjugate gradient-restoration algorithm . We

a l so list some important safeguards.

Nondifferential Constraint. For the restoration phase ,

the linear , two-point boundary-value problem (43)-(49) must

be solved . During the execution of a sweep , assume tha t  time

etatien t has been reached and that A(t), C , i ( t )  are known at

that time station . Then , Eqs. (44) and ( 4 7 )  cons t i t u t e  a

system of m i- k equations in the m + K components of the vectors

B(t), r (t). The system admits a unique solution providing the

following relation is satisfied :

det [I u] 
= (1 ) k det [

~ 
s~~ ~ o , (iil)

where I denotes the m x m identity matrix and 0 denotes  the

k x k null ma tr ix .

An analogous remak holds for the conjugate gradient

phase:  here , the l i nea r , two—poin t  boundary-value problem

(144)-(l50) must be solved . During the execution of a sweep,

assume that time station t has been reached and tha t A~~( t ) , C~

~~~( t ) a r e  known at tha t time station. Then , Eqs. (145) and
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(148) constitute a system of m+ k equations in the m +  k

components of the vectors [
~~

t),p
~~
(t) . Once more , the u ’ r t e m

admits a unique solution providing relation (211) is s a t i s fi e d .

The implication of (211) is that , while the state x

artd or the rae-ameter :r can be absent from the nondifferential

constraint ( 1 4 ) ,  the  con t rol  u can never be absent. In fact ,

a must be present in each of the k scalar components of the

vecto r S. Therefore , suitable transformations must be intro-

duced in order to convort problems where the function S does

not involve  the control  in to  problems where the function S

involves the control. For a discussion of these transforma-

tions , see Ref . 9.

Starting Condition. The present algorithm can be started

with nominal functions x (t) u(t), i satisfying condition (15—1)

and violating none , one, or all of conditions (13), (14),

(15—2). If the nominal functions are such that m eg . (189) is

satisfied , the algorithm starts with a restoration phase;

hence , the first cycle is a half cycle , including a restoration

phase on ly. On the other hand , if the nominal functions arc

such that ineq . (190) is satisfied , the algorithm starts

with a conjugate gradient phase; hence , the first cycle is a

c
~onr-l ete cycle , including both a conjugate gradient phase and

a r e st or a t i o n  p hase .
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Bypassing Condi t ion.  At the end of the conjugate

gradient  phase of any cycle , the cons t ra in t  error P must be

computed . If Ineq . (189) is satisfied , a restorat ion phase

is started . If Ineq. (190) is satisf ied , the restora tion

phase is bypassed , and the nex t cycle of the al gori thm is

sta rted .

Co”vergence Conditions. For the restoration phase taken

i n d i v i d u a l l y ,  convergence is achieved whenever Ineq . (190) is

satisfied . For the sequential conjugate gradient-restoration

algor i thm taken as a whole , convergence is achieved whenever

Ineqs. ( 1 9 2 )  are s a t i s f i e d  s imul taneous ly.

Safeguards. Let N denote the number of iterations. Within

each res tora tion phase , let Nr denote the number of restorative

iterations. Within each restorative iteration , let N br denote

th e number of bisections of the restoration stepsize required

to satisfy Ineqs. (194). For the conjugate gradient phase ,

let N
bg 

denote the number of bisections of the conjugate gra-

dient stepsize required to satisfy Ineqs. (207)— (209). Finally,

for a complete conjugate gradient—restoration cycle , let Nbc
denote the number of b i sec t ions  of the con juga t e  g rad ien t

stepsize required to satisfy the cycle descent property (210).

With this understandin g, the fo l lowing sa feguards ar e

essential to the proper implementation of the sequential con-

jugate gradient-restoration algorithm~
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( i )  N < N~ , (212)

( i i )  N < N , (213)r —  r*

( i i i )  N
b

< N
b , ( 2 1 4 )

(iv) N
b 

N
bq* (215)

(v) Nb 
< N

bc (216)

In the above inequalities , the ri ght-hand sides are specified

upper bounds .

Restarting Conditions. The directional coefficient of

the conjugate gradient phase must be reset at the level

-
~ 

= 0 (217)

if any of these c i rcumstances  ar ise :

( i)  3 ( 0 )  0 , - r Q/ Q , (218)

N
bg ~ 1 = 0 or ~‘ = Q/Q • ( 2 1 9 )

(iii) N
b 

> 1 , = 0 or = Q/Q , ( 2 2 0 )

( i v )  N
bg 

> N bg* 
= Q/Q (221)

( v )  N b ~ 
N b , = . (2 2 2 )

S a t i s f a c t i o n  of In eq. (21 8) ind icates a loss of the

L - - -~~~~~- - -
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descent property of the present  con juga te  g r a d i e n t  phase .

Henc e, the directional coef f icient must  be reset at the level

(217), characteristic of an ordinary gradient phase.

S a t i s f a c t i o n  of Ineq . (219) indicates that the optimum

stepsize of the present conjugate gradient phase [this is the

stepsize satisfying Ineq . (206)1 cannot be employed , owing to

violation of one or more of Ineqs. (207)— (209). h ence , this

stepsize must be bisected N
bg 

times so as to arrive at satis-

faction of (207)— (209), while violating (206). Because of

the ensuing large violations of the orthogonality and conju-

gacy conditions , the directional coefficient of the next

conjugate gradient phase must be reset at the level (217)

characterisitc of an ordinary gradient phase.

Satisfaction of Ineq . ( 2 2 0 )  indicates  that  the optiirtum

stepsize of the present conjugate gradient phase cannot be

empl oyed , owing to viol at ion of the cycle descent property

( 2 1 0 )  . Hence , th is  s tepsize must  be bisected Nbc times , so as

to a r r i v e  at  s a t i s f a c t i o n  of ( 2 1 0 )  , wh i l e  v io l a t ing  ( 2 0 6 )  -

Once more , because of the ensuing  large  violat ions  of the

orthoqonality and conjugacy conditions , the directional

coefficient of the next conjugate gradient phase must be reset

at the level (217), characteristic of an ordinary gradient

phase.

- - -  -~~~~~~~ - ‘ ~~~~~~- - 
-
~~ ~~~~- - -  -~~~~~
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Sa t i s f ac t i on  of Ineq . ( 2 2 1)  has a stronger implication

than satisfaction of Ineq . (219) - It requires restarting with

= 0 in the present  conjugate gradient phase , rather than the

next conjugate gradient phase.

S a t i s f a c t i o n  of Ineq . ( 2 2 2 )  has a s t ronger  implication

than  s a t i s f a c t i o n  of Ineq . (220). It requires restarting with

= 0 in the present  c o n j u g a t e  g rad ien t  phase , ra ther  than the

next conjugate gradient phase.

Nonconvergence Conditions. The sequential conjue-ite gradient_

restoration algorithm must be programmed to stop whenever any

of several circumstances arise:

( i )  N > 
~~ , ( 2 2 3 )

(ii) N > N , ( 2 2 4 )r r*

( i i i )  N br > N
b , ( 2 2 5 )

( i v)  J ( 0 )  > 0 , y = 0 , ( 2 2 6 )

(v )  N
bg 

> N
bg*~ 

= 0 • (227)

(v i )  N b > N b ,  = 0 , ( 2 2 8 )

( vi i )  M > N ~ - (229)

S a t i s f a c t i o n  of m n e q .  ( 2 2 3 )  i nd ica tes  extreme slowness of

convergence of the a l g o r i t h m  as a whole.  S a t i s f a c t i o n  of Ineq .

_ _  -
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( 2 2 4 )  indicates extreme slowness of convergence of the resto-

ration phase. Sati s f a ct ion of Ineg. ( 2 2 5 )  ind icates ex treme

smal lness  of the restorat ive  displacement s. Sat isfaction of

Irieq . ( 2 2 6 )  indica tes  loss of the descent property of the

ordinary gradient phase , owing to numerical inaccuracies.

S a t i s f a c t i o n  of e i ther  lneq.  (227 ) or Ineq . ( 2 2 8 )  indicates

extreme smal lness  of the ordinary gradient displacements.

F i n a l l y ,  s a t i s f a c t i o n  of Ineq . (229) indicates overflow: the

modul us ~1 of some of the quantities used in the algorithm has

reached the upper limit ~~ allowed by the particular computer

employed .

Remark . ‘e eral numerical examples illustratinu the

theory  g i v e n  in th i s  paper arc presented in Ref . 16. For a

genera l  d i scuss ion  of the properties of sequential gradient-

r e s t o r at i on  a le or i t hm s , the reader is r e f e r red to Re f .  17.

- - - -

~

-

~ 
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