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Sequential Conjugate Gradient-Restoration Algorithm
for Optimal Control Problems

with Nondifferential Constraints, Part 1, Theory1

by

J.R. CLOUTIERz, B.P. MOHANTY3, and A. MIELE4

Abstract. A sequential conjugate gradient-restoration algorithm
is developed in order to solve optimal control problems involving
a functional subject to differential constraints, nondifferential
constraints, and terminal constraints. The algorithm is composed
of a sequence of cycles, each cycle consisting of two phases, a

conjugate gradient phase and a restoration phase.
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The conjugate gradient phase involves a single iteration
and is designed to decrease the value of the functional while
satisfying the constraints to first order. During this iter-
ation, the first variation of the functional is minimized, sub-
ject to the linearized constraints. The minimization is
performed over the class of variations of the control and the
parameter which are equidistant from some constant multiple of
the corresponding variations of the previous conjugate gradient
phase. For the special case of a quadratic functional subject
to linear constraints, various orthogonality and conjugacy
conditions hold.

The restoration phase involves one or more iterations and
is designed to restore the constraints to a predetermined
accuracy, while the norm of the variations of the control and
the parameter is minimized, subject to the linearized constraints.
The restoration phase is terminated whenever the norm of the
constraint error is less than some predetermined tolerance.

The sequential conjugate gradient-restoration algorithm is
characterized by two main properties. First, at the end of each
conjugate gradient-restoration cycle, the trajectory satisfies
the constraints to a given accuracy; thus, a sequence of feasible
suboptimal solutions is produced. Second, the conjugate gradient
stepsize and the restoration stepsize can be chosen so that the
restoration phase preserves the descent property of the conjugate

gradient phase; thus, the value of the functional at the end of
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any cycle is smaller than the value of the functional at the
beginning of that cycle. Of course, restarting the algorithm
might be occasionally necessary.

To facilitate numerical integrations, the interval of
integration 1is normalized to unit length. Variable-time
terminal conditions are transformed into fixed-time terminal
conditions. Then, the actual time at which the terminal bound-
ary is reached becomes a component of a vector parameter being
optimized.

Convergence is attained whenever both the norm of the
constraint error and the norm of the error in the optimality
conditions are less than some predetermined tolerances. Seve-
ral numerical examples illustrating the theory of this paper

are given in Part 2.

Key Words. Optimal control, gradient methods, conjugate-gradient
methods, numerical methods, computing methods, gradient-restoration
algorithms, sequential gradient-restoration algorithms, sequential
conjugate gradient-restoration algorithms, nondifferential cons-

traints.




4 AAR-126

i 19 Introduction

Approximately ten years ago, conjugate gradient technigues
began appearing on the optimal control scene. 1In 1967, Lasdon
et al (Ref. 1) extended the conjugate gradient method developed
by Fletcher and Reeves for mathematical programming problems to
optimal control problems. About the same time, Horwitz and
Sarachik (Ref. 2) extended Davidon's method to a real Hilbert
space and applied the extension to a control problem with qua-
dratic cost and linear constraints. Shortly thereafter, Lasdon
(Ref. 3) and Tripathi and Narendra (Ref. 4) also derived exten-
sions of Davidon's method.

One common limitation of the above algorithms is that they
are not applicable directly to constrained control problems
(that is, problems involving terminal constraints and/or bounds
on the state or the control). However, these algorithms can
handle indirectly constrained control problems, after conversion
of these problems to unconstrained form; this conversion is
usually achieved by means of penalty functions.

Conjugate gradient algorithms which can solve directly
certain types of constrained control problems were presented in
Refs. 5-8. Sinnott and Luenberger constructed an algorithm for
solving problems with linear terminal constraints (Ref. 5);
Heideman and Levy developed an algorithm for problems with ar-

bitrary terminal constraints (Refs. 6-7); and Pagurek and
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Woodside constructed an algorithm for problems with bounded

controls (Ref. 8).

In the area of ordinary gradient methods, Miele et al
(Ref. 9) developed a sequential gradient-restoration
algorithm for optimal control problems where the state x(t),
the control u(t), and the parameter m must satisfy not
only differential constraints and terminal constraints,
but also nondifferential constraints everywhere along the in-
terval of integration. The importance of Ref. 9 lies in that
(1) many optimization problems arise directly in the form con-
sidered there, (ii) problems involving equality constraints
can be reduced to that form through suitable transformations,
and (iii) problems involving inequality constraints can be re-
duced to that form through suitable transformations. Thus, an
extremely large class of problems can be handled. This includes
problems with bounded control, bounded state, bounded time rate
of change of the state, as well as problems where a bound is
imposed on some function of the parameter, the control, the state,
and the time rate of change of the state.

This report combines the ideas of Ref. 6 and those of Ref. 9.
The result is a sequential conjugate gradient-restoration algo-
rithm which can handle constrained minimization problems, char-
acterized by the presence of nondifferential constraints, without

resorting to penalty functions. The algorithm is composed of a
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sequence of cycles, each cycle consisting of two phases, a
conjugate gradient phase and a restoration phase.

The conjugate gradient phase involves a single iteration
and is designed to decrease the value of the functional while
satisfying the constraints to first order. During this iter-
ation, the first variation of the functional is minimized
subject to the linearized constraints. The minimization is
performed over the class of variations of the control and the
parameter which are equidistant from some constant multiple of
the corresponding variations of the previous conjugate gradient
phase.

The restoration phase involves one or more iterations and
is designed to restore the constraints to a predetermined accu-
racy while the norm of the variations of the control and the
parameter is minimized, subject to the linearized constraints.

The sequential conjugate gradient-restoration algorithm is
characterized by two main properties. First, at the end of
each conjugate gradient-restoration cycle, the trajectory satis-
fies the constraints to a given accuracy; thus, a sequence of
feasible suboptimal solutions is produced. Second, the conju-
gate gradient stepsize and the restoration stepsize can be
chosen so that the restoration phase preserves the descent
property of the conjugate gradient phase; thus, the value of
the functional at the end of any cycle is smaller than the value

of the functional at the beginning of that cycle. Of course,
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restarting the algorithm might be occasionally necessary. For

a discussion of the basic properties of the sequential gradient-

restoration algorithm, see Ref. 10.
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o Formulation of the Problem

Consider the problem of minimizing the functional
T
I=i[ £, 0,,0)d8 +[g*(X'T'*,”)]T (1)
0

with respect to the state x(6), the control u(8), and the para-

meters 7, and 1 which satisfy the differential constraint

dx/dé = ¢, (x,u,m, ,0), 0<6<r1, (2)

the nondifferential constraint

S L 00 =10, OF bR i, (3)
and the boundary conditions

(x)0==given, [w*(x,ﬂ*,GHT= 0. (4)

In the above equations, the functions f, and g, are
scalar, the function ¢, is an n-vector, the function S, is a
k-vector, and the function y, is a g-vector. The independent
variable is the actual time 6, while the dependent variables
are the state x (an n-vector), the control u (an m-vector),

the parameter m, (a p,-vector), and the parameter t(a scalar).
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At the initial time 6 =0, the n components of the vector x are
specified. At the final time 6 =1, q scalar relations are

specified, where q<n+p, if 1 is fixed and gq<n+p, +1 if t is free.

To facilitate the implementation of the algorithm on a
digital computer, we replace the actual time 6 with the nor-
malized time t. The latter is defined in such a way that the
interval of integration has unit length. Thus, in normalized
form, t=0 denotes the time at which the initial boundary (4-1)
is left and t=1 denotes the time at which the terminal bounda-
ry (4-2) is reached. The following linear relation allows the

passage from the normalized time t to the actual time §:

The fact that the normalized final time is fixed (t=1)
does not cause any loss of generality in the problem. If the
actual final time is free, 1 simply becomes a parameter to be
optimized in the transformed problem. 1In view of this, we

define the augmented parameter 7w ( a p-vector),

T=T, Or T= [ﬂ*:], (6)
T

where (6-1) holds if 1 is fixed and (6-2) holds if 17 is free.

In addition to the normalized time t and the parameter m,
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we define the following functions:

E(xpu,nm,e) = ok, (x,n, T, , v, Ofs s 11, (7)
dl(x,u,m,t) = 1d, (X, 0,7, ,TL), 0<t<1, (8)
S(x,u,m,t) =Sx(x,u,m,,Tt), Gt l, (9)
g(x,m,t) =g, (x,mT,,Tt), (10)
vix,m,t) =yp,.(x,m.,Tt). (11)

Under the above transformations and definitions, problem

(1)-(4) can be reformulated as follows. Minimize the functional
i
1=J £ (x,u,m,0)dt + [g(x,m,£) ], (12)

0

with respect to the state x(t), the control u(t), and the para-

meter m which satisfy the differential constraint
x=¢(x,u,1,t), Gstsl, (13)
the nondifferential constraint
S(x,u,T, ) =0, 0<t<s 1, (14)
and the boundary conditions

(X) =giV€n' [W(X,“,t)]1=0. (15)

0
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From calculus of variations, we know that the problem
(12)-(15) is one of the Bolza typve; it can be recast as that
of minimizing the augmented functional5

i

J=j’ (AT % =8} ar+ (6),
0

1
= (ATx) 1! +f (H-1T x) dt + (G), (16)
0 0
with respect to the state x(t), the control u(t), and the
parameter 7m which satisfy (13)-(15), where the functions H and

G are given by
H=f—>\T¢+pTS, G=g+uTw, (17)

and where X (t) is a variable Lagrange multiplier (an n-vector),
o(t) is a variable Lagrange multiplier (a k-vector), and u is
a constant Lagrange multiplier (a g-vector).

The optimal solution must satisfy (13)-(15) and the first-

order optimality conditions, namely . the Euler equations

1

L
A=IIX, IIU=O, JO H,”dt+(Gﬂ)l=0 (18)
In Eq. (16), it is tacitly assumed that the initial condition
(15-1) is satisfied. The second form of Eq. (16) arises after

the customary integration by parts is performed.
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and the following natural condition arising from the transver-

sality condition:

(A + Gx)l =0. (19)

Summarizing, we seek functions x(t), u(t), 7 and multipliers
A(t), p(t), u which satisfy the constraints (13)-(15) and the

optimality conditions (20)-(23):

A-f +9.2-5p=0, 0st<l, (20)
£, = 9,2 +5,0=0, 0= t< i, (21)
1

So (f, - ¢ _A+S _p)dt+ (g +¥ u),=0, (22)
(A+g + vy n); = 0. (23)

2.1. Approximate Methods. Since the differential system

(13)-(15) and (20)-(23) is generally nonlinear, some iterative
technique must be employed in its solution. For this purpose,
let us define the scalar functionals P and Q, which denote the

constraint error and the error in the optimality conditions,

respectively. We have

11 1
P=f N(>'<—¢>)dt+“ N(S)dt + N(y), , (24)
0 “
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o~ 1
Q= S N()\—fx+¢x)\-—sxp)dt+5

0 N(fu—¢uA+Sup)dt

0

i1
+ N [So (fn—¢n)\+snp)dt+ (gn+wnu).‘] +N()\+gx+wxu)l, (25)

where N(b) denotes the norm squared of a vector, i.e.,
T
N(b) = b™ b (26)
for a given vector b.
Note that, for the optimal solution, P=0 and Q=0. For
an approximation to the optimal solution,

o £g ¢ (27)

where € and £, are small, preselected numbers.
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3. Construction of the Sequential Conjugate Gradient-

Restoration Algorithm.

The sequential conjugate gradient-restoration algorithm
is an iterative technique which includes a sequence of cycles
having the following properties.6

Property 3.1. The functions x(t), u(t), m available

both at the beginning and at the end of each cycle must be
feasible; that is, they must be consistent with the constraints
(13)-(15) within the preselected accuracy (27-1).

Property 3.2. The functions x(t), u(t), m produced at the

end of each cycle must be characterized by a value of the
functional I [see Eg. (12)] which is smaller than that associ-
ated with the functions available at the beginning of the

cycle.

Property 3.3. The functions x(t), u(t), m produced at the

end of each cycle must be characterized by a value of the
augmented functional J [see Eq. (16)] which is smaller than
that associated with the functions available at the beginning

of the cycle.

6Note that Property 3.3 is a consequence of Properties 3.1 and

3.2. Conversely, Property 3.2 is a consequence of Properties
3.1 and 3.3.
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To achieve the above properties, each cycle is made of
two phases, a conjugate gradient phase and a restoration phase.

Conjugate Gradient Phase. This phase is started only

when the constraint error P satisfies Ineq. (27-1). It involves
a single iteration, which is designed to decrease the value of
the functional I or the augmented functional J, while satisfy-
ing the constraints to first order. During this iteration, the
first variation of the functional I is minimized, subject to

the linearized constraints. The minimization is performed over
the class of variations of the control and the parameter which
are equidistant from some constant multiple of the corresponding
variations of the previous conjugate gradient phase.

Restoration Phase. This phase is started only when the

constraint error P violates Ineqg. (27-1). The restoration phase

involves one or more iterations. In each restorative iteration,

the objective is to reduce the constraint error P, while the cons-

traints are satisfied to first order and the norm of the
variations of the control and the parameter is minimized. The
restoration phase is terminated whenever Ineq. (27-1) is
satisfied.

Remark. During each conjugate gradient iteration or res-
torative iteration, use of nonlinear equations must be avoided.
Therefore, the exact feasibility equations (13)-(15) are re-

placed by their corresponding linearized approximations. These
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linearized approximations do not include forcing terms in the
conjugate gradient phase, while they do include forcing terms
in the restoration phase.

Notation. For any iteration of the conjugate gradient
phase or the restoration phase, the following terminology is
adopted: x(t), u(t), m denote the nominal functions; x(t), u(t),
m denote the varied functions; and Ax(t), Au(t), Am denote the
displacements leading from the nominal functions to the varied

functions. These quantities satisfy the definitions

x(t) = x(t) + Ax (t), U(t) =u(t) +Au(t), m=m+Am. (28)

If the variations appearing in (28) are linear in the stepsize

a, where a > 0, they take the form

Ax(t) = aA(t), Au(t) = aB(t), Am=aC, (29)

with the implication that

E K
]

X(t) = x(t) + aA(t), u(t) =u(t) + aB(t), m+aC. (30)
The functions Ax(t), Au(t), AT must be determined so as to
produce some desirable effect at every iteration, namely, the

decrease of the functionals I and/or J and/or P. Thus, the
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following descent properties are required:

~

E-<F . and/or 3‘<J, and/or P < P, (31)

where I,J,P are associated with the nominal functions and I,J,
P are associated with the varied functions. Inequalities
(31-1) and (31-2) characterize the conjugate gradient phase,
and Ineq. (31-3) characterizes the restoration phase.

In turn, relations (31) can be enforced at every itera-

tion providing the stepsize a is sufficiently small and the

functions A(t), B(t), C are chosen so that

81 <0, and/or §J <0, and/or P <O, (32)

where the symbol &§(...) denotes the first variation. Inequali-
ties (32-1) and (32-2) characterize the conjugate gradient
phase, and Ineq. (32-3) characterizes the restoration phase.
Clearly, every iteration includes two basic operations:
(a) the determination of functions A(t), B(t), C consistent with
the first variation requirements (32); and (b) the determination
of the stepsize a consistent with the total variation require-
ments (31).
Outline. 1In Section 4, we describe the equations of the
restoration phase; we show how nominal functions consistent with

the feasibility equations (13)-(15) can be obtained. In
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Section 5, we describe the general equations of the conjugate
gradient phase; the linear case (case where the constraints
are linear) is treated in Section €; the linear-quadratic case
(case where the functional is quadratic and the constraints
are linear) 1is treated in Section 7; here, we show that cer-
tain general conjugacy and orthogonality conditions hold.
Always with reference to the conjugate gradient phase, the
nonlinear-nonquadratic case (case where the functional is
nonquadratic and/or the constraints are nonlinear) is treated
in Section 8; here, we discuss the implementation of a
first-order algorithm (this is an algorithm which uses first
derivatives at most). In Section 9, we discuss the descent
property of a complete conjugate gradient-restoration cycle.
In Section 10, we present a summary of the sequential conju-
gate gradient-restoration algorithm. Finally,in Section 11,
we list the safeguards necessary to its implementation on a

digital computer.
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4. Restoration Phase

As stated before, the restoration phase is started only
when the constraint error P violates Ineq. (27-1). The resto-
ration phase involves one or more iterations. 1In each restora-
tive iteration, the objective is to reduce the constraint error
P, while the constraints are satisfied to first order and the
norm of the variations of the control and the parameter is
minimized. The restoration phase is terminated whenever Ineq.
(27-1) is satisfied.

There are two situations where the restoration phase is
employed: (a) at the very beginning of the algorithm, one needs
to generate nominal functions con-istent with the feasibility
equations (13)-(15); and (b) subsequently, one needs to correct
possible constraint violations occurring during a conjugate
gradient phase: these constraint violations are due to the fact
that Egs. (13)-(15) are considered only in linearized form

during a conjugate gradient phase.

Linearized Equations. Let x(t), u(t), 7 denote nominal func-

tions not satisfying (13)-(15), and let x(t), u(t), ™" denote varied
functions satisfying(13)-(15). To first order , the perturba-
tions Ax(t), Au(t), Am must satisfy the linearized constraint
equations

. e e T T .
Ax - .XL\x—(buAu—¢uﬂ/‘,ﬂ+o¢(x-¢>)=0, 0=z E< 1 (33
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STAx+STAu+STAn+aS=O, 0 t< 1, (34)
b u m RS

(ax) ;= 0, (szx+¢'£An+aw)l=o, (35)

where a denotes a scaling factor (restoration stepsize) in the

range 0<a< 1.

Descent Property. The linearized equations (33)-(35)

admit an infinite number of solutions. Each of these solutions
is characterized by a descent property in the constraint error

P. This can be seen by computing the first variation of the

functional (24):

1
5p = 2( 0%~ @) " LA x= cp;l;Ax B ¢§Au— (b;I;ATT)dt
2o

1L
T, &T 3y T BT T
+2‘(OS (SXAX+SuAu+SﬂATI)dt+2[w (JJX Ax+lbnATr)]l (36)

and by observing that, when the perturbations defined by (33)-(35)
are employed, the first variation of the constraint error (36)

becomes

§P = -2qP. (37)

Since P >0, Eq. (37) shows that 6P < 0. Hence, for o sufficien-

tly small, a decrease in the constraint error P is guaranteed.
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Auxiliary Minimization Problem. Since Egs. (33)-(35) ad-

mit an infinite number of solutions, an additional requirement must
be introduced in order to uniquely define the restorative itera-
tion. More specifically, we require that restoration be
accomplished with the least-square change of the control and
the parameter (Ref. 10). Thus, we seek the minimum of the
quadratic functional

1

T 4
K= (1/2a) s Au” Audt + A AT (38)

0
with respect to the perturbations Ax(t), Au(t), Am which satisfy
the linearized constraints (33)-(35).

Special Variations, From calculus of variations, we know

that the problem represented by (33),(34), (35), (38)is one of the Bolza
type. 1In this connection, let X (t) denote a variable Lagrange
multiplier associated with the differential constraint (33);

let 0(t) denote a variable Lagrange multiplier associated with
the nondifferential constraint (34); and let p denote a constant
Lagrange multiplier associated with the final condition (35-2).
With this understanding, the Euler equations optimizing Ax(t),
Au(t), Am and the natural condition arising from the transver-

sality condition are written as

>\+¢xx/\—sxp=0, 0= €< 1, (39)
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Au=a(¢ A=-S 0l s t=], (40)
1

Aﬂ=<x[s(¢nl-snn)dt- H%U)J , (41)
0

(A + Y H)ly =0 (42)

Summarizing, we seek variations Ax(t), Au(t), A7 and multipliers
A(t), p(t), & which satisfy the constraints (33)-(35) and the
optimality conditions (39)-(42).

Basic Functions. If the definitions (29) are invoked,

the stepsize a can be eliminated, and Egs. (33)-(35) and

(39)-(42) can be rewritten as

A-gia-qTB- g7+ (k- 4) =40, 0<t<l, (43)
STA+STB+S'_PC+S=O, O, (44)
X u T = i
by OO S S
(&), =0, (b A+y Cry) =0, (45)
X + bk =S p=0, g Egl, (46)
B=¢A+S8 p=19, Ot < 17 (47)
1
C+j (-¢W,‘x +s7‘_;‘)dt+ (1‘”11)1: ()7 (48)
0
(X + 9 u); = 0. (49)

Equations (43)-(49) uniquely define the basic functions A(t),
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B(t), C as well as the multipliers A(t), p(t), 1 of the restora-

tion phase.

Solution Technique. Let y denote the (n+ p)-vector

A (0)
V= c : (50) 4

Let a sweep be defined as a forward integration of the system

(43)-(49) obtained by (a) assigning a particular value to the
vector y, (b) employing Eqs. (43), (44), (45-1), (46), (47), and
(c) bypassing Egs. (45-2), (48), (49).

Let n+p+ 1 independent sweeps be executed. More speci-
fically, the first n+ p sweeps are executed by choosing the
n+p linearly independent vectors y to be the columns of the
identity matrix of order n+ p. The last sweep is executed by
choosing y as the null vector. 1In this way, we obtain the

particular solutions (Refs. 11-14)

Ai(tL Bi(tL Ci,\i(tL ﬁi(tL L= 2, i P L (5]

Then, we introduce the n+ p+ 1 undetermined, scalar con-

stantki and form the linear combinations

Aft) = inAi(tL B(t) = EkiBi(tL Cc=2%Ik.C., (52)

A(t) = inki(tb p(t) = Ekioi(tL (a3 )
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where the summation is taken over the index i. The n+p+1
coefficients ki and the g components of the vector j are
obtained by forcing the linear combinations (52)-(53) to

satisfy Egs. (45-2), (48), (49), together with the normalization

condition (Refs. 11-14)

5 —
“ki 10 (54)
Stepsize. With the basic functions A(t), B(t), C known,
we consider the one-parameter family of solutions (30). For

this one-parameter family, the constraint error (24) becomes a

function of the form

P Bl . (55) i

Then, the stepsize a must be selected so that the inequality

P(a) < P(0) (56)
is satisfied while keeping

()20 . (57)
Satisfaction of Inegs. (56) and (57) is guaranteed for a suffi-

ciently small. Any violation of the above inequalities
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necessitates a reduction in the stepsize. Such a reduction can
be obtained by employing a bisection process, starting from the

reference stepsize

a, =1 s (58)

This reference stepsize has the following property: it yields

one-step restoration for the limiting case where the constraints

(13)-(15) are linear.
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5 Conjugate Gradient Phase: General Case

As stated before, the conjugate gradient phase is started
only when the constraint error P satisfies Ineqg. (27-1). It
involves a single iteration, which is designed to decrease the
value of the functional I or the augmented functional J, while
satisfying the constraints to first order. During this itera-
tion, the first variation of the functional I is minimized,
subject to the linearized constraints. The minimization is
performed over the class of variations of the control and the
parameter which are equidistant from some constant multiple of
the corresponding variations of the previous conjugate gradient
phase.

For the sake of clarity, the general structure of the con-

jugate gradient phase is given first in this section. The linear

case 1s treated in Section 6, and the linear-quadratic case
is treated in Section 7. Then, the extension to the nonlinear-

nonquadratic case is given in Section 8.

Linearized Equations. Let x(t), u(t), m denote nominal

functions satisfying (13)-(15),’ and let x(t), u(t), 7 denote

7These nominal functions can be obtained by employing the res-
toration algorithm of Section 4.
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varied functions also satisfying (13)-(15). To first order,

the perturbations Ax(t), Au(t), A1 must satisfy the linearized

constraint equations

- T T N gt
Mk = §TA% = ¢Ltu - ¢Tam =0, 0<t<1, (59)
sTax + s au+sTan =0, 0<t<l, (60)
X u il = =
o i
(AX)O-Or (WXAX-FwnAn)l— 0. (61)

Note the difference between Egs. (33)-(35) and Egs. (59)-(61).

While the former are nonhomogeneous, the latter are homogeneous

in the perturbations Ax(t), Au(t), Am.

Auxiliary Minimization Problem. Since the linearized

equations (59)-(61l) admit an infinite number of solutions,
some additional requirementmust be introduced in order to
uniquely define the conjugate gradient iteration. More spe-
cifically, we consider the first variation of the functional

(L2

)

_ T i T, T i

b = g (fox+-quu-+f”.m)dt4-(gxhx4-gﬂAﬁ)l (62)
0

and the isoperimetric constraint

1
K:j’ (Au - v;:.»\\;»)T(,-.u - fAR) AL + (AT - f%A%)T(An - RAT), (63)
0
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where K and B are undetermined constants. The symbols
A% (t), AQ(t), AT denote the variations associated with the
previous conjugate gradient iteration. Therefore, because

of (29), we have

AX(t) = & A(t), AQ(t) = & B(t), AT=4C . (64)

Then, we seek the minimum of the linear functional (62) with
respect to the perturbations Ax(t), Au(t), Am which satisfy the
linearized constraints (59)-(61) and the quadratic isoperi-
metric constraint (63).

Special Variations. From calculus of variations, we

know that the problem represented by (59)-(63) is one of the
Bolza type with an added isoperimetric constraint on the
variations of the control and the parameter. 1In this connec-
tion, let A(t) denote a variable Lagrange multiplier associated
with the differential constraint (59); let p(t) denote a
variable Lagrange multiplier associated with the nondifferen-
tial constraint (60); let p denote a constant Lagrange
multiplier associated with the firal condition (61-2); and let
1/2a denote a constant Lagrange multiplier associated with the
isoperimetric constraint (63). With this understanding, the
Euler equations optimizing Ax(t), Au(t), Am and the natural
condition arising from the transversality condition are

written as
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A-fx+¢‘x)\-5xp=0, <tz 1, (65)

(Au - BAu)/a + fu—¢u>\+sup=0, 0<tx<1, (66)
3 1

(AT - BAT)/a +I (fn_ ¢>ﬂA+Sﬂo)dt+ (9n + ',\ﬂ11)l=0, (67)
0

(A+gx+wxu)l=0 - (68)

Summarizing, we seek variations Ax(t), Au(t), A7 and multipliers
Alt), p(t) u, 1/2a which satisfy the constraints (59), (60), (61),

(63) and the optimality conditions (€5)-(68).

Basic Functions. Let the definitions (29) be invoked

for both the present conjugate gradient phase and the previous

conjugate gradient phase. Let the directional coefficient y

be defined as

y = B(a/a) . (69)

With this understanding, the stepsize a can be eliminated, and

Egs. (59)-(61) and (65)-(68) can be rewritten as

o EEE Erbl e
A—¢XA—¢UB-¢>TTC—O, 0= tsl,; (70)
S A+S B+ SC=0, 0<t<1l, (71)
X u m e o

- T T -
(A)y =0, (v3A+yiC) =0, (72)
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A—fx+¢>x>\-sxp=o, Dist< 1, (73)
B-YB+fu-<bu>\+Suo=0, 0<t<l, (74)
3 1
C-vC+ S (f“-¢“>\+snp)dt+ (gn+wnu)l=0, (75)
0
()+gx+wxu)l=0 . (76)

For a given value of the directional coefficient y, Egs.
(70)-(76) uniquely define the basic functions A(t), B(t), C as
well as the multipliers A(t), p(t), u of the conjugate gradient
phase.

Isoperimetric Constant. In the lightof (29) and (69), the iso-

perimetric functional (63) takes the form

1

K=(12[S (B—yB)T(B—yB)dt+(C—yC)T(C—YC)]. (77)
0

If the basic functions A(t), B(t), C are consistent with (70)-(76),

the error in the optimality conditions (25) reduces to

1
Q=S (B-YB)T(B-YB)dt+(C—YC)T(C-YC) . (78)
0

Consequently, the following relation ties the isoperimetric
constant, the stepsize, and the error in the optimality con-

ditions:

K=a"Q . (79)
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Clearly, to assign values to the isoperimetric constant
is the same as assigning values to the stepsize. However,
there is no clear-cut way of determining a priori convenient
values for the isoperimetric constant. Therefore, the imple-
mentation of the conjugate gradient algorithm becomes simpler
if one avoids evaluating o in terms of K through (79) and
assigns values to a directly.

Descent Property. Next, consider the augmented functio-

nal (16) and its first variation

1 1
6J=J (E.~¢ A+8 r—i)Tz\xdt+j (£, = ¢ % +S p) Audt
X X X u 5 u
o 0
3 T
-— A i} T {
+[S (£.-¢ A+ S pldt+ (gn+uﬁu)l] AT + [(A+gx+ Vi) A{]l . (80)
0

When the perturbations defined by (29) and (70)-(76) are

employed, Egq. (80) becomes

i
.5J=—a|:s (B~ ',B)TBdt+ (C—YC)TC] . (81)
0

Upon invoking Eq. (78) and defining the quantity

i
z=§ (B- yB) TBdt + (C-yC)T¢C , (82)
0
we see that Eq. (81) can be rewritten as
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8J=-a(Q+vy2) . (83)

For the first iteration of the conjugate gradient phase,

one sets

= (84)

with the implication that

§J = -aQ . (85)

Since Q> 0, Egq. (85) shows that 8J<0. Hence, for «a sufficien-
tly small, a decrease in the augmented functional J is

guaranteed.
For subsequent iterations, one sets y# 0. More specifi-

cally, the directional coefficient must be such that

Yy >0, (86)

and its proper value is discussed in Section 7. At any rate,

Eq. (83) shows that &§J<0 providing

Q+yz2>0, (87)

where Q is given by (78) and Z is given by (82). Hence, for




33 AAR-126

« sufficiently small, the decrease in the augmented functional
J is guaranteed as long as Ineq. (87) is satisfied. If Ineq.
(87) is violated, the descent property on J no longer holds,
and the conjugate gradient phase must be restarted by resetting
the directional coefficient y at the level (84).

Solution Technique. Now, assume that a particular value

is given to the directional coefficient y. Let y denote the

(n + p)~-vector

V= . (88)

Let a sweep be defined as a forward integration of the system
(70)-(76) obtained by (a) assigning a particular value to the
vector y, (b) employing Egs. (70), (71), (72-1), (73), (74), and
(c) bypassing Egs. (72-2), (75), (76).

Let n+p+ 1 independent sweeps be executed. More speci-
fically, the first n+ p sweeps are executed by choosing the
n+p linearly independent vectors y to be the columns of the
identity matrix of order n+p. The last sweep is executed by
choosing y as the null vector. 1In this way, we obtain the

particular solutions (Refs. 11-14)

Ai(tL Bi(tL Ci,ki(th .i(tL Ao = g Zrsta s il F0p A s (89)
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Then, we introduce the n+ p+ 1 undetermined, scalar cons-

tants ki and form the linear combinations
Alr) = ZkiAi {t); BibE) = ZkiBi(t), C=1Ik.C,, (90)

2 (t) =zkixi(t), p(t) =Zkipi(t), (81)

where the summation is taken over the index i. The n+p+1
coefficients ki and the g components of the vector u are
obtained by forcing the linear combinations (90)-(91) to satisfy

Egs. (72-2), (75), (76), together with the normalization condi-

tion (Refs. 11-14)

Elete=tl (92)

General Solution. Next, assume that two particular va-

lues are given to the directional coefficient y, for instance,

¥,= 0 and Yeu=1 s (93)

Assume that the previous solution technique is employed twice,

and denote by

A IR B ALY €0 A 480 o, (80 u, (94)

and
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I\**(t), B**(t)l C**I’\**(t)l )**(t)l U** (95)

the particular solutions of (70)-(76) corresponding to (93-1)
and (93-2), respectively. Simple manipulations, omitted for
the sake of brevity, show that the general solution of

(70)-(76), valid for any value of the directional coefficient

Y, can be written as

AE) = AL CE) A, ()= A, (E)], B(t) = B (t) + ¥ [B, . (t) =B, (£)],
CaCe + YIC .~ C.), (96)
AEY = Ag GEY £ Y A (B) = Ay (B)], pEE) = o (B) ¥ [P () —p TN,
H= e By b =gl (97)
As a conclusion, the general solution of (70)-(76) requires

that two sweeps of n+p+ 1 integrations be executed, one lead-
ing to the particular solution (94) and one leading to the
particular solution (95). However,if the constraints are 1li-
near , the general solution of (70)-(76) requires only one sweep
of n+p+1 integrations, that leading to the particular solu-

tion (94), as is shown in Section 6.

Stepsize and Directional Coefficient. After the general

solution (96)-(97) is known, the next step is to determine the
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proper values of the stepsize a and the directional coefficient

Y. A logical scheme is that of determining these quantities

so that the augmented functional (16) is minimized.
For the varied functions x(t), u(t), 7, let the augmented

functional (16) be written in the form

g b 1 » oG - <
J= (,xTx)0+S (f—xT¢+st—xTx)dt+(9+pTw)l ! (98)
0
In view of (30) and (96), the varied functions i(tL G(tL 7 cons-

titute the two-parameter family

i(t):x(t)+ux{A*(t)-+y[A**(t)-A*Hﬂ1} ' (99=1)
BERT = b {B,,(t) +y[B**(t)-B*(t)]} , (99-2)
m w4 @G, ¥ Y€, e~ Co T « (99-3)

On the other hand, the multipliers A(t), p(t), 1 constitute the
one-parameter family (97). Upon using (97) and (99), we see

that the augmented functional (98) takes the form

J=J(a,y) . (100)

Therefore, the optimum values of a and y satisfy the relations
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Jw(u,y)= an Jy(a,y)= 0 (101)

In principle, one can solve Egs. (10l1) using an exact
search, as done in Ref. 15 for mathematical programming prob-
lems. The resulting algorithm constitutes the extension to
optimal control problems of the memory-gradient method of
Ref. 15. However, the simultaneous determination of a and ymight
be expensive computationally; this being the case, we follow
a different road. First, we determine an approximate value of
the directional coefficient vy, based on the consideration of
the linear-quadratic case (Section 7). Once 7y is known, the

two-parameter family (100) reduces to the one-parameter family

J=3d(a) . (102)
Then, the optimum stepsize o satisfies the relation
J () =0, (103)

whose numerical solution can be arrived at in a variety of
ways. For example, within the frame of the linear-quadratic
case, the numerical solution of (103) can be obtained with
guadratic interpolation (Section 8). On the other hand, within

the frame of the nonlinear-nonquadratic case, the numerical
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solution of (103) can be obtained with cubic interpolation

(Section 3).
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6. Conjugate Gradient Phase: Linear Constraints

In the previous section, we derived some general rela-
tions which are valid for the conjugate gradient phase,
regardless of the analytical form of the functional (12) and
the constraints (13)-(15). 1In this section, we give the parti-
cular relations which are valid if the constraints are linear.

General Solution. Under the linearity assumption for the

constraints, consider the system (70)-(76) which defines the
basic functions A(t), B(t), C as well as the multipliers -A(t),
p(t), u. By substitution, it can be verified that the particu-

lar solutions (94) and (95) satisfy the relations

Ayl (£)=2,(6) =A(t), B,, (t)-B,(t) =B(t), Coa=Cyu=C, (104)
Aeg (E)= 2, (t)=10, Plae ) =p (L) =05 M= U =100 (1.05)

As a consequence, Egs. (96)-(97) take the simpler form

A(t) = A, (L) +YA (L), B(t)=B, (t) +YB(t), C=C,+vC, (106)
Xie) = 1, (L) ofe) = p, (L], s (107)
The implication of (106)-(107) is the following: under the
assumption of linear constraints, the general solution of
(70)-(76) can now be obtained by executing only one sweep
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(instead of two) of n+p+ 1 integrations, namely, the sweep
necessary to generate the particular solution (94). This is
the solution corresponding to (93-1), namely, the solution
associated with the ordinary gradient method of Ref. 9.

Isoperimetric Constant. Under the linearity assumption

for the constraints, Eqg.(79) still holds, but the error in

the optimality conditions (78) simplifies to

1
Q=I BIB,dt + C.iC, . (108)
0

Descent Property. Under the linearity assumption for

the constraints, Eq. (83) still holds, but the functional (82)

simplifies to

1
z=j BIBdt + C.C . (109)
Q

Local Orthogonality Conditions. Under the linear-

ity assumption for the constraints,the two-parameter family (99)

simplifies to

x(t) = x(t) + alA, (t) + YA(E)], (110-1)

1]

u(t) =u(t) +alB, (t) + YB(t)], (110-2)

m =n+alC, +YC) . (110-3)
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Next, we consider the augmented functional (98) and
observe that, for the two-parameter family (110), it takes the
form (100). Therefore, the optimal values of the stepsize «
and the directional coefficient y satisfy the relations (101).
Because of the assumed linearity of the constraints (13)-(15),

Egs. (101) take the particular form

i 1
(.-~ _X+8_p~-2)TAdt + (f - 4§ A +S_p) Bdt
el e syl (I ] u
0

1 T
= ~ e - E STh I ol
+[S (Eq= Bt & 5, R0dE Slg ot “71“)1] C+|:(\+gx+ Uk A]l T GELE)
0

3l s
~ : TA - o ] TA
jo(fx—¢x,\ + sxp - )) Adt + jo(fu ‘i’ux + Su» ) "Bdt

1 T
£ ) Rl e b T A 1 e TR T« e
+“(fﬂ—<,nx+sn, Jdt + (g,‘u”,x)l] c+[(t+gx+¢x.i) A]l—o, (112)
0

with the implication that

i 1L
y S & T
S (fx—¢xl~+sxm -) A*dt-+5 (fu—¢u\-+sup) Bydt
0 0
3 : il P
+[S (fw-a}n\4—S”n)dt-+(gﬂ+w”u)1 Cor + (Nrgx+vpxu) Aelq = O = Ld:3Y
0

Because of the linearity of the constraints (13)-(15) and after
invoking Egs. (70)-(72), one can show that Egs. (111)-(113)

hold for any distribution of Lagrange multipliers. In particu-
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lar, they hold if A(t), o(t), u are replaced by 1 (t), p(t), u.

This yields the supplementary relations

1 . 1
~ y - S 53 T e ‘ ~ ~ T
S (fX—‘,X\ +S.0-1) Adt+j‘ (fu—\hu,\ + suo) Bdt
0 0
: it -
~ 2 i =, ~ - ~ i
+[So(f‘:-‘;:ﬂ'\ Fa plaE+ (g ""HU)l] i [(X+QX+ bl Afq =0 (A
l ] . l
f PR A e
j‘ (£~ A tS o= 1) Adt+§ (£, byt +8,P) Bdt
0 Q
i T
~ ~ ~ ~ .‘ ‘~ 5 ~ -~ b T =
+[S(f”—,nﬁ+5wn)dt+(gn+qﬂﬁ){] C-#P\+gx+,xu)zil Q5 (L15)
0
T ; s L - T
] g (fx— ¢ A +8 0-))"A,dt +j (£~ “"u\ +5 0) Bydt
0 0

1 %
- s s R
+[$O(f77_ A,‘lnx+ S'rr“)dt + (g + ,"1_;1)1] € +[(,\ kg & x.‘-x‘;,.) A*:, 5 0. (lle)

Next, we combine Egs. (114)-(116) with Egs. (73)-(76) written
for the next iteration. This leads to the following local

orthogonality conditions:

5 B,Bdt + C.C =0, (117-1)
0

l oo~ m -~

s B,Bdt + C,C= 0, (117-2)
0

l» ~

5 BIB,dt + C.C, = 0. (117-3)
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Here, the adjective local is employed to mean that Egs. (117)

involve vectors B(t), C which are solutions of (70)=(76) compu-
ted for the present iteration and the previous iteration; they
also involve vectors B, (t), C, which are solutions of (70)-(76)
for y =0 computed for the present iteration and the next iter-

ation.
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7. Conjugate Gradient Phase: Quadratic Functional and

Linear Constraints

In the previous section, we assumed that the constraints
(13)-(15) are linear and arrived at the local orthogonality
conditions (117). 1In this section, we retain the constraint
linearity hypothesis and further asssume that the functional
(12) is quadratic.

For the sake of compactness, let y and E denote the

vectors
X A
y =}u - E =1]1B . (118)
i C

Let fy and gy denote the gradients of the functions f and g

with respect to the vector y:

fX gX

= ’ = 0 . ].19

fy fu qy ( )
f“ g,

Under the assumption that the functions f and g are quadratic
in their respective arguments, the following exact relations

can be established:

=g +og E , (120)

E=f +af E y
y Ty Myy ! dy =9y T Yyy
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wher k
[ F g
£
fxx fxu *xnw Ixx g Fxn
sl AP P S S PR R R N TR
fﬂx f,'!u f”'ﬂ_ _gTTX O gT T_

With this understanding, Egs. (111)-(113) become

1 1
(-0 x+S.p- A)adt+ | (£ -¢ 2 +5_0)"Rat
0 X X X 0 u u u

il IR
. . yi
+ S (fn_ pj\*—sq»)dt-*(gn+-wnu)l} C-+LX+—gX+ wxu) A]l
0
el
+a|\ETE Eat+ (ETq E). |= 0 (122)
N B Iyy™'1 ’

1 I
2 CoTA TA
j(fx—rx\-+sxo - 1) "Adt + jo(fu—¢ux-+sup) Bdt
0

l T,\ TA
+|:S (f”- ;:W\ * STIO)dt * (g71+ "”n“)l Gt ‘\+gx+ 1!XU) & i

0
Vgl . |
+ E £ _Edt+ (E B =0, (123)
i S Yy %5
L70
1l 1
: A P % T
‘ (fx— (rX\ + Sxp -A) A*dt+s (Lu- “"ux + Suo) B,dt
do O
(! - -
' S (fv- ﬂihksn”)dt'+(qn+¢n“)l Cut (ngx+‘bx“) Ay 10
L 70

1
+u[s ETE_E,dt+ (E'g._E,) J= 0. (124)
yy yy *'1
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Upon invoking Egs. (73)-(76), we see that Egs. (122)-(124) can

be rewritten as

1 el ¥
T T 15 PR T o -
yo B,Bdt + C C-a LS E fnydt + (E gny)l =0, (125-1)
0 B
1 = el ]
S BIBdt + CLC- S ETf Edt +ETg. _E), | =0, (125-2)
Yy ¥ oL
0 Lo |
1 1
S BIB,dt + C1C, -a S ETf_ E,dt+ (E'g Ex)qf=0. (125-3)
0 e i Yy

Local Conjugacy Condition. Next, we employ the local

orthogonality condition (117-1) written for the present itera-

tion, and observe that (125-2) yields the local conjugacy

condition L
l p N m ~
E f Edt+ (E* E), = 0. (126)
jo vy (E gy Bl

Here, the adjective local is employed to mean that Eq. (126)

involves vectors E(t), that is, vectors A(t), B(t), C, which are
solutions of (70)-(76) computed for the present iteration and
the previous iteration.

Stepsize. After observing that
E=E,+YE (127)

and making use of the local conjugacy condition (126), we see
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that Eq. (125-3) can be rewritten as

1 1
BIB,dt +Coc,-a|\ ETE_ _Eat+ (ETg_ E). | = 0. (128)
- . o yy '1

This equation enables one to compute the optimum stepsize «,
once the value of the directional coefficient vy is known.

Directional Coefficient. After invoking Eq. (127), we see

that the local conjugacy condition (126) becomes

il 1

T ~ T A /\T ~ ,\T A
E,f Edt+ (E E). £ % B € Edt + (E B }=0. 1297
SO *yy ( *gyy )l Y [SO vy gyy )1 (

If we employ Eq. (128) written for the previous iteration,

Eqg. (129) becomes
Log. AT (L s p %
\:[S B*B*dta—c*c4+¢[s E*fnydt4-(E*gny)£]=o (130)
0 0
and, in the licht of Egs. (120), can be rewritten as

Il 1
Y \T'\ . T A T A T A
f { SO B.B dt + C*C*]-kgn By (fy- fy)dt +[E* (gy- gy)] 1 =% CIE3d)

If Egs. (70)-(76) and (117)-(119) are employed, the follow-

ing relations can be shown to hold:

1 1
,( L‘Ifydt+ (lizzsy)l + S BiB*dt+CTC* =0, (132)
0 0
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1
S ELf dt+ (Eyg ), =0 . (133)
it y

As a consequence, Eqg. (131) becomes

1 ¥
\[S BIB,dt + 6:6*} - [S B'fa*dt+cfc*] =0 (134)
0 0

and can be rewritten as

v=09/9 , (135)
where
b oo T
Q=S B B dude o, (136)
0
1
Q=j BIB,dt + CiC, (137)

0

denote the errors in the optimality conditions for the present
iteration and the previous iteration, respectively. These
quantities are known, since they involve vectors B, (t), C,
which are solutions of (70)-(76) for y=0 computed for the
present iteration and the previous iteration.

Descent Property. Because of the local orthogonality

condition (117-1) written for the previous iteration, Egq. (109)

yields

(138)

[}
Il
o
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As a consequence, the first variation of the augmented fun-

ctional (83) reduces to

di= =o', (1319

where the error in the optimality condition Q is given by Eqg.

(136). Equation (139) holds for any conjugate gradient iter-

ation and shows that, since ¢ > 0, we have 5J < 0. Hence, for
sufficiently small, a decrease in the augmented functional J

1s guaranteed. In conclusion, for the linear-quadratic case,

the restart procedure mentioned in Section 5 never occurs.

This means that the directional coefficient vy is set at the

| level (84) only for the first iteration.

General Orthogonality and Conjugacy Conditions. Assume

now that the algorithm described by Egs. (70)-(76) and (110)
| 1s employed, starting with a feasible nominal solution. Fur-
| ther, assume that the first conjugate gradient iteration is

done with
3 Y = 0, (140)

meaning that this is an ordinary gradient iteration. Under
these assumptions and with reference to the linear-quadratic
case, one can generalize the local orthogonality conditions

(117) and the local conjugacy condition (126) as follows:




e ——
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X i 3 AL
s B*det4-c*cp= O (141-1)
0
l m u
gBiB*pdt+C1 =8 (141-2)
0
and
lT T
E f E dt+ (E E =0, (142)
IO ¥¥ P gYY P)l
where the subscript p denotes any iteration preceding the

present iteration. While these eguations do not guarantee
convergence in a finite number of steps, they do guarantee that
the algorithm generates a sequence of linearly indepentent
vectors E(t), that is, a sequence of linearly independent va-

riations per unit stepsize A(t), B(t), C.




the results of Sections
utilizing these results,

This is an

8. Conjugate Gradient Phase: Practical Implementation
In this section, we summarize

5-7, and suggest practical ways of

while avoiding the use of second derivatives.

essential characteristic of a first-order

Auxiliary Functions. The £
(70)-(76) for a fictitious value

cient, namely,

This yields the following linear,

problem:

method.

irst

step is to solve Egs.
of the directional coeffi-

two-point boundarv-value

AAR~-126

(15
w
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Using the solution technique of Section 5, we obtain the fol-

lowing auxiliary functions and multipliers:8

B fth B GEL €, A (5], pothl 11, . (151)

Directional Coefficient. The second step is to compute

the actual value of the directional coefficient

Y. For the first conjugate gradient phase, we set

Y=Ol (152)

meaning that the conjugate gradient iteration is an ordinary

gradient iteration. For subsequent conjugate gracdient phases,

we set
Y=/ (153)
where
it
T AL
Q= 5 BB dt-ECrE. (154-1)
0
1t
Q=§ BIB,dt + &,C, (154-2)
0

denote the errors in the optimality conditions at the beginning

8'I‘hese functions and multipliers are identical with those
solving the linear, two-point boundary-value problem asso-
ciated with the ordinary gradient phase of Ref. 9.
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of the present conjugate gradient phase and at the beginning
of the previous conjugate aradient phase, respectively.
Note that the directional coefficient (153) is accepta-

ble only if

J (0)<o, (155)
where 3%(0) is given by Eq. (160). 1If Ineq. (155) is viola-
ted, then the directional coefficient (153) must be discarded
and replaced by the value (152). This ieans that the algorithm

must be restarted by replacing the conjugate gradient phase
with an ordinary gradient phase.

Basic Functions. The third step is to compute the basic

functions A(t), B(t), C and the multipliers X (t), p(t), p. This

is done with the following formulas:

A(t) =A,(t) +YA(t), B(t) =B, (t£)+YB(t), C=C,+7YC, (156)

o
Il

e (1), plE) = p, (t) =y - (157)

Stepsize. With the basic functions A(t), B(t), C known,
we consider the one-parameter family of solutions (30). For
this one-parameter family, the augmented functional (16) takes

the form

1
J(a) = (ng)(l)+ s o= A
0

S & pt 8= A1) dk + @,+“Twh, (158)
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with the implication that

i 1t -
5 or= | E-inrEe-nT o5 a+s
Ju(a) = § (fX :xk+sxp A) Adt+§ (fu qux+sup) Bdt

0 0

1 i 7 - 1

+[j()(fn— dpd + SpPIQE+ (g, +¥pu)y | C+ | (A+g, +Pu) Al ,  (159)

and with the further implication that

3 (0) =-(0+y2), (160)
where
: T
0= S BIB,dt +C,C, , (161)
0
T4 A
z = S BIBdt + CLC . (162)
0
Note that
Z=0 (163)

in the linear-quadratic case and that

Z#0 (164)

in the general case.
In addition to the augmented functional, the constraint
error (24) must be monitored during the conjugate gradient

phase. For the one-parameter family of solutions (30), the
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functional (24) takes the form
o Lo Lt i
P(a) = 5 N(k-::kh:+J N(S)dt+14unl . (165)
0 0

where N(b) denotes the norm squared of the vector b.
With these preliminaries in mind, the stepsize « must

be selected so that the following inequalities are satisfied:

5
J_ofa) /I (0) < €3 (166)
J(a) < J3€Q) , (L67)
subject to
P(a)< P, , T(a)> 0, (168)
where ©5 and P, are preselected numbers. While €3 is &
small number, P, need not be necessarily small.
Quadratic Interpolation. 1In the linear-quadratic case,
satisfaction of (166)-(167) can be achieved by using guadratic

interpolation. The procedure is as follows.

Let the function (158) be written in the quadratic form

- 2

J(a) =k +kja+kya® , (169)
with the implication that
J (a) =k, + 2k.a , I fay=2k. . (170)
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Therefore, the coefficients ko and kl are given by

k0==J(0), kl==Ju(0) . (1715

The coefficient k2 can be computed by evaluating the augmen-
ted functional at some :eference stepsize, for instance, a=1.

If this is done, one concludes that
k,=J(1) =3(0) -J_(0) . (172)

With the coefficients known, the optimum value of a can be

| computed from the relation

J (a) =0, (173)

(0

which implies that

40=-kl/2k2 . (174)

In the linear quadratic case, the representation of the
augmented functional (158) by means of the quadratic form
(169) is exact. Therefore, the quadratic interpolation pro-
cess 1is employed only once (one-step quadratic interpolation).

Cubic Interpolation. In the general case, it is better

to try to achieve satisfaction of (166)-(167) with cubic
interpolation. The procedure is as follows.

We consider the reference stepsize k and the sequence

of stepsizes
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faf = 40, ke 25, 4, BR,...} . (175)

For every element of the sequence (175), we compute the quan-
tities (158)-(159). We denote by ay and a, the smallest
consecutive elements in the sequence (175) such that the fol-

lowing inequalities are satisfied
Jd(al)<<0 v Ju(a2)> 0. (176)

Then, assuming that the derivative Ju(u)is continuous, a relative

minimum of J(a) occurs for a value a. such that

0

‘xl<'10< Ay . (A7)

In order to find the minimum of J(a) numerically, we ap-

proximate the function 3(&) with the cubic form

2 2 3
J(u)-'k0+~kluAkk2a -+k3a , (178)
with the implication that
~ 2 -~ " k
Jt(q)—-kl+-2k244-3k3q P an(a)-2k2-+6k3u . (179)

The coefficients ki are computed by forcing the cubic function
(178) and its derivative to satisfy the exact values of the
ordinate J(L) and the slope 3%(ﬂ) at ay and Ay s that is, the

coefficients ki are computed from the conditions
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E

| Flo. ) =l ko & koot bR (180-1)

| 1 g Ry ¥ o, wlkoay

1
Fioay 2k Sk b o (180-2)

2 ot Kyoy tkyoy +kaas

S B . 2 2
3 () = kg + 2kya; + 3kga? (180-3)
o ) ) 2 n
I (0y) =k + 2kja, + 3ka2 (180-4)

With the coefficients known, the optimum value of &« can be

computed from the relation
J (=0, (181)
which implies that
o = (/3% [=k,* v (k5- Sk, 1] (182)

Then, two possibilities arise, depending on the sign of

jt(“) at the point Sk

(1) Jq(do) >0, (158 31}

(ii) J!(ao) <0 (183-2)

In Case (1), the cubic interpolation process is repeated
between ' and Gy - In Case (ii),it is repeated between a and Ay e

The process is continued until Ineq. (166) is satisfied.

|




Limiting Case. If the solution of Egs. (180) is such

that

k,=0 , (184)

the optimal stepsize a, cannot be computed with Eq. (182),

0
since both the numerator and the denominator vanish simulta-
neously. This difficulty can be bypassed by observing that

the limiting case (184) means that the cubic approximation

(178) is being replaced by the quadratic approximation (169).
As a consequence, the optimal stepsize of the cubic approxi-
mation (182) must be replaced by the optimal stepsize of the

quadratic approximation (174).

In practice, two cases are possible:

< - (=
¢ k3 €4 - (185-1)
(Eiy kR e (185-2)
‘3-7"4 "'
where €4 is a small, preselected number. 1In Case (i), the
optimal stepsize ‘g must be computed with Eq. (182). 1In Case
(ii), the optimal stepsize tp Must be computed with (174).
Remark. For more details concerning the one-dimensional

search for the conjugate gradient stepsize, the reader is

referred to Ref. 16.
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9. Descent Property of a Cycle

While the stepsizes employed in the conjugate gradient
phase and the restoration phase are not necessarily small, a
descent property can be proven for a complete conjugate
gradient-restoration cycle under the assumption of small step-
sizes.

Let the subscript g denote the conjugate gradient phase,
and let the subscript r denote the restoration phase. Simple
manipulations, omitted for the sake of brevity, show that the
conjugate gradient corrections and the restoration corrections

have the following orders of magnitude:

a O = 1 A = y
“xg(t) O(ug), *ug(t) O(ag) ”g O(ag) (186)

A r 2 A —_ ~ 2 — 2
uxr(t) O(wr4g), uur(t)——O(drag), Anr-—o(arag). (187)

For “g sufficiently small, the restoration corrections
are negligible with respect to the conjugate gradient correc-
tions. Therefore, providing the conjugate gradient phase has
a descent property on J(m)(this is guaranteed through the

selection of the directional coefficient y), the restoration

phase preserves the descent property of the conjugate gradient
phase. g

More specifically, let the subscripts 1, 2, 3 denote !
the values of the functional I at the beginning of the

conjugate gradient phase, at the end of the conju-
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gate gradient phase, and at the end of the subsequent restora-
tion phase. We note that Il and 12 are not comparable, since
the constraints are not satisfied to the same accuracy. On
the other hand, not only Il and I3 are comparable, but the

conjugate gradient stepsize ug can be selected so that

I, <Iyo. (188)

This constitutes the descent property of a complete conjugate
gradient-restoration cycle.

If Ineq. (188) is satisfied, the next conjugate gradient-
restoration cycle can be started. If Ineq. (188) is violated,
one must return to the previous conjugate gradient phase and
bisect the conjugate gradient stepsize dg until, after resto-
ration, Ineqg. (188) is satisfied. That the above procedure
leads to satisfaction of Inec. (188) is guaranteed by two
circumstances: first, the fact that the directional coefficient
Y has been chosen consistently with Ineg. (155); second, the
fact that, for ‘g small, the restoration corrections (187) are
negligible by comparison with the conjugate gradient correc-

tions (186).
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10. Summary of the Algorithm

A sequential conjugate gradient-restoration algorithm
has been developed in order to solve optimal control problems
involving a functional (12), subject to differential cons-
traints (13), nondifferential constraints (14), and terminal
constraints(1l5). The algorithm is composed of a sequence of
cycles, each cycle consisting of two phases, a conjugate
gradient phase and a restoration phase.

Decision Variables. The major decision variables con-

trolling the algorithm are the constraint error P, given by

Eq. (24), and the optimality condition error Q, given by Eqg.

(25} -
Depending on the value of P, two cases are possible:
€aL) P>~€l ’ (1899
fad) P < cq - (190)
In Case (i), the algorithm executes a restoration phase. 1In

Case (ii), the algorithm computes the optimality condition

error Q.

Depending on the value of Q, two subcases of Case (ii)

are possible:
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’ (191)

(1:92)

In Case (iii), the algorithm executes the conjugate gradient
phase. 1In Case (iv), the algorithm stops: convergence has
been achieved.

Iterations. Each iteration of the conjugate gradient
phase or the restoration phase is described by the following

relations:
X(t) =x(t)+oA(t), a(t)=u(t) +aB(t) , =1+ aC, (193)

which tie the nominal functions and the varied functions.
Therefore, each iteration includes two distinct operations:
the determination of the basic functions A(t), B(t), C and
the determination of the stepsize a.

Restoration Phase. The restoration phase includes one

or more restorative iterations. A restorative iteration is
started whenever the constraint error P satisfies Ineq. (189).
In each restorative iteration, the basic functions A (t),
B(t), C are determined by solving the linear, two-point
boundary-value problem (43)-(49) using the method of particu-
lar solutions. This requires executing n+ p+ 1 independent

sweeps of the system (43)-(49).

The stepsize o must be determined so that the following
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inequalities are satisfied:
P(a) < P(0), T(a) >0 . (194)

For this purpose, a bisection process, starting from the

reference stepsize
=k . (195)

is employed.

In the course of a restorative iteration, the reduction
of the constraint error is guaranteed. However, there is no
guarantee that the constraint error is reduced below the
threshold (190) characterizing the beginning of the next con-
jugate gradient phase. In other words, after Inegs. (194)

have been satisfied, two cases are possible:

(i) P (a) >€q (196)

(ii) P(a) <e

137

1 -

In Case (i), a further restorative iteration is initiated
employing as nominal functions the varied functions of the
previous restorative iteration. In Case (ii), the restora-
tion phase is terminated, and the next conjugate gradient
phase is started.

Clearly, each restoration phase includes a variable
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number of restorative iterations, depending on the particular
problem and the nominal functions employed. Generally speak-
ing, the number of restorative iterations per restoration
phase decreases in subsequent cycles of the sequential con-
jugate gradient-restoration algorithm and approaches zero as
ﬁhe algorithm proceeds toward convergence.

Conjugate Gradient Phase. The conjugate gradient phase

involves a single iteration. This single iteration is started
whenever the constraint error P satisfies Ineqg. (190).

In each conjugate gradient iteration, the first step is
to compute the auxiliary functions A, (t), B, (t), C, corresponding

to the fictitious value
Yo,=0 (198)

of the directional coefficient. These auxiliary functions are
determined by solving the linear, two-point boundary-value
problem (144)-(150) using the method of particular solutions.
Once more, this requires executing n+ p+ 1 independent sweeps
of the system (144)-(150).

With the auxiliary functions known, the basic functions

are determined with the relations
Alt)= A, (t) +YA(L), B(t)=B, (t)+yB(t), C=C,+YC, (199)

where y denotes the actual value of the directional

coefficient. This directional coefficient is set at one of
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the following levels:
(1) y=0, (200)
(ii) % = QL0 , (201)

where (200) holds for the first conjugate gradient iteration
and (201) holds for any subsequent conjugate gradient itera-
Elaon .

Prior to accepting the directional coefficient (200) or
(201), a check must be made. For the choice (200) or (201),
is the slope of the augmented functional 3@(0) negative? In

other words, does the descent property of the gradient phase

hold?
Concerning Case (i), two subcases are possible:
(iii) T= J (0 <o, (202)
(iv) y=0, J (0)20. (203)
In Case (iii), the directional coefficient (200) is accepted,

and the algorithm completes the ordinary gradient phase. 1In

Case (iv), the descent property of the ordinary gradient phase
does not hold, and the value of the augmented functional can-
not be reduced, owing to numerical inaccuracies; hence, this
constitutes a nonconvergence condition for the algorithm as a

whole.
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Concerning Case (ii), two subcases are possible:

(v) Y=0/0, 3, (0 <0, (204)
(vi) y=0/0, g, (0)>0. (205)
In Case (v), the directional coefficient (201) is accepted,

and the algorithm completes the conjugate gradient phase. In
Case (vi), the directional coefficient (201) is rejected, and
is replaced by the directional coefficient (200). This means
that the algorithm is restarted with an ordinary gradient
phase, characterized by y=0.

After the directional coefficient has been selected, the
functions (199) are known, and the one-parameter family of
solutions (193) can be formed. Then, the conjugate gradient
stepsize o must be determined through a one-dimensional search
on the augmented functional 3(d)in such a way that the fol-

lowing inequalities are satisfied:g’lo

<2 <2 ‘
I (@) /3 (0) < ey (206)

9Note that Ineq. (208) prevents the constraint error P from
becoming too large during the conjugate gradient phase.

lOFor the details of the one-dimensional search technique
leading to the satisfaction of (207)-(209), see Ref. 16.
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and

J(a) < J(0), (207)
P(x) <P, , (208)
T(a)>0. (209)

For this purpose, the cubic interpolation procedure of
Section 8, is employed, with an optional switch to quadratic
interpolation, if needed.

Conjugate Gradient-Restoration Cycle. Generally speak-

ing, the first cycle of the algorithm is a half cycle, in
that it includes a restoration phase only. Every subsequent
cycle is a complete cycle, in that it includes both a conju-
gate gradient phase and a restoration phase.

Between the endpoints of a complete conjugate gradient-
restoration cycle, the following descent property must be

satisfied:

NS T S (210)

where Il denotes the value of the functional (12) at the

beginning of the cycle and I, denotes the value of (12) at

3
the end of the cycle.
If Ineq. (210) holds, the next conjugate gradient-

restoration cycle can be started. If Ineq. (210) is violated,
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one must return to the previous conjugate gradient phase and

bisect the conjugate gradient stepsize until, after restora-

tion, Ineq. (210) is satisfied.
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105 Remarks and Safeguards

In this final section, we include miscellaneous consi-
derations, relevant to the computer implementation of the
sequential conjugate gradient-restoration algorithm. We
also list some important safeguards.

Nondifferential Constraint. For the restoration phase,

the linear, two-point boundary-value problem (43)-(49) must

be solved. During the execution of a sweep, assume that time
station t has been reached and that A(t), C, A(t) are known at
that time station. Then, Egs. (44) and (47) constitute a
system of m+ k equations in the m+ k components of the vectors
B(t), o(t). The system admits a unique solution providing the

following relation is satisfied:

det ul = -k det[sri su]#o, (211)

where I denotes the m x m identity matrix and 0 denotes the
k x k null matrix.

An analogous remak holds for the conjugate gradient
phase: here, the linear, two-point boundary-value problem
(144)-(150) must be solved. During the execution of a sweep,
assume that time station t has been reached and that A, (t),C, .

\, (t)are known at that time station. Then, Egs. (145) and
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(148) constitute a system of m+ k equations in the m+ k
components of the vectorsB,(t),p,(t). Once more, the system
admits a unique solution providing relation (211) is satisfied.
The implication of (211) is that, while the state x
and/or the parameter 7 can be absent from the nondifferential
constraint (14), the control u can never be absent. In fackt,
u must be present in each of the k scalar components of the
vector S. Therefore, suitable transformations must be intro-
duced in order to convert problems where the function S does
not involve the control into problems where the function S
involves the control. For a discussion of these transforma-

tions, see Ref. 9.

Starting Condition. The present algorithm can be started

with nominal functions x(t) u(t), * satisfying condition (15-1)
and violating none, one, or all of conditions (13), (14),
(15-2). TIf the nominal functions are such that Ineq. (189) is

satisfied, the algorithm starts with a restoration phase;
hence, the first cycle is a half cycle, including a restoration
phase only. On the other hand, if the nominal functions are
such that Ineq. (190) is satisfied, the algorithm starts

with a conjugate gradient phase; hence, the first cycle is a
complete cycle, including both a conjugate gradient phase and

a restoration phase.




72 AAR-126

Bypassing Condition. At the end of the conjugate

gradient phase of any cycle, the constraint error P must be
computed. If Ineq. (189) is satisfied, a restoration phase
is started. If Ineqg. (190) is satisfied, the restoration
phase is bypassed, and the next cycle of the algorithm is
started.

Corvergence Conditions. For the restoration phase taken

individually, convergence is achieved whenever Ineq. (190) is
satisfied. For the sequential conjugate gradient-restoration
algorithm taken as a whole,convergence is achieved whenever
Ineqgs. (192) are satisfied simultaneously.

Safeguards. Let N denote the number of iterations. Within
each restoration phase, let Nr denote the number of restorative
iterations. Within each restorative iteration, let Nbr denote
the number of bisections of the restoration stepsize required
to satisfy Inegs. (194). For the conjugate gradient phase,
let Nbg denote the number of bisections of the conjugate gra-
dient stepsize required to satisfy Inegs. (207)-(209). Finally,
for a complete conjugate gradient-restoration cycle, let Nbc
denote the number of bisections of the conjugate gradient
stepsize required to satisfy the cycle descent property (210).

With thisunderstanding, the following safeguards are

essential to the proper implementation of the sequential con-

jugate gradient-restoration algorithm:
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(1) N<N, , (212)
f1i) Mo 2W s (213)
(iii) N, SN o (214)
(iv) Ny S Npgu o (215)
(v) Noo S Npoy - (216)

In the above inequalities, the right-hand sides are specified
upper bounds.

Restarting Conditions. The directional coefficient of

the conjugate gradient phase must be reset at the level

y=20 (217)

if any of these circumstances arise:

(i) J (020, Y=0/0, (218)
(ii) Npg 21, Yy=0 or  yv=0/0, (219)
(iii) No2 1o y=0 ©or yv=0/0, (220)
(iv) Nog > Npgs * Yy=0/0, (221)
(v) Ny >Ny, o ¥EQ/. (222)

Satisfaction of Ineq. (218) indicates a loss of the
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descent property of the present conjugate gradient phase.
Hence, the directional coefficient must be reset at the level
(217), characteristic of an ordinary gradient phase.
Satisfaction of Ineq. (219) indicates that the optimum
stepsize of the present conjugate gradient phase [this is the

stepsize satisfying Ineq. (206)] cannot be employed, owing to

violation of one or more of Inegs. (207)-(209). Hence, this
stepsize must be bisected Nbg times so as to arrive at satis-
faction of (207)-(209), while violating (206). Because of

the ensuing large violations of the orthogonality and conju-
gacy conditions, the directional coefficient of the next
conjugate gradient phase must be reset at the level (217),
characterisitc of an ordinary gradient phase.

Satisfaction of Ineq. (220) indicates that the optimum
stepsize of the present conjugate gradient phase cannot be
employed, owing to violation of the cycle descent property
(210). Hence, this stepsize must be bisected Nbc times, so as
to arrive at satisfaction of (210), while violating (206).
Once more, because of the ensuing large violations of the
orthogonality and conjugacy conditions, the directional
coefficient of the next conjugate gradient phase must be reset

at the level (217), characteristic of an ordinary gradient

phase.
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Satisfaction of Ineq. (221) has a stronger implication

than satisfaction of Ineqg. (219). It requires restarting with

Y =0 in the present conjugate gradient phase, rather than the

next conjugate gradient phase.

Satisfaction of Ineq. (222) has a stronger implication

than satisfaction of Ineq. (220). It requires restarting with

Yy=0 in the present conjugate gradient phase, rather than the

next conjugate gradient phase.

Nonconvergence Conditions. The seguential conjucate gradient-

restoration algorithm must be programmed to stop whenever any

of several circumstances arise:

(i) N>N,,
(ii) N> W, v
(1 LL] Npr ” Npra ¢
(iv) J, (0)zo,

(v) Ny ™ W
FeL Nbe ™ Npes !
(vii) M>M, .

(223)

(224)

(2125)

=0, (226)

Il
o

(227)

1]
o

(228)

(229)

Satisfaction of Ineq. (223) indicates extreme slowness of

convergence of the algorithm as a whole.

Satisfaction of Ineq.




76 AAR-126

(224) indicates extreme slowness of convergence of the resto-
ration phase. Satisfaction of Ineq. (225) indicates extreme
smallness of the restorative displacements. Satisfaction of
Ineq. (226) indicates loss of the descent property of the
ordinary gradient phase, owing to numerical inaccuracies.
Satisfaction of either 1neq. (227) or Ineq. (228) indicates
extreme smallness of the ordinary gradient displacements.
Finally, satisfaction of Ineq. (229) indicates overflow: the
modulus M of some of the quantities used in the algorithm has
reached the upper limit M, allowed by the particular computer
employed.

Remark. Several numerical examples illustrating the
theory given in this paper are presented in Ref. 16. For a

general discussion of the properties of sequential gradient-

restoration algorithms, the reader is referred to Ref. 17.




P ————————————

e AAR-126

References

1LE

LASDON, L.S., MITTER, S.K., and WAREN, A.D., The Conju-

gate Gradient Method for Optimal Control Problems, IEEE

Transactions on Automatic Control, Vol. AC-12, No. 2, 1967.

HORWITZ, L.B., and SARACHIK, P.E., Davidon's Method in

Hilbert Space, SIAM Journal on Applied Mathematics,

Vol. 16, No. 4, 1968.

LASDON, L.S., Conjugate Direction Methods for Optimal

Control, IEEE Transactions on Automatic Control, Vol. AC-15,
No. 2, L970.

TRIPATHI, S.S., and NARENDRA, K.S., Optimization Using

Conjugate Gradient Methods, IEEE Transactions on Automatic

Control, Vol. BE-15, No. 2, 1970.
SINNOTT, J.F., Jr., and LUENBERGER, D.G., Solution of

Optimal Control Problems by the Method of Conjugate Gra-

dients, Proceedings of the Joint Automatic Control Confer-
ence, Philadelphia, Pennsylvania, 1967.

HEIDEMAN, J.C., and LEVY, A.V., Sequential Conjugate Gra-

dient-Restoration Algorithm for Optimal Control Problems,

Part 1, Theory, Journal of Optimization Theory and Appli-

caC1IONS, Vol. 15, No. 2, 195,

HEIDEMAN, J.C., and LEVY, A.V., Sequential Conjugate Gra-

dient-Restoration Algorithm for Optimal Control Problems,

Part 2, Examples, Journal of Optimization Theory and Appli-

cations, Vol. 15, No. 2; 1975,




10.

XL,

B

L3

78 AAR-126

PAGUREK, B., and WOODSIDE, C.M., The Conjugate Gradient

Method for Optimal Control Problems with Bounded Control

Variables, Automatica, Vol. 4, Nos. 5-6, 1968.
MIELE, A., DAMOULAKIS, J.N., CLOUTIER, J.R., and TIETZE,

J.L., Sequential Gradient-Restoration Algorithm for Opti-

mal Control Problems with Nondifferential Constraints,

Journal of Optimization Theory and Applications, Vol. 13,
No. 2, 1974.
MIELE, A., PRITCHARD, R.E., and DAMOULAKIS, J.N., Sequen-

tial Gradient-Restoration Algorithm for Optimal Control

Problems, Journal of Optimization Theory and Applications,
Vol. 5, No. 4, 1970.

MIELE, A., Method of Particular Solutions for Linear, Two-

Point Boundary-Value Problems, Journal of Optimization

Theory and Applications, Vol. 2, No. 4, 1968.

HEIDEMAN, J.C., Use of the Method of Particular Solutions

in Nonlinear, Two-Point Boundary-Value Problems, Journal

of Optimization Theory and Applications, Vol. 2, No. 6,
1968,

MIELE, A., and IYER, R.R., General Technique for Solving

Nonlinear, Two-Point Boundary-Value Problems via the

Method of Particular Solutions, Journal of Optimization

Theory and Applications, Vol. 5, No. 5, 1970.




14.

iz

16

117

79 AAR-126

MIELE, A., and IYER, R.R., Modified Quasilinearization

Method for Solving Nonlinear, Two-Point Boundary-Value

Problems, Journal of Mathematical Analysis and Applica-
Eilomns, Vol 36, INal.. 3, 1E971.

MIELE, A., and CANTRELL, J.W., Study on a Memory Gra-

dient Method for the Minimization of Functions, Journal

of Optimization Theory and Applications, Vol. 3, No. 6,

1963
CLOUTIER, J.R., MOHANTY, B.P., and MIELE, A., Sequential

Conjugate Gradient-Restoration Algorithm for Optimal

Control Problems with Nondifferential Constraints,

Part 2, Examples, Rice University, Aero-Astronautics

Repoxrt Ne. 127, 1977.

MIELE, A., Recent Advances in Gradient Algorithms for

Optimal Control Problems, Journal of Optimization Theory

and Applications, Vol. 17, Nos. 5/6, 1975.




