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SYNTHETIC SEISMOGRAMS USBJG THE
STATE SPACE APPROACH

by

J. lvi. Mendel, N. E. Nahi arid M. Chari
Department of Electrical Eng ineering

University of Souther n Calif orn ia
Los Angeles , California 90007

ABSTRACT

In this paper we develop t ime-domain state space models for lossless

layered media which are described by the wave equation arid boundary cond i-

tions. Our models are for non-equal one-way travel times; hence , the y are

more general than existing models of laye red media which are usually for

layers of equal one-way travel times. We develop state space models f o r

two cases: (1) source and sensor at the surface , and ( 2) source and sensor

in the first layer.
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I. INTRODUCTIO N
$

In this paper we develop time-domain state space models for lossless

layered media which are described by the wave equation and boundary condi-

tions. We are specifically intere sted in models for  a horizontally stratified

nonabsorptive earth with vertically travelling plane compre ssional waves,

and shall consid er the two cases dep icted in Figure 1; that is to say, we

shall develop state space models for K-layer media systems in which the

source and sensor are located either at the surface (the usual case,

con sidered, for example in Refs. 1 -8) or in the first layer (as is the case

when the first layer is water).

In Figure 1 we characterize each layer by its one way travel time,

iS., ,  velocity, V~ , and normal incidence reflection coefficient, r.

( i 1 , 2 , .. . , K). Additionally, interface-O denotes the surface and is

characterized by reflection coefficient r 0. Finally, m(t) and y(t) denote

the input (e. g. ,  seismic source signature from dynamite, airgun, etc.)

to and the output (e. g . ,  ideal seismogram as measured by a geophone or

hydrophone) of the K-layer media system.

An important use of a model of a K-layer media system is to

generate synthetic seismograms; i. e., to ge nerate y(t) for a given rn(t).

This synthetic data can then be used either for preliminary testing and

evaluation of a signal processing technique ( e .g . ,  deconv olut ion) or for

inte rpretation purposes (Ref. 18). These models are also useful for

developing inverse procedur es by which important parameters, such as

reflection coefficient s and/or  travel times , can be extracted from measured

data.
2



Our time-domain state space models , as will be seen below, are

quite d i f fe ren t  from the more familiar z-tr ansforrn t ransfer  function models

which have appeared in the Geophysic s literature (Ref s. 1-8). In the

Geophysic s literature, the assumption of equal one -way travel times is usually

made. Layers of different travel time s are built up by inserting layers whose

reflection coefficie nts are zero. Our state space models are for non-equal

one -way travel times , but can also be applied to the equal travel time case.

Why are we interested in a different clas s of models for what appears

to be a well studied system? As is well know n, there is a vast literature

associated with systems which are described by time-domain state space

models. Mo st recent results in estimation and identification theorie s, for

example , require a state space model. These time-domain technique s have

proven very beneficial outside of the geophysics field, and , we feel should

also be beneficial in the geophysic s field. In fact , our ultimate obj ective is

to apply those theorie s to the layered media problem; but , to do so of course

requires state space models.

One might argue that it should be possible to go directly f rom the

z-transforin t ransfer  function models , already developed , to equivalent

state space models. In most casei this is not practical since closed-form

expressions for the transfer functions (e. g. ,  reflection transfe r function

Y ( z ) /M (z ) )  are not available. Those t ransfer  functions must be computed

from a set of equations which are solved in a recursive manner.  Additionally .

those transfe r functions appear to be limited by the equal one-way trave l

time assumption (Ref s. 2-4 • for example) and , they appear to only have

been published for the case of source and sensor at the surface (Figure la).3



In this paper we develop state space models for both cases depicted

in Figure 1. The case of source and sensor at the surface is treated in

Section II , whereas the case of source and sensor in the first layer is

treated in Section III. Our state equations turn  out to be continuous-time

equations with multiple time delays , and , are refe r red t o as causal

functional equations. There does not appear to be any literature on this

class of equations; hence, we also describe some of their more important

properties and two methods for  their compute r simulation in Section It. A

connection between our state space model and transfe r fu nction models is

also give n in that section. In Section Ill we distinguish between the cases

whe n the sensor is either above or below the source and develop models

for both cases.

Some of the material which we discus s in Section II was f i rs t

presented in Refs. 11 , 12, and 13.

~~: ~~.r 1
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II. A STATE EQUATION MODEL: SOURCE AND SENSOR
AT THE SURFACE

A. State and State Space

The starting point for our developments is the assumption that wave

motion in each layer is characterized by two signals traveling in opposite

directions. This assumption is a consequence oithe lossless wave equation.

thSymbols uk(t)  and d
k(t)  denote the upgoing and downgoing waves ui the k

layer , respectively (Figure 2). We shall refer  to uk(t )  and dk(t)  as states.

Since the notions of state s and state space may be new to many

Geophysics readers, we give a brief review of them next . Our discussions

paraphrase those in Refs. 9 and 10.

The state of a dynamic system at time t t
0 

is the amount of iafor-

mation at t 0 that, together with the inputs defined for  all values of

determines uniquely the behavior of the system for all t > t ~ .

For our layered media system, dep icted in Figure 1, the states

consist of a finite numbe r of variables, u 1(t) ,  d 1(t) u2(t),  d2(t),  . . . ,
and dat). The state of our system can then be represented by a column

vector x called the state vector, whose dimension is Z K x l .  The components

of x are called state variables; hence , u 1(t),  d 1
(t),, . . . , u~~t) , and d~~t) are

state variables. Because our input mit) is real-valued and our state vector

is finite dimensional our state space, which is defined as a 2K-dimensional

space in which u 1(t) , d 1(t), . .. , ux(t) , dK(t) are coordinates , is the familiar

finite-dimensional real vector space. The state at time t of our system will

be defined by 2K equations and can then be represented by a po int in

2K-dimensional state space.

5



A set of state variables can be associated with a given system in

many ways. In other word s there exist a numbe r of d i f fe ren t  sets of state

va r iables for  a g iven system for  a g ive n input set. Which of these is most

relevant depend s on the individual s ituation, that is , the nature of the

problem, the nature of the input set , etc. We have chosen upgoing and

downgoing signals in each laye r to be state variables since these variables

are most frequently used by geophys icists and also seem to be the most

natural one s to use based on wave equation theory.

By a state space model we mean the set of equations that describe

the unique relations between the input , output , and state. It is comprised

of a state equation and an output equation. The state equation governs the

behavior of the state vector , x. For cont inuous -time dynamical systems it

is usually a differential  equation, whereas for  discrete-time dynamical

systems it is usually a di f ference equation, The output equation relates the

out put (or , outputs) to the state vector and input . A n  examp le of a continuous -

time output equation is y(t )  ~ h t x( t )  + rn (t ) .  In this equation ( P denotes

the transpose of ( ).

B. Interface Equations

The starting point for derivation of our state space model is the

Figure 3 ray diagram. As in Ref s. 2 and 3, we shall find it convenient to

draw ray diagrams w ith time displacement along the horizontal axis , so that

rays appear to be at non-normal incidence and so do riot overlap one another.

Symbols Uk and d~ denote the upgoing and downgoing waves in the kth 
layer ,

respectively; and , we adopt the convention that waves at the top of a layer

6
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occur at present  time t. Our initial development is in terms of U
k and d~.

In Paragraph C we will find it more conve nie nt to work with u.k and dk.

From Figures 2 and 3 we see that d
k is just a time delayed version of d~~;

i.e. , dk(t)  d
~

( t_ 1
~k

).

As stated by Robinson (Ref. 3), “the solution of the wave equation

at each interface lead s to the definition of a reflection coefficie nt r .
3

associated with that inte rface. ... the reflection coefficient r., which must
J

satisf y I r l <  1, has these properties. A downgoing wave of amplitud e A in

layer j , upo n striking interface j , is both reflected and transmitted. The

reflected portion is an upgoing wave of amplitude r .A in laye r j, so r .

represents the reflection coefficient. The transmitted portion is a down-

going wave of amplitude ( l + r .)A in laye r j+ l , ~o l+r . represents the

transmission coefficient. An upgoing wave of amplitude B in laye r j+ 1 is

both reflected and transmitted when it strike s interface j . The refle cted

portion is a downgoin g wave of amplitude -r .B in laye r j+ l , and the

transmitted portion is an upgoing wave of amplitude ( l - r .)B. Hence -r .

and (1  -r .) represent, respectively, the reflection coeffic ient and trans-

mission coeffic ient for  the upgoing wave. These properties are summarized

in Table 1 (2) .

” 7



Table 1. Reflected and Transmitted Portions

Reflected Transmitted
Portion Po rtion

Downgoing wave Upgoing w ave Downgoing wave
A r~A ( 1+ r 3 )A

in layer j in layer j  in layer j+ l

Upgoing wave Downgoing wave Upgoing wave
B -r 3 B ( l -r ~)B

in layer j+l in laye r j+ 1 in laye r j

Waveform u
k( t + T

k
) (F igure 3) is made up of two parts , namely the part due

to the reflected portion of dj c( t _ T
k) and the part due to the transmitted

portio n of u
k÷i

(t) .  It satisfies the equation

uk( t + T k ) = r
kdk(t .r

k ) + ( l _ r
k) u k+l (t ) .  ( 1 )

In a similar ma nner , waveform 
c+1(t) satisfies the equation

d~~~1(t)  = ( l + r
k)d

~
( t _ T

k
) - r

kuk+l ( t ) .  ( 2 )

We refer  to Eqs. (1 )  and ( 2 )  as the inte rface equations. These equations

are the starting point for t ransfe r function models , which are very popular

in the Geophysics literature (Ref . 2),  and , they are also our starting point .

C. A State Space Model

A state space model for our K layer media system is obtaine d

directly f rom Eqs. (1)  and (2) ,  which are applicable at interfaces 1 through

K-i  (i. e. , for k 1 , 2, .. . , K- 1) ,  and comparable equations at the surfac e

and K
th 

interface. At the surface (Figure 4a), we obtain

y(t)  = r 0 m(t) + ( 1- r 0) u 1(t)  ( 3 )

d’1( t )  = ( 1 + r
0 ) m ( t )  - r

0
u 1(t) (4)

8
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and , at the K
th interface we assume that u

K+l (t )  = 0 to obtain (Figure 4b)

uK
(t+ .r

K
) = r

Kd
K

( t T K ) (5)

dk+i (t)  = ( l + r
K

)d
~~

( t _ .r
K ) ( 6 )

Signal y (t )  in Eq. (3)  is the measurable system output; hence , Eq. (3 )  is the

outhut equation. Signal dk÷i (t)  is also a system output; but , s ince it cannot

be measured, we shall ignore it in follow ing analyses.

It is convenient to group Eqs. (1 ) ,  (2) ,  (4),  and (5 )  in a layer

ordering, as follows.

d 1(t)  = - r 0u 1( t ) + ( 1+ r 0)m (t )

u 1( t + T 1) = r 1d’1( t — T 1) + (1 — r 1)u 2(t)

d’.(t) = ( l + r . 1)d ! 1(t— ~r . 1 ) — r . 1u .(t)
-~ ~~ -‘ ~~ j = Z , 3, . . .  , K- l

= r .d ! ( t —~~. ) + { 1 — r .) u .~~1 ( t )

dk(t)~~~
( l + r K i )dk l

( t _ T
K l

) _ r
K l u

K
(t)

uK( t + T K) r KdK( t T K) .  (7)

Thi s system of 2K equations is not in a usefu l state equation format , yet ,

since signals in its left-hand side occur at t and delayed times , and signals

on the right-hand side occur at t , t - T .
1 

and t - r .. In order to put Eq. (7 )

into a useful state equation format , let

d .(t) ~ d~( t _ T ~ ) (8)

for all j 1 , 2 , .. .. K. Observe , f rom Figs. 3 and 2 , that the downgoing

states d .( t)  occur at the bottom of a layer. Equation (7 )  become s

9



d
1
(t+T

1
) = - r

0
u

1
( t ) + ( l + r

0
) m(t)

u
1
(t+T

1) 
= r

1
d

1
(t) + (l—r

1
)u
2
(t)

= ( l + r . ) d . (t) - r . u . (t )
~ ~~~ j ’ ~ j = Z , 3 , .  . . , K - l
u.(t+~r .) = r .d .( t ) + (l— r .)u. 1 (t)

d
K

( t+ .r
K

) = ( l + r K l
) d

K 1( t )  - rK l u
K

( t )

u
K
(t+T

K
) = r

K
d

K
(t )  ( 9 )

By means of transformation (8) each pair of equations in (7) now only involves

two time points , t + T . and t. Equations (9) and (3) together represent a state

space model which we refe r to as the la y e r - o r d e r e d  ( L - O )  model in the

sequel.

In order  to complete the descr iptio n of our state space model we

must specify initial condition information.  The situation of interest is the one

for which all states have zero  values prior to application of input m ( t ) .

C ons ider the kth layer (Figure  2 ) .  Then dk (t )  is equal to ze ro  until t

+ + - + ~ ~~ 
These facts a re  true for all k 1 , 2 , ... , K; i.e.,

d . ( t ) = 0  v t c [ O . E~~~) ( l 0 a )

and

u (t) 0 v t c [O~~E T . + T )  ( l O b )

where j 1 , 2,.. .,K.

As an examp le cons ider  a two laye r sys tem for  which Eq. ( 9 )

becomes:

10



d 1( t + T 1) = - r 0u 1( t ) + ( 1 + r 0) m ( t )

P u 1( t + T 1 ) r 1d 1( t ) + ( l - r 1) u 2( t )
( 1 1 )

= ( l + r 1) d 1( t )  - r 1u 2
( t )

u 2( t + T 2 ) = r 2d 2(t)

When we solve this system of equations , we must remembe r that d 1( t )  = 0

unt il t r
1
, u 1

( t ) O until  t 2 T 1, d 2 ( t ) 0 until t T
1

+T
2
, and u2 (t ) 0 until

t 
~ 1 + 2r 2 .

D. Properties of the State Space Model

State Equation (9 )  is a dynamical equation with multiple time delays .

It is not a d i f fe rent ia l  equation , nor is it a f ini te -d i f fe rence  equat ion. We

shall refe r to it as a causal functional equation. It is linear and t ime -

invariant , a rid , as is the case with delay-time systems, requires initial

value information over initial intervals of time. We have not been able to

find any l i terature for  causal functional equations.

Equations (9)  and (3)  can be expressed in more compact notat ion by

introducing the follow ing 2K x 2K matrix operato r *:

3 ~ d i a g ( z 1, z 1, z 2, z 2 , . . ., z~~, zK ). ( 1 2 )

where  z . is a scalar operator  used to denote a ‘r. sec. time delay

(i. e. , z. f ( t )  = f ( t — r .)).  Let

x(t)  co l (u 1( t ), d 1( t ) ,  u 2
( t ) ,  d2( t ) ,  . . . , uK

(t) .  d
K

( t )) ; (13)

* This idea was f i rs t  sugge sted to us by Mr.  Michael Ste inberger , a forme r
graduate stud e nt in the Electr ical  E n g i n e e r i n g  Department , at the
Univers i ty  of Southern Cal i fornia .
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the n , Eqs. ( 9 )  and ( 3 )  can be wr i t ten , as

= Ax(t) + bm(t)  (14 )

y( t )  = c ’ x ( t )  + r 0rn(t) ( 1 5 )

w h e re  the explicit  s t ruc tu res  of A , b and c can be deduced directl y f rom the

forme r equations. Because we do not need this inform ation here , we do

not give explicit A , ~~~, and c s tructures here for Eqs.  (14) and (l5) f see

Ref .  12 for  such s t ructures  for d i f fe ren t  orderings of the states in x ( t ) ] .

From Eqs.  ( 14) and ( 15) we see that

x(t)  = (‘~
. 1

—A)~~ bm(t) (16)

and

y( t )  r c ’(~~~
’-A)~~~b + r 0 m(t)  ( 1 7 )

These equations provide us (conceptually, at least) with the solution of the

state equation and with the output as a funct ion of the input.

The reflect ion t r ans f e r function of the K layer media system is

obtained f rom the Laplace t r ans form of Eq. ( 1 7 ) ,  and is

(18)

where  is obtained f rom ~ by setting z . = e 1.

Equation (18) suggests a straightforward way to compute y(t) for an

a r b i t r a r y  mn (t).  F i r s t  compute the system ’s impulse response , H(s),  where

T recall that Y(s )  = H(s)  whe n M(s)  1],

~‘-1 -1H(s)  = c’() -A) b + r 0 (1 9)

Then , convolve h(t)  with m(t)  to obtain y(t) .  Observe that the ri ght-hand s ide

of ( 1 9 )  is an inf ini te  ser ies  each of whose terms looks like ~ e 5B , and , that

12
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= ~ ô(t-~~); hence , h(t )  is an infinite sequence of impulse functions.

This fact  makes the convolution of h(t) and m(t) quite easy, since

m(t) * [~~ó(t-~~)] = ~mn (t-~ ) 
(20)

Finally, we consider the special case when ~r 1 ~~ 
= T , in

which case 3 = zI ,  where z denote s the ¶ sec. time delay and I is the

2 K x  2K identity matrix. In this case Eq. ( 14)  can be writte n as

x ( t+ T )  = A x (t ) + b m ( t)  (21 )

Let us choose t = k r  and assume that m(t) only has value s at t = kT , in which

case Eq. (21 )  reduces to the following vector f in i te-di f ference  equation:

x [( k +l ) T ]  Ax( k’r ) + bm( kT ) (22)

In this special case all of the usual techniques (Ref .  10 , for  example)

associated w ith such equations can be used to solve for  x( k) , after  which we

can compute y (k r )  f rom the following sampled version of Eq. (15):

y( ki’) = c ’x (kr )  + r 0rn( k’r ) (23)

We do not choose to follow this un i form travel t ime/sampled data path,

because these assumptions seem too re strictive .

E. Computational Solutions

In this paragraph we briefly describe two computational method s

for practical compute r solution of our state space model in Eqs. (9) ,  (10) ,

and (3) .  Mo re detailed descriptions of both method s are given in Ref. 13.

Our f i r s t  method is a ray t racing technique in which we define

mapping rules to track how a state propagate s at an interface.  The rules

are obtained by observing,  in Eq. (9 ) ,  what happens to dow rtgoing or upgoing

states and are illustrated for  downgoing state s in F igure 5. The complete

set of mapping rules are:

13 
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r 0 rn(t) -. y(t) j 0

d .( t)  r . d . ( t )  -, u.(t+’r.) j=1 , . . . , K (28 )

( 1+ r . ) d .( t )  - d.~~1
(t+ r .~~1

) j 0 , . . . , K - i

( 1  — r 0 ) u 1( t )  -, y(t)  j i

u .(t) ( 1 — r . 1 )u .(t)  -, u . 1 ( t + T . 1 ) j 2 , . . . , K (29 )

- r . u . ( t )  -. d .( t + T .) j = i , . . . , K
j — l j 3 3

In order to use Eqs. (28)  and (2 9)  we create a state reference table .

Each element of the states in this table , called an event , is characterized by

its time of occurrence and amplitude. Our ray tracing procedure is based on

the observation that , at an inte rface , an incoming sig nal branches into

reflected and transmitted signals. Every time such a branching occurs we

have two eve nt points along the time axis which are stored in the state

refe rence  table. We search along the time axis for  a time at which an event

has occurred. At that time point we map all d . and U. state s which change

( there are only two such states) via Eqs. (28)  and (2 9) .  As each eve nt

branches into two new events , the table grow s geometrically. We proceed

along the time axis looking up value s of d . and u . at event points , until we

have cove red the domain of interest. To restrict the growth of the table ,

we use two tolerance parameters, AMIN and 8T , and collapse eve nts that

occur at the sarrie time point before we store them back into the table.

Parameter AMIN controls the amplitude of the computed event. If that

amplitude is less than AMIN, it is set to zero. Parameter ~T controls the

time separation of two events below which they are considered to occur at

the same time.
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Our second method is a discretization technique in which we convert

Eq. ( 9 )  into standa rd f in i t e -d i f fe rence  equations by discretization of time.

Since the one -way trave l time s are in general  non-uniform and not a mult ip le of one

another , we have to choose a very small time interval, A , for  d iscre t iza t ion.

We choose A as the greatest  common facto r of the one -way travel  times , such

that ‘r .=k .A (j=l , 2, . .  . , K) where k . is a po sitive integer.  Discret izat ion is

equivalent to dividing a laye r into equal sub-layers and insert ing inte rfaces

whose reflection coefficients are zero . We illustrate the discretization and

labeling of intermediate state s for  a layer where r . = 4A in Fi gure 6. The

facts that the intermediate downgoing states ~1(t) ,  82(t) ,  and ô 3(t)  equal

d . (t + A ) ,  d .( t+2 A) ,  and d .(t+ 3A) , respectively, and the intermediate upgoing

states ~ 1(t),  ~ 2
(t) ,  and ~ 3( t )  equal u .( t + A ) ,  u .(t+ ZA ),  and u .(t+ 3A) , respec-

tively, are a direct consequence of the equations written at interfaces a , b ,

and c. Those interface equations use the fact that the intermediate reflection

coefficients are zero.

By the discret izat ion technique each layer , say the jth , expands to

layer s, and each of the k. layers is descr ibed by two states: hence , the

dimension of the state vector for the discretized system is 2 k.. The
1

easiest way to obtain the discrete-t ime state equations for the expanded

system is to imagine that our earlier state equation derivation, which was

for the system in Figure la , is for that same system; but , now each of

the K layers is further partitioned int o k. layers , so that Figure la is

now a system of ZE  k1 layers , each of uniform one -way travel time ,
i =1

~~~. Of course , many of the layers have zero reflection coefficients at

res pective interfaces. The discrete-time counterparts to Equations

(9 )  and (3 ) ,  for the expanded system , are:

15



d 1
( kA  + A ) = -r 0u1(kA ) + ( 1 + r 0 )m(kA )

u1(kA + A ) r 1d 1(kA ) + ( 1— r 1)u 2 (kA )

d.(kA + A ) = ( 1 + r. 1)d . 1(k A ) - r . 1u.(kA)
~ 1— ~ 5=2 , 3, . . . ,  L—l

u.(kA + A ) r .d .(k~ ) + ( l - r .) u.~~1( kA )

d L( kA + A) = ( 1 + r L l )d L l (k A )_ r
L l uL(kA )

uL(k
~A + A )  = r Ld L(kA ) ( 30 )

and

y(kM = r 0m(kA ) + (l -r 0)u 1(kA ) (3 1)

where K
L = Z E k .  ( 32)

1=1

The non-zero reflection coefficients are r0, rk , rk + k ~~~~ 
r L. All

1 1 2
other reflection coefficients are zero.

Equation (30) is solved in an iterative manner , for k=0, 1, 2 

Usua l matrix methods for obtaining this solution (Ref . 10, for example)

are terribly inefficient , due to the large value L will usually have (matrix

multiplications), and the many zero  reflection coefficients (the transition

matrix for (30)  is sparse) which are present . The ray- t racing technique

applied to Eqs . (30) and (31) is much more efficient . That technique is

much s impler in the present discrete- t ime case because we do not have

to search along the time axi s for a time at which an event has occurred.

Events occur every A units of time.

The discrete method is simple , easy to implement and recurs ive:

however , due to the non-uniform nature of the delay-te rms, we have to use

a A small enough such that it is a submultiple of all the delay terms.  The

storag e requirement is usually not excessive . However , we compute zero

for  a lot of points on the time axis where no events occur . Thus the CPU

time may be larger  than for  the r ay - t r ac ing  technique .
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The ray- t r ac ing  technique requires  a sli ghtl y more complex program

to implement it. Its major disadvantage is the large storage requireme nt

for the state reference table. Since this technique computes only the actual

event points, it is very efficie nt arid fast  fo r  short observation times.

The actual choice of a particular method depends on the input data

set.

F. Recursive Reflection Transfe r Function Relationship

We conc lude this section by making a conne ction between our state

space model in Eqs. (9 )  and (3)  and t r ans fe r  function models; however , our

connection will be made for systems with non-equal one -way travel time .

For a K-laye r media system, states u .( t)  and d . ( t )  have been defined

at the top and at the bottom, respectively, of the jth laye r (see  Fig. 2). Let

R . ( s)  denote the t ransfer  function between u . and d. at the jth interfac e; i. e . ,
3 3 3

sT. U . ( s )

j ~ 
~~~~~ ~d .(t ) )  

— e D. ( s )

When j 0 , we obtain the reflection t ransfe r function between output y(t)  and

source m(t); i. e . ,

ST U 0( s)  
____R 0( s )  = ~ D 0( s )  ~ 

(34)

s ince

We shall now develop a simple recurs ive relationship between R . ( s )

and R . +1 ( s ) . Conside r our earlie r state equations for  u . and d . +i :

17



r ~ u .( t+ ’r .)  = r .d .( t )  + ( 1_ r ~) u~~ 1
( t )  (35 )

d .~~1(t+ ’r .~~1) = ( 1 + r . ) d .( t )  - r .u .~~1(t)  . (3 6 )

From the Laplace t ransform of Eq. (35 ) ,  we find

R .( s )  = r . + ( i - r .)U .~~1( s ) / D . ( s )  (37 )

Laplace t rans form Eq. (36)  and solve for  D . ( s ) .  to show that

D .(s)  = [r .U.~~1
(s)+e~~~~~D. 1 (s)1/(1+r .) (38 )

Substitute Eq. (38) into Eq. (37 ) ,  and r e - a r r a n g e  some terms in the resul t ing

expression to see that

r . +z . R .  ( s )
R .( s) ~J 3+ 1 3+1 ( j K- 1, K-2 , . . . , 1, 0) (39)

1+ r . z .+i R . +i ( s)

which is the desired result.

Equation (39)  can be used to compute the output of a K-layer media

system in a recursive manner, beg inning with a one layer system ( i . e. , one

laye r on top of a ba seme nt laye r) for which we set j K - l . We then i terate

Eq. (39)  backwards, sett ing j K-2 , K - 3 , .  . . ,  1 , 0. In order to compute

R K 1 ( s )  we need R
K

(s) ;  but , R
K

( s )  can be obtained direct ly f rom the ve ry

last state equation in ( 9 ) ,  uK
( t+ ’r K ) rKdK

(t ) ,  as

R K
( s)  r

K
. (40)

In the special, but widely studied case of equal t ravel  time s, Eqs. (3$)

and (40)  s implif y to

18



r . + z  R.  1( s )
R .( s ) = 2 , j = K - 1 , K - 2 , . .  . , 1 , 0 (41, )

l + r . z R .~~1( s )

R
K

( s )  r
K

-

where  z = e . Equation (41 ) (or  its d i sc re te - t ime  counterpart, in which

Laplace t r a n s f e r  funct ions are rep laced by z -t r ar t s f o rm  t r a n s f e r  func t ions)

is a well-known result which can be derived by widel y d i f f e r e n t  methods

( R e f s .  5 and 7, for  example). Additionally, these recurs ive relationsh ips

occur ( R e f .  14) in electric kernal funct ions , magnetotelluric input impedance

functions , and electromagnetic mod ified kernal  funct ions.

That Eq. (41)  general izes  to Eq. (3 9 )  for  non-equal travel time s is

~ielieved to be a new result.
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III. A STATE EQUATION MODEL: SOURCE AND SENSOR IN FIRST LAYER

In this section we present  a state space model for which source and

sensor are located in the f i r s t  layer . Such a model is most  important  for

the case of a marine environment . We shall cons ider  the two situations

depicted in Figure 7.

• One approach for  obtaining the state and output equati ons is to redo

our Section II. C developm ent in which we now inc lude the source and

sensor  in the f i r s t  layer. The resul t ing state equations are somewhat

different  fr om Eq. (9) in that the source m ( t )  will appear  in the d 1, u1,

and d2 state equations , since mn ( t )  affects interfaces 0 and 1.

A second approach , the one we shall take , is one in which we bring

m( t )  to the surface so that we can use our Section II. C state equations

directly. By this artifice, we will reduce the derivation of the state

equations for source in the f i rs t  layer to a problem which has already

been solved .

Observe , in Figure 8 , that there  are two “real”  rays associa ted

with m n ( t ) .  Ray ( 1) r epresen ts  mn ( t )  as it goes direct l y down into the rest

of the system , whereas ray (2 )  r epresents mn (t)  which ref lects  off the surface

interface  and then goes back down into the system (i.e., the ghost). The

dashed ray is ‘imaginary ” ; i . e . ,  it is needed for construction purposes

only, to bring the component of m( t )  along ray ( 1) up to the surface.

Let
m (t) = 

( I  + r 0 ) [m(t + a~ 
- r O

m ( t _ T
a )] (42)

~ t the surface (F i g u r e  9),  we now obtain the following state equation for d 1:
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d
1
(t + l~ 

—r0
u
1
( t)  + ( 1 + r

0
)rn (t) (43)

or

d
1
(t + ‘r1

) = -r0
u
1
(t) + m(t + T

a
) - m(t - 

~~~ 
(44)

With m(t)  brou ght to the surfac e, all other state equations are exactly

the same as in Eq. (9 ) ;  henc e , the complete set of state equations for a

source in the f irst  layer is Eq. (9) where mn (t ) is replaced by 
~~e~~-L The

following initial conditions , which make use of the fact that one com ponent

[m(t + of the equivalent surface source, me
(t )
~ 

occur s pr ior to tim e

zero , should be used:

d1(t)  = 0 V t £ [0 , 
~~ 

- ‘r = ‘ r )

d
2

( t )  0 V t [o, +
C (45a )

O V t €  [O , i .  + T 2
+ .  . • +~“~}()

u1(t )  = 0 V t ~ [0, 2T
1 

- T a = T
c +

u2 (t) = 0 V t ~ [0 , T + 2T
2

)
C 

(4 5 b)

uK(t)  = 0 V t £ [0, 
¶ + + ‘ + T

K -l  
+ ZT

K
)

Now for the sensor equations , which are a bit t r ickier  than the state

equations becaus e of the “imaginary” ray path. Consider the case where

the sensor is below m(t)  ( Figure l0a) . In this case , the rays which are

us ed to bring m(t)  to the surface do not pass through the sensor :  hence ,

= u1(t + “
~d~ 

+ d 1(t + 
~~~~~ 

‘4 6)

When the sensor is above the source (Figure lOb) both construction

rays pass through the sensor , and
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= U
1
(t + T

d
) + d

1
(t + 

b~ 
+ m(t - (T - T ) )  - m(t + 

~~a - T
d~~ 

( 4 7)

The term m(t - ( - is due to ‘real ’ ray ( 2 ) ,  which real l y passes

through the sensor , but will not be part of the f i rs t  two state terms in

Eq. (47),  s inc e they are due to input s at the surface . When the surface

input m(t + ‘~a
) / ( l  + r 0 ) t ravels along the “imaginary” ray on its way back

down into the system , it reg is te rs  the component ( 1 + r 0)m (t  + T
a - 

~~~~~~~~ 
+ r 0

)

at the sensor. Because this is an imag inary ( i .  e. , n o n - e x i s t e n t )  component ,

it must be removed from the ser. sed  signal;  hence , the appearance of

-rn(t + 
~~a - “ d o in Eq. (47) .

Figure 11 depicts rr i(t) and m (t )  for = I and 6 different  values of

a ’ ranging from T = 1 m sec to 
~a 6 msec.  If the ve locity in the first

layer is 5 , 000 f t/ s ec  then this range of values correspond s to source

depths ranging fr om 50 ft to 300 ft.  Observe that the most spike-l ike input

occurs for ‘
~a = 1 msec. As ‘a increases , m (t) becomes larger in amplitude

and more oscillatory , and eventually for T = 5 rnsec and 6 msec , d is tor t ion

sets in the early portion of rn e( t ) .

The right -hand side of the d 1 state equatiot in Eq. (44) suggests  that

our system with its equivalent surface input is non-causal; but , this is not so.

We can solve Eq. (44) for d
1(t), as

• d 1(t )  = —r 0u1(t — — r 0m(t  - a - “ l~ 
+ rn(t + a - ( 4 8)

but , — - = , so thatI a c

d
1
( t )  -r 0u1(t - l~ 

— r 0rn(t - a - + rn (t - ~~) (49)

We observe that m (t) occurs to the right of z ero , which conf i rms  the

causality of our state equations .
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Our subsurface source and sensor model  can be simulated by either

of the two method s descr ibed in Section II - E. The mapping rules for the

ray tracing technique are similar to those in Eqs . (28)  and (2 9 ) ;  but , for

the present case rne( t )  r ep laces m(t) .  In the discret izat ion technique A

must now be chosen as the greatest  common factor of 
~~~~ ~~~~~~ 

. .., and ,

a ’ b’ ~~~ 
and d’ In the latter technique , we f i r s t  comput e the sys tem ’ s

pulse respons e , then compute u1(t )  and d1(t)  via convolution between m (t )

and the pulse response , and finally comput e Ya (t )  or Yb (t )  by delaying u1(t )

and d 1(t)  according to Eqs . (46) and (47) ,  respect ively.

The impulse response for  a three- layer  system is depicted in Fi gure

12 for the case of a fixed sensor (T
d = 0.08 sec)  and varying source locations

= .02 , .04 , and .06 sec). The system parameters  are: r 0 = 1. 00 ,

r 1 = 0 .54 , r 2 = 0. 34 , r 3 = 0 .12 , 
~~~ 

= 0.4 , = 0 .125 , and = 0. 107 sec.

As the source approaches the sensor the ghost reflecti ons take longer to

reach the sensor (see spacing of f i r s t  two pulses) and many of the multiples

from the two s ource components seem to be getting closer to one another.

23



IV. CONCLUSIONS

We have deve loped  state space models f o r  lo s sless  laye red med ia

w hich are desc r ibed  by the wave equat ion and boundary  cond it ians.  Our

models are  for  non-equa l  one-way  t rave l  t ime s , and are th e r e f o r e  more

genera l  than t radi t ional  t r a n s f e r  func t ion  models , which are usual ly for

layers  of equal one -way t r a v e l  t imes .  Our state space models r e p r e s e n t  a

new class of equa t ions , which we call causal  funct iona l  equat ions .  These

equat ions  are  l inear , t ime - i nva r i an t , continuou s -time equations w ith multiple

t ime de lays. The impulse response  of our sys tem is a sequence of unequal l y

spaced impulse func t ions .

We have developed our state space models for  two cases:  ( 1 )  source

and sensor  at the su r face  and ( 2 )  source and sensor  in the f i r s t  l ayer .  These

models  can be used e ithe r to genera te  synthet ic  se i smograms or to develop

inve r se  p rocedure s  for  extract ing ref lect ion coef f ic ie nts or r e f l e c t i o n

coef f i c i en t s  and one-way  t ravel  t imes. Some recent  w o r k  on the ext rac t ion

of re f lec t ion  coeff ic ients  f o r  source and sensor  at the sur face , but f rom

noisy data is given in Ref .  15. The extension of the Ref .  15 resu l t s  to the

impor tant  case of source and sensor  in the f i r s t  layer  is comp leted and wil l

be repor ted  on sho rtl y.

We a l so  wish  to point out that our state space models  have led to



some new t h e o r e t i c a l  r e su l t s  which provide us w ith g rea te r  unders tanding

of the \ e r y  complicated in t e rna l  behavior  of a layered media system. The

f i r s t  of these resul ts  ( R e f .  16) is a decomposit ion of a se ismogram into a

superpos i t ion  of p r i m a r i e s , secondaries , ter t iar ies , etc. Each of the

constitue nts (e.  g. , pr imar ies , secondar ies )  is obtained f rom a state space

model of d imens ion  2K. The second of these results (Ref . 17) uses this

decomposit ion to quantif y the reinforcement phenomena that exist

within and between the consti tuents.

Finally, we reite rate that our ultimate objective for develop ing state

space models is to apply time-domain estimation and identification technique s ,

which have proven to be very beneficial outside of the geophysics field , to the

layered media problem. We are present ly studying such app lications.
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