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ABSTRACT

In this paper we develop time-domain state space models for lossless
layered media which are described by the wave equation and boundary condi-
tions. Our models are for non-equal one-way travel times; hence, they are
more general than existing models of layered media which are usually for
layers of equal one-way travel times. We develop state space models for
two cases: (1) source and sensor at the surface, and (2) source and sensor

in the first layer.
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I. INTRODUCTION

In this paper we develop time-domain state space models for lossless
layered media which are described by the wave equation and boundary condi-
tions. We are specifically interested in models for a horizontally stratified
nonabsorptive earth with vertically travelling plane compressional waves,
and shall consider the two cases depicted in Figure 1; that is to say, we
shall develop state space models for K-layer media systems in which the
source and sensor are located either at the surface (the usual case,
considered, for example in Refs. 1-8) or in the first layer (as is the case
when the first layer is water).

In Figure 1 we characterize each layer by its one way travel time,
T velocity, Vi’ and normal incidence reflection coefficient, r,
(i=1,2,...,K). Additionally, interface-0 denotes the surface and is

characterized by reflection coefficient r Finally, m(t) and y(t) denote

o
the input (e.g., seismic source signature from dynamite, airgun, etc.)
to and the output (e.g., ideal seismogram as measured by a geophone or
hydrophone) of the K-layer media system.

An important use of a model of a K-layer media system is to
generate synthetic seismograms; i.e., to generate y(t) for a given m(t).
This synthetic data can then be used either for preliminary testing and
evaluation of a signal processing technique (e.g., deconvolution) or for

interpretation purposes (Ref. 18). These models are also useful for

developing inverse procedures by which important parameters, such as

reflection coefficients and/or travel times, can be extracted from measured

data.




Our time-domain st#te space models, as will be seen below, are
quite different from the more familiar z-transform transfer function models
which have appeared in the Geophysics literature (Refs. 1-8). In the
Geophysics literature, the assumption of equal one-way travel times is usually
made. Layers of different travel times are built up by inserting layers whose
reflection coefficients are zero. Our state space models are for non-equal
one-way travel times, but can also be applied to the equal travel time case.

Why are we interested in a different class of m'odels for what appears
to be a well studied system? As is well known, there is a vast literature
associated with systems which are described by time-domain state space
models. Most recent results in estimation and identification theories, for
example, require a state space model. These time-domain techniques have
proven very beneficial outside of the geophysics field, and, we feel should
also be beneficial in the geophysics field. In fact, our ultimate objective is
to apply those theories to the layered media problem; but, to do so of course
requires state space models.

One might argue that it should be possible to go directly from the
z-transform transfer function models, already developed, to equivalent
state space models. In most cases this is not practical since closed-form
expressions for the transfer functions (e. g., reflection transfer function
Y(z)/M(z)) are not available. Those transfer functions must be computed
from a set of equations which are solved in a recursive manner. Additionally,
those transfer functions appear to be limited by the equal one-way travel
time assumption (Refs. 2-4 , for example) and, they appear to only have

been published for the case of source and sensor at the surface (Figure la).
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In this paper we develop state space models for both cases depicted
in Figure 1. The case of source and sensor at the surface is treated in
Section II, whereas the case of source and sensor in the first layer is
treated in Section III. Our state equations turn out to be continuous-time
equations with multiple time delays, and, are referred to as causal

functional equations. There does not appear to be any literature on this

class of equations; hence, we also describe some of their more important
properties and two methods for their computer simulation in Section II. A
connection between our state space model and transfer function models is
also given in that section. In Section III we distinguish between the cases
when the sensor is either above or below the source and develop models
for both cases.

Some of the material which we discuss in Section II was first

presented in Refs. 11, 12, and 13,




II. ASTATE EQUATION MODEL: SOURCE AND SENSOR
AT THE SURFACE

A. State and State Space

The starting point for our developments is the assumption that wave
motion in each layer is characterized by two signals traveling in opposite
directions. This assumption is a consequence of the lossless wave equation.
Symbols uk(t) and dk(t) denote the upgoing and downgoing waves in the kth
layer, respectively (Figure 2). We shall refer to uk(t) and dk(t) as states.

Since the notions of states and state space may be new to many
Geophysics readers, we give a brief review of them next. Our discussions
paraphrase those in Refs. 9 and 10.

The state of a dynamic system at time t=t_ is the amount of infor-

0

mation at ty that, together with the inputs defined for all values of t> to,

determines uniquely the behavior of the system for all tZto'
For our layered media system, depicted in Figure 1, the states

consist of a finite number of variables, ul(t). dl(t) uz(t), dz(t), SO u.K(t),

and dlét)' The state of our system can then be represented by a column

vector x called the state vector, whose dimension is 2ZKx1. The components

of x are called state variables; hence, ul(t), dl(t), “ ulét). and dK(t) are

state variables. Because our input m(t) is real-valued and our state vector
is finite dimensional our state space, which is defined as a 2K-dimensional
space in which ul(t), dl(t)' s uK(t).dK(t) are coordinates, is the familiar
finite-dimensional real vector space. The state at time t of our system will

be defined by 2K equations and can then be represented by a point in

2K-dimensional state space.
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A set of state variables can be associated with a given system in
many ways. In other words there exist a number of different sets of state
variables for a given system for a given input set. Which of these is most
relevant depends on the individual situation, that is, the nature of the
problem, the nature of the input set, etc. We have chosen upgoing and
downgoing signals in each layer to be state variables since these variables
are most frequently used by geophysicists and also seem to be the most
natural ones to use based on wave equation theory.

By a state space model we mean the set of equations that describe

the unique relations between the input, output, and state. It is comprised

of a state equation and an output equation. The state equation governs the

behavior of the state vector, x. For continuous-time dynamical systems it

is usually a differential equation, whereas for discrete-time dynamical
systems it is usually a difference equation, The output equation relates the
output (or, outputs) to the state vector and input. An example of a continuous-
time output equation is y(t) = h'x(t) + m(t). In this equation ( )' denotes

the transpose of ( ).

B. Interface Equations

The starting point for derivation of our state space model is the
Figure 3 ray diagram. As in Refs. 2 and 3, we shall find it convenient to
draw ray diagrams with time displacement along the horizontal axis, so that
rays appear to be at non-normal incidence and so do not overlap one another.
Symbols u,_ and d! denote the upgoing and downgoing waves in the kth layer,

|3 k

respectively; and, we adopt the convention that waves at the top of a layer




occur at present time t. Our initial development is in terms of u, and d{(.

k

In Paragraph C we will find it more convenient to work with u, and dk.

k

From Figures 2 and 3 we see thatd %

is just a time delayed version of dk

k
: =d'(¢-
i.e., d](t)-d (t 'r] ).

As stated by Robinson (Ref. 3), ''the solution of the wave equation

at each interface leads to the definition of a reflection coefficient rj

associated with that interface. ... the reflection coefficient rj, which must

satisfy |rj|< 1, has these properties. A downgoing wave of amplitude A in

layer j, upon striking interface j, is both reflected and transmitted. The
reflected portion is an upgoing wave of amplitude rjA in layer j, so rJ.

represents the reflection coefficient. The transmitted portion is a down-

going wave of amplitude (1+rj)A in layer j+1, so 1+rJ. represents the

transmission coefficient. An upgoing wave of amplitude B in layer j+l is

both reflected and transmitted when it strikes interface j. The reflected
portion is a downgoing wave of amplitude -er in layer j+1, and the

transmitted portion is an upgoing wave of amplitude (l-rj)B. Hence -rj

and (l-rj) represent, respectively, the reflection coefficient and trans-
mission coefficient for the upgoing wave. These properties are summarized

in Table 1 (2)."




Table 1. Reflected and Transmitted Portions

Reflected Transmitted
Portion Portion
Downgoing wave Upgoing wave Downgoing wave
A rjA (1+ rj )JA
in layer j in layer j in layer j+l
Upgoing wave Downgoing wave Upgoing wave
B -er (l-r.)B
: y : . : gy el
in layer j+l in layer j+1 in layer j

Waveform uk(t+ 'rk) (Figure 3) is made up of two parts, namely the part due
to the reflected portion of di((t- 'rk) and the part due to the transmitted

portion of u (t). It satisfies the equation

k+l

uk(t+'rk) = rkdk(t-Tk) + (l-rk)uk+l(t). (1)
In a similar manner, waveform dléﬂ(t) satisfies the equation
! = '(t- -
dk+l(t) (1+rk)dk(t 'rk) rkuk+1(t). (2)

We refer to Eqs. (1) and (2) as the interface equations. These equations

are the starting point for transfer function models, which are very popular

in the Geophysics literature (Ref. 2), and, they are also our starting point,

C. A State Space Model

A state space model for our K layer media system is obtained
directly from Eqs. (1) and (2), which are applicable at interfaces 1 through
K-1 (i.e., for k=1,2,...,K-1), and comparable equations at the surface
and Kth interface. At the surface (Figure 4a), we obtain

Y(t) - rom(t) +‘(1°l‘0) ul(t) (3)

d'l(t) = (l+ro)m(t) - roul(t) (4)




and, at the Kth interface we assume that uK+1(t) =0 to obtain (Figure 4b)

uK(t+‘rK) = rde(t-‘rK) (5)

die () = (1+rp)ap (t-7.) (6)

Signal y(t) in Eq. (3) is the measurable system output; hence, Eq. (3) is the
output equation., Signal di(+l(t) is also a system output; but, since it cannot
be measured, we shall ignore it in following analyses.
It is convenient to group Eqs. (1), (2), (4), and (5) in a layer

ordering. as follows.

d'l(t) = - roul(t) + ( 1+r0) m(t)

ul(t+'r1) = rld'l(t-'rl) + (l-rl)uz(t)

dJ'.(t) = (1+rj_l)d3_l(t-'rj_l) - rj_luj(t) o R
uj(t+'rj) = rde!(t-'rj) +(l-rj)uj+1(t)
di{(t) = (1+rK_1)di{_1(t-TK_l) - rK_luK(t)

uplthr ) = rodi(t-T). (7)
This system of 2K equations is not in a useful state equation format, yet,
since signals in its left-hand side occur at t and delayed times, and signals
on the right-hand side occur at t, t—'rj_l and t-'rj. In order to put Eq. (7)

into a useful state equation format, let

4 4'(t-r. 8
dj(t) 4 J('c TJ) (8)

for all j=1,2,..., K. Observe, from Figs. 3 and 2, that the downgoing

states dj(t) occur at the bottom of a layer., Equation (7) becomes




dl(t+71) = -roul(t)+(l+ro)m(t)
ul(t+1'1) = rldl(t)+ (l-rl)uz(t)
d.(t+7.)=(Ltr,
J( +TJ) ( Fie

1)dj_l(t)-rj_luj(t)

152, 3,0 00y K=1
uj(t+ 'rj) = rjdj(t) F( 1 -rj)ujH(t)
dK(t+‘rK) = (l+rK_l)dK_l(t) - rK_luK(t)
uK(t+'rK) = rKdK(t) (9)

By means of transformation (8) each pair of equations in (7) now only involves
two time points, t+ Tj and t. Equations (9) and (3) together represent a state
space model which we refer to as the layer-ordered (L-O) model in the
sequel.

In order to complete the description of our state space model we

must specify initial condition information. The situation of interest is the one

for which all states have zero values prior to application of input m(t).

Consider the kth layer (Figure 2). Then dk{t) is equal to zero until t =

m - T + o 0 o + Z'v'k. These facts are true for all k=1,2,...,K; i.e.,
J
d(t) =0 ‘v’te[O, z 'ri) (10a)
i=1
and
J
u(t) =0 vte[o, Z_} ri+¢j) (10b)
i=1
where j=1,2,..., K.
As an example consider a two layer system for which Eq. (9)
becomes:

10
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dl(t+'rl) = - roul(t) +(1+r0) m(t)

ul(t+Tl) rldl(t)+(1-r1)u2(t) $ o
dZ(t+T2‘) = (l+r1)d1(t) - rluz(t)

uz(t+‘r2) = erZ(t) )

When we solve this system of equations, we must remember that dl(t) =0

until t=rl, ul(t)=0 until t=2'rl, dz(t)=0 until t=’r1+1'2, and uz(t)=0 until

=T1+ZT2.

D. Properties of the State Space Model

State Equation (9) is a dynamical equation with multiple time delays.
It is not a differential equation, nor is it a finite-difference equation. We

shall refer to it as a causal functional equation. It is linear and time-

invariant, and, as is the case with delay-time systems, requires initial
value information over initial intervals of time. We have not been able to
find any literature for causal functional equations.

Equations (9) and (3) can be expressed in more compact notation by
introducing the following 2K x 2K matrix operator*:

4 a
3 & diag(z, 2y, 25, 25,0 - (12)

ZK’ ZK)'
where z, is a scalar operator used to denote a T, sec. time delay

(ie., zf(t) = £(t-7.)). Let

_)S(t) - col(ul(t), dl(t), uz(t)v dz(t)n b 4 uK(t)v dK(t)) H (13)

o
This idea was first suggested to us by Mr. Michael Steinberger, a former
graduate student in the Electrical Engineering Department, at the
University of Southern California.

11




then, Eqs. (9) and (3) can be written, as
3 Tx(t) = Axt) + bm(t) (14)
y(t) = c'x(t) + rorn(t) (15)
where the explicit structures of A, E and € can be deduced directly from the
former equations. Because we do not need this information here, we do
not give explicit A, b, and ¢ structures here for Eqs. (14) and (15) [see
Ref. 12 for such structures for different orderings of the states in _:_:_(t)].

From Egs. (14) and (15) we see that

x(t) = (3 ' -4)  bmit) (16)

and

y®) = ('@ -a) bt e Im(t) (17)

These equations provide us (conceptually, at least) with the solution of the
state equation and with the output as a function of the input.

The reflection transfer function of the K layer media system is

obtained from the Laplace transform of Eq. (17), and is

Y(e) _ 8- -1
__M(S) g(} -A) E+r0 (18)

A -SsT,
where 3 is obtained from } by setting z = e .

Equation (18) suggests a straightforward way to compute y(t) for an
arbitrary m(t). First compute the system's impulse response, H(s), where
[recall that Y(s) = H(s) when M(s)=1],
H(s) = ¢'(3 '-a) b+ (19)

( < ’} - btr,
Then, convolve h(t) with m(t) to obtain y(t). Observe that the right-hand side
sB

of (19) is an infinite series each of whose terms looks like ae ~, and, that

12
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i:l{ae-ss} = o§(t-B); hence, h(t) is an infinite sequence of impulse functions.

This fact makes the convolution of h(t) and m(t) quite easy, since

m(t) * [ab(t-8)] = am(t-B) (20)
Finally, we consider the special case when il ndd s b TK 41, in

which case 3 = zI, where z denotes the T sec. time delay and I is the
2K x 2K identity matrix. In this case Eq. (14) can be written as

x(t+T) = A_)E(t)+2m(t) (21)
Let us choose t=kT and assume that m(t) only has values at t=kT, in which
case Eq. (21) reduces to the following vector finite-difference equation:

x[(k+1)7t] = Ax(kT) + bm(kT) (22)
In this special case all of the usual techniques (Ref. 10, for example)
associated with such equations can be used to solve for x(k), after which we
can compute y(kt) from the following sampled version of Eq. (15):

y(kt) = c'x(kT) +r0m(k'r) (23)
We do not choose to follow this uniform travel time/sampled data path,

because these assumptions seem too restrictive.

E. Computational Solutions

In this paragraph we briefly describe two computational methods
for practical computer solution of our state space model in Eqs. (9), (10),
and (3). More detailed descriptions of both methods are given in Ref. 13.

Our first method is a ray tracing technique in which we define

mapping rules to track how a state propagates at an interface. The rules
are obtained by observing, in Eq. (9), what happens to downgoing or upgoing
states and are illustrated for downgoing states in Figure 5. The complete

set of mapping rules are:




r,m(t) + y(t) j=0
d. " At+T. il e 28
J(t) rJdJ(t) -+ uJ( TJ) J K (28)
(1+rj)dj(t) - dj+1(t+'1'j+l) j=0,...,K-1
(1-ro)ul(t) - y(t) j=1
uj(t) (l-rj_l)uj(t) - uj_l(t+'rj_l) 1=2,% oo g K (29)
-rj_luj(t) - dj(t+7j) =L, ..., K

In order to use Eqs. (28) and (29) we create a state reference table.

Each element of the states in this table, called an event, is characterized by

its time of occurrence and amplitude. Our ray tracing procedure is based on

the observation that, at an interface, an incoming signal branches into
reflected and transmitted signals. Every time such a branching occurs we
have two event points along the time axis which are stored in the state
reference table. We search along the time axis for a time at which an event
has occurred. At that time point we map all dj and uj states which change
(there are only two such states) via Eqs. (28) and (29). As each event
branches into two new events, the table grows geometrically. We proceed
along the time axis looking up values of dj and uj at event points, until we
have covered the domain of interest. To restrict the growth of the table,
we use two tolerance parameters, AMIN and §T, and collapse events that
occur at the same time point before we store them back into the table.
Parameter AMIN controls the amplitude of the computed event. If that
amplitude is less than AMIN, it is set to zero. Parameter 8T controls the
time separation of two events below which they are considered to occur at
the same time.

14




Our second method is a discretization technique in which we convert

Eq. (9) into standard finite-difference equations by discretization of time.
Since the one-way travel times are in general non-uniform and not a multiple of one
another, we have to choose a very small time interval, A, for discretization.
We choose A as the greatest common factor of the one-way travel times, such
that 'rj=ij (j=1,2,...,K) where kj is a positive integer. Discretization is
equivalent to dividing a layer into equal sub-layers and inserting interfaces
whose reflection coefficients are zero. We illustrate the discretization and
labeling of intermediate states for a layer where Tj =4A in Figure 6. The
facts that the intermediate downgoing states 61(t), 62(t), and 63(t) equal
dj(t+A), dj(t+ 24), and dj(t+ 3A), respectively, and the intermediate upgoing
states ul(t), uz(t), and u3(t) equal uj(t+A), uj(t+2A), and uj(t+3A), respec-
tively, are a direct consequence of the equations written at interfaces a, b,
and c. Those interface equations use the fact that the intermediate reflection

coefficients are zero.

By the discretization technique each layer, say the jth, expands to kj
layers, and each of the kj layers is described by two states: hence, the
dimension of the state vector for the discretized system is Z_Z k.« The

i=l
easiest way to obtain the discrete-time state equations for the expanded

system is to imagine that our earlier state equation derivation, which was
for the system in Figure la, is for that same system; but, now each of
the K layers is fur%{her partitioned into kj layers, so that Figure la is

now a system of Z_Z ki layers, each of uniform one-way travel time,

A. Of course, ma.ln—; of the layers have zero reflection coefficients at

respective interfaces, The discrete-time counterparts to Equations

(9) and (3), for the expanded system, are:

15




dl(kA +8) = ul(kA) + (1 + ro)m(kA)

-ro
ul(kA +A) = rldl(kA) + (l-rl)uz(kA)

dj(kA +4) = L rj_l)dj_l(kA)-rj_luj(kA)

122,15, dos o=l

uj(kA +4) = rjdj(kA) + “'rj)ujﬂ(kA)

dL(kA +A) = (14 rLul)dL-l(kA)-rL-luL{kA)

uL(kA +4) = rLdL(kA) (30)
and

y(ka) = rom(kA) +(l-r0)u1(kA) (31)
where K

L = 2; K, (32)
The non-zera reflect.ion coefficients are Ty rkl, rkl + kZ’ eees T All

other reflection coefficients are zero.

Equation (30) is solved in an iterative manner, for k=0,1,2,... .
Usual matrix methods for obtaining this solution (Ref, 10, for example)
are terribly inefficient, due to the large value L will usually have (matrix
multiplications), and the many zero reflection coefficients (the transition
matrix for (30) is sparse) which are present. The ray-tracing technique
applied to Eqs. (30) and (31} is much more efficient. That technique is
much simpler in the present discrete-time case because we do not have
to search along the time axis for a time at which an event has occurred.

Events occur every A units of time,

The discrete method is simple, easy to implement and recursive;
however, due to the non-uniform nature of the delay-terms, we have to use
a A small enough such that it is a submultiple of all the delay terms. The
storage requirement is usually not excessive. However, we compute zero
for a lot of points on the time axis where no events occur. Thus the CPU

time may be larger than for the ray-tracing technique.

16




The ray-tracing technique requires a slightly more complex program
to implement it. Its major disadvantage is the large storage requirement
for the state reference table. Since this technique computes only the actual
event points, it is very efficient and fast for short observation times.

The actual choice of a particular method depends on the input data

set.

F. Recursive Reflection Transfer Function Relationship

We conclude this section by making a connection between our state
space model in Egqs. (9) and (3) and transfer function models; however, our
connection will be made for systems with non-equal one-way travel time.

For a K-layer media system, states uj(t) and dJ.(t) have been defined

at the top and at the bottom, respectively, of the jth layer (see Fig. 2). Let

Rj(s) denote the transfer function between uj and dj at the jth interface; i.e.,

Liu.(t+r.)) sT. U.(s)
R.(s) = R N (33)
j K dj(t)} D,(s)

When j=0, we obtain the reflection transfer function between output y(t) and

source m(t); i.e.,

s'ro Uo(s) Y(s)

Do(s) = M(s) '’

Ro(s) = e (34)

since 'ro= 0.

We shall now develop a simple recursive relationship between Rj(s)

and Rj+1(l). Consider our earlier state equations for uj and dj+1:

17
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uj(t+‘rj) = rjdj(t) + (l-rj)uj+1(t) (35)

= £ 36
J+l(t+‘1‘ +1) (l+rj)dj(t) r uj+l(t) : (39)
From the Laplace transform of Eq. (35), we find
R(s)=r.+(l-r.)U., .(s)/D.(s
J( ) f ( J) J“( ) J( ) (37)

Laplace transform Eq. (36) and solve for Dj(s), to show that

8T.
D(s) = [, U;, (s) +e My (01142 (38)
j+l j

Substitute Eq. (38) into Eq. (37), and re-arrange some terms in the resulting

expression to see that

(s)
Ry(s) = B ML i=K-1, K2, .01, 0 (39)

2
1+ rjzj+1Rj+1(s)

which is the desired result.

Equation (39) can be used to compute the output of a K-layer media
system in a recursive manner, beginning with a one layer system (i. e., one
layer on top of a basement layer) for which we set j=K-1. We then iterate
Eq. (39) backwards, setting j=K-2,K-3,...,1,0. Inorder to compute
RK-l(s) we need RK(s); but, RK(s) can be obtained directly from the very

last state equation in (9), uK(t+ TK) = (t), as

KK

R (s) = (40)

e
In the special, but widely studied case of equal travel times, Eqs. (39)

and (40) simplify to

18
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2
r.+z Rj+l(s)

R.(s) = o =K1, K-2,...,1,0 (41)

1+ tjz Rj+l(s)

RK(s) = rK

-8T p y . . - .
where z=e Equation (41) (or its discrete-time counterpart, in which

Laplace transfer functions are replaced by z-transform transfer functions)
is a well-known result which can be derived by widely different methods
(Refs. 5 and 7, for example). Additionally, these recursive relationships
occur (Ref. 14) in electric kernal functions, magnetotelluric input impedance

functions, and electromagnetic modified kernal functions.

That Eq. (41) generalizes to Eq. (39) for non-equal travel times is

Lbelieved to be a new result.
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III. A STATE EQUATION MODEL: SOURCE AND SENSOR IN FIRST LAYER

In this section we present a state space model for which source and
sensor are located in the first layer. Such a model is most important for
the case of a marine environment, We shall consider the two situations
depicted in Figure 7.

One approach for obtaining the state and output equations is to redo
our Section II. C development in which we now include the source and
sensor in the first layer., The resulting state equations are somewhat
different from Eq. (9) in that the source m(t) will appear in the dl’ u,
and d2 state equations, since m(t) affects interfaces 0 and 1,

A second approach, the one we shall take, is one in which we bring
m(t) to the surface so that we can use our Section II. C state equations

directly. By this artifice, we will reduce the derivation of the state

equations for source in the first layer to a problem which has already
been solved,

Observe, in Figure 8, that there are two ''real' rays associated
with m(t). Ray (1) represents m(t) as it goes directly down into the rest
of the system, whereas ray (2) represents m(t) which reflects off the surface
interface and then goes back down into the system (i.e., the ghost). The
dashed ray is "imaginary'; i.e., it is needed for construction purposes
only, to bring the component of m(t) along ray (1) up to the surface.

Let 1
me(t) = '{1—+;0T [m(t + ",'a) - rom(t-‘ra)] (42)

At the surface (Figure 9), we now obtain the following state equation for dl:
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dl(t +7 = —roul(t) + (1 + ro)me(t) (43)

!
or

dl(t + T = -roul(t) + m(t + Ta) - m(t - Ta) (44)

Y
With m(t) brought to the surface, all other state equations are exactly

the same as in Eq. (9); hence, the complete set of state equations for a

source in the first layer is Eq. (9) where m(t) is replaced blme(t)_. The

following initial conditions, which make use of the fact that one component
[m(t + ‘Ta)] of the equivalent surface source, me(t), occurs prior to time

zero, should be used:

= . = \
dit) = 0¥te fo, 7, -T = 7))
d,(t) = ovte [0, 1_++,)
2 ¥ 2 S (45a)
dK(t)=0Vte[O,TC+TZ+---+’VK)1 \_
u(t) = 0Vte [0, 2ry-1, =T 4T
Wit = O¥VES |0, T 42r,)
. i “ (45b)
u(t)= 0Vte (o, ToFTy b e v dm, ( +270)
/
Now for the sensor equations, which are a bit trickier than the state
equations because of the ''imaginary' ray path. Consider the case where
the sensor is below m(t) (Figure 10a). In this case, the rays which are
used to bring m(t) to the surface do not pass through the sensor: hence,
(46)

yb(t) = ul(t + Td) + dl(t + Tb)

When the sensor is above the source (Figure 10b) both construction

rays pass through the sensor, and




t) = . - - - -
ya( ) Ut +rg) +dt +T) +mt - (T - T, ) -m(t + (r,=T4) (47)

The term m(t - (‘ra - ‘rd)) is due to ''real' ray (2), which really passes
through the sensor, but will not be part of the first two state terms in
Eq. (47), since they are due to inputs at the surface. When the surface
input m(t + Ta)/(l + r,) travels along the "imaginary'' ray on its way back
down into the system, it registers the component (1 + ro)m(t t y -rd)/(l + ro)
at the sensor. Because this is an imaginary (j.e., non-existent) component,
it must be removed from the sersed signal; hence, the appearance of
-m(t + (‘Ta - 'rd)) in Eq. (47).

Figure 11 depicts m(t) and me(t) for rg = 1 and 6 different values of
Ta’ ranging from s ? 1 msec to L 6 msec. If the velocity in the first
layer is 5,000 ft/sec then this range of = values corresponds to source
depths ranging from 50 ft to 300 ft. Observe that the most spike-like input
occurs for T 1l msec., As Ta increases, me(t) becomes larger in amplitude
and more oscillatory, and eventually for Ta = 5 msec and 6 msec, distortion
sets in the early portion of me(t).

The right-hand side of the d1 state equatian in Eq. (44) suggests that
our system with its equivalent surface input is non-causal; but, this is not so.

We can solve Eq. (44) for dl(t)’ as

dl(t) = -roul(t - Tl) - rom(t - "‘a - q-l) + m(t + P Tl); (48)

but, Tq = ?a = ‘fc, so that
dl(t) = -roul(t - "'1) - rom(t ok N ‘Y'l) + m(t - Tc) (49)

We observe that m(t) occurs to the right of zero, which confirms the

causality of our state equations.




Our subsurface source and sensor model can be simulated by either
of the two methods described in Section II - E. The mapping rules for the
ray tracing technique are similar to those in Eqs, (28) and (29); but, for
the present case me(t) replaces m(t)., In the discretization technique A

must now be chosen as the greatest common factor of Tl' Tosee and,

o TK'
Tar Ty T and Tqe Im the latter technique, we first compute the system's
pulse response, then compute ul(t) and dl(t) via convolution between me(t)
and the pulse response, and finally compute ya(t) or yb(t) by delaying ul(t)
and dl(t) according to Eqs. (46) and (47), respectively.

The impulse response for a three-layer system is depicted in Figure
12 for the case of a fixed sensor ('rd = 0.08 sec) and varying source locations

(r. =.02, ,04, and .06 sec). The system parameters are: = 1. 00,

a
¥ @ 0.54, r, = 0.34, r

Yo

= 0,12, T = 0.4, Ty = 0.125, and 7., = 0,107 sec.

3 1 3
As the source approaches the sensor the ghost reflections take longer to
reach the sensor (see spacing of first two pulses) and many of the multiples

from the two source components seem to be getting closer to one another.




IV. CONCLUSIONS

We have developed state space models for lossless layered media
which are described by the wave equation and boundary conditigns. Our
models are for non-equal one-way travel times, and are therefore more
general than traditional transfer function models, which are usually for |
layers of equal one-way travel times. Our state space models represent a
new class of equations, which we call causal functional equations. These
equations are linear, time-invariant, continuous-time equations with multiple
time delays. The impulse response of our system is a sequence of unequally
spaced impulse functions.

We have developed our state space models for two cases: (1) source
and sensor at the surface and (2) source and sensor in the first layer. These
models can be used either to generate synthetic seismograms or to develop
inverse procedures for extracting reflection coefficients or reflection
coefficients and one-way travel times. Some recent work on the extraction
of reflection coefficients for source and sensor at the surface, but from
noisy data is given in Ref. 15. The extension of the Ref. 15 results to the
important case of source and sensor in the first layer is completed and will
be reported on shortly.

We also wish to point out that our state space models have led to

e ———— -~ ——————




some new theoretical results which provide us with greater understanding
of the very complicated internal behavior of a layered media system. The
first of these results (Ref. 16) is a decomposition of a seismogram into a
superposition of primaries, secondaries, tertiaries, etc. Each of the
constituents (e. g., primaries, secondaries) is obtained from a state space
model of dimension 2K. The second of these results (Ref. 17) uses this
decomposition to quantify the reinforcement phenomena that exist
within and between the constituents.

Finally, we reiterate that our ultimate objective for developing state
space models is to apply time-domain estimation and identification techniques,
which have proven to be very beneficial outside of the geophysics field, to the

layered media problem. We are presently studying such applications.
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