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NONPARANETRIC STATISTICAL DAT A SCIENCE:

A UNIFIED APPROAC H BASED ON
DENSITY ESTIMATION AND

*TESTING FOR “WHITE NOISE”

by

Emanuel Parzen

Statistical Science Division
State University of New York at Buffalo

Amherst , New York 14226

Abstract

We demonstrate how many basic statistical inference problems (including

the non-parametric one sam ple and multi-sample univariate and multivariate

inference problems as well as time series problems) can be formulated as a

hypothesis that a suitable distribution function D(u) , 0 � u � 1 satisfies

D(u) = u , 0 s: u � 1

From the data one can construct a raw estimator D(u) of D(u) , which

has the property that asymptotically (as the sample size tends to ~
) , under the nuU

hypothesis that D(u) = u , o/~~ [D(u) 
- u3 , 0 � u � 1 , is a Brownian brid ge

stochastic process. A conventional statistical approach would be : test the

hypothesis D(u) = u by examining the significance of the deviation from

zero of various functionals of D(u) - u

The time series theoretic approach is to consider the density

d(u) = D’(u) , 0 � u � 1 , and the Fourier Stieltjes transform

*Research supported by the Army Research Office (Grant DA AC29-76-G-0239)
and by the State University of New York at Buffalo (sabbatical leave).
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1
cp(v) = j

~ 
c
2
~~
”dD(u) , v = 0, ± 1,...

0

and to estimate them. Raw estimators are given by d(u) D’(u) , and

~ (v) = ~~~~
2Ui

~~d~ () , 
- 

v 0, ± 1,...

Usua l l y d ( u )  is a very wigg ly curve ; one then seeks a smooth cLrve d (t )

which is a good (or “best ”) est imator of d ( t )

To test whether D(u) = u , 0 � u � 1 , one could test equivalently

whether cp(v) 0 for v ~ 0 (for example , by plotting 
~p(v)l

2 as a

function of v 1,2,... and determining if any of them are significantly

different from zero) or whether d(u) = 1 , 0 � u � I (for examp le , by

determining if the divergence of the smoothed density

,. 1,.
= J [d(u) - 1) log d(u) du

0

is significantly different from zero).

A method of estimating d(t) without making any prior assumptions about

its behavior can be obtained using a time series prediction theoretic auto-

regressive approach. The “ time series iden t i f i ca t ion”  problem is to determine

if there exists a differc~nce equation of suitable order m which the sequence

cp(v) satisfies:

cp(v) + a
1
ep (v- 1) + ... + am cp(v

~~
m) 0 , v = 1,2 , . . .
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where a ~ 0 . Then to test whether D(u) = u , 0 � u ~ 1 , one could test

whether m 0 . I call the problem of estimat ing in the problem of order

determination of an approximating autoregressive scheme. I propose a function

of in (called CAT (m) , for criterion autoregressive transfer function)

which can be computed from the data and is used to estimate the best order m

as follows; take m to be the value nj at which CAT (m) achieves its

minimum value . When rn 0 we could accept the hypothesis that D(u) = u

or equivalently d(u) = I ; when in > 0 the value of rn is used to form the

‘bptimuni” smooth estimator d(u) of d(t)

When testing the fit of a model it seems desirable to use a test which

indicates how to fix the model when it is found not to fit. To adapt an

aphorism , such a model-testing procedure is said to have “the seeds of its

own construction (rather than only destruction). ”

Preface.

The typical problem facing the applied statistician (the applied statistics

problem?) has been described (Easterli ng (1976)] as follows : “given some data ,

including information about how the data were obtained , what probability model(s),

including parameter values, can be found which adequately explain , or describe ,

the data?”

I would call the foregoing a statistical science problem , and would

describe it succintly to be: “model probabilities from data.” A routine

applied statistics problem could be formulated : “infer parameters of proba-

bility laws from data.” Statistid~ans might not disagree that the aim of

statistics should be to model probabilities by identifying (rather than
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assuming) their probability laws but they mi ght doub t whether such an aim

can be realized in practice, especially with small samples.

The aim of this paper is to propose an approach to non-parametric

statistical continuous data science which seems to be consistent with the

conventional theories and methods of non-parametric inference but seems to

point the way to universally applicable procedures (for continuous data) which

are asymptotically as efficient as the best conventional goodness of fit and

parameter estimation procedures available for each particular problem. We

have programmed the methods described and found them successful in test eases.

However , in the space available to this paper we are only able to discuss (with-

out proofs or examples) “Chapter 1” of our work which outlines the “ideas”

how the basic general applied problems of statistical inference can be formu-

lated as problems of estimation of distribution functions on the unit interval

(or the unit hyper-cube), how such problems are more fruitfully treated as

density estimation problems, and how to solve density estimation problems

one can use the method which is the essence of the highly successful maximum

likelihood method of parameter estimation : using a suitable information-

theoretic divergence distance between densities , find the “smooth” densi ty

which is closest to a “raw ” estimator of the density .
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Chapter 1

DENSITY ESTIMATION FORMULATION OF BASIC STATISTICAL
INFERENCE PROBLEMS -

The aim of this chapter is to introduce a single canonical problem to

which one can transform many basic statistical inference and statistical

data analysis problems. This canonical problem is most simply described as

the problem of testing for white noise via density estimatiorL or smoothing.

We first state some of the inference problems which we seek to unify.

One-sample (univariate) inference problems. Let X1,. .. ,X be i .i.d.

(independe nt identically distributed) random variables with common a.c.

(absolutely continuous) d .f. (distribution fun ction) F(x) and probability

density function f(x) . One seeks to efficiently:

(i) estimate f(x) non-parametrically (w ithout making any prior

assumption about its functional form)

(ii) test for a specified probability density f
0
(x) whether there

exists constants and a such that

f(x) = ~ f 0(~ —~ ) , F(x) F
0(~
—~)

(iii) estimate the parameters ~.i and a (called location and scale

parameters).

Two-sample (~znivariate) inference problems. Let X1,... ,X be i.i.d.

with common a.c. d.f. F(x) and let Y1,. .. ,Y be i.i .d. with common a.c.

d.f . G(x) . One seeks to efficiently :
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(i) test whether there exists constants ~j and a such that

C(x) =

(ii) estimate ~t and a

One-sample multivariate inference problems. Let

ç d )

be a random vector with absolutely continuous multivariate distribution

function F(x1,. . . ,Xd ) and density f(x1,... ,xd) ; let Xi,... ,X be a

ra ndom samp le. One seeks to efficiently:

(i) test whether the components X1,... ,X~ are independent random

variables ,

(ii) estimate the multivariate density f

(iii) estimate the regression function

~ (x1,.. .,xd l ) = E(XâIX 1 = x1,... ~~~~ Xd l ]

In add ition , there are multi-samp le univariate inference prob lems and

multi-sample multivariate inference problems concerned with the equality of

many distributions; however , they are rut discussed in this paper.

A CANONICAL PROBLEM (OF DENSITY ESTIMATION AND TESTING FOR CONSTANT

DENSITY): One seeks to form, from “raw” estimators D(u) , d(u) , cp(v) ,

“optimal” estimators D(u) , d(u) , cp(v) of unknown functions D(u) , d(u) 

--~
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C~(v) where (1) D(u) , 0 � u � I , is an absolutely continuous distribution

- 
function on the unit interva l satisfying D(O) = 0 , D(l) 1

(ii) d(u) = D’(u) is its densi ty function satisfying log d(u) and

d ’(u) are integrable functions on 0 ~ u < 1 ; (iii) c~(v) is the Fourier-

Stieltjes transform

9(v) ~
‘
e
2
~~~~~dD(u)

satisf ying conditions such as ~ ~~
p (v)

I 
<~~ and more generally for some

r -~~0 
~~~~~~~~ 

~
V
~~~~~~~(V)1

2 
<~~ .

One often defines D(u) , d(u) , ;~(v)  so that a “null” hypothesis is

equivalent to “white noise” in the sense that the null  hypothesis is equiva-

lent  to the following three equivalent conditions :

D(u)~~= u  , O~~~ u � l

d(u) 1. , 0 � u � 1

9(v) O for v~~~O

The raw estimators are usually obtained in practice by forming first

either D(u) or cp(v) . Then the other is formed to satisfy

9(v) = S

1
e
2
~~~~~d~~ tl

A CANONICAL SOLUTION (OF DENSITY ESTiMATION AND TESTING FOR A CONSTANT

DENSITY): Often from the observed data one can form a number N of values
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d . where j = 0 ,1, . . .  ,N -  1 which represent the jumps at the points j/N in

- 
the unit interval 0 s u ~ I of a raw distribution function D(u) , 0 � u ~ 1 .

The Fourier transform 9(v) can then he found by

N- i
p~~~~~~) = ~ d . exp (2Ttivj~)

j =0 ~

Based on cp(~~) one computes a criterion (cal led CAT) which determines smooth

e s t i m a t o r s  d(u) , D(u) , 9(v)

Convent ional statistical methods test the null hypo thesis H
0 
: D(u) = u

by examining the deviations from zero of D(u) - u or z,~(v) . We accep t H
0

if d(u) I or if d (t) is not significantly different from zero using the

d ivergence

1 A a

= j’ ~d(u )  - l~ log d(u)  du
0

otherwise d(t) provides an estimator of d(t)

The aim of this paper is to show how to formulate diverse statistical

questions so that their answer is provided by the foregoing “solution. ”

New parameter estimation criteria (which generate old familiar estima-

tors in cases where they should) can be formulated using the above structure.

In parametric inference one assumes a fanily of possible probability laws

specif ied by probab i l ity densi ty functions f(x ,0) indexed by a parameter

~ ; to each 9 one can de termine a corresponding densi ty d
9
(u) , 0 � u � 1

where the subscript 9 indicates that it is a function of the parameter 9

k. - ---~~----- - - -~- ---- ~~ - --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Define the (raw) information divergence [compare Kuliback (1958)1

1
J (e)  = 

S 
- log d

0
( u ) d D ( u )

0

The proposed e s t ima to r  of 9 (called a min imum d i y~~~~~nce e s t i m a t or )  is the
A

value 9 at which J(-~) achieves its minimum value. Maximum likelihood

estimators 9 of a parameter 9 frun a random sample can be def ined  as the

values minimizing a criterion of similar form , name ly

L(9) - log f(x,9) dF (x) = 

~ 

log f(X.,q)

where F (x) is the empirical distribution function. it appears plausible

that a theory of minimum divergence estimators can be developed which would

parallel t h e theory of maximum likelihood estimators (including robustness

considerations , which correspond to integrating log d~ (u) over a sub-interva l

c � u ~c 1 -~~ ).

Another criterion useful for forming parametric estimators from densities

defined over the unit interval is: choose 9 to minimize

1 1
H(9) = 

5 
log d

e
(u) du + 

5 
[d

0
( u ))  

1 
d D ( u )

0 0

IThen app lied to finite parametric normal stationary time series models , this

criterion generates asymptotically efficient estimators.

When criteria yield equivalent results, we should suspec t that they are

calculating essentially the same thing ; I believe one can show this to be the
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- 
case here in the sense that log likelihood of the “sufficient statistics” is

a s y m p t o t i c a l ly (and up to a constant multip lier) equal to J (9 )  in the two

sample and i nu l t i var i a t e  cases , and equal to [1(9) in the one univariate

sample and univar ia te  time series cases.

The non-paramet r i c  es t imators  d ( u )  which we propose for d ( u )

are called autoregressive e s t ima to r s ;  they are approximators  to d ( u )

expressed in terms of a paraff ~~t ric  family  of dens i t ies  d
9

(u)  of the form

d
9
(u) o~l l  + ~1e

2U
~
u 
+ .. +

for parameters m ,o
2
,a1,...,ct to be estimated. Autoregressive estimators

are easily evaluated at all u in 0 s u � 1 , and easi ly provide est imator s

of derivatives and integrals of the density d(u)

1. One Sample StatisticaIj~ fereflCe

To identify the continuous distribution function F(x) of a random

samp le X
1
,... ,X~ one should form first the EDF (empirical distribution

function)

F~(x) = 

~ j =l 
e(x - x~) - <x <~~~~

where
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e(x) = I if x � O

0 if x< 0

In  other words , Fn (X) is the f r a c t i o n  pf observat ions less than or equal

to x . The inverse distribution function F~~(u) (also called the qua-ntile

function, in which case it is denoted Q(u)) of F(x) is defined by

Q(u)  = F 1(u) inf [x : F(x) � u~ , 0 � u � 1

The quantile function has the basic property FQ(u) = u . The EQF (empir ica l

~~~ntile function) is defined by

F~~~(u) = inf [x : F (x) � u) , 0 � u � 1

We show that ~~~t provides a powerful approach to test the hypothesis

H
0 

F(x) = F0(~-~-~ ) for some real ~i and a > 0 where F
0
(•) is a

specified distribution function and [1 and ci are unknown parameters

(ultimatel y to be estimated). In terms of quantile functions one can express

H0 as follows:

11o : Q(u) ~i + aQ
0
(u) for some real pa and a> 0

To prove this formula for Q(u)  , write x = Q(u)  i ff  F(x) = u 1ff F
0Q~

-~
i
~)= u

j f f  ~~~~~~~~~~~ = Q0
(u)
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The ex i s t ence  of the derivative f(x) of F(x) implies the existence

of the derivative , denoted q(u) , of Q( u) . Further F~Q(u) ) u implies

f~Q(u)) q(u) 1

We call  q (u )  the guantile-density function and introduce the density-

~~~~~~~~~ function

fQ(u) f(Q(u))

For any p in O < p < l  and u in O<u .(l

Q(u) - Q(p) = 
5 q( s )  ds
p

Therefore the hypothesis is equivalent to the hypothesis H~ defined in

terms of quantile-density functions or density-quantile functions :

q(u) = a q
0
(u) for some ci > 0

or

fQ(u) ~ f0
Q
0
(u) for some ci > 0

The concepts are now all assembled to show how to formulate the classic

goodness of fit problem (testing H,
0) 

as a density estimation problem.
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Define

— 
u u f

0Q0
(s)

D(u) j’ f
0Q0(s) dQ(s) 

= 

~~ fQ(s) 
ds

1 U 
1 U f

0
Q
0
(s)

D(u) 
~~

— 
5 f~Q0(s) 

dQ(s) = 
fQ(s) ds

defining

1 f
0
Q
0
(s)

fQ(s) 
ds

The null hypothes is H~ is then equivalent to 0
0 

= a , D(u) = Gu and

D(u)  = u

Natura l  “raw ” es t imators  are

D(t) = 
5 dQ~ (s)

D ( t )  ~~~ 
5 f

0Q0(s) 
dQ( s)

d e f i n i n g

= 
~ l 

f
0Q0(s) dQ (s) .

These formulas are easily computed in terms of the order statistic s

X(1) < X(2) < ... < X (~~

- - - --- - - - - ---- - -~~~~~-~~~~~~~~
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which are the values X1,. ..,X rearranged in increasing size , si nce expl icitly
- 

the EQF Q (u) is given by

Q ( u) X~0~ for u 0

for 
- 

< U  < ~~ - 
(j = I,... ,n)

= K for(n-I-l) n

where X
(0) 

XL and X
(1) 

= KU are values (which could be -
~~~ or c o)

representing our prior judgment of the lower bound and upper bound of the

probability distribut ion. Note Q (u) is a piecewise Constant function with

jumps at j/n , j = 0,1,... ,n , of size K(i÷l ) 
- X(.)

Spacings. If X1,... ,X is a random sample of a continuous random

variable X , with order statistics denoted K < X < ... < X , i ts(1) (2) (n)

spacings are defined by [compare Pyke (1972)]

q. = n(X(i+l) 
- X ( .) ) , j 0,1,... ,n -  I

where X
(0) is a suitable chosen finite number , and its modified spaciflgs

are defined by

~~~~ = f0Q0
(i.)q , j  = 0,l,...,n-l ,

where f
0Q0(u) is a specified density-quantile function . 

- -- -  -
~~

-
~~~~~~~~~~ -
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Non-parametric raw estimators of the distribution function F(x) and

quantile function Q(u) are F (x) and Q~(u) respectively. The spacing

q. is a difference quotient of Q(u) at u jfn and , therefore , can be

regarded as a raw estimator of q(u) at u = j/n . However , q. is no t

by i t s el f  a cons is tent  e s t ima to r  of . Consis tent  (and perhaps

“e f f i c i e n t ”) es t imators  of q ( u )  nan be, obtained us ing  t ime series  t h e o r e ti c

m e t h o d s .  More impor t an t l y our methods of es t imat ion of q ( u )  , and the re fo re

fQ(u)  , y ield not only their values at individual points u , bu t a l s o  various

functionals (including deriva tives and integrals) which are needed for adaptive

and robust statistical data analysis.

These methods extend readily to censored observations and subsets of

order statistics; therefore they have app lications in biometry and reliability

theory .

Our approach to solving the basic statistical inference questions

given a rand om samp le X1,.,. ,X can now be summarized as follows :

1. To non-parametically estimate the unknown probability density

function 1(x) first non-parametrically estimate the unknown density-quantile

function fQ(u) through estimating the ratio

— 
f
0
Q0(u)d( u) = 
fQ(u)

where f
0Q0

(u) is a spec ified density-quantile chosen to “guarantee” that

d(u) have various integrability properties whose necessity will arise in

the course of our theoretical development. 
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2.  To tes t whe ther a specif i ed f
0 ( )  is the t rue  p robab i l i ty  d e n s i t y

(up to locat ion  and scale parameters  pa and ci ) choose the co r r e spond ing

dens i t y-quan t ile  funct ion  f
0Q0 (u) as the fun c t i on  to bc used in forming

f rom spacings  raw e s t i m a t o r s  D ( u )  and 9(v) and t e s t s  of the  hy p o t h e s i s

t ha t  the dens i ty  d (u )  is  a cons tan t  f u n c t i o n .

3. To form e f f i c i e n t  e s tim a t o r s  p and ci of the loca t ion  and scale

p a r am e t e r s  i t  s u f f i c e s  to know (or to h ave e s t i m a t e d )  f 0Q0 (u) and Q0 (u)

s ince then  one treats the estimation as a problem of r eg re s s ion  on a continu-

ous parameter t ime ser ies  using the f a c t  that , as n -, co , the asymptot ic

d i s t r i b u t i o n  [compare Shorack (1972) ]  of

~~ fQ(u)[Q (U) - Q ( u ) ~ = ~ 10Q0 (u) [Q (u )  p - 0 Q 0 (u ) )  
-

is the Brownian br idge B(u) which is a normal zero mean stochastic process

wi th  covariance kernel  E [ B ( s )  B ( t ) ]  = rain (s,t) - st Estimators ~.t and

O are then of the usual regression analysis form [compare Parzen (1961), (1970)]

I ’
pa

= In10
1

ci Tn,cY

The information matrix Inf
0 

is defined by

< f0Q0 , f0Q0 > < f0Q0 , Q0(f
0Q0

) >
m I 0 

=

< Q0(f
0Q0) , f0Q0 > <Q0

(f
0Q0
) , Q0

(f
0Q0) >



‘7

in terms of a (reproducing kernel Hu bert space) inner product

1 1
< f ,g > = 

5 
f’(t) g’(t) dt — 5  f ”( t )  g ( t )  dt

0 0

between differentiable functions f(t) and f(t) satisfy ing f ’(O) g(O) =

f ’(l)  g ( l )  = 0 . The statistics T are linear combinations of order statis-

tics found as follows :

= < f 0Q0 . Q~ ( f
0Q0

) >

= -5 Q (t )  1
0Q0 (t )  (f

0Q0 ) ” ( t )  dt

= < Q 0~~0Q0) 
‘~~~~o

Qo) >

= Qn
( t) f

0Q0(t)[Q0
(f
0Q0))

”(t) dt

Explicitly,

= 

j~l 
x(.)[W (_) -

W~~(U) = -5 f
0Q0

( s ) ( f
0Q0
)” s) ds ~

W’(u) f
0Q0

(u) J
~ (u)

= ~ X~~~~~~ [w (i) - w0(i_ -i) 3
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W (u) 
U 

ds

W ’(u) = J
0(u) + Q0 (u) W~ (u)

The function J0 (u) is defined by

J
0

(u) = 
~~~~~

and is called the score function . It plays a basic role in the theory of non-

parametric est imation , and is most easily estimated using the fact that it is

the derivative of the density-quantile function , ra ther  th an the form ula

f~ (Q0(u)) 
f~~(F~~ (u)

3 (u) - - 
f0(Q0(u)) f0(F~~ (u)

A list of density-quantile functions and score functions of familiar

univariate continuous probability laws is given in Table I.
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2. Tests for the Equal i ty  of Two Distributions

This section introduces a density estimation approach to non-parametric

t es t s  of the hypothesis  h1~ that two independent samp les (a random sample

~~~~~~ ~
Km 

of a continuous r andom var iable X , and a random sample

,Y of a continuous rand om var iable Y ) are draw n f rom ide ntical

popula t ions  in the sense that K and Y are i d e n t i c a l ly d i s t r i b u t e d ; in

symbols ,

H0 : F
~~

(x) = F~ (x) for all x in -co < x <~~

One way to de f ine  a d i s t r i b u t i o n  f u n c t i o n  D(u)  , 0 u � 1 such that

i s  equivalent  to the hypo th ie s i s  hI~ : D ( u )  u , 0 � u ~ 1 , is to de f ine

D(u)  F
~ (Q~~(u)) or D(u )  = Fy(Q~

(u))

Such s t a t i s t i c s  remain  to be investigated . A statistic which corresponds to

cur ren t ly used tes ts  of h1~ is obtained by def in ing

11(x) 
~~~~~ 

+ (1-X) F~ (x)

where ). is the limit of —s-— , the fraction of X values in the combined
m + n

samples of X and Y values. In words , H(x) is a mix tu re  of the dis t r i -

butions of X and Y

Denote by F
~~m

(X) and F~~~ (x) the EDF of the X and Y. samples ,

and let H.L~
(x) be the EDF of the combined samples of X and Y values,
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where N = m + n . Then , defin ing XN

H
N
(x) = X

~~
F
x

(X) + (I X N
) F~~~ (x)

Since F
x

(x) = F~ (x) = H(x) under H
0 , one can tes t this  hyp othesis

by testing the uniformity of 
-

D(u) = F
~ (hl

’(u)) , 0 ~ u ~ 1

whose natural raw estimator is

D( u) = F
X (H 

1
(U))

This approach can be readily extended to testing the equality of k samples

of random variables X
1,. ..,

X.~ , if one considers for j = 1,... ,k

D.(u) F
~~~(H

’(u))

where H(x) is the distribution function of the combined sample.

-l . .Now H
N (u) is a piecewise constant distribution function whose value

in the interval (~j_L ,~] is the k-th value in the combined sample . There-

fore , for  j  = 1,... ,m- 1

— R(X
(j)
) -1 R(K( .~ 1)) -1D( t) = — for N N

R(X -l
1 for (m) 

� u < 1  

-- - —--- 
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where R(X.) is the rank of K. as a member of the  combined samp le

X 1, . . . , X , Y 1, . . . , Y . in words , D(u) is a piecewise constant distr ibution

f u n c t i o n  w i t h  jumps  of s iz e  1/rn at all po in t s  u of the form

u [R(X ( . ) ) - 1)/N , j 1,2,... ,m

T h e  Fourie r  t r a n s f o r m s

~ (v) 
l 2fr i

•

have natural raw estimators

- 2TTiuv
9(v) = e dl)(u)

0

= 

~ 

ex~ [2rriv

Many s t a t i s t i c s  (denoted  TN , where N m + n is the total sample

size) which have been suggested to test H
0 are linear comb inations of the

rank-order statistics R(X.) . Chernoff and Savage introduced a representation

for linear rank statistics in a pioneering paper (1958):

T
N 

m J
N E1

~~
X 1  dF

~~m
(X)

m fR(x.)
=

N~ N1 1  \ /

where J
N(t) is a score function which tends , as N -

~~ ~ , “suitably” to a

limit J(t) . The foregoing representa t ion  of T
N may be written (by

- ---4
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s u i tab l y d e f i n i n g

m 
~~~

JN (u) d D ( u )

Let us sh ow how tes t  s t a t i s t i c s  of th i s  form ar i se  from our point of v iew .

To t es t  the hypo thesi s

d ( u )  -- 1

a g a i n s t  a s imple  a l t e r n a t iv e

: d (u )  = d
1(u )

where d
1(u) is a specified function one can show that  an asymptot ic  likeli-

hood r a t i o  tes t  s t a t i s t i c  is the  “co r re l a to r ”

1 —
R 

5 
[d

1( t )  - 1) d D ( t )1 0

Now suppose that th e alternative family of densi ti es is denoted d
0
(t)

to  i n d i c a t e  tha t  it is parametr ized by a parameter 0 ; suppose we have the

expansion

d
0
(t) = 1 + 0ô(t) for 0 near zero

where

ô(t) = 
~~~~ 

d
0
(t)~ 

_ _——-______
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The “cor re la to r” s t a t i s t i c  as a l ikel ihood r a t i o  s t a t i s t i c  for t e s t i n g

H1 agains t  FI~ is then equ iva len t  to the l inear  de t ec to r

1
R5 5 S( t )  d D ( t )

0

for  9 near  zero . By a d i r - c t  cai cul at ion of S(u) below we show tha t  to

test  H~ : F
~~

(x)  = F~ (x) = F(x )  aga ins t  the  a l t e r n a t i v e

hl~ : Fx (x) = F(x) , F~~(x) = F(x — 
~~

)

the best tes t  for  0 close to 0 is based on the s t a t i s t i c  where

5( u )  - ( 1 - X )  J ( u )

where J ( u )  is the score func t ion

J ( u )  = - i-- fQ(u )

A s s u m e  tha t  the d e n s i t y  1(x) is a symmetric f u n c t i o n  of x ; then

1 1
E

9
[R 5 ] = 5 

S( u )  d ( u )  du = 
~ 

~~~~~~ du
0 0

= 0 S (1 - X)2 32() du

so t h a t  an a p p r o x i ma t e l y unbiased e s t i m a t o r  of 0 is 

_  _ _
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1 ,_ 1
9 = 

$ 
.3(u) dD ( u )  — (1. - X) 

5 
J2 (u )  du

0 0

whose va r i ance  may be shown to be approximate l y equal to

1
Var (0~~) = 

~~~ [X( l  - X) $ 
J

2 (u)  du) 1

which  is also the var iance  of the maximum l ikelihood e s t i m a t o r .

When the 1 i n e ar  detector  is used to test wh ether  the location

parameter  9 equals 0 , one accepts th i s  hypothes i s  ( f o r  large sam p le

sizes N ) if

_ _ _ _  - _ _ _ _ _ _  = 

x [S o(t d D ( t ) ) 2

N Var (~~*) 
- 

N Var (R~) (i - 

~~ $~~
2 ( t )  dt

is below a s u i t a b l e  th resho ld  (one can argue tha t the threshold  is a number

of the form C/N where C is o f t e n  2 or 4 ) .  I am proposing that  instead

of one use a non-parametr ic  es t imator  ~ of the divergence

S 
Cd 9

(u) - 1) log d
9

(u)  du = ~2 ~~ 
~

2 ( t )  dt

* *if 9 were estimated by 9 , let A be denoted by A

1 — 2 1

A = 

~~
$ 5( t )  dD (t)1 -i- $ 5

2
( t )  dt

0 0

It seems plausible that the proposed “universal” te st of the hypothesis 8 = 0

which accepts it when A is below a suitable threshold of the form of C/N 

——-~~-——-——-— - --
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- (for a suitable value of the constant C), would perform as well as the best

test of the form of since it appears to be asymptotically calculating

(up to a constant multi plier) the same statistic !

To calculate S(u) we must calculate the density d
8
(u) corresponding

to th e canonica l distribution function

I)
0

( u )  = F11
9

1
( u )

where

H
9
(x) = XF~~(x) + ( 1 - X) F1(x)  = XF(x) ÷ (1- X) F(x - 0)

To establish a formula for d
9
(u) we obtain from the defining equation for

D
8
(u) that

1t
9
F

1
D
8
(u) = u

whence

u = XD
0
(u) + (1 - X )  F(QD

9
(u) - 9)

where Q(u) F ’(~i) is the quantile function . Differentiating w i t h  respect

to u

L
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1 = Xd
0
(u) - F (1- X) f(QD

0(
t) - 0)q(D0

(u)) d9
(u)

whence

Cd~~u)) ~ = ~ . + ( 1 -  X) f
9(~~~ 

P )

Differentiating wi th  respect to 0

-[d
0
(u)) 

2 
~~ d

9(
u) (I - X) f(QD

9
(u) - 8) q ’~ D

9
( u))  ~~~,. i~~~u~

+ (I - X) ~(Iyu)) f
’(QD

0
(u) - O)(q(D9

(u)~ ~~ 1~~(u) - I)

Setting 9 = 0 and U s i n g  the  identities q(u) f ’(Q(u)~ = (fQ)
’(u), fQ(tt) q ’(u)

4 (fQ) ‘(u) q (u )  = 0 , one obtains the desired conclusion : ~(u) = -(1 - X)  J(u)

To test a scale parameter 0 , one considers alternative hypotheses

G(x) = F(xO) , where 9 = I represents the null hypothesis. Using the fore-

going argument one can show that

5( u ) = —(1 — 
~ ) [Q(u) fQ(u)) ‘

= (1- ~)[Q(u) J(u) — l~

~~~~ ptotic variance of linear rank statistics. In terms of the

canonical distribution function D(u) and its density d(u) , we can obta in

rather simple formulas for the asymptotic variance ~
2 

of the linear rank

statistics of the form

I —
TN 5 

J(u) dD(u)
0

w h i c h  t isfy the conditions of the Chernoff-Savage theorem (1958);
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- ~~~ ~~~~~~~ 
is asymptotically N(0,o

2
) where p = $ J (t )  dD (t)

= 2 55 ds dt e(t - s) J ’(s) J’(t)

(~~~~~~~~~~~ (s - X D ( 5 )~!c - t - - u(t))~ d(s) d(t)

+ ~ D(s) (l - D(t))(l - Xd(s))(l - X d ( t ) ) )

Under the null hypothesis D(u) = u

I.
p 

5 
J (t )  dt

0

= 2 
~~~~~ 

ds dt  e ( t  - s)  J’(s) J’(t) s(l - t)

= (‘tx) ~ 

[J(t) - 5 J(s) ds)
2 

dt

An important extension of these results is to J(u) = e2m~~
1 

; one

obtains that und er the null hypothesis of independence , [9(v) , v = ± 1 , ± 2,...)

are asymp toticall y independent N (0,~~)

_ _  ~~-—~~~~~~~~~~~~~-- • - - - _ _
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3. Tests_ for  1nd ~ j~~~dence~ Multivariate Density Estimation , and

Non-Parametric Regression

When the d a t a  c o n s i s t  of a random sample X ,. .. ,X of an rn-dimensional— 1

random vector

xl

~~~~

=

it is often of interest to test the hypothesis X
1
,... ,X’~ are independent

random variables.

Let the joint distribution function and probability density of X be

denoted by F(x1,. .. ,x )  and f(x1,. .. ,x )  respectivel y. Let its marginal

distribution functions and densities be denoted by F
k
(x
k
) and

Note that f
k
(x
k
) is the probability density of the k-t1~ comp onen t

Corresponding to each density 
~k~

’k~ 
there is a quantile function Qk

(u
k)

and a densi ty quanti le func tion 
~~~~~~~~

The hypothesis H
0 

that the components of X are independent can be

expressed

H
0 

: F(x1,... ,x ) 
= F

1
(x 1) ... F(x )

Equivalently,

H
0 

: F(Q
1
(u

1),.. ‘~ m~
”m~~ 

u~ ... u
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Define

D(u 1,. ., u )  F~Q1(u
1) , . . .  

~
Q

m
(u

~~ )

It is the joint distribution function of the uniform ly distributed random

va r i ab l e s

U
1 

= F1
(X 1

) , . . ,U°~ = F(X
m
)

We shall test H
0 

by estimating the joint density function

d(u1,. .. ,u )  = 

~u ~~~ 
D(u 1,. . , u )

1 m

- 
f ( Q1(u

1) , .
- f 1Q1(~i1) . . .

Note that in the case of a multivariate location and scale parameter

family of probability densit ies

f(x1,. ,x )  = 
a1 Gm 

1o(xi~~ Pi 
, . . .  ,

each marginal density is of the form

1 0(Xk 
- u

k\
f, (x, ) = — f

klK K  
°k \ G k

and the individual quantile functions are of the forts
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~k~ ’-’k~ 
= + Gk

Q
k(~~~

)

Therefore

d(u U ) = 

f°(Q~ (u1),.. .,Q
°(u ))

1 m 
f
~Q?(

t
1
) . . .  f0Q0(u)

Therefore the density d(u1,. . . ,u )  does not depend on location and

scale parameters and is a measure of association or dependence. In particular

d(u 1, ..,u )  is identicall y equal to 1 if and only if all components of X

are independent. An overall measure of association can be defined by the

d iverg ence

A = . . .  P [d(u1, . ‘°m~ 
-1) log d(u1,. . ,u )  du 1 

. . .  dU

We call: d(u1,. . ,u )  the regression-densifl~ of X ; A the regression-

density-divergence; D(u1,. . ,u )  the regression-distribution function .

For the bivariate normal distribution with correlation coefficient p

the regression density is given by

d(s,t;p) (1- p
2
) 

½
exp [[-2(1 - p

2
)) 

~~~~~ 
+ Ip~~

l(t)I
2 

- 2p~~~~(s)  1( t ) ) J

and the regression-density-divergence is given by

2

2I- p

_ _ _ _ _ _ _ _ _ _ _ _ _  - - . - 
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For a multivarjate normal distribut i on with correlation matrix R (that is

R is the matrix of correlation coefficients between the components of the

random vector) the regression-density-divergence is given by

A = ~~ t r ( R ’ - 1)

To estimate regression-distribut ion I) from a sample of size n we

use the natural raw estimator

D(u1,. ~u~) = F~(Q1~~
(u

1
),... ‘

~ m ,n~~rn~)

where F(x
1~~

. ..,x~1) is the empirical distributio n function of t1~c n random

vec tors 
~~~~~~~~~ 

. . and Qk f l
(u
k) is the samp le quantilc f un c t i o n  of the k-th

components of these vectors.

Define the Fourier-Stieltjes transform s

1 1 2iti(v u +. . .-fv u ) -
.v )  5 ... 5 e 

1 1 m m 
d D ( u 1, . . .  , u )

1 1 2r r i ( vu + . . . + v u  )

cp(v 1,. . . ,v )  5 ... 5 e ~ 1 m m 
dD(u1,. .. , u )

1 1 2rri(v u +. . .+v U )
= ... e 1 1 m m 

d (u , . . .  , u ) du . . .du
0 0 1 m 1 m

It will be shown in the sequel that D tends to 0 and ~ tend s to

~ (as n 
~ ~~~

) therefore we can form (using time series theoretic statistical
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methods )  e s t ima to r s  d tha t  tend to d , which  can  he used to test  w l l e t h d r

d is i d ent i c a l l y 1 (which is e q u i va l e n t  to the n u l l  h y p o t h e s is  of indepen-

dence) .  The m u l t i v a r i a te  case d i s c us s e d  in  t h i s  sec t i on  seems to me to

d e m o n s t r a t e  the power of r e d u c i n g  s t a t i s t i c a l  problems to e s t ima t ion  of

densities. If the only statis tic one works with is the distribution function

I)(u1, ...,u )  one is confronted with the’ difficult task o testing whether it

is si gnificantl y different f rom the uniform distribution function u
1
u
2
. .

Then if one flunks this test , and rejects the  assumption of independent com-

ponents of the random vector X , one has no means of modeling the dependence.

The empirical regression-distribut ion function D(u1,. .. ,u )  is a

purel y discrete distribution which assigns mass 1/n to the n points

IR (X ~) - l  R (X~) - l \
I 1 j_~__~ 

Il l 
~] I—— — ,. . . , wluch  arc the rank vec to rs  of the n random

vectors (K~ ,... ,~~~~
) for j 1,... ,n ; here  ~~ (X~ ) denotes  the rank of

X . among X ... K
j 1 n

Asymptotically our conclusions are unchanged if we take as our raw

estimator D(u1,... ,u ) of D(u
1,... ,

u ) the purely d iscrete dis tr ibu ti on
III 

/R (X~) R (X~’)\func t ion  which assigns mass 1/n to the a po in t s  
~~ 

~ 

-

~ 
, . . .,  

m] )
then the raw estimator of Q(v1,. . . ,v )  ~~

- n ~ / R ( X ~ ) 
_ _ _ _cp(v1,...,v )  

~ j~~1 
exP~~2rri t ~v~ 

i i  
+ ... + V 

m j

In the two-d imensional case (m = 2) we denote the observed data by

(X1, Y1),... ,(X~ ,Y )  . Then the n jump points of D are of the form

(i , .i) where R~ is the rank among the Y’s of that Y-value corresponding 

~~~~~~~~ --~~~~~~~~~ - - - - - - --
~~~~~~~~

- -—-
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to the X-value with rank j . The well-known rank tests for independence

(see Hajek (1969)) may be expressed in terms of the vector R1,... ,R as

follows :

n
Spearman test S ~ jR .

j=1 ~

n
Quadrant test S ~ e(R. - ~~n -  1)

j~ -~n+l ~

n
Kendall rank correlation coefficient K = ~~~ e(R . - R .)  .

i=l j>i 3 1

Therefore one may read ily establish the connection between our time series

theoretic approach to tests for independence and conventional tests.

To test the hypothesis of independence (rc~ ression density identically I )

one may be willing to assume a family of al ternati ve hyj~~theses indexed by a

parameter 9 Under which the regression-density may be represented

1 + 9S (u1,...,um
)

for 9 close to 0 . Then an asymptotic likelihood ratio statistic for

testing independence is

R
6 

= ... 
f 

b (u 1, . . ., u~~ dD(u1,..,u )

In the case m = 2
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R = ~~
6 fl 

~=l 
n n

The regression-density function of the bivariate normal distribution ,

denoted d (u 1, u2) , is a function of the correlation coefficient p such

that

ö(u1,u2
) = ~~~ d ( u~ ,u~) = ~~~ (u 1

) ~~~ (u
2

)

p =0

Therefore  our approach y i e l d s

j~~l ~~ 
~~ l(~~~)

as art optimum non-parametric statistic for testing independence against

bivari ate normal dependence . The statistic R
6 

is the Fisher-Yates or normal

scores statistic well studied in the theory of non-pa ramet r i c  s t a t i s t i c s .  The

Spearnian and quadrant tests are linear rank statistics corresponding to the

we ight functions

Spearman ~(u1, u2) 
= u

1u2

1 1  1 1
Quadrant ô(u1,u2

) e(u
1
- -~~-- — ) e(u2

-~~- - — )

1 1 ...
K is a linear function of 

,f ~ 
D(u,v) dD(u ,v)

00

The concept of minimum divergence estimation (defined in the introduc-

tion to this chapter) can be illustrated in the present context . To estimate

the correlation coefficient p of the bivariate normal distributi on , the 

—---~~ -- - - —--
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minimum div i r~ t -uce e st i na t o r  p i s  the va lue  p at which

J (p )  = 55 - log d (u 1, u 2 ) dD(u1,u2)

achieve s its minimum . By solving J ’(p) 0 one may show that p R
6

Kimeldorf and Sampson (1975) lIst parametric bivariate regression-

densities corresponding to various rnultivariate distributions ; one could

estimate their parameters using J and If divergence functionals of I)(u1,u7)

Multivariate Densi~y~~~ timntion : An estimator d(u1,u2) leads to am

estimator of f(x1,x2) , using the relation

~~Q1
(u

1
), Q 2 (u 2 )) f

1
Q1(u1

) f
2
Q
2
(u

2
) d(u1,u2

) .

Nonpararnetric Regression: An outstanding problem of statistics is

the estimation of the non-parametric regression of X
2 

on X
1 

in th e  sense

of the conditional mean

E[X
21X 1 

= x
1 1 = X

2
f~~ x~~~2 Ix i) dx

2

— 
~~~ f(x~ ,x

2
)

S x
2 f(x

1) 
dx

2

By making the change of variable x
2 Q2

(u
2
) or u

2 
= F~ (x

2) , we obtain

L - -—---— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1 f(x ,Q(u )
E[K

2~
X
1 

= x 11 ~ f ( x 1) 
2 q 2 (u 2) du 2

t h i s  formula  can be r e w r i t te n  to  y ield the  fo l l o w i ng  r e m ar k a b le  t h e o r e m .

Theorem : ( R e g r e s s i o n — D e n s i t y  F o r m u l a  fo r  Co f l d i t i o n a l  Expec t  t i m

and Non-Parametric Regression)

E [X 2 j X 1 
= Q(u

1
)J = 5 Q 2

(u 2 ) d (u1, u ) ) du
2

w h i c h  j u s t i  t i C s  call ing  d(u
1 ,u 2 ) the r e gr e ss ion  d e n s i t y ;  n o t e  t h a t

- 
f(Q1

(u
1),Q2(ti

2))d ( u l , u ) ) - 

I 
1
Q1 (u1

)f
2Q2

(u
2
)

If one esti te~ Q~ (~~ ) by t h e  em p irical quant ile f u n c t i o n

the corresponding estimated c~ n di t i o ~ nl expectation is

n j/n
E[X )1X 1 Q(u

1
)] = 

~~~ X 2 . d(u1,u2
) du

2j 1  ‘~~ (j-l)/n

~ 

x2~~ [D 1~~u 1,~~)~ D i(u i ,~~~~~)

where D1(u1,u2) is an estimator of

U
2

D
1
(u 1,u2

) = 
f

’ d(u1,u~ ) du~ = D(u 1, u 2
)

The approach to non-parametric multivariat e density estimation and 

- -  ~~~~~~ --
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n o n - p a r a m e t r i c  rc~~r e s s i on  ou t l i ned  above (whose theory  and p r a c t i c e  remains to

be i n v e s t i ga ted )  appears  to 5} uw t ha t  one can e s t i m a t e  regress ions  w i t h o u t

e s t  i r m a t i n g  p r o b ab i l i t y  laws!

One o f t e np r e f er s  to c a l c u l a t e  r eg re s s ions  as c o n d it i o n a l  g~~~~~ile

functions; then one can proceed as fol1o~ s. An e~zj ression for the conditional

distribution function of X
2 

given K
1 

is

U
2

~
X
21X 1

’2 l>
~
]
~ 

= 

~~ 
d ( F

1
(x

1
) , u~~) du~

where u
2 

= Fx (x2) . It f o l l o w s  that  t i r e  c o n d i t i on a l  q u a n t i l e  fu s c t l o n  of
2

K
2 

given K
1 is given by

1x 1
) = Q2 D 1

1
x 1 ) ,p )

In word s, the conditional quantile function equals the unconditiona l quanti.le

fenctlon with a change of variable u D
1
1
(F
~
(x

i),p)

Win lc we rcc~~ mend Four ie r  t h n e o r e t i c  m e t h o d s  of e s t i m a t i n g  D
1

(u
1 ~

t
2)

It s i 1  d be noted that a quick and dirty estimator can l~~ p r o v i d e d  by a

“naive k-ni eir i-: ;t neighbor ” estim ~t or

D1 (u1
,u )  = {D(u

1 
+ , u~~) — D (u

1 
-

~~~~ ,

To understand the dramatic nnture of our approach to non-parametric

regression imagine a scatter diagram of points (X ., Y .) i = 1,2,... ,n In the

plane. One seeks to fit a smooth curve y g(x) t h r o u g h the  points. A
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typ ical c r i t e r i o n  of cu rve  f i t t i n g  might  be t o :  f i n d  g to  m i n i m i z e

n b

~~ .
~~~~ 

- g(K.))
2 
+ X 

$ l?
(1m)

x 1
2 
dx

j l  a

wher e g(~~ is the rn-tb derivative of g assumed to exist over some specified

i n t e r v a l  a to b . Tire solution is then a polynomial spline of de~,ree

2 m -  1 [see Wahb a ( 1976) 1.  Rather than choose a function g by such an

o p t i m i z a t i o n  c r i ter i o n  (which is i n e v i t a b ly ad hoc and s t i l l  requ i res  one to

spec i f y )~ , m , a and b ) we are propos ing  that one adopt as one ’s “optimal

smooth  curve ” a curve of the form

y = g(x) = 5 Q ~~(u)  d(F
~~

(x) , u ) du

where  Q~~(u)  is an e s t im a t o r  of the  q uan t i l e  f u n c t i o n  of the Y-va lue s , Fx (K)

is an e s t ima to r  of the d i s t r i b u t i o n  func t i on  of K-va lues , and d ( s , t )  is the

estimated regression-density function . I-low does one explain to a numerical

analyst what are the optimizing propert ies  of the procedure we are proposing ?

Multi-dimens ional non-parametric regression: The foregoing results

can be extended to multi-dimensions. We state only a formula for th~ cond itional

expec tation of X
m 

on X1,... ~
Xm_ i

E[X
m IX 1 

= Q1
(u
1
),. ,X 1 

= 

~m-i~~ rn-i~~

1 d (u , ... ,u )
r. m l  in

j Q(u)— du
in in d

1
(u 1,. ,u 1

) m
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wi ore

d ( ) = 
f ( i~’ii 

,Q (u rn ))

m ~
‘I’ ‘‘~

‘rs f
1
Q
1
(u

1) . . . ~n m ~~rn~

is t h e  re~~r ci ;s  i un—de nsity tunic t I on of X
1 , 

. . ,X (ar i d  drn_ i is tine regression—

dens  i t v  f u n c t i o n  of K 1, . .  , X
1 )

1 1
Asymj~t k ’Lie dh; Lr ibu t iori of statist Ics of ti re form T = j’ J’ i(s) K( t ) dD(s ,t)

00
Tire work of Ruymgaart (1974) leads us to the following roughly stated

l i m i t  t lieu rem

~/ n  (T -p )  is a s ymp t ot i c a l ly N ( O , m
2 )

w h e r e

11
= 

,f ~ 
i(s) K(t) dD (s,t)

0~~O

2

~~~ 

jV( s ,t)~ di)(s,t)

1 1
V(s,t) = J(s) K(t) - $ $ J(u) K(v) dD(u ,v)

0 0

11
+ J’ [e(u - s) - ul J ’(u) K(v) dD(u ,v)

00

1 1
+ J’ J’ [e(v - t) - v] J(u) K’(v) dD(u ,v)

00

_ _ _ _ _ _ _ _  —~ - - - ---- - — - - - --- - - - - - -—----— --
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U nder the n u l l  hypothesis D(s,t) = St

1 1
p. = 5 i(s) ds 5 K(t) dt

0 0

~ 1 1  
2

= 5 $ V(s,t)~ d s dt
0 0

1 1
V(s ,t) = [i(s) - 5 J(u) duj[K(t) - $ IK(v) dv)

0 0

2TTiv S 2TTj v t
Extending these results to i(s) = e , K( t ) ~ 2 

one obtains that

unde r  tine nul l  hypothesis of independence [c. ( v 1, v 2 ) , v 1, v~ = ± 1 , 2 ,...)

are a s y m p t o t i c a l l y i n d e p e n d e n t  N~ 0 ,i)

J o i n t  d i s t r i b u t i o n  of the  sample qu a n t i l e  functions of two d~ pe~ d~~iit

random var iab les  and . It has been noted in Section 1 that the

modified empirical quantile function deviations

= 

~~~ 
f~Q~(u)(Qi n

(U) - Q.(u))

is asymptotically N(0,t(l - t)) ; f u r t h e r  ~~. (s) and ~~~~~(t) have asympto tic

covar iance s ( l  - t) when s < t . Weiss (1964) proves that asymptotically

Coy (
~ a

(s) Q
k,fl
(t)) = Dj k

(s
~
t) - St s ~ t

defining

_ _ _ _  --~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ — - ---- - - - ~~~~~~~~~~~~~~-
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D.k(s ,t) = F .k~
Q .(s), Qk

(t))

Using this result , one could obtain asymptotically efficient unbiased

est inra tors , from j~~ orn~ j e t e  samples , of the common mean p of biva r [ate

normal random var iab les  X and Y wi th unknown unequal variances and unknown

covart au ce  ( f o r  o ther  est imator s , see lharndan , Pin e , and Khuni  (1976))

4. Time Series Analysis and Autoreg~~~ s ive Model Approximation

The density estimation problem (which we claim is a canonical problem

to which one can transform many basic problems of statistical inference) first

arose in the ana lysis of stationary t ime s e r i e s .

Let Y(t) , t 0, J 1 , ± 2 , . ..  he a zero m ean covarianc e stationary

norma l time ser i e s ; its probability law is then specified by either the

covariance fuirc i ion R(v) = E ( Y ( t )  Y ( t  + v)
’
~ , or the variance R(O) and the

correlation function

p(v) = = Corr(Y(t) ,Y(t + v))

The covariance function has a basic mathematical property called

p~~~it iv e  def initeness and defined as follows:

n
c .c R(v . - v )~~~ 0

j k=1 3 k  j k

for any integer n , comp lex numbers  C1,... ,c , and indices v
1
,... ,v
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This property imp lies that R(v) has a spectral representation which we

write

R(v) =

where F(u) is a non-decreasing function with F(0) = 0 . p (v) has a

spectral representation which  we write

g’ 2ITiuvp (v) ,j e dF(u)
0

where F(u) is a distribution function (a non-decreasing function w i t h

F(0) = 0 and F(l) 1 ) .  We call F(•) the spectral distribution function.

In developing the statistical theory of stationary time series analysis

we always make the assumption tirat 
~ lp(v) l < . Then the derivative

f(u) F’(u) exists and is called tire spectral density function ; in terms of

f(.) we have the spectral representations

p (v) = S e
2
~~~~~

f(u) du , v = 0, ±1 , ± 2  

f(u) = 

~~~~~~~~ 

e
2
~
’
~
”
~p(v) , 0 � u � 1

Our notation should be noted; we use t to denote “time ,” v to

deno te “lag” between two times , and u to denote “frequency” when its domain

is 0 � u - I ; when frequency has other intervals in which it varies it
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is customarily deno ted by letters such as ~ arid I and the intervals are

-ir < w <-
. ~ and -0.5 ~ f 0.5 . Note that , for a real valued t ime series,

f ( u )  f(1 - u) and p(v) = p (-v)

The mathematical existence of f(u) is deduced from the fact that

p (v) is an integrable positive—definite function ; tire interpretat ion of f(u)

is deduced from the theory of linear filters.

To transform a stationary time series Y(.) to a new stationary ti;;ie

ser ies Z(.) , one gene rally uses linear time-inv arian t transformations

(called filters ) of the form

Z( t) = L b .Y(t-j)
j=O ~

We l i k e  to i n t r o d u c e  an operator (call it B si St IL; c e t f I c  ien ~ ; hay~-

been denoted b . ) such tha t  one can wrRc Z(.) = b Y ( . )  . l ie fine an

L (cal led the lag operator  or backward si-r i ft oper ;rt tr)

Z ( .)  = LY(’) iff Z (t) Y(t - 1)

or equivalently LY(t) = Y(t - 1) ; note I
2
Y(t) = Y(t.  - 2) and in general

L”Y(t) = Y(t - n) for any integer n . Introduce the power series

B(z) ~ b .z~
j=0 ~

Then we can write B B(L) and Z(t) = 11(1,) Y(t) . We call B ( z )  the

transfer function of the filter B(L) . Regarded as a function of z e2~~
”

L ~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _
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we ca l l  B (e
21

~~
t1

) the frequency respon se function . TI-re notation has now

been introduced to answer a basic question of stationary time series modeling :

What are the properties of a time series Z(.) which  arises as tine output of

a linear filter B(L) whose input is a stationary tun e series Y(.)

Theorem . If Z(t) = B(L) Y(t) , where Y(.) is a zero mean station-

ary normal time series wi th spectral density function f~ (u) , 0 ~ ii ~ 1

their Z(.) is a zero mean stationary norm al time series with spectral density

function f
z(u) , 0 ~ u � I , given by

f
2
(u) 

~
B(e

2
~~
°)I f~ (u)

Since m iny  questions about  a s t a t i o n a ry  t ime  series Y ( . )  can be

r e -sI r  ly ni ~ w~~r & d  in t e r m ; ;  of i t s  spec t r a l  d e n s i ty  f u n c t i o n  f (u )  , it is

natural that the esti~~ation of f(u) from a finite sa~p~~ [Y(t) , t = 1,... ,T)

should be or-re of the central problems of the theory of time series analysis.

Natural raw estimators p and I are obtained as follows:

for v =

T T 
2

p (v) 2 Y(t) Y(t+v)÷ ~ Y (t)
t=l t=1

while p (v) = 0 for v � T and p (-v) p(v) ; one may show that

— 1 2rriuv
p (v) = j e f(u) du ,0
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where

-2iriuv -
1(u) = Z e p(v)

Iv I<T

= j Z Y( t ) e2~~ttu
I2/~ Y

2
(t)

t=1 t=l

The convergence p rope r t i e s  (as T ~ ~~~
) of these estimators are as

follows : p (v) —~ p(v) but f(u)-f-* f(u) . Indeed , f(u) is in practice a

very wiggly function which behaves like wi-rite noise in ti-re sense ti-rat f(u
1)

and 1(u 2 ) are asympto t ica l ly independent  for any f ixed U
1 

u2 . The

distribution of f(u) is asymptoticall y exponential with mean f(u) . This

is the point at which  the modern era of time series analysis started (see,

for example, Tukey (1959)): how to pass from wi gg ly estimators 1(u) to

smooth estimators 1(u) wi-rich are cons i s t en t  (and , if possible , a s y m p t o t i c a l l y

“efficient ”) estimators of f(u) . In practice one might use and compare

several estimators f(u) formed from the sing le f i n i t e  samp le of obse rva t ions.

Three main approaches have developed for forming smoo th es tima tors

which are called the direct  approach , the indirect  approach , and the  auto-

regressive approach.

Each approach considers estimators or smoothers f(u) of a different

form :

(i) Direct approach

1
f( u) = J’ K(u - s) f(s) ds

0

—4
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for suitable kernels K

(ii) Indirect aj~~~pach

f(u) = e
2m uv k(v) p(v )

for  s ui t a b l e  wei gh t s  k

(iii) Autoregressive approach

f(u) = ~~ ~l + + ... + a
m e 2

~
T i u m

~~~
2

for a su i t ab le  integer  in (called the order), and coefficients

~~~~~~ ‘~ m 
which are estimated from the sample .

The extensive literature available on the properties of these methods

of estimating 1(u) enables us to claim that we have successfull y shown how

to transform diverse statistical problems to a problem (density estimation)

which has been “successfully” solved.

However , I would like to add a further claim ; one can develop tine auto-

regress ive method so that it prov ides a “most successful” or “opt imum ” solution

of the density estimation prob lem.

The nam e autoregressive approach comes from the notion of an auto-

regressive scheme . One can show that the true spectral density f(u) is of

the form

2 2iiiu -2
1(u) = c~ l~~(e )j
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where

g (z) 1 +a
1
z + . . .

i f f  p (v )  s a t i s f i e s  the d i f fer e n c e  equa t ion

p( v) + fL
1 p (l-v) + . . .  + a p (m~~~ ) = 0 , v > 0

v 0 ,

iff Y(t) satisfies the stochastic difference equation

Y(t) + a
1 
Y(t - 1) + . .. + a Y(t - in) = c(t)

where tine process c(t) obeys tire conditions

EtC (t)~
2 

=

p (v) = E ( C ( t )  c(t + v)) = 0 for v 0

E(Y(S) €(t) ) = 0 for s < t

A time series is called white noise iff its correlation function

p (v) = 0  for v Y ~ 0

Modeling a t ime ser ies by an autoregressive scheme is convenient

-

~

-

~

--

~

- -~~~-~~~~~~~~~~-~~~~~~ - -~~~~~~~~~~~~~ -~~~~ - ~~~~~~~ - -~~~ -~---~~~ -_ _
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because one can then : (1) readil y est ins ;n t i tine parameters of t i~ model ,

and (ii) solve the prediction problenn : given the value s Y(t),Y(t - 1),...

to predict Y( t + l),Y(t+ 2) 

To a general spectral density f(tr) satisf ying the cc’;~ditionis t h at

log f(u) and I 
1
(u) are in tegrabic  we can associate a sequence of auto-

regressive approximators f (u) , in 0,1 ,... First , f0(u) 
= 1 ; to

define 1 (u) for m > 0 introduce the minimization problem : let

a , . . . ,a be the val ues at which1,m m ,m

= 
~ Ii + a1 e

2U
~~ + . . .  + a ~

2
~~

trn
1
2 
1(u) du

achieves its minimum value , and let denote the minimum value so that

J ( a  , . . .a  ~ 
-

In in\ 1,m m ,tn ,

Define

ing (z)  1 + a a + . . .  + a am 1,nr m ,m

The coefficients in g (z) can he determined from ti-re normal

equations

~~~~g(e
2Th~~ 1

) e 2
~~~~~~~f(u) du — 0 , v

wh ich is equivalent to

-

~

- - - — ----- ~~
--

~~~~
--
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Ip (-v) + a1 ,~~ 
p (l - v) -I- . .. + 

~~~ 
p (m - v) r-

and

2
S ~~~ 

)
~ f(u) du

0

1 
g (0

2U1 U
) f(u) du

~-(0) + a1 , n. ;  :(1) + . . + ~~~~ ~(m)

C o n d i t i o n s  fo r  the conver -m uce of f (nt) to f(u) arc stated in Ceronirnus

( 1960) ;  in a d d i t i o n  to  1°h 1(u) and ~ ( u )  are both integr;rble we mu st

assume a certain sequence of p rtial colre l tio ni coefficients is absolutel y

sun~nab1e. One can th e n  how that one can represent

2 2 rri u -2
f(u) c~~~g ( e  ) j

g (z) = 1 + a
1

z + . . .  + ~~~~~z
m 
+ ~~~. .

Estimators 
~~~~~ 

of 1(u) arc easily obtained as follows . Let

,a be the solutions of the samp le normal equations

p(-v) + a1 o(1 -v) + ... + a~~o(m -v) 0 , v
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I)efi nrc

g
15 
(z) 1 + -F ... + arm

p (O) a1 ~(l) + ... + p (m)

‘
~ 2~ ju -2

o
~~ 

~g(c )

The functions f
0
(u),... ,fT l (u) can be regarded as a sequence of

fu n c t i  ens which proceed from ti-re smoothest  cons t an t  f u n c t i o n  f
0

(u )  = 1 to

t i n e  w i g gl i e st  f u n c t i o n  f T l (u)  = f ( u )  . One desire s to fir-rd an intermediate

va l ue o f in , deno ted  m , such t ha t  f ,~(u)  can be re f t ;r ded  as not t h e
in

sr;u~ t i o st est e n t e r  of 1(u) but  as tine “m o s t  l i ke l y ” est  i s a t :o r  of f ( u )

F or  t h i s  p u r p o s e  one needs a c r i t e r i o n  to d e t e r min e  m (c a l l e d  an order-

deter i ;nimn t ion criterion) . Such criteria h ive been developed by a number of

authors using various conceptual frameworks. The approach of Akaike ( 1974)

i s  ~ it  i c u lar l y w e l l  known . The d i s c u ss io n  of t h i s  q u e s t i o n  r e q u i r e s  an

ext i ;n; - i vc paper by its elf. Space pernn i.ts tue onl y to i n tr oduce  my own criterion ,

which I call CAT (criterio n autoregressive t r a n s f e r  f u n c t i o n ) .

R a t h e r  than  d i r e c t l y examining  tine propert ies of f (u)  as an estin ;rtor

of 1(u) , I focus on the properties of g (z) as an estimator of g (z)

We would like to choose g (z) to m i n i m i z e  t i re  overa l l  mean square error
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J = 
J

~ E~ g (0
2U 

)~~g (c
2fl1U

)~~
2 
f(u)

2
2 g -

c J 1 — —--— du
O

Now o v e r a l l  mean square  er ror  can be expressed a~ a sum of overall v a r i i i ; c e

I
V — Var {g J  f(u)

0

and overall squared bias

2 ‘- 2
B ~ Eg - g031 f(u)

0

It can he shown (see Parzen (197€)) t h a t  t i r e  de~~rer m polynomial l e st

approximatin g g is g multi plied by a suitable constant . Therefore W~

r e s t r i ct  ourselves to e s t im a t o r s  g of the  form g g~ where in mini-
in

mizes time function of in

‘- “ 2
J(m) = 

5 
E g - g f(u)

0

1 1 2
= 5 Var (g) f (rn ) du + $ ~m 

- g f(u) du
0 0

We are able to obtain a remarkable approximate evaluation of J(m) by

changing our defini tions. Define
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g (a) g (z )  g (z)
y (z) 

‘ 

m 

~~~~~ 
=

cT 0
~ir

and cinange tire de f in ition of J(rn) to

1 1 2
J(m) j

’ Var 
~~~~ ~~u ) do -F 

5 ~ 
- ‘~ 

f(u) du
0 0

One c:mn show ti-rat the  second term (representing tie overall bias ) equals

-2 -2
- a , and that

in

I “ -2 - )  -2J(m) 
~~~. 

+ a -

j 1

This remarkable  formula  m o t i v a t e s  the  fo l l o w i n g  order  d e t e r mi n a t i o n

c r i  ten  n :  given a sample  of s ize  T , choose in to n n i a i r i n i z e  t ine  f u n c t  ion

CAT(ni) calculated f rom t i re  sample as fo l l ows:

CAT(0) = _ (i +~~~~
)

I ~ 
~-2 ~-2CAT(m) 

~~ 
- 

~irr,J=l

whe re  is an “unb iased”  e s t ima to r  of de f i n e d  by

A

“2 
= ( - 

rn ’ L  “2

~m 
~l T) °rn

A

When in 0 , we estimate f(u) to be the cons tan t  1 , and accept
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tir e hypothesis that the s . cm p l e  could  ir av e been d r aw n  fr o i ~ a white noise

process.

An o rd e r  d e t e rm in a t  ion pros ‘ t - i ~ can he I C -  rdr ~ 1 as a p r o c e d u r e  f or

~rd np t nve l y d0t e r m i n i n g  i ro~:i t i e  som p le a ‘‘ I m t  i’e~-erf u1’’ t~ ut  s t a t i s t i c  for

he 1 1  1 h y1 t ines is of wi n t o  no i  so . Time m e a n i  n~ of this assertion requires

.~u t  her l iner to discuss.

It n a y  be hel p f u l  to i-e ke some i i n t u i t i v e  r em ar k s  ~b~ ut order—det erm ining

c r i t e r i a . Tir e  r e s idua l  v a r i a n c es  ~ - decrease as in increases  so that  they
111

A

do not decisivel y indicate which order in is  long enoug h . The min imum of

t ime  ‘ n b  I ased r e s i d u a l  var i a n c e s ” usua l ly cx i  st s ;  while empi nical l y it

may err occassiou choose tine “ri ght ” order there is no concep tua l  bas i s  fo r

its use .  Akaike ’s criterion , to minimize

AIC (ni) = log + 2

can be ju stifi ed usin g an entropy maximization inference criterion. In recent

~:er h , Wahba uses cross-validation inference criteria to determine smoothing

I s  t m  ; her  work can he directl y app i ied to d e n s i t y  e s t im at i o n .

I would l i ke t o  sug~çest  a new cr i t e r i o n , mot iva ted  by ti -re c r o s s - v a l i d a t i o n

en in of W n iW e~d wh ich 1 ca l l  CV , Whose o rde r -de t e rmin ing  proper t ies

need to b x Ii :, i ned

“2

C V ( n : t )  1 
m 

2

{ i
~~ ~“nr 

~~~~ du)
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To e s t i m a t e  a density fnnnctio n d (u1,. . ,u )  winic ir is a function of

several variables , one caunot use a u t o r eg r e s s i v e  m e t h o d s  of app rox i m at i o n ;

however , one can develop indirec t methods  of e s t i m : r t i o m n  w i m e r o  t i n e  we igh t s

a re  c l r o ~o n n  u s i n g  c r o s s — v r ~l i d a t i o r r  c r i  t e r i , i . I b e l ie v e  Ue are jnr sti fied in

d a m n n~ t h a t  one can  enrp i n c-i l lv ent imnat e dens it)’ I n i n c t i o r m n  w i t h  almost no

p r i o r a s e i n n i p t  ion s .

5. R e l i a b i l i t y  Theory

Let f 0Q0 (u)  be the d e ns i t y  q u an t i l e  f u n c t i o n  of the  exponential dis-

tribution f
0

(x) e~~ ; tiren Q
0
(u) —log (I — u) an-rd f

0Q0(u) 1 — u . Let

1(x) be the probabilit y density of a non-negative random variable X ; then

5 ~~~~~~~~~~~~ d u 5(1 - u)  q ( n r ) ~~ r 
S 

[I - F(x)) dx = = E[X]

Thus integrability of (1 — u) q(u) is equivalent to time mean b e i n g  fi nite.

Tire in tegrand  ( 1 - u) q ( u )  occurs f r e q ue n t l y as i t  is r e l a t e d  to ti m e hazard

funct ion

h’ ~ = 
f(x)

1 — F(x)

and the hazard quantile function

hQ(u) = in(F
_ 1
(u)) = 1 - u  ( 1 - u) q(u)

L - _ _
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gext  d e fi n e  t ine  di st r i b u t i on  fu in c t i o n

F ( X ) = 
~~~~ [1-F (y)3 dy

w h ic in  is deno ted  F as it is the  d i s t r ib ot i o n i  f u n c t i o n  of the r e s idualres

lifetime in a rerw wal process. Tire distributi on function on 0 ~ u ~ 1

D( u ) = F F ’(u)

Q( u )
= [i-F (y)) dy

U 1 -1
= 

S 
(1—t ) q(t) d t {J ’  (l— t) q(t) dt)

has d e n s i ty  d ( u )  = 1 
~~~~~~~~~ 

. The fo l lowing hypo theses  are equivalent :

D(u)  u

d(u) = 1

F (x) F(x)

F(x) is the exponential distribution

In other words , a test for exponentinl1~ is providing by test ing whe ther the

density function d( u ) is constant .

A raw est imator  of D(u)  is provided by 

_ -

~~~~~~~~~ 

- - —~~~~~~~~~~ 
. : -
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(1 - s) dQ (s)

D(u) = 
________________

5 (1-s) dQ (s)
0

This function has  been ex tens ive ly s t u d i e d  by researchers in reliability tineory

(especiall y Barl ow and Van Zwet (1970), Barlow and Proschan (1976)) under the

name of the total time on test statistic .

The statistic D(u) , 0 � u � 1 , also can he deduced fran the general

o n e - s a m p le  theory out l ined  in Section 1; however , the d e r i v a t i o n  is d i f f e r e n t

in this section since it is directly motivated by a search for a test of

exponentiality. Section 1 provides tests for any specified distribution (more

prec isel y ,  a specified density-quantile or f
0Q0 

function). A lis t of density-

quantile functions of fam iliar univariate distributions is given in Table I.



Table I Density-Quantile Functions

Name of Density Quantile Density-Quarntjle
Probability Law f(x) Q(u) fQ(u)

i 2
Normal ep(x) = ~‘ (x) c

1
(u) —i— exp .J:

= e 2 ~

Log-normal ~ (log x) ~~~~
(u) 

~~~~~(u) e
’
~~~

Expone nt ial e
X 

, x > 0 -log (1- u) 1 - u

Pare to ~ > 0  ~~~~~~~~~~~~~~ (l- uY~
x > l

Extreme Value c
x ~-e

’
~ log log (1 - (I - 

~~
) log

Weibull cxC 1  
e~~~ , ~~og 

~~~~~~~~~~~~~~~ 

1(1 - u)~~ o5~~~~~
)C i/ ~~> O x > 0

Cauch y 1 
2 

tan u(u-~~ ) sin
2 
uu

l+x

Logis t ic e 
2 log 

~j~~
— u(1 - u)

(1 +eX)

Double-exponential ~ e~~kl log 2u , u u , u

-log 2(l-u) ,u > ~~ 1 - u , u > ~~

Uniform-reci procal —
~~~~, x > I ~~~~~~~~ (1 - u)2
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Score functions J(u)

Normal

Exponential I

Double-Exponent ia l  si gn (2u  - 1)

Logistic 2 u - 1

Cauchy - sin 2flu

~~~~~~~~~~~~~~~~~~

-

~~~

_

~~~~
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