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NONPARAMETRIC STATISTICAL DATA SCIENCE:

A UNIFIED APPROACH BASED ON
T DENSITY ESTIMATION AND

TESTING FOR "WHITE NOISE"

by

Emanuel Parzen

Statistical Science Division
State University of New York at Buffalo
Amherst, New York 14226

Abstract

We demonstrate how many basic statistical inference problems (including
the non-parametric one sample and multi-sample univariate and multivariate
inference problems as well as time series problems) can be formulated as a
hypothesis that a suitable distribution function D(u) , O < u < 1 satisfies

D(u) =u, 0<ucx<l.

From the data one can construct a raw estimator B(u) of D(u) , which
has the property that asymptotically (as the sample size tends to ®), under the null
hypothesis that D(u) =u , Jq; {B(u) -u} , 0<ux<1l, is a Brownian bridge
stochastic process. A conventional statistical approach would be: test the
hypothesis D(u) = u by examining the significance of the deviation from

zero of various functionals of D(u)-u .

The time series theoretic approach is to consider the density

d(u) =D’(u) , 0<u< 1, and the Fourier Stieltjes transform

%
Research supported by the Army Research Office (Grant DA AG29-76-G-0239)
and by the State University of New York at Buffalo (sabbatical leave).
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. o) = [ MW a4y v=0,%1,...
0

~

and to estimate them. Raw estimators are given by d(u) = D'(u) , and

- AT
[ ™ty v=0,%1,...

o(v)

Usually d(u) is a very wiggly curve; one then seeks a smooth curve d(t)

which is a good (or "best") estimator of d(t) .

To test whether D(u) =u, 0 < u=<1, one could test equivalently
whether ©(v) =0 for v # 0 (for example, by plotting |6(v)12 as a
function of v =1,2,... and determining if any of them are significantly
different from zero) or whether d(u) =1, 0<us< 1l (for example, by
determining if the divergence of the smoothed density

1

A= {du) -1} log d(u) du
0

is significantly different from zero).

~

A method of estimating d(t) without making any prior assumptions about
its behavior can be obtained using a time series prediction theoretic auto-

regressive approach. The "time series identification" problem is to determine

if there exists a difference equation of suitable order m which the sequence

@(v) satisfies:

' CP(V)+81€D(V-1)+...+amco(v-m)=0, Vo= L2

= y




where a % 0 . Then to test whether D(u) =u , 0 < u< 1, one could test
whether m = 0 . I call the problem of estimating m the problem of order

determination of an approximating autoregressive scheme. I propose a function

of m (called CAT (m) , for criterion autoregressive transfer function)
which can be computed from the data and is used to estimate the best order m
as follows; take m to be the value ,; at which CAT (m) achieves its
minimum value. When ; = 0 we could accept the hypothesis that D(u) = u

or equivalently d(u) =1 ; when m > 0 the value of m 1is used to form the

'optimum" smooth estimator d(u) of d(t)

When testing the fit of a model it scems desirable to use a test which
indicates how to fix the model when it is found not to fit. To adapt an
aphorism, such a model-testing procedure is said to have "the seeds of its

own construction (rather than only destruction)."

Preface

The typical problem facing the applied statistician (the applied statistics
problem?) has been described [Easterling (1976)] as follows: "“given some data,
including information about how the data were obtained, what probability model(s),
including parameter values, can be found which adequately explain, or describe,

the data?"

I would call the foregoing a statistical science problem, and would

describe it succintly to be: "model probabilities from data." A routine
applied statistics problem could be formulated: "infer parameters of proba-
bility laws from data." Statisticans might not disagree that the aim of

statistics should be to model probabilities by identifying (rather than




assuming) their probability laws but they might doubt whether such an aim

can be realized in practice, especially with small samples.

The aim of this paper is to propose an approach to non-parametric

statistical continuous data science which seems to be consistent with the

conventional theories and methods of non-parametric inference but seems to
point the way to universally applicable procedures (for continuous data) which
are asymptotically as efficient as the best conventional goodness of fit and
parameter estimation procedures available for each particular problem. We
have programmed the methods described and found them successful in test cases.
However, in the space available to this paper we are only able to discuss (with-
out proofs or examples) '"Chapter 1" of our work which outlines the "ideas" :
how the basic general applied problems of statistical inference can be formu-
lated as problems of estimation of distribution functions on the unit interval
(or the unit hyper-cube), how such problems are more fruitfully treated as
density estimation problems, and how to solve density estimation problems

one can use the method which is the essence of the highly successful maximum
likelihood method of parameter estimation: using a suitable information-
theoretic divergence distance between densities, find the '"smooth" density

which is closest to a "raw'" estimator of the density.
closest y




Chapter 1

DENSITY ESTIMATION FORMULATION OF BASIC STATISTICAL
INFERENCE PROBLEMS

The aim of this chapter is to introduce a single canonical problem to
which one can transform many basic statistical inference and statistical

data analysis problems. This canonical problem is most simply described as

the problem of testing for white noise via density estimation or smoothing.

We first state some of the inference problems which we seek to unify.

One-sample (univariate) inference problems. Let xl,...,xn be i.i.d.

(independent identically distributed) random variables with common a.c.
(absolutely continuous) d.f. (distribution function) F(x) and probability
density function f(x) . One seeks to efficiently:

(i) estimate f(x) non-parametrically (without making any prior
assumption about its functional form)

(ii) test for a specified probability density fo(x) whether there

exists constants 1 and g such that

£(x) = %fo(%ﬁ), F(x) = FO(X—;—B> :

(iii) estimate the parameters y and O (called location and scale

parameters).

Two-sample (univariate) inference problems. Let X

1""’Xn be i.i.d.
with common a.c. d.f. F(x) and let Yl""’Yn be i.i.d. with common a.c.

d.f. G(x) . One seeks to efficiently:
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(i)  test whether there exists constants p and o such that
= sl ERY
Sk b( a + °
(ii) estimate py and O .
One-sample multivariate inference problems. Let
5
X = o
X4

be a random vector with absolutely continuous multivariate distribution

function F(xl,. .,xd) and density f(xl,...,xd) ;  let 51""’Kn be a
random sample. One seeks to efficiently:

(i) test whether the components Xl" .,Xd are independent random
variables,

(ii) estimate the multivariate density f ,

(iii) estimate the

u(xl,...

In addition, there

multi-sample multivariate

regression function
0.4

Xqp) = EIXg[X) = x ...

are multi-sample univariate inference problems and

inference problems concerned with the equality of

many distributions; however, they are mot discussed in this paper.
A CANONICAL PROBLEM (OF DENSITY ESTIMATION AND TESTING FOR CONSTANT

DENSITY) :

"optimal" estimators D(u), d(u), o(v) of unkpown functions D(u) , d(u) ,

One seeks to form, from '"raw" estimators D(u), d(u), o(v) ,




©(v) where (i) D(u), O0<u=<1, is an absolutely continuous distribution
function on the unit interval satisfying D(0) =0 , D(l) =1 ;
(ii) d(u) = D'(u) is its density function satisfying log d(u) and

d_l(u) are integrable functions on 0 < u <1 ; (iii) o(v) 1is the Fourier-

Sticltjes transform

- 21Tiuv
o(v) = J‘ e dD(u)
0

@
satisfying conditions such as p \w(v)l < «© and more generally for some
[se] V= =0
r>0 B |v["lew|’ <= .
V= =%

One often defines D(u), d(u), ©(v) so that a "mull" hypothesis is

equivalent to '"white noise" in the sense that the null hypothesis is equiva-

lent to the following three equivalent conditions:

i

D(u) oy a0y

dfu)y =1 , 0=susl ;

©(v) =0 for v # 0

The raw estimators are usually obtained in practice by forming first

either D(u) or @(v) . Then the other is formed to satisfy

> 1 . w
p(v) = I eznluvdD(u)
0

A _CANONICAL SOLUTION (OF DENSITY ESTIMATION AND TESTING FOR A CONSTANT

DENSITY) : Often from the observed data one can form a number N of values




dj where j = 0,1,...,N-1 which represent the jumps at the points j/N in
the unit interval 0 < u < 1 of a raw distribution function D(u), 0 <u<1.

~

The Fourier transform (v) can then be found by

N-1 .
o(v) = Y d, exp (2TTivl)
s j N
j=0
Based on (+) one computes a criterion (called CAT) which determines smooth

estimators S(U) , D(u), o) .

Conventional statistical methods test the null hypothesis HO : D(u) = u

by examining the deviations from zero of D(u) ~u or ©@(v) . We accept Ho
if d(u) =1 or if d(t) 1is not significantly different from zero using the

divergence

~ 1 Lo ~
o = [ {d(u) -1} log d(u) du ;
0

otherwise d(t) provides an estimator of d(t)

The aim of this paper is to show how to formulate diverse statistical

questions so that their answer is provided by the foregoing '"solution."

New parameter estimation criteria (which generate old familiar estima-
tors in cases where they should) can be formulated using the above structure.
In parametric inference one assumes a family of possible probability laws
specified by probability density functions f(x,f) indexed by a parameter
8 ; to each @ one can determine a corresponding deansity de(u) SN R,

where the subscript @ indicates that it is a function of the parameter 9 .




Define the (raw) information divergence [compare Kullback (1958)]
'

1 N
J(g) = - log d.(u) dD(u)
! 6

The proposed estimator of 6 (called a minimum divergence estimator) is the
~

value 6 at which J(8) achieves .its minimum value. Maximum likelihood

~

estimators 8 of a parameter g from a random sample can be defined as the

values minimizing a criterion of similar form, namely

- , L
L(p) = J_’m - log £(x,8) dF (x) = -= i§1 log £(X,,0) ,

where Fn(x) is the empirical distribution function. It appears plausible
that a theory of minimum divergence estimators can be developed which would
parallel the theory of maximum likelihood estimators (including robustness
considerations, which correspond to integrating log de(u) over a sub-interval

esus<l-¢g).

Another criterion useful for forming parametric estimators from densities

defined over the unit interval is: choose 8 to minimize

1 1 o
H(g) = log d,(u) du + {d (1)} ~ dp(u)
[ 108 4 [t

When applied to finite parametric normal stationary time series models, this

criterion generates asymptotically efficient estimators.

When criteria yield equivalent results, we should suspect that they are

calculating essentially the same thing; I believe one can show this to be the

- HI,_,___J;
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10

case here in the sense that log likelihood of the "sufficient statistics' is
asymptotically (and up to a constant multiplier) equal to J(f) in the two
sample and multivariate cases, and equal to H(§) in the one univariate

sample and univariate time series cases.

The non-parametric estimators d(u) which we propose for d(u)
are called autoregressive estimators; they are approximators to d(u)

expressnd in terms of a parametric family of densities de(u) of the form

. s =5)
ek T oF ameznluml

Ll
dg(u) = o,ll +ae

2 . . :
for parameters tn,om ,al,...,am to be estimated. Autoregressive estimators
are easily evaluated at all u in 0 < u < 1 , and easily provide estimators

of derivatives and integrals of the density d(u) .

1. One Sample Statistical Inference

To identify the continuous distribution function F(x) of a random

sample xl,...,xn one should form first the EDF (empirical distribution

function)

n
Fn(x) = %JE e(x-Xj), ~eL<x <o,

where




]
—
I~
rh
b
v
o

e(x)

In other words, Fn(x) is the fraction of observations less than or equal
to x . The inverse distribution function Fhl(u) (also called the quantile
function, in which case it is denoted Q(u)) of F(x) is defined by

Q(u) = F_I(U) = dnf fx : Fx) 2u} , 0=xuszl

The quantile function has the basic property FQ(u) = u . The EQF (empirical

quantile function) is defined by

Qn(u) = F;l(u) = inf {x : Fn(x) =24l , ODz=swu=z1

We show that it provides a powerful approach to test the hypothesis
H0 : F(x) = FO(Ei;E) for some real  and © > 0 where Fo(-) is a
specified distribution function and y and © are unknown parameters

(ultimately to be estimated). In terms of quantile functions one can express

Ho as follows:

110 : Qu) = +0Q0(u) for some real H and 0> 0

To prove this formula for Q(u) , write x = Q(u) iff F(x) = u iff F0(5i95)= u

1e8 E=F = ) .
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The existence of the derivative f(x) of F(x) implies the existence

of the derivative, denoted q(u) , of Q(u) . Further F(Q(u)) = u implies

£(aw) aw =1

We call q(u) the quantile-density function and introduce the density-

quantile function

W = tlow) .

For any p in 0<p<1l apnd u in 0<u<1

u
Quw) - Q(p) = [ q(s) ds
P

Therefore the hypothesis “0 is equivalent to the hypothesis H(; defined in

terms of quantile-density functions or density-quantile functions:

H(; : q(u) = qu(u) for some 0 >0
or
’ M |
HO : fQ(u) = g foQo(u) for some 0 >0

The concepts are now all assembled to show how to formulate the classic

goodness of fit problem (testing HO) as a density estimation problem.
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Define
D(u) = J:foqo(s) dQ(s) = j(')u fo%‘():—)s—) ds
D(u) = % J;ufOQO(s) dQ(s) = % {)u f%:—) ds
defining
0, = j: f?g%j) ds

The null hypothesis H(; is then equivalent to Oy =0, B(u) = Ou and

D(u) = u .,

Natural "raw" estimators are

~ t
D(t) = [ £0,(8) da_(s)
0
w ~q ot
D(t) = o5 [ £,Q,(s) da_(s)
0
defining
~ - 1
Gy = j;) £0Q0(s) dQ_(s)

These formulas are easily computed in terms of the order statistics

X(1)< X(2)< eee < X(n) ’
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which are the values xl,...,xn rearranged in increasing size, since explicitly

the EQF Qn(u) is given by

Qn(u) = X(O) for u=20
= X(j) for' ;ﬁl <u < g G = 15eeasm)
- n+l
X(n+1) for 1 <uc< =

where X(O) = XL and X(n+1) = XU are values (which could be -= or =)
representing our prior judgment of the lower bound and upper bound of the
probability distribution. Note Qn(u) is a piecewise constant function with

X

jumps at j/n , 1=0,1,...,n, of size X )= Xy,

Spacings. If Xl,...,Xn is a random sample of a continuous random
. . . . < .
variable X , with order statistics denoted X(l) < X(z) < G X(n) s AES

spacings are defined by [compare Pyke (1972)]

95,0 ~ n(x(j+1)- x(j)) > F =0l sni=l

where X(o) is a suitable chosen finite number, and its modified spacings

are defined by

= £0. (4 - .
dj,n f0Q0<n,\'qj,n s j 0’1)“"“' 1 ’

where foQo(U) is a specified density-quantile function.
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Non-parametric raw estimators of the distribution function F(x) and
quantile function Q(u) are Fn(x) and Qn(u) respectively. The spacing

q is a difference quotient of Q(u) at y = j/n and, therefore, can be

j,n
regarded as a raw estimator of q(u) at u = j/n . However, (q, = is not

b

by itself a consistent estimator of q(%) .  Consistent (and perhaps

Yefficient") estimators of q(u) can bec obtained using time series theoretic
methods. More importantly our methods of estimation of q(u) , and therefore
fQ(u) , yield not only their values at individual points u , but also various

functionals (including derivatives and integrals) which are needed for adaptive

and robust statistical data analysis.

These methods extend readily to censored observations and subsets of
order statistics; therefore they have applications in biometry and reliability

theory.

Our approach to solving the basic statistical inference questions
given a random sample Xl”"’xn can now be summarized as follows:

1. To non-parametically estimate the unknown probability density
function f£(x) first non-parametrically estimate the unknown density-quantile

function fQ(u) through estimating the ratio

o £, (w)
£Q(u)

where fOQO(u) is a specified density-quantile chosen to ''guarantee’ that

d(u) have various integrability properties whose necessity will arise in

the course of our theoretical development.
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2. To test whether a specified fo(-) is the true probability density
(up to location and scale parameters 1 and ¢ ) choose the corresponding
density-quantile function fOQO(u) as the function to be used in forming
from spacings raw estimators B(u) and ;(v) and tests of the hypothesis

that the density E(U) is a constant function.

~ ~

3. To form efficient estimators | and O of the location and scale
parameters it suffices to know (or to have estimated) fOQO(u) and Qo(u)
since then one treats the estimation as a problem of regression on a continu-
ous parameter time series using the fact that, as n -» @ ;| the asymptotic

distribution [compare Shorack (1972)] of
o QR (w - AT = VT 2 £ e (W) - - Q) (w}

is the Brownian bridge B(u) which is a normal zero mean stochastic process
~
with covariance kernel E[B(s) B(t)] = min (s,t) - st . Estimators i and

0 are then of the usual regression analysis form [compare Parzen (1961), (1970)]

Q>
L]

The information matrix Inf0 is defined by

P

< £5Q0 » £y > < £5Qy » Q(£Qy) =

!
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in terms of a (reproducing kernel Hilbert space) inner product

1 1
<f,g> = [ £7t) g’(t) dt = - £7(t) g(r) de
0 0
between differentiable functions f(t) and f(t) satisfying f’(O) g(0) =

£7(1) g(l) = 0 . The statistics T .are_linear combinations of order statis-

tics found as follows:

T W R

"

1
-fo Q (£) £Q0(L) (£,00) () dt

B0 = S0E0,) .9 G >

1
-IO Q (1) £,00(£){Q(£,0) 1" () dt

Explicitly,
n j =
= = A=t
™ B ) - G5
" &
W) = = £Qu()(£R) (s) ds
’
ML) = £aq) (w) I




18

u
W_(u) = fo £0Q(){Qy(£0)} () ds
MO = 35 + Q) W) .

The function Jo(u) is defined by
Jow) = -2 £q (u)
0 du 0°0

and is called the score function. It plays a basic role in the theory of non-
parametric estimation, and is most easily estimated using the fact that it is

the derivative of the density-quantile function, rather than the formula

) |t
Jglu) = - go((?o(u)) - 'fo(F(-)l(u))

A list of density-quantile functions and score functions of familiar

univariate continuous probability laws is given in Table T.
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2. Tests for the Equality of Two Distributions

This section introduces a density estimation approach to non-parametric
tests of the hypothesis HO that two independent samples (a random sample

}(1,...,X.m of a continuwous random variable X , and a random sample
Yl""’Yn of a continuous random variable Y ) are drawn from identical
populations in the sense that X and - ¥ are identically distributed; in
symbols,
¢ Box) = i o < CIa
H0 Ex(x) FY(x) for all x in -« % <
Onc way to define a distribution function D(u), 0 < u <1 such that

is equivalent to the hypothesis no: D(u) =u, 0=<u<1l, is to define

H 0

0
D(u) = FX(QY(U)> or  D(u) = FY(QX(U)>

Such statistics remain to be investigated. A statistic which corresponds to
currently used tests of HO is obtained by defining

H(x) = MF (x) + (1- 1) F (x)

where ) 1is the limit of Eﬁ%;‘, the fraction of X wvalues in the combined
samples of X and Y values. In words, H(x) 1is a mixture of the distri-

butions of X and Y .

Denote by Fx (x) and F (x) the EDF of the X and Y samples,
,m Y,n

and let HN(x) be the EDF of the combined samples of X and Y wvalues,
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where N =m + n . Then, defining XN = % s

HN(x) = kNFX’m(x) + (1 - XN) FY,n(x)

Since Fx(x) = FY(x) = H(x) wunder HO , one can test this hypothesis

by testing the uniformity of

D(u) = Fx<n'1(u)> 4 0<u=s i

whose natural raw estimator is

B(u) = Fx’m(nl'ql(u))

This approach can be readily extended to testing the equality of k samples

of random variables Xl,...,Xk , 1f one considers for j =1,...,k ,

Dj (u) = ij (H'l (u))

where H(x) is the distribution function of the combined sample.

Now H&l(u) is a piecewise constant distribution function whose value

in the interval (Eﬁtl ,Ej is the k-th value in the combined sample. There-

fore, for j =1,...,m-1

. R(X, . ) -1 R(X,, . ) -1
D(t) for —-—(-b})———<us——-(l;—l)——-—

R(X, . -1
-« 1 for ———(%Ls\.<1
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where R(Xi) is the rank of Xi as a member of the combined sample
XI,...,Xm ’YL""’Yn . In words, D(u) is a piecewisc constant distribution
function with jumps of size 1/m at all points u of the form

u={R(X,.)-1YN, j=1,2,...,m.

(i)

The Fourier transforms

1
2Tiuv

o) = [ " Vdb(u)

0
have natural raw estimators
- : 2Miuy
o) = [ e dp(u)
m R(X,.,)-1
== E exp {2miv -—$§l*—~—}
J=1
Many statistics (denoted TN , where N =m + n is the total sample

size) which have been suggested to test HO are linecar combinations of the

rank-order statistics R(Xi) . Chernoff and Savage introduced a representation

for linear rank statistics in a pioneering paper (1958):

3
|

g = m _L SNMUNCON RSN

m R(X.)
zJ (-N1>

i=1 N\

]

where JN(t) is a score function which tends, as N - ® , “suitably" to a

limit J(t) . The foregoing representation of TN may be written (by




suitably defining JN)

1 o
T =m [ J (u) dd(u)
N N
0
Let us show how test statistics of this form arise from our point of view.

To test the hypothesis

HO :d(u) =1

against a simple alternative

Hl : d(u) = dl(u)

where dl(u) is a specified function one can show that an asymptotic likeli-

hood ratio test statistic is the "correlator"

j ~
R, = [ {a;(t) - 1} do(e)
0

Now suppose that the alternative family of densities is denoted de(t)

to indicate that it is parametrized by a parameter 6 ; suppose we have the

expansion

de(t) = 1+008(t) for O near zero
where

8(E) = %de(t) S

22
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The "correlator" statistic Rl as a likelihood ratio statistic for testing

H1 against HO is then equivalent to the linear detector

1 2
Ry = [ 8¢t) dn(e)
0

for € near zero. By a direct calculation of d(u) below we show that to

I

test Ho s Fx(x) = FY(x)

F(x) against the alternative
. ESaRt =0 TR - e
Hl . Fx(x) F(x), FY(x) F(x )

the best test for 6 close to 0 is based on the statistic R6 where

6(u) =-(1-%) J(u)

where J(u) 1is the score function

I = -4 fQ(w)

Assume that the density £(x) is a symmetric function of x ; then

1 1 9
EG[Rél = ‘2 O(u) d(u) du = 9‘% 67 (u) du

I

: 2
8 J;) (1 =3)° 2t du

so that an approximately unbiased estimator of 0 is ]
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1 1

8 = IRRICY an(u) + (1- 3 I 3 (w) du
0 0

whose variance may be shown to be approximately equal to
2 iy o
var (8) = §Ia@-% [ 37(u) du)
0

which is also the variance of the maximum likelihood estimator.

is used to test whether the location

®

parameter © equals O , one accepts this hypothesis (for large sample

When the linear detector R

sizes N) if
s aioy
% 2 2 A{ [ 8(t) dpn(r)
N = 0

* 7 1
N var (p ) N Var (Ré) (1_ X).f 52(t) de
0

is below a suitable threshold (one can argue that the threshold is a number

of the form C/N where C is often 2 or 4). I am proposing that instead

of R6 one use a non-parametric estimator A of the divergence

2 3 Lo
A = J;{dem)-l} log d (u) du = ¢ %am de s

* *
if ¢ were estimated by § , let A be denoted by A :

1 = 2 1
2= | sy aneey|” = [ 87 (t) dt
0 0

It seems plausible that the proposed "universal" test of the hypothesis § =0

3>
~

which accepts it when p is below a suitable threshold of the form of C/N
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- (for a suitable value of the constant C), would perform as well as the best

test of the form of R, since it appears to be asymptotically calculating

&

(up to a constant multiplier) the same statistic!

To calculate 08(u) we must calculate the density de(u) corresponding

to the canonical distribution function
D (u) = Fu‘l(u)
] 0

where

He(x) = XFX(X) + (1-Q) FY(X) = A\F(x) + (L-)X) F(x-8) .

To establish a formula for de(u) we obtain from the defining equation for

De(u) that

H F-lDe(u) = u ,

()
whence
u = AD(u) + (1-X) FQdg(u) - 6)

where Q(u) = F-l(u) is the quantile function. Differentiating with respect

to u

T ———



26

L= Mg(w) + (1-2) £@y(t) - Dy (@) ()
whence

lag1™ =2+ -1 r@g@ - 0) (o)
Differentiating with respect to 0 :

-{de(u)}'2 5% dg(u) = (1-2) £(@Qg(u) - 8) q'(De(u)> 3% Dy (u)

’ )
+ -1 a(ny) £/ @gw) - Hla(v,) 55 Dy - 1)
Setting 8§ = 0 and using the identities q(u) f'(Q(u)>= (fQ)'(u), £Q(u) q”(u)

+ (fQ)'(u) q(u) = 0 , one obtains the desired conclusion: d5(u) = ~-(1-)) J(u) .

To test a scale parameter ¢ , one considers alternative hypotheses
G(x) = F(xf) , where 8 =1 represents the null hypothesis. Using the fore-

going argument one can show that

8(u) = -(1-0{Quw) fQ(u)}’
= (1-0{Qu) J) -1}
Asymptotic variance of linear rank statistics. In terms of the

canonical distribution function D(u) and its density d(u) , we can obtain
rather simple formulas for the asymptotic variance 02 of the linear rank

statistics of the form

1

B = joJ(u> ap(u)

which satisfy the conditions of the Chernoff-Savage theorem (1958);




1
ﬁ (’I‘N-p) is asymptotically N(O,oz) where | = J‘ J(t) dp(t)
0
2 i
°° =2 [ [ dsdte(t-s) 3'(s) J'(t)
00

/
{_f}‘k (s - kD(s))/\l -t- )\<1 - D(t)>> d(s) d(t)

+ 1 p(s) (1 - n(c))(l - 2d(9) (1 - M(t))]

Under the null hypothesis D(u) = u

1
uo= J(t) dt
)
2 I~ 11 ’
o = 2 X ffdsdte(t-s)J(s)J'(t) s(1-t)
00

1

1
1 -\ 2
= (==& {ge) - [ J(s) ds}” ac
(x)fo J;, e

. . 27Ti
An important extension of these results is to J(u) = e RN o

obtains that under the null hypothesis of independence, {p(v), v

are asymptotically independent N(O,-l%)

27
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3 Tests for Independence, Multivariate Density Estimation, and

Non-Parametric Regression

When the data consist of a random sample 51""’Kn of an m-dimensional

random vector

X1
X = | :
&
it is often of interest to test the hypothesis Ho s Xl,...,Xm are independent

random variables.

Let the joint distribution function and probability density of X be
denoted by F(xl,...,xm) and f(xl,...,xm) respectively. Let its marginal
distribution functions and densities be denoted by Fk(xk) and fk(xk)

Note that fk(xk) is the probability density of the k-th component Xk
Corresponding to each density fk(xk) there is a quantile function Qk(uk) A

and a density quantile function kak(uk) .

The hypothesis Hy that the components of X are independent can be

expressed
HO . F(xl,...,xm) = Fl(xl) ...Fm(xm)
Equivalently,

Ho 3 F(Ql(ul)""Qm(um)) = Uy e up
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Define
Dlup,epu) = FQCup), Q)

it is the joint distribution function of the uniformly distributed random

variables

1 1 m
B = e, e 0 Fm(x’“)

We shall test HO by estimating the joint density function

d(ul,...,u ) = 5;-_TTT§G; D(ul,..,u )

£ o))
fIQI(ul)"' mem(um)

Note that in the case of a multivariate location and scale parameter

family of probability densitics

K, - M X -
£y pre %) = X i 50 T R “‘)
01 On 01 Om

each marginal density is of the form

X, = u
%
£ (5) = fk( >

Ok

and the individual quantile functions are of the form
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b 0
Q (u) = b + Q. (w)

Therefore

0/.0 0
F (Ql(ul) 2 ’Qm(um))
- £0Q0u )

m m

0.0
f1Q1(t1)"

Therefore the density d(ul,...,um) does not depend on location and

scale parameters and is a measure of association or dependence. In particular

d( u is identically equal to 1 if and only if all components of X

Upsees m)
are independent. An overall measure of association can be defined by the

divergence

3! 1
A = J6 ...‘% {d(ul,... ”ﬂn)- 1} 1log d(ul,..,um) dup ...dug

We call: d(ul,..,um) the regression-density of X ; A the regression-

density-divergence; D(ul,..,um) the regression~distribution function.

For the bivariate normal distribution with correlation coefficient p ,

the regression density is given by
-% = SR 2 . 2 . 5
d(s,t50) = (1- %) exp [{-2(1- oD} {|p2 ()| + o8 () |* - 2087 (s) 2" L() ]

and the regression-density-divergence is given by
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For a multivariate normal distribution with correlation matrix R (that is
R is the matrix of correlation coefficients between the components of the

random vector) the regression-density-divergence is given by

To estimate regression-distribution D from a sample of size n we

use the natural raw estimator

D(uy,..,u) = Fn(Ql’n(ul),...,Qm’n(um)>

where Fn(xl""’%n) is the empirical distribution function of the n random

vectors 51,...,§n , and Qk,n(uk) is the sample quantile function of the k-th

components of these vectors.

Define the Fourier-Stieltjes transforms

. 1 1 2Tﬁ(v1u1+...+vmum) "
m(vl...vm) = J‘ ...‘f e dD(ul,...,um)
0 0
1 1 2mi(v,u,+...4+v u )
= 11 m m
w(vl,...,vh) = J' ...‘r e dD(ul,...,um)
4] 0
1 1 2mi(vou +. . .+v u )
=d s ] e "3 T d(u ) d d
o b 120 eoYy) dugp...du -

It will be shown in the sequel that D tends to D and @ tends to

@ (as n ? «) therefore we can form (using time series theoretic statistical




32

~

methods) estimators d that tend to d , which can be used to test whether

d is identically 1 (which is equivalent to the null hypothesis of indepen-
dence). The multivariate case discussed in this section secems to me to
demonstrate the power of reducing statistical problems to estimation of
densities. 1f the only statistic one works with is the distribution function
nn(ul"'°’um) one is confronted with the difficult task of testing whether it
is significantly different from the uniform distribution function U,

Then if one flunks this test, and rejects the assumption of independent com-

ponents of the random vector X , one has no means of modeling the dependence.

The empirical regression-distribution function D(ul,...,um) is a

purely discrete distribution which assigns mass 1/n to the n points

R (X)) -1 R () - 1
—‘——ﬂ'———-,...,-E*—:¥“—~— which are the rank vectors of the n random

vectors (Xﬁ,...,X?) for 3§ = L,....m 5 here Rk(Xg) denotes the rank of

k k k
Xj among Xl""’xn 0

Asymptotically our conclusions are unchanged if we take as our raw

estimator D(ul,...,um) of D(ul,...,um) the purely discrete distribution

R (xD & (X)
function which assigns mass 1/n to the n points ————l—,...,-EL~J— >
n n
then the raw estimator of w(vl,...,vm) is
5 ; ® Rl(X%) R (X) 1
w(vl,...,vm) = j§1 exp §2mi vl*—j;l— i o R vm——;rl— /’

In the two-dimensional case (m = 2) we denote the observed data by

(Xl,Yl),...,(X“,Y“) . Then the n jump points of D are of the form

B LR
(i ,73) where Rj is the rank among the Y's of that Y-value corresponding




to the X-value with rank j . The well-known rank tests for independencc

(see Hajek (1969)) may be expressed in terms of the vector Rl""’Rn as
follows:
n
Spearman test S = ¥ jR,
o d
J
n
Quadrant test S = 2 e(R,-in-1)
i2Ln+l J
n
Kendall rank correlation coefficient K= % Z e(R, - Ri)
§=1 =14

Thercfore one may readily establish the connection between our time series

theoretic approach to tests for independence and conventional tests.

33

To test the hypothesis of independence (regression density identically 1)

one may be willing to assume a family of alternative hypotheses indexed by a

parameter @ under which the regression-density may be represented
d_(u

g 1,...,um) =1+9¢ b(ul,...,um)

for @ close to 0 . Then an asymptotic likelihood ratio statistic for

testing independence is

In the case m = 2
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The regression-density function of the bivariate normal distribution,

denoted dp(ul,u ) , is a function of the correlation coefficient p such

2
that

) o Y(3)

-]
I
2 |
8 =)
Rs)
1
o
~
3 |

as an optimum non-parametric statistic for testing independence against
bivariate normal dependence. The statistic R6 is the Fisher-Yates or normal
scores statistic well studied in the theory of non-parametric statistics. The

Spearman and quadrant tests are linear rank statistics corresponding to the

weight functions

Spearman 6(u1,u2) = u,u

172
W o gk
Quadrant 6(u1,u2) = e(ul- > n) e(u2 2 n) y
T L
K is a linear function of f I D(u,v) dD(u,v) .
00

The concept of minimum divergence estimation (defined in the introduc-
tion to this chapter) can be illustrated in the present context. To estimate

the correlation coefficient p of the bivariate normal distribution, the
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~

minimun divergence estimator p 1is the value p at which

11 o
J(p) = .g.% - log dp(ul,uz) db(uy,u,)

~

achieves its minimum. By solving J'(p) = 0 one may show that 0 = Rb :
Kimeldorf and Sampson (1975) list parametric bivariate regression-

densities corresponding to various multivariate distributions; one could

estimate their parameters using J and H divergence functionals of D(ul,uq)

~

Multivariate Density Estimation: An estimator d(ul,uz) leads to an

estimator of f(xl,xz) , using the relation
£l )y @,0up)) = £,0,(u)) £0,(u,) dCuyu,)

Nonparametric Regression: An outstanding problem of statistics is

the estimation of the non-parametric regression of X2 on X1 in the sense

of the conditional mean

©

E[X2]X1 = x1] = ‘[m xzflexl(x2|x1) dx2

G f(xl’XZ)
J g £(x)) dx,

By making the change of variable x2 = Qz(uz) or u, = Fz(xz) , we obtain
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1 f(x_,Q, (u,)
ol i 222 .
E(X, X, = %] .% Q, (u,) £ g5 (u,) du, 3

this formula can be rewritten to yield the following remarkable theorem.

Theoren: (Regression-bcnsity Formula for Conditional Expectation

and Non-Parametric Regression)

1

E[x2|x1 = Q(ul)] = J; Qz(uz) d(ul,uz) du2

which justifies calling d(ul,uz) the regression density; note that

£(Q (6,0, (n,))
£, () 5,0, ()

d(up,u,) =

If one estimates Q2(u2) by the empirical quantile function Q2 n(u2)

’
the corresponding estimated conditional expectation is

A | n Ij/n ~
E[X,|X, =Q(u,)] = % x_ . d(u,,u,) du
‘L 1 jo1 243 (-1)/a 3% 2
n ~ j A J - 1
) j§1 X 410y (“1’E>' Dl(ul’T)

~

where Dl(ul,uz) is an estimator of

Ya

’ ¢t _ 2
Dl(ul’UZ) = fo d(ul’UZ) du2 =

5;; D(ul,uz)

The approach to non-parametric multivariate density estimation and

L il
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non-parametric regression outlined above (whose theory and practice remains to
be investigated) appears to show that one can estimate regressions without

estimating probability laws'

One oftenprefers to calculate regressions as conditional quantile
functions; then one can proceed as follows. An expression for the conditional

distribution function of X2 given Xl is

u

2
F ,(x,1x,) = d(F. (x ),u') du’
lexl 2‘ 1 IO el 9 2

where u, = Fx (xz) . It follows that the conditional quantile function of
2

X2 given Xl is given by

N Sl
szlxl(p\xl) = QyD; " (Fy(x;),P)

In words, the conditional quantile function equals the unconditional quantile

function QZ(U) with a change of variable u = Dil(FX(Xl)’p)

)

While we recommend Fourier theoretic methods of estimating Dl(ul,u2
it should be noted that a quick and dirty estimator can be provided by a

"naive k-nearest neighbor" estimator
* n 23 k ' k
Dl(ul,uz) o {D(u1 + o ’UZ) I)(ul- - uz)} .
To understand the dramatic nature of our approach to non-parametric

regression imagine a scatter diagram of points (xi’Yi) 1 = dgdecuinn 3nthe

plane. One seeks to fit a smooth curve y = g(x) through the points. A

T —.——
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typical criterion of curve fitting might be to: find g to minimize
|
‘ n b
‘ i 2 m 2
= 5 (5 -2} + [ e )(x)\ dx
B sey J
a
where g(m) is the m-th derivative of g assumed to exist over some specified

interval a to b . The solution is then a polynomial spline of degree
2m-1 [see Wahba (1976)]. Rather than choose a function g by such an
optimization criterion (which is inevitably ad hoc and still requires one to

specify A\, m, a and b) we are proposing that one adopt as one's '"optimal

smooth curve'" a curve of the form

. 1 ~ ol
y = g(x) = j;)QY(u) d(Fy (x),u) du

where QY(U) is an estimator of the quantile function of the Y-values, Fx(x)
is an estimator of the distribution function of X-values, and d(s,t) 1is the
estimated regression-density function. How does one explain to a numerical

analyst what are the optimizing properties of the procedure we are proposing?

Multi-dimensional non-parametric regression: The foregoing results

can be extended to multi-dimensions. We state only a formula for the conditional

expectation of X.m on Xl,..

E[X [X; = Q(up),eee,X 3 =Q 4 (u )]
1 (- (A (TR )
= moL m
- .& Qm(um) dm-l(ul""’um-l) duy,




wlere

" £(Q (a0 ()

diiu s S =
m” 1L 0 lel(ul) e mem(um)

is the regression-density function of X X (and d
m m

density function of X

Jiass

1’“’Xm-1 ).

Asymptotic distribution of statistics of the form

limit theorem:

where

A n (Tn-p) is asymptotically N(0,0z)

11

ho= J‘[' J(s) K(t) dD(s,t)
0%0

S )
0 = j‘j‘ [V(s,t)|” dn(s,t)
0°0

13
V(s,t) = J(s) K(t) - [ [ J(u) K(v) dD(u,v)
0%

11

=1

T
n
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is the regression-

1!

3(s) K(t) d(s,t) .
j;)j;) s s

The work of Ruymgaart (1974) leads us to the following roughly stated

+ f f [e(u-3s) - ul J'(u) K(v) db(u,v)
00

11

+ II le(v-t) = v] J(u) K'(v) dD(u,v)
00
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Under the null hypothesis D(s,t) = st -

1 1
= [ 3 ds [ K(t) at
0 0
ol
2 2
"= [ [ |v(s,t)| ds at
00
1 1
Vis,t) = {3(s) - j J(u) du}{k(t) - j K(v) dv}
0 0
21iv_ s 2miv,t
Extending these results to J(s) = e , K(t) = e one obtains that

under the null hypothesis of independence {@(vl,vz) » VsV, T magt Be Ol

are asymptotically independent N(O,%) ¢

Joint distribution of the sample quantile functions of two dependent

random variables X1 and X2 . It has been noted in Section 1 that the

modified empirical quantile function deviations
Q p(w) = W ijj(u){Qj,n(u) - Qj(u)}

is asymptotically N(O,t(l— t)) ; further aj n(s) and aj n(t) have asymptotic

’ b

covariance s(l-t) when s <t . Weiss (1964) proves that asymptotically
Cov (Qj,n(S) ,Qk’n(t)> = Djk(s,t) wESEL T e St

defining
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Djk(s,t) = ij(QJ.(S), Qk(t)) 5

Using this result, one could obtain asymptotically efficient unbiased
estimators, from incomplete samples, of the common mean (1 of bivariate
normal random variables X and Y with unknown unequal variances and unknown

covariance (for other estimators, see Hamdan, Pirie, and Khuri (1976)).

4. Time Series Analysis and Autoregressive Model Approximation

The density estimation problem (which we claim is a canonical problem
to which one can transform many basic problems of statistical inference) first

arose in the analysis of stationary time series.

Let Y(t) , t =0, *1,%£2,,.. be a zero mean covariance statiomary

normal time series; its probability law is then specified by either the

covariance function R(v) = E(&(t) Ytk v)) , or the variance R(0) and the

correlation function

p(v) = %%‘é‘)l = Corr(Y(t),Y(t + v)) .

The covariance function has a basic mathematical property called

positive definiteness and defined as follows:

for any integer n , complex numbers CprevesCy s and indices VassanyW +

n
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This property implies that R(v) has a spectral representation which we

write

; 2miuv
R(v) = [ e dF(u)
0

where F(u) is a non-decreasing function with F(0) =0 . p(v) has a

spectral representation which we write

2Tiuv

3
p(v) = f e dF (u)
0

where F(u) is a distribution function (a non-decreasing function with

F(0) =0 and F(1) =1). We call F(*) the spectral distribution function.

In developing the statistical theory of stationary time series analysis
we always make the assumption that X lp(v)]-< @ ., Then the derivative
v
f(u) = F'(u) exists and is called the spectral density function; in terms of

f(*) we have the spectral representations

I1e2ﬂiuv

p(v) f(u) du ;, w =20, £1, £2,..4;

=2Tiuv
e

I
™8

£(u) plv) ; Bgasl |

V=@
Our notation should be noted; we use t to denote "time," v to
denote "lag" between two times, and u to denote "frequency" when its domain

is 0 s u = 1 ; when frequency has other intervals in which it varies it




is customarily denoted by letters such as @ and f and the intervals are
-m<w=<1m and -0.5<f < 0.5 . Note that, for a real valued time series,

f(u) = £(L-u) and g(v) = p(-v) .

The mathematical existence of f(u) is deduced from the fact that

p(v) is an integrable positive-definite function; the interpretation of £(u)

is deduced from the theory of linear filters.

To transform a stationary time series Y(+) to a new stationary time
series Z(+) , one generally uses linear time-invariant transformations
(called filters) of the form

o
Z(t) = X b, Y(t-]j) -
o 4
We like to introduce an operator (call it B since its coefficients have
. Define an operator

been denoted bj ) such that one can write Z(+) = BY(*)

L (called the lag operator or backward shift operator):
2(*) = LY(-)} ££f 2(t) = Y(e~- 1)

or equivalently LY(t) = Y(t-1) ; note L2Y(t) = Y(t-2) and in general

LnY(t) = Y(t -n) for any integer n . Introduce the power series
B(z) = X b, 23

Then we can write B = B(L) and Z(t) = B(L) Y(t) . We call B(z) the

211i
transfer function of the filter B(L) . Regarded as a function of 2z = e nxu,
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211
we call B(e TTlu) the frequency response function. The notation has now

been introduced to answer a basic question of stationary time seriecs modeling:

What are the properties of a time series Z(+) which arises as the output of

a linear filter B(L) whose input is a stationary time series Y(.)

Theorem. If Z(t) = B(L) Y(t) , where Y(¢) 1is a zero mean station-
ary normal time series with spectral density function fY(u) S OR<GR
then Z(+) 1is a zero mean stationary normal time series with spectral density
function fz(u) , 0su=<1, given by

: 2
e2n1u)l fY(u) :

£,(u) = |B(
Since many questions about a stationary time series Y(e+) can be
readily answered in terms of its spectral density function f(u) , it is

natural that the estimation of f(u) from a finite sample {Y(t), t = e e

4

should be one of the central problems of the theory of time series analysis.

~

Natural raw estimators p and £ are obtained as follows:

~ £ dn 2
plv) = & YE&) ¥(t+ v+ & Y (t)
t=1 t=]

~

while p(v) =0 for v2>T and p(-v) = p(v) ; one may show that

o 1 ~
o) = [ ™V e au,
0
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where

]

£(u) % e ok

|v|<:T

l ; Y(t) ezﬂitlll2
t=1 t

Y2 (t)

™ =

1

The convergence properties (as T - ) of these estimators are as

follows: p(v) = p(v) but f(u)- f(u) . Indeed, f£f(u) is in practice a

very wiggly function which behaves like white noise in the sense that f(ul)

and f(uz) are asymptotically independent for any fixed u % u The

1 2%
distribution of E(u) is asymptotically exponential with mean f(u) . This
is the point at which the modern era of time series analysis started (see,
for example, Tukey (1959)): how to pass from wiggly estimators ;(u) to
smooth estimators E(u) which are consistent (and, if possible, asymptotically

"efficient") estimators of f(u) . In practice one might use and compare

several estimators f(u) formed from the single finite sample of observations.

Three main approaches have developed for forming smooth estimators
which are called the direct approach, the indirect approach, and the auto-

regressive approach.

~
Each approach considers estimators or smoothers f(u) of a different
form:

(i) Direct approach

~ 1 ~
f(u) = [ K(u-s) f(s) ds
0
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for suitable kernels K .

(ii) Indirect approach

05 = 5 e-2ﬂiuv

V= -

K(v) p(v)

for suitable weights k ,

(iii) Autoregressive approach

. ; ~5)
21Tiu Bl ea eZTTlLunl

< 2
f =
(u) o) ]1 -+ ale

for a suitable integer m (called the order), and coefficients

Oﬁ, al,...,am which are estimated from the sample.

The extensive literature available on the properties of these methods

of estimating £(u) enables us to claim that we have successfully shown how

to transform diverse statistical problems to a problem (density estimation)

which has been "successfully" solved.

However, I would like to add a further claim; one can develop the auto-
regressive method so that it provides a "most successful" or "optimum" solution

of the density estimation problem.

-

The name autoregressive approach comes from the notion of an auto-

regressive scheme. One can show that the true spectral density f(u) 1is of

~

the form

f(u) - 0_2 g (e2ﬂiu)|

n 8




where

m

gm(z) =1 +(112 H +amz

iff p(v) satisfies the difference equation

p(V)+a1p(1-v)+...+0.mp(m-v) =0, v>0

iff Y(t) satisfies the stochastic difference equation
Y(t) +(11 Yt <)+ +(1mY(t—m) = e(t)

where the process ¢(t) obeys the conditions

2

E[G(t)lz o

0 (M) = E(e(c) e(t+v)) B fer vHAQ

E(Y(s) e(t)) =0 for s<t

A time series is called white noise iff its correlation function

o(v) =0 for V%O.

Modeling a time series by an autoregressive scheme is convenient




because one can then: (i) readily estimate the parameters of the model,
and (ii) solve the prediction problem: given the values Y(t),Y(t-1),...

to predict Y(t+ 1),Y(t+ 2),... .

To a general spectral density f(u) satisfying the conditions that
log f(u) and f-l(u) are integrable we can associate a sequence of auto-
regressive approximators fm(u) st = Qe First, fo(u) =1 3 to
define fm(u) for m > 0 introduce the minimization problem: let

Q be the values at which

Seiciedos
1,m’ ’“m,m

1

. e
Eseinga) = [ e e il e ezm“ml £(u) du

J
0 1 m

L

: p ot 2 S
achieves its minimum value, and let Om denote the minimum value so that

2800
Oh 4 Jm(c’l,m""’q'm,m>
Define
(Zih = L 2zl ot a5 2"
&n al,m e o('m,m :
The coefficients in gm(z) can be determined from the normal
equations
1 2Tiu -21Tiuv
I gm(e ) e f(u) du =0 , v = Lisve,m
0

which is equivalent to
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p(-v) +c,1’mp(1-v) ey +o.m’mp(m—v) =0

and
1

. 2
o> = [ e ™| £ au
0

1 21Tiu
f g (e ) f(u) du
g m

]

o8
p(0) + % gl -k -+ - p(m)
Conditions for the convergence of fm(u) to f(u) are stated in Geronimus

(1960); in addition to 1log f(u) and f-l(u) are both integrable we must

assume a certain sequence of partial correlation coefficients is absolutely

summable. One can then show that one can represent

£(u) = o |g (2™

8,(z) =1 top gzt +cmmzm+...

Estimators fm(u) of f(u) are easily obtained as follows. Let

~ ~

Qoo be the solutions of the sample normal equations

~ ~

p('V)+alp(1-v)+...+amo(m'v) =0, V.= e et
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Define
zi) = -+ (Al I

gm(a) 1 &, % + oz

o = o0} ¥ o U F vaw ® 10 plR)

k) 1 P o 0 P

o B0 gy =2

= |
£.(W) = o |g (e |
The functions fO(u)""’fT—l(u) can be regarded as a sequence of

functions which proceed from the smoothest constant function fo(u) =1 to
the wiggliest function fT-l(u) = f(u) . One desires to find an intermediate

~

value of m , denoted m , such that gh(u) can be regarded as not the

m
smoothest estimator of f£(u) but as the “most likely" estimator of f(u)
For this purpose one needs a criterion to determine ; (called an order-
determination criterion). Such criteria have been developed by a number of
authors using various conceptual frameworks. The approach of Akaike (1974)
is particularly well known. The discussion of this question requires an

extensive paper by itself. Space permits me only to introduce my own criterion,

which 1 call CAT (criterion autoregressive transfer function).

~
Rather than directly examining the properties of fm(u) as an estimator
~

of f(u) , I focus on the properties of gm(z) as an estimator of gm(z) ¢

~
We would like to choose gm(z) to minimize the overall mean square error




]

i

21Tiu 21Tiu

[ Ele (e -g (e
0

W

2
)[ f(u) du

Now overall mean square error can be expressed as a sum of overall variance

V =

1

J‘ Var [;m] f(u) du
0

and overall squared bias

2

B =

It can be shown (see Parzen (1976)) that the degree m polynomial best

approximating 8

restrict ourselves to estimators of the form = g~ where m mini-
@ gco
m

mizes the function of m

J(m)

We are able to obtain a remarkable approximate evaluation of J(m) by

changing our definitions. Define

is & multiplied by a suitable constant, Therefore we

1. g
f [Egm - gml f(u) du
0

~ ~ ~ "~

1 7% A 2
J‘ Elgm - g, | f(u) du
0

1}

1 ~ 1 2
J‘ Var(gm) f(u) du + I Igm - gw] f(u) du
0 0




Sy

g (z) g.(2) 8, (7)
Ym(z) = 2 ’ Ym(z) = 2 ’ Ym(z) = A2
(8% Om Om

and change the definition of J(m) to

1 ~ It 2
J(m) = J;) Var (Y ) f(u) du + j(’) 1Y, - Y| £(u) du

One can show that the second term (representing the overall bias) equals

0_2 - 0;2 , and that

«©

This remarkable formula motivates the following order determination
~

criterion: given a sample of size T , choose m to minimize the function

CAT(m) calculated from the sample as follows:

) 5
CAT(0) = -(1 ]
m ~ ~
1 na 288
CAT(m) = T b o.z -0 2
=1 j m

A
~

where oi is an "unbiased" estimator of g; defined by

When m = 0 , we estimate f(u) to be the constant 1, and accept
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the hypothesis that the sample could have been drawn from a white noise

process.

An order determination procedure can be regarded as a procedure for
adaptively determining from the sample a "most powerful' test statistic for
the null hypothesis of white noise. The meaning of this assertion requires

another paper to discuss.

It may be helpful to make some intuitive remarks about order-determining
~
criteria. The residual variances o, decrease as m increases so that they
~

do not decisively indicate which order m 1is long enough. The minimum of

~
. . 2 2
the "unbiased residual variances" o

- usually exists; while empirically it

may on occassion choose the "right" order there is no conceptual basis for

its use. Akaike's criterion, to minimize
3

A m
AIC(m) = log Om a k T

can be justified using an entropy maximization inference criterion. In recent
work, Wahba uses cross-validation inference criteria to determine smoothing

factors; her work can be directly applied to density estimation.

I would like to suggest a new criterion, motivated by the cross-validation

criteria of Wahba and which I call CV, whose order-determining properties

need to be examined:

"2
om

- 2miu £ .
J Ve, e au
0

CV(m)
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To estimate a density function d(ul,..,um) which is a function of
several variables, one cannot use autoregressive methods of approximation;
however, one can develop indirect methods of estimation where the weights
are chosen using cross-validation criteria. I believe we are justified in
claiming that one can empirically estimate density functions with almost no

prior assumptions.

5. Reliability Theory

Let fOQO(u) be the density quantile function of the exponential dis-
tribution fo(x) = e X ; then Qo(u) = -log (1 -u) and foQo(u) =1l-u. Let
f(x) be the probability density of a non-negative random variable X ; then

1 1 @
l1-u . = 2t ol (e
% ey ¢ J;(l'“)q‘“m‘— IO {1-F(x)} dx = u = E[X] .

Thus integrability of (1-u) q(u) is equivalent to the mean being finite.
The integrand (1 -u) q(u) occurs frequently as it is related to the hazard

function

o wElX)
Rz} = 1%

and the hazard quantile function

R A . QCu) L
hQ(u) = h(F (“)) T l-u (1 -u) qu)
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Next define the distribution function

*1
F . (%) = fo;{l-Fcy)} dy

which is denoted Fres as it is the distribution function of the residual

lifetime in a rencwal process. The distribution function on 0 < u < 1

L
ol LsF(xy) 1 dy
H Yo

u 1 ~¥
= [ @-t)qe) de {[ (1-t) qt) at)
0 0

(I =iu)

has density d(u) = . The following hypotheses are equivalent:
£Q(u)

o L

D(u) = u
d(u) =1 |

Fres(x) = F(x)

F(x) 1is the exponential distribution

In other words, a test for exponentially is providing by testing whether the

density function d(u) is constant.

A raw estimator of D(u) is provided by
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u
% (1-s) dq_(s)

1
J; (1-s) dQ_(s)

B(u) =

This function has been extensively studied by rescarchers in reliability theory
(especially Barlow and Van Zwet (1970), Barlow and Proschan (1976)) under the

name of the total time on test statistic.

The statistic B(U) , 0 <u< 1, also can be deduced from the general
one-sample theory outlined in Section 1; however, the derivation is different
in this section since it is directly motivated by a search for a test of
exponentiality. Section 1 provides tests for any specified distribution (more
precisely, a specified density-quantile or fOQ0 function). A list of density-

quantile functions of familiar univariate distributions is given in Table I.

— e —— - M




Name of
Probability Law

Normal

Log-normal

Exponential

Pareto B >0

Extreme Value

Weibull

c=1/8>0

Cauchy

Logistic

Double-exponential

Uniform-reciprocal

Table I  Density-Quantile Functions
Density Quantile
f(x) Q(u)
1 -1
o(x) = ¢ (x) & T (u)
2
-%
= 1 A 2 X
A 21T
-1
i W(log x) eé W
-X
e, x>0 -log (1-u)

-1
et By T g P
x>1

..ex "1
log log (1 - u)

c-1 -xc { 1 }B
cxX e log
’ l1-u
x>0

X
e e

;:—'T L 2 tan ﬂ(u-%)
1+x
ex u
log
2 =
(1+eX) hom
3 e-‘x' log 2u, u< %
~log 2(1 = u) ,u>%
1
IERS >1 11
- -u
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Density-Quantile

fQ(u)

i 2
exp -%]é 1(u)l

L
N 21

-
¢§~1(u) e-é (u)




Score functions J(u)

Normal

Exponential

Double-Exponential

Logistic

Cauchy

sign (2u-1)
2u-1

- sin 2Tu
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