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ABSTRACT

We consider plane-wave motion at normal incidenc e in a horizontally

layered system . The system is assumed lossless , and only the compress-

iona l waves are treated. A procedure is introduced for dete rmining the

reflection coefficients of the layered sys tem when the observed seismic

data may contain random noise. No deconvolution of the measured seismic

da ta is required by the procedure when the input is a narrow wavelet .
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1. INTRODUCTION

In recent  years  much attention has bee n given to the problem of

determining reflection coefficients for a layered media from the observed

seismic data [1-4]. In line wi th the cus tomary  assumptions and restrictions,

we also limit our at tention to a horizontally s t rat i f ied nonabsorpt ive ear th

with vertically traveling plane compressional waves . Such a system is

completel y desc ribed by a set of reflection coefficients and travel times

within layers .

A fundamental proc edure described in detail in the above references

for deriving values of the reflection coefficients can be summarized by

the following assumptions and steps .

Standard Assumptions:

( A l )  The input wavelet is assumed known.

(AZ) The data is assumed noise free.

(A3) The layered system is assumed to have uniform tra vel
times between la yers where a number of the layers are
hypothetical, i. e .,  they  may not correspond to an actual
interface of the substructure and are  associa ted with
zero reflection and unity transmission coefficients .

Standard St~ps:

(Si) The observed seismic da ta is deconvolved using the input
waveform to produce the system respons e to a unit spike
input.

(S2) The number of layers is chosen high enough to resul t in
travel times short compared with the invers e of the
ba ndwidth of the observed seismic data.

(S3) The deconvolved data is sampled with sampling interval



*eq ual to the chosen one-way t ravel  t ime between layers .

(S4) The system structure is used to arrive at a set of
normal equations (linear sim ultaneous equat ions)  in
terms of reflection coefficients  and the disc retized and
deconvolved obse rved  da ta .

(S5) The normal equations of the preceding step  have the
Toep litz s t r u c t u r e  which makes it possible to utilize
the ve ry  efficient Levinson algori thm to recurs ivel y
solve for the reflection coefficients.

In this pa per the method of solution to the inverse  problem stated

above is fundamentally modified to cope with the existence of the noise in

the measurement data, often without need for any deconvolution. More

specifically, although again a uniform la yered sys tem is assumed , the

choice of number of layers  can now be made independent of the sampli ng

rate requirement  of the data (s tep (S2 ) above) often resul t ing in the need

for  fa r  f ewer  layers .  No deconvolution is necessary  (step (Si ) )  for

wavelets of duration of the order of twice the layer travel times. The

exact deconvolut ion of step (Si) is either not possible in prac t ice  or , at the

least , will f u r t h e r  aggreva te the harmful  effects of the noise in the obser-

vation [5]. Fu r thermore, the deconvolutiort is a time consuming

operation. Finally, the procedure is very  simple to de rive and does not

need the concepts of z - t rans forms , minim um phase , fo rward  and backward

pol ynomials , spectral  fa ctorizati on , etc . The results  reduce to the

existing solution of the inverse problem in the absence of noise and with

a spike input  si gnal (wavelet)  [1].

Of course  the deconvolution may be per formed in discrete  t ime using
the sam e sampling interval .

-2-



2 . STATEMENT OF THE PROBLEM

We are  considering a uniform K layered system and normal

incident compressional waves . Figure  1 represents such a system

where d .(t) is the down-going wave at the bottom of the ~th layer and

u .(t) is the up-going wave at the top of the layer. The r eflection , down-

ward transmission and up-ward transmission coefficients associated

with the interfac e at the bottom of 3
th 

layer are denoted r • ,  t . and

t ’ respectively where t . = I + r ., t~ = 1 - r .. The one way travel time

between layers is denoted by i .

layer 0 (half space)
d0

(t) ~ u
0

(t)

d
1

(t) I u
1

(t) 
r
1 

layer 1

d . (t) u 2
(t)

I 3—~

Id .(t) 
t
u.(t) layer 

~$ 3
j

u .~~1
(t) 

r

. 

j+I

I
d

K
(t) :

t rK

layer K+ 1 (Basement)

Figure 1. K Layered Sy8tem
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The input to the system, d
0

(t) , is assumed known (the wavelet)

and the output may be either u
1 (t) (in the marine environment)  or

u0(t).  The measured seismic data , y( t ) ,  consists  of the output and an

additive noise component n(t) .  The source of this noise may be the

instrument measurement noise , the uncertainty in the kn owled ge of the

input wavelet or response to unwanted input s (ambient noise). It is desired

to process y( t ) , t �0 and derive values for the reflection coefficient s

r . ,  j = O , 1, .. . ,l (  (r 0 may be assumed known in cases such as the

marine environment).

3 . STATE EQUATIONS

Using the notation of Figur e 1, for a general ~
th layer we hav e

[6 , 7] .
u .(t + T) = t . u .~~~(t) + r • d .(t) ( 1 )

( t+  T) = — r . u .+1
(t) + t . d .(t) ( 2

These equations are valid for j= I ,...,K-l. They should be

augmented at the surface with

u
0

(t) = t
0 

u
1 (t) + r 0 d

0
(t) ( 3 )

d
1
(t+T) = -r

0 
u

1
(t) + t 0 

d
0

(t) ( 4 )

and at the basement with

u
K ( t + T )  t~ uK I (t) + r

~ 
d

~~
(t) = r

~~ 
d

~~
(t) ( 5 )

d
K+l

(t) = r
K l  

uK l (t ) + t
K 

d
K

(t) t
K 

d
K

(t ) ( 6 )

- 4 -  
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Equations (3,4) and ( 5,6) can be derived from (1) and (2) (lett ing

j 0, 1, . . .  , KJ by noting that u
0(t) is taken at the  bottom of layer  0

and dK +I (t) at the top of layer - (K+ 1)  and u
K+l

(t)  ~ 0. The t e r m

d
K I (t) represents  the down-going wav e leaving the last i n t e r f ace  and

is not ref lected by any other interface;  hence u
K ÷ J

(t )
~~

O. These

equations , called causal functional , are  not d i f f e rence  equations s ince

t is the continuous t ime variable [6 ] .

4 . A GENERA LIZED E N E R G Y  TRANSFER (KUNET Z) R EL/ ~TION

Consider c to be a non-negative continuous or discrete variable

with dimension of time. Equations ( I )  and (2) [where j 0, 1, ... ,K]

are multiplied by u .(t + 1r + c) and d .+1(t + ‘r + e) respectively resulting in

u.(t+ i) u.(t+T÷ ~) = t~ u.~~ (t) u .~ 1
( t+ t )  + r~ d .(t) d .(t + ~)

( 7 )
+ r. t.[u. 1

(t) d.(t+ €) + u .1 (t+ £) d.(t)J

d .
÷i

(t+ T) d.+1
( t+  T +  C)  = r~ u.+i (t) u.1 ( t+ C)  + t~ d .(t) d .(t +  C)

( 8 )
— r . t.[u.

1
(t) d.(t-i- ~) + u.1 (t+ e) d.(t)]

Multiplying (7) by t ./t~ and adding the re sulting expre ssion to (8) y ields

d.
+1

(t.i
~
T) d. 1( t + i +  e) + (t ./t~) u .(t+ T) u.(t+T+c)

( 9 )
= (t ./t~) d .(t) d .(t + £) + u . 1 (t) u .~~1( t+  ~)

- 5 -
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Let  us def ine  the following c o r r el a t i o n - t y p e  funct i ons

+a~
d . ( t )  d .( t+ ~) dt (10)

3 ~) 3 3
-

t~= u . (t) u .( t+ ~~) dt ( 11)
3 3 3

-

In tegra t ing  both sides of Eq. (9) f rom -
~~~ to +°‘ , and using Eqs.  (10) and

( 11),  w e  find that

D.~~1(c) — U .~~~1
(c) = t.It~[D .(t) - U.(r)] (12)

w h e r e  j  = 0 , 1 , 2 , . . .  , K. This is a generalization of the wel l -known [1]

ene rgy  t r a n s f e r  (Kunetz)  relation. Note that  in our derivat ion , input d0 (t)

is not assumed to be an impulse and the seismic data is not d iscre t ized.

An a b s t r a c t  generalization of (12) is given in Appendix A.

I t e r a t i n g  (12),  s t a r t i n g  with j = 2 and ending with j  = K , we obtain

K
II t .

DK+l
(c )  = [ D ~~( c )  - U 2 ( s) ]  (13)

I-I t:~’
L

i

where  2 can take on the values of 0 , 1, . . . ,  or K. In the mar ine  case this

relationship is used with ~ = 1. In the non-ma rine case (A ppendix B),

i t  is used wi th  2 0.

-6 -
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5. APPLICATION TO M A R I N E  E N V I R O N M E N T

In this section we will direct our attention to the mar ine  case

and shall express DK÷ I
( e )  in te rms of measured signals . To do

this, we set r
0
= 1 and we see from (13) that we must express

- U 1( e )  in terms of the measured signals. The first layer

can be depicted as in F igure  2 .

d
0

(t)

t
0 

d (t) u
1(t) ~ ~ -u 1(t) 

=

r 1

Figure  2 . ~‘irst layer in the marine case.

Observe that (4) becomes

d 1 (t + T) = -U
1 

(t) 4- 2d 0 (t) . ( 14

From ( 1 0 ) ,  ( i i ) ,  and ( 1 1 ) ,  we can eva lua te  the d i f f cr e n c e  t erm D~~ ) - U 1
(~~) ,

D 1 ( C )  - U 1(~~) ~ P ( t )  = j :~~
2d O (t ) u 1 t ] [2 d 0 t +  E )  -u 1( t +  E) ]

- u 1 ( t ) u 1( t +  ~) )  dt ( 15 )

or

P(~~) = S :4d o (t ) d
0 ( t +  e) dt j :

2d
0

(t ) u 1( t +  
~
) dt

- 

s~:2u l t d 0( t +  C ) dt ; ( 1 6  )

*beca use of the ranp e of in tegra t ion  in (10), we  ca n also exp re s s  D~(~~) as

J d . ( t + T ) d . ( t + T + ~~) d t .  We use this form of (1 0) in our  developm ent
3 . a ~~J 3

of D 1(t ) - U 1(r  ). 

— ---—-——— ~~~~~~~~~~~~~~~~~~ -- — 
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henc e, P(C) can be evaluated from a knowled ge of d0
(t) and u

1
( t )

for any desired i .  Observe , also , that ( 13)  v~ith P~~1 can be ~ r i t t e n

in t e rms  of P(~~), us ing  ( 15) ,  as

K
1~1 t .
1 ’

DK+l
( t )  K 

P( c)  ( 17

I~i t .
1

1

We should point out at this stage that the quant i ty  u 1
(t) need ed

in ( 1 6 )  is only available throug h the observation

y( t )  = u 1
( t ) 4- n( t )

whe re  n( t )  is the addit ive noise. Consequentl y, P ( C )  is not phy s ica l ly

ava ilable; however , we can def ine  P ( E )  by replacing y( t )  for  u 1
(t)  in

( I 6)

P (E )  
~ 

$ :~~ 

d0(t) d 0( t + ! )  dt - 

~~:
2 d0

(t) y ( t +  ~) dt

( 1 8 )

- Z y (t) d0( t +  C)  dt

which can also be writ ten as

P(c )  = P ( C )  + N ( C )  , ( 1 9 )

where

A +~
N ( t )  = - 2 d0

(t)  n( t  + c)  dt - n(t )  d
0
(t + c)  dt . ( 20

The st a t i s t ic s  of noise  t e r m  N ( t )  an be de t e rmined  in t e r m s  of

t h c s c  of n ( t ) .  Us ing  P ( t )  in pla e of P ( t )  in ( 1 7 )  y ields

- 8 -
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K
ri t .
i t  —

D
K 1

( C )  = 
K 

P( e)  ( 21

n t .
1 ’

where P( C)  is a known quantity. Equation (2 1)  is a fundamental

relationship which will be used in the derivation of the inverse

procedure. A discussion of the non-marine case is given in A p-

pendix B.

6. DERIVA TION OF THE N O R M A L  EQUATION S

The following property is basic to our derivation of the normal

ecj uations.

Structural Property:

The function d
K+l

(t) satisfies the equation

d
K l [t + K T ] + a 1 

d
K 1

[ t + ( K - Z ) T 1 + . . .  + a
K l  

d
K+l [t

~~
(K _ Z ) T ]

+ r 0 
r

K dK+l [t  - K~~] = fl t . d
0

(t) ( 22

Note that  the coeff ic ient  of the hi gh e s t  te rm of the left  hand side is uni ty

and tha t  of the l o w e s t  term is r O r
K

. The precise fo rm of the other

- . coeff ic ients  is not impor t an t .  A proof of th i s  r esu l t  is given in Appendix C.

Let us multi ply both sides of (22) by dK+l
[t+ (K-2i)T1 and integra te

f rom -~~~~ to ~ for i = O, l ,...,K.

-9-
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This results  in K +  1 s imultaneous equations , which , using ( 1 0 ) ,

become

D
K+l

(O) DK+l
(2 .r ) DK+l

(4T ) ... DK+l
(2K

~
) 1

DK+l
(ZT )  DK+l~~~ 

D
K+l

( ZT)  a 1 K
= Z n t .

DK 1
(4 T )  DK I

(Z ’f ) D
K I

(O) . . . 
:

D
K + l

(2 k )  . . . D
K 1

(O) 
- 

~K+1

(2 3)

where  we have substi tuted t 0 = 1 + r 0 = Z  to represent  the mar ine  en-

vironment  and

= d0(t) d
K l

(t + KT - ZiT )  dt , i~~0 , l , 2 , . .  . , K (23a)

Substituting for  D
K÷ l

( € )  f rom (2 1),  we find that  (23)  reduces  to

P(0) P(l’r ) P ( 4T ) .  . . P(Z K r) I

P ( ZT )  P(O ) P ( Z T ) . . .  a K
= 2 1 1  

~~. 

2 (24)
P (4 T)  P ( ZT)  P(O) . .. . 1

~~2 K )  ... P(0)  r k K+ l

Not e that the ( K f 1 )  ~ ( K + 1)  matrix on the left has the Toep litz

s t ruc tu r e .  The t e r m s  N(0 ) ,  N ( Z T ) , . . .  which appear in P(0),  P ( 2 - r ) , . . . ,

a r e  random va r i ab le s  with known stat is t ics;  they will be zero if the

seismic data is noise f r e e  (1. e . ,  n( t )  0) . Observe , also , that the

- 10 -
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f i r s t  and last elements of the vector on the  left-hand side of (24 )

a re  unity and r
K , respectively, by v i r tue  of the property which

we just  stated for the d
K+l  

causal funct ional  equation.

Equation (24) provides the start ing point for our procedure

for identifying the reflection coefficients. Note that in general

the 
~~~

. are functions of dK l (t)
~ 

a si gna l wh i c h  is  not  d et e r m i n db l e ;

how e ver , w e  w i l l  show in the  fo l low i ng s e c t i on t h a t  w h e n  t h e  i n p u t  w a v e —

let  is n a r r o w  enough (not n e c es s a r i ly a s p i k e ) ,  (24)  h a s  a u n i qu e

solution for  the reflection coefficients in t e rms  of observable data .

7. SPECIAL CASE OF N A R R O W  WAVELE T

Let us now consider the case where d
0
(t) does not extend*

beyond ZT , i. e.

d
0

(t) = 0 t < 0 , t > 2 r  . (25)

Sinc e the time of arr ival  at the Kth interface is KT and the time

of arrival of the first reflections is (K+2)T ,

d
K+l

(t) = 0 t < K r  ( 26a

K
= 2 fl t . d (t - KT)  KT < t  ‘ (K + 2)T ( 26b

1 1 0

= more complicated terms t > (K + 2) T ( 26c

* If this condition is not satisfied, we can always dec onvolve the
data to achieve this . Since the requirement  here  is not to deconvolve
down to an impulse funct ion (only (25)  has to be sat isf ied),  this re-
sults in a more practical solution.

— 11 — 



From (2 3a) ,  (26 a) ,  (26b) ,  and (25) we  see tha t

d
K+l ( t + K T ) d t  = 2 ~ .~

:T d~~~ t)  dt , (2 7)

and tha t

~ i+ 1  ~:

d O (t )d 
l

[t T - 2 i T ~ dt  = 0 i = l , . . . , K (28)

Note now tha t  (24)  will have  precisel y K+ l unknowns , K of them in

the vector  mul t ipl ying the Toep litz ma t r i x  and one on the  ri gh t -hand

side , cv 1 .

Fina lly,  Normal  Equa tion (24) can be wr i t t en  in a compact

matrix form , as

P
K
a
K 

= CK (29)

.where 
~K 

is a (K+l) x (K+l) Toeplitz matrix with the first row being*

tP(0), P(2T),. .. , P(2K’r )~~; a
K 

is a K+l column vector wi th  f i r s t  and last

elements 1 and r
K , respectively; and , CK 

= col (B K~ 
0 , 0 , . . .  , 0) and

K 2 2 1 2
= 2 11 (1 - r~ ) ~ d0 (t) dt

1=1 0

The Normal Equation (29) can be solved for a K. This onl y produces

one of the K reflection coefficients , namel y r K. We will show in the

following , that in the case of the mar ine  environment , nested within (29)

a re  a set of normal  eq ua tions , the solutions of which produce each one

of the reflection coeff icients . The absenc e of this usefu l  p r o p e r t y  in

the non-mar ine  case renders  the procedure  of th is  pa per ina pp licable

~For a na r row wavele t  and c > 21 , the calculati on of ~~(r )  s imp lifies since
(18) reduces to

= 2 j • d (t)  y ( t +  € )  dt



-_-  ________ _ _ _ _ _ _  . -

in tha t  case  [see Appendix Bi .

Let us now hypothesize a j - l ayer  system (i. e., the basement

layer is the j -th) consisting of the top j -layers  of the above K-layer

system ( K � j ) .  Clearly, f rom (29) ,  we have

P . a . = C . ( 3 0 )
3 3  3

where a. will again hav e 1 and r . as f i rs t  and last elements. We
.1 3

shall now show that , in the case of the marine environment , P . is
3

a(j  + 1) x (j + 1) Toep litz matrix composed of the top left corner  of

i. e. , its f i r s t  row is g iven by [P(0) , P ( 2 1 ) ,. . ., P(2 j 1) ] .

For the moment let us ignore the additive noise t e rm in (19) .

Let us denote by u~ (t) the response of the j _ l aye r  system (i. e., the

term u 1
(t) in Figur e 2 is replaced by u~ ( t ) ) .  In (16) ,  due to the

fact that d0(t) 0 for t >  21, the last value of u 1(t) contributing to

P(€ )  is u 1( 2 1 + t ) .  In determination of P ., ,  with elements P ( t ) ,

e = 0, ..., 2j ’r , for a j -layered system, therefore , the last value of

u~ (t) contributing to 
~~~~

. is u~ [ 2(j + 1)1]. On the other hand , u 1(t) is

the response of the K-layer system, and

u 1 (t) = u~(t) 0 � t � 2 ( j + 1)1 ( 31

since the f i r s t  re turn from the interfaces below the j -th  will not

appear earlier than t = 2 ( j + 1 ) i .  Hence , the elements of P .. ,  which

are functions of u~~(t) and which are  functions of u 1(t), are

identical when (3 1) is satisfied. In other words , the numerical

values of P(0), . . . ,  P( Zj T)  will be id entical to those of the K- layer

system for all j  �K. Furthermore, the additive noise term in (1 9)

is independent of the number of layers , as is evident from (20).

- 13 - 

—-—- -~~~~~~~~~~~~~~~~~~ -----_.--- —~~~~~~~~~~ -_ --- -.-- ..- -
~~~~~~~~~~~ _~~~~~- - ~~~~~ . - - -



—--
~~~~~~~~~~~

.

The ~et of normal equations given by (30), for  j 1, . ..  , K, can

now be solved for the vectors a . and , henc e, their last elements , r •,
3 3

j = 1, . .  . , K. The matrix is Toeplitz and consequentl y,  the Levinson

algor i thm [11 can be used to solve for the vectors  a ., j  = 1, .  . . , K

recu r s ive l y.

Since the r . ’s are ref lect ion coefficients , for  the solution to this
3

problem to be acceptable, each r . must be less than unity in magnitude.

It is shown in A ppendix D that any solution of (30) with ~~> O  for all j
yields a set of r . ’s which satisf y this condition. Moreover if is

positive definite, a compatible solution with 
~~~. 

> 0 is guaranteed. We

see therefore, that the requirement that r . <1 has nothing to do with

a specific method of solution of the normal equations (i. e. the Levinson

procedure).  This result is different f rom the comparable result in [1]-

[~ 1~ where one is left with the impression that a specific method of

solution leads to I r . I < l .
3

8. REMARKS

A comparison between the procedure of this paper  and the

standard procedures described in [11-14] is warranted. Let us consider

the noise term n (t )  to be white. Clearl y, (20) indicates tha t  the random

va riables N ( .  ) have finite va riances.  For this case (n( t )  whi te ) ,  had

we performed the necessary deconvolution and sampling requi red b y

the classical approach to the inverse problem , the resulting N(.)

rand om variables would have infinite var iance , clea rl y rendering the

*approach meaning less. Of course , ~approximate ” deconvolut ion will

*If n(t)  is not wide-band , then the var iance of N ( . )  may  not be infini te ,
but will be v e r y  large.

-14-

_ _ _



eliminate this problem but at a great sacrifice in the information

available wi th in  the seismic da ta . It should also be noted tha t , fo r  the

na r row  wav e let s , no deconvolution is required b y the p rocedure

outlined in this paper.

Finally,  the procedure of this paper can be app lied (See Appendix

E) to the classical  solution of the i nve r se  probl em as i t  appears  in

[ 1 1— 1 4 1 .

9. CONCLUSIONS

We have  developed a procedure for extracting reflection

coefficients f rom noisy data which we feel is a substant ial  general izat ion

of simila r p r o c e d u r e s  which have been reported in the l i t e ra ture .

Associated with these earlier procedures are Standard Assum ptions

and Steps (see Introduction , page 1) which include requirements that

the data be noise f ree  and that the  observed seismic data be deconvolved.

The procedure  of our paper avoids these r e s t r ic t i ve  requirements .

F u r t h e r m o r e, our p rocedure  totall y avoids the concepts of z - t r an s forms ,

minimum phase , spectral  factorizat ion , f o r w a r d  and r e v e r s e  pol yn omial

mani pula tions , e tc. , which appea r in the l i t e r a ture  on this s ubject .

Finall y, since our der ivat ion is ~o straightforward , it  sugges t s  a

numbe r of extensions , including the following, which a re  presen t l y

unde r s t u d y :  (1)  nons tandard  locations of source  and sensors ( e . g . ,

both in the f i r s t  l a y e r ) ;  (2) minimum mean-square  es t imat ion  of the

ref lect ion coeff ic ients ; and (3) optimal prefilte ring of noisy  data

-1 5-
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(exploi ting the potential ut i l i ty of the abst ract  Kunetz rela tion in

Appendix A) .
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APPENDIX A

An Abstrac t  Kun etz-Type Relationship

A ~ eneralized Kunetz i ’elationsh~~ was derived in Section 4

by starting with the following stat e equations ,

u .(t -I- ’r) = t~ u .4- 1
(t) + r . d .(t)  ( A l )

d.~~1
(t+T) = — r . u .~~1(t) + t .  d.(t)  ( A Z )

and performing the following operations: (a) t ime shift u .(t + 1) and

by t to obtain u~( t + 1+ t )  and d .+l
( t + T + € )  (this is done by

operating on both sides of (Al)  and (AZ) by a linear advanc e operator];

(b) multiply u . ( t + T )  by u .( t + T + C ) ,  and d . ( t + T )  by d .( t + T + e ) ;  (c) add

( t ./ t ~~) u .( t + T )  u . ( t + T + C )  to d .(t + T) d . ( t + 1+ C ) ;  (d) integrate the resulting

expression f rom -~~~ to +~ ; and (e) iterate the integrated expression

across the K-layers .

Step (c) is a pivotal one; for , it leads to a cancellation of terms

common to both ( t ./ t ~, )  u~(t + 1) u~(t + I + C) and d.(t + ~r ) d .(t + T + t ) .  Step

(e) is also important in that it permits us to use the boundary condition ,

that uK+l
(t) = Q.

Steps (a),  (b),  and (d) involve specific operations. We show

here that these operations can be abstracted (i. e. ,  general ized),  and ,

that we can obtain an abstract Kunetz-type relat ionship which is valid

for much more general operations than shift , multiply, and integrate.

Let L~ denot e a linear operator for the ~th layer.  Operat e on

both sides of ( A l )  and (AZ ) with L. , to show that

- 1 7 -
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L. u .( t + T )  = t~ L. u . 1 (t)  + r . L. d .(t)  ( A3

L . d . (t + I )  = -r . L . u . (t) + t . L . d .(t) ( A4
) j + l  3 3 3+ 1 3 3 3

Let o denote an operation that satisfies certain group properties (e. g.

o could be multiplication , convolution, etc. ) ;  then ,

[ L.  u .(t + I) ]  o u .(t + T) = t .
2

{L . u .~~1( t ) ]  o u . 1 (t)

+ t . r.[L . u.~~1
(t)]o d.(t)

+ r .[L. d.(t)] o u. 1 (t)

+ r~~[L.d.(t)] od .(t) (A5 )

and

[L .  d .~~1(t + T) } o d .~~1( t + T )  = r~ [L .  u . 1 (t ) ]  0 u.~~1
(t)

- t . r . [L . u . 1 ( t ) ]  o d .(t)

- t . r . [ L . d . ( t ) 1  0 U .  (t)
3 3 j 3 j + 1

+ t~~[L. d.(t)]o d.(t) (A6 )

From (A5) and (A6), we find that

[L .  d .~~1( t + T ) ]  o d . 
1

( t + T )  + (t . / t~) { L. u.(t+T)I o u.(t+ T)

= [L .  u .~~1(t) 1 o u .~~1(t) + ( t ./ t . )  [ L . d .( t ) ]  o d .(t) ( A 7 )

which can also be wri t ten , as

[L .  d .~~1 (t f T)1 o d~~ 1 ( t +  I) - [L .  u. 1 (t)] o u. 1 (t)

= (t ./t~ ) I [L .  d .( t ) ]  o d .(t)  - [L .  u .(t + T ) ]  0 u.(t + T) )  ( A 8 )

- 18 -
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Let N denote another linear operator. Operate on both sides

of (A8) with N , to show that

N I [ L .  d 
1 (t+’r)l 

0 d . 1
(t+’r )~ — N l [L . u .~ 1(t) }  o u . 1 ( t ) )

= (t ./ t . ) ~ N I [ L . d .( t ) ]  0 d .( t )~ — N I [L .  u . ( t + T ) ] o u . ( t + I ) )  ) ( A9

Now , i terate  (A9) backwards , s tart ing with j = K , for  which we

know that u..~~ 1
(t)=0 , to see that

K
1~1 t .

N I [L
K 

d
K ÷ l

( t + T ) ]  0 d
K÷ l

(t + I)
~ 

= ~~~ (N ~ [L 1 d 1(t )}  o d 1 ( t )}

II t~1
1=1

- N 1[L 1 
u 1(t+ii]

o u 1 (t+ T)} )

( A l O )

Equation (A 9) is an abstract Kunetz-types relationship. It

reduces to Eq. (12) when

— 1  . — 1 .
L. z , all j ,  wher e z is an s sec .

3 £ C

advance operator.

o = x (multiplication) 
( A l l

and

N = dt

Equation ( A l O )  is then equivalent to Eq. (1 3).

The applicability of the abstract Kunetz- type relat ionship using

other operations [e. g., L. = a low pass f i l ter , o - * (c o n v olu t i o n ) ,

N = another f i l te r ing operation] remains to be studied. What is

- 19 -
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interesting. thoug h, is the fact  that  a very  general  r e l a t ionsh ip  —

( A 9 )  or ( M O )  — exists  for  a l ayered  media system, and , that  t h i s

relationship does not, in general , have anything to do with energy

or an energy spectrum.

- 20 - 
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A PPENDIX B

Non-Ma rine Case

We quest ion what limits the resul t s  of this paper mainl y to the

marine  problem . The answer  is two fold. F i r s t , a l though h e r e  a

s t ruc tu ra l  p roper t y simila r to (22)  is still  valid leading to (29) ,  the

extension of (29) to (30) is onl y possible for the mar ine  case , since , in

the non-marine case , Eq. (14) is d 1( t + T )  = -r 0u 1(t ) + t 0
d

0 (t),  which means

that the cancellation of u 1(t ) u 1
( t + r )  term s in (15) will not occur .

The re fo re , P(c ) will be a function of the entire u 1
(t ) fo r  t

regardless  of how narrow d0 (t ) is.  This sugges ts  that , for  the non-

marin e case , it  seems we can only (at least directl y)  solve for the last

reflection coeff icient  (r K
) and not r ., j  1, . .  . , i .  Second , as we shall

show below , the na tu re  of the noise te rm , N ( e ) ,  is more  com plex in the

non-mar ine  case , to the point tha t  its s tat i s t ics  cannot be obtained f r o m

those of the observat ion noise alone.

Let

P
0

( c )  ~ D
0

( c )  - U 0
( t )  ( B i

From (10)  and ( 11) ,  we then have

= S :do (t) d
0

( t + i )  dt - ~~~u 0(t) u0( t + ~~) dt ; ( B2 )

and , f rom (13 ) ,

K

D
K÷ l

( E )  = 
~~ 

P
0

( e )  ( B 3 )

-21-
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The measurement in the non-marine case is given by

y( t )  = u0 (t) + n( t )  B4

Since u 0
(t)  is not avai lable , we may use y ( t )  in i t s  p lace  b y

defining P0
( t ) , as

- +~

~ 
j d

0
(t) d

0
(t+ c) dt - y(t) y(t + €) dt ( B5

which , using (B2) ,  can be written as

P
0

( C )  = P0
( e )  + N(s )  ( B6

wher e

N( C) = 
~~~:

n(t u
0(t + ~) dt - 

S :
uo(t n(t + ~

) dt

( B 7 )

— 

$
n(t) n(t + C) dt

Finally, (B3) becomes

K
II t .

D
K+l

( € )  = P
0

( C )  ( B8

Note t ha t  he re  the s tat is t ics  of N ( c )  depend on the stati s tics of n( t )  and

the availability of u 0
(t ) ;  however , u 0 (t) is not available and can onl y be

obtained th rough a noisy measurement .  A dditionally,  the  th i rd  te rm in

N(E) is nonlinear in n( t ) .  Observe , from (20), that  no such nonlinea r

noise te rm occurs  in the marine case.

-22-
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APPENDIX C

Proof of St ructural  Property

In the following , a construct ive proof of Eq. (22)  is given.

Equations (1)  and (2)  can be re-writ ten as

u.(t) = + [u . 1 (t - I) + r . d . 1 ( t ) ]  ( C l )

and

d.(t) = -~- [r . u.~~1
(t) + d .~~1(t + I) ]  , ( C 2 )

where ( C l )  is obtained by eliminating the term d~(t )  between ( 1 )  and

(2) .  For  j  = 0 , (C2)  becomes

d0(t) = -j~
— [r ~ u 1(t) + d 1( t +  I ))  ( C3

Replacing for u 1(t) and d 1( t +  ‘r) f rom ( C l )  and (C2)  yields

d
0

(t) = j —
~

-- l r
0

u~(t - ‘r) + r 1 u 2 (t +  ii + r0
r

1 
d 2 ( t ) + d 2 ( t +21 ) 3  ( C4

Rep lacing for  the terms in the right of (C4) f r om ( C l )  and (C2 )  yields

d
0

(t) = 

~0~ 1~ 2 
1r 0 u3(t - Zi)  + (r

1
+ r

1
r
2
) u

3
(t) + r

2 
u
3

(t + 2 1)

+ r
0

r 2 d
3

(t - T) + (r 1+r 1
r 2 ) d3( t +  I) + d3( t +  31)) ( C5

Repeating the process another time yields

d
0

(t)  = 

~~~~~~ 
1r 0 

u
4
(t -31) + (r 1+ r 1

r
2 + r 0

r 2 r
3

) u
4

(t - T)

+ (r 2+ r 1+r 1r
2

) u4 ( t + T )  + r 3 u4 ( t + 3 1)  + r
0
r

3 
d
4(t-

21)

+ (r 1+ r 1
r

2+ r
0

r 2 ) d
4 (t) + (r 1+ r 1

r
2+r 2

r
3

) d
4 ( t + 21)

+ d4
(t+4’r ) ( C6 )

- 23 -
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Equa tion (C3) is for a one layer system wh ere d
1

(t ) is defined at

the bottom of layer 1 (see Figure  1). That equation can also be us ed to

desc ribe a zero layer sys tem (i.e., two semi-infinite half spaces)  by

set t ing u 1(t) = 0 and moving d 1 from the bottom of layer 1 to the top of

that layer .  This is accomplished by setting t = t - T in th e d
1 
term .

The result ing equation is

t0 d0 (t) = d
1

(t) (C7)

We proceed similarly for (C4), (C5), and (C6). For exam ple , (C6) is

for a four layer sys tem where d4 (t) is defined at the bottom of l ayer  4 .

Tha t equation can also be used to describe a th ree  layer  sys tem by

set t ing u4
(t) = 0 and moving d4 

from the bottom of laye r 4 to the top of

that layer .  This is accom plished by setting t t - T  in all d4 
te rms.

The resulting equation is

U t. d0
(t) d

4
(t+31) ÷ a1

d
4
(t+21) + a2d4

(t -T )  + r
0
r

3 
d4

(t-3 1) (C8)

This development demonstrates the existe nc e of our equa t ion  (22).

Set K 0  in (22) to obtain (C7), and set K 3 in (22) to obtain (C8).

-24-
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APPENDIX D

Some Properties of Toeplitz Matrices

Consider a set of a equations of the type encountered in Section 7:

A . x . = b . , i =  1, . .. , n ( D l )
1 1  1

where the A .., i = l , . . . , n are  the leading princi pal minors of the

symmetric Toeplitz matrix A = A , and b . and x . are i x 1 vectorsn j . 1

with the special form

K . 1 • 1 -

1 
10 y.

b . = . , x. = =1 • 1 .

o y
i i-i- y.

_ 1

with b = K  , x = 1 (in the notation of Section 7, A . = P.,  x . = a , ,1 1 1 
. 1 1 1 1

i — lb . = C ., ,  K . = a1 and y. = r .). Several properties of equations of the

type (D l)  which bear on the solution of equation (30) will now be

derived.

First not e that if A is Toeplit z , then it can be partitioned as

r A  m
A =  

1 i

I r n . A .
t i — i

80 that (Dl ) is equivalent to the pair of equations

A
1 ÷ rn~ y. = K. ( D2

in~ + A . 1  y. = 0 ( D3 )

-25 - 
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Also , if det A . ~ 0, then by a well known determinant identity [8]

det A . = det A . (A -m . A ’ m .)
1 i— l 1 1 i — i  1

Furthermore, if det A . 1  � 0 ( D 3 )  can be solved for y . and substituted

into (D 2 ) y ielding

K . = A - m. A ’ m~i 1 i i— I i.

Hence if det A
1 ~ 0 we have the id ent ity

det A .
K . = det A . 

( D 4 )
i — i

Theorem: A symmetric Toeplitz matrix A is positive definite if

and only if for each i = 1 . . . , n , the equation (D l )  has a unique

solution y. for some K . >0.
1 1.

Proof: We prove sufficiency by induction on the sequenc e oi matrices

A . . For i = l  (D l ) merely implies A 1= a 11 =K 1 > 0 .  Suppose now

we have shown that A .>0 , i = l ,...,k-1. A pplying (D2 ) for i= k and

the fact that det Ak ! > 0 by the induction hypothesis we have by (D4)

that

det Ak K
k det Ak l > 0

which completes the induction step since A . > 0  is 1th leading pr inciple

minor of Ak .

To prove necessity note that if A > 0  then det A .> 0  for i = l , . .. , n

so that , for each i , the equations (D2) and (D3) have a unique solution

with

- 26 -
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r 1

det A .
K . = > 0

det A .i — I

Corollary: If A is a symmetric Toeplitz matrix with leading principal

minors A . ,  i = l , . . . ,n and y = [y
1 

• . .  y~~
1

] is a solution of (Dl  ) for

K. - . 0 , then I y~~~I 
- 1 fo r  i 1 , . ..  , n.

Proof: By our theorem, A .>O so that Q.= A ’>O . Hence

1
0

[ 1 0 . . .  0 - 1 1  
~~ 

(q 1 ~ 
+ q... ) - (q

11 + q 1 1)  > 0

Since A . is symmetric, Q. is symmetric so that q. 1 = q 1.. . Fur ther,

since A . is Toeplitz

[A 1 m 
1 ~~~~1-1 

L 
1

A . = m’ A . 1  j  
= [ L ’ A

1 j

so that

det A.

det A . 
= q11 

D5

Henc e, Z(q 11 -q. 1
)>  0 , or

If y . satisfies ( D l ) with K 
1

> ~~ then the last element of y 1 satisfies

i — I
y. q . 1 K . < q

11K. = 1
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since by (D4) and (D5) ,  q 11 1/K . .

By a similar argument we can show that q1 
+ q.1 > 0 which

implies q .1 > q 11
, so that

j — i
y. q .1 K~ > _q

11 K~ = -l

- 28 -
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APPENDIX E

The Classical Discrete-Time Solution to Inverse Problem

It may be of some interest to relate the result s of this paper

to those of reference {11-[4] .

Let the variable t assume discrete values which are a multiple

of ~r ;  i. e.,

t = k r  , k = 0 , l , .. . ( E l )

Fur thermore , let the input be a unit pulse (unit spike) at t = 0

d
0

(t) = t~(0) ( E2 )

With this notation , the only change to be made in the derivation is

the redefinition of quantities D.(t) and U.(c) in (10) and (1!). Let

C i1 ( E 3 )

D .( k T)  ~ E d . [kT] d . [ ( k + i ) T ]  ( E4
i=-o~

+~
tJ. (k ’r ) = E u.. [k’r] U . [(k+i ) I ]  ( E5

i=-~

The energy t ransfer  relation (13) remains the same, and (16) is re-

placed by

P(i ’r ) 4 t,~(i’r) — 2 u 1(i’r ) ( E6 )

We also disregard the presenc e of the noise term in (19).  Equation

(22) is again valid for d0 (t) 2 A0(t), t = 0.

The r emainder of the derivation follow s in similar manner re-

sulting in the following normal equation (to replace (29)):

- 29 -



~—~~~—-—-~~~~~~~ -- ~~ ----- - - -~~~~ - -~~ - - - -~~~~

P(Z’r) ... I

P(0) a 1 K 2
. = 2 fl ( 1 - r . ) 0 ( E7 )

i

r
k 0

which is the result found in Refs. [l]_ [4] .
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