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\ ABSTRACT
\

n
Zr02. as derived from three zircon source minerals and many process

variations, was physically and chemically analyzed. The impact of the
Zrog variations obtained was then evaluated in both dry and wet blended lead
zirconate-lead titanate, high drive type piezoelectric compositions. Proper
purification and blending of the ZrOé1 is shown to yield PZ-PT material

with uniform low and high drive piezoelectric behavior. Single precipitated
Zrog and dry blending are shown to be highly variable processes.
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I. INTRODUCTION

Most of the Navy's active and passive transducers contain lead zirconate-
lead titanate (PZ-PT) ceramic elements. These materials have been used
extensively in transducers because they are capable of operating at both low
and high frequencies, high stress amplitudes, high powers and large band-
widths at high efficiencies. Where these properties are required, PZ-PT
ceramics are the most cost-effective approach known. However, there are
still certain limitations in the uniformity of performance, related primarily
to the variability of the source of Zr02 used. This program was initiated
to study the source of variability in ZrO2 and its impact on the piezoelectric
performance of a typical high drive projector type PZ-PT composition, The
impact of ZrO2 derived from various zircon sources, in both a dry and wet
blend PZ-PT batching approach, was evaluated.
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II. EXPERIMENTAL PROCEDURE

Honeywell's approach to this study was based on a well-established capa-
bility in producing piezoelectric ceramic materials for various Navy pro-
grams over the past 20 years. - Zircon (ZrO - Si02) was obtained from a
number of sources and processed into ZrO2 by the standard commercial
process used at the Harshaw Chemical Company* for piezoelectric grade
Zr02. A second approach derived ZrO2 from the standard Honeywell alk-
oxide process, which uses tetra~N-butyl zirconate (TNBZ) as a ZrO2 source,
The ZrO2 produced by each of these processes was then fully chemically
and physically characterized. The reactivity of each ZrO2 in PZ-PT was
evaluated and used to determine how these Zx-O2 variations impact the be-
havior and properties of PZ-PT. These processes are described in this
section.

A, DERIVATION OF ZrO2
There are essentially two minerals from which ZrO2 may be derived. The
most abundant and commonly used material is zircon, a zirconium silicate
(ZrO2 - SiOz). Commercial deposits of zircon are found in Florida and
Georgia in this country and in extensive Australia, India and Africa deposits.
A second mineral, baddelyite, is a naturally occurring ZrO2 found in Brazil
and Africa, and contains 10 to 20 percent impurities of Si02, TiO2 and
Fe203. Both materials are found in secondary deposits of heavy beach sands.
After grinding, the lighter free silica is washed away from the zircon or
baddelyite, and much of the TiO2 and Fe203 in the form of a slightly mag-

netic ilmenite is magnetically eliminated.

*Harshaw Chemical Company, Division of Kewanee Oil Company Cleveland,
Ohio 44106.
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For this program, about 2000 pounds of zircon sand were obtained from each
of three sources: the Florida Starke mine (Harshaw's mormal source), the
Folkston mine in Georgia, and an Australian source. Sand from the Georgia
and Australian sources was procured and chemically analyzed by Harshaw

as part of their subcontracted effort on this program. Two lots from each
source were obtained because the first was accidentally contaminated during
early stages of processing., Harshaw submitted a five-pound sample of each
of these six lots to Honeywell. The particle size distribution was determined
by a sieve analysis, and the bulk density and color of each was noted. Since
the Australian zircon was obtained in an uncalcined state, a portion of the
second lot sample was calcined at 900°C and reevaluated. Harshaw then con-
verted each source of zircon to zirconium oxide by their standard purifica-

tion process outlined below:

(Zircon)

ZrO, - SiO, + 4NaOH (Typical) - Na, SiOg + Na,ZrO, + 2H,0 (1)
Na22r03 + 2HC1 - ZrOCl2 + 2NaCl + H20 (2)
(Typical) First Precipitate
ZrOCl2 +2NH4OH+H2O-«ZI'O2 . XH20+ 2 NH4CI+H20 (3)
ZrO2 « X H20 + HC1 + H20 -2 ZrO OHC1 + HZO (4)
(Typical) Second Precipitate*
ZrOOHC1 + NaOH + H20 - ZI‘02 - X H20 + NaCl + HZO (5)
Calcine*
ZrO2 . X H20 + Heat - ZrO2 + HZO (6)

Zircon was reacted with a molten alkali, such as sodium hydroxide, to pro-
duce the products shown in equation (1), The water soluble sodium silicate
was washed from the insoluble sodium zirconate, which was then reacted

*Materials delivered to Honeywell from Harshaw.
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with hydrochloric acid, according to equation (2), to form zirconium oxy-
{ chloride. As shown in equation (3), this is next reacted with a hydroxide,
such as ammonium hydroxide, to produce zirconium hydroxide or the first

precipitate. This precipitate can be calcined to produce ZrO,, as in equa~

2:
tion (6), or redisolved in an acid, equation (4), and reacted with another hy-

droxide, equation (5), to produce a second precipitate.

About 500 pounds of each first precipitate, second precipitate and normal
calcine were delivered by Harshaw to Honeywell for further processing.

About 10 pounds of each first and second precipitated ZrO2 - X H20 materials
were then calcined for eight hours in clean, dense MgO crucibles at 600, 900
or 1200°C. About four pounds of the calcined ZrO2 were then micronized in

a micropulverizer through an 1/8 inch opening screen, Table 1 gives a break-

down of the various ZrO2 materials produced for this program.,

A second method of generating five pound batches of ZrO2 was investigated

at Honeywell where tetra-N-butyl zirconate (TNBZ)* was hydrolyzed to Zr
(OH)4 and then calcined for 12 hours at 500°C to produce Zr02. In addition

to a 100% ZrO2 product made by this process, four other mixtures of zir-
conium and titanium oxide were produced by blending titanium~-N-butyl titanate
(TNBT)** with the TNBZ to study the impact of titanium impurities in Zr02.

A five pound batch of each ZrO, was made, in which 0.02, 0.08, 0.18 and

0. 36% TiO2 was added.

2

The amount of water or other decomposition products associated with each
material after the first or second precipitation, and all stages of calcination,

were determined by measuring the weight loss on ignition after four hours
at 900°C. i

*Obtained from Kay-Fries Chemical Inc., Montvale, NJ 07645, American |
distribution for Dynamit-Nobel. /i 18

Wilmington, DE 19898
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{ ¥ Table 1. ZrO2 materials produced.

i : Calcination Initial Quantity

Type Material Zr02 Source Temperature Present State Unmicronized/Micronized

} Alkoxide ZrO, TNBZ 500°C Zro, 5 lbs * 0

Alkoxide ZrO, TNBZ/T 500°C ZrO, +0.02% TiO, 5 lbs * 0

‘ Alkoxide ZrO, TNBZ/T 500°C Zr0O, +0.08% TiO, 5 lbs * 0

? Alkoxide ZrO, TNBZ/T 500°C Zr0, +0.18% TiO, 5 lbs * 0

Alkoxide ZrO, TNBZ/T 500°C Zr0O, +0.36% TiO, 5 lbs * 0

i

| First Precipitate Australia 0 % ZrO, + X H,0 758

f Georgia 0 ZrO, + X H,0 722

| Florida 0 #x Zr0, + X Hy0 673

! Australia 600 Zr0, 0.5 4

| Georgia 600 1.0 4 *

| Florida 600 0.5 4=

l Australia 900 120 4 %

4 Georgia 900 1.0 4%
Florida 900 1.0 4
Australia 1200 0.3 * 4 =
Georgia 1200 1.0 = 4 *

i Florida 1200 A 1.0 % 4%

:f Second Precipitate Australia 0 *x ZrO, + X HyO 477

\ Georgia 0 Zro, + X HyO 460

3 Florida 0 ** Zro, + X 1,0 397
Australia 600 Zx'O2 3 4

| Georgia 600 3 4 *

i Florida 660 5 5 =

} Australia 900 3 4

] Georgia 900 4 4 =

% Florida 900 4 4 *

H Australia 1200 3 x 4%
Georgia 1200 3 4 *
Florida 1200 3 *® 4 *
Australia Unknown 3% 400 *
Georgia Unknown *3 395 *
Florida Unknown # v 334 =

* Material characterized and batched,

“* Material supplied from Harshaw subcontract.
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B. CHARACTERIZATION OF ZrO2
Each of the ZrO2 materials with asterisks in Table 1 was characterized to
determine as much as possible about the physical and chemical differences
that result from the Zr02 processing variables. The bulk density and pres-
sed density (2900 psi) of each ZrO2 were determined by the standard volu-
metric and weight approach, The ultimate crystallite size associated with
each material was determined from high magnification photos (to 30, 000X)
made with an electron transmission microscope. The particle or agglome-
rated size was also determined by the MSA centrifuge approach. The spec-
trographic approach was used to determine the chemical impurities asso-
ciated with each type of Zr02.

C. WET BLENDED PZ-PT

Each of the Zr02 lots in Table 1, except the first shipment and unpulverized
materials, was used to prepare a six kilogram, high drive PZ-PT batch ac-
cording to the compositional formula:

Eb ;S

. 945%, gp'er

; 53Ti. 47)O3 + 0,005 wt. % Fe203.
The only variation in materials used was the Zr02. The LOI of each ZrO2
was used to compensate for the Zr content., Each batch was (1) wet ball
milled for two hours with an equal amount of water, (2) pan dried, (3) granu-
lated, (4) calcined at 900°C for five hours, (5) cooled and micropulverized,

(6) wet blended with methocel and stearic acid, (7) spray dried, (8) pressed
into 1 inch diameter by 0.2 inch thick disc at 6000 psi, (9) burned off in air

at 830°C for five hours and cooled, and (10) checked for unfired density.
Twelve discs were fired in closed magneisum oxide saggers with 10 grams

of PbZrO3 to 1290°C for two hours to a cone 13 at 6 o'clock. The density

of the fired pieces was measured and each disc was ground to a thickness

of 0,100 inch, electroded with silver paste, and fired at 750°C in a Trent wire
mesh belt furnace.
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After cooling, the unpoled capacitance and electrical dissipation were meas-

ured and each disc was polarized at 6kV for 60 seconds at 140°C, The low
field capacitance, electrical dissipation, resonant frequency, anti-resonant
frequency, and resonant resistance were then measured at 1, 5, 15, 30 and
90 days. The high field capacitance and electrical dissipation were deter-
mined at 1000 hertz after 100 days of aging and after 60 seconds running at
5, 10 and 15 volts/mil. A minimum of 24 hours was allowed between each

successive higher driving field.

A small, fired fragment of each batch was optically polished and etched in
5:1:1 solution at 95°C for 30 seconds. This solution contained five parts of
saturated NH 401 solution, one part H20 and one part concentrated HZSO 4
A typical area of each sample was photographed at magnification of 400X.

D. DRY BLENDED PZ-PT

Nine dry blended batches were prepared from the 600, 900 and 1200°C cal-
cined double precipitated ZrO2 produced from the three zircon sources.

The same high drive composition used for the wet blended part of this pro-
gram was used. Each raw material was dry blended for 10 minutes ina V-
cone blender, starting with Fe203 and Zr02. Then, Ti02, SrCO3 and PbO
were added and each blended another 10 minutes in the V-cone blender. The
complete batch was emptied into a plastic bag and kneaded until a uniform
color was obtained, and finally V-cone blended another 10 minutes. All
batches were processed this way as uniformly as possible. The dry blended
material was then calcined at 900°C for five hours, wet ball milled, spray
dried and produced into test discs as discussed above. Thus, the only dif-
ference in these nine batches is the dry versus the wet blending approach

used during the mixing of the oxides for this composition.
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III. RESULTS AND DISC USSION

This section discusses the characterization results obtained from the zircon
sands and various ZrO2 materials derived from these sands. The impact
of these ZrO2 variations on the physical and electrical behavior of a high
drive piezoelectric composition is then analyzed.

A, ZIRCON RAW MATERIAL

The chemical and physical data obtained on the two samples each of Florida,
Georgia and Australian zircon sand are reported in Table 2. Significant dif-
ferences in the physical size of the zircon are apparent. The Australian zir-
con was coarsest, while the Georgia zircon had the finest grains. The
Georgia zircon (2-2) also appeared to be slightly purer than the Florida (2-1)
material; however, both domestic materials are substantially purer than

the Australian zircon, Alumina and iron appear to be the most variable im-
purities. Heavy mineral (PbO and rare earth) impurities in the domestic
zircon sands appear to be greater. The main mineral impurities in these
materials appear to be ilmenite, rutile, kyanite, and possibly, monazite.

The dark Australian zircon sand used had not previously been calcined to
burn off organic impurities; therefore, it contained an ignition loss of about
0.13 percent, opposed to 0.02 and 0, 04 percent, respectively, for the pre=
viously calcined Florida and Georgia sands.

The sample of the Australian zircon calcined at 900°C for five hours had

about the same particle size distribution as the uncalcined zircon. The bulk
density of these materials varied from 2. 69 to 2. 89 gm/cc where the highest
and lowest density were associated with the coarser and finer sand, respec-

tively.
8
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Table 2, Chemical and particle size analysis of zircon sand.
Florida Georgia Australia
Lot Lot Lot Lot Lot Lot Calcine Lot
1-1 2-1 1-2 2-2 1-3 2-3 -

ZRO2 66. 60 65, 98 65.43 66, 58 65. 16 64.29

SiO2 32.29 32.26 31.77 31.96 31.91 31. 54

TiO, 0. 143 0.119 0.314 0.118 0.338 0,202

l"‘ezo2 0. 036 0. 044 0. 054 0. 039 0.116 0, 092

Al203 0. 094 0. 945 0. 945 0.378 1. 512 3.779

8203 0. 006 0. 003 0. 006 0. 003 0. 006 0. 003

CaO 0. 070 0. 070 0. 070 0. 070 0. 028 0,028

CR203 ND ND ND ND ND 0, 003
Percent
Present Ca20 ND 0. 001 ND 0. 001 ND ND

uzoa ND 0. 059 0. 094 0. 094 ND ND

PbO 0.086 0. 054 0. 086 0. 054 0. 022 0. 022

MgO 0. 083 0.133 0.133 0.133 0. 083 0. 083

MnO 0. 003 0. 001 0.010 0. 001 0. 006 0. 001

Agz() ND ND 0. 001 ND ND ND

V205 0. 004 0. 001 0. 009 0. 001 0. 009 0. 009

L.O. 1. 0.016 0. 044 0.116 0. 142

Total 99. 415 99. 586 98, 922 99,476 99. 306 100. 194

>60 ND ND ND 0. 68 0. 60 0. 52

-60+100 0. 57 0. 54 0.46 67.12 67. 85 67. 10
Mesh -100+160 76.79 34.78 35. 82 31,53 30. 62 29,98
Size -160+200 16. 94 42,98 43. 59 0.67 0.93 2.05

-200+325 5. 87 21. 50 19. 95 ND ND 0.30

< 325 0. 03 0.20 0.18 ND ND 0.05
Color Grey Grey Grey Brown Brown Reddish Tan
Sp. Gr. gm/cc 2.77 2.69 2. 68 2.84 2,83 2.89
NOTE: ND - Not Detected.

9
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B. ZrO2 MATERIALS

10 to 22 percent water.

tained between 0. 05 to 1. 0 percent of hydroscopic water.

The first and second precipitates produced from each lot of zircon were re-
ceived in a partially dried state (ZrO2 210 H20). Therefore, the loss in
weight upon heating to 900°C was obtained for each of these and reported
; (Table 3), along with L, O.I. data for each of the 600, 900 and 1200°C cal-
cined materials produced from the first and second precipitate material.
The first precipitates were damp when received and contained between 30
and 50 percent water, while the drier second precipitated materials contained
The calcined material was apparently dry but con-
The amount of hy-
droscopic on residual water appears to relate to the final calcination tem-
perature and storage conditions. For instance, the Honeywell ZrO2 mater-
ials calcined at 500°C contained about 1. 0 percent water opposed to about 0. 4,
0.2 and 0. 06 percent water for 600, 900 and 1200°C calcined Harshaw ZrO

Table 3. Percent loss in weight of zirconium oxide materials,
Florida Georgia Australia J Honeywell
I { Lot Lot Lot Lot Lot fiobes | 500°C
1-1 2-1 1-2 2-2 1-3 2-3 Calcined
T
| As Received 48.4 | 31.9 | 44.6 | 44.1 | 46.9 | 43.5
Tt 600°C Calcine 0.34 0. 40 0. 44 ‘
Precipitate | g490¢ calcine 0.14 [ 018 0.27 ’
1200 'C Calcine 0. 06 0. 04 0.05 |
As Received 10.5 21.8 15.4
Second 600 'C Calcine 0.22 0.26 0.39
Precipifate | g4p°c calcine 0,18 0.16 0.16 |
l‘ 1200°C Calcine 0.07 0.05 0.06 |
"
T
Harshaw | |
e 0, 55 0.54 | 0. 60
Batch 2168 i 0.86
]
Batch 2169 ! l 0. 99
Batch 2170 | { | 0.89
‘ |
Batch 2171 ' j0.95
Batch 2172 J l | 1.00

|
|

o A N ot it ) A




The 29 lots of ZrO2 prepared were chemically analyzed and the primary im-
purities found were Ca, Si, Ti, Fe and Al, The impurity variations between
these lots are shown in Table 4 as a function of zircop source (Australia,
Florida and Georgia), calcination temperature (600, 900 and 1200°C) and
stage of processing from Harshaw's standard process (first precipitate,
second precipitate or normal calcine). The impact of Honeywell's pulveri-
zation process for the hardest calcine material (1200°C) is also shown along
with the purity of five lots of ZrO2 prepared from tetra-N-butyl zirconate
(TBNZ).

The Georgia and Florida zircon sands appear to produce ZrO2 with essen~-
tially about the same concentration and types of impurities; namely, cal=-
cium, silicon and titanium, The Australian zircon had about the same
level of iron, aluminum and calcium, but about twice the amount of silica
and titanium. The first shipment of single precipitate (600°C - first ship-
ment), contaminated during processing at Harshaw, contained high amounts
of sodium, calcium and silicon., This material was scrapped and not used
further in this program. The ZrO2 derived from TNBZ was contaminated
with an unusually high amount of silicon, iron and aluminum (caused by

an unusually bad lot of TNBZ), but was evaluated further,

The second precipitation technique used by Harshaw to produce their normal
electronic grade of ZrO2 is effective in lowering the level of calcium, silicon
and titanium.

Table 5 gives the results for ultimate crystallite size and agglomerate size
of the ZrO2 produced by these processes. The electron transmission data
(ETM) showed that the ultimate crystallite diameter of the ZrO2 produced
was in the 100} range at 600°C, 4004 at 900°C and 30004 (0. 3 um) at 1200°C
calcination temperatures. In general, the ultimate crystallite diameter

11
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obtained was independent of the zircon source and precipitation process.
High amounts of impurities associated with the contaminated first shipment
and TNBZ derived ZrO2 may have been responsible for the extremely fine
804 crystallites observed for these materials,

The average agglomerate diameter obtained by the MSA centrifuge approach
showed a significant difference between the ZrO2 produced by the first and
second stage precipitation processes. For instance, about 15 percent of the
agglomerate particles from the second stage precipitated ZrO2 materials
and the normal Harshaw calcined material were less than 0.5 pm, whereas
most of the first stage ZrO2 derived materials had agglomerated particles
that were all larger than 0,5 pm,

The impact of the small crystallites and agglomerated particles on the bulk
and pressed density of ZrO2 is shown in Table 6. This data reveals that the
agglomerated particle size has a pronounced impact on the bulk density of
the powders. For instance, the double precipitated ZrO2 with consistantly
smaller particles had a 0.3 to 0.6 gm/cc lower density than the single pre-
cipitated ZrO2 materials., The pressed ZrO2 powders, however, followed a
relationship that was dependent upon the ultimate crystallite size. Note that
both the 600° and 900°C calcined single and double precipitated ZrO2 materials,
which had a crystallite size of 0. 02 to 0. 04 pm, had pressed densities in the
1.5 to 1.6 gm/cc range although the average agglomerated particle size
varied from about 9 to 2 pm for the first and second precipitates, respec-

tively.

Calcining at 1200°C did not produce the same phenomenon, Apparently, the
higher impurities associated with the first precipitate either promoted cry-
stallite growth or partially sintered the crystallites together. This also ap-
peared to be true for the Honeywell-prepared Zr02. It is apparent from the
density results on the Harshaw calcined ZrO2 that they calcine at about 900°C.




Table 6. Bulk and pressed density of ZrO2 powders.

Florida Georgia Australia Honeywell
Bulk Pressed Bulk Pressed Bulk Pressed Bulk Pressed
Density Density Density Density Density Density Density Density
gm/ce gm/cc gm/cc gm/ce gm/cc gm/ce | gmlee gm/cc
=
600°C Pulverized 0.99 1.45 | 0.95 1.45 0.95 1.43 | | i

First e | | A
Precipitate 900°C Pulverized 1.15 1. 60 | 1.08 1.60 ; 1.10 1. 57

1200°C Pulverized 1.91 3.01 1,78 [ 3.1 | 1.68 3.27

|
600°C Pulverized 0. 64 1.33 0.47 1.39 0. 57 1.32 | -j
| ;

Second o
Precipitate 900°C Pulverized 0.65 1.60 0. 51 1. 58 0.53 1. 51

1200°C Pulverized 1.29 2.61 1.38 2.89 1.31 2.51

Harshaw

Calcine 0.66 1.61 0.66 1,59 0.67 1. 57

Batch 2168 1. 88

Batch 2169 1. 85

Batch 2170 1.79

Batch 2171 1.81

Batch 2172 1.78

C. PHYSICAL AND ELECTRICAL BEHAVIOR
OF WET BLENDED PZ-PT

The impact of 26 ZrO2 variations on a typical high drive piezoelectric lead
zirconate-lead titanate compositions was determined by keeping all other
compositional, processing and testing variations constant. These batches
were prepared, processed and evaluated consecutively at the same times to

minimize all other outside variations.

Table 7 gives unfired and fired density as well as the unpoled and poled di-
electric constant results. The high unfired density (4.49 gm/cc) batches,
containing the first precipitate type of ZrOz, correlated well with the coarser
nature of the agglomerated Zx-O2 material present in these batches. The
more impure first precipitate and TNBZ ZrO2 batches had moderately lower
unfired densities of about 4.2 gm/cc, while the second precipitate ZrO2
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batched materials produced from smallest Z!'O2 agglomerates had the low-
est unfired densities of 4.0 gm/cc. The fired densities also correlated well
with the highest density material resulting from the lowest density pressed
parts. Similarly, the unpoled and poled dielectric constants, in general,
were highest for the highest fired density PZ=-PT material. Higher calcina-
tion temperatures with the first precipitate ZrOz materials produced the
highest densities and best piezoelectric properties in this group, but were
still inferior to most of those in the double precipitate group.

The microstructure of the wet blended PZ-PT batches is shown in Figures
1, 2 and 3. Figure 1 shows the typical microstructure of those batches con-
taining ZrO2 produced from the single precipitated material. The average
grain size was 5 to 6 pm except for the batch containing 600°C ZrO2 from
Georgia zircon which was 9 pm. The 4 to 6 pm grain size of the PZ-PT
batches produced from ZrO2 derived from double precipitated material and
the standard Harshaw calcined material (AH, GH, FH) are shown in Figure
2. A more variable microstructure was obtained in the PZ-PT produced
from ZrO2 derived from the more impure TNBZ material, in Figure 3.
Thus, most of the minor microstructual differences noted in these materials
are probably related to their density and impurity variations.

Table 8 gives the low drive piezoelectric properties obtained from the PZ-PT
batches obtained with various lots of Zr02. The radial coupling coefficient
(kp), radial frequency constant (Nr) and mechanical quality (Qm) are calcu-
lated from the resonant frequency data at the five day aging point. In general,
the piezoelectric properties behaved in the fashion expected for the fired
density present. The most significant variations in properties occurred with
the PZ-PT batches produced from the first precipitate type of Zr02, whereas
all lots containing Zr02, which received the double precipitate process, pro-
duced essentially the same piezoelectric properties regardless of calcining
temperature and zircon source, It was somewhat surprising that the 1200°C
calcination temperatures did not deteriorate the properties of these batches.
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Figure 1,

AVERAGE GRAIN SIZE 6
FSP-600

AVERAGE GRAIN SIZE 6
FSP-900

AVERAGE GRAIN SIZE 6
FSP-1200

Microstructure of PZ-PT compositions made from
first precipitate ZrOz. (Concluded)

18
47241




Figure 1,

AVERAGE GRAIN SIZE 9
GSP-600

AVERAGE GRAIN SIZE 6l
GSP-900

AVERAGE GRAIN SIZE 5y
GSP-1200

Microstructure of PZ-PT compositions made from
first precipitate ZrOZ. (Continued)
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_Figure 1.

AVERAGE GRAIN SIZE 6
ASP-600

AVERAGE GRAIN SIZE 5
ASP-900

AVERAGE GRAIN SIZE 6
ASP-1200

Microstructure of PZ-PT compositions made from
first precipitate Zr02.
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AVERAGE GRAIN SIZE 5u AVERAGE GRAIN SIZE 5u
ADP-600 ADP-900

AVERAGE GRAIN SIZE 5u AVERAGE GRAIN SIZE 4u
ADP-1200 AH

Figure 2, Microstructure of PZ-PT compositions made from double
precipitate and Harshaw ZrOz.
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AVERAGE GRAIN SIZE 6p AVERAGE GRAIN SIZE 4p
GDP-600 GDP-900

AVERAGE GRAIN SIZE 5Q AVERAGE GRAIN SIZE 5
GDP-1200 GH

Figure 2, Microstructure of PZ-PT compositions made from double
precipitate and Harshaw Zr02, (Continued)
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AVERAGE GRAIN SIZE 6 AVERAGE GRAIN SIZE 5y
FDP-600 GDP-900

AVERAGE GRAIN SIZE 5u AVERAGE GRAIN SIZE 5l
FDP-1200 FH
Figure 2, Microstructure of PZ-PT compositions made from double

precipitate and Harshaw ZrOz. (Concluded)
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AVERAGE GRAIN SIZE 6 AVERAGE GRAIN SIZE 5
2168 2169

AVERAGE GRAIN SIZE 6
2170

AVERAGE GRAIN SIZE 4l AVERAGE GRAIN SIZE 7
2171 2172

Figure 3. Microstructure of PZ-PT made from Honeywell ZrO

derived from TBZ, 2
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The batches prepared from the TNBZ derived ZrO2 produced fairly high me-
chanical quality factors, apparently because of the finer ZrO2 in these
batches.

Table 9 gives the high drive properties obtained for these compositions based
on the percent increase in capacitance from low to high driving field (%AC /C)
and the measured percent electrical dissipation at 5, 10 and 15 kV /0. 001
inch of thickness.

The percent change in capacitance and the percent electrical disgipation of
batches made from various ZrO2 lots prepared from the second precipitate
were reasonably consistent for each driving field. Changes of about 1. 7,
4.0 and 10.5 percent for AC/C and 0.6, 1.4 and 3. 1 percent for electrical
dissipation were obtained for each driving field. Most of the batches pro-
duced from the ZrO2 derived from tetra-N-butyl zirconate and several of
those made from ZrO2 produced from the single precipitate had similar high
field properties. However, the physical and chemical variations associated
with the Zx-O2 lots from the first precipitates appeared to cause larger

AC /C and percent dissipations in the PZ-PT compositions where these ma-
terials were used.

The aging rate of the piezoelectric properties are given in Table 10 for the
period between 10 and 100 days. Again, batches containing ZrO2 made from
the double precipitated materials had uniform aging behavior: -4.5 to -5.0
percent for dielectric constant, -2.0 to -2.5 percent for radial coupling
coefficient, +0. 9 to 1.3 percent for radial frequency constant and +20 to

+30 percent for Qm. Batches containing ZrO2 derived from TNBZ also

fell within this range. As previously, batches containing Zx-O2 from the
single precipitated material had a wider range in aging rates.
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D. PHYSICAL AND ELECTRICAL BEHAVIOR OF DRY
BLENDED PZ-PT

This section discusses the results obtained on nine PZ-PT batches produced
by the dry blending approach from the nine second precipitate ZrO2 materials,
The pressed and fired density, as well as unpoled and poled dielectric con-
stant of each batch, are given in Table 11. The green density of samples
prepared from PZ-PT batches with the 600°C calcined ZrO, group was about
the same for the dry blended batches as those from wet blended batches.
However, the 900°C and 1200°C calcined ZrO2 groups generally produced
PZ-PT batches whose pressed density was greater for the dry than the wet
blended materials.

The fired density of all dry blended PZ-PT variations was always lower than
the wet blended PZ-PT batches, The dry blended batches containing ZrQ,
calcined at only 600°C were 7.0 to 7, 3 gm/cc as opposed to 7.51 gm/cc for
the wet blended batches., In five out of six instances, dry blended batches
containing ZrO2 calcined at 900 or 1200°C produced PZ-PT whose densities
were 7.38 to 7. 47 gm/cc as opposed to 7,49 to 7.51 gm/cc for the wet blend-
ed batches,

The lower density dry blended batches also produced lower dielectric con-
stants, The fact that five out of six batches, which used 600 to 900°C cal=-
cined ZrOz, contained lower dielectric constants after poling suggests that
these batches were poorly blended during batching, Thus, wet milling after
calcining the PZ-PT cannot be expected to correct a poor blending operation.

When dry blended batches were made from 1200°C calcined ZrO, the poled
dielectric constant was also greater than in the upoled state. This may
indicate that wet milling of the PZ~-PT calcine containing dry blended 1200°C
calcined ZrO2 is less critical than where low calcined material is used. It
is postulated that the thermal expansion accompanying the cubic to monoclinic
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ZrO2 inversion at about 1000°C in the 1200°C calcined material makes these
larger crystallites more friable and reactive.

Table 12 gives the low drive piezoelectric properties for the dry blended
PZ-PT batches. The high variability and low properties obtained can be
blamed on the poor density and mixing of the ZrO2 in these batches. The
mechanical quality (Qm) of dry blended PZ-PT is the only property that
approached the wet blended PZ=PT batches.

Table 13 shows the aging behavior of the various piezoelectric properties
for those batches made from dry blended PZ-PT, Again, the variations can
be attributed to the variations in density and mixing and their associated
impact on the completeness of polarization,

Table 14 gives the high field data obtained for the dry blended batches. The
relative low electrical dissipation and percent change in capacitance as a
function of driving field are relatable to the low density and low polarization
state in these materials,

Based on the results obtained, it is clear that each of the three sources of
zircon can be used to produce satisfactory ZrO2 for PZ-PT. The process
used for deriving ZrO2 from these sources is critical, It is not clear why
the two different precipitation processes are required to produce uniform,
high purity ZrO,. A wide range of calcination temperatures can be used
with double precipitated ZrO2 without influencing the performance of the
ZrO2 in the high drive PZ-PT compositions evaluated. The calcination
temperature used does appear to have a fairly strong dependence on how
uniformly the ZrO2 is blended with the other batch materials,

The completeness of the blending process is very critical. Dry blending is a
relatively poor way of obtaining good mixing of the PZ-PT batch, which can
not be completely compensated for by the normal subsequent calcination and
wet grinding operations, More effort on the dry blending approach is neces=
sary before it can be relied upon to produce uniform PZ-PT batches.
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IV. SUMMARY AND CONC LUSIONS

The three sources of the mineral zircon (ZrO2 . Si02) obtained from concen-
trated Florida, Georgia and Australia sands varied significantly in their phy-
sical particle size and chemical impurities. However, in this current pro-
gram we have shown that adequate chemical purification of each of these ma-
terials will yield ZrO2 of essentially the same ultimate particle size and
purity. Such fully processed materials also yield PZ-PT with uniform pie-
zoelectric properties at both low and high drive conditions. Materials which
are not fully processed, such as ZrO2 derived from the calcination of first
stage Zr (OH)4 precipitate, proved to be very dependent upon the zircon
source and calcination temperature. Such materials contained more silica,
calcia and titania impurities, which appeared to act as a bonding media for
bonding small (0. 05 pm) crystallites into large (10 pm) agglomerates. Ap-
parently, these large agglomerates prevented complete blending and densi-
fication of the compounded PZ-PT, which in turn caused extensive variability
in its piezoelectric behavior.

It had been assumed that any dry blending variability obtained would be eli-
minated by the wet mixing/grinding approach performed after calcination of
the PZ-PT. However, all nine of the dry blending compositions produced
had fired densities of 6. 96 to 7.47 gm/cc opposed to 7.49 to 7. 52 gm/cc for
the wet blended PZ-PT. The piezoelectric coupling coefficient was 13 to

51 percent lower than similar material produced by the wet blended process.

Thus, the dry blending approach is more difficult to control for producing
uniform PZ-PT materials. Apparently, a more thorough mixing operation
than the dry blending approach used in this effort is required. The slower
aging behavior of the dry blending PZ-PT compositions appeared to be more
dependent upon the lower coupling of these materials than on the blending
approach.,
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