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MULTIDIMENSION?IL DIGITAL FILTERS~

.- . , sP~i~:B. DeCarlo, R. Saeks, and 7. Murray

Texas Tech University at Lubbock, Texas 

~Abstract response (7) of a digital filter is the
evaluation of its transfer function over

This paper discusses three graphical tests
for determining the stability of multidi-
mensional digital filters characterized by Thirdly we have
an appropriate transfer function in severi~l N5 — ((z1~...~z~)in ~~II 2 iI~

l,...,k—1,k
~’l
,• complex variables. Each test is carried

out as a finite number of “Nyquist” plots •..,n~ 1 }
in the complex plane.

where k ranges from 1 through n. This is
• Introduction a boundary notion in the sense that n—i

cuordinates take on extreme], values. Fin-
Recently two of the authors constructed an ally, the last notion of Mboundary N j~algebraic topological proof of the Nyquist 

— (z1....~z~)is ~~
IziI—1, i— l, . . ., k—l ;Criterion (2) (3). The value of this

rather sophisticated approach has been
harvested in generalizations to systems ‘~k’~ 

1, z
~ 

O• i k+l,. ..~X%}
- characterized by transfer functions in

several complex variables (1) (2) (3), in where again k varies from 1 to n. The ix—
particular multidimensional digital filters. portance of this concept was first noted • I —

Specifically the paper illustrates three by Huang (5). Later it was generalized in
• graphical tests, similar to the classical

Nyquist test, carried out in the complex With these notions of boundary one may
plane, which determine the stability of a prove the following Theorem. The proof,
multidimensional digital filter with a however, of the following equivalence is

found in the references (1) (2) (5) (7) (9). jtransfer function H(z1~....z~) — B(z1,..., Theorem 1: Let a causal multidemsional
• 

Z
n

)/A (Z i s • • •~~
Z
n

) where z
~ 

are complex van — digital filter be characterized by a
ables and A and B are relatively prime poly- rational transfer function in several cam—
namials. The purpose of the paper is to plex variables. Assume the numerator and
consider these three tests as applied to denominator polynomials are relatively
two different examples, prime. Then the following are equivalent

stability conditions:
Background and Main Theorems (i) the pole set of the transfer
Basic to the theory ii the 2n (reaj 1) dimes— f unction has a null intersection with P~
sional polydisc (8) which is the ~ analog (ii) the pole set of the transfer
of the unit disc of 0. Mathematically the function has a null intersection with B’

(iii) the pole set of the transfer
polydisc ? is function has a null intersection with
p5 — ((z11...,z5)in o’~1Iz ~

I< 1, i—l,...,n} (iv) the pole set of the transfer
function has a null intersection with N5.

There are four separate notions of boundary The trouble with these conditions is that
of the polydisc (l)(8). First is the usual the actual test is carried out in a higher
topological boundary dimensional space. For example P’~ is 2n

• BZ~ . ((z 1,..., z5)in 0~1I 2 iI!. i, i— 1, .. . , n dimensional, B is (2n—l) dimensional,
while H5 and MX~ are both (n+i) dimensional.

and — 1 for some k} Intuitively, the equivalences of this thso—
Second is the distinguished boundary rem follow because th. pole set of a ration-

al function in several complex variables
— 1, i—l ,...n } is an infinite continuum which must inter—— ( (z 1,...,z5)in 0l~1Iz iI sect the different boundani•s of the poly—

serves as the multidimensional analog of disc if it int•rs.cts the polydisc at all.
the unit circle. In particular the frequency With the intuition gained in (2) (3) (7) the

$ Supported in part by AFOSH Grant 74-2631D
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authors were able to simplify these results region together with the image of the di.-
• to graphical tests in the complex plane. tinguished boundary, one obtains the imager~he following three theorems are the fruit of the entire poiydisc, from which one can

of this endeavor. Before stating these get an accurate idea of stability margins.
theorems, one final definition i. in order. (The point here is that we have found the
The “Nyquist plot” of a polynomial, f(’), image of a 2n-dimensionai set—-the poiy—
in one complex1vaniable is defined to be disc—-by plotting an n-dimensional set and
the image of T under the map f(’) where a 1-dimensional set).

is the unit circle of the complex plane. EXAMPLES
With this in hand , we have the following In this section we apply each of the above
three tests. Again the proofs can be found tests to two examples.
in the references (l)(2)(3)(9). Example 1:
Theorem 2: Let A be the denominator poly-
nomial of a multidimensional digital filter A(z11z2) — 5/4 z~ z~ +1 + ~
as characterized in ~heorem 1. A is a
polynomial mapping 0 to O. Then A has no + ~ 5i + ~~ z~ 

- z~ 
- z~ + 3

zeros in P5 (i.e. the filter is stable)*if —2 z1 
— 2 + 1

• and only if
(i) A has no zeros on T~ , and In this case, we have
(ii) The Nyquist plots for the single

• variable functions A(l,...,l,z 1 1 )  A (z,1) — 3/2 z3 
+ 13/4 ~2 + 9/2 z—2

k — l,...,n do not encircle zJo.
Theorem 3: Let A be as above. Then A has A (i,z) — 1/2 z3 

+ 13/4 z2 + 9/2 z — 2.

no zeros in P5 (i.e. the filter is stable)* These polynomials are identical; the image
if and only if of the unit circle being given in Fig. 1(a).*

(i) A has no zeros on ‘r5, and Since this curve encircles the origin, we
(ii) The Nyquist plots for the single deduce immediately that the filter is us—

variable functions A(l,...,1,z ,o,...,o) stable; for purposes of illustration, we
k — l,...,n, do not encircle z~ro. 

will carry out the other tests.
Theorem 4: Let A be as above . Then p has A (z,O) — —z

2 
- 2z + 1

no zeros in P~ (i.e. the filter is stable)* A(l,z) is as before (Fig. 1(a)); A(z,O) is
if and only if

(i) A has no zeros on T~, and 
plotted (for z — eie ) in Fig. 1(b). ~gain

(ii) The Nyquist plot for the single either plot suffices to verify instability,
variable function A(z,z,. . . ,z) does not ~~~~- 

and clearly A(z,O) gives the simpler test.
circle zero. To apply the third test, we calculate
Each of these tests has essentially the A(z ,z) — 9/4 z4 + 6 ~3 + z2 — 4z + 1
same two parts. First one performs the
appropriate encirclement test(s); if zero and the image of the unit circle under this
is not encircled, one then proceeds to check mapping is plotted in Fig. 1(c). The
the image of the distinguished boundary. relative complexity is apparent; however,

• This order of testing (encirclement first, it again verifies instability. Finally,
• then frequency response) seems in most cases we plot the image of the distinguished

to be preferable to the reverse order, since boundary in Fig. 1(d); it can be seen that
much less computation is involved in the it does not include the origin , although
encirclement tests; however, in cases where it does in some sense “encircle” it.

The second example shows that this last• the frequency response is known a priori, kind of “encirclement” is irrelevant;or must be plotted in any case, the order
a is immaterial, nothing can be deduced from it.

It might appear that the third test (Theorem ~~ample 2:
4) is the best, since it involves only one A(z1,z2) — (z 1 + 2)~ (z 2 + 2)~encirclement test; however, in many cases
the relative complexity of the polynomial As before, the plots for A(z,i) and A(l,z)
A (z,z,.. . ,z) will more than offset this are identical
advantage. Similarly, in many cases, Theo- A (z,l) — 27(z + 2)~rem 3 may be much easier to apply than Theo- A(l,z) — 27(z + 2) ;
rem 2. (This i. illustrated in the first
example).Theorems 2 and 4 however, do have This plot is given in Fig. 2(a); it does
two advantages. The first is mainly philo- 92~ 

encircle 0.
sophical; these Theorems give a test for *(This illustrates the obvious fact that
stability purely in tennis of the frequency if the polynomial is symmetric in z
response of the function A , which corres- g~ , then the n plots in Theorem 2 u i  fact
ponds closely with the idea of the Nyquist reduce to 1 plot--usually simpler than thecriterion in one variable. The second ad—

$ vantag, is that by filling in the interior plot in Theorem 4. Such symeetry is quite
of the encirclement plot(s) and taking this comeon).
•$ee note 2.
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In this case, the plot for A(z,0)—8(z+2)3
• - differs from the previous plot only by a

scale factor; we do not draw it sepa~ate3y.Finally, the plot for A(z,z)— (z + 2 )  is
given in Fig. 2(b ) ; again it does not en-
circle the origin.
Thus, in order to determine stability in
this case, it is necessary to plot the
image of the distinguished boundary; this

• is done in Fig. 2(c) . Since this image
does not contain the origin (although it
does surround it), we conclude that the
filter is stable. This of course is ob-
vious analytically, the present example
is merely to illustrate the tests.
Note 1: Because of the magnitudes of the
numbers involved, Fig . 2 (a) — 2(c ) are not
drawn to scale.
Note 2: Nonvanishing of the denominator• polynomial implies stability; the converse,
however , is not quite true unless we assume

S that the transfer function has no indeter—
• minacies on the distinguished boundary

(s.e(10)J.
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