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Abstract

This paper discusses three graphical tests
for determining the stability of multidi-
mensional digital filters characterized by
an appropriate transfer function in several
complex variables. Each test is carried
out as a finite number of "Nyquist" plots
in the complex plane.

Introduction

Recently two of the authors constructed an
algebraic topological proof of the Nyquist
Criterion (2) (3). The value of this
rather sophisticated approach has been
harvested in generalizations to systems
characterized by transfer functions in
several complex variables (1) (2) (3), in
particular multidimensional digital filters.
Specifically the paper illustrates three
graphical tests, similar to the classical
Nyquist test, carried out in the complex
plane, which determine the stability of a
multidimensional digital filter with a
transfer function u(zl,...,zn) = B(zl....,

:n)/A(zl,...,zn) where z; are complex vari-

ables and A and B are relatively prime poly-
nomials. The purpose of the paper is to
consider these three tests as applied to
two different examples.

Background and Main Theorems

Basic to the theory is the 2n (reai) dimen-
sional polydisc (8) which is the ¢ analog
of the unit disc of ¢. Mathematically the

polydisc P is
P" = {(zg,e..02p)in ¢n||zi|§ 1, i=1,...,n}

There are four separate notions of boundary
of the polydisc (1) (8). First is the usual
topological boundary

B" = {(zy,...,2 ) in ¢n||11|§ 1, i=1,...,n

and Izkl = 1 for some k}
Second is the distinguished boundary
™ = ((25,...02,)dn ¢“||z1| =1, i=1,...n}

T" serves as the multidimensional analog of
the unit circle. In particular the frequency

response (7) of a digital filter is the
evaluation of its transfer function over
n

T .

Thirdly we have

M" = {(2,...,2)in ¢n||zi|-1,...,k-l,k+1,

oY lzklg 1}

where k ranges from 1 through n. This is
a boundary notion in the sense that n-1
coordinates take on extremal values. Fin-
ally, the last notion of "boundary" is

H' = {(29,...,2 )18 ¢“||:1|-1, i=1,...,k-
I'klf_ 1; zi =0, i=k+l,...,n}

where again k varies from 1 to n. The im-
portance of this concept was first noted
?y Huang (5). Later it was generalized in
With these notions of boundary one may
prove the following Theorem. The proof,
however, of the following equivalence is
found in the references (1) (2) (5) (7)(9).
Theorem 1: Let a causal multidemsional
gita ilter be characterized by a
rational transfer function in several com-
plex variables. Assume the numerator and
denominator polynomials are relatively
prime. Then the following are equivalent
stability conditions:
(i) the pole set of the transfer -

function has a null intersection with P

(ii) the pole set of the transfer 5
function has a null intersection with B

(iii) the pole set of the transfer
function has a null intersection with H

(iv) the pole set of the transfer
function has a null intersection with .
The trouble with these conditions is that
the actual test is carried out in_a higher
dimensional spgce. For example P~ is 2n
dimensional, B" is (2n-1) dimensional,

while H"” and M" are both (n+l) dimensional

n

1;

Intuitively, the equivalences of this theo-
rem follow because the pole set of a ration-

al function in several complex variables
is an infinite continuum which must inter-

sect the different boundaries of the poly-

disc if it intersects the polydisc at all.
With the intuition gained in (2) (3) (7) the
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authors were able to simplify these results
to graphical tests in the complex plane.
The following three theorems are the fruit

of this endeavor. Before stating these
theorems, one final definition is in order.
The "Nyquist plot" of a polynomial, £('),
in one complexlvariable is defined to be
the image of T  under the map f(') where

Tl is the unit circle of the complex plane.
With this in hand, we have the following
three tests. Again the proofs can be found
in the references (1) (2) (3) (9).

Theorem 2: Let A be the denominator poly-
nomial of a multidimensional digital filter
as characterized in xheorem l. A is a
polynomial mapping £ to ¢. Then A has no

zeros in P" (i.e. the filter is stable)*if
and only if =

(i) A has no zeros on T, and

(ii) The Nyquist plots for the single
variable functions A(l,...,1,2,,1,...,1)
k=1,...,n do not encircle zero.
Theorem 3: Let A be as above. Then A has

no zeros in P® (i.e. the filter is stable)*
if and only if =

(i) A has no zeros on T , and

(ii) The Nyquist plots for the single
variable functions A(l,...,1,2,.,0,...,0)
k=1,...,n, do not encircle zéro.
Theorem 4: Let A be as above. Then A has

no zeros in P" (i.e. the filter is stable)*
if and only if - 3

(i) A has no zeros on T , and

(ii) The Nyquist plot for the single
variable function A(z,z,...,2) does not en-
circle zero.
Each of these tests has essentially the
same two parts. First one performs the
appropriate encirclement test(s); if zero
is not encircled, one then proceeds to check
the image of the distinguished boundary.
This order of testing (encirclement first,
then frequency response) seems in most cases
to be preferable to the reverse order, since
much less computation is involved in the
encirclement tests; however, in cases where
the frequency response is known a priori,
or must be plotted in any case, the order
is immaterial.
It might appear that the third test (Theorem
4) is the best, since it involves only one
encirclement test; however, in many cases
the relative complexity of the polynomial
A(z,2,...,2) will more than offset this
advantage. Similarly, in many cases, Theo-
rem 3 may be much easier to apply than Theo-
rem 2. (This is illustrated in the first
example).Theorems 2 and 4, however, do have
two advantages. The first is mainly philo-
sophical; these Theorems give a test for
stability purely in terms of the frequency
response of the function A, which corres-
ponds closely with the idea of the Nyquist
criterion in one variable. The second ad-
vantage is that by filling in the interior
of the encirclement plot(s) and taking this
#*See note 2.

region together with the image of the dis-
tinguished boundary, one obtains the image
of the entire polydisc, from which one can
get an accurate idea of stability margins.
(The point here is that we have found the
image of a 2n-dimensional set--the poly-
disc--by plotting an n-dimensional set and
a l-dimensional set).

EXAMPLES
In this section we apply each of the above
tests to two examples.

Example 1:
A(z,.2,) = 5/4 Zi zg +y zlz; + & zi z,
2 2 2 2
+ 3 z; 2, + 3 z) 25 - 2] T2, + 3 z,2,
-2 zy - 2 z, +1
In this case, we have
Az,1) = 1/2 z° + 13/¢ 22 + 9/2 z-2
A(l,2) = 1/2 z° + 13/4 22 + 9/2 2 - 2.
These polynomials are identical; the image

of the unit circle being given in Fig. 1l(a).*

Since this curve encircles the origin, we
deduce immediately that the filter is un-
stable; for purposes of illustration, we
will carry out the other tests.

A(z,0) = -z® =23 41
A(l,z) is as before (Fig. 1l(a)); A(z,0) is

plotted (for z = ei®) in Fig. 1(b). Again

either plot suffices to verify instability,
and clearly A(z,0) gives the simpler test.

To apply the third test, we calculate

Alz,z) =9/4 28 + 6 23 + 22 - 4z + 1

and the image of the unit circle under this
mapping is plotted in Fig. l(c). The
relative complexity is apparent; however,
it again verifies instability. Finally,
we plot the image of the distinguished
boundary in Fig. 1(d); it can be seen that
it does not include the origin, although
it dces in some sense "encircle" it.

The second example shows that this last
kind of "encirclement" is irrelevant;
nothing can be deduced from it.

Example 2:

Alzy,2y) = (2 + 2)° (z, + )3

As before, the plots for A(z,l) and A(l,2)
are identical

A(z,1) = 27(z + 2)3

A(l,2) = 27(z + 2)°;

This plot is given in Fig. 2(a); it does
not encircle 0.

*(This illustrates the obvious fact that
if the polynomial is symmetric in 2,,...,
2, then the n plots in Theorem 2 1& fact

reduce to 1 plot--usually simpler than the
plot in Theorem 4. Such symmetry is quite
common) .
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In this case, the plot for A(:,O)-B(Hz)3
differs from the previous plot only by a
scale factor; we do not draw it .epagatoly.
Finally, the plot for A(z,z)=(z + 2)° is
given in Fig. 2(b); again it does not en-
circle the origin.

Thus, in order to determine stability in
this case, it is necessary to plot the
image of the distinguished boundary; this
is done in Fig. 2(c). Since this image
does not contain the origin (although it
does surround it), we conclude that the
filter is stable. This of course is ob-
vious analytically; the present example

is merely to illustrate the tests.

Note 1l: Because of the magnitudes of the
numbers involved, Fig. 2(a) - 2(c) are not
drawn to scale.

Note 2: Nonvanishing of the denominator

' polynomial implies stability; the converse,

however, is not quite true unless we assume
that the transfer function has no indeter-
minacies on the distinguished boundary
[see(10)].
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These plots have been distorted by the mapping

-8)/ 3j

Note:




