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SQUARE-ROOT ALGORITHHS FOR MODEL SENSITIVITY AVALYSISf

AFOSBTR- 78- 030

M. Morf, E. Verriest, J. Dobbins and T. Kailath
Information Systems Laboratory
Stanford University
Stanford, CA 94305

ABSTRACT '

The Morf-Kailath discrete square-root filter-
ing. algorithms are extended to incorporate
sensitivity information with respect to the
assumed model and statistics. If the model and
statistics are incorrect, we presume that an-
other set of model parameters and statistics is
available, considered to be the "actual"” model.
The sensitivity analysis is carried out by com-
puting the so-called "variance ratios" that can
be obtained by a second set of orthogonal trans-
forms. These operations can be performed either
in covariance or information filter form, as the
actual filters. This leads to four basic vari-
ants for the propagation of the variance ratios,
one of them has been obtained by Bierman.

These ideas can also be applied to other
related areas such as smoothing and the dual
control problems, where it is of interest to
study the sensitivity of the total cost with
respect to different models and weights of the
cost.

I. Square-Root Filters Applied to Sensitivity
Analysis
In this paper we consider the linear discrete-

tine dynamic model, where the superscript "a"
denotes "actual"” model parameters

a a a a
"1+1'°1"1+r1“1 " :n xn Fi.n xp (1)
yi-llixi-b-v1 H::m X n (2)

for simplicity, all random variables have zero
mean and covariances

a
cov X, = Po (3)
a a'
cov [ u, ]=faq; ¢ (4)
a a
Vi 5 oy

The propagation of the square root array is
based on the identity in (1]

¥Thls work was supported by the Air Force Office
of Scientific Research, Air Force Systems Com-
mand, under Contract AF44-620-74-C-0068, and in
part by the National Science Foundation under
Contract NSF-Eng-75-18952 and the Joint Services
Electronics Program under Contract N00014-75-C-
0601.
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The following factorizations into triangular
components are made:
Mies = €1€1 = 6,65 (6

where C, is an upper triangular square-root of
the LHS of (5) and C2 a lower triangular square-
root of the RHS matrix.

A geometrical interpretation accompanies this
representation (cf. {1]). Indeed, letting

v A -, S =
I AT PR T PIEELPIY
then: ]

c x and c'?g

are two orthonormal sets (E; and E; respectively)
for the (m + n + p)-dimensional space spanned by
X. In other words, geometrically an ortho-
normalization process (Gram-Schmidt) is going on,
on X. is obtained by orthonormalization of
the set y’,xi ,u'}, conditioned on the data
y(0,1-1), sequentially from right to left.

L] L " - (¥l Al A A
[ygsxiagoug) =501+ 13 1]1-1%141]1-1°%4 | 1121 (1)
Similarly

i-c,

is obtained by orthonormalizing from left to
right

(] "1=F'C o a0 '
[ygoxgaroug) =E505+ [’1| 1-1"*441| 1-1‘“1[ 11 ®

and the £ variables are (see {1) for more
details)

& = @1 uD
£ = X, T

In essence C}Cp is the covariance of the random
variables x(k = 1,2). Now we could also work
with the inverse relations:

T publie relun,
n unlimiteq,




"

T—

-1
™ Ck E(K =1,2)

" leading to the so-called information filter.

These two representations are dual; we can dis-
tinguish two types: 1inversion duality versus
the standard duality [l1]. Note that this ap-
proach leads to one-step predicted estimates
§1+ Li and errors (thus innovations). Alter-
nat* ely we could work with filtered estimates
[1): ii[ , or with A step predicted/smoothed
estimate fa].

Suppose now that we do not know the actual
covariances as given in (3) and (4); we use a
model containing the estimated covariances:

1
Py and [Q, C§ 9)
L

Similarly, the system parameters may be incor-
rectly known, so that we propagate the Kalman
filter (and thus the array's Cy and () as if
the system model were:

x1+1-01x1+1'1u1 01:n X n I'izn xp (10)
vy =Hx +v, Hiimxn (11)

Therefore, x as computed by the filter is not
the minimum variance estimate, and there will
be a discrepancy between the computed and the
actual error covariances. This deterioration

of filter accuracy can ultimately lead to filter
divergence. As a measure for this discrepancy
we define the variance-ratios ZP

£ 4 (Pa)-ll 2P1/2 (p? = actual error covariance.)
= a2)

In our geometric picture, the variables
C;liéﬂk for k = 1,2, (we reserve £ for truly
orthonormal variables in this paper) will no
longer be orthonormal. 1/2

ii = xq - §1|1_1 will still equal Py’ “Xy,
where Pll2 18 the square root of the error co-
variance as calculated by the filter, but Ri
will not have unit covariance. The square root
of cov X will be the variance ratio

~-1/2, a,1/2

Ly =B (P

We present algorithms in which L, is propagated
as an entry in arrays which express the
n-random variables in terms of truly orthonormal

sets,
ﬂk = Hksk k=1,2 (13)

Obviously, just as with the filter itself, we
can implement this propagation in either the
covariance from given in (13) or in information

form
gk = Aknk k=1,2 (14)

in this case we propagatc the ZP = L-l. Either

\

filter implementation may be combined with either
error analysis implementation, leading to four
possibilities. Virtually, all square-root fil-
ter/error analysis algorithms proposed to date
can be viewed as one of these four types. This
is summarized in the following tableau:

Filter
Imple-
entation
Covariance Form | Information
Error Filter form
Analysis
Imple-
mentation
Thornton (1976) | Bierman (1974
(Propagates x-x | Nishimura &
rather than Nead (1973)
Covariance normalized X Curkendall (1972)
Type Form and uses UDUT
ra;herlthan Inversion
1/2_T/2 Duality Morf-
:10:P3 s Sec=|  Raglath (1975)
Information Section 2 of ; Inversion
Type Form this paper Duality [6]

The remainder of the paper is organized as
follows: Section II examines in detail the
filtering algorithm for the special case
{o,,r .} = {oi,r;,n;} and C=C* =0, as in
the rest of the paper. The derivation is given
in covariance-information form, and the covari-
ance-covariance arrays are quoted (for C and
ca # 0, see [6]).

Section III extends these ideas to the general
case of incorrect statistics, as well as model.
Finally, Section IV mentions the fixed-interval
smoothing problem.

II. ERROR ANALYSIS OF FILTERING WITH INCORRECT
STATISTICS ONLY

The Pre-Array Cy
Defining

X' = [y'-$! i "o
£ =014 1xu,,y00,4-113 174 [u, ,y[0,1-111°

L |
" 91y10,4-11)
then it is readily shown that

I H O
X = X (15)
By Sl

00 1

a“d
cov j‘ - Block diag{R .' ’Q ) . (16)
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The “filter algorithm" rescales the z -vari-
ables. setting

X = Block dlag{l(llz ln.Qt,z)nl » I.Uz

This leads to:
X = clﬂl (17)
(time index is suppressed), however, by virtue

of (16), we see that cov Ny #1 ln gencral. Let
3 8' be a decomposition of cov xi. then

eg iz gl pl/2, 8
§=8X=3"2"'n Alﬂl (18)
is again an orthonormal set. Taking the upper
triangular factor for § yields finally
(%'.5]1 = nJ1C}.A7) a9
where

A, = Block diag{ &3 7RE, (0% 781, (0

A, = Block diag{Z_, P.z } (20)
Remarks

1. In case C2#0, and/or C#0, A, contains
off-diagonal blocks. The 2-2 Block entry
remains Ip however.

2. Having obtained P; (the computed covari-
ance) and Ip ,, we are able to find the
actual covariance P2 i

3. Effect of the propagation algorithm:
[5"'5-111 = [ﬂ'T][T'c’,T'A'l]
= [TIIC;,T'A] (21)
Thus, in the process of making C; lower tri-
angular, we perform the same operations to Aj.
The Post-~Array C;
Similarly, defining 7 by:

]
1+1|1]
vhere €4 are the innovations, we can find:

' fe® % o -
' = %49 tyl0,1-1) ¢, &

a a, ] '
R RS- (8K ) ReAK‘P leo
L] . .
covi= | (AK )R Pin|s i)t ’
1 ] '
1'% 1+1“ Re 8Pig Q +M’1+1|1
(22)
where ’ .
“;‘ =y “’1[1 181 - Py MR 5 c c,)
R? =H BT e
€ 1)1-1"1
(23)

"n- n_ Arip™ a
Q=Q - QTP 749

o1
8=QiriPl - QTP )

The A-terms in (22) vanish when correct statis-
tics are used. Rescaling according to the
assumed covnriances yields

e/2 pl/2 1/2)“2 (24)

g, =Block diag({R/ 1+1| Q

and finally

Now again cov n # I in general, and reortho-
normalization 15 needed to yield the orthonormal

. set
L5 g Axn, - (26)
thus we have
[x',£;) = ny[C5.A7) . (27)
From Remark 3 of the previous paragraph:
3T =5

n) and ny span the same space, and §,, k=1,2
are both orthonormal bases for this space. They
are therefore related by an orthogonal trans-
formation T. Thus

TH*=5%
and :
: TAIT - A2
Since we are basically interested in Ip, we can

consider factoring (22) in a (permuted) tri-
angular form SS' with

A11 X X
s=10 A22 0
0 X A33

then the (2,2)-element of Ay is exactly (Ip) 41
and can be obtained from S similarly to (18).
Therefore, we do not need to perform the com-
plete transformation T on the (m+n+ p)-size
matrix (AjT), but a reduced T of size n suf-
fices to yield (2'.!,)“_1

Remark.

1. From the identity Cy cov n C! = C
cov n2C2 = cov X we obtain t;ie 1dent£ties

a _pa T

Re1 Ry +H PiH,
= - a - ’

) "gi"i"’i("i Kgiﬂi) +P1Q1P +

+K_ R%'

8y 184

4
Pina™ (9

1
!
1
1 :1
|
1
i
1




We could have started from these equations
to get the array's without going to the geo-
metrical description.

2. For the covariance-covariance form we simply
invert (18) and (26) to get:

~ =1
X = Czp_k. _Qk-l\kgk. k=1,2 .

III. GENERAL MODELING ERRORS

We now consider errors iniour assumption in the
statistics and the model parameters. For simplic-
ity however, we assume here that C = C2 = 0; non-
zero case, see [6]. In order to reduce the
notational burden we omit the explicit time depen-
dence of the model parameters. As a first step in
obtaining a representation of n; in terms of an
orthonormal set, we invert the equation X = C 1N
to obtain

gy - 4 (an- mo” Ao)x - o™ lAry 1+vy)
!5 -2 =1 -1
X =Py [lxg =Ry, () +0 "M0x, +¢ "ATu,)

Uy X e 5o~ Laex +P "o Laru;

Here

a0 0% - o; auln® - w; arére r.

A new subtle point arises, when the systemmatrices
are mismodeled, » the pre-array variable above,
is no longer equai to X ,» the post-array variable

of the previous time stéep.

Furthermore, we see that to obtain a self-con-
tained recursion, we must augment the n; variables
with the actual state xj.

Suppose we have available a representation for
the augmented state in terms of orthonormal vari-
ables £

X L, 07¢
i i A 1 : (28)
x5 LxA Lx E2

a. % ]
g = @)%, vy = (R,

are certainly orthogonal to the augmented state.
Therefore using (28) and the equation

X4 ¢ Xy +7T ug

we can set up the following representation

i, ] Fn”’(nu-ni'lné)t.n' 'R-l’(AH-Hﬁ-lAQ)Lx ’
X} R S e :

= ' '
Tll 0 ; (] .
) | oL, . ML )

e | ke ¢ :
Higmlyn oanks
P, 0, AT (Q%) 0 - 7
’ 29
Q™" e

ak
r, @ oy 1 7

B B

This corresponds (in augmented form) to Eq. (18)
of Section II.- The above array corresponds to

* —
ap.

We apply on the left of the above array the
orthogonal transformation which updates n; to ny;

that is, we apply the transpose of the transforma-
tion which updates the filter array C; to Cj, thus

v, 1 rx i B 3 s le‘
X =150 " S22 "S23 'Sy [ GO
’ L | ]
ﬁi X S X WX 3
1]
“L o‘r. r" aHk
:1+1J xA , @ ' J _El'.l

(The X's denote entries of no particular interest)
We now apply orthogonal transformation on the
right of the above array to bring the second and
fourth block rows to the form

% , ¥
Xpa] _[ta 0 0 0][%]
x1+1 LxA Lx 00 52

€3

&

This yields Lp, the square-root covariance of
Xj41 and updates (28) to time i + 1. We can
easily initialize (28) at time O, when

Xo =x, = POE

Remark.

1. There is some redundancy in considering

AT # 0 and Q2 ¥ Q together, because I' and

Q only arrive in the combination FQk So,

we can always define a Qequiv - I, equiv
rt#. In this case. A ¢ 0, but Q, Q;
Alternatively, if (2, PQ&) forms a contro 2g{e
pair, then we can set Qequiy = rQr' and Ty I
thus Al = 0 if both (08, rquk) are controflnble.

2. Choosing @yxy as the "cugmenting state to

X, and expressing x - [(Oix )',x') in terms
of n*' = [} ! ') gives an augmented pre-
array Cl wh{lﬁ contains C;, and is itself
1n upper trlnngular form (note that

" with correct mode} and statis-
til flally. we express o
[x* .(O x ) ) in terms of n}' = (n} 30%14q 1)
which yields a lower triangulnr
C* with C contained in 1t

Y
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The augmented A-arrays are quite involved however,
see [6].

IV. SMOOTHING

We now briefly describe how to extend the algo-
rithm of Section III to the square-root form of

_ the two-filter fixed-interval smoother. Each

filter will have an error analysis addendum propa-

gated according to the idea of Section III. Here
~ we will just point out the modifications needed in
the separate filters to facilitate a smoothing
solution and demonstrate how to combine informa-
tion from the two filters to obtain an Lp for the
smoothed estimate.

} The backward filter is implemented in informa-
tion form since it is initialized with infinite a
priori covariance. However, the ny k = 1,2 vari-
ables are the same for both information and co-
variance filters. Therefore, when the only model-
ing error is in the statistics, the error analysis
algorithm is unchanged from Section II . When
there are mismodeled system matrices and the n
are augmented by x4, it must be remembered that uy
is not orthogonal to xi4i. Probably the most
straightforward way to obtain a representation for
(0i,x")' in terms of an orthonormal set (that is
to obtain the array analogous to the inverse of
(18),(26) is to decompose u; as

ana' -1
= QP My Xy ¥y, 0 Mg meovixgyy) D
1+l ;
wvhere u and has

is orthogonal to u
P 1|x1+1 i+l
" covariance
b_ a_,asa.-1 a
Qg = (0] - QG L, T30
When there are mismodeled system matrices, the

augnented state in both forward and backward error
analysis arrays should be represented in the form

!’ -,
x| [0° o0 ]¢& X{ v, O |E
1= 8 rather than «f & :
X MAx HA E2 - LxA Lx E2
(32)

Decomposing each Xi into a component correlated
with and a component orthogonal to the actual
gtate enables us to get a jolnt representation for
XE (from forward filter) and XP (from backward

filter). We have the separate representations

f i b
%g "’1’ 01§, LY O R Y
t1%he el e]™ al” bl b (33)
xi MAx MA E2 xi ; ng HA E2

E must be related to E by an orthogonai trans-
formation. Ef = EP 1f we 1nsist on a unique form
for NI¢, say lower "triangular with positive di-
agonal elements. Some study reveals [6] that E;
is a function of {ug,...,us_1} and {vg,...,vi;J,
while E is a function of {ug,...,uy) and
{v4,...5vy} where the smoothing interval is
i=1,...,N. Thus EE and 52 are orthogonal and
we may write

~b

X w o o]

: b Ax A 1 (36)
~f £ £] b

Xl (Mx © Ma|%2

&

When we have only incorrect modeling of statistics
this simplifies to

The forward filter may be implemented in either
covariance or information form. For purposes of
illustration, let us assume a covariance forward
filter and an information backward filter. To
combine the estimates of the two filters to obtain
a snoothed estimate we may interpret
A AP

1 '
output matrix (P ) * which is to be used to update
i i-1 [S]. This interpretation is illustrated
below with corresponding quantities one under the
other

as an additional measurement with

’1 - H xy + vi
b _ b %
dg = (P ° x ¢ x‘;

The "measurement noise" X? is assumed by the
filter to have unit covariance; so, the appropri-
ate measurement update is given by the following
arrays: :

[&]))

l’a !i f ;S b

d -} AT I (Pi) (@) X5
- & (36)

1 s“:li-l v “’1),s %

Lower triangularizing (36) with orthogonal
transformations on the right gives the post-array

L. .f s
(” ﬁ1|11 A% vy
* s.%| os

xg - *1] 1-1 Ko (R Xy

)
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g
¥

The smoothed estimate of xj is Current Techniqueg," IEEE Trans. on Automatic

= £ &gl b~k £ Control, vol. AC-16, no. 6, pp. 727-735,
ﬁi = 84|41 + KV Tl - (PY) -xili-ll (37) December 1971. .
and [6) M. Morf, E. Verriest, J. Dobbins and
e dae o (Ps)kis T. Kailath, "Square-Root Algorithms for Model
i i s ke oal Sensitivity Analysis," submitted to IEEE
The set {Xj,v]) is obtained from the set {22,25} Zraps. on Automatic Control, 1977.

through the array update transformation. Applying
the same_transformation to the representation (34)
for {X:,Ri} ylelds

S

vy : X X X El

oS b

X1 521 S22 S2:3]%2
£
£

An additional orthogonal transformation applied on
the right will give

v s
Xp=1lL, 00

, (38)
E3
ak s\ s
eH - @] .

V. CONCLUSION

By viewing the square-root arrays as represen-—
tations of the estimate residuals in terms of
orthonormal sets of random variables we have
expressed a [:amework for the known square-root
error analysis algorithm. This framework led us to
a new algorithm presented herein which is compat-
ible with either the covariance or information
implementations of the filter.
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