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A5STRACT l 1Ri+NiPjH~ ~~~~~~~~~ c~ 1 —
The Morf—Koilath discrete square—root filter— J ~~~~~~~~~ ~~~~~~~~~ 

r~Qing. algorithms are ex te nded to incorporate
• sensitivity information with respect to the

assumed model and statistics. If the model ~~~ ~ 
C~ Q~F~ Q~ j

statistics are incorrect, we presume that an—

available, considered to be the “actual” model .
The sensitivity analysis is carried out by corn— K

other set of model parameters and statistics is 

{R

~ . K~ C~ 1 _
puting the so—called “variance ratios” that can ~ 

PL+14KIR~~K~ r~.Q1 I 3x3
• be obtained by a second set of orthogonal trans— C

forms. These operations can be performed either ~ 
c~I’~ Q~ 

(5)

in covariance or information filter form, as the The following factorizations into triangularactual filters. This leads to four basic van —
ants for the propagation of the variance ratios, 

components are made:
one of then has been obtained by Biernan. U C C’ C2C (6)3x3 11These ideas can also be applied to other
related areas such as smoothing and the dual where C is an upper triangular square—root of
control probloms, where it is of interest to the LRS1oI (5) and C2 a lower triangular square—
study the sensitivity of the total cost with root of the RIIS matrix.
respect to different models and weights of the A geometrical interpretation accompanies this
cost. representation (cf. (1]). Indeed, letting - •

I. Square—Root Filters Applied to Sensitivity 
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Analysis

then:In this paper we consider the linear discrete—
time dynamic model, where the superscript “a” • 

and ~~~~• denotes “actual” model parameters

a are two orthonormal sets (~~ and 
~2 

respectively)
• :n x ii .~~:n X p for the (in + n + p)—dimensional space spanned by

~~~
. In other words, geometrically an ortho—

• y1—N~x~ +v~ H~ :m x n (2) normalization process (Gram—Schmidt) is going on,
on i~. is obtained by orthonornalization of

for simplicity, all random variables have zero the set tyj,x
~+1,

u
~
}, conditioned on the data

mean and covariances y(O,i—l), sequentially from right to left.

Coy I’~ Iy~,x 41.u~J ~~jC~+ 
~~~~~~~~~~~~~~~~~~~ (7)

a’ Similarlycoy 
~ 
u~ 1 - 1Q~ C

1 1 (4) ;-c 2ç2I ~i i L~ ~~ i is obtained by orthonormalizing from left to
rightThe propagation of the square root array is

based on the identity in (l~ (y~ x. ,u )~~qc?+ (9i~1~~~~
.

1
Gi

1 J (8)

and the ~ variables are (see (1) for more
details)

—

,
~~~~‘ ~~
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— C~~j(k — 1,2) f i l ter  implementation may be combined with either
error analysis implementation, leading to four

leading to the so—called information filter, possibilities. Virtually, all square—root f ii—
These two representations are dual; we can dis— ten/error analysis algorithms proposed to date

• tinguish two types: inversion duality versus can be viewed as one of these four types. This
the standard duality [11. Note that this ap— is summarized in the following tableau:
proach leads to one—step predicted estimates

‘ Filterand errors (thus innovations). Alter— \ ~~~~~
Li) : 

~~~
, , or with A step predicted/smoothed

nat1~ie1y we could work with filtered estimates \~e~tation

estimate~t4J. 
Covaniance Form Information

Error Filter formSuppose now that we do not know the actual Analysi~~.~covariances as given in (3) and (4); we use a
model containing the estimated covaniances: Imple \ .

mentation

P0 
and £ q C~

1 (9) Thornton (1976) Bierman (1974• I i  ij
C~ R~ 

(Propagates x-~ Nishimura &
rather than Nead (1973)

L• Covariance normalized ic Curkendall (1972)

• Similarly , the system parameters may be incor— 
• 

Type Form and uses UDUT
rectly known , so that we propagate the Kalman rather than Inversion
filter (and thus the array ’s C1 and C2) as if ~lI2~TI2) Sec— Duality Morf—
the system model were: Kailath (1975)t i o n 3 —

x~~.1=Oixi+F iui •1:n x n F
~

:n x p (10) 
Information Section 2 of Invers ion

yi~~Hixi+vi H1:m x n (11) Type Form this paper Duality (6)

Therefore, x as computed by the filter is not The remainder of the paper is organized asthe minimum variance estimate, and there ~~~~~~ follows : Section II examines in detail thebe a discrepancy between the computed and the
actual error covarlances . This deterioration filtering algorithm for the special case
of fil ter accuracy can ultimately lead to fil ter (0.

~
,r1,E~

} = {G~,r~,H~} and C — C5 
— 0, as in

divergence. As a measure for this discrepancy the rest of the paper. The derivation is givenwe define the variance—ratios Ep in covaniance—information form , and the covari—
Z~~~ (pa)—l/2 p]/2 (Pa , actual error covarlance ) ance—cova r iance arrays are quoted (for C and

(12) Ca ,~ 0 , see (6]) .
Section III extends these ideas to the generalIn our geometric picture, the variables case of incorrect statistics, as well as model.

~~~~~~~~ for k — 1,2 , (we reserve ~ for truly Finally , Section IV mentions the fixed—interval
orthonormal variables in this paper) will no smooth ing problem.
lon~er be orthonormal .

— xi — j~111 will still equal P~~
2xj , II. ERROR ANALYSIS OF FILTERING WITH INCORRECT

STATISTICS ONLY
where is the square root of the error co—
variance as calculated by the f i l ter , but The Pre—Array C,
will not have unit covariance. The square root
of coy X will be the variance ratio 

- 

Defining

— ,~lI2 (~a ) l /2  ~~~

‘ — ~_ 9 i I E xj ,uj ,y o ,i_ l~~~~~~~~ Uu j ,y o ,i_ 1fl*

We present algorithms in which L is propagated u (u ~ 1~~(0 ,1_1) )

as an entry in arrays which expr~ss the then it is readily shown thata—random variables in terms of truly orthonormal

~~i 
(15)

sets, 

— k — 1,2 (13) [ Hi 0 
—

Obviously, just as with the filter itself, we
can implement this propagation in either the 0 0 I J
covaniance from given in (13) or in information
form and

— A~n~ k — 1,2 (14) coy X~ — Block diag(R~,P~ ,Q~} . (16)

in this case we propagate the L~, — L 1. Either -

‘S 

- ~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The “filter algorithm” rescales the X~—vart— ~~~~~~~~~~~~~~~ables, sett ing
S.

1 Block diag(K~~
2,P~’2,Q~~

?)fl1 
— 1~

’2 .fl l A — Q~
r
~P;:1—Q1

r
~P;~1 

11

I I.
The A—terms in (22) vanish when correct statis—This leads to: tics are used. Roscaling according to the

— C~n1 
(17) assumed covarianees yields

c/2 1/2 1/2

t (time index is suppressed), however , by virtue ~1— Block diag(R1 ‘~i+iii’~ i 
)~2 (24)

of (16) , we see tha t coy ~~~~ in general. Let I
be a decomposition of coy then and f inally

~~~~~~~~~~~~~~~~~~~~ 
(18) x —  C2n2 . 

(25)

Is again an orthonormal set. Taking the upper Now again coy r~ ~ I in general , and reortho—
triangular factor for $ yields finally normalization needed to yield the orthonormal

ti’,&.jJ =fl1’(C~,A~J (19) • set

c.2 A2112 , (26)
where
A1 — Block diag((Ra)~~R

½ ,(Pa) ,(Q5)~~Q½) thus we have

~~
‘ .~~;i — n LC~,A~j ) . (27)

- 
- 

A
1 

— Block dias{ZR~
Ep~

E
Q
J (20)

From Remark 3 of the previous paragraph:
Remarks 

fliT —
1. In case Ca # O , and/or C#0, A contains

off—diagonal blocks. The 2—2 hock entry 
~j 

and ~~ span the same space, and ~~~~,, k— l ,2
remains Ep however . are both orthonormal bases for this space. They

are therefore related by an orthogonal trans—2. Having obtained Pj (the computed covari— formation T. Thus• ance) and Ep , we are able to find the
— actual covarlance P~ . T c.2

3. Effect of the propagation algorithm: and - -

(x ’,~~) — (n~T](T’C~ 1T’A’1J TA1
T — A2 .

— LT~THC;,T’A~ ) (21) 
Since we are- basically interested in Ep, we can

Thus, in the process of making C1 lower tn— 
consider factoring (22) in a (permuted) t n —

angular , we perform the same operations to A1. angular form SS’ with

The Post—Array C2 rA11 x ~ 
1

Similarly, defining jby : 
— ~o A22 0

— (cL.x~+lji.ui1(~ (o,i_l),€~ ,;11~i)
) 

[0 x A33]
where cj are the innovations, we can find:

then the (2,2)—element of A2 is exactly (Ep~~+1[ 1 R:.(Ax~
)’—R:AK~P;~1

rQ and can be obtained from S similarly to (18).

cov~~~ (~~8
)~R Pi~i~i ~~+iji~~

’ plete transformation ~ on the (m+n+p)—size
Therefore, we do not need to perform the corn—

matrix (A1T), but a reduced ~
r of size n suE—

~~+AP
5 A’ flees to yield (E~)~~1.i+i~i ~ Remark.

(22) 1. From the identity C1 coy ~1C’ Cj where . 
S coy — coy we obtain S~e id~ntities

ili—l 1 111—1 1 1AX -. (P5 H’-P H,R~
tRa ~ 

R - R ~ +H~P~B~
L aRg~

_ H
i•j1i.iH~ +

(23) Pj~1 ~~~~ 
— K Hj  ~ 

— Kg ~~~~ 
‘~~ +

+K 1K’
• .

_ _ _ _  
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-
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We could have started from these equations _R u(l
~r(Q

5)½ R~~(Ra)½ 
~~ 

*

to get the array ’s without going to the geo-
metrical description. p_¼,lAr(Qa)½ 

‘ 

°-
• 

2. For the covanlance—eovaniance form we simply (29)
invert ‘(18) and (26) to get:

Q—½ (Qa)½
— C

~~k, !!k 
- A

k~~k~ 
k - 1 • 2

F5
(Q8)’~ 0

I I I .  GENERAL MODELING ERRORS

We now consider errors in~our assumption in the This corresponds (in augmented form) to Eq. (18)
statistics and the model parameters. For simplic— of Section II.’ The above array corresponds to
ity however, we assume here that C — Ca — 0; non—
zero case, see (6). In order to reduce the
notational burden we omit the explicit time depen— We apply on the left of the above array the

• dence of the model parameters. As a first step in orthogonal transformation which updates n1 to
obtaining a representation of in terms of an that is, we apply the transpose of the transforms—
orthonormal set, we invert the equation i~ — tion which updates the filter array C1 to C2, thus
to obtain

X X X X

‘ S ‘ S— ~2l 22 23 - 

~24 ~2 ~~~
, I

i
~

i—l 
½, lA,x ÷ p ½~~

lAru . U1 X X X X
. 5 U -X +P I I S

Here x1+~ 
I~~ , , F~(Q

a)½, 0

A0 ~~,a — 0; AR~~H
a — H; Ar~~ra —r . 

S

(The X’s denote entries of no particular interest.)
A new subtle point arises, when the system matrices We now apply orthogonal transformation on the
are mismodeled, k~, th~ pre—array variable above, eight of the above array to bring the second and
is no longer equaf to X1, the post—array variable fourth block rows to the form
of the previous time step. — 

- - -

Furthermore, we see that to obtain a self—con— Xj .~
1] 

— [L
~ 0 0 

0] [~
i1

tam ed recursion, we must augment the variables I• with the actual state xj. x~~1 L,~ L
~ 

0 0
Suppose we have available a representation for

the augmented state in terms of orthonormal van — - 

~3ablei 
~k

X
11 ILA o1~~— 

~ 
U 

~2] 

(28) 
Xj~1 and u�ates (28) to time I + 1. We can
This yields LA, the square—root covariance of

e~si1y initialize (28) at time 0, when

— (Q5)~~ 3, y
~ 

— (R)~~4 
- 

— x
O 

— P •

Remark.
are certainly orthogonal to the augmented state.
Therefore using (28) and the equation 1. There is some redundancy in considering

# 0 and Q5 # Q together, because r and
— •

a,~1 + r
5ui 

Q only arrive In the combination rQ½. So,
we can always def ine a Qequiv — I. ~~~~~ 

—
vs can set up the following representation r~ . In this case - £~1’ ~ 0, but Qequiv —

Alternatively, if (0, r(~) forms a controll
R ½(~sH_H~~~~~)L ‘ R~~(AH-Hf

1A~ )L ‘ pair, then we can set Qequi — PQ!” and reqXA. X thus L~1’ — 0 if both (0 , rXQ ¼) are controYf~ble.r I.A+Pi O ML ~~ 
P~~0

’
~~A0L,~ 2. Choosing •jxj as the “augmenting” state to

, and expressing xe’— ((0~x~)’~i’3 in terms
0 0 f n~’ — (~~

•
~ ,n ’) gives an augmented pre—

array Ct vht~i~io~iains C1, and is itself
in upper triangular form (note that

-l with correct model and statis- — ‘

Simharly, we express x —

(x ’,(O ixi)’) in terms of !~i’’ (fl~
,xi+iIj)

which yields a lower triangular
with C2 containod in it

ii . 

—

-• S.- - - ._~~~~ -~~ ~~~. .5, - , -~~~ -— ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - S  ~~~ 
—

~~ 
-



r~ E
½ 0 •P~ 0 1 filter). We have the separate representations

* I - - -

‘ 

- 

0 
- 

* Xj  ff~ 01 4 x
ii 1~ °~~~= i O  ft HP• I o ‘ 0 ,~½ rQ½ ’ 1and 

~~~ H~] ~
] ~~~“

0 ~ 
iJ L Ax M~J 

f

4 must be related to ~b by an orthogonal trans-
formation. ~f 4 if we Insist on a unique formrft d/2 0 0 ‘01 for fl~ , say lower triangular with positive di-

* ~,½ o agonal elements. Some study reveals (6) thatj- I K
1+1 is a function of (u01...,u~_1} and

while 4 is a function of tuj,. ..,u~} and• 

— 

1D E Q:½ {v1,. . .,v1~) where the smoothing interval isI — 1,...,N. Thus ~~ and 4 are orthogonal and- 

;
~+l~rE 

_rQ:¼ we may write

see (63. iI _
~ 

AxThe augmented A—arrays are quite involved however, ?l 1”tb x~ o ] ~l]~~~ ‘ M~ 
f b I 

(34)
0 M~ 

~2I
IV. SMOOTHING iJ I ~ fiWe now briefly describe how to extend the algo— 

~2J
• - rithm of Section III to the square—root form of

the two—filter fixed—interval smoother. Each
- 
filter will have an error analysis addendum propa— When we have only incorrect modeling of statistics
gated according to the idea of Section III. Here this simplifies to

- 
we will just point out the modifications needed in
the separate filters to facilitate a smoothing X~~ 

ILb 0 1 r~b
solution and demonstrate how to combine informa— I 

—

tion from the two filters to obtain an LA for the ~fj [o L~j 
[
~
]

smoothed estimate.
•‘ The backward filter is implemented in informa-

tion form since it is initialized with infinite a The forward filter may be implemented La either
priori covariance. However, the ~~~~ k — 1,2 van — covariance or information form. For purposes of
ables are the same for both information and co— illustration, let us assume a covariance forward
variance filters. Therefore, when the only model— filter and an information backward filter. To
ing error is In the statistics, the error analysis combine the est imates of the two filters to obtain
algorithm is unchanged from Section II • When a smoothed estimate we may interpret
there are inismodeled system matrices and the 1~ 0)b)—’S2b A b
are augmented by xj, it must be remembered that u — d , as an additional measurement with

is not orthogonal to xj.fJ~. Probably the most output matrix (p~)”½ which is to be used to update
• straightforward way to obtain a representation for 2t 

~~ 
(5). This interpretation is illustrated

(nj,x’)’ in terms of an orthonormal set (that is below with corresponding quantities one under the
to obtain the array analogous to the inverse of other
(18),(26) is to decompose u1 as -

H
(~~5ja~aU

1 
— Qj .j 1I~~1xi+i +~ • • Ui+1~~

cov(xi+i
) (31) 

4 — (P~)~~ x1 +
iIxi+1 -

where ~ is orthogonal to Uj+l and baa The “measurement noise” 4 is assumed by the 
-

• IIx i+i f liter to have unit covariance; so, the appropri—- covariance ate measurement update is given by the following
— 

~i ~~+1~~
Q
~
) arrays:

Q
b _ ( * a~a—l

When there are mismodeled system matrices, the 4~ ~~~~~ 
r1 ~~~~~~~ ~1

augmented state in both forward and backward error
analysis arrays should be represented in the form x

1 
— 

~,m_j — 

[o (P~) 1
~j ~~j 

(36)

~1 o 1 
~l1 

x1 ILA o ] ~~ Lower triangularizing (36) with orthogonal

X I IM M
A] ~J rather than ]~

[ Lx] ~2j 
transformations on the right gives the post—array

J ~ 
Ax

(32) 4 — (P~)~~ 11_1l lvi ° 1 v~lDecomposing each 
~~ 

into a component correlated f j [
~ 

(p~)½j ~jwith and a component orthogonal to the actual x
Itate enables us to get a joint representation for
Xf (from forward filter) and ~b (from backward -

5 
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~~~~~~~~~~



. .._ _ S 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —- - —~~ -

~~~~~~~~

I

The smoothed estimate of xj is Current Techniquep,” IEEE Trans. on Automatic

* —i b b ~ 
Con trol , vol. AC—16, no. 6, pp. 727-- 35, —

— + K1V~ 
(a 1 — ~~~~~ ~~~~~ 

(37) December 1971.

and (6) M. Morf, E. Verricst, J. Dobbins and
x — (ps)½xs T. Kailath, “Square-Root Algorithms for Model
i i i i Sensitivity Analysis,” submitted to

The set (~~ ,v~) is obtained from the set 
Trans. on Automatic Control, 1977.

through the array update transformation. Applying
the same transformation to the representation (34)
for (X~ IR~) yields -

;E1 ~
:21 S22 :23] ~~

4
An additional orthogonal transformation applied on
the right will give

r .  x8 — $
i (LA 0 0)

(38) •

=

V. CONCLUSION

By viewing the square—root arrays as represen-
tations of the estimate residuals in terms of
orthonormal sets of random variables we have
expressed a hamework for the known square—root
error analysis algorithm. This framework led us to
a new algorithm presented herein which is compat—
ible with either the covariance or information
implementations of the filter.
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