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GENERP~LIZATION OF HUFFMAN CODING TO MINIMIZE

THE PROBABILITY OF BUFFER OVERFLOW

BY

Pierre A. Wmthlet*

Abstract

An algorithm is given to find a prefix condition code that minimizes

the value of the moment generating function of its codeword length

• distribution ~or a given positive argument. This algoriUm~ is used in

an iterative way to yield a code that maximizes the rate of decay of

the probability of buffer overflow as the buffer length increases .
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I. Introduction

A source emits symbols drawn from the alphabet ~l,2,... c}, symbol

i has probability 
~~~ 

The source symbols are encoded into d—ary cods-

words. The codeword corresponding to symbol i has length m~.

It is well known that Buffman ’s procedure (2) yields a prefix con-
c

dition code minimizing ~ p~ m4 - We show in Section II that it can
i—i

be generalized to yield a prefix condition code m4~ 4m4~ ing th. moment

• generating function ~ p~ e~~~ for a given s > 0.
i~l

A drawback of transmitting variable length codewords over a synchronous

line is the need for a buffer at the output of the encoder. This buffer

may overflow. The probability that a source symbol causes an overflow
_s*Bis of the order of e , as can be shown by Wyner ’s results [6) . In

this formula B denotes the buffer size ~p4 g * is the largest a (possibly

• CD) such that

• 1 A(s) 1 p~ e~~~ < 1 (1)
p
. 

- i~l

where A(s) E(exp(— st) J denotes the Lap lace—Sti.ltjes transform of the

probability distribution of the source intermission times measured in units of

encoded digit transmission time. This result requires the mutual independence

of all source symbols and intermission times, and holds only if the mean

intermission time is greater than the average codeword length. It also

ignores the need to indicate to the receiver when the buffer is empty

(or overflows).

It is thus desirable to use a code with s~ as large as possible when

the probability of buffer overflow is required to be small, so that the

-- --- -~~~ — - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - — ‘— - • • i •
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asymptotic approximation is good. The use of s* as a criterion was first

suggested by Jelinek [4] . The search for such a code is the subject of

Section III • We consider only the problem of symbol by symbol encoding .
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C em
II. Minimization of I p~ e ~~‘, e > 0.

i—i
Without loss of essential generality we can assume c — d + k (d—l) for

lome integer k. (so that c is the number of terminal nodes in -

some d—ary trees) .and pi ~~~i+1’ ~ 1,2, . . .  a—i. It is Well known
-

. 
~ 11, p.49] that no gain can be achieved by minimizing I P~ e

~~~ over all

uniquely decodable codes, rather than only over the prefix condition codes.
• analogously to the argument

Because s > 0, e increases with ~~~ thus,~~ given by Huffman (2] ,

there is an optimal prefix condition code where the codewords corresponding

to symbols c-d+l to a are the longest and differ only in the last character .

If c—d this observation specifies an optimal code. If c > d this reduces

• I the problem to finding a prefix condition code of size c-d+i 4 + (k-i) (d-l)

minimizing

• c-4 em c 
• 

em• I - 
+ (~$ I • P~) e c-d+l

i l  i—c-d+l

:‘‘ Thus the “merge” step in the Huffaan construction is replaced here by

“merge and scals by e ” .

Again we can make the same observation and continuing we will

eventually reach the point where the code is completely specified .

For s close enough to 0, this algorithm yields a Huffman code, since

e i.~~ l+em~~ so that miPim~(2ing 1 p~ c i is equivalent to minimizing

I Pj  mi. For s large enough, this algorithm assigns codewords of length
i—i

-I

I 
______ _____ _____ _________ 
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• - 

-l to symbols 1 to -c 
, and codewords of length

d-l

ficg4 ci to the others; by definition we say that such a code is

generated by this algorithm for s~~ .

One might wonder if “merge and scale ” algorithms can be used to
• C

minimize more general cost functions of the form I g (as).  Un-
i—l

• fortunately, the answer is no. For the algorit hm to work , g must be

such that g (m+l) — a g (a) +b. This limits g to being linear or expon ential .

~~te however that the algorithm given here can also be used to find a

code maximizing ~ p~ e~~~, a 
< 0.

.1 
i—i

‘~ 1 -

S 
••
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III. Finding A Prefix Condition Code With Largest 5*~

• Following [4] we first note that it is possible to upperbound •*

over all uniquely decodable codes. By Holder ’s inequality, for s ) 0,

m d  a l ad
• saj \ l n d+s I C -mj \ in d+s C ln d+s

• i z p ~~
s I l i d  J >~~~~~ p~

\i~l I ~~i—l / i—i

C -•m~
For a uniquely decodable code, ~ d ‘ < 1  (1, p. 47] ; thus

i—i Si

t ln d+s
c em I c  m d  1 l ad

• A(s ) Z  P~~e~~~~> A(s)I Z pj
n~~~3 J . (2)

i—i \i.]. / -

Consequently the s* corresponding to a uniquely decodable code is not

• greater than a ,  defined as the largest a such that the right

member of (2) is less than or equal to 1. In general s~ is not achievable

because the m~’ a must take integer values. The right • m ember of

(2) is a convex function oe ~ at s—0, its value is 1, while th. value

of its derivative is equal to the entropy (base 4) of the source alphabet
latter

minus the mean intermission time. Thus if this,~quantity is negative then

is positive, and conversely except in the degenerate case where the

right sember of (2) is identical to 1.
C

For a given code, C, we denote the corresponding A(s) 
~ 

p~ e

by f(C,s). f(C,s) is the Laplace—Stieltje s transforrn of the probability

F
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S 
distribution of an intermission time minus a codeword length , thus it

is convex in s ar.d f(C, 0) — 1.

The iterative algorithm to find a prefix condition code with largest

s* is as follows (see also Figure 1).

1. choose any so in [0,00] (a good choice is 8o —

2. j + 0

3. j + j +1

4. Use the algorithm of Section II to find a code C inirdmizing •

- i - P i e ~~f o r s — s  .
S
. i—i i—i-

5. Compute the 8* corresponding to C~. Denote it by s~ .

6. If s~ ~ s
~
_
~ 

then go to 3, else stop

Of course we must show that this algorithm terminates and that

the last coda generated is optimal.

First we note that 
~~~ ~ 

s~~ ~ ? 1 because

• (line 5) f(C~~ Sj) 1 1 and
S 

(line 4) f(C~~1~ s~) 1 f(C~ . Sj)

• and the definition of 
~~~~ 

Secondly, we observe that the number of codes

that can possJbily be generated by the algorithm of Section II is finite,

if only because all codeword lengths must be emaller than a. These two

remarks insure -that the algorithm will terminate in a f inite time.

Let C~ and denote respectively the last generated code and its

s*, while ~ denotes the largest achievable s~. We must show that s
~ 

— S

L • 
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— - For the sake of brevity (the complete proof appears in [33 ) we assume here

F - that f(C, s) is not identical to 1 when C is an optimal code; this happens

when the intermission times are equal with probability one to an integer t,

and when the number of source symbols with non zero probabilities lies
S between dt — d + 2 and d

t. With this restriction f(C ,s) is strictly

convex, f(C ,O) — I. and f(C ,~ ) 1 1 when C is an optimal code. If s~ — CO~

then C~ is optimal. If < 00, then f(Ct~
st) 1. If S

t 
> 0 and

~ then by strict convexity f (C,st) < 1 when C is an optimal code,

and CL may not be the last generated code. If s
~ 

0 then 
~~ 

f( C&, s) I 
~~ 

> 0

and, as we have seen in Section II , CL is a Huffman code and therefore
S d uniquely dminimizes f(C ,s) 8.0 over al].,~decodable codes. Thus f(C ,s) ~~~ 0

for all uniquely decodable codes , and by the strict convexity argument

s = 0 .
S This algorithm was tested on a typical. 128 symbol alphabet, for Poisson

and deterministic intermission - processes , with a0 — s~~• Convergence

a was fast (1-2 iterations) in the Poisson case, slower (3—10 iterations)

in the deterministic case. The relative difference between g and s*
an ordinary

corresponding to A Huffman coda ranges from 00(determiflistic, light

traffic) to 10% (Poisson, light traffic), to 0 (heavy traffic) .

Jelinek and Schneider (5] give an algorithm for constructing variable

length to block codes which is the dual of the niethod given in Section II.

They claim that when this algorithm is used with s — then a variable

length to block code with largest achievable s~ results. It seems that

this is not necessarily true and that an iterative procedure analogous

to the one developed in Section III could be applied to obtain an optimal

code.
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FIGURE 1
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