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GENERALIZATION OF HUFFMAN CODING TO MINIMIZE
THE PROBABILITY OF BUFFER OVERFLOW
BY

Pierre A. Humblet*
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Abstract

T T ——

An algorithm is given to find a prefix condition code that minimizes

the value of the moment generating function of its codeword length

distribution for a given positive argument. This algorithm is used in

an iterative way to yield a code that maximizes the rate of decay of

the probability of buffer overflow as the buffer length increases.
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I. Introduction
A source emits symbols drawn from the alphabet {1,2,... c}; symbol

i has probability P The source symbols are encoded into d-ary code-

O T T

words. The codeword corresponding to symbol i has length m, .

SR IR

It is well known that Huffman's procedure [2] yields a prefix con-

TN DTSS

i dition code minimizing i‘il Py mi. We show in Section II that it can

be generalized to yield : prefix condition code minimizing the moment

3 generating function § Py emi for a given s > 0.

| A drawback of ti::;smitting variable length codewords over a synchronous

line is the need for a buffer at the output of the encoder. This buffer
may overflow. The probability that a source symbol causes an overflow
is of the order of ¢ > 2, as can be shown by Wyner's results [6]. In
this formula B denotes the buffer size and s* is the largest s (possibly
®) such that

c sm

As) ] b e i
- i=1

Ll (1)
where A(s) 4 E[exp(-st)] Aemtes the Laplace-Stieltjes transform of the
probability distribution of the source intermission times measured in units of
encoded digit transmission time. This result recuires the mutual independence
of all source symbols and intermission times, and holds only if the mean
intermission time is greater than the average codeword length. It also
ignores the need to indicate to the receiver when the buffer is empty

b (or overflows).

It is thus desirable to use a code with s* as large as possible when

the probability of buffer overflow is required to be small, so that the
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asymptotic approximation is good. The use of s* as a criterion was first
suggested by Jelinek [4]. The search for such a code is the subject of
Section III. We consider only the problem of symbol by symhol encoding.
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c sm,
II. Minimization of } P;e ,e>0.
' i=1 j

Without loss of essential generality we can assume ¢ = d + k(d-1) for

some integer k, (so that c is the number of terminal nodes in : -

some d-ary trees}) .and p; > p, ., .i'=1,2,... c-1. It is vell known
5 : ] c sm
[1, p.49] that no gain can be achieved by minimizing Z p; e i over all
i=1
uniquely decodable codes, rather than only over the prefix condition codes.
sm, analogously to the argument
Because s > 0, e increases with m_ , thus,)\ given by Huffman [2],

there is an optimal prefix condition code where the codewords corresponding
to symbols c-d+l to c are the longest and differ only in the last character.
If c=d this observation specifies an optimal code.~ If ¢ > 4@ this reduces

the problem to finding a prefix condition code of size c-d+l = 4 + (k-1) (d-1)

minimizing
c-d sm c ' sm
I pe G T p)e e
i=1 i=c-d+1

Thus the "merge"” step in the Huffman construction is replaced here by
"merge and scale by e°".

Again we can make the same observation and continuing we will
eventually reach the point where the code is completely specified.

For s close enough to 0, this algorithm yields a_Huffman code, since

sm, c sm,
e "= 1+sm1, so that minimizing Z p; e is equivalent to minimizing
c i=1
f p; m,. For s large enough, this algorithm assigns codewords of length
“i=1

't
-
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a r ki,
da-1

ﬁ.og a c-l to the others; by definition we say that such a code is

rlogd;l-ltotynbol_slto . and codewords of length

generated by this algorithm for s=«,
One might wonder if "merge and scale" algorithms can be used to

c
minimize more general cost functions of the form 2 Py g(mi). Un-
i=1

fortunately, the answer is no. For the algorithm to work, g must be

such that g(m+l) = a g(m)+b. This limits g to being linear or exponential.

Note however that the algorithm given here can also be used to find a
c sm

code maximizing Z P, i, s < 0.
i=)1

Ao gk it g
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s, is positive, and conversely except in the degenerate case where the 4

e

III. PFinding A Prefix Condition Code With Largest s*.

Following [4] we first note that it is possible to upperbound s*

over all uniquely decodable codes. By Holder's inegquality, for s > O,

ln 4 s ln 4
c sm 1n d+s c -m 1n d+s c 1n d+s
i D, @ i z a i > v -
i Z L Py
i=1 i=1 i=1 2
c -,
For a uniquely decodable code, Z a <1 [1, p. 47]; thus
i=1
1n d+s
¢ = e VR
ats) I pe " > amfl ) p - (2) Z
i=]1 i=1 |

Consequently the s* corresponding to a uniquely decodable code is not
greater than S’ defined as the largest s such that the right

member of (2) is less than or equal to 1. In general Sy is not achievable

because the mi's must take integer values. The right 3 _ member of

(2) is a convex functioﬁ 6{ s; at s=0, its value is 1, while the value

of its derivative is equal to the entropy (base d) of the source alphabet
latter

minus the mean intermission time. Thus if this"quantity is negative then ,

dam £

right . * amember of (2) is identical to 1.

c
For a given code, C, we denote the corresponding A(s) Z Py e
i=1

by £(C,s). £(C,s) is the Laplace-Stieltjes transform of the probability

i
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distribution of an intermission time minus a codeword length, thus it
is convex in s ard f(C,d) = 1.

The iterative algorithm to find a prefix condition code with largest
s* is as follows (see also Figure 1).

1. Choose any s, in [0,%] (a good choice is So = lu)

2. j+o
3. j+3in

4. Use the algorithm of Section II to find a code C 3
c sm
i
»Z-p‘e C for s =8, ..
gm 1 -1
5. Compute the s* corresponding to C 3° Denote it by s 5

minimizing . .

6. If s then go to 3, else stop

37 851
Of course we must show that this algorithm terminates and that

the last code generated is optimal.

i+l
) £1and

First we note that s 2 s8., J 21, because

3

(1ine 5) f(Cj

j+° 3
and the definit;i.on of s

3

(line 4) £(C..., s,) < £(C,, s,)

3
Secondly, we observe that the number of codes

3

§+1°
that can possibily be generated by the algorithm of Section II is finite,
if only because all codeword lengths must be smaller than c¢. These two
remarks insure that the algorithm will texrminate in a finite time.

Let C, and sy denote respectively the last generated code and its

2
s*, while § denotes the largest achievable s*. We must show that sy = 8.
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For the sake of brevity (the complete proof appears in [3]) we assume here
that £(C,s) is not identical to 1 when C is an optimal code; this happens
when the intermission times are equal with probability one to an intéger t,
and when the number of source symbols with non zero probabilities lies
between c!t -da+ 2 and dt. With this restriction £(C,s) is strictly
convex, £(C,0) = 1 and £(C,8) < 1 when C is an optimal code. If s, =,

then C, is optimal. If sy < =, then £(C,,s)) =1. If s, >0 and

L
sy < § then by strict convexity £ (c,sz) < 1 when C is an optimal code,
d
and Cy may not be the last generated code. If s, = O then - £(C,, s)ls=0 >0
and, as we have seen in Section II, C, is a Huffman code and therefore
a uniquely a
3s £(C.s) |s-0 over alljdecodable codes. Thus o= £(C,s) |s=0 >0

for all uniquely decodable codes, and by the strict convexity argument

minimizes

This algorithm was tested on a typical 128 symbol alphabet, for Poisson
and fieterministic intermission - processes, with Sy = 5,° Convergence
was fast (1-2 iterations) in the Poisson case, slower (3-10 iterations)
in the detemi:!ilsgirg case. The relative difference between § and s*
corresponding to A Huffman code ranges from o(deteministic; light
traffic) to 10% (Poisson, light traffic), to 0 (heavy traffic).

Jelinek and Schneider [5] give an algorithm for constructing variable
length to block codes which is the dual of the method given in Section II.
They claim that when this algorithm is used with s = s, then a variable
length to block code with largest achievable s* results. It seems that

this is not necessarily true and that an ‘iterative procedure analogous

to the one developed in Section III could be applied to obtain an optimal

code.
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FIGURE 1

a Code with Maximal &

Iterative Procedure to Find

lower bound
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