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1. - PROJECT ABSTRACT

The purpose of this project was to perform accurate and approximate

quantum dynamical calculations on elementary chemical reactions of import-
ance for the fundamental aspects of chemical dynamics and for advanced

technologies of interest to the United States Air Force, such as high energy

chemical lasers, plume technology, and the cheraical effects of high energy

radiation. These included calculations of three-atom exchange reactions,

_bréakup collisions, three-body recombinations, vibrational quenching by

_reaction, resonances, and electronic branching ratios. The aim of these

- calculations was to develop an understanding of these processes and to develop
benchmark datx against which approximate methods could be tested.
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2. SCIENTIFIC BACKGROUND AND SUMMARY OF WORK PERFORMED

The prediction and interpretation of the details of chemical reactions
from first principles has been a goal of chemistry since the advent of wave
mechanics, 50 years ago. However, methodological and computational diffi-
culties have prevented the achievement of this goal until very recently. In
1929, Diracl made his famous statement concerning this matter: '"The under-
lying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the diffi-
culty is only that the exact application of these laws leads to equations much
too complicated to be sdluble. " Insofar as chemical reactions are concerned,
this statement was completely accurate at the inception of this grant (1 June
1973). Only in late 1975 was this stale of affairs changed, with the publication
of the first accurate three-dimensiona’ (3D) quantum dynamical calculations
on realistic potential energy surfac.-: ‘or the H, system. 2,3 A significant
fraction of this progress was due to {he work supported by the present grant. ¢

This development opened up the possibility of applying the methods developed

IRPT———————E———

for these calculations to other systems, and has permitted a test of the validity
of some approximate methods. The usefulness of good approximations is that
they can be applied to more complex systems for which accurate ab initio calcu-
lations cannot presently be performed. This kind of approach to the testing of
approximate theories has advantages over the one based on a comparison
between theory and experiment. The reason is that potential energy surfaces
are not at present experimentally known. Therefore, it is necessary to make
assumptions concerning such surfaces which usually involve some calibration

to yield appropriate dynamical behavior. This biases the test of the dynamical

model. However, if such a model is used and an accurate quantum dynamical

calculation is performed on the same assumed (but fairly realistic) potential
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energy surface (for electronically adiabotic processes), this logical difficulty
disappears and the approximate dynamical model is indeed giver. a very good
test.

The development of the accurate 3D quantum dynamical computational
methods has been the result of a long evolutionary process, a summary of
which has been published. S Most of this work nas been done during the last
ten years, and a large fraction of it over the last five years. Qur laboratory
has been very active in this field, having published 27 papers in it since 1973.
Much of this work was done under an AFOSR grant which started in June 1973.
The field of quantum reaction dynamics, as pointed out in Section 3 below, is
important for the developmert of modern technologies of interest to the Air
Force. We now summarize the contributions of our laboratory to the develop-
ment of this area of chemistry.

Qur first lm;olvement in this field was to modify the boundary value
finite difference method6 80 as to be able to use it on realistic potential energy
surfaces and to apply it to the collinear Hy system7 and its isotopic counter-
parts.8 These calculations were the first ones done on a realistic potential
energy surface at high enough collision energies to show quantum oscillations.
A lifetime and scattering matrix analysis later showed these oscillations to be
due to interferences between direct and resonant (i.e., compound state) reaction
mechanisms.9 We also compared the accurate collinear H, quantum results
with approximate ones obtained from the same potential energy surface using
quasi-classical trajectory and semi-classical methods.m These showed that
quantum effects were very large for this system and that quasi-classical and
semi-classical reaction probabilities and rate constants could differ slgnificantly
from the accurate quantum ones. A streamline analysis of the scattering wave-
functionn showed that tunneling proceeded by cutting the activation barrier

L >




corner and contributed significantly to the rate constant even for temperatures
higfn enough for the Arrhenius piot not to show curvature. Even at 1000°K,
tunneling was respansible for about 25% of the collinear rate constant. We also
made an analysis of the scattering wavefunction in terms of the vibrationally
adiabatic theory of chemical reactions!? and concluded that it is approximately
valid only overia relatively narrow range of collision energies, breaking down
both at low energies (due to tunneling) and at high energies.
~ The boundary value finite difference method used to calculate the collinear
- Hy scattering wavefunction consumed large amounts of computer ume.7 For
- this reason we developed a significantly more effective coupled-chanpel tech-
nique in which coordinates and basis sets are chosen differently in different
regions of configuration space to take into account the shape of the potential
enérgy surface and to minimize the number of basis functions required for a
good local represe‘ntatinn of the wavefunction.13 This method was two to three
orders of magnitude more efficient than the finite difference one. It was used
to extend the collin_ear Hy calculations to higher energiesg while maintaining
a high computational aécﬁracy (1% or better). This permitted the detailed
characterization of two resonances and the discovery of a third one. We then
used this method in a detailed study of the collinear F + H, = FH + H reaction
and of its isotopic counterparte. 14 We also performed quasi-classical trajectory
anci semi-classical calculations on the same surface, and found large quantum
effects on this system also, which led to very erroneous quasi-classical product
14 Interestingly, the results of the ""reverse"
quasi-classical calculations are much better than those of the "forward" ones. 14be

vibrational population ratios.

We also applied this coupled-channel method to study the collinear deactivation
of vibrationally excited HF by exchange collisions with H atoms on 2 LEPS

surfacel® having a barrier of only 1 kcal/mole. It was found that this is a
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16 Recent ab initio calculations of this surface” show

very efficient process.
that the correct value of this barrier is probably much higher, of the order of
30 or 40 kcal/mole. As a result, we have made an extensive series of calcu~
lations on the exchange reaction H + FH(v) — HF(v’) + H and of its isotopic
counterparts for six difterent barrier heights ranging from 1 to 49 kcal/mole.
This work is being written up for publication. The results indicate that this
exchange reaction cannot fully explain the preferential deactivation of HF(v)
for v = 4,5,6 compared with v = 1,2, 3,

The experience gained in the devéIOpment and app).-ic‘zitl.on of the coupled-
channel method for collinear reactive systems permitted us to extend it to
coplanar systems. A serious conceptual difficulty appeared in connection with
the bifurcation of the wavefunction into the two-reaction product arrangement
channels. It was overcome with the help of a new representation18 of the
potential energy function in terms of symmetrized hyperspherical coordinates,
We were than able to obtain accurate
solutions for coplanar H," without major difficulty. These showed that, as
for the collinear system, three or more closed vibrational quantum states had
tobe used in the coupled-channel expansion for convergence to be achieved.
Neglect of such closed channels leads to large errors in the cross sections.

The next step was to extend the method to the full three-dimensional
system. This was achieved fairly rapidly in view of the experience with the
coplanar problem, and fully-converged calculations for the H,; system were
obtained. 2,5,20 These calculaiions indicated that the resonances found in the
collinear system continued to appear in 3D. The 3D resonance energys' 20a
was shifted upwards with respect to the 1D one by about twice the zero-potnt
energy of the bending mode of the saddle-point configuration, indicating that it
is related to the properties of the surface in the neighborhood of that point.




The exchange rate constant was computed using the quantum cross sections.

At 200°K, il was 18 timcs.greater than the corresponding quasi-classical one,
indicating the importance of tunneling in this system. A polarization quasi-
selection rule was discovered, according to which the dominant reactive channel
is the my = mi, = 0 one where mj(mg,) is the component of the angular
momentum of the reagent (product) molecule along the initial (final) relative
velocity vector. This rule is interpreted as being due to the fact that the H,

system is collinearly dominated, Reic

and may in the future be used as an
experimental test of the collinear nature of a reactive system. For nonreactive
collisions, the cross sections from a given mj to gll final mi, (for given initial
j and final j’ diatom angular momentum quantum numbers) are of the same
order of magnitude, indicating that the mi conservation principle is not valid
for such collisions. The accurate 3D calculations were performed to high
enough energies for the first resonance to develop.zoa These are the only
such calculations ever done and have predicted the existence of Feshbach x;eso-
nances in chemical reactions in the real 3D world. These calculations are the
only ones available which are sufficiently accurate to give reliablc angular
distributions. To obtain such distributions, enough partial waves must be
used and each one of them must be converged with respect to closed vibrational
channels, since otherwise spurious oscillations can appear in the differential

21 We have found three of four closed vibrational channels to be

necessary to achieve such a convergence.z’ &0he

cross section.
In the only other 3D accurate
quantum dynamical calculation, 3 only two closed vibrational channels were
used throughout without attempting to test for vibrational channel convergence,
and differential cross sections were not calculated. It is possible to obtain

reliable integral cross sections without achieving such complete convergence,




-9~

if the absolute values of the elements of the partial wave scattering matrices
have approximately converged. Convergence of their phase is more difficult
to achieve, and it is the lack of convergence in them which produces the spurious
differential cross secticn oscillations just met}tloned. We were also able to see
oscillations in the para-to-para differential cross sections associated with inter-
ference between the direct and exchange scattering amplitude. e performed, in
addiudn, calculations vsing angular momentum decoupling schemes22 (see
Section 3.3 below) and fouad that they furnish accurate m = m;. = 0 Ldegral

_ reaction cross sections but inaccurate ones for other reactive and all nonreactive
state-to-state cross sections. However, when calculating nonreactive cross
sections summed over mi, and averaged over m’, good agreement was again
found between the decoupled and accurate results, indicating that this approxi-
mation transfers all nonreactive flux into the m/ A = 0 product state.

Computer progra.ms needed for the computation of accurate quantum
mechanical cross sections ot reactions of the type A + B, *AB + Band A + BC —
AB + C, AC + B have been written and are presently being tested.

We have also used hyperspherical coordinates to develop a rigorous
method for the calculation of exchange reactions, breakup collisions, and of
termolecular recombinations. The aécuracy of this method is being tested,

and the preliminary results are encouraging.

'fhe problem of the electronic branching ratio for the products of a chemi-

luminescent chemical reaction is a very important one for ‘the development of
electronic chemical lasers. Such reactions are electronically nonadiabatic,
and in their simplect form 1n§olve two electronic pctential energy surfaces
and an interactive one, We have investigated such electronically nohadlabatic
processes in a collinear model for the important chemiluminescent reaction,_

Ba + ON, = BaO* +N,. A cmnparu:zonz3 of accurate quantum calculations and
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s\u'fm:e-hopplng24 ones indicated that the latter were unreliable due to the
presence of large quantum effects. A de Brogl‘e wavelength analysis at
thermal energies indicates that this system, although quite heavy, has never-
theless a strongly quantum character, i.e., che potential energy surface varies
appreciably over a distance of one wavelength,

In the process of trying to experiment with ditfferent potential energy
surfaces for studying collinear reactions, we have developed a useful semi=
numerical representation of such s\u'taces25 which permits one to change
independently each of their different topological characteristics. We have
generalized this representation to noncollinear systems and a paper describing
such a generalization is in preparation.

In summary, the progress achieved in the solution of important quantum
dynamical problems in our laboratory over the four-year period covered by
this report was substantial. ‘

-
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3. OVERVIEW OF THE WORK PERFORMED AND OF ITS RELEVANCE
TO THE AIR YORCE

The research performed under the present grant involved a set of
theoretical investigations which were aimed at the understanding of elementary
processes in bimclecular or termolecular collisions of reactive atoms or
molecules. The central vnifying theme in this research was the nature of the
energy fiow in chomical reactions and the magnitude of quanium effects in
determining such flow. Examples of questions we investigated were: For a
given shape of a potential energy surface, how does the height of the activation
barrier affect the reaction cross sestion and the distrilntion of energy among
the vibrational levels of the products? How valid are classical and semi-
classical approximations to the accurate quantum dynamics describing such
reactive systems? How valid are angular momentum decoupling schemes?
What are the characteristics of avoided crossings of potential energy surfzces
which are effective in producing electronically excited reaction products? How
significant are Feshbach resonances in chemiczl reactions? Can the cross
sections for breakup collisions be efficiently calculated by quuntum methods?
The ansv&ers to questions ;>f iﬁis type werev provided by obtaining
accurate or approximate solutions to the quantum dynamical equations of motion
describing such systems. To ottain these answers, accurate potential energy
surfaces were not required. It was sufficient to do accurate and approximate
quantum dynamical calculations on the same reasonably realistic surface.

This approach permits the exploration of the relation belween the nature of
such surfaces and the outcome of the chemical reactions occurring on it. In
cases in which the prediction of quartitative reaction cross secticas is required
accur-ie potential energy surfaces are needed, and in this case it is useful to

know, ahead of time, what regions of the surfaces mosf influence the dynamical
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know, ahead of time, what regions of the surfaces most influence the dynamical
results. Calculations with approximate surfaces provide an answer to this
question.

In many chemical systems of interest, one can, on the basis of a de
Broglie wavelength analysis, expect the presence of significant quantum effects.
This is the case not only for hydrogen-atom containing systems, such as H,,
H,;F, and H,Cl, but also for those involving fairly heavy atoms, such as BaON,,
as described in Section 2. An analysis of a model of this system23 indicated
that at thermal energies and higher, the value of the potential energy along the
reaction coordinate changes appreciably over one de Broglie wavelength, and
dynamical calculations show the presence of significant quantum effects in this
heavy system. It was therefore most important to use quantum dynamics
in studying such systems to determine the regions of the surface to
which the reaction is sensitive and to establish the degree to which classical
and semi-classical approaches may give reliable results.

The answers to the questions mentioned above are useful not only for the
basic understanding cf reactive processes but also for the application of this
knowledge to advanced technologies such as high energy chemical lasers,
plume technology, and the chemical effects of high energy radiation, which
are of interest to the United States Air Force. Specific examples are the
transfer of energy in collisions involving F atoms, H, molecules, and FH
molecules and their isotopic counterparts, which are important in connection
with the fluori: e-hydrogen chemical laser, and the calculation of electronic
branching ratios, of importance for the devciopment of electronic inversion
chemical lascrs. Thes. technologies and their applications are closely coupled
to the current status of scientific development, and the latter must advance very
rapidly if it is not to be an absolute barrier to the progress of the former, It
is hoped that the 1esearch reported here has contributed towards the achievement
of this goal.
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Coplanar and collinear quantum mechanical reactive scattering:
The importance of virtual vibrational channeis in the H + H,

exchange reaction*

Aron Kuppermann, George C. Schatz', and Michaei Baer'
Arihur Amas Noyes laboratory of Chemical Physics. ¥ California Institute of Technology. Pasodena. California 91109

(Received 22 Avgust 1574)

We have performed accurate quantum mechantcal cal-
culations for the coplanar H + H; exchange reaction,
using sufficient rotational and vibrational basis func-
tions in the close-coupling expansion to ensure con-
vergence, W¢ repeated thege calculations with a con-
verged rotational basis set but with only one vibra-
tivnal basis function, in analogy to what Saxon and
Light! and Wolken and Karplus,® respectively, did for
the similar coplanar and three dimensional reaction,
The vibrationally converged and one-vibration results
differ substantially for the coplanar as well as the col-
linear reaction, indicating the crucial role played by
virtual vibrational channels,

To sqlve the Schridinger equation for the coplanar
reaction, we first integrated the appropriate coupled
equations into the interaction region from each of the
three arrangement channel regions, using an extension
of the mettiod developed by Kuppermann.® The result-
ing solutions were then smoothly matched on three con-
veniently chosen surfaces in configuration space. The
R matrix and other asymptotic quantities were then ob-
tained,

Calculations for the Porter-Karplus surface! using 4
or 5 vibrations and 10 or 12 rotations per vibration for
a total of 40 to 60 channels ylelded reaction probabili-
ties that change by less than 2%-5% as additional vibra-
tional or rotatioual basis functions are added, over the
total energy range 0.30-0.60 eV. Without forcing
orthogonalization at any time, the results satis{y conser-
vation of flux to 0.5% or better and time reversal {nvarf-
ance to 6% or better, The calculations were repeated
using the same number of rotations but only one vibra-
tion, and introducing an appropriate vibrational orthog-
onalization,

The resulting total reaction cross sections o § are
plotted in Figs. 1(a) and 1(b) and show differences be-
tween the vibrationally converged and one-vibration
results greater than 3 orders of magnitude at low ener-
gles. The ratio of the one-vibration to vibrationally
converged ortho = para rate constants is 3, 15 at 300 °K
and 532 at 100°K.

Using the method developed previously,® we calculated
the collinear converged® and one-vibration reaction prob-
abilities for the sarve potential energy surface. The
ratios of the coplanar to collinear cross sections are
plotted in Fig.1(c). Although these cross sections vary
individually by about 12 orders of magnitude over the
energy range considered, their ratios vary by lesc than
2 orders of magnitude, indicating a remarkably similar
energy dependence. Virtual vibrational channels are
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furthermore about equally important in the collinear®
and coplanar H+ H, reaction. This will probably still be
the case for this system in three dimensions as well as
for other reactions.

We have also calculated the reactive, inelastic, and
antisymmetrized differential cross sections for coplanar

Eo (eV.
o1 %% 03
fo)
05}  CONVIRGED —
1 VIBRATION — — —
(b)
X o )
X 1k
Ag N S e
2
=102
“bo b 43 % 15 1§56 P 14
. 04 E(eV) 0.5 06

FIG. 1. Total reactive cross section o versus the total energy
E and translational encrgy E, for the coplanar exchange reac-
tion H+Hy (W=0,§=0) ~=Hy (v=0,§) +H (surmed over all )
where the atoms are considered distinguishable, Arrows in
abscissa indicate energies at which the vibration—rotation states
(v=0,f) of Hy bocome accessible. (a) Linear plot; ®) semi-
logarithmic plot, In (c) we plat the ratio oft/P¥ versus energy,
where PJ is the collinear totsi reaction probability (the collin-
ear total reaction cross sect'on) for reagents H,inv= 0 initially.
In all cases, a solid line indicates vibrationally converged re-
sults, while a dashed line indicates one-vibration results as de~
fined in text,

Copyright © 1974 American Institute of Physics
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Letters to the Editor ! ‘

H+ Hy. Contrary to the results of Saxon and Light! our
reactive differential cross sections show only backward
peaking in both the one-vibration and vibrationally con-
verged results, In addition, we {ind no evidence for a
quasiselection rule governing the reaction probabilities
similar to the ortho - ortho and para -~ para nonreactive
selection rule, We were able to artificially produce
such a reactive quasisclection rule using matching pro-
cedures in which incorrect symmetry restrictions were
placed on the matched wavefunctions,*

The inelastic cross sections are generally backward
or sideward peaked and exhibit no fine oscillatory
structure. Quautum symmetry oscillations resulting
from interference between the direct and exchange
amplitudes characterize some ortho - ortho and
para - para antisymmetrized differential cross sections
at total energies greater than 0. SeV,

In conclusion, virtual vibrational channels play a
central role in the collinear and coplanar H+ H, reac-
tion, and probably in the three dimensional one and §n
many other reactions. Therefore, the results of cal-
culations using only open vibrational channels must be
used with great caution. Once thaose virtual channels
are included §n a close-coupling reactive scattering
calculation and convergence ascertained, a wealth of
detalled physfcally meaningful information is obtained
against which a variety of dynamical models can be
tested. Work along these lines i8 proceeding in this
laboratory.

We thank Ambassador College for the use of their

computational facilities in most of the calculations
reported here.

*Research supported in part by the U. 8. Air Force Office of
Sclentific Research,

1National Science Foundation predoctoral fellow. Work per-
formed in partial fulfiliment of the requirements for the Ph.D.
degroe in Chemistry at the Californis lnstitute of Technology,

1Prescnt address: Soreq Nuclear Research Center, Yavne,
Israel; and Departmeat of Chemical Physics, The Welzmann
Institute of Scieace, P. O. Box 26, Rehovot, Israel,
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Quantum mechanical reactive scattering: An accurate

three-dimensional calculation*
Aron Kuppermann and George C. Schatz!

A. A. Noyes Laborutory of Chemical Physics Division of Chemistry and Chemical Fngineering.! California Institute of

Technology. Pasadena, California 91123
(Received 16 December 1974)

We have performed accurate three-dimensional (3-D)
quantum-mechanical calculations of differential and total
cross sections for the H + H, exchange reaction on the
Porter-Karplus® potential energy surface. These are
the first such calculations that are vibrationally and ro-
tationally converged, and the results are believed to be
accurate to 5% or better. They can serve as a compari-
son standard against which approximate methods can be
tested.

To solve the body-fixed 3-D Schrédinger equation for
the nuclear motion we perform a partial wave expansion,
followed by a close-coupling expansion. For the latter
we use variables and basis functions which vary from
region to region of configuration space so as to optimize
the representation of the wavefunction. This approach,
developed previously,? has been successfully applied to
collinear?® and coplanar® reactions also. The coupled
equations are integrated into the interaction region from
each of the three arrangement channel regions, using
the use of the Gordon method.® The solutions are
smoothly matched on three appropriately chosen surfaces
in internal configuration space by employing the con-
venient system of coordinates described elsewhere.®
The full three-body Hamiltonian was used in these cal-
culations, and no approximations were introduced other
than those inherent in the numerical methods.

We have performed extensive calculations in the range
of total energy E=0.40-0.70 eV and have found that up
to 30 rotational, 4 vibrational, and 100 total basis func-
tions are necessary for convergence of the reaction
probabilities to within 5%. The converged results usual-
ly satisfy conservation of flux to 1% or better and time
reversal invariance to about 6% or better. We found

The Journal of Chemical Physics, Vol. 62, No. 6, 15 March 1975

however that, as for the coplanar reaction, * results satis-
fying flux conservation and time reversal invariance
could be obtained before satisfactory convergence was
achieved. One cannot, therefore, rely on flux conserva-
tion and time reversal invariance as sufficient conditions
for convergence. All values of the total angular momen-
tum J from 0 to about 12 are needed for convergence of
the reactive differential cross sections. The angular de-
pendence of the differential cross sections are very sen-
sitive to the magnitudes and phases of the scattering
matrix elements. It is of crucial importance to establish
the vibrational and rotational convergence of the results
for each J, since otherwise spurious oscillations in the
differential cross sections can result, The integral re-
action cross sections are much less susceptible to these
effects, Computation times on an IBM 370-158 for each
E were 13, 33, 62, and 64 minutes for J=0, 1, 2, and 3,
respectively, and approximately 75 min for J> 4 and 100
basis functions. .

The following conclusions can be inferred from the re-
sults obtained:

(1) Inclusion of closed vibrational channels in the
close-coupling expansion is essential, in spite of the
fact that this increases the computational time by fac-
tors of 10-30. For example, at 0.50 eV the J=0 dis-
tinguishable-atom reaction probability for the v=0, 7=0
reagent to the v’ =0, §’=1 product’ iz 0.71x10" for the
vibrationally converged resuits and 1.87% 10~ when vsing
only ground vibrationa! state basis functions, a differ-
ence of a factor of 2.6. Also, at E=0.55 eV the vibra-
tionally converged, orientation-averaged (i.e., summed
over mj and averaged over m ), para—ortho reaction
cross section for the same process, is 0.040 bohr®,

Copyright © 1975 American Institute of Physics
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FIG. 1. Three-dimensionul Woy.p,/dw) and coplanar oy.p/d0)
para —ortho differential reactive cross section as a function
the scattering angle ¢ for the H + Hy — H, + H exchange reaction
on the Porter—Karplus' potential energy.surface at 2 total energy
E=0,550 eV and relative reagent translational energy E, = 0,27%
eV. The corresponding wave functions have becn antisymme-
trized with respect to hydrogen atom exchange. The para-ii,
reagent is in its ground v =0, j=0 vibrational-rotational state,
The ortho-H, product is o its ground v’ = 0 vibrational and §*

=1 rotational state, the lowest permitted by the Paull principle.
Contributions from all m/, values of the component of the angu-
lar momeatum of the diatom product have been included in the
cross sections. The solidline represents the three-dimensional
results, for which the ordinate scale is at the left of the figure,
and the dashe line depicts the coplanar results, for which the
ordinate scale is at its right. The corresponding integral reac-
tion cross sections are oyp - 0. 040 bohr® and 0., = 0. 36 bohr,
respectively. )

Wolken and Karplus, * in their pioneering work in which
similarly only ground vibrational state basis functions
were employed, obtained a value of about 0.43 bohr?.
This difference of a full order of magnitude between
these last two results must be due at least in part to
their neglect of closed vibrational channels. Their phe-
nomenological energy threshold is approximately 0.05 eV
below our vibrationally converged one.

(2) Because of the much smaller times involved in the
J =0 calculations, it would be very helpful if computa-
tions of this type, such as those performed by Elkowitz
and Wyan,’ were representative of the over-all reaction.
We do find that at cach energy E, the ratio of two orien-
tation-averaged integral reaction cross sections frc.n the
same state of the reagenis to different states of the
products, usually agrees to within 20% with the corre-
sponding J = 0 reaction probability ratio. However, the
value of J which most contributes to the integral reac-
tion cross sections is 2 at 0.40 eV increasing to 4 at
0.70 eV. As ¢ result, the J=0 calculations do not fur-
nish accurate predictiona for other appropriate quanti-
ties. For example, if we compare the ratio of two
orientation-averaged integral reaction cross sections
from different states of reagents to the same state of the
products, at the same ‘otal energy, with the correspond-
ing J =0 reaction probability ratio, these quantities can

————

differ by a factor of 2 or greater.

(3) Let Q be the angular momentum associated with
the tumbling of the triatomic plane around the position
vector of the atom with respect to the diatom.'® For
small J, we observe in each arrangement channel only
a weak dynamic coupling between states having different
values of 1. This agrees with previous observations by
Pack'® and McGuire and Kouri'! for nonreactive rotation-
ally inelastic scattering. In addition, for J less than
about 5 or 6, the f2=0 reaction probabilities are usually
significantly larger, by factors of 2-20, than the others.
Neglect of 01-coupling and of unimportant 2 contributions
can shorten the computation time by one or two orders
of magnitude. Preliminary calculations of this type in-
dicate that these approximations can yield results which
are quite accurate.

(4) The distribution of products among the several
orientation-averaged rotational energy levels is very
similar for the 3-D and coplanar reactions. In addition,
the angular dependence of the corresponding differential
cross sections is also very similar, as shown in Fig. 1.

(5) Over the range of total energies 0.60-0.70 eV,
our distinguishable-atom reaction cross section from
v=4=0 reagent, summed over all fi_.al states of the
products, agrees with the quasiclassical trajectory re-
sults of Karplus, Porter, and Sharma, ' within the ac-
curacy of the calculations,

Although Conclusions (1) and (2) indicate that accurate
calculations are quite lengthy and can only be done for a
small number of benc imark systems, conclusions (3)-
(5) indicate that approximate methods that are still very
realistic but much faster, might be developed and use-
fully applied to a significantly larger number of reac-
tions.

We thank Ambassador College for generous use of
their computational facilities.

*Work supported in part by the United States Alr Force Office
of Scientific Research,

tWork performed in partial fulfiliment of the requirements for
the Ph.D. degrea in chemistry at the California Institute of
Technology.
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. We present in this paper a mapping of tri
s stfaces ¥ for which all acrangement channels are represented
visualizing the grometnical and dynamical properties of such surfaces.

poténtial energy
is very useful for

handed]

Consider the system of atoms A, Ag, A, and let
Ax be a cyclic permutati La of afly. Let r and R,
be respectively the vector from A, to A, and from
the center ot mast of A A, to A,‘ We define (1-3}
two scaled vectors 7, and R, as gy 'z, and a\R,,
respectively, where a, is the dimensionless scale factor
(ux'"/uu)l/ + By, being the reduced mass of A A
and g, , thatof the A, + A A, paic. The ry Rx
r,. R, transformation is a mmion in configuration
hyper-space [3].

V depends only on three scalar internal configura-
tion coordinates. These can.be chosen as r,, R, and
the angle v, (in the 0, 7 range) between r, and R, .
In order to map ¥(r,, R,.7,), we must establish a
correspondence between r,, R, , 7, and points P, of
a three-dimensional internal arrangement configura-
tion space OX, ¥, Z, . Onc such correspondence is to
assign to P wherical polar coordinates 7, n,, 7, where
ri.s(r2 )2 and is independent [1] of the choice
of A, and n,‘ is cos” (R,‘/r) in the range 0, 7/2. For
collinear configurations (7, = n) this cortespondence
becomes one of the standard representations of ¥ 1,
It suffers, however, from three serious disadvantages.
One is that to each configuration in which A, coin-

® Supported in part by the Air Force OfTice of Scientifc
Research.
*¢ Contribution Number $013,
t Like that adopted by Tang et al. (4] after a rescaling of the

distances by the a, factor as described in the present paper.

374

TSP, B0 S R ..

cides with the center of mass of A A, (i.c., R, =0)
there corresponds an infinity of points P, (forminga
circle on the OX, Y, plane centered on 0 and having
tadius r, ). The second is that equivalent ssrangement
channels are not represented equivalently. The third
isthatanr, n,,7, = n,,7, trar:cormation does not
preserve distances and distorts equipotential surfaces.
These disadvantages make it difficult 1o obtain an un-
biased vizualization of V in all regions of internal con-
figuration space. A similar difficulty is present in the
ingenious related representation proposed by Smith
(see ref. [3], egs. (24)).

A second mapping of F{r,, R,,7,) is to assign to
P, spherical polar coordinates 7, 8, = 2n, and v,.
The factor 2 by which 6, and n, differ is of central
importance, in that it eliminates the difficultics de-
scribed above by bringing about the validity of three
very significant properties: to every internal configu-
ration there corresponds only one point P, ; undistin-
guishable arrangement channels are represented un-
distinguishably;and an 7, 8, ,v, =7, 0, v, transfor-
mation simply rotates equipotential surfaces around
the OY, axis without distorting them. This produces
a representation of the entire intetnal configuration
space unbiased by the particular choice of A used to
define it.

In fig. | we depict intersections of the equipoten-
tlal surfaces with the OX,Z, and OY,Z, planes for
the notorious Karplus and Porter [$] potential func-
tion for the Hy system. The OY, axis, perpendicular
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Fig. 1. Equipotential surfaces for Hy. The carte ordinate X, Yo, Zg are 7 §in 0, 08 9,5, 7 50 8, sin v, and 7 cos 8,4,
respectively, withr, 04 and vq defined in the tent. |he range of y, was extended from (0, w) to (~w,u) by sctung, fot y4 <0,
V(. 0, =va) = V(7. 84, 74). The curves wre intersecuons of F(r, 04, 75) * £ surfaces with the perpendicular planes OX o2y
(fig. 12) and OYoZ4 (fig. Ib). The onigin of measurement of £ is the minimum of the {; diatomic potential encrgy curve with the
thirzd atom removed. The values of £ range from 0.3 eV to 1.5 eV n steps of 0.3 ¢V, as indicated on top of .Jgure. All points on
fig. 12 and those on the OZ,, axis of fig. 1b correspond to colineas configuratons. Points on fig. 1b off that axis represent non-
collinear configurations. Those on the OYq axis (except for O) correspond to perpendicular configurations, The honzontal dashed
lines Interconnect the fig. 12 and fig. ! intersections of the £ = 1.5 eV equipotential with 0Z,. The 0Z, axes (A= a,8,9)in
fig. 13,33 7 — =, correspond 10 the thiee weparated atom-diatom arrangements. The fact that the angle between them is 120°
rather than the usual [6] 60° is of central iImportance in permitting the thrce arrangement channels to be represented equivalently
and in making the 7, 04, 74 = 7, 8, 74 transformation correspond to a ratation (without distortion) sround the 0%, axis, which
itself is invariant under this transformation. The bottom part of fig. Ib corresponds to the region halfway between configura.ions
Ay * AgAgand A A, ¢ Ap All classically allowed pathways keading from onc 1o the other of these configurations, gt total encs-
et not exceeding 0.6 eV, must pass thiough the hatched area enclosed by the cotresponding equiputential,

to the plane of fig. 1a, is a threefold axis of symmetry
of ¥, duc to the equivalence of the three H atoms and
of the corresponding arrangem.ent channels. The lower
part of fig. 1b depicts in detail the “transition state”
region of configuration space halfway between the
A,' + AqA; reactantand AL A, + A, product configu-
rations. At any energy £, all classically allowzd path-
ways leading irom such reagents to such products
must pass through the region enclosed by the corres-
ponding equipotential. The smaller £, the more con-
fined is this region and the less can the intermediate
reactive configurations d:viate from collinearity. The
characteristics of these *“passages”™ between r2agents
and products influence significantly the dynamical
propertics of V.

We have constructed tiree-dimensional models of
such equipotential surfaces, for the Hy and FH, sys-
tems. The general properties of the 7, 8, , v, mapping
will be published in detail scparately, together with
pictures of those models. Tlie present paper should

suffice, however, to indicate that this mapping pro-
vides a very powerful mezns {or visualizing the pro-
perties of triatomic potential energy surfaces and for
developing exact and approximate reactive scattering
theories.

We thank George C. Schatz for help in preparing
the figure and for many stimulating discussions.

References

1] L.M. Delves, Nucl. Phys. 9 (1959) 391; 20 (1960) 275.
1) D. Jepsen and J.0. turschiclder, Proc. Natl. Acad. Sai.
US 45 (1959) 249.

(3] F.T. Smith, J. Math, Fhys. 3 (1962) 738.

(4] K.T. Tang, B. Kle.nman and M. Karplus, J. Chem. Phys,
50 {1969) 1115,

{51 R.N. Porter and M. Karplus, J. Chem. Phys. 40 (1964)
1108,

(6] S Glassione, K.J, Laidter und H. Eyring, The theory of

rate processes (McGraw-Hill, New York, 1941) ch. 3.

3718

]
"




A o Malaade it ne o0t becais W L P ’

Exact quantum, quasiclassical, and semiclassical reacticn
probabilities for the collinear F+H, — FH+H reaction*

George C. Schatz,' Joel M. Bowman,! and Az0n Kupermann
Arihur Amas Noyes Laboratory of Chemicol Physicr! California [nsiitute of Technology. Pasadena,

California 91123

(Recerved 22 October 1974)

Esact quanium, quasiclassical, »-d semicl ] prob and rate for the colt
reaction F 4+ H, — FH 4+ H are pr d and pared The exact q results ind a large degree
of population inversion of the +H product with P2, and P2, beng the d probabalitics. The

energy dependence of these (wo protedil ot low trans!

effective threshold of 0.005 ¢V which can largely be mterpreied a8

| energies are quite different. P}, sho. # an

from ¢ ! A

vibrationally adisbatic Lasrier. P!, has & much larger effective threshold (0.045 ¢V) WI;Uy sesulting

{rom dynamscal effects Qursiclass.cal probabil for the coll

F+H, were cakculsted by both

the forward (initial condjtions chosen (oc reagent F + i1,) and reverse (iminal ~onditions for product H + FH)
trajectory methods. The results of brth cakulations correctly indicate that P2, and P2, should be the
é act! bab H . the threshold behavior of the quasiclassical forward 27, disagrees

strongly with the cor ding exact

¥

q threshold energy depardence. By contrast, there is good

agrecment between the reversed trajecto: s results and the sxact quantum oncs. The uaiform eemiclassical

results also sgree well with the corr ding exact g ones
{ forward method for this The

dicating that the q 1assical reverse

20d the semiclassical methods are preferatie to the g 1

imputant differences betwe . the threshold behavior of the esact '
are feated in the or ding rate primanly as '~=* differences in their

ol

v P

and iclassical forward reacuion

energien. Additional exact r;ulnuh\\’umdmﬁaindk:ulhuthr‘wcﬂxu

are no longer ir.portant Jor reacticns with vibrationally excited H.. Resonances play en importsat tole in

certuin reaction probatalitics primarily at higher rel L

1. INTRODUCTION

The reactions F+ H,y(Dy, DH)~ FH [¥D)+ H (D) have
recently been the subject of several exp-. “imental studies
in which very detatied rate constants and cross rections
for these reactions have bcen measured. Relative rate
constants into specLific vibrational (and sometimes vi-
brational-rotational) states of the products have been
measured by both inlrared chemiluminescence! and
chemical lager? techniques and, quite recently, both
methods have been used to study the temperature depen-
dences of these relative rates,'*'** Angular d‘stributions
for specific product vibrational states of the F .+ D, re-
action have been atudied at several incident energies by
#? crossed molecular beam appazatus.® In addition, there
exist geveral (usually indirect) determinations of the
over-all bulk rate constants for the ¥+ H, reaction* and,
more recently, studies of {sotope effects for the F+ H,,
F+Dy, F+HD, and F+ DH series,® A very important
application of these reactions has been to the fluorine~
hydregen chemical lasers, ¢ where F+ ;- FH+H
serves as the main pumping reaction,

Complemerting these experimental studies have been
several quasiclagsical trajectory studies on F+ Hy 1%,
Fo "' and F+ DHHD)}** and one recent semiclassi-
cal study oa collinear F+ Dy, The results of the quam-
clagsical studies have geserally been in reasonably good
agreement with the detall 2d rate constants obtlained by
infrared chemiluminescence and chemical lagar experi-
mentabut fn much poorer agreemeat with the angular dis-
tritutions obtainedby the molecular beam experiments,
There alec exists gome disagreement between experi-
ment andthe classical calculations onthe rotaticnal dis-
tribution ot the detaled rate constants,” and on tsotope
effects,’ Additional theoretical developments have besn
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energies.

the characterization of the prodrst state disiributions
by temperaturelike paramaters,!? anc the establishment
of a relstionship between these parameters and certain
detalls of the potential energy sur.yce.!* All of the clss-
sical theoretical studies have employed semiempirical
potential energy surfaces.”™! Anab énitio potential en~
ergy surface has also beun calculated, !* and the semi-
empirical surfaces are in reasonable sgreement witk 4,

Aside from possible defects in the potential energy
surface used, the most important sources of disagree-
ment between the quasiclassicai trajectory calculations
and experimert are (a) electronically novadiabatic ef-
fects, and (b) quantum dynamical effects, The first
problem hae been discussed by various investigators,'**
but its importance is not completely understood at pres-
ent and we shall nct consider it here,

In this paper, ve uytudy the importance of quantua
dynamical effects in the F+ Hy~ FH « H reaction by com-
paring the results of accur ‘e gquantum mechanical polu-~
tiong to the Schridinger equation for the collinear col-
lis10ns to the results of the corresponding quasiclassi-
cal and semiclassical calculaions, In the following
paper (hereafter referred to as II), we make the analo-
gous study for the F+ Dy reaction and also examine exact
Quantum -esults for F+ HD(LH), Results of our prslim-
inary studies'"® indicated thax quantum effects were
quite important {n the collinear F+ H, raaction'® and, in
fact, the disagrecment between the quasiclassical and
exact quanium reaction probabilities at Jow reagent rel-
alive transiational energies was quite large, In the
pregen” paper, we give a more detatled snalysis of the
reaction probabilities for F+ H, ao calculated by four
different methods: an exac uantum mechanical polu-
tion, the quasiclassical forw.rd and quasiclassical re-
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verse trajectory methods, and the uniform semiclassi-
cal method. We also present and compare the corre-
spouding rate constants obtainedf{romthe results of these
four methods. In addition, we examine resonances,
tunneling, and energy partitioning in this reaction, and
examine the results of exact quantum calculations at
total energies for which two vibrational states of the
reagent H, are accessible,

In all cases, we restrict our considerations to collin-
ear collisions of a fluorine atom with a hydrogen mole-
cule where the two hydrogen atoms are considered to be
distinguishable. The resulting cross sections are in the
form of dimensionless probabilities of reaction between
specific vibrational states of the reagents to form prod-
ucts in specific states and are not directly comparable
with experiment (although certain other quantitics such
as final state distributions can, with caution, be subject
to such a comparison), Our justification for studying
collinear dynamics lies mainly in its use as a predictive
model for the energy release behavior in actual three-
dimensional collisions® and as a testing ground for ap-
proximate theories of chemical dynamics, 2 Exact quan-
tum dynamics is currently feasible for many types of
collinear reactions, and thus the importance of quantum
effects in chemical reactions can readily be established
within the collincar restriction. How these quantum ef-
fects will be modified in two- or three-dimensional sys-
tems has nol yet been fully established, but some prog-
ress has been made towards obtaining exact quantum
solutions to these problems, ** and quite recently accu-
rate converged results have been obtained for the H+ H,
coplanar and 3-D exchange reaction, *

In Sec. 1, the potential energy surface used in our
calculations is described. In Sec. IlI we compare the
quantum, quasiclassical, and semiclassical reaction
probabilities for F+ H,, and in Sec. IV we compare the
corresponding rate constants. Reacticn prodbabilities
for F+H, in the higher total energy range where two re-
agent vibrational states are open are discussed in Sec,
V, and in Sec. VI is a short summary.

Il. POTENTIAL ENERGY SURFACE

We used the semiempirical LEPS potential energy
surface of Muckerman'®® (his surface 5). This surface
is irtermediate in character between his surfaces 2 and
3 of Ref. 7b and was chosen to optimize agreement be-
tween his three-dimensional trajectory results and ex-
periment. Ll Using Muckerman's notation, the param-
eters describing the extended LEPS surface are D, (HF)
=6,1220 eV, f,(HF)= 2,2187 ™', R(HF\=0,0170 A,
A(HF)= 0,167, D,(H,)=4,7462 eV, p,g)-1.9420 A2,
R,(Hy) =0.7149 A, and A(H,) =0.106. The exothermicity
is 1,3767 eV (31, 76 kcal/mole) and the barrier height
0.0461 eV (1. 06 kcal/mole). Figure 1 shows an equi-
potential contour plot of the collinear surface along with
the minimum energy path, The coordinate system for
the plot (2nd for all calculations) is chosen to diagonalize
the kinetic energy with a single reduced mass and is de-
fined by

xi= (Eu.)”‘ ("ur‘y““ Vnn) '
m "]

Han

o)

LY
2

X; ohe)

FIG. 1. FEquipotential contour plot of the Fli, collinear poten-
tial energy surface used In all valculations reported here, En-
ergies given are relative to the minimum in the H, diatomic
potential curve, Coordinate system §s defined n text, Heavy
line denotes the minimum energy path with saddle point indi-
cated by a cross,

xg- _L‘qu)”‘ Tan) »
Hr nn

where ry, 18 the shorter of the two HF bond distances

in the H-H-F linear geometrv. The analogous coordi-

nate system appropriate for the product artangement

channel (FH+H) is

i 1/4 u
2! = [FBa2R y e, ]
1 (“" ) (ln‘ My llr)

1- (l"—)“‘ ).
Hu.rr

These coordinate systems have the advantage over

others™ in that the transformation between the (r{, x})

coordinate system appropriate for reagents and the

(z{,2%) system appropriate for the products is orthog-

onal,

Since the vibrational spacing in H, is about 12 kcal/
mole and that in HF is 11 kcal/mole, “,ur vibrational
states of HF are normally accessible for thermal dis-
tributions of reagent H, due to the exothermicity of the
reaction,

11l. QUANTUM, QUASICLASSICAL, AND
SEMICLASSICAL REACTION PROBABILITIES
FOR COLLINEAR F+H,+FH+H

A. Exact quantum reaction probabilities
1. Numevical method

We used the close coupling propagation method of Kup-
permannt® to solve the Schrodinger equation for the col-
linear system F+H;. The method involves dividing the
configuration space depicted in Fig. 1 into different re-
glons and then propagating though a given region in a
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coordinate s, stern appropriate to that region. In partic-
ular, rectangular coordinates were used in the near
asymptotic regions appropriate to reagents and products
and polar coordinates in the strong interaction region
with the origin of the coordinate system chosen {n the
clasaically inaccessible plateau area corresponding to
disrociation. A basis set of pseudovibratfonal eigenfunc-
tions describing motion transverse to the direction of
propagation was used for expanding the wavefunctions,
These eigenfunctions were cglculated by a finite differ-
ence procedure, !* and the basis set was changed often
during the propagation to insure an elficient representa-
tion of the wavefunction. Contributions from continuum
vibrational channels are not included in this method. The
integration of the coupled Schrodinger equation was done
with an Adams-Moulton 4th order predictor—4th order
corrector method (with a 4th order Runge -Kutta-Gill
initiator). The procedure for extracting the probabllity
matrices from the asymptotic solutions is similar to
that used by Truhlar and Kupperma.nn.” Convergence

of the final reaction probabilities was carefully checked
by observing the effect of varying the location of the
origin of the polar coordinate system, location c¢. the

end point of the integration, > number of closed vibra-
tional channels, number of integration steps, and number
of grid points in the finite difference eigenfunction deter-
mination. Using 12 to 15 vibrational channels through-
out the integration, we obtained a scattering matrix for
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FIG. 2. Exact quantum reaction probablilities for collincar

F +H; as a function of relative translational energy E, and total
encrgy E (relative to minimum In I, distomic potential energy
curve). () Total reaction probability PR from v=0 of Hy; ®)
reaction probabi'ities P§ and P§ (dofined In text), Vertical
arrow in abscissa indicates the energy at which v=3 of HF be-
comes accesaible,
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FIG. 3. Exact quantum reaction probabilitics PJ and P} (sim-
{lar to Fig. 2).

which unitarity and symmetry were deemed adequate
(flux conservation to 0.5% and symmetry to 5% or better)
in the reagent translational energy range (relative to »
=0) Eq=0.0t0 1,10 eV. The computation time for a 13
channel calculation on an IBM 370-158 computer was
approximately 32 min for the initial calculation in which
a large amount of energy independent information was
stored on disk for subsequent use and 5 min per energy
thereafter.

2. Results

‘We define the probability of reaction from an fnitial
state » (of the reagent H,) to a final state »' (of the prod-
uct HF) by the symbol PX.. (This symbol will also be
used as a shorthand notation for the phase “v= v’ reac-
tive collision.”) The total reaction probability P} from
a given incident state » {s the sum of P}, over all acces-
sible »’'. The exact quantum (EQ) reaction probabilit'es
P%, P&, and PJ for F+ H, inthe translational energy range
Eq=0.0-0.4 eVare presentedin Fig. 2. The reaction
probabilities for the transitions P and P§, whichare also
allowed in this Egrange, are plottedin Fig. 3. Weseethat
P % and P have an energy dependence very similarto Pg,
but with muchsmaller values (P§ ~6x10* P&, P&, =1

x10* PY). As a result, only P§ and Pg, contribute ap-
preciably to Pg in the eneigy range considered. As was
pointed out previously, !* 75 and P have remarkably
different threshold behaviors. We shall define the effec-
tive threshold energy E, for the v=+' transition as the
difference between the (lowest) energy for which the cor-
responding PX. is equal to, say, 1% of the maximum
value attained by this quantity and the energy at which
the »= »' process becomes energetically possible. With
this definition, I’% has an effective threshold of 0. 005
eV, while for P§ (which is energetically forbidden until
Eqy»0.013 eV), E, is 0.045. Note that while the barrier
height 1s 0.0461 eV, the zero point energy of H, is 0.268
eV, 8o the transition PJ, ts energetically allowed even at
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zero translational energy. Likewlse the 0~ 3 reactive
transition is energetically allowed as the HF(3) channel
opens up at £,=0,013 eV, One possible explanation for
why the effective threshold of l’; {s greater than zero s
that the exchange of energy between motion transverse
to the reaction ¢oordinate and that along the reaction co-
ordinate is not efficient (at least in the entrance channel

region of configuratlon space where the saddle point lies).

Truhlar and Kuppermann have shown®® thata more real-
istic estimate of the effective barrier height in H+H, is
obtained from: vibrationally adiabatic theory. The vibra-
tionally adiabatic barrier (for zero curvature and using
the harmonic approximation) for F+H,is 0.026 eV, which
is still appreciably larger than the effective quantum
threshold energy for Pg (0.005 eV), although it is quite
close to the Pg quasiclassical threshold energy (0.025
eV) (see Sec. I11. B. 2). This difference between the
quantum ard quasiclassical threshold energies could in
part be due to tunneling through the one-dimensional
adiabatic barrier, within the framework of an adiabatic
description of the quantum dynamics in the neighborhood
of the eaddle point. In Paper II we shall see that the re-
sults for F+ Dy, F+HD, and F+ DH support this conclu-
sion. The high threshold energy for P§ s not easily
explained as resulting {rom one-dimensional adiabatic
barrier tunneling and is probably due to a dynamical ef-
fect, as will be discussed in Sec. III. B. 2.

The sharp spike in the P} curve at energies slightly
above threshold is reminiscent of the Feshbach type in-
ternal exc!‘ation resonances observed in the collinear
H + H, reaction.?® A discussion of other resonances in
the F+H, reaction is presented in Sec. V.

Simultaneously with the reactive transition probabil-
ities, we have calculated the nonreactive ones corre-
sponding to the co'lisions F+H,(0)~ F + Hy(0) and FH(»)
+H~ FH(+')+H. The probabilities for the first of these
nonreactive processes are simply the difference between
unity and the total reaction probability P§ (as long as »
=1 of H, is closed). The transition probabilities for the
H+HF(+') inelastic (v'# v) processes are all quite small
(generally less than 0.01) up to £,=0.4 eV and vary rel-
atively slowly with energy. Unitarity of the scattering
matrix then forces the elastic probabilitics for H+HF(v)
collisions to be roughly equal to the difference between
unity and the probability for the F +H,(0)= FH(») +H re-
active process. The behavior of the inelastic ‘ransition
probabilities for nonrcaciive H + HF collisions contrasts
strongly with the correspondusg inelastic transition prob-
abilities for collinear H + FH collisions. ™ In the latter
case we find that the probability of an inelastic collision
is comparable in magnitude to the elastic transition prob-
abilities anc, in addition, the probabilities of multiquan-
tum jump transitions are often greater than the probabil-
ities of single quantum jump transition. A more com-
plete discussion of the results for col)’ zar H + FH will
be given in Ref. 32.

B. Quasiclassical reaction probabilities
1. Mechod

TNe classical trajectory calculations were carried out
in the same way a# in a previous H + H, study.’*** The

{nitial phase angle variable for the vibration of the ground
state of H, was varied uniformly over a grid of typically
100 points in the interval 9 to 27, The final action num-
ber of the product F was computed for each reactive
trajectory and assigned a quantum number by rounding
off the action number to the nearest integer. Thus, the
transition probability PJ. was defined as the fraction of
reactive trajectories with final quantum number ',

When this procedure {8 carried out in the direction F
+Hy(v=0)= FH (') +H, we term the quasiclassical tran-
sition probabilities “quasiclassical forward” (QCF). For
the reverse reaction, the quasiclassical transition prob-
abilities are termed “quasiclassical reverse” (QCR).
Quantum mechanically, the forward and reverse prob-
abilities are rigorouuly equal at the same total energy,
but quastclassically they are not.’ Therefore, either
of the two quasiclassical results, QCF or QCR, could be
used to represent the probabilities for the (forward) re-
active collisions. Since there Is preseitly no a priori
way of deciding which of these two procedures will give
results closer to the EQ ones, we have used them both,
and corresponding results are presented below,

2. Results

In Fig. 4 we plot the QCF and EQ reaction probabili-
ties Pg, P%. and PJ vs the translational energy E,, as
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FIG. 4. Quasiclassical forward and exact quantum reaction
probabilities for F+Hy: (a) PR, () P¥ and P§. Dashed line
indicates QCF rosults with their associated statistical érrors
indicated by vertical bars. Solid line {ndicates EQ reaults (as
in Fig. 2),
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FIG. 5. Fraction (f) of the total reagent energy (in excess of

product zero point energy) which ends up as vibrational energy

ia the product HF as a function of the reagent translational en-

ergy E, and total energy E. Solld line indicates FQ results and
dashed line QCF results. Other notation analogous to Fig. 2,

well as the corresponding exac. quantum ones given in
Fig. 2. Out of the 100 trajectories, none yielded HF with
v=0or1 (l.e., P§ =Py =0 probably to within 0.01 or
less). There are two important points to be noted in
comparing the EQ and QCF results. First, both the ex-
act quantum and the quasiclassical resuilts predict rough-
1y the same amount of vibrational excitation in the HF
product on the average. Indeed, if we define /, as the
fraction of the total energy which ends up as vibrational
energy in the product HF, then in Fig. 5 we see that f,
is roughly 0.81 and nearly independent of E, in the QCF
results, and fluctuates between 0.66 and 0. 89 with an
average value of 0. 79 in the EQ results. From this, we
conclude that the quantum and quasiclassical dynamics
agree (on the average) with respect to partitioning of
product epergy between translational ang vibrational de-
grees of freedom. Second, despite this average agree-
ment, there are very significant differences between the
EQ and QCF reaction probabilities, particularly witi
respect to the P}, threshold and the P%/PX ratto. In
Fig. 6 this ratio is displayed as a function of E, for both
the EQ and QCF results. As has been pointed out pre-
viously, ! the lack of agreement between the individual
transition probabilities P§ and P§ can be partially ex-
plained as arising from {he reasonable but nevertheless
arbitrary way of assigning a discrete quantum number
to a continuous product viorational energy. However,
the large differences in the energy dependence of the EQ
and QCF P3 (v =2, 3) suggests that this {s probably not
the whole explanation and that other significant differ-
ences exist between the classical and qQuantum dynamics
in this system. In addition, this arbitrariness in the def-
inition of a product quantum number is not present in
the total reaction probabilities P§, yet the differences in
magnitude and energy dependence of the EQ #2d QCF re-
sults are still very significant.

It 18 also of interest to analyze the FQ and QCF reac-
tion probabilities by an information theoretic approach,®

In order to include a study of isotope effects in this anal-
ysis, we defer a discussion of this to Paper II,

In Fig. 7 are plotted the QCR and EQ reaction prob-
abilities P, P}, and P§, vs E,. The transition prob-
ability PJ 1s nonzero at zero reagent translational ener-
gies. This can occur because of the convention of round-
ing classical vibrational quantum numbers to the nearest
{nteger, 103 M

The QCR results in Fig. 7 are in much better agree-
ment with the quantum probabilities than are the QCF
results in Fig. 4. This is true not only of the total reac-
tion probabilities P§ but also of the individual transition
probabilities, especlally P5. The fact that the threshold
behavior of the P§, transition can be described correctly
by a quasiclassical method suggests that the 0, 045 eV
effective threshold energy in PH(EQ) is a dynamical ef-
fect related to motion through classically accessible re -
glons of configuration space. The fact that the reverse
rather than the forward trajectory method produces the
best agreement with the exact quantum results must be
regarded as an empirical observation at present. It
would be interesting to fucther analyze the quasiclassical
results from the viewpoint of what regions of configura-
tion space are being sampled by the QCR and QCF tra-
jectories and with what velocities, and how well the cur-
rent density fields derived from these trajectories agree
with ¢the corresponding exact quantum current densities.
The good agreement between the QCR and EQ results
suggests that the QCR procedure should be applied to a
three-dimensional trajectory calculation. If the differ-
ences between the one-dimensional QCR and QCF results
are also found in three-dimensional calculations, this
could be indicative of the presence of important quantum
dynamical effects in the three-dimensional reaction.
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FIG. 6, Ratio of reaction probabllities PE/PJ vs translational
enorgy K, and total energy K. Solid line indicates FQ results
and dashed line QCF results, Other notation anslogous to Fig.
2,
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Wilkins®® has completed a three-dimensional QCF study
of the reaction FH(v) + H=Hy(v') + F (v varying from 1
through 6). His results can be considered to be QCR
calculations for the reaction F+Hy(»")= FH(v) +H. He
has also published QCF rate constant calculations® for
the latter reaction with »’=0, It would be very interest-
ing to compare the corresponding (QCR and QCF) cross
sections. Perry ef al.?” have recently published a three-
dimensional comparison of the QCR and QCF cross sec-
tions for the endothermic I + Hy~ HI +I reaction at one
total energy. They found that microscopic reversibility
was approximately obeyed at this energy but made no de-
tailed study of the energy dependency of the cross sections
and did not investigate threshold effects.

C. Semiclassical reaction probabilities
1. Method

For most energies, uniform semiclassical reaction
probabilities were calculated according to the procedure
described in Ref, 34. However, for translational ener-
gies Eq greater than 0,10 eV, the transition P§ was
computed by a simple analytical continuation technique,®
similar in spirit to that of Miller.™ This was recessary

in order to obtain a nonvanishing value of this transition
probability, since in the above energy range, although
energetically allowed, it is dynamically forbidden,
In addition, it was found that PJ; was illdetermined near
threshold in that a plot of final FH vibrational action
number m, vs initial H, vibrational phase angle (qo) re-
vealed “raggedness” (i, e., very rapid variation of m,
with g,) for m, near the value 3, % Raggedness was also
observed over a range of energies for the F+ Dy(v=0)

= FD(v' = 4) « D reaction by us (see following Paper 11)
and by Whitlock and Muckerman, '* We managed to over-
come this difficulty at several energies by doing the
semiclassical analysis for the reverse reaction, §.e.,
H+ HF(v= 3)= Hy(v=0)+ F. % For this reaction, the re-
sults were considerably less ragged for 1, approximately
equal to 0 than they were for the forward reaction around
m,=3, A more complete discussion of this procedure

is given in Paper II for the F+ D, reaction.

2. Results

The semiclassi:al reaction probabilities P and PJ,
for F+ H; are presented in Fig. 8 along with the corre-
sponding exact quantum probabilities. In the absence of
considering complex-valued trajectosies (in complex
phase space at complex times), vanishing quasiclassical
reaction probabilities implies tha: tha corresponding
semiclassical ones also vanish. T:.:refore, P§(USC)

& P3(USC)=0. From the appearan - of the reaction
probabilities in Fig. 8, we see that the qualitative agree-
ment between the EQ and USC results is uite good.
There are large differences between the magnitudes of
the USC and EQ probabilities at certain energies, but
such differences are not usually too important for the
resulting collinear rate constants (see Sec. 1V). Of
more serious consequence for such rate constants is the
small difference between the threshold energies of the
P curves. As pointed out in Sec. IIL B. 1., this thresh-
old difference of about 0,020 eV could be partly due to
an adiabatic tunneling effect, and it may be possible to
improve the agreement between the EQ and USC results
by using complex trajectories. 4%

D. Comparison of EQ, QCF, QCR, and USC reaction
probabilities

In Figs. 9 and 10 we compare the exact quantum,
quasiclassical forward, quasiclassical reverse, and
semiclassical reaction probabilities P§,, PJ, and P§
for F+ H, as a function of the reagent translational en-
ergy. Note that the QCR results resemble the USC ones
much more than the QCF results do. Cobviously, the
USC threshold energy must be larger than or equal to
both the QCF and QCR threshold energtes. However,
we cannot presently put forward an a priori reason that
would have permitted us to predict which of the latter
two energies is greater nor which of the quasiclassical
reaction probabilities should be closer to the USC ones,
It {8 also very Intercsting to note that the QCR results
resemble the EQ oncs more than the USC ones do. One .
should, however, be cautious not to generalize this ob-
servation, As shown in Paper II, the reverse behavior
1s found for ibe F+ D, reactioa,
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V. EQ, QCF, OCR, AND USC RATE CONSTANTS
FOR F+H,

The detalled v'- v’ rate constant for a one-dimensional
bimolecular reaction such as F+ Hy(v)= FH(v')+ H is
defined as

ME(T)=(V, PR (V)5
. [' 12V )V, PA.(V,)dV, ,

where V, is the initial relative velocity of the reagents
F+ Hy(v) and f4(V,) i8 the one-dimensional Boltzmann
relative velocity distribution function. Changing the
integration variable from V, to the initial relative re-
agent translational energy E,, this expression becomes®

1 o
*L(T)-W [ PALE,)e"%/*TdE,

Note that for one-dimensional systems, number densi-
ties are expressed in molecule/cm, so0 that a bimolec-
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FIG, 9. EQ (solid), QCF (short dash), QCR (dash—dot), and
USC (long dash) reaction probabilities P§ (a) and PJ ®) for
F+H, from Figs, 2, 4, 7, 8).

ular rate constant has the units cm/(molecule « sec).

" Using the reaction probabilities presented in Fig. 7,
we have calculated the rate conctants k% and k%, from
the EQ, QCF, QCR, and USC reaction probabilities.
Arrhenius piots of these rate constants are presented
in Fig. 11, We see that for kg all plots are nearly line-
ear at high temperatures. Because of the extremely
small effective threshold energies of P&, the Arrhenius
plots of k% are only linear at low temperature ( < 500 K).
At high temperature, the temperature dependence of
k% approaches T'/% which is characteristic of a reac-
tion with zero activation energy. Arrheanius activation
energies E® and E¥ and preexponential factors Ao and
Ags, which were determined by a least squares fit to the
200-400 K results and to the 900-1200 K results, are
given in Table L. Rt is clear from Fig. 11 and Table I
that #,(QCF) has an activation energy which is signifi-
cantly lower than the activation energies of k3(EQ,
QCR, or USC). This is an obvious consequence of the
different effective threshold energies of the reaction
probabilities (Fig. 9) and illustrates how these thresh-
old differences can affect the detailed rate constants.

As might be expected from Fig, 0, k& (QCR) and
&&(UBC) are in quite good agreement with k§,(EQ).

The relative agreement among the corresponding three
&% rate coustants s much less satiafactory at low tem-
peratures, the difierence betwoen k& (EQ) and % (USC)
is mainly determ'ned by the 0, 02 eV difference in the
thresbold energles of the P& reaction probabilities.
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Since P5(QCR) has its effective threshold at zero trans- 1000 K/T

lational energy, ¥%(QCR) has a smaller activation ener-
gy than k&(EQ), which in turn has a smaller activation
energy than »&(QCF or USC). The total rate constant
kg which is essentially due to the contributions of k3,
and k% does not exhibit simple Arrhenius behavior be-
cause it is the sum of two Arrhenius expressions which
are of equal magnitude near T=1000 K, but which have
quite different activation energies. Note that the experi-
raental activation energy (which is 1.71 kcal/mole)*
seems to represent an average of the present EQ values
of E® and ES,

In Fig. 12 we plot the ratio k},/k% as a function of
temperature, The large difference betweea the tempera-
ture variation of the QCF ratio and that of the EQ, QCR,
or USC ratios {s again a consequence of the difference
in the reaction probabilities in Fig. 9. It is interesting
to note that the three-dimensional quasiclassical forward
trajectory method yiclds a rate constant ratio which is
nearly independent of temperature, ™ jn agreement with
the one-dimensional QCF results preseated here. An
experimental measurement of the tempe.ature depen-
dence of k/k% % seems to agree reasonably well with
the three-dimensional QCF result® and consequently
disagrees with our EQ result, This may indicate that
the strong difference between the activation energies
of k% and k3, observed here is largely averaged out in
three dimensions. On the other hand, for the F+ D, re-
action, the agreement between experiment and the quasl-
classical results !s not as consistent as it is for F+ H,
(to be discussed in Paper II), o it 18 possible that the
averaging process in three dimensions does nt com-
pletely destroy the important differences between the
results of quantum and classical mechanics as reported

FIG. 11, Arrhenius plot of FQ (solid), QCF (short dash), QCR
(dash—dot), and USC (ong dash) rate constants for F+H,: ()
kY, ) kR,

in this paper.

In contrast to the k3, /k® ratio, kH(EQ)/kH(EQ) is
nearly constant in the temperature range considered
here. This agrees with the temperature variations of
both the experimental?® and three-dimensional QCF®
results, although the absolute magnitudes of the ratios
are quite different (~ 90 for 1-D vs~3 for 3-D). We
also found that ki (EQ)/k%(EQ) is nearly independent of
temperature with a value of roughly 210, Therefore
kS(EQ) and k3(EQ) are, respectively, about 2 and 4

TABLE 1. Arrhenius rate constant parameters for F + H,
~FH+H,*

Temperature

range
K Q QCF QCR UsC

EQ  200-400 o.411 0.791 0,23 0,766

ES  200-400 2,279 0,853 2,506 2,498

Ag 200400 1.620%10°  2,424x10'  1.669x10'  1.486x10*
Ay 200-400 2,667¥10°  2.492x10' 3, 377x10'  4.621x10%
ER  900-1200 0,223 0,750 0,086 0.3%

EQ 9001200 2,624 1444 2,069 2.3

Ay 900-1200 1.459%10°  2.858v10' 162810 1 1eaxi0t
Ay 900-1200 A0 g asax10' st g amxret

o (T)=A, exp(~ES'/RT), where B} is in kcal/mole and Ay 18
in em/ (molecule * sec),
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1000 K/T 13 we see that the contributions of the direct processes
30 ’f‘ 20 s 1o seem to be rather small in regions of energy where the
,/ resonance processes are important. This results in
'5E For, = FHeN // only small interference effects between direct and com-

W8y /o

ook, L " N N s N N
200 400 600 800 1000 1200
T(K)

FIG. 12, Ratios of rate constants ¥%/+%, for F +H, as a func-

tion of temperature, FQ (solid), QCF (short dash), QCR (dash-

dot), and USC (ong dash),

orders of magnitude smaller than t&(EQ).

V. EXACT QUANTUM REACTION PROBABILITIES
FOR VIBRATIONALLY EXCITED REAGENTS

In order to observe the effect of vibrational excitation
of the reagent H, on the resulting reaction probabilitics,
we extended the range of ou* exact quantum calculations
to total energies of 1.4 eV. In Fig. 13 we plot P&, P§,,
and P{, the three largest reaction probabilities for
F+ H; iIn this energy range, as a function of energy.
There are several important points to note about this
figure,

First, the transition P{ has virtually zero effective
threshold energy but otherwise has a similar transla-
tional energy dependence to that of P&( which has the
same v’ - v value as PJ}). The absence of a significant
threshold energy in Py, indicates that the dynamical ef-
fects responsible for the appearance of a significant ef-
fective energy threshold in P are no longer significant
in P{i. This will lead to lower activation energies and
higher rates of reaction for reagents which are initially
vibrationally excited. The similarity between P{ and
Pgy implies that for the most significant reaction prob-
abilities, an increase in the vibrational energy of the
reagent results in a corresponding increase in the vi-
brational energy of the product. This agrees with ex-
perimental observations for F+ D, !

Second, the reaction probabilities P, and P}, have
sharp peaks at Eo- 0. 425 eV and 0, 823 eV, respectively.
An analysis of the energy dependence of the scattering
matrix elements corresponding to similarly shaped re-
action probability curves in the H+ H, collincar reac-
tion®*** and in several other model reactions*® showed
that narrow peaks (or dips) in the reaction probabilities
were the result of the presence of internal excitation
(Feshbach) resonances, These resonances are assoclated
with excitations of virtual states of the intermediate tr-
atomic complex (FHH in the present case), From Fig.

pound state contributions to the scattering amplitude, and

the resulting reaction probabilities have nearly symmet-
rical peaks as a function of energy ncar the resonance
energies, The resonance widths are about 0,01 eV, and
ounly one nonnegligible reaction probability seems to
show resonant behavior at either of the two resonance
energies, There seems to be a correlation between the
appearance of an internal excitation resonance and the
opening of a specific vibrational state of the product

(as in the resonance at 0,823 eV, which is close to the
opening of the v=5 channel in HF at 0,839 eV). This
fndicates a correlation of the resonance state with the
reaction products rather than v.ith the reagents or with
the transition state, We ghall analyze this phenomenon
further in Paper II when we examine the high energy

F + D; reaction probabilities,

Although the total E in Fig. 13 extends to 1,16 ¢V
only, we have done calculations upto E= 1,4 eV but
found all reaction probabilities in this higher energy
range to be less than 0,01, This behavior seems to be
related to “centrifugal” effects associated to the angle
between the x{, and z{ axes (i.e., the skew angle be-
tween the asymptotic portions of the minimum energy
path for the potential of Fig. 1) and will be further dis-
cussed in Paper II.

VI. SUMMARY

Many of the dynamical effects presented in this paper
will be further examined in Paper II, to where we will
relegate a more extensive summary of quantum effects
in the F+ H, reaction, 1n this paper we have seen that
there are very serious differences between the results
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FIG. 13. Exact quantum reactionprobabilities P§, P§, and PR
for F + H, at translational energies higher than those in Fig. 2.
Arrowe near Ey=0.44 ¢V and 0,84 eV indicate the opening of
v=4 and 5, respectively, of lF, while that at 0,51 eV {udicates
the energy E, at which »=1 of 1, becomes accessible,
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of quantum and standard quasiclassical mechanics for
collinear F+ H;, most notably in the energy dependence
of the reaction probability Pgy near threshold. These
differences in the behavior of the reaction probabilities
result in important differences in the detailed thermal
rate constants. The fact that the quasiclassical forward
reaction probabilities and rate constants disagree quite
strongly with the exact quantum results is of great sig-
nificance, since nearly all the trajectory studies done

to date on this reaction have been of the quasiclassical
forward type. For the present reaction, both the quasi-
classical reverse and uniform semiclassical methods
provide us with more accurate ways of approximating the
exact quantum results. This suggests that it might be
of interest to use these methods in three dimensions,
Indeed, it may be possible to use the results of collinear
calculations such as the ones presented here as a guide-
line when choosing an approximate method for doing
three-dimensional calculations,

Additional exact quantum results for F+ H; show that
threshold efiects are no longer important when the re-
agent H, is initially vibrationally excited. The dominant
transitions appear to be those which channel additional
vibrational energy in the reagents into additional vibra-
tional energy in the products. Internal excitation res-
onances are found to play an important role in the re-
action probabilities at certain translational energies,
There seems to be a one-to-one correspondence between
the energy at which a resonance occurs and the energy
at which a related product vibrational channel opens,
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Exact quantum, quasiclassical, and semiclassical reaction probabilitics and rate constants for the collinear

teaction F+ D, < FD+D are p d. In all calcul

predicted with P!, and P, being the d

reastion

a high degree of population inversion 1s

bl

In analogy with the F + H, reaction

(preceding paper), the cxact quantum 0--) and O—+4 probabilities show markedly diffcrent energy dependence
with P{, haung a much smaller effective threshold energy (E; = 0014 eV) than P, (0055 eV) The

cor cl ) forward probatul

PF and P, are in poor agreement with the exact quantum

ones, -hale |hm quasiclassical mer\c and semiclassical counterparts provide much better approximations to
the exact results. Similar compansons are also made in the analyws of the corresponding EQ, QCF, QCR,
and USC rate constants. An information theoretic analyss of the EQ and QCF mnon probabilities indicates

nonhinear surpnsal behavior as well asa

dence. Add q

results at higher

1sotope d
energics are p d and d ed 1n terms of th

hold behnno( and

Exact q reacton

probabihitics for the related F+ HD — FH + D and F+ DH — FD + H reactions are given lnd an attempt

to explain the observed 1sotope effects is made.

{. INTRODUCTION

In the preceding paper' (hereafter referred to as I),
we compared the exact quantum (EQ), quasiclassical
forward (QCF), quasiclassical reverse (QCR), and uni-
form semiclassical (USC) reaction probabilities for the
collinear F+ H, ~FH + H reaction. The resuits of all four
methods agreed In their prediction of a high degree of
population inversion in the products of this exothermic
reaction. However, the QCF probabilities were found
to differ substantially from the corresponding EQ re-
sults in threshold behavior and energy dependence. This
could kave important consequences regarding the validity
of the standard three-dimensional quasiclassical method
which has been used on F+H, (D,) and which is the
three dimensional version of the QCF method. We found
much better agreement between the exact quantum prob-
abilities and both the quasiclassical reverse and the uni-
form semiclassicai results, thus indicating that either
of the last two methods might be preferred to the quasi-
classical forward one in three-dimensional calculations.

In this paper we present the analogous EQ, QCF,
QCR, and USC results for the collinear F + D, reaction
over roughly the same range of translational energles
as was used in I, We shall also make an analysis of the
surprisal function for the EQ and QCF results for F + D,
(and F + H,) to determine if an information theoretic de-
scription of the product state distributions can be useful,
In addition, exact quantum probabilities for the reactions
F + HD (DH) - FH(FD) + H(D) are given, We also study
the importance of tunnelling and resonances in F 4+ D,.
F+HD, and F+DH, These calculations were done in
order to assess the effect of isotopic substitution or. the
magnitude of t..e quantum effects and on the validity ol
the approximate methods. ;

The potential energy surface used in these calculations
is identical to that described in I.? In addition, most of
the numerical techniques are the same as was used in I
and will not be described again here excent to note
changes made,
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In Sec. Il we discucs the EG, QCF, QCR, and USC
reaction probabilities for F + Dy, and the corresponding
collinear rite constants are presented in Sec. IIl, Sec-
tion IV contains a study of the behavior of the reaction
probabilities at energies sufficiently high 1o excite the
first two vibrational states of reagent D,. In addition,
we discuss resonances in this reaction, givirg specific
comparisons between the results of the exact quantum,
and approximate methods in the vicinity of these reso-
nances, Section V contains a description of the EQ . -
action probabilities for F+ HD (DH), and in Sec. VI we
present a summary of conclusions,

II. QUANTUM, QUASICLASSICAL, AND
SEMICLASSICAL REACTION PROBABILITIES FOR
COLLINEARF+D; *FD+D

A. Exact quantum reaction probabilities

Since the vibrational spacing in D, is roughly 9 keal/
mole and that in FD is about 8 kcal/mole, and the reac-
tiun is exothermic by 32 kcal/mole approximately, at
least five vibrational levels of DF are accessible when
D, has an initial quantum number v=0. By coincidence,
the v- 3 und 4 vibrational levels of DF have nearly the
same totcl energles as the v=2 and 3 vibrational levels
of HF, respectively. This results in remarkable simi-
larities between these two reactions despite the signiii-
cant difference in the corresponding reduced masses
(#p.n,/br.o = 0.548). Asin ], we wiil designate by PR
the reaction probability for n reagent Initially in state
v to form product in state v', and by P[ (he total reac-
tion probability from initial state v(ie., $,PR). In
Fig. 1 we prosent the exact quantum reaction probabili-
ties P&, PR, and P§ for F+ D, at relative translational
energies (E,) In the range 0.0-0.25 eV, The corre-
sponding probabilities P&, P&, and P§ are plotted in
Fig. 2. It is apparent from these figures that Pg and
P& are the most significant contributors to P§ in this
Eq range. The P&, PJl, and Py curves are all very
s'milar in appearance to the P& one, but with greatly
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reduced magnitudes (Pg ~6.8x10™ PR, PR ~3x10™P3,
P&~6x10" PR). There is a very significant difference
between the threshold behavior of P} and that of Pgy
quite analogous to what was observed in I for the reac-
tion probabilities PG and P§ of F+H,;. Asinl, itis
convenient to define an effective threshold energy Ep
for the v= 1’ reaction a8 the difference betweea the
(lowes') energy for which the corresponding P} is
equal, say, to 1% of the maximum value attained by this
quantity and the energy at which the v = ' process be-
comes energetically possibla, Table I contains the val-
ues of Ey for several important reaction probabilities
for the reactions of F with H,, D;, HD, and DH as well
as the corresponding vibrationally adiabatic zero curva-
ture barrier heights Ey,,c (described in]). From it
we see that for F + D, the value of Ey for P§ (EQ), 0.014
eV, is appreciably lower than the Ey, ;¢ value of 0.032
eV. Tnis can be interpreted as an indication of the ex-
tent of vibrationally adiabatic one-dimensional tunnelling
(see paper 1) in this system. The value of Ey for Pgy
(QCF) of 0.030 eV is very close to Ey,zc. This sug-
gests that the chemical motien for this system is nearly
vibrationally adiabatic in the approach coordinatc in the
sense that the local action number for the motion trans-
verse to the rcacion coordinate should vary relatively
little between the separated reagent region and the sad-
dle point region. The corresponding values of E,. and
Eyasc for PG (EQ) of F+H, are 0.005 eV and 0. 026 eV,
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FIG. 2, Exact quantum reaction probabilities P§, P{}, and
P& for F + D, (similar to Fig. 1).

o

indicating someéwhat more tunnelling in this system than
in F+D,, as expected. The effective threshold energy
of P (F+H,y) (Epx 0,055 eV) is e.milar to that of P§

(F + H,) (0.045 eV). The near coincidence in enargy be-
tween the v= 3 and 4 vibrational levels of FD and v=2
and 3 of FH 18 probably resnonsible for the very similar
appea: ance of the corresponding EQ reaction probabiliti
ities. (Compare Fig. 2 of 1 with Fig. 1 of the present
paper.) There sre, however, differences in the maxi-
mum values of certain analogous reaction probabilities,

EleV) especlally P (F+D,) and P§ (F+ H;) (which have maxi-
020 0.25 0.30 0.35 o] a mum values of 0,66 and 0. 44, respectively), We shall
’ N ) see in Sec, IV that the differences between analogous re- .
o8} (o action probablilities for the two reactions become even
} more important for Eq> 0. 25 evT
os6r B. Qussiclassical resction probabilities -
1 In Fig. $ are plotted the QCF and EQ reaction proba-
& 04 bilittes P&, PE, and P} for F+D,. No reactive trajec-
= torfes yfeld DF with v'=0or 1, but there {s 2 small
= FeD=FD+v probability of reaction to ' = 2 (always <0. 1 and vanish-
g 02 J ing for E¢>0.12 eV). The corresponding QCR reaction
T i .
00 L TABLE I. Effective threshold energics (Ey) for *he most sig-
g1 nificant reaction probabllities in the F+ Hy, F+ Dy, F+DH, 2.4
= 96 F + HD reactions.*
C e —
St FoHy FeHD
%04 EsIPhEQ] 0.005 0.010
! z,iP!';cqcnl 0.025 N.C.*
l'r(P.’(EQH 0.045 o.o'n.
02 EelPHQCH) 0.012 N.C.
. Evasc 0.026 0.0
FeDy +.-DH }
086 505 o0 OB 02 025 By PAEQ)] 0.014 o.on i
Eo(ev) . EglPgyQCF)) 0.03¢ N.C. }
BelPL(EQ) 0.056 0.022 {
FIG. 1. Exact quantum reaction probabilities for F+ Dy as a EslPLQCH)) 0.030 NC.* i
function of relative translational energy E, and total energy Feize 0.032 0.028 !

Total reaction probability (b Reaction probabilities P§

®All energies are ineV. i
anc. P§.

“No QCF calculations were dos ior this transition. {
b "
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FIG. 3. Quasiclassical forward (dashed curve) and exact quan-
tum (solfd curve) reaction probabllities for F+Dy: (a) P§
) P8 and P,

probabilities for the same energy range (0.0<Ey<0.12
eV) are plotted in Fig. 4. In Fig. 3 we see that there ts
u voroy large difference between the threshold behavior
of P& (EQ) and PL(QCF). In analogy with the F+ H, P§
behavior, ! we find that the quasiclassical reverse P& of
F + D, (Fig. 4) has a threshold behavior which ia much
closer to the exact quantum one than {8 the QCF thresh-
old. Unlike P& (F +H,), the energy dependence of Py
(F + D,) 18 predicted somewhzt morr. accurately by the
QCF method than by (he QCR rethod. The EQ and QCF
total reaction p.cbabilities P§ (Fig. 3) are in somewhat
better average agreement than are the EQ and QCF tutal
reaction L. mbabilities in F + H; (Fig. 4 of Paper I). This
seems {c indicate that (he differences between quantura
and classical dynamics are less severe for F 4+ D, than
for F+F,. However, at least for c “.inear reactions,
these differences are sti!l quite significant

In Fig. 5 we plot as a function of E. {1e fraction f, of
ths total energy which appears as vibradonal energy of
the DF product for the EQ and CCF calculations, It can
be seen that £, (QCF) is nearly independent of E, and has
an average value of 0.79. The corresponding EQ curve
has a more pronounced E, dependence but about the
same average value over the E, range _onsidered, We
find that the average value of f, is almost the same for
both F- H, and F+ D,. This independence of isotopic
substitution agrees with the corresponding experimental
result? and with the predictions of three-dimensional
trajectery calculations,® although our value of £,(0. 79)
which ignores rotational degrees of {reedom is some-

what higher than the experimental result (0,66).* This
general average agreement between the EQ and QCF ,
vs E, curves indicates that the dynamic processes gov-
erning the average energy disposal between vibrational
and translational degrees A freecom of the products
can be well approximated by the classical trajectory
method. However, one should keep in mind that this is
not 8o for the distribution of this vibrational energy
among the availabie vibrational states, i.e., that large
differences between product state populaticn ratios ob-
tained from t':¢ EQ and QCF methods do exist, as indi-
cated in Fig. 6.

C. Samicissicsl! reaction probesbilities

Figure 7 shows the uniform semiclassical reaction
probabllities P} and Pg along with the corresponding
EQ results, The USC results are similar {9 the cnes
obtained independently by Whitlock and Muckerman in an
analogous calculation, ™ It was noted in Paper 1 (Sec.
I C) that “raggedness” (i.e., very rapid variation of
m, with go) in the final action number m, (q,; v, E) a8 2
functior of initial vibrational phase g, caused difficulties
in calculating USC transition probabilities at the thresh-
old of the F+ Hg{0) = FH(3) + (H) reaction. The same
problem occurred for the 0~ 4 transition in the F+ D, re-
action, and was also encountered by Whitlock and Muck-
erman, We ware able to overcome this difficuity by us-
ing the reverse final action number function, n(go; m, E),
whic « was found to be smooth for m =4 and 5; azound 0,
The ju-tification for using this procedure was given in I,
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FIG. 4. Quasiclass!ial reverse (eabed curve) and cxact :
quantum (solid curve) reaction prubabilities for F+Dy: () P§ i
®) P and PL. . i
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: Collirear F + 0, *FD +D reaction

ess Schatz, Bowman, and Kuppermann
Elev)
10,220 025 030 0.38 0.40

FeD,—e FD+D

FIG. §. Fraction (/,) cf the
total reagent eoerpy (exclu-
oive of product zero point
energy) which ends up as
vibratfonal energy in the
product DF plotted as a func-
tion of the resgent transla-
tional enerxy F, .l tctal
energy E. oolid line iIndi-
cates £y results and dashed
line QCF ones. Other nota-
tion anaiogous to Fis. 1.

o‘s 1 I '
- ) 005 0.0 0.5
E Eqlev)

The curves for the forward and reverse values of m, for
this 0~ 4 transition at an energy E = 0. 3107 eV ‘E4= 0. 12
eV) are given in Fig, 8, When all the reievant semi-
classical quantities are well-behaved (“nonragged )
functions of gy, the USC transition probabilities obey
microscopic ~eversibility,* and ii is not neceasary to
calculate both the forward and reverse results, How-
ever, as the example above demonstrates, when ragged-
ness exists, it is advisable to consider the forward and
the reverse results. In our example, the reverse re-
sults are the preferred ones, since there i8 no ragged-
ness in the region corresponding to D+ DF(4) =D,(0)+ F,
These were tae cnes used in calculating P’ (and P8 for
the F 4 H,; reaction) in ito threshold region. The USC

1
0.20 025

P& transition probabilities at £4=0.08 eV and 0. 085 eV
were calculated in the statistical approximation.® At
these energics the rew ree reaction showed tla: the 4

- 0 transiticn was dynamically forbidden. However,
since statistical (1. e,, ragged) behavior was evident in
the forward reaction, we did ~alculate a ronzerc value
for P& at the two energles just rientioned.

The USC probabilities in Fig. 7 are tn much bet._r
agreeraent with the corresponding EQ results than ar-
the quasiclassical ones. As was the case with the QCF
P& threshold, there is a small “if'orence between the
P& (USC) and P& (EQ) threshcii ervrgles, but the USC
result may bc improved by using cumplex trajectories,’

E (ev)
0.20 0.25 0.30 0.35 0.40
l—r T T Al 1
4 FeD,—=FD+D f/-
EQ
3.0
FIG. 6. Ratio of reaction
gn.g probabilities Pf/PS ve
ot N | tr nslational anergy E, and
o total energy £. Solid line
= a® , ofF indicstes EQ results and
dasbod line QCF orwe, Other
J”” potation analogous to Fig. 1.
—" i
3 ,”;
1.0 3--4" " ocF
on 1 1
0. 0.15 0.20 025
Eqlev)
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EleV) cedure will be required in the three-dimensional prob-
020 025 030 0.35 0.40 lem,* .
O — ey *
’ LY P“ ( ) "
! \, Po(us<) a D. Comperison of EQ, QCF, QCR, and USC reaction
osl probabilities .
In Fig. 9 we compare the rcaction probabilities Pgy
. and P of F + D, as calculated by all four methods EQ,
06 ‘. | QCF, QCR, and USC. Figurc 10 presents the analogous
w A .' \ comparison for the total reaction probability P§. Itis
w \ k \ apparent from both figures that the USC method gives
S °"+ \,’ the best agreement with the EQ reaction probabilities
@ for this reaction,
é 02 F+0;=FD«D
5 00
§ 06 ':
& ]
]
04 t
]
!
H
02 ]
i
|
]
{
00 e
000 005 0o 0.5 020 025

'le. 7. Uniform semiclassical (dashed curve) and exact quan-
tum (solid curve) reaction probablilities for F + Dy: (a) PR, ()
Pgand P&,

The osclllations in P (USC) in the E, rar ze 0. 10 eV~
0.25 eV do not have any analog in the qua:.tum results,
These osclllutions are due to phase interfc ~ences aris-
ing from a relatively rapid variation with ¢nergy of the
differences in phases assocfated with the two contribut-
ing trajectories. One might expect that the raggedness
in the plot of final action vs initial phase [sce Fig. 8(a)l
could be an indication of resonant behavior in this energy
range, but the quantum results of Fig. 1 d> not substan-
tiate this. In Sec. IV we discuss the possible relation-
ship between resonances in the EQ results and ragged-
ness in the USC ones.

One significant aspect of the comparison between the
USC and EQ results in Fig. 7 is that the maximum val-
ues of the EQ and USC reaction probabilitics P& and P&
are nearly ldentical. This contrasts with the results of
both the QCF and QCR calculations which generally tena
to underestimate the maximum values of the probabllities
(Figs. 3 and 4). The significant improvement in the
quality of the results obtained in going from the quasi-
classical to the semiclassical approximation suggests
that an equivalent improvement may occur for the three-
dimensional F + D; reaction and that the semiclassical
results may be quite  lible for this case. However,
we must stress that the utilization of uniform rather
than primitive semiclassical techniques is essential to
the success of this method for the collinear reaction,
and thus it seems likely that an analogous uniform pro-

o M)
0.2 -
= =
0.0} RXRRER L.
mg % o
-C 2} -
- —
-0.4} -
- D+DF(4)—=Dy(my)¢F

] L ! 1 1 1

0.0 0.4

0.2
Q,/2m
FIG. 8. (a) m, vs g, for the forward F + D, (0) = FD(m,) + 1,

at a total energy E of 0.3107 eV; () m, vs qq for the reverse
reaction D+ DF (4) = Dy(my) + F, at the same total energy £. The
solid curves represent the majority of the reactive trajectories
computed. The dots and crosses represent, respectively, re-
active and nonreactive trajectories in regions of raggedness,
for which m, varies very rapidly with g,. Sioce the valucs of
m, for nonreactive trajectories correspond to a different range
of variation than the reactive ones, the crosses were place at
an arbitrary ordinate and are only meant to indicate the values
of gy for which such trajectories occur.
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FIG. 9. EQ (solid), QCF ‘suort dash), QCR (dash—-dot), and
USC (long dash) reaction probabilitics Py (a) and P(®d). (From
Figs, 1, 3-4, 7.)
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E. Information-theoretic analysis of EQ and QCF
reaction probabilities

It is also of interest to perform an information-theo-
retic analysis of the EQ and QCF results, In this sec-
tion, we shall constder both the F + D; reaction prob-
abllities discussed above and the F « H; probabilities
described in Paper 1.

In analogy with the equations used in three- !imension-
al studics,® we have used a one-dimensionat form of the
surprisal for a vibrational distribution given by

1(f,) = =l P(£,,)/PO(f,)].

P(f,) 18 the normalized reaction probability to product
vibrational state v’ expressed as a functicn of the frac-
tion of the total energy which becomes vibrational ener-
gY in the product DF or HF (exclusive of product zero
point cnergy). P°(f,) is the statistical reaction prob-
ability to state v’ and is given by

(i=f.)"2
P°(/.l)-’s—:::_.—°ﬁ[':]:y-m ;

where the sum is over all accessible product vibrational
states. Note that this expression for P%(f,.) predicts
inverted statistical vibrational population distributions.
This rather surprising result for such a distribution is
a stralghtforward consequence of the use of a one-di-
menatonal density of states function [which varies as
(E,.\"'/®, where F,. is the translational energy relative
to vibrational state v'] rather than the corresponding
three-dimensional density (which varies as E}/?).

Figure 11 depicts the EQ and QCF surprisal functions
1(f,) v8 f, for F + D, and F + H, at three different rela-
tive translational energles. We see that none of the EQ
or QCF plots has the straight line dependence on f, re-

Schatz, Bowman, and Kuppermann: Collinear F + D, »+ FD + D reaction

quired if the distribution is to be characterized by a
single information-theoretic temperature parameter,
The most severe deviations of the EQ results from lin-
earity occur at the lowest energies and are a direct con-
sequence of the unusual threshold behavior of Pg, in F
+D, znd P in F+ H,. This threshold effect {8 not pres-
ent in the QCF results, and yet the surprisal functions
assoclated with these probabilities show strong devia-
tions from linearlity. The curves in Fig. 11 Indicate
that at least in this case, the information-theoretic
analysis has limited usefulness as a predictive tool for
estimating unknown reaction probabilities {rom known
ones, For example '’ we assumed a hinear surprisal
function and used e results of the two largest EQ prob-
abilities to predict the third largest by linear extrapola-
tion, we would be in error by .. least 1 order of magni-
tude in most of the examples depicted in Fig. 11,

Figure 11 also indicates that in many situstions, the
surprisal function is not independent of isctopic substi-
tution. Thia {8 especially true of the EQ results with
V' =0, 1, where the differences between the surprisal
functions for F + D, and F + H, are quite large. However,
at higher energles [Flg. 11(a), espectally] and for higher
vibrational quantum numbers (v’ = 2-4), the EQ points
for both F+ D, and F « H, fall on essentially the same
curve, In addition, the QCF results for F+ D, and F
+ H, In both Figs. 11(a) and 11(b) seem to form a single
curve, and for this reason, only one dashed line was
drawn through the points. This indicates that at certain
energies and for certain ranges of f,., the surprisal
function s independent of isotopic substitation, but this
property is not generally valid.

The behavior of the surprisal functions (nonlinearity
and dependence on isotopic substitution) observed in
these collinear results contrasts strongly with the shape
of the corresponding surprisal functions obtained from
three-dimensional trajectory calculations and experi-
ments on the same reactions.® In the three-dimensional
case, lincar surprisal functions which are nearly inde-

E (eV)
020
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J

o
@

TOTAL REACTION PROBABILITY P§
o o
b o0

¥ FeDy;=FD+D
gl s " "
000 605 010 OF 02 025
Eo (V)

FIG. 10. EQ (solid), QCF (short dash), QCR (dash—dot), and
USC (long dash) total reaction probabilities Pt for F + Dy,
(From Figs. 1, 3=4, 7.)
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V eO==~Jd
/)’

i

-I(fyr) (x .43429)

e
FIG. 11. Surprisal function /() vs fraction f,» of the tots!
product energy which (8 tn product vibrational state »* (exclu-
sive of zero point energy). Symbols plotted have the following
meanings: circles—EQ results for F « Dy; triangles—EQ re-
sults for F+ Hy; squares—QCF results for F + Dy, and
crosses—QCF results for F+ H,. (a) Eg=0.12 eV, () E4=0.03
eV, (c) E4=0.005 eV. The F+ 1y (EQ) results are connected
by a solid line, while a dashed—dotted line connects the F « H,
(EQ) results. A dashed line approximately connects both F + H,
and F ¢+ Dy (QCF) results. Note that at the lowest energy con-
eldered |FiIg. 10(c)], only v’ =0-2 of HF are energetically ac-
cessible, and all QCF reaction probabilities are zero.

pendent of isotopic substitution we.re obtained in an anal-
ysis of the detailed rate constar s (rather than reaction
. probabilities) from both quasiclassical trajectory cal-
culations and from infrared chemiluminescence experi-
n.ents (which are, of course, quantum mechanical), We
have analyzed the surprisal functions for our collinear
EQ rate constants for both F + E; and F + D, (Sec. III)
and find no marked change from the results depicted in
Fig. 11, the nonlinearity and dependence on isotopic
substitution being essentially as pronounced as for the
reaction probabilities.

Recently, the relationship betwcen the one- and three-

dimensional classical surprisal functions was computa-
tionally investigated, '™ and it was proposed'™ that the
surprisal function should be approximately dimensionally
invariant, Our ¢ mparison of the one~ and three-dimen-
sional surprisal functions for F «+ H; and F « D, Indicates
that this dimensional invariance does not hold for these
reactions. Although the validity of our conclusion de-
pends {n part on the accuracy of the potential energy
surface used in our calculations, we would not expect it
to be qualitatively changed {f 2 more accurate potential
energy surface were used. In addition, we note that
three-dimensional quasiclassical results for F4 H, and
F + D, on similar approximate surfaces® agree with ex-
periment in their prediction of a linear surprisal func-
tion.® The computational comparison of one- and three-
dimensional surprisal functions of Ref. 10a involved
several model potential energy surfaces, but none of
these similated the attractive nature of the F + H, iInter-
action., We conclude that the invariance of the surprisal
function with respect to the dimensionality of the colli-
sion may depend significantly on the characteristics of
the potential energy surface being considered. There-
fore, caution must be exercised in atcempting to obtain
3-D reactior cross sections from co'linear reaction
probabilities, '®

(. EQ, QCF, QCR, AND USC RATE CONSTANTS
FOR F + D,

The rate constants k& and k& obtained from the EQ,
QCF, QCR, and USC reaction probabilities Pg and Pj
for F4 D, are plotted in Fig. 12. The expression for
these rate constants is the same as the one given in Pa-
per I.' The corresponding Arrhenius parameters ob-
tained from fits to the rate constants in the 200-400 K
and 900-1200 K temperature ranges are listed in Table
1. The difference between k%, (QCF) and k& (EQ) (whic.
results from the different threshold properties of the
PA's in Fig. 9) is quite noticeable and leads to a 0.8
kcal difference between the corresponding high tempera-
ture activation energies in Table II. In analogy with our
F + H, study, ' the QCR and USC rate constants kg and
corresponding activation energles Eg, agree with the
EQ ones better than do the QCF quantities. The similar
comparison for the rate constants kgj 18 much less sat-
isfactory. The low temperatire differences between the
various k&'s are determined to a large extent by the
different threshold energies of the corresponding reac-
tion probabilities PE. The transition probability 1@
(QCR) has zero threshold energy and thus the largest
rate constant at low temperatures, while the EQ, USC,
and QCF P&'s have successively higher threshold ener-
gies and therefore successively lower rate constants,
[See Fig. 9(b).] This tllustrates that the low energy
(< 0. 03 eV) behavior of the reaction probabilities (or
cross sections) can be exceedingly important in deter-
nining the low temperature (< 300 K) behavior of the
corresponding rate constants for these reactions,

The ratios k& /k8 are plotted as a function of tempera-
ture in Fig. 13, We see that the QCF ratio is nearly
temperature independent while the EQ, QCR, and USC
ratios increase monotonically with incressing tempera-
ture, approaching the QCF ratio at high temperatures,
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N FIG. 13. Ratios of rate constants k&/48 for F + Dy; EQ (solid),
5 1%103} QCF (short dash), QCR (dash—dot), USC (Qong dash),
b.4 E
- nl -
| G D,—=FD+D o \ ture dependent. ¥ If this is also true experimentally
[ acsd N then, in analogy with F+ H,;, we would have evidence
. \,\ N\ that the collinear model overestimates the effects of
Ll \ AN threshold differences on reaction rates to different prod-
N\ sC uct vibrational states. We might note, however, that
xio2l—t ) I N Lee and co-workers'?!? have measured the ratio of
. 2 3 S > cross sections 0o /0 at three different energies, and
I000K/T they find that it increases rapidly with increasing energy

FIG. 12. Arrhenius plot of EQ (solid), QCF (short dash), QCR
(dash-dot), and USC (long dash) rate constants for F + Dy: (a)
S ) af.

These kg /kg3 rafios are quite similar in appearance io
the kgy/k% ratios for the F + H, reaction given in Fig. 12
of Paper I, but the F + D, ratios actually increase some-
what more slowly with temperature than do the F+ H,
ones.

The QCF ratlo kg /k& is 0.63 at 300 K, in approximate
agreement with the experimental value'! of 0,66. The
resiits of three-dimensional classical trajectory calcu-
lationy indicate that this ratio is not strongly tempera-

from 0.75 at Eg=0.034eVto3.5atEy-0.11eV. lf we con-
sider the analogous collinear ratio P& /Pg (Fig. 6), we
find that it also increases rapidly with increasing energy
(much more rapidly than Lee's cross section ratio) from
near zero at zero translatyy .2l energy to roughly a value
of 4.3 for F~0.12 eV. The ratios of cross sections
from three-dimensional QCF trajectory calculations
over a family of several potential energy surfaces do not
reproduce this energy dependence (Ref. 12, Table VI).
7.48 may indicate that the differences between quantum
and quasiclassical re jults are still significant in three
dimensions and, indeed, are observable in experiments
which are at least partially state selected such as cross
section measurements,

TABLE [I. Arrhenius rate constant parameters lor F+ Dy —~FD+ D.*

Temperature range

(X) EQ QCF QCR USC

E3  200-400 0.676 0.935 0.266 0.852

z!‘ 200-400 2.167 0.990 2,576 2.411

Ay 200-400 2,551%10°  2.447<¢10'  1.884x10°  2.340x 10
A 200-400 2.776%10°  1.686%10'  2.502x10*  3.269x10%
£ 900-1200 0.361 0.912 0.416 0.611

x!‘ 900-1200 2.108 1.343 2.742 2.344

Ay 900-1200 :.muxo: 2,674x10'  2.402x10'  2,082x xo:
AE 900-1200 3.240%10 2.60410'  3.261x10° 3,365 x10

“E' 18 in keal/mole and Ay, 18 In cm/(molecule - sec).
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IV. HIGHER ENERGY REACTION PROBASILITIES
FOR F+D,

Figure 14 shows the higher energy exact quantum re-
action probabilities P§, PR, P&, PR, and P} ior Fa N,
inthe translational energy range Eg=0.25-0.70 cV.
Those transition probabilities not plotted are all small
{usually <0.02). P& (QCR) is ulso plotted in Fig. 14 in
the energy range 0.25-0.42 eV {or reasons to be dis-
cussed in detail below. This figun: i3 analogous in many
ways to Fig. 13 of !, although the <toxe correlation be-
tween the reaction probabtlities uf F + i, and the related
F + D, ones (see end of Sec. 11 A) becomes isss impor-
tant as the energy is increased. Nevertheless, many
of our remarks concerning the F « H, reaction probabiii-
ties described in I are also applicable here. We note
that the transition probabilities P} in Fig. 14 and P in
Fig. 1 have stmilar translational energy dependences
except near threshold. This confirms our statement in
I that reaction probabllities for reagents initially in v=1
are virtually insensitive to the presence of a barrier in
the F+ H, (D,) reagent channel. In addition, P} is sig-
nificantly larger than the other PL. with v’ <5 over the
energy range considered. This implies that the addi-
tional vibrational energy in the reagents is being pre-
dominantly channelled into additional vibrational energy
in the products,

The transition probability P& exhibits a rather unusu-
al energy dependence. As showninFig. 14, it remains
quite small (<0.01), even though energetically allowed,
until the total energy becomes high enough to excite vy =1
of D,, at which point it rises suddenly to a peck value of
0. 34 before {lnally levelling off at about 0. 13, It is not
obvious how simple resonance or threshold theories can
explain this unusual behavior, since the effective thresh-
old is apparently related to the opening of a vibrational
state not involved in the transition asymptotically. Ome
possible explanation for the influence of the v =1 state of
D, on this transition probability can be formulated by
obeerving that the inelastic 0—- 1 transition probability
for F + D, 18 quite appreciable'® (0. 10-0.25) and, as
noted above, P} is quite large. This suggests that the
0~ 35 reactive transition occurs almost exclusively with
v=1 as an intermediate state. It is also significant that
it is not sufficlent for this state to be accessible via vir-
tual transitions, rather, it must be open asymptotically.
This scems to Indicate that a high degree of vibrational
excitation must be maintained over a considerable re-
gion in configuration space. This would only be possi-
ble if the v- 1 vibrational state is open, and hence there
is no enhancement of P§ when the state is closed.

For the transitions PJ at E,=0.327 eV and P} at E,
=0.509 eV, we see peaks in the reaction probabilities
suggestive of internal excitation resonances.'* In con-
trast to the resonances observed in Paper I in F 4+ H,;,
the direct processes in F + D, still seem to be quite im-
portant in the vicinity of the resonances. The resultant
interference between the direct and resonant contribu-
tions to the scattering amplitude leads to characteristic
oscillations in the reaction probabilities in the vicinities
of the resonance energies quite similar to what was ob-
served in the H+ H, reaction. '*!" As in the 7+ H, reac-

tion, we see an approximate correspondence between
the appearance of a resonance and the onening of a spe-
cific vibrational state of the product DF (v=5 at £,
=0.20 eV and v=6 at Eg=0.59 eV). This implies that
the virtual states of the triatomic complex r.ay have
energy levels resembling product states mosv than re-
agent states. The relation is probably complicated, how-
ever, since the correspondence between the resonance
energy and the energy of the assoclated product vibra-
tional level i8 not always in the same direction (i.e.,
the resonance energy L3 sometimes greater and some-
times smaller than the corresponding vibrational encrgy
gY, a8 can be seen in Fig. 13 of Paper I and Fig, 14 in
the present paper).

It is Interesting to note that the QCR reaction proba-
bility P& depicted in Fig. 14 seems to “average out” the
quantum osaclilations in Pg (EQ) tn the vicinity of the E,
=0. 327 eV resonance. It is also of interest to examine
the semiclassical results at this energy. Rankin and
Miller have reported extensive statistical behavior in

€ (ev)

£0.3 4 06 0.7 9 08

F ¢ 03(0) = FO(y) ¢ D (0)

F ¢ Dyl1) = FO(») ¢ D (b)

08
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0.2

0.5 . oy
Eg(ev) k
FIG. 14. Exact quantum reaction probabilities at translat!snal
energiea higher than those In Fig. 1. (@) PJ, P&, andP§, -
®) P and P/}. Also shownin (a) Is the QCR P& curve
(dashed). Arrows near E4=0,29 oV and 0.59 eV indicate the
opsning of v=5 and 6, respectively, of DF, while that at 0.37
eV indicetes the ensr2v £, at which v=1 of D, becomes sccessi-
ble. 3 \
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the final action number function, m,, for the H+Cl, col-
lision.® From this behavior, they inferred that a con-
verged quantum treatment of that reaction would yield
internal excitation resonances. However, as Fig. 15
shows, m,, at the resonance energy, is a reasonably
smooth function of g, with about the same degree of rag-
gedness (i.e., very rapid variation of m, with g,) as
seen previously away from resonance in Fig. 8(b). An
accurate EQ study of the collinear H+ H, reaction has
shown that P, has a broad resonance ai 0. 90 eV total
energy and a narrow one at 1. 28 eV, and that both are
due to Interference effects between direct and compound-
state mechanisms. ® Recently, Stine and Marcus'®
searched for and found snarled (1. e., multiple collision)
trajectories in the narrow region of g, between the re-
active and nonreactive branches of the m,(q,: v. E) curve.
They showed that the broad resonance at 0. 90 eV could
be generated semiclagsically if interference effects be-
tween direct and snarled trajectories are included, a
result consistent with the lifetime analysis of the ac-
curate quantum ca!culations.'® Were it not for the
knowledge of the existence of this resonance derived
from the EQ calculations, it would be easy to miss such
snarled trajectories in a semiclassical calculation in
which the density of the g, grid was not high enough. ****
Inclusion of a search of these trajectories and of thelr
effects on the reaction probabilities significantly in-
creases the computational effort involved in the semi-
classical approach. Narrow resonances, such as the
one occurring at 1.28 eV In collinear K+ H,, may be
even more difficult to calculata semiclassically, since
its long lifetime' suggests that it may correspond to
extremely snarled trajectories, requiring inclusion of
multiple collisions of high order'® and use of an ex-
tremely high density g, grid. In the present paper, we
have only included the effect of direct (i.e., nonsnarled)
trajectories in the semiclassical calculations, It would
be interesting to add the effect of snarled ones, in order
to verify whether they could reproduce the resonant be-

J. Chem. Phys., Vol. 63,
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havior of PJ at Eo=0. 327 eV.

We conclude that raggedness in the m,(q,; v, E) curves
could perhaps be a necessary condition for the existence
of quantum mechanical internal excitation resonances,
but it is certainly not a sufficient one, as shown by the
pre of ragged in Fig. 8(b), calculated at a non-
resonant energy.

V. EXACT GUANTUM REACTION PROBABILITIES
FOR THE REACTIONS F + HD » FH + D AND
F+DH+>FD+H

We have also calculated the exact quantum reaction
probabilities for F+ HD~-FH+D and F+« DH-FD+H,
hereafter designated F + HD and F + DH, respectively.
In three dimensions, these two reactions represent dif-
ferent product arrangement channels of the same colli-
sion system. In collinear collisions, however, they
must be considered entirely separately, This implies
that coupling between these two product arrangement
channels is ignored in our collinear calculations.

The largest reaction probabilities for the two reactions
are plotted in Fig. 186%™ as a function of the reagent
translational energy E, (relative to »=0 of HD) in the
range 0-0.25 eV. For F+ HD, the only reaction prob-
ability greater than 0. 025 in the energy range studied is
P§, while PR, PR, and P2 are the major contributors
to the total reaction probability in F + DH (P§ is always
lecs than 0,10). From Fig. 16 it is apparent that the
reaction probabilities P and P§ of F+DH are very
similar in shape to the corresponding probabilities P2
and Pg; of F +D, (Fig. 10), although the sharp differences
between the threshold energies of P and Pg (F + D)
are reduced considerably for P, and PJ (F+DH).

In contrast, the results for F+ HD do not show a strong
resemblance to those for F + H, (Fig. 2ol Paper I). In-
stead, we see that P§ (Fig. 16) consists of one very
sharp (width ~0, 0005 eV) spike near 0. 012 eV .a.d then

No. 2, 16 July 1976
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FIG. 16. Exact quantum reaction probabilities P& for F + HD,
and P} and P{, for F+ DH as a function of relative translational
energy E, and total energy E (relative to minimum in HD di-
atomic potential curve). Arrow near 0.04 eV indicates the en-
ergy at which v =3 of HF becomes accessible.

remains quite small (<0, 02) for the remainder of the
energy range studied. P§&, which is energetically for~
bidden until E,=0.039 eV, is quite small throughout the
energy range considered here, The rather dramatic
differences between the results for F+ HD and F +« DH
can probably be explained as resulting from the differ-
ence in the mass of the atom being exchanged in the col-
linear triatomic collision system. The small mass of
the H atom in F + HD in comparison with that of the D
atom in F + DH results in much more important pseudo-
cent: fugal barriers in “turning the corner” in the for-
w.er reaction than in the latter. That ihis should be the
case {8 apparent from a comparison of the skew angles
(defined in Paper I) for these two systems. For F+HD
this angle is 37.3°, while for F+ DH it is 56.7°, thus
indicating that the curvature along the reaction path
should be much larger for F+ HD than for F+ DH, Only
at low translational energies do the centrifugal effects
become small enough to render F + HD dynamically al-
lowed, For F+DH, on the other hand, the centrifugal
effects are not important in the energy range studled,
and thus we observed very large reaction probabfiities
throughout that energy range.

From Fig. 16, we can also conclude that the rate con-
stant for formation of DF 1is predicted to be greater than
that for formation ot HF [except at very low tempera-
tures (< 150°), where the slightly smaller effective
threshold of F + HD becomes important]. This disagrees
with the experimental result’ that the rate of H atom
transfer is a factor of 1, 45 faster than that {or D atom
transfer at 208 K. The disagreement can probably be
explained by noting that the distance of the H atom from
the center of mass of HD s about twice that of the D
atom from the same center of mass. This mgans that
H sweeps through a larger volume of space than D when
HD rotates and thus is more “visible” to the attacking

F atom, Since the barrier height is quite low (except
near the “perpendicular” orientation'¥), one would ex-
pect that H should be preferentially abstracted. For
collinear reactions, this three-dimensional effect is
ignored and we find, instead, that dynamical effects
such as pseudocentrifugal barriers are important in the
reaction, These centrifugal effects favor reaction with
the D atom and thus explain why the collinear results
differ from the experimental ones, A similar argument
has been used to explain the J dependence of three-di-
mensional quasiclassical cross sections for the same
reactions. * One might add that for a reaction with a
high barrier, which simultaneously favors reaction
through collinear geometries, the three-dimensional ef-
fect should be less important and the collinear results
should be more representative of the experimental re-
sults. This has indeed been observed for the Cl+ HD
(DH) reactions, 2

VI. DISCUSSION

We shall now summarize the differences between the
results of the exact quantum, quasiclassical, and semi-
classical methods for studying the F + H, (Paper I) and
F + D, reactions. The most important of these differ -
ences may be categorized into three divisions: vibra-
tionally adiabatic tunnelling, resonances, and threshold
dynamical effects. These effects may, however, be
coupled to one another to a lesser or greater extent.

Vibrationally adiabatic tunnelling seems to be most
significant at very low energies, especially for F+ H,
and for those transitions for which at threshold there
are no strongly restrictive dynamical effects (of the type
occurring in P for F+ H,). Such tunnelling appears to
be responsible for important differences between EQ
and QCF rate constants at low temperatures [Figs. 11(a)
in I and also 12(a) in this paper]. The semiclassical
complex trajectory method (which was not studied here)
may be able to describe tunnelling quantitatively.*’ In-
ternal excitation resonances seem to be very important
at higher translational energies and will therefore not
be significant in thermal experiments. They may be
important in beam and hot atom experiments if these
resonance effects carry over without strong attenvation
into three dimensions.}® The current semiclassical theo-
ries do not seem to furnish a computationally practic i
description of the interference effects associated with
these resonances.?® Threshold dy~2mical effects are
very significant for collinear F + H, and F + D,, and this
leads to important differences between exact quantum
and quasiclassical reaction probabilities and rate con-
stants for thermal distributions of reagents. These
threshold effects are partially classical in nature, since
we found that the QCR method was capable of describing
roughly the proper threshold behavior within a com-
pletely classical framework. An important result of
this paper was the demonstration that the uniform semi-
classical method provides a greatly improved descrip-
tion of threshold behavior of the quantum results in com-
parison with the QCF method. How Lmportant these
threshold effects will be in three dimensions {8 not en-
tirely clear from an analysis of existing experimental
and theoretical studies, but it appears that the effects
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are at least partially attenuated by the averazing that
inevitably occurs in experimental measurements. They
may, however, still be important for experiments which
are sufficiently state selected.
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The Wall-Porter method of rotating a Morse function to construct po*ential energy surfaces for collinear atom- diatomn
chemical reactions is modified by using a numerical spiine interpolation technique. This procedure is shown to have great
flexibility in giving a potential surface desired characteristics, such as the saddle-point location and the barrier height and
curvature at this point, for either symmetnical or unsymmetrical reactions. Extensions of the method to non-reactive and

non-collinear potential surfaces are also discussed.

The great difficulty in calculating potential energy
surfaces by accurate ab initio techniques has necessi-
tated the use of phenomenological approaches of a
semi-empirical nature to generate approximate sur-
faces with reasonably realistic topographies for use in
atom-molecule dynamics calculations. The LEPS
method (1] is used extensively for this purpose since
it provides the means for smoothly and convenicntly
interpolating the potential surface between the various
separated atom - diatom arrangement channcls. It suf-
fers from several well-known shortcomir.gs, however,
due to the simplicity of the mathematical form of the
LEPS function.

Let us consider as an example a linear triatomic sys-

tem. First, after specifying the potential function pa-
rameters of the diatomic reagent and product and the
classical barrier height there is only one degree of free-
dom left in the LEPS function to determine the two
position coordinates of the saddle point and the curva-

® Work supported in part by the United States Air Force Of-
fice of Scientific Research.
** Contribution No. $094.

tures of the surface along and transverse to the mini-
mum energy path at that point, which are important
features of the surface. Thus, the specification of these
important properties of a potential surface creates a
highly overdetermined problem for the LEPS function.
Second, this function may develop spurious “hollows™
if it is forced to have approximately the desired barrier
height and saddle point location. Third, it is not possi-
ble to make s change in a localized region of the po-
tential surface without significantly affecting the en-
tire surface. This aspect of the LEPS function makes

it less than ideal for calculations which exploze the re-
lationship between potential surface characteristics znd
its reaction-dynamical properties (reaction cross sec-
tions, internal energy distributions, etc.). Fourth, for
reactions in three dimensions the problem of overde-
termination of the LEPS function is compounded
greatly so that it is difficult for the important features
considered above, in each of the three regions connect-
ing the three separated arrangement channels, to be
specified even approximately. Clearly, this lack of flex-
ibility of the LEPS function makes it in general un-
suitable for fitting available ab initio data points of a
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Fig. 1. Swing coordinates 1.6 of Mo. -~ f:.nction about the
point S(Ryo0.R ).

given potential energy surface.

The Wall- Porter function [2] cleverly overcomes
several of these shortcomings for collinear collisions.
Let us consider the configuration space spanned by the
two internuclear distances R, and R, to the central
atom. In the Wall Porter approach a Morse function
is rotated from the reagent region to the product te-
gion of this space around an adequately chosen point
in the high plateau region of the surface. The Morse
function parameters are chosen to be simple and simi-
lar analytical functions of the rotation angle, 6. Al-
thougl features such as saddle-point location and bar-
rier height can be specified, the simple nature of the 0-
dependence of the Morse parameters and their interre-
lation reduces the usefulness of the method, since
these characteristics preclude making localized changes
in the potential. Furthermore, the resulting potential
surface is not as smooth as the corresponding LEPS
surface. This lack of flexibility and smoothness of the
Wall-- Porter funiction is largely overcome by the HMF
(hyperbolic map function) method of Bunker and co-
workers [3], in which the Morse function parameters
are given by flexible analytical functions (e.g., Eckart
functions) of the distance along a hyperbolic reaction
path. An alternative to the HMF extension of the Wall -
Porter approach is explored in the present paper. A
similar approach has recently been used by Conner et
al. [4].

In the spirit of the Wall- Porter method let us con-
struct a collinear potential energy surface by rotation
of a Morse function. Specifically, the potential as a
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function of R; and R, is given by
V(R .Ry) =D(O) ({1 expld8)Ueg(0)- DI} 1}

+D(0=0),
where
tan 0 = (R} - R1pV/(R; - Ryp)
and
1=[(Ry - RigP +(Ry Ry)?|'?

are the circular polar coordinates of the point AR .R,)
with respect to a system whose origin is the swing

point S(Ro.R o) and whose reference axis is antipar-
allel to OR;. as indicated in fig. |. We determine the
6-dependence of the Morse parameters D(6), $(6). and
IQ(O) by assigning their values at a finite numaber of

N
>

o 20 40 60 80
@ (cogrees)

Fig. 2. Morse parameters D. 0. and leq 33 a function of swing
angle, 8, for the scaled SSMK Hj potential surface. The points
indicated correspond to specified values of the parameters and
the lines are obtained by a . ibic spline interpolation proce-
dure.
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Fig. 3. Fquipotential contour plot of the spline-generated Hy potential energy surface of fig. 2.

values of 6 and then performing a cubic spline in.>rpo-
lation [5] between the resulting points. This method
of specifying the Morse parameters serves a dual pur-
pose. First, it allows us to require that the potential
enesgy surface have important desired characteristics.
Thus, the saddle-point location, the barrier height, the
curvature of the reaciion path, etc.. can be directly
specified. Second. this fitting procedure can aid in the
ab initio mapping of a potential energy surface. A
spline-generated potential made to fit a small number
of ab initio points could suggest the locations of addi-
tionally needed ab initio points.

As an example of application of this spline tech-
nique, consider the collinear H + Hy - H, + H reac-
tion. Truhlar and Kuppermaun [6] have generated a
Wall- Porter fit to the SSMK surface |7} for this reac-
tion, with a corrected barrier height of 9.8 kcal/mole,
which has been used for extensive quantum mechani-
cal (6], classical (8] and semi<lassical {9} calculations.
The Morse parameters D, 8. and I, for this sucface are

R. (dohr)

plotted in fig. 2 as a function of 6. The five indicated
points for each parameter are for 8 equal to 0°, 45°,
and 90° corresponding to reagents, transition state,
and products, respectively, and also for 8 equal to 22.7° |
and 67.3°. The interpolation between these points was {
made using a cubic spline |5). The resulting potential : ;
energy surface is displayed in fig. 3 in the form of an
equipotential energy plot. The smoothness of this plot
points out one desirable aspect of the spline method.

As another example consider a potential surface in
which the Morse parameters of the reactant BC mole- | \
cule are, D =364 eV, R, =268 bohrand f= 1.0 H }
bohr~! and of the product AB molecule are, D = 3.84 \
eV, R, = 4.46 bohr,and § = 0.71 bohr~ !, with a Lar-
rier height of 1.5 kcal/mole and for which the saddle
point location is given by Ry = 5.2 bohrand Ry = 2.2
bohr®. 1t was found that the LEPS function could not

® These parameters were chosen for & ground state sarface in
a study of an electronically non-adiabatic chemical b
{10).
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Fig. 4. Equipotential contour plot of the splineg P
etenof fig. S. .

satisfy these specificaiions without also introducing
spurious “hollows™ in the reactant entrance channel.

- The cubic spline approach can produce the desired sur-

face as seen in f°g. 4. The 8-dependence of the corre-
sponding Morse parameters is given in fig. 5. Twelve
values of each parameter are specified. This was done
because the potential of interest is somewhat long-
ranged and requires “anchoring’ in the asymptotic re-
gions of space. A shorter range potential could have
been constructed with the above specifications and
fewer points would have been required as input.
There are two directions of interest in which to ex-
tend the spline approach given above. The {irst is to
non-reactive potential surfaces and to surfaces with
cusps, such as the one corresponding to the first excit-
ed singlet state of H3 [11]. A rotating Morse function
cannot represent such potential surfaces accurately. A
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ial surface described in the text, corresponding to the Motse param-

possible extenfon of the spline method is to consider
a linear combination of a Morse function V) and an
“anti-Morse™ function ¥,y . For non-reactive surfaces
this linear combination could be of the form

V(Ry.Rp) = c{0)Vy(8) + [1 — o(8)1V, (6),

where 0 < a € 1. This function contains three Morse
parameters, three anti-Morse parameters, and the
“switching™" parameter a all of which are functions of

0. As previously, these parameters would be spline-fit-

ted to give the desired potential surface. The second
extension of interest is to allow ¥ to be a function of
the bond angle v (as well as of R, and R,). This ex-
tension is necessary to describe reacticas in three di-
mensions. A straightforward way of doing this would
be to multiply the function V(R,.R3,v=0) by a
function of ¥ as done by Bunker and co-workers [3).

N b
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2 [ mined by spline interpolations. Thus, a two-dimension-
< al spline routine would be required to gnerate a po-
36 tential surface for three-dimensional reactive scattering
'g il calculations. Both of the above extensions are current-
32 ly under study.
28 One of us (J.M.B.) gratefully acknowledges use of
7 computing facilities a1 the Ilinois Insititute of Tech-
10 nology.
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I’hysicr;,t Califoraia Institute of Technology,

Pasadena, California 91125

ABSTRACT

Progress in accurate quantum mechanical calculations
of reactive collisions is reviewed. The results of thrce-
diraensional calculations are described and compaved
with those of approximate methods. Resonances in ceactive
ecattering are discussed as well as electronically nonadiabatic
chemical reac..ons.

I. HISTORICAL INTRODUCTION

Given an 2lectronically adiahati: potential energy
surface for a triatomic system, it is possible in principle to
soive the Schrbdinger equation describing the motion of the
nuclei on that surface and to obtain, from such solutions,
state-to-state differential and integral reaction cross sections.
These cross s2ctions furnish very detailed information about
the dynamics «f the reaction and can also be used to calculate
rate constants for bulk reacticns. This problem is, however,
computationally formidable, and as a result the first attempts to
solve it were limited to collinear reactions in which the three

T.‘x‘\.\pp'ortcd in part by the U.S. Atr Force Office of Scientific
Research, Grant No. AFOSR-13-2539,
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atoms were constrained to lie on a straight line, This reduces
the number of independent variables on which the wavefunction
depends from six to two, greatly simplifying the problem.
The first solution of this collinear problem for a realistic
potential energy surface was obtained by Mertensen and
Pitzer (1) for the H + H, exchange reaction and extended

later (2) to some of its isotopic counterparts. The method
used was a finite difference numerical solution of the two-
variable time-independent Schrodinger partial differential
equation coupled with an iterative procedure for irmwosing the
appropriate reactive-scattering boundary conditions.
variation of the finite difference method in which the boundary
conditions were imposed by a noniterative approach invaolving
a sufficiently large number of lincarly independent solutions
of the Schridinger equation was developed by Diestler and
McKoy (3) and applied by Truhlar and Kuppermann (4) to

H + 1l and by Truhlar, Kuppermann, and Adams (5) to some
of its .sotopic counterparts. An iuteresting variation cf the
finite differcence method was intioduced by McCollough and
Wyatt (5) who used it to solve the time-dependent Schrodinger
cquation for the H + H, exchange reaction, replacing thercby
a boundary value preblem by an initial value one.

The finitedilference approach in any of the vaviations
mentioned above is computationally very incllicient and inappro-
priate for extension to a wide encrgy range or to prchlems of
higher dimensionality. As a result, several other methods
have been developed and used recently.  These irclude the
variational approach used by Mortensen and Gucwa (7) for
collincar H + H,, and tiie integral equation method developed
by Sams and Kouri (8) and applied to several collinear systems
by Adams, Smith, and Hayes (¥). Uowever, the most widely
used approact: for collinear cellisions has bLeen (he coupled-
equation (i.e., close-coupling) method, in one of its several
forms. The basic ncthed consists in choosing a set of two
conreniert variables, x and y, to deserwe the internal corfiz-
uration of the system. These varinbles may v different in
diffevent recions of ceunfigzuration once but s~lisfy the central
prozerty that for x equal to a constant x the polcalial energy
function V(X,y) is bound. The wavofunclion i, y) is expanded
in eigonfuections of V(X,y), (which are called (he vibrational
basis set) and the resulting ecupl *d ordinary ifferential
equations in the x-depeadent cortficients of this 2xpansion are
solved. Varictions of this approach have been develeped by
Light (10), Kwipermaia (11), Dicsiter (12), and Johnsen (13)
and applied to o variety of collinear systems (10-18). As a
resalt, a sigriticant amount of krowiedgze has cccamulated
about 'he reactive seatiecing proporties of codtivear reactive
systems.
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When the consteaint of collincarity is
relaxed, the prablein becomies sicrificantly wmore difficull,
For coplanis trintomic reactions, (he vavelenction depends
now on four variables (after ihe mo'ion of ihe conter of mass
is removed) and the polential enerey funclion V on three, A
partial wave expansion reduces the problem to a set of
uncoupled partial wive Schrédinger cauations dependine on the
samce (hirce variables as V (19, 20). One of theo is usually un
angic, and expansion of the wavefunetion in terms of a1 complote
set of basis functions of that anale (lhe rotational basis set)
yields a set of coupled iwo-variable partial difierentizl cqua-
tions. Iou triafomic 1eactions in three-dimonsiona)l space,
the wavefunction depends on cix varviables, {("»>¢ of vhich can
Le chosen fo be the ones on which V depends (21,22). It is
possible to eliminafe the other three variubles by a partial
wave expansion in terms of Wigner rotation functions, leading
to a set of coupled parting wave Schrddineer cquations depend-
ing on the samethree varitbles as V. A further expaunsion in
terms of the angular vaviable usually appearvive in V leads
again to a set of coupled two-variuble parti:l dificrential
equations, the number o which is usually appreciably larger
than for the coplanar case. There have been relatively few
studies of such noncollinear reactions. The coplawar 1f + 11,
system was investigaied by coupled-cquation fechniques by
Light and co-workers (19), using & single vibration:l basis
function, and by Kuppermann and co-workers (20}, in a con-
verged vibrational-rotational expansion approach. Baer and
Kouri (23) developed a coupled T-cperator integral equation
technique and applied it to a simple three-dimensional model
atom pius diatom system in which reaction with only one cnd
is permitted. Wolken and Karplus (24) applicd an integro-
differential equation method proposed by Miller (25) to the
three-dimensional H + H, reactive system using a one-
vibrational basis function approximation. Very recently,
Kuppermann and Schutz (21) have achieved accurate vibration-
ally and rotationally converged results by an extension of the
coupled-ecquation techuniques previously used for collincar and
coplanar systems (11, 20), and Elkowitz and Wyatt (22) have
applied a different version of the coupled-equation method
using hindred rctor basis functions in the expansion (22, 26).
In a somewhat different vein, Micha (27) has developed a
Fadeev-euation approach to the problem of reactive scattering.

In this paper we focus altention on the accurate 3-D
zesults (21, 22) all of which have appeared since the previous
ICPEAC mceiiny was held in Belgrade in July of 1973. Co-
planar and collinear results as well as other approximate
methods will be invoked maialy for comparison purposes.
However, some recent accurate collinear studics of reactive
scatiering resonances and of electrenically-nonadiabatic
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chemical reactions will also be discussed.

II. POTENTIAL ENERGY SURFACES IN
SYMMETRIZED HYPERSHPERICAL COORDINATES

In order to summarize the characteristics of the
reactive scattering problem and the approaches used to solve
it, it is useful to describe the naturc of the interaction poten-
tials under counsideration. For electronically adiabatic chem-
ical reactions the Born-Oppenheimer separation approxima-
tion permits us to describe the motion of the nuclei during a
chemical reaction as that due to a potentivl energy function V
which depends on the relative positions of ihe nuclei but not
on the electronic coordinates. V is obtairuble by assuming
these nuclei to be fixed and solving the electrcaic motion
problem. The resulting clectronic wavefunction an:t energy
depend parametrically on the nuclear geometry. Let us
consider a system of three atoms Aa = A), A,(=B), and

(=C). For notational purposes, let AvK be any cyclic
permutation of afy, meaning that AA +A qu represenis any
of the channels A + BC, B + CA, or C + AB. Let ¢y and R,
be respectively the vector from AV to A, and from the center
of mass of Aqu to A)\ For example, for AvK = afy 'y is
the vector {rom B to C and ,I\t", the vector from the center of

mass of BC to A. The potential energy function canbe con-
sidered to depend on any of the sets of variables (rg, R(’, 'y Yo o

(rk, “é . yp), or (x';, ’ R'y ,"yy ) where 7\ (» = a,B,7) is the
angle in the (0,7) range between 3::\ and B)"
It has recently been shown that a very convenient sct

of coordinates exists for mappin; v (28). These are the sym-
metrized hyperspherical coordinates r = (r{ + R;){h ; 0;\ =

2 cos"'(R’\ /r) andy, , where I, = (“vn/“)\. /0y, and Ry =
(“A, yk'/’*‘yx)l/q}i are scaled (29-31) distances. The masses
g and g - yk 2re respectively the reduccd mass of Am and
of the A, + AVAK pacr, the angle 8\ is in the (0,7) range and

r is independent of A (30,31). The factor 2 in the expression
for OA is crucial and makes the present hyperspherical coor-

dinates differ from those sugeested previously (36-32). We
now consider r, 0)‘, ") to be the spherical polar coordinates

of a point Ph in a tirce-dimensional internal avvangemeint
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configuration space OXxYA 2. In order for this space to be

completfcly scanned by those variables, vie extend the range
of ” from (0,7) to (-w, %) by sclting, for ¥y = 0, V(.-,ox,-yx)

= V(r, 6\ ""A)‘ The mappiag of V in this space (but not in the

Jpace in which the factor of 2 just mentioned is omitted) has

two very important propertics: (a)anr, OA'YA =, ou 7,

transformation rotates equipotential surfaces around OYA

without distorting them and () the symmelry properties of
the map are the same as thoze of the reaction. For cxample,
the mupping for the liy sysicm has the symmelry properties
of an cquilaieral triangle and that for the FH, those of an
isosceles triangle. ‘These symmetry properties do not depend
on the choice of the arrangemcnt channel A and pernit us to
visualize the characteristics of V for all configurations in one
single representation, the o one for example.

! S SR
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Figure 1, Equipotential surfaces for Hy. The cartesian coor-
dinates X

a'Ya'Za are r sin aa COSy,, T SinAoa sin Yo? and
T cos en, respectively, with r, 6 » defined in the text. The

curves are intersections of V(r,aa,ya) = E surfaces with the
planes oxaza (Fig. 1a) and OY"Z‘x (Fig. 1b). The origin of

measurement of E is the minimum of the H, diatomic potential
energy curve with the third atora removed fo infinity. The
values of E range from 0.3 eV to 1.5 eV in steps of 0.3 eV,
as indicated on top of figure. All points on Fig. la and those

on the oza axis of Fig. 1b correspond to linear configurations.

Those off the 0Z _ axis on Fig. 1b correspond to perpendicular
(i.c., isosceles” iriangle) configurations in which A is the
odd atom.

Y
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in Fig. 1 we depict intersections of the equipotential
V)

surfaces with the oxa o 2nd OYaza planes for the Porter

and Karplus (32) potential function describing the Hy system,
The OYa axis, perpendicular to the plane of Fig. 1a, is a

three-fold axis of symmetry of V, due to the equivalence of
the three H atoms and of the corresponding arrangement
channels. The angle between any of the three axes OZa, 0Z,,

and OZY 1s 120°, rather than the usual 60° (34), due to the
factor 2 in the definition of Ox. It is this factor which permits
the three arrangement channels A+ A v (\ = a,B,y) tobe

represcnted equivalently. The lower part of Fig. 1b, in the
negative Z , half-plane, depicts in detail the "transition state"

region of configuration space hallway between the A + A aAﬂ
reactant and A_A " A, product configurations. At any cnergy

E, all classically allowed pathways leading from such reagents
to such products must pass through the region enclosed by the
corresponding equipotential. The hatched area on the hottom
of Fig. 1b s enclosed by the E = 0.6 eV equipotential. The
smaller E, the more confined is {his region and the less can
the intermediate reactive configurations deviate from col-
linearity. The characteristics of these '"passages' between
reagents and products influence significantly the dynamical
propertics of V. For example, if they are narrow, the reac-
tion is collinearly dominated. :

With the help of theze symmetrized coordinates we can
descrite graphically the nature of the atom-diatom vreaciive
scatiering provlem and of the methods used for solving it.
Collisions of Aa with A A_ correspond to ceafigurations in

Fig. 1 initially with X" and Ya of the order of the A .A_ equi-
libriwm internuclear distance and % a lacge with respect to

that distance. After the collisien has occurred, the system
rcbounds into that region for rorreactive collisions, or moves
to regions in the vicinity of the 24 axis with large 2, for

. . - . . '
reactive collisions resulting in A, + A_A » vroducts or the Z
axis for A+ :\aA products. On2 must obtain scattering

wavelunclions which behave sceordingly in these dilferent
regions of costiuration space. Using a time-~dopendent
wmguane, aswave packtet approaching the origin O from the
lavge za diraction is partually reflected andd paciially bilurcates

into the 0'/.1, and 07'7' divections due to reaction of Aa with

B e —
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cither AB or A_ respectively. This bifurcation problem,

which encompasses the competition between these two reac-
tions, is conceplually a rather difficult one and has been at

least partially rcsponsible for the slowness of the progress
in the reaction dynamics of noncollinear systems.

II. COUPLED-EQUATION METHOD FOR
3-D REACTIVE SCATTERING

An approach we recently used in obtaining accurate
solutions for the 3-D I + H, system (21) is summarizcd below.
The Schrbdinger equation for the triatomic sysiem can be
considered to be a function of the six variables Rk’rx"’x' 0

’
V) The {irst three have been defined in the previous .
section, ox and ¢A are the polar angles of R, in a laboratory-
fixed system of reference, and ‘PA is the "tumbling" angle
between the instantaneous triatom plane and a fixed reference
plane containing R, We consider wavefunctions ‘!)JM of theee

six variables which are simultaneously solutions of the
Schridinger equation and cigenfunctions of the square of the
total angular momentum and its component along a laboratory- -

fixed 0z axis. We cxpand W?!M in terms of the Wigner rotation
functiops (35) Dg’mx (¢,,6,,0) and the spherical harmonics

Y’A“ 6’)\"")\)‘ The resulting coefficients are functions of the
A

two distances R\, 1, and satisfy a set of coupled differential

equations. A final expansion is made in terms of local vibra-
tional wavefunctions, which are cuts of the rotationally aver-
aged potential along directions transverse to an appropriately
chosen propagation coordinate, which varies from region to
region of the Ry,r, configuration space. The resulting coupled

ordinary differential equations are integrated into the inter-
action region from each of the three x arrangement channel
regions, using the Gordon method (36). These solutions are
then smoothly matched along three half-planes of the config-
uration space of Fig. 1, all limited by the OYa axis of that

figure and containing the negative half of the 0Z & ozﬂ. and
0Z  axes, respectively. This matching procedure contains

built into it the solution to the bifurcation problem mentioned
in the previous section. It involves using basis functions for
the matching which are localized on those half-planes but
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when taken together are complete ov r the entire Yo Vg or
7. angular range. Finally, linear r mbinations of the smoothly

matched solutions are used to obta’ . the reactance and scat-
tering matrices for each value of ! from which the diffecrential
and integral cross sections for re: :tive and nonreactive
processes are calculated.

IV. RESULTS AND DISCUSSION OF 3-D CALCULATIONS

The coupled-equation method described above was
applied to the H + H, system (21) using the Porter and Karplus
yo ential energy surface (33) depicted in Fig. 1. In addition

o distinguishable atom reactive and nonreactive cross sec-
tions, calculations were made of antisymmetrized cross sec-
tions corresponding to scattering amplitudes which are the
appropriate linear combinations of the direct and exchange
contributions neccssary toa make the scattering wavefunction
antisymmetric with respect to the exchange of any two hydro-
gen atoms. In the 0.40 to 0.70 eV range of total energy E,
up to 30 rotational, 4 vibraticnal, and 100 total basis functions
were found necessary for convergence of the results for each
J to within 5%. Convergence of the reactive differential cross
sections required all values of J from 0 to about 12,

The J = 0 reactive probabilities have a dependence on
energy very similar to that of the corresponding coplanar and
collinear ones, over several orders of magnitude of the prob-
abilities. These curves are shifted towards higher energies
by about 0.05 eV in going from 1-D to 2-D and from 2-D to
3-D probabilities, probably duc to the zero point energy stored
in the bending mode of the transition state. This behavior
suggests how 3-D probabilities can be obtained approximately
from 1-D ones for this collirearly dominated reaction (21).

In Fig. 2 we present the distinguishable atom integral
reaction cross sections Qg. from the ground vibrational state

and initial rotational state j (j = 0,1, 2) of the reagent, as a
function of E, for several calculations: the converged (21) (SK),
the hindred rotor (22) (EW) and the quasi-classical (37) (KPS)
ones. The latter agree quite well with the SK cross sections
for j = 0 and 1, at encrgies above the cffective quasi-classical
threshold. This agreement was to be expected, since it had
already been observed for the collinear reaction (38). Asa
consequence one cbtains near equality in the SK quantum and
KPS quasi-classical therinal rate constants at 600%. At
lower temperatures e effects of tunneling become very
important, and the SK rate constanrts are lacger than the XPS
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Figure 2. Comparison of Figure 3. Antisymmetrized
Integral reactive cross sec- diflerential cross sections
tions from several H + H, and their sum in the helicity
calculations. representation.

ones by factors of 3.2 and 18 at 300°K and 200°K respective- : —
ly (21). The EW ng results have been recently decreased,

hringing them to within approximately 15§ of the SK ones (39).
The one vibrational basis function integro-differential equation
results of Wolken and Karplus for the antisymmetrized

QGO-— 01 cross section have an effective threshold about

0.05 eV lower than the SK ones and rise much more rapidly
with energy. This is probably due to the severely truncated
nature of their vibrational-rotational basis set. The Choi and 3
Tang distorted wave calculation (40), done at a higher encrgy, =i

seems to fall on an extrapolation of the SK ng_ o1 curve.
In Fig. 3 we plot the antisymmetrized 0300_ 03m’
para - ortho differential cross sections as well as their sum;
as a function of .. scattering angle GR, for m; = 0 through
3. We see that the mi = 0 cross section is backward peaked and

that it dominates over the others. This highly nonstatistical
behavior of the polarization of the products is the manifesta-

[T
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tion of an m; = 0 to m/ = 0 quasi-selection rule for low j which

has been proposed (21) for collinearly dominated reactions,
due to maximum atom-diatom collinear overlap for those
values of m; and m!. In contrast, the degeneracy-averaged

(i.c., summed over m’ and averaged over m.) product rota-

tional distributions can be fitted to temperature-like distribu-
tions to a high degree of accuracy, indicating a statistical-
type behavior.  The corresponding rotational temperature
parameters increase nearly lincarly with energy from 228°K
at E = 0.45 eV to 446°K at 0.70 eV.

The degeneracy-averaged hntlsymmetrized para-- para

" differential cross sections 06%_ 01’ to which only exchange

collisions contribute, are smooth backward peaked functions
of the scattering angle. In contrast, the 0‘80‘02 para - ortho

cross sections are peaked sideways, due to the large contribu-
tion from direct processes, and display an oscillatory behavior
as a function of the scattering angle, due to the interference
between the direct and exchange scattering amplitudes, both

of which contribute to this cross secticn. The backward-

peaked shape of the 0&-01 differential cross section for the
coplanar reaction at an energy E is esscntiallry identical to the

‘one for the 3-D reaction at an energy E + 0.05 eV over the

entice energy range considered. The energy shift again sug-
gests an effect of the bending energy of the transition state.
The agreement in these angular distributions is not unexpected,
since the same potential is sampled in both cases and the
primary diffceence between the two caleuiutions is the addi-
tional centrifugal coupling resulting frem the tumbling of the
three-atom plane. The existence of the sivong product polar-
ization effect mentioned above indicates that such coupling is
weak compared with the potential coupling responsible for the
linear geometry requirement. This sucuests a close similarity
between the 2-D and 3-D dynamics and conversion of 2-D re-
sults to 3-D ones prumises to be an accurate approximate
technique. Another promisine approximation is the neglect of
the v-eak coupline between diffecent tumbling angular momenta,
which reduces the numerical gffort in a 3-D reactive scatter-
ing calcuiation to that of a 2-D one.

V. RESONANCES IN REACTIVE SCATTERING
For lie H + I, system, reaclive scaltering resonances

have been ohserved ia collinear (16), coplanar, and 3-D colli-
sionz (41). In Fig. 4 we depict the reaction peobabilitios for

. I S o . AN S Rl
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these threc kinds of collisions. As canbe seen, u dip appears
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Figure 4. Collinear (1-D), coplanar (2-D), and three-dimen-
sional reaction (3-D) reaction probabilities as a function of
total energy E and translational energy E,. The noncollincar
results hive been summed over all product rotational states
within the product vibrational manifold indicated.

in the vibrationally clastic reaction probability curves (left
side panecl) and a peak in the vibrationally inelastic ones (right
side panel). For the 1-D case, a time-delay analysis indi-
cates (16) that this structure is due to interference between a
direct mechanism and a compound state one associated with

an internal excitation dynamical (I'cshbach) resonance. A
vibrationally adiabatic analysis (42) of the collinear resonance
irdicates that in the region of the potential energy function
saddle point and at the resonance energy the system has a 90%
probability of being found in the first viorationally excited
state of the transverse (symmetric streich) internally excited
mode of motion. This indicates that trapping of the cnergy in
this mode is responsible for the resonance. Estimates of the
eneryy dependence of the integral cross section for the reac-
tion from the ground vibrational-rotational state of the reagent
to the first vibrationally excited state of the product, for 3-D
collisions, is similar {o that of the corresponding J = 0 reac-
tion probability, depicted in the right panel of Fig. 4, and has
a peak value of 0.05 bohr?, Therefore the partial wave and
product rotational state sums involved in the calculation o.
this cross section do not wash out the resonances observed in
collinear collisions, at least for the present collinearly domi-
nated reaction. This is the first time that a resonance has
been predicted for a 3-D reaction whose potential energy func-
tion does not have an attractive well. Since Feshbach reso-
nances have also been defected in collinear calculations for
the collinearly dominated F + H, (D,,HD) (17) and C1 + H,
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(1ast of Ref. 18 papers) reactions (using potential energy
surfaces devoid of wells), it is quite possible that such reso-
nances may exist for these reactions in the real world as well.
The shift in the position of the 1-D, 2-D, and 3-D resonances
of Fig. 4 is approximately equal, once more, to the zero-
point energy of the bending mode of the transition state. This
suggests how the position of 1-D resonances could be used
to predict where the 3-D ones should lie for collinearly domi-
nated reactions. In going from the SSMK potential cnergy
surface used in the study of Ref. 16 {o the Porter and Karplus
one used in Ref. 41, the width of the 1-D H + H, resonance
being considered decreases from about 0. 05 e\'z to 0.022 ev,
indicating a great sensitivily of the properties of the ceso-
nance to the shape of the potential enercy surface. As a
result, resonances may prove a sensitive prcbe for the experi-
mental characterization of potential encrgy surfaces and for
:'t:e dt;velopment and testing of approximate reaction-dynamic
eories.

VI. ELECTRONICALLY NONADIABATIC
CHEMICAL REACTIONS

Partly as a result of the possibility of developing
chemical lasers involving electronic state population inver-
sions, intercst in the theorctical understanding of clectronic~
ally chemiluminescent reactions has recently increased. A
particular example is the Ba + N,O - BaO + N, reaction, in
which the BaO may be formed in an electronically cxcited
state (43-45). No accurate theoretical ealculations for such
electrenically nonndiabatic reactive processes have yet been
altempted. A classical {rajectory-hepping scheme has been
develeped and applied to the HY + D, = ID* + D reaction (46).
In addition, a semi-classical description of such roactions
based on the Feynman prepagator has been formul'ated and
applied to this same reaction (47). As a means of assessing
the validity of these approximate schemes, an accurate two-
putential encrgy surface collinear veactive scattering calcu-
lation metho'l was developed and appticd to a simlified model
of the Ba + N,O - BaO + N, reaction (48). These calculations
indicate that a substantial fracticn of the BaO prociuct can
indeed, for this model, be produced in an electronically
excited state, These accurate collinear calculations can now
be used to test the validity of approximate ones for the same
poteatial erevgy surfaces,
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VII. SUMMARY

Subslantial progress has occurred over the last few
years in the development of accurate 3-D quantum mechanical
mcthods for calculating cross sections of electronically adia-
batic reactions. Out of such calculations have emergsed pre-
diclions of a product polarization quasi-selection rule and of
the existence of Feshbach resonances for collinearly domi-
nated reactions. Such predictive ability is indicative of the
vigor of the field. Progress has also been made in the calcu-
lation of electronically nonadiabatic reaction cross sections.
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AN EXACT QUANTUM STUDY OF VIBRATIONAL DEACTIVATION
BY REACTIVE AND NONREACTIVE COLLISIONS
IN THE COLLINEAR ISOTOPIC H + FH SYSTEMS*®

Georgs C. Schatz and Aron Kuppermann
Arthur Amos Noyes Laboratory of Chemical Physicst
California Institute of Technology
Pasadens, California 91125

The success of the HF chemical laser depends to a large extent on
the relative rates of: (1) the F + Hy pumping reaction which produces
vibrationally excited HF(v), and (2) the deactivation of HF (V) by
collisions with H,, F, H, buffer gas, and HF itself. Although the
deactivation of HF by H,'! F,2 and HF3 has been both experimentally and
theoretically well-characterized with generally good agreement between
experiment and theory, the situation is far less satisfactory for
H + FH and its isotopic counterparts, D + FD, H + FD, and D + FH. The
three experimental determinations of the H + FH (v = 1) deactivation
rate 2045 give rate constants at 300°K of < (7 % 4) x 10114 <9 x
109,2 and (1.4 + 0.4) x 101! cm3/mole-sec,5 thus disagreeing with
one another by smounts well outside their respective error limits.
Agreement with the results of a theoretical (classical trajectory)
calculation of this rate constant 48 no better with a predicted value
of 2.2 x 1012 cm3/mole-sec at 300°K. Similar experimental and theoreti-
cal comparisons of the rate constants fur the deactivation of D + FD
(v=1),D+FH (v=1), and H+ FD (v = 1) are also poor.>

The approximation of classical dynamics has been analyzed in detail
for the F + H27 and F + Dzs reactions, and its most important conse-
quences for reactive collisfons were found to be an inadequate descrip-
tion of resonances, neglect of tunneling, and dynamical threshold
effects. In considering vibrational deactivation processes, we must
also exanine the validity of the quasi-classical prediction® that multi-
quantum jump transitions are extremely important i{n deactivating
collisins (both nonrcactive and reactive) for H + FH. If true, it
could be important, for it would mean that H atoms can be very efficient
deactivators of HF. 1In addition, much of thzs theoretical analysis is
predicated on the assunption of the dominanc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>