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reactions of importance for the fundamental aspects of chemical dynamics and for
advanced technolog ies of Interest to the US Air Force , such as high energy chemi

.•‘. Icat lasers , plume technology, and the chemica l effects of high energy radiation ,
were performed. These included calculations of tnree-atom exchange reactions ,
breakup collisions , three-body recombinations , vibrational quenching by reaction

• resonances , and electronic branchin9 ratios . The aim of these calculations was
to develop an understanding of these processes and to develop benchmark data
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1. . PROJECT ABSTRACT

The purpose of this project was to perform accurate and approximate
quantum dynamical calculations on elementary chemical reactions of import-
ance for the fundamental aspects of chemical dynamics and for advanced
technologies of interest to the United States Air Force, such as high energy
chemical lasers, plume technology, and the chemical effects of high energy
radiation. These included calculations of three-atom exchange reactions,
breakup collisions, three-body recombinatj ona, vibrational quenching by

- 
reaction, resonances, and electronic branching ratios. The aim of these

- calculations was to develop an understanding of these processes and to develop
benchmark dat& against which approximate methods could be tested.
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2. SCIENTIFIC BACKGROUN D AND SUMMARY OF WORK PERFORMED

The prediction and interpret ation of the details of chemical reactions

from first principles has been a goal of chemistry since the advent of wave

mechanics, 50 years ago. However , methodological and computational diffi-

culiles have prevented the arhievement of this goal until very recently. In
1929, DIrac1 made his famous statement concerning this matter: “The under-

lying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are thus completely known, and the diffi-

cuity is only that the exact application of these laws leads to equations much
• too complicated to be soluble. ” Insofar as chemical reactions are concerned,

this statement was completely accur ate at the Inception of this grant (1 June

1973). Only in late 1975 was this state of affairs changed, with the publication

of the first accurate three-dimensior0 ’t ° (3D) quantum dynamical calculations

on realistic potential energy surfac ” ~or the 113 system. 2, 3 A signific;.nt

fraction of this progress was due to the work supported by the present grant .4

This development opened up the possibil ity of applying the methods d.~veloped

for these calcub.tions to other systems, and has permitted a test of the validity

of some approximate methods. The usefulness of good approx imations is that

they can be applied to more complex systems for which accurat e ab initlo calcu-

lations cannot presently be performed. This kind of approach to the testing of

approximate theories has advantages over the one ~~sed on a comparison

between theory and experiment. The reason is that potential energy surfaces

are not at present experimentally known. Therefore , it is necessary to make

assumptions concerning such surfaces which usually Involve some calibration

to yield appropriate dynamical behavior. This biases the test of the dynamical

model. However , if such a model is used and an accurate quantum dynamical

calculation is performed on the same assumed (but fairly realistic) potential 

~~~~~~~ --~~~~~ - _ - _
~~ 
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energy surface (for electronically adiatx,tic processes), this logical difficulty
disappears and the approxim ate dynamical model is indeed giver, a very good
test.

The development of the accurate 3D quantum dynamical computational
methods has been the result of a long evolutionary process, a summary of
which has been published. 5 Most of this work nas been done during the last
ten years , and a large fraction of it over the last five years. Our laboratory
has been very active in this field , having published 27 papers in it since 1973.
Much of this work was done under an AFOSR grant which started in June 1973.
The field of quantum reaction dynamics, as pointed out in Section 3 below, is
important for the development of modern technologies of interest to the Air
Force. We now summarize the contributions of our laboratory to the develop-
ment of this area of chemistry. 

— -.

Our first involvement in this field was to modify the boundary value
finite difference method6 so as to be able to use it on realistic potential energy
surfaces and to apply It to the collinear H, system7 and its isotopic counter-
parts.8 These calculations were the fir st unes done on a realistic potential
energy surface at high enough collisIon energies to show quantum oscillations.
A lifetime and scattering matrix analysis bier showed these oscillations to be
due to interferences between direct and resonant (i. e., compound state) reaction
mechanisms,9 We also compared the accurate colllneai’ H, quantum results
with approximate ones obtained from the same potential energy surface using
quasi-classical trajectory an~1 semi-classical m ethods.’0 These showed that
quantum effects were very large for this system and that quasi-classj c~~ and
semi-classical reaction probabilities and rate constants could differ significantly
from the accur ate quant um ones. A streamline analysis of the scattering wave-
functions showed that tunneling proceeded by cutt ing the activation barrier 

—.-—-.- ____________________________ — ——•
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corner and contributed ~ignilicantly to the rate constant even ~or temperatures - 
-

high enough for the Arrhenlus piot not to show curvature. Even at l000°K,
tunneling was responsib le for about 25% of the collinear rate constant. We also
made an analysis of the scattering wavefunction In terms of the vibratlonally
adiabatic theory of cherr~lcal reactions12 and ouncluded that it is approximately
valid only over a relatively narrow range of collision energies , breaking down
both at low energies (due to tunneling) and at high energies.

The boundary value finite difference method used to calculate the collinear
- H, scattering wavefunction consumed large amounts of computer time.7 For

- this reason we developed a significantly more effective coupled-channel tech-
- nique in which coordinates and basis sets are chosen differently in different

regions of configuration space to take into account the shape of the potential
energy surface and to m inimize the number of basis functions required for a
good local representation of the wavefunction.’3 This method was two to three
orders of magnitude more efficient than the Unite difference one. It was naed
to extend the collinear 11, calculatIons to higher energies9 wh ile maintaining
a high computational accuracy (1% or better) . This permitted the detailed
characterization of two resonances and the discovery of a third one. We then
used this n~ethod in a detailed study of the coilinear F + 113 — FR + 11 reaction
and of its isotopic counterparts. 14 We also performed quasi-classical trajectory
and semi-classical calculations on the same surface , and found large quantum
effects on this system also, which led to very erroneous quasi-classical product
vibrational population ratios. 14 Interestingly, the results of the “reverse”
quasi-classical calculations are much better than those of the “forward” ones. l4bc

We also applied this coupled-channel method to study the collinear deactivation
of vibrationally excited HF by exchange collisions with H atoms on a LEPS
surface’5 having a barrier of only I kcal/mole. It was found that this is a 
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very efficient process. 16 Recent ab init lo calculations of this surface ’7 show
that the correct value of this barrier Is probably much higher, of the order of
30 or 40 kcal/mole. As a result , we have made an extensive series of calcu-
lations on the exchange reaction H + FH(v) —. HF(v’) + H and of its isotopic
counterparts for six diflerent barrier heights ranging from 1 to 40 kcal/mole.
This work is being written up for publication. The results Indicate that this
exchange reaction cannot fully explain the preferential deactivation of HF(v)
f o r v = 4 ,5,6 compared wlthv l , 2, 3, 

- -

The experience gained In the development and application of the coupled-
channel method for collinear reactive systems permitted us to extend it to
coplanar systems. A serious conceptual difficulty appeared in connection with
the bifurcation of the wavefunction Into the two-reaction product arrangement
channels. It was pvercome with the help of a new represent atlon h B of the
potential energy function in terms of symmetrized hyperspherical coordinates.
We were than able to o1tath accurate
solutions for coplanar H,~~ without major difficulty. These showed that , as
for the collinear system , three or more closed vibrational quantum states had
to be used in the coupled-channel expansion for convergence to be achieved.
Neglect of such closed channels leads to large errors in the cross sections.

The next step was to extend the method to the full three-dimensional
system. This was achieved fairly rapidly in view of the experience with the
coplanar problem, and fully-converged calculations for the H, system were
obtained. 2, 5, 20 These calculailons indicated that the resonances found In the
collinear system continued to appear in 3D. The 3D resonance energy5’2

~~
was sh ifted upwards with respect to the 1D one by about twice the zero-point
energy of the bending mode of the saddle-point configurat ion , indicating that it
Is related to the propert ies of the surface In the neighborhood of that point . 

~~
- -
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The exchange rate constant was computed using the quantum cross sections.

At 200°K, 1~ was 18 times greater than the corresponding quasi-classical one ,

indicat ing the importance of tunneling In this system. A polarization quasi-

selection rule was discovered , according to which the dominant reactive channel

is the mj = mj i = 0 one where mj ( m ? )  Is the component of the angular

momentum of the reagent (product) molecule along the initial (final) relative

velocity vector . This rule is interpreted as being due to the fact that the 113
system is colllnearly dominated , 5’ 2Cc and may in the future be used as an

experimental test of the coflinear nature of a react ive system. For nonreactive

collisions, the cross sections from a given mj to all final m~, (for given Initial

j and final j’ diatom angular moment um quantum numbers) are of the same

order of magnitude , indicating that the mj conservation principle is not valid

for such colIision~. The ac’ urate 3D calculations were performed to high

enough energies for the fir st resonance to develop. 20a These are the only

such calculations ever done and have predicted the existence of Feshbach reso-

nances In chemical reactions In the real 3D world. These calculations are the

only ones available which are sufficiently accurate to give rellablc angular
- dist r ibutions. To obtain such distributions , enough partial waves must he

used and each one of them must be converged with respect to closed vib rational

channels, since otherwise spurious oscillat ions can appear In the different ial

cross section.21 We have found three of four closed vibrational channels to be

necessar y to achieve such a convergence. 2 , 2Obc In the only other 3D accurate

quantum dynamical calculation , only two closed vibrational channels were

used throughout without attempting to test for vibrational channel convergence,
and differential cross sections were not calculated. It is possible to obtain

reliable integral cross sections without achieving such complete convergence ,

_ _ _ _  _ _ _ _ _ _ _
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if the absolute values of the elements of the part ial wave scattering matrices
have approximately converged. Convergence of their phase is more difficult
to achieve, and it is the lack of convergence in them which produces t~e spurious
differential cross secticn oscillations just mentioned. We were also able to see
oscillations in the para-to-para differential cross sections associated with inter-
feronce between the direct and exchange scattering amplitude. WA nerfornied, in
addition, calculations using angular momentum decoupling schemes22 (see
SectIon 3.3 below) and fou.id that they furnish accurate m1 = m ,  0 Litegral

- 
reaction cross sectiozis but Inaccurat e ones for other reactive and all nonreactive
state-to-state cross sections. However , when calculat ing nonreactive cross

- sections summed over m , and averaged over good agreement was again
f ound between the decoupled and accurate results, Indicating that this approxi-
mation transfers all nonreactive flux into the mj i = 0 product state. - .

Computer pz ograms needed for the computation of accurate quantum
mechanical cross sections of reactions of the type A + B2 - AS + B and A + BC -~~

AB + C, AC + B have been written and are presently being tested.

We have also used hyperspherlcal coordinates to develop a rigorous
method for the calculation of exchange reactions, breakup collisions, and of 

- 
-

termolecular recombinations. The accuracy of this method is being tested,
- 

- - 

and the preliminary results are encouraging. 
- -

The problem of the electronic branching rat io for the products of a cheini-
luminescent chemical reaction is a very Import ant one for the development of
electronic chemical lasers. Such reactions are electronically nonadiabatic,
and in their simplest form involve two electronic p~tentlal energy surfaces

- 

and an interact ive one. We have Investigated such electronically nonadialxttic
processes in a collinear model for the important chemiluzninescent reaction,
Ba + ON, BaO* + N,. A comparison23 of accurate quantum calculat ions and
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surface-hoppIng 24 ones indicated that the latter were unreliable due to the

presence of large quantum effects. A do Brog!!~ wavelength analysis at

thermal energies Indicates that this system , although quk e heavy , has never-

theless a strongly quantum character , I.e. , ~he potential energy surface varies

appreciably over a distance of one wavelength.

in the process of try ing to experiment with different potent ial energy

surfaces for studying coflinear reactions, we have developed a use~u1 semi—

numerical representation of such surfaces25 which permits one to change

independently each of their different topologic&i characteristics. We have

generalized this representation to noncolllnear systems and a paper describing

such a generalization is In prenaration.

In summary , the progress achieved In the solution of important quantum

• dynamical problems in our laboratory over the four-year period covered by

this report was substantial. 

‘ - - -
I

±

_
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3. OVERVIEW OF THE WORK PERFORMED AND OF ITS RELEVANCE
TO THE AIR FORCE

The research performed under the present grant Involved a set of

theoretical investigations which were aimed at the understanding of elementary
processes In btmcdecular or termolecular collisions of reactive atoms or
molecules. The central unify ing theme In this research was the nature of the
energy 113W in chomical reactions and the magnitude of quantum effects in
determining such flow . Examples of q’~estions we investigated were: For a
given shape of a potential energy surface, how does the height of the activation
barrier affect the reaction cross sestlon and the czlstrlt”ition of energy among
the vibrational levels of the products? How valid are classical and semi-
classical approximations to the accurat e quantum dynamics describing such
reactive systems? How valid are angular momentum decoupling schemes?
What are the characteristics of avoided crossings of potential energy surfaces
which are effective in producing electronically excited reaction products? How
significant are Feshbach resonances in chemic~.l reactions? Can the cross
sections for breakup collistons be efficient ly calculated by quantum meth ods?
The answers to questions of this type were provided by olialning
accurate or approxim ate solutions to the quantum dynamical equations of motion
describing such sy stema. To ot*ain thece answers , accurai~e potential energy
surfaces were not required. It was sufficient to do accurate and approximate
quantum dynamical calculations on the same reanonab~y realistic surface.r This approach permits the exploration of the rolatloL bctween the r~ ture of
such surfaces and the outcome of the chemical react4ons occurring on it. ~n
cases In which the prediction of quantitative reaction cross sectit~is is required ,
accur-.te potential energy surfaces are needed , and In thIs case it Is useful to
know, ahead at time, what regions of the surf,~àos mo~ Tnfl ie~cii thi dyraAniicil 

- _
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know, ahead of time , what regIons of the surfaces most influence the dynamical
results. Calculations with approxlriate surfaces provide an answer to this
question.

In many chemical systems of interest , one can , on the basis of a de
Brogu e wavelength analysIs, expect the presence of significant quantum effects. 

- 0

This is the case not only for hydr ogen-atom containing systems, such as H3, - -

112F, and H3C1, but also for those involving fair ly heavy atoms, such as BaON2,
as described in Section 2. An analysis of a model of this system23 indicated
that at thermal energies and higher , the value of the potential energy along the
reaction coordinate changes appreciab ly over one de Brogu e wavelength, and
dynamical calculations show the presence of significant quantum effects In this

heavy system. It was therefore most import ant to use quantum dynamics

In studying such systems to determine the regions of the surface to
which the reaction is sensitive anq to establish the degree to which classical
and semi-classical approaches may give reliable results.

The answers to the questions ment ioned above are useful not only for the
basic understanding cf reactive processes but also for the application of this
knowledge to advanced technologies such as high energy chemical lasers,
plume technology, and the chemical effects of high energy radiation , which
are of interest to the United sates Air Force. Specific examples are the
transfer of energy in collisions involving F atoms, 112 molecules, and FR
molecules and their isotopic counterpart s, which are Important in connection
with the fluorh-e-hydrogen chemical laser, and the calculation of electronic
branching ratios , of importance for the dev~~opment of electronic inversion
‘chemical la&rs. Thes~ technologies and their applications are closely coupled
to the current status of scientific development , and the latter must advance very
rapidly if it Is not to be an absolute barrier to the progress of the former . It
Is hoped that the z esearch reported here has contributed towards the achievement
of thIs goal. 

-
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Coplanar and collinear quantum mechanica l reactive scattering:
The Impo rtance of virtual vibrational channel s in the H + H2
exchange react ion

Aron Kuppetmartn, George C. Schatz ’, and Michael Baer
Ant,,,, Aw.w Ho~m Zob,vwov1, of C*emIcal P’~yucO Co4(o’,oo 1..suvt, of Tec~nekga Pa.odr’,a. Catiftw.u., 91109
(~ i .m-,d 22 Au wl 1c14)

We have performed accurate quantum mechanica l c~ 1- furthermore about equally Important in the cc~liInear
- Culations for the coplanar H • H, exchange reaction , and coplanar H • H, reaction. This will probably still be

using sufficient rotationa l and vibraUo na l basis func- the case for this system In three dimensions as well as
lions in the close-coupling expansion to ensure con- for other reactions.

• 
vergence. Wi~ repeated thuee calculations with S COO We have also calculated the reacUve , inelasti c , andverged rotatloual basis ict but with onl y one vit,ra- antisymmetrized dllferenttal cross sections for coplana rliunal basis funcUon , in analogy to what Saxon and
Ught ’ and Wolken and Kiirplus ,’ respectively, did for
the similar coplanar and three dimensional reaction .
The vibr .iionally converged and one-vi bration results Eo (eV)
differ Substantially for the coplana r as well as the col-
linear reaction , indicati ng the cru cial role played by
virtual vibrational channels. 0.5

To sqive the Schrôdinger equation for the coplanar 04[
reaction, we first Integrated the appropriate coupled
equations into the interact ion region fro m each of the
three arrangement channel regions, using an extension ~
of the method developed by Kuppermann. ’ The result- 

b 
o.~ing solutions were then smoothly matchCd on three con-

venfently chosen surfaces in configuration space. The o. u
R matrix ami other asymptotic quantities were then ob-
tamed. oc

CalculaUon~ for the Porter—Karpiu s surfac e’ using 4 - (b)

/

/

/

;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ior 5 vibrations and 10 or 12 rotations per vibrat ion for
& total of 40 to 60 channels yielded reaction probabi li- 

— 
- - -

- ties that change by less than 2%—5% as additional vibra- 0-~ .-‘

tionat or rotatioual basis functions are added , over the
total energy range 0.30—0.60 eV. Without forcing -~ y,~-e 

/
‘

va tion of flux to 0.5% or better and time reversal in~~ri-
orthogonalization at any time , the results satisfy conser-

ance to 6% or better . The calculations were repeated

tion , and intro duci ng an approp rt ate vibrational orthog-
using the same number of rotation e but only one vibr a-

onall zation . i0~ —

The resulting tota l reaction cross sections a are ~)
-‘ Iplotted In 7igs. 1(a) and 1(b ) and show differences be- -~~

results greater than 3 ord ers of m agnitude at l~w ener - ~
° 10-2 

47
tween the vibrationally converged arid one-vibration

glee. The ratio of the one-vibration to vibrationa lly 
b 0.3 0.4 E (cv ) 0.5 0.6

r. ,nver gedor tho — par a rate Consta nts i~ 3. 15 a t 300 °K
and 532 at 100 K. FIG . I . Tutu reactive cros , aectione,’ ver ewi the total energy

P sad tr an slat Ion al ene rgy P, for the coplanar exchan ge rear-
Using the method developed previously , ’ we calculated tine H + H , tv .O . O ) — H~ (i--o , f ) + I i  (euwmod over s t t f i

the collinear converged’ and one-vibration reaction prob- whe re the atoms are considered dt att ng uishahi e . Arrows in
abilities for the s a m e  potent ial energy surface. The abscissa Inli este energies at which the vlbr atl on—r otat ton. ts te s
ratios of the coplanar to collinear cross sections are (P-e .r) of H~ bc-come acceasib ie. (a) L in ear plot; 0>) tiemi-

ioqsrith mie plot . I n Ic) we p1 it the rat i o o f /P r  versus ene rgy.plotted in Fig. 1(c). Although these cross sections vary where P~ is the c’otlin. ar tc.tsl reaction p robab ility (the coilin-
indiv idually by about 12 orders of magni t ude over the ea r total reaction cross 5t-ci -~in) for ne agers a }i2 inv ~~O tntti aliy .
energy range considered , their ratios vary by lest than In all cases, a solid lI~~ in dicat es vibr atlonaiiy coiwerged re-
2 orders of magnitude, indicating a remarkably similar •uita , while a dash ed line indicates one-~Ibr aLlon results as do-
energy dependence. Virtual vibrational channels are fi ned in tcxt .

4392 Th Jo.,naI of Chem~~i ~~~~~ V~~. 61. No. 10. 15 No~~~bw 1974 C p~~~ t 0 1974 Am er~~n imti~~?s of Ph~ o 
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H • H5. Contrary to the resulta of ~~xon and Ugiit
t our computational facilities in most of the calculations

reactive differential cross sections show only backward reported here.
peaking in both the one-vibration and vibrationally con-
verged results. in addition , we fin d no evidence ior a
quaa iselectlon ru le governing the reaction prob~bi1ities ‘Research suppo rt ed In pa rt by the i S. M r  Force Office of
similar to the orth o—orth o aid para .- para nonreactive Scient ific Research .
selection rule. We wer e able to artific ially produ ce ¶ Na tions i Science Foundation p redoc tora l fellow. Work per-
such a reactive qua siselection rule using matc h ing pro— formed In parti al fu liutlm e nt of the reQ uire ments for the Ph .D.
cedur es In which incorre ct symmetry restrictions were degree in Che mistry at the Cal i for ni a instit ut e of Technoiogy .

iPr.st r* add ress: Soreq Nuclear Resear ch Center , ‘taco. ,placed on the matched wavefunc tlons.1 
Is rae l; a~d Department of Chemical Pbyai c.. The Weismano
I~sUuut e of Science, P. O. Bus 26 , Rehovol , Israe l.The inelastic cross sections are gener ally backward tContrib i*io. No. 494 5.

or sideward peaked and exhibit no fine osci llatory 1R. P. Saxon sad J . C. Light , .1. Cbsi~. Pii~s. 64, 3874 (1972);
struct ure. Quautum symmet ry oscillat i ons resulUng 50, 3885 (1972).
from interf erence between the di r ect and exchange 1G Wol k en and 94. Ka rplus, .1. Che m. Phys. 00 , 351 (1974).
amplitudes char acterize some ortho— ortho and 1A, Kupper mann . PoS,st~aI £sevgy Swvfoces Ia Chcmigh~ ,
p.rs — 1*ra anti symmetri zed differential cro sa section s edited by W . Lestu r (t’nlv er aIty of CalUc rni a at Santa C ruz ,

Santa Crux . l970)~ pp. 121- 129 ; PU fntirne Uo,.sf  Co ,frvvaceat total energies greater than 0. 5eV. 
~~. ~~~~~~~~~~ ~~~~~~~~~~ au4AI orwIc Coj lisioss, A&sf r a c f a

ef P pevs (North-Holland. Amst erd am , 1971) , p. 3; O~C.In conclusion, virtual vibrationa l channels play a &hIt&. J. 94. Bowman . and A . Kuppermknn. J. Cbem. Phy•.
centr al role in the collinea r and coplanar ii • H5 reac- - 54, 4023 (L313i~ C. C. Schau and A. Kupperman a, 1811. 59,
tion , and probably in the three dimensional one and in 94-4 (1973); .1. 94. Bowman , ~~. C. Schat a. aodA . K,çpermann,
many other react ions . Therefore , the resul ts of cal- Chem. Phy.. Leit. 24. 378 (1974).
culations using only ope n vibrat Iona l cha nnels must ~~ ‘R. N, Porter sal 94. Aarplus . 1, Chen> . Ptiys. 40, 1105 0644).

1j )~~~~~ results are Iden ti cal to those of 0. .3. Dteatlrr , .3. Cheat ,used wi th great cauti on. Once those virtual channels
Pbya . 54, 4247 (1971).are included in a close-coupling reactive scattering Vl rtual cha nnels have been found to be important in many ~~~calcu lation and convergence ascertained , a weal t h of linear collisions , suc h as in H . F. Riley and A. Kuppernisnn,detailed physically meani ngful information is obtained Chem. Phya . Loll . 1, 537 (196$) . ti. C. Tr-uIiiar and A Kup-

agains t which a variety of dynamical models can be perman n, J. Cheat. Phys. 52 , 3$4 1 (1970) ; 54. 2232 (1972) ;
teeted. Wor k along these lines Is proceeding in this 8. F. Wit and R. I). Levi ne, j itol. Phys. 22, 881 (1971); and
laboratory. Ref. 3 above.

‘Ilecently .3, C. Light has obtai ned similar results I n a modified
We thank Ambassador College for the use of their version of his one-vibration nethod (priest. communlcalionl .
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Quantum mechanica l reactiv e scatterin g: An accurate
three-dimensional caicu latlon *

Mon Kuppermann and George C. Sthatz t
4. A. Noyes Leboiuiory of ChOMI& P*yski~ Anson of Ciuewtry tad Chen.tcel F upff iernsig. 1 CaSfon,4s 1nuI~wIc of
Tectscieej. Pasadena , Caltf ueuta 91123
(R.ceved lb December 1974) - -

We have performed accurate three-dimensional (3-D) however that , as for the coplanar reaction , ’ ‘~esults j aIl s-
quantum-mecha nical calculations of differential and total tying flux conservation and time reversal Invariance
cross sections for the H . H, exchange reaction on the could be obtained before satisfactory conver gence was
Porter —Kar plt& potential energy surface. These are achieved . Onc cannot , therefore , rely on flux conscrva-
the first such calculations that are vibralionally ~nd ro- boo and time reversal invariance as sufficient conditions
tattonally converged , and the results are believed to be for convergence , All values of the total angular momen- —

accurate to 5% or better . They can serve as a compari - tu rn J fro m 0 to about 12 are necded for convergence of
son standard against which approxi mate methods can be the reactive differential cross sections. The angular de-
tested . pendence of the diffe rential cross sections are very sea-

eitive to the magnitudes and phases of the scatteringTo solve the body-fixed 3-0 Schrödlnger equation for
mat rix elements. It Is of crucial Importance to establishthe nuclear moUon we perform a partial WSVe expansion, 
the vibrational and rotational convergence of the resultsfollowed by a close-coupling expansion. For the latter for each .7, since otherwise spurious oscillations in thewe use variables aid basis functions which vary from
diffe renti al cross sections can result. The integral re-region to region of configuration space so as to optimize 

ti cross sections are much less susceptible to thesethe representation of the wavefunction. This approach ,
developed previously.’ has been successfully applied tt effects. Computation times on an IBM 370-158 for each
colilnear’ aid coplanar’ reactions also. or. coupled E were 13 , 33 , 62 , sal 64 minut es for .7.0, 1,2, and 3.
equatIons are integrated into the int eraction region from respectively, aid approximately 75 ida for Js4 and 100

basis functions.each of the three arman~ement channel regions, using
the use of the Gordon method .t The solutions are The following conclusions can be inferred fro m the re-
smoothly matched on three appropriately chosen surfaces molts obtained:
in internal configuration space by employing the con- -

venient system of coordinates described elsewhe re.’ (l) ~~c1uaioii of closed vibrational channels in the

The full three-body Haznlltonl an was used to these cal - close-coupling expansion is essential , in spite of the
fact that this increases the computational time by far-culatlons , and no approximations we re int roduced ot~er tars of 10—30. For exa3nple , at 0.50 eV the .7.0 dis-than those inhe rent In the numerical methods. tinguia ttable-atom reaction probability fur the t’ -0 , j  0 - -

We have performed extensive calculations in the range reagent to the v”O. j’.I product’ Is 0.71x104 for the
of total energy E”0.4 0—0.70 eV aid have found that up vibratlonally converged results aid l.87Xl04 when t’sing
to 30 rotatIonal , 4 vibrational , aid 100 total basis func- only ground vibrational state basis functions, a differ-
tions are necessary for convergence of the reaction ence of a factor of 2.6. Alao , at E r  0. 55 eV the ~-ibra-
probab iLities to within 5% . The converged results usual- tionally converged , orientation-averaged (i.e., summed
ly satisfy conservation of flux to 1% or better and time over m .  sal averaged over m ,), para—ortho reaction
reversal Invariance to about 6% or better. We found cross section for the same process , 1. 0.040 bohr ’.

- T h J  &cf Chemic&Pbyvcs, Vot.62.No. 5, l5Mardt 1915 CopyrI~ itO197S AmudciIna1itut, of Physics
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j 7  
differ by a factor of 2 or Sreater.

2 5~ 7 (3) Let 0 be the angular momentum associated with

~~ 
. 

~~~~~~~ 

~ ~~~~~~~ of the tr lato mic plane around the position
vector of the atom with respect to the diatom. ” For

—

~ 

~~ t o o s,u
C • O.t5Oe. small J, we observe in each arrangement channe l onl y

values of 0. This agrees with previows observations by

- a weak dynamIc coupling between states having different
- 

Pack” azil McQulre and Kou ri ” for nonreacti ve rotati on-
ally Inelastic scattering. In addition , for .7 less than

/ jio ~ *bout Sor 6, the 13-0 reaction p robab i l iti es are usually~~

~ signi ficantly larger , by factors of 2—20 , than the others.

~~ 
2O~~ Neglect of 0-coupling and of unimportant 13 contributions

can ~borten the computation time by one or two orders

/ dicate that these approximations can ~~eld results whichI 

of magnittale . Preliminary calculations of this type In-

are quite accurate .
• tdeqreel 

--

(4) The distribution of products among the several
FIG. 1. Three-dImensional (de3.,Id~.) and coplanar ~~~~~~~~~~ orientation-averaged rotational energy levels is ver ypars ‘—ortho differ ential reactir. cross section ass  tun ction

similar for the 3-fl aid coplanar reactions. In addition .the scatteri ng st,gle C for the II • ii, — 117 • H exchange reaction
on C it. port er~ Karp lua ’ potential ene rgy. sur fsce a la total energy the angular dependen ce of the corresp onding differenti al
E ’ 0.t~SO eV awl re lative reagent tra nslation al ener~~ £, 0. 271’ cross sections is also very similar , as shown in FIg. 1.
eV. Th. corresponding wave function s have been antlayntme-
tr Ued w i th respect to hydrogen ato m exchange . ‘Ttte pa rs-li. (5) Over the range of tota l energies 0.80-0. 70 eV .
re agent la in Its ground r 0 , 5.0 vibrational—rotatIonal state , our distingu1s~oable-a*om reaction cross section from
The ort ho-H1 product is In Its ground t -0  vibratIonal and 5’ ,‘.J.O rea gent , summed over all fLat states of the
.1 rotat.ooai state , th e lowest permitted by the I’aul l pri ncip le, product., agrees with the quasiclassical trajectory re-
Contributions from all srJ. val ues of the com ponent of the ingu- cults .4 Karplus , Porter , and Sharma, ‘° within the ac-
lar momentum of the diatom product have been Included in th e cu racy of the calculations .cr os s sections . The solid line represents the th ree-d i mnenaion al
results , lot which the ordinate scale Is at Cite left of the f ig ur e . Although Conclusion s (1) and (2) Indicate tha t accurate
ar id the daatoel line deptcta the copl a na r results , for whic h the cal culations are quite lengthy and can only be done for a
ordi nate sca le is at its right. The corre sponding Integral rt ’ac- small numbe r of ben mark syst ems , conclusIons (3)—
tion cross sections are ~~ 0.040 bohr2 and c~~ -0.36 bohr , (5) ind Icate that approxi mate method s that are still veryrespecti vely, realistic but much faster , might be developed aid use- \ I

fully applied to a significan tly la rge r number of reac-
lions . . 1Wolke n sal Karplus , ’ in their pioneering work in which We thank Ambassador College for generous use of — -

similarly only pound vibrational state basis functions their computational facilities .were employed , obtained a value of about 0.43 bohr’.
This difference of a full order of magnit~xIe between
these last two results must be due at least in part to
the ir neglect of closed vibrational channels. Their phe-
nomenological energy threshold Is approximately 0. 0* eV Work supported in part by the t’nlted SL.tes Ai r Force Office - 

t
below our vibrationaily converged one . ci scientific Research .

t Work performed in partial ful f i l lment of the requirements for
(2) because of the much smaller times involved In the the Ph.D. degree in che mistry at the Cali fornia Institute of

. 7.0 calculafton t , it would be very helpful II compvita- TechnoIo~~.
lions of thi s type , such as those performed by Elkowitz *Contrtbutto n No . 5022 .
aid Wyatt ,’ were representative of the over- all reaction. ‘11. N. Pot Ic r and M. Karptua . .1. Chem . PItys. 40 , 1105

(1964).We do find that at each energy E, the ratio of two on e,,- 5A. Kuppermann , Pot sw.’fnl £werg’y Sw,lacrs Li, Ch e”,.sf,’v ,tatlon-averaged Integral reaction cross sections fri a the edited by W. Lester (U nIversity of Californ i a at i~ nta Crux ,
caine state of the reager.ts to different states of the Santa Crux , 1970) pp. 121—129; 177 !,,teraatiowc I Coi, f ev-rec, :products, usually agrees to wIthi n 20% with the eorre- ce 18, Physics of Eb’rtrovic nw4Atosstc Ccff is loss . .tbstrecfs
spond ing .7=0 reaction probability ratio. However , the of Pap ers O4orth-Holland , Amsterdam , 1971) , p. 3,
value Of J which most cont ributes to the integral reac- ~C. C. Schata end A. K uppermann , I. Che m . I’hya . 59, 964
tion cross sections is 2 at 0.40 eV Increasing to 4 at (1973); 6. C . Schstz , J. M. Rowms n, and A. Kupper ma no,
0.70 cv. As r result, the .7.0 calculations do not fur- J. Chetti . Phys. 58. 4023 (1973).

‘A. Kupp.rmann , 0. C. Schstz , and M. Baer , .1. Chem. Pi,ya.nish accurate pred’~t i”u  for other appropriate quanti- 61, 4362 ~~~~~ties. For example. L’ we compare the ratio of tWo tR. 6. Gordon, J, Che m. Phys. 51 , 14 (1 369) . :-— -

orientation-averaged integral reaction cross sections ‘A. K ppe r mann , “A Useful Nappi ng of T,istomi c Potenti al
from different states of reagents to the same state of the Energy Surfa ces, - Chem. Ph3’e. Leot. (in press ).
products, at the same total energy, with the correspond - ‘The w.prl rr.ed ., 5. and ,, , are the vlbraUonal , rot aticrui l and
ing .7.. 0 reaction probability ratio, these quantities can magnetic qosetum number, of the reagent molecule, whereas

J. Chin.. Pt,yt , Vol. 62. N o.6 , 15 March 1975 1 — *
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the corresponding primed qtwn t it iee refer to the product mole- to H .  H5, ” .1. Chem. Ph ys . (in press ) .
cuts. 1 R. ‘1’. Pack , J. Cbem. Pity.. 60. 633 (1974).

86. Wolken and N. K*rplus, 4. Che m. P itt ,. 60. 351 (1974). 11 P. M oGui re and I). J. Kourl . 4. Chem . Phys. 60, 2488 (1*74). - -

A. B. klkoteita and H. E . Wyatt . “TI ,ree -dimenaional n , t ur sl “N. Karpiu s, H . N. Porter , and It . 0. Sharms , 4. Cbem.
coordinate asymm et ric top theory of reactions; Application Phya . 43, 3259 (1965) . ‘
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,, A USEFUL MAPPING OF TRI ATO MIC POTE NTIAL E~~ RGY SURFACES

Aron KUPPERMAN N
.4,thup Amos Now: laboratory of Clitrmirat !*ydc: “~ DV, *krn of (ltemlsf ry and Ciremk.l En,ffaeens .
Califun.ig lsuUtp t~ of Technology. Flu.Je,ea, Cab! o,nii 91125, USA —

ReceIved 3) December 1974 -

We pecient in thu pup er a mappul 8 of tnatomk thrse’dimemlonaj Horn -Opp e nhelmes pot4nti~) energy
• ~facrs F~ to, which all arrangemen t channelt ire repr esented evc nlundcdiy. This repeesentauon is very useful f oe
visualizing the geometncal and dynamical noperties of such suru aors ,

Consider the system of at JmS A0, A4, A, and let ci ties with the center of mass of A,,A , (I c., R~ 0)
Xinc be a cyclic permuIat~ .,.i of aØy. id and R~ there corresponds an infini ty of potnis P,~ (forming a

- 
- be respectivcly the vector from A~ to A5 and from circle on the OX,, 2’a plane centered on .) and ha ving - -

the center or mar ’ of A~A , to At,. We def ine ( 1 — 3 1  radI us ‘~
) The second is that equivalent arrangement

two scaled vectors and R,, as r~ and a,,R,,, channels are not represented equivalently. The third
respectively, where a~ is the dimens ion ics , scale fact o r Is th a t an r. ,~~, y~, — r. TI, .V, trar.sormadon does not
(P~ ,v.jstm,,s )~

’4 ,~~ve being the reduced nnss of A,Ai,, preserve distances and distorts equlpotentl al surfaces.
and ~~~~ tha t of the A x + AMA, pair. Ther,, ~R,, -. These disadvantages makt It diRICu% ~ to obtain an un’
i,,  R,, transformat ion is a rotat ion in confi gurat ion biased vizuahza tion of I’m all regions of In t ernal con.
hy per.space [3J. fi guration space. A similar difficulty Is present in the

V depends only on three scalar int ernal confi gura . Ingenious related representation proposed by Smith
lion coordinaics . These can be chosen as r~. R,, and (see ref. (3) ,  eqs. (24)).
the ang le 

~~ 
(in the 0. ir ran ge) between r~ and R,,. A second mapping of ‘(i~ , R,, ,i,, ) Is to assign to

in or der to map ~‘(r,,. R,, 7,,). we mutt establish a P,, sphtrlcal polar coordinates r, 8,, — 25i,, and ‘v,,.
correspondence between r

~
, R,,, y , and points P~ of The factor 2 by which 8h and 

~~~ 
di ffer is of central -.

a three-dimensional intetna l arran gement confi gura. import ance , in t h a t  it eli minates the difficulties de’
(ion space OX,, Y,,Z,,. One such correspondence is to scribe d above by bri n~ ng about the valid ity of three
assign t o P~ sØterkai polar coordinates ,, q,,. 7,, where very significan t pr operti es : to ever y internal confi gu’
iii (r~ + R~)”~ and is independe nt ( l J  of t h e  choice ration there corresponds only one point P,, und istin .
of X. and ~~ Is cos~~ (R,,/i’) in the range 0, i/2 . For guishable arr angement ch a nnels are repre sented tin.
colhinear configurations (y~ iv) this correspondence distinguishably; and an ,, 8~”)~ ~~,, 8,, y, tra nsfor .
becomes one of the standard re pre sentat ions of Vt . m2 tIOn simply rotates equ i pot emiti al slirfac es around
It suffers , however , from three serious disadv a ntages, the 01,, axis without distor ting them. This produces

“ One is tha t to each con fi guration in which A~ coin. s represen tatIon of the entire internal configuration
- space unbiased by the part iculsi choice of ?. use d to

- define it.• Supported In purl by the Air Force Oflice or S~-Ie n iitc In fi g. I we depict Intersections of the equi poten. 
- . .

- - -

Contribution Numb~ $013. thai surfaces with the OX?Q and 015Z0 planes foe -

t Like Out adopled by Tung et si (4 1 art s, a resetting of tise the notorious Kar plus and Putter (SJ potenti al func- ‘

distanc~a by the a~ (ac tor as deicnl bed In the relen t pape r, lion for the H3 system. The 01,, axIs, perpeni~cular
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Fig. I. Equi po t ent lal iur lac-e. (or 1 t .  The cau. .‘rd ,nat s’ I ,,, 1,,. 4 seer tin g ,, cot p,~. r uin •~ tin ~~ an d ,  CoI C,,.
resprcl lxely, with ,, C~~ and 

~
,, defined in the I~-~ t .  ~c ran ge of p~~ us ’ est ended (mom t O . .) to (—.,•) by te r ming, (Or 7

~~ 
<0.

I’( r, 
~~. ‘

~~~
) • e ’(, , •~, ~~~ ). The cur se, ic mn t ersec lions of 1( 1 . ~n. ~~ • £ surfaces with usc  perpendicular pia nes OX,,4

(Ag. Is ) and OY,,Z0 (fig. lb) 1 he origin of measur ement of E m s  the min imum of the I t 5 diatunu c potential energy curve with the
third atom removed. The value s of E range I rom 0.3 eV to 1.3 eV in steps of 0.3 eV , as indicated on top ot Scor e. All points on
Ag, Is and tho e on the 01,, axIs of fig. lb corresp ond to coltincar configura tions. Points on fIg. lb oft that axe represen t no.s.
eoliineas configurations . Those on the O)’~ svm s (except for 0) correspond to pe r pendicular cousfl gu:atlons, l’he horizontal dashed
lInCs inter connect the fig. a and fig. !b mr stcrsect ,ont o( the E • 1.5 eV equmpoteut u ai with O1~. The 0Z~ axes (A • 5,0, ~~) in
Ag. Is. air — —. conespond to the shi rt separated atom -dia tom arr ang ements. ‘flsc tact tint the angle be t ween the m ma 120’
tath~ than the usual 16 1 60’ is of central impor tance in p ermitt ing the t hree arr angement channel s to be represented equivalent!),
and in making the ,, 5~~ , ~~ —~~, ig, ~p tr ansfor mati on corr espond t ea rotation twi tho ut distortion) .rou nd the OY~ axis , whi h
Itself is in rarlan t under thu transforma t ion. The boltons pert o( fig. lb cor r esponds to the region hal fway bet ween conftF.naJont
A.7 • A,,A0 and A,A0 + A . All ciasticat if allowed pa th wa ~ m leading fr om olsc to the othec of these configur at ion. , at total enc,- -

gist not exceeding 0.6 eV, must pass thr ough the hatched area enclosed by the corresponding equi putentlal.

to the plane of fig. ha , is a thre efold axis of symmetry surnce , howeve r , to indicate that this mapping pro-
of V, due to the equiv a lence of the three II atoms and vides a very powerful mcans (or x~suatiung the pro-
of the corresp ondi: s g arrangement channe ls. The loner pert ies of tr ,atomt c potential ener~ 1r surfaces and (ic
pan of fi g. lb depicts in detail the “tran sttion state ” developing exact and approxi m ate reactive scatter ing
region of configuration space halfway between the theories.

+ A5A~5 reactant and A,A0 + A0 produ ct confi gu-
rations , At any energy ~~ all cla a sicahl y ahl ow:d p ith . We than k Geor ge C. Schatz for hel p in pre paring
ways lead ing iron s such reagents to such produ cts the fibur e and for many stimulat ing discussions.
must pass through the region enclosed by the corres-
ponding equi potenti al. The smaller E. t he more con-
fined is th is region and the less can Or e intermediate Refevencei
reac t ive confi gura t ions d~viate from collincar ity. lhc
chia r ac te n ittics of these “passages” bet ween r eagents I l l  L .M. Dehes, Mud . Phys. 9( 19 59) 3~) I ;  20(1 960) 275.
and products influence si~~iifmcan tl y the dynam ical 171 0. Jepsen and 1.0. )brschtclder , Proc. Nail. Acid. Set. e

~
r t ie ~

‘ y US 45(193 9) 249.pa i.~- . - 13 1 F.T. Smith , 3. Math, Fbi ,. 3 ( 1962 ) 735.We have constructed titree-di menslonal models of I~ I K I  Tang. B. KIe ,nman and M, karplus, J, CAres . PA~s,
such cqu tpo ten t~al surf aces . b r  the II ) and F i1 3 ~Ys - 3 0  U969) 1 1 1 9 .
tems. The general prop erties of the ,, 8,,, ‘v,, mapping I S , R. M , Porter and N. Karplus, 1. CAres . PAys. 40(1964 )
will be published in det ai l sepa ratel y, to gether with 1105.
pictures of those models. The present paper ihould 16 1 S. Clatttonr . K .J . U t m f l d f t l ’Yring,
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Exact quantum , quasiclassical, and semlc!asslcal r&actlon
probabilities for the collinear F+H2 -

~~~ FH+H reactio n*
George C. Schatz,’ Joel M. Bowman.t end A~~ Kup, emsenn -

A,iSur A i,ies Noyn Labereacvy e/ Clsemkisl ?*Jilea Cat ’funsi. fiuiitsrre of Ieoluaclo0 ’. ?usedeis.,
C~J r/,nua 9117$

—
- ( 5.ecevel 22 (klo~~~~ 1974)

Exact quaastum, qumucl s,ca), s4  s muc lasaic.i ,e.dl ic. probstalilies and rate coeata,sis foe the cotlnse*r
rea ction F ~ H, —. EN + M i t e  pres ented and compared The exitS quantum multi Usdrcita s large de~ se
of population inversion of the a-li p roduct wit h P~. sad 0 , besag the dominant reaction peob.bslrtims. The
mire gy dependenc, of thin, two ps’obsbsliiues si l.’w trinsistiotsaJ energies are quit. different. P , a1s~ a an
effective threshold of 0~~)3 sV which can lazgein be Interpreted in resulting from tsmnistbisg lh,o~gb a
v*estsonalIy adiabstic tgmer I ’~, isis much larger elTcctive threshold (004 5 eV) appareatly seaulting
from dynaasucal effects Queaic1en~ aj probabilities (or ihc coll,nw F + H, rescue., were calculated by both
the forward (initial ccndtuoiss chosen (tie req~vt P t -  ~5,S and reverse (mit ral ‘~e.sdiflont foe product H + PH)
tzajeslory metheda. The results of b”eh calculations roerectl> .ndscat. that P , and P~ ilro’uld be the
doesma,si reaction per4iatai,taes. However, the Ihresbo4 brAise, of the quasac laancai forward P . , disagrees
ssrosu$Iy uir b the corrtsgondusg rsxt quantum threshold energy drpe.dence. Py contr.ie . there is good
averment betwce~ the rtvened lr.~ecurg resulti and the exact qommusa on~~ Th. usifosm sanscIsisi~~l
romlts also agree well with the coerespondrrsg exact qsaasrtsuts ones nduenring Sisal t ’i. qi si’ .iesJ reveres
Stid the senuclasaacai methcd. are preferable to the qoaaaclaasacal foew.td method (or thu react~~ Themeapsalaig differences betw, ,. the threshold behavior of the exact quantum and qu.saacl.srncal b ruit-f rea,.*~~pen*.bahlsea U’ wanatease4 in the corresponding rate conjtants prim arily in ~~~~~~ d f rowsces In thea,
activation mergus Mduuosal esaci quantum resutta at hctlsee toed energiin i,sdicite t hj i thr~.oboid eff cta
its so longer imrgicsrtint ~or reaction. with vibramiomsaily canted H.- Brsossa,scm play an itapomant tute is
cereals rmictsoax pn*isbilaisin pelinan)y 5* higher relalne tranulatatusai energies. -

I. INTRODUCTION the characterlgatlots of the psodr~t state di asributl ong
Th. reactions F * H, (0,, Dli)— FH ~“D) • H (0) hay, by temperaturelike parans—ters,t’ and the egtablistxment

of a relationship between thea. parameters and certai nrecently been the subject of several rap.. Imental studies 
det~~~~ of the potential energy aur. ’7c5.” AD of th. ci,.-in which very detailed rate constants and cross eeetlon.
sical theorytical ~~~~~~ rave employed s.mnlsmpirlcalfor these reactions hav e tx-en measured , ReI a tiv~ riteconst ant, into spes.iflc vibrational (and sometimes ,~~

. potenti al energy surfac.a.’” As oh mftio patetxtisl its-
brational — rotatsonal ) states of the prod ucts have been ergy surf ace has also beam calcul ated, ” and the setmi-
measured by both in rared cbemllumlrsescenr,’ and empirical surf aces are In reasonable agreement with ‘~ .
chemica l lager ’ techniques and, quite r ecenUy, both Aside fro m poasibi. defect. In the potential energyu.ethodg have been tiaed to study the temperature depen- eurf~~o used, the moat important aourcea of disagree.dances of these relative rate,, t e 5 4  Asgular distribution. meri t between the quastclsa.lc.j trajectory c&i culr.tion.for specific product vibrationa l states of the F t 0, re. and expea’im.rt are (a) elcctronl cafl y raori&diuibatl c at-action have been ittudled at several incident energ ies by lects , ar id (A) qu antum dynamical effects, Ti’s fIrste crossed molecul ar beam apparatus, a In addlUon , there problem ha. beers discussed by varl oua inve.t igato rs ,”~ ’exist several (usually Indi rect) determinations of the but its Importance Ii not rompletely underetood at pres -.
over-all bulk rate constants for the f+  H 1 react ion’ m d , end and we sIsal ! net consider It here .more recently, studies of I sotope effects for the F .  H,,

-
. V .0,, P.110, ansI F.DH series, ’ A very im portant in this paper , v-c jt udy the Importance of quantuzis

application of these reactions hse beon to the fij o rine-. dynamical effects In the F. M,—FH . H reaction by corn-
hydrogen chemical Iaserg ,~~’ where p~~~,. ~~~~~ PaX’ttsg the results of iccu, ‘~e quantum mechanical soW-

lions to the Schr&ilnger equ~ ioes for the cotitnear cot -serves as the rosin pumping reaction,
lIasous, to the results of the correspondi ng quailcls.asl.Consplemer.ting these experimental studIes have been cal arid enslciasarlcaj cai cul s1lona, In the followingseveral quasiclasaical trajectory studies on F, H1 ““ , paper (he reafter referred to a 0), we make the arialo-F. “~~~~~ and F t  Dft(HD)~”and Otto reccr .t Sernlcl*aei- gous study for the P.05 reaction and also examine exactcal study on s~Ollifl53X F. 0, ’ The results of the qua~s- quantum esult s for F. llD((,li), Results of our prilins-

t classical studies have g&,aeraily beets In reasonably good Itsar-y stu dies” TM tndtcs.ted thy, quantum effects wereagreementwith the det a11~d rate constant, obLai n~d by quite Impo rt ant in the cotitnear ?.H, reactiont and, i~Infrared che mlluutlnegrcence and chemical lsgør expert. fact , the disagreement between the qiasatetassleal g.ndnsentsbut us  much poorer agreement with the angtd ar di e- exact quantum reaction probabilItIes at Pow reagent ret-tributlona obtai rsedby the inolecularbesin ~~perlments, ative tr an siatlonai energies was quite l argt , fit theThere also exist. some disagreerisent between experl- preaen’ paper, we ç,Sye a more detailetti analysis of thensetst aasd the classical calcuja ftons on the rotaftenai cli e- re acUon proba bilitie , for P +  H5 ao calculated by fourtrlbutlon otthsdetail ed rate congtants,’5 and on i Sotop, differe nt methodat ass ease ~aantum m echanical solo-effects, ’ Additional theoreti cal development, have been tion , the quaalclaasleal forw~ard and quasi classical re-

874 Th Journal ot CA m ical Phyimc,, Vol 63, No. 2. IS My 1975 Cap 7r4ss C 1975 Ameri can tnreiait. ol Physice
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verse trajectory mcth ods , and the uniform semlciassi-
cal method. We ai tro pre sent and compare the corr e-

fou r methods , In add ition , we examine reson ances ,
t unn eling, and energy part it ioning in thi s reaction , and

spouding r ate const ant s uL~talned f rom (he r esults of these

examine the results of exact quantum calcu lations at • “ H

total energies for whIch two vibrational states of the
reagent H , a re access ible. . ~~~ 

/ 

I
In all cases , we restrict our considera tions to collin- ~ - ,;~~

‘_ -

7 Iear collisions of a fluorine atom with a hydrogen mole- ,~
cule where the ~~o hydrogen atoms are considered to be 

/~~~~~

,
distinguishable , The result ing cross sections are in the I

fo rm of dimensionless pr obabIlit ies of reaction between
specific vibrational states of the rea gents to form pr od-

- - - -

uct s i n specific states and are not dl rec U y comparable 
________________

- -

with experiment (although certai n other quxillities such - ————-- - — -

as final state distributions can , with CauU ots , be subje ct
to such a comparison). ~~ir j u stification for studying
coilinea r dynamics lIes nial nl y In its use as a predi ctive ‘ “ 

- 
I

model for the ener gy release behavior in actual thre e-
di mensiona l collisions ” and as a tesUn g ground for ap- FIG , I . Equlporentlal contour plot of the F i t 1 eoilt nes r poten-
proximate theorIe s of chemIca l dynamlcs~~’ Exa ct quan- 11,1 energy surface used In all .slculations repo rted here, En-
turn dynamics is currently feasible for many type s ~ ergtes jlven are rel sUve to the min imum In the H, diatomic

colllnear reactions , arid thus the Importance of qu antu m potential curve . Coordinate system Is detln d In text. H eavy

effect8 in chemical reactions can readily be established 
line denot es the minImu m energy path with saddle point Indi-
cated by a cross.

within the collinear restriction , How the ge quantum ef-
fect s will be modi fied in two- or three-d imen sional sys-
tems has not yet been fully established , but some prog-
ress has been made towa,’ds obtai ning exact qua ntum , /
solutIons to these problem s,” and quite recently accu-
rate converged res ul ts have been obtained for the H.  ~ 

where r,, is the shorter of the two h F  bond dist ances

copl anar and 3-D exchange reaction . ” in the H — H — F  linear geometr y . The analo gous coord i-
nat e system appropri ate (or the product arrangement

In Sec. 11, the potential energy surface used i n our channel (PH • H ) ii
calculations is described, In Sec. III we compare the
quantum , qsiastclasstcal , ar,d ~~~~~~~~~~~ re a , t51 m ~~~ (~ i..1*) t14 (r , Yiz.
probabilities ror F. H,, and in Sec . IV we compare the
corre sponding rate consta nts. Reaction probabi lit ios
for F. H~ la the higher total ener gy range where two Ce- ‘~ (15L

)
u/4 (r u e ) .li ii.,,,

agent vibrational states are ope n are discussed in Sec.
V. and in Sec. VI Is a short “-‘nary Thes e coordinate systems ha ve the advanta ge over

others ” in that the tr an sformation between the (x , a~)

II , POTENTIAL E I~I E R G Y  SURFACE cOOrdinate system appropriate for reagents and the
(e~ z~) system appropriate for the products Is ortht g-

We used the semlemp lr ical LEPS potential energy onal .
surface of Muckerm an i~ U (hi , surface 5), ThI s an~rface
is Ipter medl ate In character between his surf aces 2 and Since the vib r atIonal spa cing In 11, is about 12 kcal/

3 of Ref. ‘lb and was chosen to optimize agreement be- mole and that In h F  I s 11 kcal/mole , ‘riar vibrational

tween hi .. three-dimensional trajecto ry results and ex- state s of HF are normally access ible for the rmal dis-

pe r iment ,~~” Using Muck erman’s notati on , the par am- tributions of reagent II~ du e to the exother mlclty of the

eters describing the extended LEI’S surface are D~ (HF) reaction.
.6 , 1229 eV , l3 .(RF).2 .218’1 A ’ , R 5(l4 V~= 0 .9I’?0 A.
~(HF)~ 0,167, D5(H,). 4, 741 2 cv , ~~~~~~~~~~ 1.9420 A~~, 

Ill. QUANTUM , OUASICLASSICA L , AND
R,(H,).0.7149 A, and d (h1,) ‘0. 106. lbs. exothe r nui city SEMICLASS ICAL REACTION PROBABILIT IES
Is 1, 3’767 eV (31. ‘16 kcal/molet) and the barrier height FOR COLL INEAR F + H 2 FH + H
0.0461 eV (1.06 kcal/mole). Figure 1 shows an equ l - A. E~~ct quantu m reaction probsbilities
potenti al contour plot of the collinear surf ace along with
~.he minimum energy path , The coozdinate system for ~ - Nume,ical meiltoo’
the plot (and for all calc ulat ion s) is chosen to dl agonallze We used the cloSe cou pling prop agation method of Kup-
the kinetic energy with a s~ng1e reduccd mas s and Is de- permsauz” to solve the Schrö d inger equation for the cot-
fi ned by” linear system F e H,. The method Involve s dividing the

,~
, (~~g,~1\ i/4 (,. 4~~.a.z , . \  configu r ation space depicted In Fig . 1 int o d iffe rent re-

l~ , !~, t tI~5 )  gions and then prop a gati ng thoug h a given region III a

J. Chem . Ph~ i , Vol . 63. No. 2. 1 5 Jul y 197 5
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coordinat e ..;stern appropriate to (hat region. In parttc. ((cvi
ular , rectangular coordinates were ueed in the near ot 

- 
o~ - 

c.~ os
asymptotic region s appropr iat e to reagent s and products
and polar coordinates In the strong i.nteract lon region -

with the or igin of the coordinate system chosen 4n the C ’ H~ -_ rH.I.
classically inacces sible plate au area correspond ing to ~
dissociation. A basis set of pseudov ibrat ional eigenfu nc- ~
lions describing motion transverse to the direction of 000 3

propagation was used for expanding the w~vetuncttOnz. 0These sigentunctions were c~lculated by a finite differ- ~
ence procedure , ” and the ba ste Set was changed often - .
during the p t’opa gati3n to inauro an eif lcte n t rep res enta- c?
lion of the vavefunction . Cont ribut ions fro m continuum ~

integrat ion of the coupled Schrödin ger equation was done °°°
4

vibrational channels are not included in this method . The w

with an Adams—Moulton 4th order pre d ict o r—4th order
corr ector method (with a 4th order Runge .ckutt ’a—GUl
initiator). The procedu re for extracting the prob abUity 

___________

mat rices from th e asymptotic solutions is similar to O L ~~
‘hat used by Truhlar and Kupperm ann .m Convergence - E 0teV )
of the fin al reaction probabilities was car eflr Uy checked
by observing th e effect of var ying th~ loca t ion of the FIG . 3. Exact quan t um rea ct ion probabilitie s P,~ ai~ P,1 (sim-

ila r to Fig. 2).
orig in of the polar coord inate system , locat ion o. the
end point of the integration , ” numbe r of closed vibra- - 

-

tiona l channels , number of integration steps , and numbe r which unitar ity and symmetry were deemed ad equate
of grid point s in the finite difference eigenlunction deter- (ft~~ conservation to 0, 5% and symmetry to 5% or bett er s
mination , Using 12 to 15 vIbrational channels th rough- in the reagent translational energy range (relat Ive to a’
out the Integration , we obtaIned a scatteri ng matrix for .0) E, . 0 0  to 1. 10 eV. The computation time for a 13

channel calculation on an IBM 330-158 computer was
app r oxImately 32 mm for the initial calculation in whichi_ le vi a large amount of energy Inde pendent information was

~~~~~ ~ ___ .P,t 0 . stored on disk for subsequent use and 5 mm per energy
thereafter.t .H,—..r..u (a)o~

We define the probability of reaction from an initial04 
State a’ (of the reagent H ,) to a flnal state a” (of the prod-
uc t hI P) by the symbol P ,,.. (This symbol will also be

2. Results

used as a shorthand notat ion for the phase “a ’—  a” reac-
-‘ Use collI sion . “ I The total r eaction probability p~ from
~ I
4 i a given incident state a’ is the sum of J’ . over all acces-
o 1 sible a”, The exact quantum (EQ) reaction probabUit’es
a 00 — - — P ,, P,~,, and P,~ for F . H , in the translational ener gy range
Z 0 C E, .0 ,0— 0 .4 eV are presented in FIg. 2. The react iono it ’ probabIlities for the transitions P , and l’s’,, which are also

allowed in this La range, are plotted In FI g. 3, We see that
0 4 P~, and Ps’, have an energy dependence very similar to P ,,

but w ith much smaller values (P~ ~ O x i0’~ P ,, P 1,  ~ I
x 10’ Pr ,). As a result, only P~ and P , contribut e ap-
preciably to P,~ In the eneigy range considered . As was
pointed out previously, “ i’~~ ~~nd P , have rem arkably
different threshold behavior.. We shal l define the effec-
tive threshold ene rgy E ,. for the i’ a” tran sItion as the
difference between the (lowest) energy for which the cor-
respond ing P~ . Is equal to , say, 1% of the maximum

- . - value attained by this quantity Rnd the energy at which
FIG . 2. Exa ct quant um re5ctton probabilities for coilincsr th e r— a” p rocess becomes emte rg et ica lly possible. W ith
F • hI~ as s lu.e~tIon of rel st(ve Iranetsttoctal ene rav F, and totsi this defi nition , Pr,, has an effective threshold of 0.005energy P (relative to minimum in It~ dt atomic potenusi ener gy
curve ) . (a) Total reaction pr ob a b llit yP ~ 1 m m  , 0  of ~~ ~~ 

eV , while for P , (which is ener getically forbidden untti
reaction proh ahilit les P~ and P,~ (defIn ed in text ). Vertical E,. 0. 013 cv) , E~~ Ia 0,04 5, Note that while the barrier
sn ow in abscissa IndIcate, the n w  it whlct a ’-S  of iir ~~. height 1. 0. 0461 eV, the zero point energy of H, is 0. 268
come. ecce•siblo. eV, so the transition P , is energ aticaUy allowed even at
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zero translationa l energy. Likewise the 0- 3 reactive initial phase angle variable for the vibration of the ground
t ransition is ener getic’a ily aUowed as the H F(3) channel state of H 5 was var ied uniform ly over a grid of typically
opens up at E,.. 0. 013 eV . One possible explanation for 100 points in t he  interv al 3 to 2w . The fin al action num-
why the effective threshold of P& Is greater than aero is her of (he product 1U’ was computed for each re active
that the exchan ge of energy between r”~t ion transverse traje ctory and assigned a quantum numbe r by rounding
to the reaction coordinate and that along the reac tion co- off the action number to the nearest integer. Thu s, the
ordinate Is not efficient (at leas t in the entrance channel tr a nsition probability P ,. was defined as the fraction of
region of configuration space where the saddle point lies), reactive trajectories with final quantum numbe r a” .
Tru h la r and Kuppern3ann have shown~ that  a more real -

When this procedure is carried Out in the direction Fisll c estimate of the effective barrier height in Ii • H5 Is
obtained from vibratton ally adiabatic theory . The vtbra- +H ,(s’ ’. O) — FH (a ”) .H, we term (he qua slclasstcal tran-

sition probabilities “qu as iclassical fo rward” (QCF). Fortion ally adiabatic barrier (fo r aero curvature and using the reverse react%on, the quastelasatcal transitIon prob-the harmonic approximation) for P • )t~is 0. 026 cv , which abilities are termed “quaslelassical reverse ” (QCR ).is ~t ih l app reciably lar ger than the effective quantum 
Quantu m mechanically, the fo rward and reverse prob-th reshold energy for P~, (0. 005 eV) . although il ls quite abilities are rlgorouuly equal at the same total ener gy,close to the P~ quasiclassical threshold ene rg y (0 . 025 but quaat classically they are rot iC Therefore , eithe TeV ) (see Sec . Ill . B . 2) . This difference between the of the two quastclassical results, QCF or QCR. cotild bequantum and quaaiciasstcal threshold energies could in 
used to represent the probabilities for the (fo rward) re-part be due to tunneling throun h the one-dimensional active coUlsions. Since there is preset Uy no a p, ’f oriadiabatic bar rier , with in the framew ork of an adiabatIc way of deciding which of these two procedures wt lL givedescription of the quantum dynamics In the neighborhood results closer to the EQ ones, we have used them both ,of the c addie point. lit Palw r II we shal l see that the me- and corresponding results are presented below .suits for P.1)5, P.111). and P .1)11 support this conclu-

sion, The high thr eshold ener gy (or P , is not eas ily 2. Resultsexplained as result ing (rem one-dirnenstonal ad iabatic
• barrier tunneling and is probably due to a dynamical of- In FIg. 4 we plot th e QC F and EQ reactIon probabUi-

feet , as ~ iU be discussed In Sec. III. 8, 2 , ties P~ , P ,, and P,’ vs the translational ene rgy E,. as

The sharp spike In the P~ curve at energies slightly
above threshold I. r emini scent of the Feshbach t ype in-
tern al exc t’atio n resonances observ ed In the cohlm near

~ 0 5  04 0,5 06 -,hl .}1~ reactI On, ” A discussion of other resonances in or
the F. H, reaction is presented In Sec. V . \ ~~~ r.pl , rH.u  (a)

Simultaneously with the reactive transition probab il-
ti l es , we have calculate d th e nonre acttve ones cone-
spondlng to the co’lision a F + H,( 0)— F ÷ H ,(0) arid FH(a’)
+H FH(a”) .H . The pr obabi lities for the first of these
nonr eactive processe s are simply the diffe ren ce between 04
unity and the total reaction p robability P (as long as a’

/

‘I) p.1 of H, is closed). The tran Sition probabilities for the ~
H + HF(a”) inelastic (w ’* a’) processes are all quite small ‘

(generall y less than 0. 01) up to £~“ 0 .4 eV and vary mci- ~

collisions to be roc~ h1y equal to th e diffe rence between oc .i

at i vely Slowly with energy, Unitar lty of the scattering ~
m*tr lx then forces the elastic probabilities for l t +H F (a ’)

unity and the probability for the F + H 5( 0)— FH(a ’)÷ H me- oc
I,)

‘Siprobabilities for n o ’~act,ve H • HF collisions contrasts ~
stro ngly with the correspond ii,~ inelastic transition prob- 04 / “5

\
~~~
,_\

active process. The behavior of the inelastic tra nsition ~

abil iti es for coiltn ea r H • PH collisIons , ‘~ In the latter ~0 ,~5_y”~’ “I 
~~ ~~~

p
~,~occ)

case we find that the p robability of an Inela stic collision
is comparable in magnitude to the elastic tran sition pru b - 

,- 

~‘~•“. p • iocr ,abilities azat , in additIon , th e probabilities of mult iqu an - 0 2

turn lump tr ansi t ions are often grea ter than the prebabli- I 
~ Nit les of single quantu m J ump transItio n , ;. A more com- I __________

plete dis cussion of the results for coIl’ - var H • Fl-I will _______________________________________

be gIven in Ret . 32. 0’ 02 0’ 04
- . 

(,~(.V)
B. OuMicisesical reaction probabilitie s FIG, 4. Qua aicia ssicaj forward and exac t qua ntum reaction
1. Method probabil ities for F .  H 1~ (~) P1’. (b) P,’~ and ~A. Destwd line

Indic at e. QC I’ results wi th  their associated statistical #r ra r s
Tt e  clasekal trajectory calculations were carr ied out indicst~d by vertical bar .. Solid Li ne indic ate s I’Q results (a.

In the same way a. in a prev ious H • H, st udy. ~~“ The in Flj. 2). , -
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~ isv) In order to include a study of isotope effects in th is snal-
i~ ~0~3 ~~~~~~~~~ °,~ °j’ yzis, we deter a discussion of this to Paper a.

~ 
ru. w In Fig , 7 are plotted the QCR and EQ reaction prob- • 

-

ab ilities P~~, P ,, arid P , vs E0. The transition prob-
ability P , is nonzero at zero reagent translational ener-
gies. This can occu r because of the conven ti on of round-

I, 

~~ 
to

ii~ classical vibrational quantum numbers to the nearest
tnt.ger,~~~~ $4

The QCR results in FIg. l ire in much better agree-

j

r>

~~~~s1
merit with the quantum probabilities than are the QCF
results in FIg , 4, This is true not only of the tot al rea c-
tion prob abilities P but also of the Indivi dual transition
probab ilities, espec ially P ,. The fact that the threshold
behavior of the P~, transition can be described correctl y

0. _________________________________ .......i. ~ by a qua siclassical method suggests that the 0.04 5 eV
(M.

i 0.1 02 0.3 04 effective threshold energy In P~~(EQ) is a dynamical ci-t 0’ev fect related to motIon through classIcally accessible is
FIG . S. Fraction (I,) c4 the total reagent energy (in excess ~ gions of configuratIon space. The tact that the reve rse
product zero point ener gy) which ends up as vibr atio nal energy rather than (he forward tr ajecto ry method produces the
in the product lii’ as a fu uc t lon of th. reagent tr ,naiatl ona l en- best agreement with the exact quan tum results must be
ergy £~ sal tot al ene rgy F. ScUd tI ne indicatea ir~ resul ta and regarded as an empirical observ ailon at present. It
dashed line QCF results. Other not&tion analogous 10 FIR. 2. would be Interesting tta ui’the r analyze the quasicl assical

results from th. viewpoint of what regions of conulgura-
veil as the corresponding ezac~ quantu m ones given ~ 

lion space are being sampled by the QCR and QCF Ira-
Fig . 2. Out of the 100 tra j ectories , none yielded H F wtt h J ector ies arid with what velocities , and how well the cur-
s — 0  or 1 (1. e., P , — P , —0 probably to within 0. 01 or rent density fields derived from these tr ajectories agr ee
less). The re are two important points to be noted in with the correspond ing exact quantum current densities. ”
comparing the EQ and QCF results. First , both the cx- The good agreement between the QCR and EQ results
act quantum arid the quaaicla.s stcal results predict rough- suggests t li*t the QCR procedu re shoul d be applied to a
ly the same amount of vibra tional excitation In the HF three- enatonal tra)ectory calculatIon. U the differ-
product on thc average. Indeed, If we define !, as the ences between the one-dimensiona l QCR and QCF results
f raction of the total ener gy which ends up as vibrational .j w also found in three-dimen sIonal calculations, thi s
energy in the product HF , the n in Fig. 5 we see that f could be indicative of the presence of import ant quantum
is roughly 0.81 and nearly independent of E, in the QC ~ 

dynamical effects in the th ree-dimen sional rea ction. —

results, and fluctuates between 0.66 wid 0. 89 with an
average value of 0.79 In the EQ results, From this , we 

•

(fey )conclude that the quantum and quasiclalalcal dynamics 0,5ag ree (on the aver age) with respect to partitioning of

grees of freedom. Second, despite th is aver age agree-

EQ and QCF reaction probab ilities, pa rt icularl y wttei
respect to the P , threshold and the P~ /P~ rat io. In E ~

product energy between translational anti vibrational de-’

FIg . 6 thIs r it lo is displayed as a function of E, for both
th e EQ and QCF r esult s. As baa been pointed out pre-
viously, “ the lack of agreement between the individual %.°
tr ansition probabilities P , and P~ can be partially ex-

merit, there are very significant differe nces between the s~ 
‘~~~ 

- 

•

plalned as artaing fro m the reasonable but nevertheless °

arbitrary way of assigning a discrete qu antum number

the large differences in the ene~~~ dependence of the EQ
to a continuous product vinratio nal energy. However ,

and QCF F ,(v.5 2, 3) suggests that this 1. probably not 20

the whole explanation and that other significant differ -
ences exist between the classical and quantum dyn amics
in this system. In addition, this arbitr arine ss in the def-
imt ion olapmduct quantum numb e r i s n o tpresent th O~ 

F.~~~~~F H *H

o.o! 0.1 02 0.3 0.4
the tot al re action probabi lities P05, yet the differences is E0(.V)
magni tude and energy dependence of the EQ cud QCF re-
suits are stW very signifluast. FIG, 6. RatIo of reaction prob abilities P~ /P~ vs translational

energy 1, and lot.) energy F, Solid line Indica te . E~ result S
It Is also of Interes t to analyze the EQ and QCF leac - and dashed line QCF results. Other notation aitalogou i to Fig.

tlon pr obabilit ies by an Inlormatlon theoretic spproaeh.” 5.
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(( V) in order to obtain a noovani shing value of this transition
01 . - °,~ - 

O~~ Prot)abiiit,, since in th. above ene rgy r ange , although
energeucally allowed, i l l s dynamically forbidden , ””'

- r.s 1-..ru .~ to) In addi tion, it was found that P~ was illdeterrnl n ed near
threshold in that a plot of final Eli vfbraUona l action

os P~~(Q)
veiled “raggedness” (i. e. , very rapId var laUon of m~
with q,) for m, near the value 3, 10 Raggedness was al so

CR ) 

number m~ vs ini U al H, vt braUon al phase angle (q,) re-

observed over a range of energies for the F. D,(v~ 0)
— FD(v’. 4). D reaction by us (see following Paper U)

in
~. 

salts were considerably less ragged for ,iz ~ approximately

and by Whitiock and Muckerman , ” We managed to over-
come thi s difficul ty at several ene r gies by doing theI-
semiclassIcal anal ysis for (tie rever no reaction , i, e, ,

1,4 H . H F(i’ - 3) — H,(v - 0), F. ‘~ For this reaction , the re-4

equal to 0 than they were for the forward reaction around0.
m 1- 3. A more complete di scussion of this procedurez OC0 06 is given in Paper U for the F. D, reaction.

I-,
,

—“~..,. P 1 ((O) Ib)
4
U

~ e~, tcoi //
‘.,_ S~~~~\ 

2. Results

The eemiclaasi.~a1 react i on probabiliUes P~ and P , 
* 

S

for F+ H, ar e pre sented to FIg. 8 along with the corre- j
spondi ng exact quantum probabilit ies. In the absence of

:: 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

phase space at complex times), vanishing quasiclassical
considering complex-valued trajecto;ies (in complex

reacti ,n probabIlities implies tha. ti’s, correspondi ng
emlclassical ones al so vanuab . TI. -‘relore , P&(USC)

a P~~ USC) ’. 0. From the appearant ‘of the reac tion
00 pro babilitie s in Fig. 8, we see that the qualitative agree-00 0’ ment between the EQ and USC results is quite good.

~o (cv ) 
There are large differences between the magnitudes of

110. 1, Quastc% assicsi reverie toil exact quantum reaction the USC and EQ pzobabthtics at certain ener gies , bot
~rohebIltties for? .  if s : (a) P4’, f )  P~ and P~ . Dashed line $uch differences are not usually too important for the
ind icates QCR re sti t i with their associated stati stical error, resulting coilinear rate const ants (see Sec. IV). CX
ind icate d by ve rtical bars . Soiid li..e ind icates L ’Q results (as more serious consequence for such rate constants is the
in Fig. 2). 

~ma1l difference between the thre shold energies of the
P a curvea , As pointed out in Sec. il].D. l ., thf s thresb-
old diff erence of about 0. 020 e 1.’ could be partly due to

Wilkins” has completed a three-dimensional QCF study an adiab ati c tunneli ng effect , and it may be possible to
of the reaction Fli(s) + f l_ f l5(v ’) + F (a  varylr.g fro m 1 Improve the agreement between the EQ and USC results - 

. -through 6). His results can be conside re d t o be QCR by using complex trajectories. “
calculations for the reaction F +R ,(w ’)— FH(& ’)+H . He
has also published QCF rate constant calculations” for
the latter reaction with ‘/~~0, It would be very interest- P. Comp~r1SOfl of EQ. OCF. OCR . and USC reaction
big to compare the correspond ing (QCR and QCF) cross Pt0~~1bd i tiS1

sections. Perry ci at .” have recently published a three-
dimensional comparison of the QCR and QCF cross see- In Figs. 9 and 10 we compare the exact quantu m, 

— 
-

lions for the endothermic I + H , M 1+I reaction at one quasiclassical fo rw ard, qua.siclasslcal reverse, and - -

total energy . They found that microscopic reversibility ~enticLas~ical reaction probabilities P ,, P ,, and P.’
was approximate ly obeyed at this energy but made no de- for F. H, as a function of the re agent translational en-
tailed study of the energy dependency of the cross sections ergy. Note that the QCR results resemb le the USC ones

much more than the QCF results do. Q,vloualy, theand did not investigate threshold effects,
USC threshold energy must be larger than or equal to
both the QCF and QCR thre shold energies. However , -

C. S.nud~~,ic.i ,ssction prot~ b.Iidss we cannot presently put forward an a prior i reason that - 
- -

1. Method - wc.uld have permi tted us to pred ict which of the latter -
- 

-

two energ ies is greater nor which of the quaciclas slcal - -

For most energies, uniform semiclassical reaction reaction probabilities shoul d be closer to the USC ones. -

probabilities were calculated according to the proced ure N is also ver y inter est ing to note that the QCR results -
described In Ref. 34. However , for transl ational ener- resemble the EQ ones more than the USC ones do. Oue
gies Z. greater than 0. 10 cv, the transition P~ was should , however , be cautious not to generalize thi s oh- -

computed by a simple analytical conunuatloo technique,” servation. As shown in Paper U, the reverse behavior
Similar in spirit to that of Miller. ” This was i ec.ssary is found for the F+ D, reaction.
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IV. EQ. OCF, OCR. AND USC RATE CONSTANTS E(eV)
• FOR F + H , ~O 3  

- 
0,4 

- 
05 

- 
0€

The detailed ~~~~ v’ rate constant for a one-dimensional C.s,.4K.sl to)0-sbimolecular reaction such as F. H,fr )— FH(&” )+ H is
defined as I \usc

- -k~~ (T) (V~P5
~. (V.,))r 0-s \

- ffr( Vr v.P~..(V.dV.
r8

where V, is the Ini tial relative velocity of the reagents ~ o.e

rel ative veloctty distribution function. ~~angIag the
F t  ll,(v) and fr(Va) is the one-dimensional Boltz inann

agent translational energy E~ , ~~ s expression becomeeU 0.2Integration variable from V~ to the ini tial relative re-

t
(2vM,.~,,.k7i” .1 P ..(E~)e ’a”dR,.

0.4) .1

Note that for one-dimensional systems, number densi-
(hIlea are expressed in molecule/cm, so that a bimolec- 0.4 

- 

-

E (cv) 
0.2 ! t ~~~ê 0.3 04 

- 
O S 06 

~ ~~~~~~~~
p .o I’ I

(a) I ~~~ 

~~~~~ . _ -___~
_ -I ’ ~. -

opt 0.’ 0.2 0.3 04
I ’

• o.e 
: 

\e cusci (0 (eV)

i FiG. S, ~~ (solid) , QCF (short dash) , QCR (dash—dot) , and
- 

- - I USC (wig dash) reiction probabilities P (a) sod PJ 0) ior
i t 1+113 (rem Figs . 2, 4 , 7. 8). 

- - - -

0.6

ular rat. cooatant baa the un1t~ cm/(molecule . see).
- Using the reaction probabilities presented in Fig. 7,

we have calculated the rate conctanta k , and k , trots
the EQ. QCF, QCR, and USC reaction probabilities.
Arrhenius plots of these rate constants nrc pre sented
in Fig. 11. We see thatfork sllplots are nearly lin.-
ear at high temperatures. Because of the extremely
small effective threshold energies of P ,,, the Arrhenl us . -~~U _ _ _ _ _ ________________ 
plots of k , are only linear at low temperature (c  500 K). —

At high temperature, the temperature dependence of- 
- 

I_ OS 
(~ ) h~~ approaches 7’~~’, which Is characteristic of a resc-

U Ii ~e:~ usc lion with aero activation energy. Arrhenlus activation
I ‘ energies ~? and ~? and pr eexponentlal factors A~ and

0.6 A~~, which were determined by a least squares fit to the
200 -400 K reaults aid to the 900- 1200 K results, are
given In Tabl e 1. It is clear from Fig. 11 and Table I
that ( ,(QCF) has an s.ctlvatlon energy which is slgnifi- . - —

cantly lower than the activation energies of k 5(EQ,
P~~~((Ol QCR, or USC). This is an obvious consequence of the

different atlective threshol d ener gies of the react ion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0.2 \P~,tu~~ i
probabilities (Fig. 9) sad illustrates bow these thresh-
old differences can affect the detailed rate constants.
As migld be expected from Fig. 9, k& (QCR) s~1
k&(UDC ) a c  in quite good agree ment with k~,(EQ)5

.1 02 - 0.3 Th. relative agreement among the corresponding three
E ,(eV) 

~~ rats coustists is much less satisfactory at low tern-
•1

P10. 8. Untlorm serniclaastcsl and exact quantum r.aetioo p.ratures, the ditlsrence between k s(EQJ and k&(USC)
probablllti.s l or l +H,: ( i P 1, (,) P~~.& P4. lisd iles i.maanly det.rm ned by thr o.O eV differeace in th.

- - - Indicates USC. results, solid lies L~~ results as I. Fig. 2. threshold energies of lbs P~~ react ion probabilities.

J. Ctwrn. P1i~i, VOl. ~ , Ne. 2, 19 Ju ly 1971i

- —

— -~~— -- —
~~~~

- —-—-~~~~



-~ --

- --

1~Schatz . Bowman , and Kuppermann: Cotli ne& F + H , - FH + H reaction -

((cv) - 
1(K)

~ 03 04_ 05 06 2000 JO 600 400 ~0O 700

2~ j 0~ to )S O \ OCR

\uw r ..a ~— r ’s.t~ ~~ ioio —_ .,
‘ —

55
—

~~ os E s a l o ’ -~
-.‘ I ‘a0

2s,0’
2a10 4 “~~. (b)

p. JO4 - _ _~~ _ _
~~~~~ 

_— — — 

_______

-~ ~ “o ’I::tJt0.~~~~
i.I0~

2xl O~

c a  02 0 3 04 0

\ \FIG. tO , FQ (solid) , QCF (short dash) , QCR (dash-dot) , and
USC Gong dash) tolal rsactlon p~~bsbIlI ~ Pr (or F .H 1 U~~m 

2 .IO~ ~~~~ 

-

FIgs. 2 , 4 , 7 , 8). 

l o b ’ 2 3 4
Since P~ (QCR ) has its effective threshold at zero trans- 1000 K/I
lation al energy , 8 ,(QCR) has a smaller activation ener - FIG . 11 . Arr hcn iuo plot of 1Q (solid) , QCF (short dash ) , QCR
gy than k~~(EQ), which in t urn has a smaller activatIon (dash—dot ) , and USC Gong dash ) rate const anL s for F + III : (a)
energy than k 1(QC F or USC). The total rate constant k~ , O~ k~,.
8 which ii essentially due to the contr lbuUon s of k~,
and 4 does not exhibit simple Arrhenlus behavior be-
cause it is the sum of two Arrhenius expressions which in lid s paper.
are of equal magnitude near T= 1000 IC , but which have In contrast to the k~,/4 ratio , 4(EQ)/k~,(EQ) Is
qu ite different activation energ ies. Not e that the experi-
mental activation energy (which is l , ’11 kc al/mole)” nearly constant In the temperature range considered I 

—

here. Thi s agrees with the temperature variations of
seems to represent an average of the present EQ values
of E ’ and E ’. both the expe rimental ” and three-dimension al QCF ’

results , although the absolute magnitudes of the ratios f 
- .

In Pig. 12 we plot the ratio kWk~, as a f unction of are quite different (“ 90 for l-D vs 3 for 3-D). We

temperature , The large difference betwvc~ the tempera- also fo und that k~~(EQ)/4(EQ) Is nearly independent of
ture variation of the QCF ratio and that of the EQ. ~~~p, temperature with a value of roughly 210. Therefore
or USC ratios Is again a consequence of the diff erence k~~(EQ) and k~ (EQ) are, respectively, about 2 and 4
in the reaction prob abililiee in Fig. 9. It is interesting
to note that the three-dimensional quasIclaseical forw ard . -.
trajectory method yIelds a rate constant r atio which is TAtt LE I . Arrhenius -ate constant parameters for F 4 H,
near ly independent of temperature, Is in agreement with — FH • H
the one-dImensIonal QCF’ resu lts presented here. An
experimental measurement of the tempe:ature depen-
dence of 4ia~” seems to agree reasonably well with r~, itt ~~r OCR tec
the three-dimensional QCF result’ and consequentl y ~ 200-400 0. 411 0. 7411 o, ,ao 0. 7415 - 

- 

—
disagrees with our EQ result . This may Ind icate that F:’ 200..400 2. 270 0. 053 1. 504 3. 400
the strong difference between the activation energies A,, 200-4 00 I, CZO. l0 ’ 2. 42 4010 ’ P eSO,. IC ’ 1 404010’ -

of 4 aad4obs.rved here is largely averaged Out in A ,, ~oo- oo 2. 0 4 7 10’ I.~ ’2 ’I0 3.$17’IO’ ~~~~~~~~~
thre. dImensIons. C~ the other h and, for tie F + D, re- ,. 

~~~~~ ~~~
,, 0.750 0 0414 41. 500

action, the agreement between experiment and the quasi- 
~~~ go~-~~ 0. 4120 1.444 2.110 5.000

classical resu lts a not as consistent as It I s for F-o H 5 A,, IO0_I200 ~~~~~~~~~~ ~~~~~~~~~~~~ I .I2l ’IO’ i. ios ’iC ’ - - 
-(to be discussed in Paper U), so it is possible that the A~ l00—liOO 4 4 13010’ 4 454 0 tO’ 4 44 ,0 ,0’ 4 411.141’ -

averaging process In three dimensions does n54 com 

-

_______________________________________________

pletely destroy the Important differences between the ‘h04(~~ -A,0 exp(- F~ fRfl , where E~~ Is Ia kesi/inal. awl A is ‘

results at quantum and classical mecbanii.a as reported in em/ tnotseuIs~ see).
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1000 K/I 13 we see that the contributions of the direct proces ses
50 6J ~ _~o ‘t  I 0 seem to be rather smal l in regions of energy where the

resonance processes are important. Thi s results in
only small inte rl ere nce effect s between direct and corn -~~ 4 * 1 4 2 -.fl i.b4

pound state contribut ions to the scatter ing amplitude , and
— — — the resulting react ion probabiliUea have nearly symmet-,---

--

rical peaks as a fun ction of energy near the resonanceo~c --

only one nonnegligible reaction probabilIty neema to
/ energ ies. The resonance widths are about 0. 01 CV , and

show resonant behavIo r at either of the two resonance
- energie s. There seems to be a correlation between the,

.‘ ø,7 —“ app earance of an Intern al excitation resonance and the
“ .“ -“' opening of a specific vibrational state of the product

(as in the reson an ce at 0, 823 eV , which is close to the
opening of the v o 5 channel in HF at 0. 839 eV). This
indi cates a correlation of the resonance state with the

00 — - -1~~
’ - - reaction products rather than wi th the reagents or with2~.K) 400 600 

• 
000 ‘0(t) ‘ZOO

the transition state , We shal l analyze tlu~ phenomeno nI l K )
further in Paper U when we examine the high energy

FIG. 12, R at ios of rate conStan ts h-~, ’*-~, for F + U5 as a fuse — F • D, react ion probabilities,tion of temperature , EQ teolId) , QCF t oho r t duh) , QCR (dash—
dot ) , and USC (long dash). Although the total £ In FIg. 13 extends to 1. 16 V

only, we have done calculations up to F 0 1.4 cv but
found all reacUon probabilities in this higher ener gy

orders of magnitude smaller than 4(EQ). r ange to be les, than 0. 01 . Thi s behavior seems to be
related to ~‘centr ifuga 1” effects associated to the angle

V, EXACT QUANTUM REACT I O ’J PROBABILI TIES between the x~, and z~ axes (i .e . , the skew angle be-
FOR VIBRATIONALLY EXCITED REAG ENTS tween the asymptotic porUon s of the minimum energy

In order to observe the effect of vIbrat iona l excitat ion path for the potenti al of Fig. 1) and wil l be f urther dis-
of the reagent i1~ on the res ulting reaction probab ilities , cussed in Paper U.
we extended the r ange of ow’ exact quantum calculations
to tot al energies of 1, 4 cv. In Fig. 13 we plot p , ,  p5~, VI. SUMMARY
and Pj’4 , the three largest reaction probabiliti es for Many of the dynamical effects presented in this pape r
P4 H 3 in this energy ran ge , as a function of ener gy. will be further examined in Paper 11. to where we wiU
There are several Important points to note about this relegat e a more extensive su mm ary of quantum effects
fIgure . in the F. H, react ion . In thi s paper we have seen that

First , the transition P~ has virtually rero effective the re are very serious differences between the results
threshold ener gy but otherwise has a similar tr ansla-
tional energy dependence to that of P ,( whi ch has the
same v ’— v value as P/4). The absence of a significant E (cv )
thr eshold energy in P 14 ind Icat es that the dyn amical ci- IC uO8 

- 09 
- 19 - 

l~ i —

fecta responsible for the app earance of a significant ef- 
- -fective energy threshold in P , a r-c no longer significant

r .I12- .FH.Hin Pr,. This will lead to lower activatIon energ ies and 08
highe r rat es of reaction for re agents which are Ini tially ~vibra tlonally excited . The similarity between P~~ and ~
P.~ i mplies that for the most significant reaction prob .. ~ 06

0ab ilifte,, an Increase in the vibrat ional energy of the
reagent results in a corresp onding increase in the vi- 0..

bratlonal energy of the product, This agrees with Cx- z 04
2peri ment al observat ions for F + D,. p..

An an alysis of the ene~~~ dependence of the scaftering

Second , th e reaction probabilities PC3 and P~ have 
~ 

02~sharp peake at E~. 0. 42 5 eV and 0. 823 eV, respectively. g~~

matrix elements correspond ing to similarly shaped re- 
04- - actio n probabil ity curve , in the H • H, collinear reac- -

ton 50’4 and in several other model reactions11 showed E0 (eV)
that narrow peak s (or dips) In the reaction probabilities FIG. 23 . Exect quantum rea~tionp rob abIIit iepp~ , P~ , and P1

5
1wore the result of the presence of intern al excitation for F + K5 at tr a nslst ional ene rgies higher thso those I n Fig. 2,(Fe shb ach) re s~nan cei. Th~~e r eeo nances ar e a ssoc iated Arrow . near E, — 0.44 eV aml 0. 04 ev indI cate the openi ng ofwith excitat ions of vir tual states of the intermed iate ti’s. p — 4  and 5, respectI vely, of h F , white that at 0, 61 OV ind icates

atomIc complea (F HH in the present case), From Fig. lbs energy F, at which p°1 of II, becomes accessible,
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of quantum and standard quas lclassical mechanics for y C, Wong, and V. T. Lee, .2. Che m . Phy . . 83, 3385 (i970)~
collinear F. H ,, moat notably in t he energy dependence - (b) Y. T. Lee ( V I I  IC I’E AC ) . The Phy olcs of Et,clvoeic gad
of the reaction probability P , near thre shold. These Atomic ColUsio,is , edited by 1’. 8. Covers and F . J. 4e hhC ~~r
differences in the behavior of the reaction probabilities (Nort h- h oll and . Amste rdam . 1971 ) , P. 357 .

result in Important differences in the detailed thermal 
15~~~ compIlati ons by N. Cohe n , Repo rt No . TR-0 073(3430)-9 ,

The Aerospace Corpor a t ion , El Segundo. CA . 1972 and ite-rate constants , The fact that the quasic lassical forward port No, Tht-00 741453 0)-9 , The Aerospace Corporation , Elreaction probabilities and rate constants disagree quite 
~~~~~~~~~~~ 

CA . 1974 .
strongly with the exact quantum results is of great sig- 1A. h’er sky , .1, Che m. i’hy c. 59 , 5578 (1973).
nJ.ficance, since nearly all the trajectory studies done (a) D J ,  Spe ncer , T. A. .Iac .bs, II ,  Mtre ls , and R .W. F.
to date on this reaction have been of the qua siclassica l Gro so , lot , .2. Che m. Klux-I , I , 493 ( 1969) ; it.) T, F . Deutac h ,
forw ard type, For the present react ion , both the quasi- Appi, I’hy s. Lett . 10 , 234 (2967 ) ;  Ic) S. N. Suchard , it . L.
classical reverse and uniform semiclassical methods Kerbe r , C , E manue l , and J, S. W hittier , J . Che ss. Phys .

57, 5065 (5972) and r efer ences t hu- rein .provide us with more accurate ways of approxi m at ing the 
‘(*) .2, 1’, Muck erman , J, Che m. I’hys. 64, 1155 (1971) ; 0,)exact quant um results, This suggests that it might be 56 2997 (1972).

of interest to use these methods in three dimensions, 
~(ah ii . 1. .I aff e and J. 8. Ander son , .3, Chess. Phys. 54 , 2224b

Indeed , it m a y  be possible to use the results of collinear (197 1) ;  (I,) 56 . 682 (1972); Cc) It, L. .ia ffe . .3, hi. Henry ,
calculations such a. the ones presented here as a guide- arid J. 8. A nderson , .1. Chess. i~hy s. 38. 21 28 (1973).
line when choosing an approximat e method for doing ‘(a) H. L,. Wilkins , J. Che m. Phy.. 56, 912 (1972); Ci) l.. L.
three-dimensional calculations. t~l lktns , .2. Phys , Chem, 77 , 3081 (1973).

“N. C , Blais and U. 6. Truhlar , 1. Che m. Phys. 68, 1090
Additional exact quantum results for F + H , show tha t ~ 973),

threshold effects are no longer impo rtant when the re- 11A, Ding, L. K ir ac h , P. Perry , 3. Polanyl , and .2. Schreibe r,
agent H, is initially vibrat lonally excited , The domina nt Di scuss . Faraday Soc. 55 , 252 (1973),
tr ansitions appe ar to be those which channel add itional ‘ P, A. Whit l ock and j. 1. Mucke rman , .2. Chem. I’hys. 61,

4618 (1975),vibrational energy in the reagents Into addi tional vibr a- 
~~~~~ A. Ben-Shaul , H. U. Levine, ano it, B. Bernstein, Che m,tional energy in the products, Internal excitation r es- Phy s. i.ett . 15 , 160 (2 972) , Ci) A, Ben-Sha ul , it. U. LevIne ,

onances are found to play an impo rt a nt role in the re- and R. B. Bern st e in, .3, Che ss, Phys , 67, 6427 (1972); Ic)
action probabil ities at certai n translation al energies . A. lien$ha ul , G, L. Ho(acke r , and K. L, Komp a , .3. Cse m,
There seems to be a one-to-one corre spondence betw een Phy s, 59 , 4664 (1973) .
the energy at which a resonance occurs and the energy ~~~ I.. Hofa ck er and 8, U. Levi ne, Chess, Ph ys , Lett . 15,
at which a related product vibra ti onal channel opens. 165 (2972) , also unpub lished re a ulta.
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Exact ~uantum, quasiclass ical, and semicIass~cal reaction
prc~abiIities for the collinear F+D2 —

~ FD+D reaction *
George C. Schatz ,’ Joel M. Bowman , arid Aron Kuppermann

.4,lhu , Am,,, Noyei Lehea’auwy of Chemical Ptiysict t Cu bf,wn tg 1,w,iu. te ~~ Teclu.toiogy. Paradena. 
-

CcliJonu.a CI 131 -

- . iRccrnrd 22 (ki,*.er *874)

Erec t quantum . quauciauical, and icir ,ciar.sscal rract ton prubsh.itt .e. and rate connlasts for the eoliincar
,eactvw, F s — ED-v I) are p r in t e d .  in ill calculat,onx, a high degree of populat ion ,nremout is
pred,cted ,stl h P~ and Pt!,, bssnj thc dom i nant react,csi probsb.Iii,~~ I n en a krgy with the F + H, reaction
(preceding paper), the enact quantum O—. 3 and O—.4 probabilities show ‘na kedl y d,ftcrrnt ener gy dependence
w,lh P~, hasing a much smaller cffecti-r e threshold energy (F , - . 0014 eV) t han P~, (0055 eV) ihe
corresponding quauciaasucai forward pcobsbsiuaic. I” and I’ , ar e in ~sx,r agreement with the erect quantum
ones. ~ hile thei r quauc lasaâcal om-erie and i ciauuscal counterparts pror,de muc h better IppeorinsEloirl to
the enact result, Similar corn psnsonn are ~ho made In he anal ysis of the corresponding EQ. QCE. QCR.
and USC rate constants. An infosm.tion t heoretic analysts of the EQ and QCF erection prot,sbdiiim ,nd,caiss
nonlinear surposal behavior as well as a ugniflcant •stiiopr dependence. Addii,onal quantum multi at higher
energies are presented and discussed us u rns of threshold belsav,oe a nti resonances. Erect quantum rnsctvw
probabilIties foe the related F+ HO —. EU + 0 and F+ Dli —. Fl) + H react ions are gi ven and sit attempt
to enpton the oliver-ned notot,e effects is made.

I. INTRODUCTION In Sec . fl we dlscucs the EQ . QCF , QCR, and USC
reactIon p roba bUltles for F .  0s. and the correspondIng

In the preceding pa pe r ’ (hereaft er referred to as ~, collinear rite cons ta n ts are prese,ited in Sec. HI . Sec-
we compared the exact quantum (EQ) , qu asl cla sal ca l Hon IV contains a itt-tidy ii the behavior of the reaction
forw ,rd (QCF) , qua sicla ssical rever se (QCR) , and un i- p ro babilities at energies suillelenHy high to excite the
form semicla ssical (USC ) reaction probabilities for (he first two vibrational sta tes cit reagent 0,. In addition ,
coilincar F • H, —FR * H reaction . The result s of all fou r  we discuss resonances In this reaction , gtvlr .g specific
methods agreed In their prediction of a high dei~ree 01 comparisons between the results of the exact quantu m ,
population Inver sion in the products 01 this exothermi c and approximate methods in the vicinity of these reso-
reaction. However, the QCF probabi lities were found nances . Section V conta ins a description ci the EQ
to diff er subst a ntially from the corresponding EQ re- action probabilities for F , RD (D l-fl , and in Sec. VI w e
suits in threshold behavior and ener gy dependence . This present a summary of conclusions .
could have impo rtant consequence s regarding the valid i ty
of the stand a rd three-dimensional quasic la ssical method II.  QUANTUM , QUASI CLI I SSI CA L , AND
which has been used on F . H, (0,) and which i. the SEMICLA SSICAL fl EACTION PROBABILITIES FOR
thr ee dimens ional version of the QCF method . We found COLLINEAR F + 0 1 . F D + D
much better agreement between the exact quantum pr ob- -

abilities and both the qua sicla ssica l reverse and the uni- & Exact quantu m resction probthilities
form semiclassica l resul ts , thu g indicat ing that either
of the last two methods might be preferred to the quasi . Since the vIbrational spacing in 0, is roughly 9 kcal/

mole and that in FD Is about 8 kca l/m ole , and the reac-classical forw a rd one in three-dimensional ca1cu1a~ions .
Uct n is exoth ermic by 32 kca l /rn ole approximately, at

I n thi s pap er we present the analo gou s EQ, QCF , loa~t five vib r ational levels of DF are accessible when
QCR . and USC result s for - the coll inear F ,D~ rea ction r , has an inItial quantu m number t’ o. By coincidence ,
over roug hl y the same range of translat ional ener gies the ~ 3 ‘and 4 vIbrational levels of DF have nearl y the
as was used in I . We shal l also mak e an analysis of tti~ same t ota l or. e’-gies as the v .  2 and 3 vIb r ational levels
surpr isal functi on for the EQ and QCF results for F .D, of HF , respect i% -ely. This results in remaritable simi-
(ta nd F .  )l~

) to determine if an information theoretic de- lar lties bet-we-en these two reactions despite the Signiii-
sc ript ion of the product state distributions can be useful , cant d ifferenc e In the corresponding reduced masses
In additi on , exact q uantum pr obab ilitIes for the reaction s (~~,5 /~~,0 0. 548) . Ait In I , we w L l  designate by P,~.
F , lID (DH) — FH (FD ) * 11(0) are given . We also study the reaction probability for a re agent inI tially in state
the importance of tunnell ing ari d reson ances in F D~. ii to form product In state v’, and by P’ the total reac-
F,HD , and F , D H . These calculations were done in t ion pg-obab iltty from initial utta te v (L e ., Z.~ P,~.). In
order to assess the effect of isotopic substitution or the Fig . I we present the exact quantum reacti on p robab ili.
magnitude of t..e quantum effects and on the validity ~ ties P,~, I’~ , and P~’ for F • D~ at relativ e transiat ional
the approximate methods . - oerg~es (F e) in the ra nge 0.0—0. 25 eV. The crrre-

The potential ener gy surf ace used in the se calculations epondlng probabilitie s P~ , P~ , ar id Ps’, are plotted in

is Ide ntical to that described In I . ’ In add ition, most ci Fig . 2. It is app a rent from these f igures that P~ and
the nun’erlcal techniques are the same as was used In I P~ are the most significant contributors to P in this

and will no t be described again here except to note F, range. The P~~, P~ , and F~ curve s are  all very
s!nillar in appearance to the P~~one , but with gre a tlyChanges made .

lb. Joutral of Cpnem sca( Physics, Vol . 63, No. 2, I S July *975 Copyri~ it C 197 5 A mericwi Inttitute ol Physics 68S
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reduced magnitudes (P4 6.exl0~ p,~, p~~’.sx io~4 i.~. t (eV)
P4-6x iD~ P4). There i sa  very eigniflcant differenc e 0~~~ 025 050 055 040
betwee n the threshold behavior 01 P~ and that ~ oo~ f ‘ 

r 03 FO 0quite analogous to what was observed in I for the resc-
ti on probab ilities ~4 cu d p4 of P. H a, As in I , it i.e I
convenient to define an effective th reshold ene rgy F,.
for the ii— V react ion an th e differe nce between the 003

a) 
~

ues of F, for severa l impo rtant reaction probabilitie s oo J

( iowes~) ene rgy for which th e corresponding P_~ Is 
5~equal , say, to 1% at the maximum value attained by th is 

~,quantity and the energy a t wh ich the v — v process be.
Com es energetically possible. Table I contai ns the vsl- ~ I
for the reaction s of F with H,, 1),, lID, and DR as well
as the corre spondi ng vibr attona ily adiabatic aero curvs - ~~ ~~~~~“

lure barrier heights E,55c (described in I). From It 00 ~~ . ‘. -
.

we see thst for F. I), the value ci F, for P4 CEO ) , 0, 014 000 005 010 015 020 025
cv, is appreciably lower th an the ~~~~~ value 01 0. 032 E0(eV)
eV , Tnt. can be Interpreted as an Indication 01 the CX- FIG. 2, Exact quantum reaction protisbilitles P~ , P ,  aid
tent 01 vlbrationally adiabatic one-dimensional tunnelling p4 for F • D~ (similar to FIg . 1).
(see pope r I) in this system . The value ci F, for P4
(QCF) of 0. 030 eV Is very close to ~~~~~ This aug. - - —

indi cating aomECha t more tunneUthg In th is system thin
gesti that the chemical motion for this system is nearly
vtbr ationaily adiabatic in the app roach coo r dinat c In the In F. D,, as expected . Th. effective thr e~hotd energy

sense that the local actio n numbe r for the motion trans- of p4 (F • H3 ) (F,.. 0. 055 cv) is e .mllar to that 01 P4
ver se to the rcac.ton coordinate should vary relatively (F • H,) (0. 045 cv). The near coincidenc. in sne~’~~ be-

tween the v~ S and 4 vibratIonal levels of PD and v . 2little between the separated reagent region and the sad- and 3 ci FR I~ probabiy resp onsible for the very similar
dIe point region. The correspond ing val ues of E~ and

~~~~~ for P4 (EQ) 01 P. H , are 0.005eV ar id 0.026 eV , pe5~~ nre of t-ho corresponding EQ reactIon probabuiti
We.. (Compa re Fig . 2 01 1 with Fig . 1 01 the present

- - paper.) There are , however , ,diflerences in the ma,xl- . -
mum values 01 certain analogous reaction probabilities,

E(eV) - especially p4 (F, D3) and P4 (F. H,) (which have maxi-
020 025 0.30 035 040 mum values ci 0.66 and 0.44 , respectIvely). We shal l

08 . 
see in Sec. N t-hat the diffe rences between analogous re-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 

~~ Pig. S are plotted the QCP and EQ reaction probe-

more important for F5 ” 0. 25 eV.

— 

~~~~~~~~~~~~~ action probabilities for the two reaction. become even -

0.6 
- - 

a OiussIci slc~ r,ection ps’abthlIiti~ 
.-

•
‘ 

-

bllitt es p4, P4, and ~: for P.1),. No reactive tr aj ec-
i i  0.4
I— ,‘ torfes yleld flF wlth v’ . O or I , but there i sanmal l

- -. - probability ci reaction to t/ 2 (alwaya <0. 1 and van ish-
02 ,

‘ - log for E,>0. 12 eV). The corresponding QCI( reaction

_______________________________ TABLE I. E ffective thr eehold ene rg ies CE,.) for ‘b most slg- -

F , HO reactions .1
________________________________________________ —

F•H, F eUD
£,1P5 CEQ)I 0.005 0.010

- £TtI4~CQCf )I 0.025 ~~~~ -
0.4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

nlflcant reaction probabilities la the F . H ,. F .D,, F .Dft , .4 -

114P4(EQH 0.048 0.071
________ 

£,.1P ,IQCFII 0. 012 s.o.s02 ___________ £vaac - 0. 026

- -

0.05 0.10 0,15 0.20 025 ErtP4(EQ)l 0.014 0.011
E0(eV) - Z,IPs1~IQCF)I 0.03C

S,IP~ (EQ )I o.0s5 0.026
FI G . 1. Exact quaMum reaction probabiliti.. for F • D~ aa a £TIPN IQCF)i 0.030 S.C.5 4

fun ct ion of relative translational en~~~ S~ and tot*! .ner~~ 0. 032 0.020
S (r.lative to minimum is D, dlatomic poten tIal curve). (a) ______ _______________ — , 

-
Total rescUes probability pf. iw R~~cUoo probabIlities p4 a~kJl sa rgi arc. In .V.
Sac. P4. - . - ~~~ QCF ca1cu1at1o~~ were do’s ior this treen ition,

•
- .L O*ms. Phyt,Va& 63.No, 2, lSJuIy lO7S 
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E (cv) what higher than the expe rimental resul t (I ). 66). ThIs
020 0.25 030 035 pe~ — 

general averag e ag reement between the EQ end QCF f~vs F, curves Indicate, that the dynamic processes gov-
08 1. ,~ erning the emerge energy disposal between vibrationalP~ IE0)

and translational degree. J free~tom of the products

06
can be weil a ppro ximated by the classIcal trajectory
method. However, one ahoul d keep in mind that this IsP~ (Q CF )
not so to’ the distribution of this vibrational energy

U) among the ava ilabl , vibrational states , i. e. • th a t large
~~~0.4 I differences betw een product stat . populsilco ratioi ob-

I tam ed from t’~e ~Q and QCF methoda do exist , as hull-r. Dg FD • 0
o.2 catsd In Fl1. 6.

I —

~~ 
I C. S’tmldsssicsl rssctlon prob~~4IitlIs

z ~~0 
- 

P~ 3(E0l FIgu re 7 shows the uniform semiclassical reaction

P~~ (0) (b) probabilitIes P4 and p4 along with the corresponding
EQ results. The USC results arc sirntl~r t-~ the onesU

obtained independentl y by Whit-lock and Muc kerm an in an
analogous calculation. ~ Ii was noted in Pape r I (Sec.
III C) t hat “raggednesa” (i . e. • very rapid va ri ati on of

3toc~R±’ m1 with q,) hi the final action numbe r ,n1 (q,; v, F) as a

~:: 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~ 

-- -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

in calculating USC transition probabilities at the thresh .
functlor of initial vibr ational phase q5 caused difficul tiee

old 01 the F. H,(0) — FH (3) . (H) reac tion. The same
0c- _____________________________

000 005 oto 0 020 025 problem occurr ed for the 0—4 tran sitiOn In the F. D, re-
action, and was also encounte ,ed by Whlilock and Muck-

E 0(e~ ) erman . We were able to overco me this difficulty by us-
FIG. 3. Quaaiclaaslc.l forward (dashed curve ) and exact qu an— lag the reverse finl’l action number functio n , n(q,; m, F) ,
turn (solid cu rve) r eacUo n probs b tittt ea for F • D, (a) P1’, whie  I was fou nd to be smooth for m • 4 and u~ a, ound 0
3,) p4 and p4. The jai .,tificat ion for using this proc edure was given in 1.

- - probabIlities for t he sa me energy rang e (0. 0 E, c 0. 12 E(eV)
eV~ are plotted In FIg. 4. In FIg. 3 we see that there ii 0.20 o~ o3o o.35 o40
u ‘.c.-y large difference between the th reshold behavior
of P4 (EQ) and P4(QCF). In a nalogy with the F . H , P4 oc
behavior, ’ we find that the qu asiclassical reverse p4 ci P~ ((Q) ~ • •~

‘S
b,.

“ 4 5closer to the exact quantum one than La the QCF thresh- 06
old. Unl ike p4 (F • H ,) , the energy depende nce ci P4
(F , D,) is predIcted ,omewp ’ct m3r~. au.curate ly by the

F. D~ (Fig. 4) has a thr eshold óehav ior which is much

04QCF method than by ~.‘ae QCR n.ethcd. The EQ and QCF
total reaction p.’cbabuhtl es P~ (FIg. 3) ar e In somexhat ‘~ 4 ’ 4

— P~I0CR)better aver age agreement than are the EQ and QCF (ut-al
reaction ~.rnbabtlities in P . R , (Fig , 4 0 1  paper I) . This 02
seems to indicate that J,e differences between quan tum 0
and classical dyna mlce are less severe for F ,D , than
f or F .l!,. Howeve r , at least for c. ”.tnear reaction., Z 0.C

0 (b)the se differences are atlU quite significant 
~~ 0.6 (s”-..

I~ Fig. 5we pIot as a function 01E.~.,e frscUon f. oi I ‘N
if’~ tat al energy which appears as ‘4bradonal energy 01
the OF product for the EQ and C~ F calcu lation s. It can 04 

1 ,.

be seen th Xt f,, (QCF) Is near ly independent 01£, arid has 
-.

an ever age value of 0. 79. The correspond ing EQ curve 0.2has a more pronounced F , dependence but about the
same average value over the F, ra nge . onsider ed. We
find that the aver age value o f f 5  is almost the sam e for ______________________________________

both F- H, and P . D,. This Independen ce 01 isotopIc 0~ v.00 005 OJO 015 020 025
substitution agrees with the corresponding expe rimental E0(eV)
result ’ and with the predictions of three-dimensional FIG. 4, QuasIcIas s’~al met.. (dau bed curve) and ex*ct -

trsjectcry calculations , ’ althongh our value of f,(o. 79) quantum (solid cu rvO) t.sctloo prutisbilttles for F . D~ (a) P f, -

which ignores rotational degrees Cd freedom is some- 1W P4 and P~. .

J. Clues,, Ptuya , Vd. 68. It,. 2, IS July 1975
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Schatz, Bowman , and Kupoacmann: Coflir,ear F + 0a .F D +0 reaction • _ 

-

E(eV)
0.20 0.25 0.30 0.35 0.40

I I I I

F,02—. FD•D -

0.9 - FIG . 5. Fraction (4) cC (Iii
total r.sgr~~ ieer~~ (.iciu—
sIv, o( pro~iot ierO pOiot ‘

•nsrgy) whicb inda up ss
V 

~‘ibra’ional iner~~ I n liii
0.8 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ‘ 4 ~-- _~~~ 
pro&ct D I pio(t.d aa .fuflr— — — — — —

~~~
, ((On 01 (hi r.*~ent tran ais-

— t ionat .n.r~~ F, ..J Ict al —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

0.? - line QCF ones. Other riots-
Ito. analogous 10 Fi5. 1.

_________________________ I I
..00 0.05 0.10 0.15 0,20 025

E0(eV ) 
-

/
The curves for the forward and revers e values of m1 for P4 tran sitI on probabilit ies at ~~~ 0. 08 eV and 0. 085 eV
this 0 — 4  tra nsIti on at an energy F.  0.3107 eV ‘.E9. 0. 12 wore calculated in the statis tical .I?proxlmatlan . At
cv) are given in FIg . 8. Whe n all the relevant semi- these ene rgies the rev, rae reaction showed tl.a~ the 4
classical quantities are wtrll- beh aved (~‘nonra gged ’) ‘-0 tran n itlc,n was d7nam ica lly forbidden . H owever ,
functions of q0, the USC transiti on pr i~ba bIlI ti es obey since statistical ( i .e . ,  ragged) behavior wa a evI dent in
micro scopic reversibility, ’ and h i s  not nocensary to the forward reaction , w e did “al cu:ate a r .onzerv value
cal culate both the forward and reverse results , 11ow~ for p4 at the two ene rgies )t’M r. enlioned .
ever , as the example above demonstrates , when ragged-
ness exists, it- is advisable to consider the forw ard and The USC probabIlities to Fig . 7 are in much bet~ r
the reverse results. In our example , the reverse re- agree ment with the correspond ing EQ results than ar!
aults are the preferred ones , since there is no ragged - the quaslclaslical ones. Aa wa s the case w ith the QCF
ness In the region corresponding to 0+ DF(4) — D ,(0) • F . r4 th r eehold, there Is a smal l 91f- .’renca be tween the “ -

These were inc cnes used in calc ul a t ing i’4 (and P~ for p4 (USC ) and p4 (EQ) th r esh -~ i ~‘~~rgtes, but ii’.. USC
the F. H, reaction ) In ito threshold region . The USC result may bc Improved by usin! cumpldx traj ectorIes.’ - -

. 
-

£ (cv)
0.20 025 0.30 0.35 0.40 - - -

.

F~~+ ~~ 

I 
.

.

31 I
~~~~~~~~~~ 

-
-

I FIG. I. ~*tio of reaction _ -

~,robs~4lIUei p.5./p4 ~
- - 

__ —.- I ir~anlai1o.al .wer~~ 1, and
I total s~~r~ ’ 1. SolId line

~~ 2.01- 1 Indte.tee EQ rewails snd
I dasbud line QCF o..s. Other

J — — aVt*tiOO aflslug’)ur 10 Fig. 1.

I _ _ —4~~~~ 
-

1.0 - I _ I— —j — ~~~
’ocF -

- ~~~~~~~~~~~~~~~~~~~ I I
OLO 0.05 O.iO 0.15 020 D’S

E0(eV) - -
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Schata , Bowman , and Kupp ermann: Col lineac F + 03 .FD + D reaction 680

((cv) cedure w il l be requi red in the three-dimensional prob-
~~020 025 010 033 0.~Q_ 1cm .’ -

0.8 S...- Ii
f S P~((0) I D. Compwison of EO, QCF. OCR , and USC reaction

J ’

/
/

~~~~~~~

\ 

prcbsbilitii, 
-

-. In Fig. 0 we compare the reaction probabilities P4
and r4 of F .0, as calculated by all four methods EQ,
QCF , QC R , and USC . Figu re 10 presents the analogous

I 
l__\ 

/ apparent from both figures that the USC method gives - 
- - - 

-

compar ison for the total re acti on p robability P . It Is

0.4 ‘\,J the best agreement with the EQ reaction pr obabUIt.I e~ 
-

for this react Ion .

~~~O2 C1~ —FD

I I I 1 1 1 I I4 2  ‘ -
.

4.0 - -

3_ B -
04

~ \ P~30.~~3
i

3.6 -

~~~~~~~~~~~~~

D (0)

02 I m1 34-—

32
0i*) 005 05) 015 020 ~~~~~~E~,(eV) 30 -

‘ lu. 7. Lnl form aemlclaealcal (dashed curve) and exact quan- 
- 2 ~~~FD(m 1). 0turn (vol Id cur se) reaction probe b lllt lei for I- * D3: (a)  Pg’, fbI

and P~ . -

2.6 - -i I I I I I I I
0.0 0.2 0.4 0.6

The oscUlations in p4 (USC) in the F, ra r ge 0. 10 eV-.
0. 2% eV do not have any analog in the qua~ tum re suit s .
These o.ocfll~i tions are due to phase inte r fc cnces aris-
ing I ron a relatively rapid variation with uner gy of the

log trajecto ries. One might expect that the raggedness
in th e plot of fi nal action vs initial phase (see F i g .  8(a) l  

00 -

range, but the quantum results of Fig. 1 d not substan- m1 
- 

.- 

-

could be an Indicat ion of re sonant behavior in this energy

diffo r en i: es in phases associat ed with the two contr ibut- O 2 E

tiat e this. I n Sec. IV we disc uss the possible relation- -c 2shi p betwee n re sonance s in the EQ results and r agged-

—
s

ness in the USC’ 

—0.4 
- 

) —... 02 (m 1) ,FOne significant aspect of the comparison beta-pen the
USC and EQ results In Fig , 7 is that  the maximum val-
ucs of the EQ and USC reaction probabi lities i’4 and P4
nrc nearly Identical. This contrasts with the results of I 1 I I I I
both the QCF and QCR calculations which generally tend 0.0 0.2 0.4
to underestimate the maximum values of the probabilities
(Figs. 3 Id 4) . The slg ruII Cant improvem ent In the FIG. B. (a) m, vs q0 for the forw ard F • 1), (0)— I D I s,) •

/quality of the result s obtained In going from the quasi- at a to~,i energy F of 0.3107 eV~ (b) m1 vu q1 (or the reveres
classical to the semiclassical approximation suggests reactIon 0. OF(s) — D,(.i ,) • F. at the sam e total energy F. The
that an equivalent improvement may occur for the three- solid curves repr eseit the ma)urit y Cd the reactive traj ect-arle.
dimenai oiial F • 0, reaction and that the semicla ssIcal computed . The dots and crosses repre sent , resp ectively, re-
re~ u1ts may h” qui t -c t i . -b le for this case. However , acti Ve 5nd nonreactive tra JectorIes Iii reglou of rsggodnesa ,
we must Stress that the utilization of uniform rather fo~ clu tch rut , v aries ve’y rapidly with q,. SInce th e val ues of

at1 for nonreictive trajectories correspond to a different r ingsthan pr imitive semiclassical techniq uos Is essential to ef variation than the reactive ones. the crosses were pliec I at
the success of this method for the collirie ar reaction , an arbitrary ordinate and are only meant to Indl cata the value .
and thus I t seems likely that an analogous uniform pro- of q, for which such trajectories occur.

- -
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890 Schatz. Bowman, and Kuppermann: Coilinear P + D, • PD + D reaction :

E(eV) quired If the distrib ution is to be characterized by a
O~ C 025 030 035 040 single information—theoretic temperatu re pa rameter .

The most severe deviations Cd the EQ re su lt s from u n-
USC/’ ~~~~~~~~~ ~~ earIty occur at the lowest energ Ie s and are a direct con-0.6

sequenc e Cd the unu sual thre shol d behavior of P4 in F0C9,~—
• 0, and p4 In F • H ,. This thresho ld effect  is not pres-
ent In th e QCF resul ts, and yet the surp rlaal f u nctions
associated with these p robabili ties show st rong devia-
tion s from linear lity . The cu rve, in Fig . II Indicate
that  at lea st In this case , the I n ior mat ion- .the or et lc
analysis ha s limited usefulne ss as a pred ictIve tool for
estimating unknown reaction probabilitIes from known

(b ) ones . Fo r examp li. ‘ ‘e assumed a lunea r surprisa l
function and use? ~.e results Cd the two largest EQ prob-
abilitie s to predIct the third la r gest  by linear extrapola-
t ion , we would be in error by ... least I order of magni-

-~ 0.4
tude in most Cd the examples depicted in Fl.~. i i .

02 _ _ _

OSj t\\

Figu re Ii  also Indicates that in many situ a tion s, the
sur pr isal function is not indep end ent of isr.~t-opIc aub sti-
hat -Ion . ThIs is especially t rue of the EQ results with

0.8 005 00 05 020 025 
0~ I , where the d if ferences between th e surp risal

fun ctions for F • 0, and F • H, ar e quite large. However ,
E0(eV) at higher ene rgIes I Fig. l l (a l , espec ia llyl and for higher

FIG. I. EQ (solid) . QCF ‘s,Io rt dash ) . QCR (dash—dot ) , scud vib rat ional quantu m numbers (is’ 2— 4) , the EQ point..
USC (long dash) reaction probabilIties i’4 (a) and i ’4(b) . (Frolu for both F • 0, and F • H , fall  on essent i ally the same
Fig S. 1 , 34 . 7.) curve. I n addition , the QCF results for F . D , and F

• H, In both Fig s. 11(a )  and 11(b) seem to form a single
E. information-theoretic analysis of EQ and OCF curve , and for this reason , Only one dashed line was
rssct ion prob.biiitse. drawn through the point s. This In dicates that at certaIn

It Is also of int erest to pe rf or m an inforn uati on—the o- energies and for certain ran ges of f,., the su rpr Isa l
function is independent of isotopic sub st lt’j Uon , but thisret -Ic analysis of the EQ and QCF result s , In thi , sec-

lion , we shall consider both th e F e D s reaction pr ob- property is not gener ally valid .
ab ilities discussed above and the F • H , prob abilities The behavior of t-he surpr ixai functions (nonlinearity
de acribed in Pap er I . and dependence on isotopic subst i tution ) observed in

In an alogy with the equations used in three- t imension- th ese collinear results contrasts stro n gly with the shape
al studLa , ’ we have used a on e-dlmensIonai form of t-he of the corresponding su rpr isal function s obtained fro m

itu rp risal for a vibratIonal distribution ~~ven ~~ th r ee-dImen sional tra jec t -or ’ calculations and ex~,e ri-
ments on the same rea ctions . ’ In the three-dimensi onal -

i(f,, ) — lnI P(f,,)/P°(f,.)L case , lin ear surprIsal functions which are nearly lode-
P(f,.) Is the normalized reaction probability to product
vibrational state is’ expr esSed as a fu nt - t I. ,’n of t -h e frac- E (e\~
t o n  of the total energy which becomes vibrational ener- 020 025 0~s)  035_C’40IC -
gy In the product OF or HF (exclusive of p roduct zero
point energy). P°(f ,,.) Is the statistical reaction prob-

-- 
r I

ability to sta te is’ and is given by 0-~ oe - - - 
I

(*—4 .) ”  ~t / ..

~~~~~ _ f_, ) .Ul 
06 

~ \where the sum Is over all accessible product vibrational ~

Inverted st ati stical vibrational population distributions .
This rather surpr ising result for such a distribution Is -.

state s . Note that this expression for P °(f,.) predicts usc\ !

a at -ralghtforward consequence of the use of a one-di-
cli

mensional densi ty Cd ~ta t eq functio n (whIch varies as ~ 02 I 
OCR

(F,.”, whe re F .,, is the t ranslational ener g y relative .-i
to vibrational State v’ rather than the corresponding
three-dimensional density (winch varies as Eu’). ~ 0C0~~ obs o~o ö~s ~~~~~~~

Figu re 11 depicts the EQ and QCF surprisal functions E0 (eV) -

1(4. ) vsf,. for F • 0, and F + H, a t three d if ferent rela- y-IG , 10. EQ (solid) . QCF (Short di,h), QCIO (dash—dotj, and
tive translational energies. We see that none of the EQ uSc (long dash) total reaction probabilIties P~ (or V.0,.
or QCF plota has the straight line depend ence on !,. re- (From Figs. 1, 3— 4 . 7.)  - -

J. Cheat . Ptuyt, Vol. 83, No. 2. 15 July 197 5 , . 
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Sch.tz. Bowman , and Kupp.rmann: Coi$inew P 4  D, .F D  + D reaction 691

I I ~~~~~~~ ~ dImensional classica l surprlsal funcUo ns was compu ts-
- (0) tionally investigated, ‘~~~ and it was proposedlm that the

surp rt sal function should be approximately dimens ionally
— I invar Iant . Our c ‘mparis on of the one- and thr ce-dimen-

slonal surprisal funcUon s for F • if , and F .0, IndIcates
—2 that this dimenaIo’~a1 invariance doea ~ot hold fo r these

/

/

/

/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

reactions . Although the validity of our conclusion de- 7

pe~da in part on the accuracy Cd the potential energy
surface used in our calculations , we woul d not expect it

— 4 to be qualitatively changed U a more accurate potent iai
energy surface were used. In addi tion , we note that
th ree-dimensional qu as iclassica l result -s for F. H , and
F • 0, on similar approximate surfaces’ agree with ex-
periment in their predictIon of a ilnear surp rtsal func-o (b) If’
( j~~fl ,~~ The computational comparison of one- and three-
dImensional surprisal functions of Ret . b a Invol ved
several model potential energy surface s , but none Cd5~ the se similated the attractive nature at the F • H , Inte r-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x act ion , We conclude that the invar iance of the surprisal
function w ith respect to the dimen slonallty of the CoIli-
sion may depend signtflcanuy on the cna racte ristl cs Cd
the potential energy surface being considered . Ther e-
fore , cau tion must be exercised in att emptIng to obtain
3-I) react -b r cross sections from co!I t near reaction
probabUitles. ~~

0 (c)
iii . EQ. OCF. OCR , AND USC R ATE CONSTANTS
FOR F+D a /

— I
The rate constants k4 and 84 obtained f rom the EQ,

QCF, QCR , and USC reaction probabilities P4 and P4 -
(or F eD , are plott ed in FI g . 12. Th~ expressthm for

-3 these rate constants is the same as the one given in Pa-
per I. ‘l’he corresponding Arrhenius parameters ob-

-4 ta m ed f rom fits to the rate constants in the 2 00— 4 00 IC
and 900—1200 IC temp erature ra nges are listed in l’able

-. I I I I I I I I I II, The difference between k~ (QCF) and k4 (EQ) (whi c..
0 02  04 -06 . 08 t O results from the different threshold prop erties of the

P4’s in FIg. 9) Is quite noticeable and leads to a 0.8
FIG. I I .  Surprical fu nction 1(1,) vs fractIon (~ (If the total kcal d iffere nce be tween the corre spo nd ing high temp era-
p roduct eser~ , witch Ia in pvoduct eibr ,tlonai state ~“ ~~~~~~~~~ tore activation energies in Table U. In anal ogy with oursine of zero point cney~~i. Symbols plotted have the foiiowing
meaning.: cir c lea—1 Q results for F • 0,, t r ia nglc.—E Q re- F. H, study , the QCR and USC rate constants k~ and

suits for F * H 3; squarea—Q C F results for F .  0,, and correspo nding sctivaUon energies E~ agree with the
croesc.—QCF results for  F • H1. (a) E,.0. t2 ci , tui H, .0.03 EQ ones better than do the QCF quantities. The sImilar
.V . (ci E..0.00S ~V. ‘The 1’ • P 1 (EQ) result s are eonnect~d com parison for the rate constants 

~4 is much less sat-
ty ~ p~flt~ line , whil e a dashed—dotted line cOnnec t. the F . H 3 isf actory . The low ternperat ’tre differences between the
(EQ I results . A dashed line spl,roximat ely connect. . Isoth F ’  147 var ious 84’s are d e t erm in ed to a barge extent by the
and F • l) (QCF ( results , Not that at the lowest eners ~ ~°e- different threshold energies of the corresp onding reac-elde red irig. lOi c ) i .  only V • 0—2 of HF ar, ene rgetical ly sc-
ce..ibl e, .ini all QCE reaction prolsbiii t ies are zero. (Ion probabilities P4. The transition probabil ity r4 - 

-

(QCR) has zero threshold energy and thus the largest
sate constant at low temperatures, whil e the EQ, USC ,

pendent of isotopic sub stitu tion wLrr obtained In an an al - and QCF P4’s have successively higher threshold ener-
ysis Cd the detailed rate ~onstar ~s (rather thsn re a ction glee and therefore Successively lower rate constants .
probabilities) from both qua sIclaesi ’~am trajecto ry cal- 15cc Fig , 9(b). I Thi. illustrates that the low energy
culat lons and from Infrar ed cilemllum inescen ce expert- (c 0. 03 d Pi behav ior Cd the reaction probabilities (or
n.ents (which are , of course , quantu m mechanical ), We cross sections) can be exceedingly impo rtant in deter-
have ana lyzed the surpr isal functions for our coilin ea r tul nlng the low temp erature ( c  300 K) behav ior Cd the
EQ rat e constants for bo th F e H, and F .D , (Sec. Ill) corr esponding rate constant s for these reactions .
and find no marked chan ge from the res ul ts depicted In
Fig . it , the nonlinearity and dependence on Isotopic The ratios 84 /84 ar e plotted as a function Cd temp er .-
substi tution being essentially as pronounced as for t-he tore in Fig . 13, We see that - the QCF ra t io Is nearly
reaction pro ba bUiti e.. temperature independent while the EQ, QCR, and USC -,

- ratio, increase monotonically with Incr easing tempers- -

Recently, the relationship betw oen the one - and three - lur e , app roaching the QCF ra tio at high temperatures.
- 4
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‘ FIG. 13. RatI mol rato onnet.nts k4/h~~fo rE . 0,; EQ (solitl,

E QC (short dash) , QCR (dash-dot). USC 0~ng dash).2 ~

.7

~ tore dependent. ” U this is also troe experimentally5*02
F+D2 —. FD,D - S.. \

ocq” \ ‘ then, in analogy wit-i’ F. H,, we would have evidence

2 *10~ ‘ threshold dif ferences on reaction rates to different prod-

- 
“ \ \ that the colllnt ’ar model overes timates the effects of

\ uct vibrational states. We might note , however , that
_______________________________________ Lee and co-wor kers ”” have measu re d the ratio of - -Ixt0 ? •

cross sections c~/c~ at- three different energies , and
1000 K/T they find that it - increases rapidly with increasI ng ene rgy

FIG. 12. Arr henlus plot of EQ (solId ), QCF (short dash ) , QCR from 0.75 at F, *0 . 034eV loS. S a tE 0 -0 . 11eV, if we con-
Wash—dot ), and USC aong dub) rate constant . for F. D~: (a) sider the anal ogous collinear ratio r4/r4 (Fig . 6) , we

(hI 24. find -tat It - also increases rapidly with increasing ene rgy
(much more rapidly than Lee’s cross section ratio ) fro m
nea r zero at zero tra nsla t-t , ..~l energy to roughly a valueThese 24/24 ratios are quite 8imllar in appe ar snce ~ ~ ~~ . ~ for F 0 — 0. 12 eV . The rat -los Cd cr088 secilonsthe 24/24 ratios for the F e H, reaction given in FIg . 12 from three-dimensIonal QCF trajecto ry calculationsof Pape r I , but the F • D, rat ion actually Increa se some- over a family of severa l potential ener gy surf aces do notwhat more slowly wit -h temperature than do the Fe H1 re produce this energy dependence (Ref . 12, Tabl e VI).one.. T4s may indicate that - the difference s between quantum

The QCF ratio 24/24 1.. 0. 63 at 300 K , in approximate and quasiclassical ~‘ç j olts are st-ill significant in th ree
ag reement with the experimental value ” of 0. 66. The dimensions and , indeed, are observable in expe riments
rest ”ts of three-dimension al classical trajecto ry calcu- which are at least pa rtially state selected such as cross
lation~ indicate that this ratio is not strongly tempera- section measurements.

TAB L.E U. Arrh enlus ra t, constant parameters for F • -. Fl) •

Temperature range
(K) EQ QCF QCR USC

1” 200—400 0.676 0. 935 0.266 0,55*
4’ 200—400 2.187 0.990 2.576 2.471
A0, 200—400 2.531 *10’ 2.4-4~~ lo’ 1.854*10’ 2.340*10’

200—400 2,775 * 10’ 1 .686 * 10’ 2.5 02 *2 0 ’ 3.269 *10’
900— 1200 0.361 0.912 0,416 0 .611
900— 1200 2.106 2 .343 2.742 2.344

A~ 900” 1200 2.104 *10’ 2.674*10’ 2.402 *10 ’ 2.063 *20 ’
A N 900—1200 3.240*10’ 2.$04 ’~10’ 3.261*10’ 3.365~~ l0~

II in keel/mol. and A,, ii is cm/(mol.cule’ see).
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IV. HIGHER ENERGY REACTION PROBABIL ITIES ticit , we see an approximate correspondence between
FOR F +0, thi appearance Cd a resonance and the ooening of a spe- - - -

Figure 14 shows the higher energy exact ‘~uan tum re- cific vibratIona l st-ate at the product DF (v • 5 at 1e
action prob abilitIes p4, ~4, p4, t~~, ~~ • ,,, • 0. 29 cv and v • 6 at F,.0. 59 eV). This implieS that
in the translational energy range £,. 0. 25—0.70 cV. the vi rtual states of the triatomic comp lex i.say have
Those transition iu’obabilitiea not plotted are all small ene rgy levels resembling product state s mop’, than re- . 

- -

~uaua lly <0. 02). p4 (QCR ) is i~lso plotted in Fig. 14 In agent state.. The relation I. probabl y comp ltcat ed , how- 
—

- -

ever , since the correspondence betwee n the resonance - 
-

the ene rgy range 0.25—0.42 eV (~r reason s to be dis-
cussed is detail below. This flgu rc Is anal ogous in many 

ene rgy and the ener gy Cd the associated product vibr a-
ti onal level Is not - alway s in the same direction (i.e. ,ways to FIg. 13 ci 7, although the io~e correlation be the resonance energy Ii sometimes greater and some-

tween the reaction probabilitIes 4 F.1~, and the related times smaller than the corresponding vibrational energyF • D, ones (see end of Sec. U A) becomes lass impor- gy, as can be seen in FIg. 13 of Paper I and Fig . 14 in
tan t as the energy is Inc rea sed . Nevertheless, many the present paper).
of our remarks concerning the F * H, reaction pr obabili-
ties described in I are also applicable hero . We note It is interesting to note that - the QCR reaction probe-
that the tra iwit-lon probabilities P~ in Fig. 14 and p4 In bUtty P4 depicted in Fig 14 seems to ‘ average out” the - .

FIg . 1 have aimilar translational energy dependen ces quantum oscUlation s In p4 (EQ) in the vicinity of the E~
except near thre ehold. This confirms our statement ~ -0. 327 eV resonance , It Is also Cd interest to examine --‘-

i t-hat reaction pro babilities for reagents initially In p. j  the semiclassical results at this energy . Ra,*In and
are virtually insensit ive to the pr esence of a barrier in Miller have repo rted extensive stati stical behavior in
the F. Ii, (D,) reagent channel . in additi on , P~, Is sig-
nilica nt ly lar ger than the other P ?.. wit -h v’ ‘5 over the
energy range considered . This implies that the add i- £ levi
tional vibrational energy In the re agent -a is being pie. io~5 $ 05 01 4 OS 

- 
- -

dominantly channelled Into additional vibrational energy r o,to, rot 1 0 (0)
In the products .” 0.S

The tr ansition probab ility P4 exhIbit -s a rather unusu-
al energy dependence . As shown in Fig. 14 , it remains
quite small (< 0.01 ) , even though energ et lca lly allowed , 06

unW the total energy becomes high enoug h to excite v.1
of 0,, at - which point It rises suddenly to a pe~ic val ue Cd
0, 34 bef ore finally levelling off at abou t- 0. 13. It - Is not ~ •,

obvious how simple resonance or thresh old theories can
expl ain this unusual behavior , since the effective thresh-
old ii apparently related to the openIng of a vibrational -

state not involved in the tran sition asymptotically. One
possible explanatIon for the Influence of the i ’.! state of

on this transition probability can be formulated by 
__________________________________

observing that - the inelastic 0— 1 transition probability ~ F C 0,11) rot.., • 0 (b) —for F ,D~ Is quite app recIable” (0. 10—0.25) and , as
noted above , P1’, Is quite large. This suggests that the
0—5 reactive transition occurs almost exclusively with -
v . 1  sean intermediate st-ste . It- is also sign ificant that
it- is not sufficient for this state to be accessible vIa vir -

ThI.. seems to Indicate that a hig h degree Cd vibrational
excitation must be maintained over a considerable re-

tual transitions, rather, it must be open asymptotically. 

4
j iI~~~~ .j~~~ ~

- 

-

glon in configuration space . This would only be possI-
ble U the we 1 vibrational state is open , and hence the re
Ia no enhancement of p4 when the state is closed. 0.1 -

For the transitions p4 at F,. 0. 327 eV and P,’~ at F,
.0. 599 eV , we see peaks In the reaction probabilities
suggestive Cd Internal excitation resonances , ” In con 

-

_____________________________________________
~ ~ $O3 04trast - to the resonances observed is Pape r I In F • H,,

ti. di rect processes In F • 0, stIll seem to be quite us - £ 4) ~~~
portsnt In the vicinity Cd the resonan ces. The resultant FI G. 14. Exact quanbun reaction probabilities at translat~’nal
interference between the di rect and resonant cont riba- energIes hIgher than those In Fig. 1. (a) P4, ~4, s.ndP$. -

tines to the scattsrlng amplitude leads to characteristic (b) P4 s.nd P151. Also shows in (a) a the QCK P4 curve

oscillations in the reaction probabilities in the vicinities (dashed). Atrowa near £,-0.29 eV and 0.59 ev indicate the - . -

of the resoeancs energies quite similar to what was ob- 
opening of v.5 and I, respectIvely, Cd OF , whil, that at 0.3?
IV indicates the ene~~’ F, it which v.1 of 0, becomes socessi-

served In the H + H , reaction.” ”  As In the 1.11, risc- his, - -
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neno. ns~~ 0,5107 eV (correapondtns to —
lion D+DF (4 )— D (m 1) •F at  the reso—

F, -0.32 .V~. 5.. Fig. 8 for explanation
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the final action numb e r function , m,, for the H.Cl, col- havior of p4 at E,,.0. 327 cv.
lision.’ From this behavior , they inferred that a con- -

We conclude th a t r aggedness in the m,(q,; v, F) curvesverged quantum treatment of that reaction would y ield could perhaps be a necessary condition for the existenceinternal excIt ation resonances. h owever , as Fig . 15 of quantum mechanical internal excitation resonan ces,shows , m1, at the resonance ene rgy , is a reasonably 
~~t- ~~~ ~~~~~~~ not a sufficient - one , as show n by thesmooth function of q, with about the same degree of rag- presence of raggedness In Fig. 8(b) , calculated at - a non-gednese (I .e. , very rapid var iati on of m1 with q,) as resonant ene rgy .seen previously away f rom resonance in Fig. 8(b) . An

accurate EQ atudy Cd the cotlinear U.  H, reaction has V. EXACT CaUANTUM REACTION PROBA BILITIESshown that P4 has a broad resonance at 0. 90 eV total 
~(~R THE R EACTIONS F + HO • FH + D ANDenergy and a narrow one at 1.28 eV , and that both are F+  OH . F O + H- - - due to Interference ef fects between direct and compound- -

state mechanisms . ~ Recen tly, St-inc and Marcus ” We have also calculated the exact quantum react -Ion —
searched for and found snarled (i.e. , multiple collision) probabilities for F • MD — FH , D and F. DR — rD. H ,
trajectories in the narrow region of q, between the re- hereafter designated F. I-ID and F • Dli, respectively.
active and nonreac tive branches of the m,(q,; v. F) c~~-v~ In three dimensions, these two reactions represent - dU-
They showed that the broad resonan ce a t 0.90 eV could fer ent product arrangem ent channels of the same coili-
be generated semiclassicaliy if interference effects be- sion system . In colllnear collisions , however, they
tween direct - and snarled trajecto ries are included , a muBt be cons idered entirely sepa rately, This Implies
result consistent with the lilet ime analyst s of the ac- that coupl ing between these two product arrangement
Curate quantum calculations. ” Were it not for the channels is Ignored In our roUt-near calculations.
knowledge Cd the existence Cd this resonance derived
from the EQ calculations, it would be easy to miss such The largest- reaction probabilities for the two reactions 

- 

— 
-

snarl ed trajectorie s in a semiclassical calcul a tion in are plot-ted in Fig. j~ 10 as a function Cd the reagent - - -‘

which the density of the g, grid was not high enough ,” transla tional energy F, (relat ive to p . 0Cd  ND) in the
Inclusion 1 a searc h Cd these tra )ect-or les and Cd their range 0—0.25 eV. For F, MD, the only reaction prob-
effects on the reaction probabilities sIg nificantly In . ability greater than 0.025 in the energy ra nge Studied is
crease , the computational effort involved In the semi- P4, while P4, p4, and p4 are the major contributors
classical appro ach. Narrow resonances, such as the to the total reaction probability in F. Dli (P4 is always
on. occurring ~t 1.28 eV in collIn ea r li~ H,, may be lees than 0. 10) . Fro m FIg. 16 It - is apparent that the
even more diffIcul t to calculain semlcla,sicaUy, since reaction probab ilities P4 and ~4 Cd F , OH are very
its long iifetime * suggests that It may correspond to imtlar in shape to the correspo nding probabil It ies P4
extremel y snarled trajectorie s, requiring In clusion of and P4 Cd F,D5 (FIg. 10) , although the sharp differences
multiple collisions Cd high order ” and use of an cx- between the thresho ld energ ies of P4 and P4 (V,1)~)
treme ly h igh densi ty q, grid. in the presen t pape r, we are reduced considerably for P , and P ,(F ,DH ) .
hav, only Included the effect of direct (I. e. , nonsna rled) In cont r ast , the results for F. RD do not show a strong
tra j ectories in (be semiclassical calcul atI ons . It would resemblance to those for P. H5 (Fig. 2 ~i Paper U. la-
bs interesting to add the effect Cd snarled ones, In order stswl, we see ths t P4 (PIg. 16) consista Cd one very
to verHy whe ther they could reproduce the resonant 1*. sharp (width -0. 0005 eV) spike near 0. 012 .V ..~ then
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E (eV) - F atom . Since the barrier height in quite low (except

10 ~~~~~~ 030 035 .040 045 , near the “perpendicular” orlentation u) , one would ex-
pect that H should be prefe rentially abstract-ed. For

- 
. collinear reactions , this three-dimensional effect Is

U,
08 

ignored and we find , Instead , that dynamical effe cts
such ss p.eudocentrlfugal barriers are I~nport ant in the 

- —
reaction. These centrifugal effects favor reaction with
the 0 atom and thus explain why the cohl ine ar re sults

06 _____ differ from the experimental ones. A simila r argument-

pR 
F+DH FD.H inenslonal quas iclassica l cross sections for the same

z 04 03 reactions . M One might add that for a reaction with aQ - high ba rrier , which simultaneously favors reactionI-

- - 
- 

2<
~~

1 ha. been used to explain the J dependence of three-di- -
.

o through colt lnear geometries , the three-dimensional ci-
0.2 feet- should be less impo rtant - and the colhinear results

should be more repre~ent at -ive of the experiment -al re-
sult .. Th is has indeed been observed for the Cl • HD

0-i-
‘ 0:15 

- (DII) reacttons.U

-
. E0 (cv) VI. DISCUSSION

FIG. 15. Exact quantum reaction probabIlItIes p4 for F • HI). We shall now summarize the differences between theand P4 and P4 for I’ • DII as a fu i~ tioa of re la tI ve tran sla t Ional
energy £~ and tota l ener i~’ F (relative to minimum in HD dl- reaults of the exact - quantu m, quasic lassical , and eemi-
siomic potential cu rve). Arrow near 0.04 ev ind ica tee ~~ ~~ classical methods for studying the F. Ii, (Pap er I) and
•rgy at which i.-3 of HF becomes acces,Itge. F • r5 reactions. The moot- impo rtant of these differ-

ence, may be categorized Int o three divisions: vibra-
ti onaliy adiabatic tunnelling , re sonances , and th reshold

rema in. quite small (‘ 0. 02) for the remainder of the dynamical effects . These effects may, however , be
energy ra nge studi ed . P4, which is energetically for , coupled to one another to a lesser or great -er extent.
bidden untti F,. 0. 039 eV , is quite small throughout the Vib rat - lon ahh y adiabatic tunnelling seems to be mostenergy ra nge consIde red here . The rather dramatic
diffe rences be tween the results for F.  I-ID and F • DR significant - at very low energies , especially for F • H,

and for those transitions for which at threshold therecan probably be explained as resulti ng from the differ-
ence in the mass of the atom being exchanged in the Col. are no strongly restrictive dynamical effects (of the type

occurring In p4 for F. H,). Such tunn elling appears tolinea r t r iatomi c collision system . The small mass of
the H ato’r. in F • RD in comparison wIth that Cd the D be re sponsible for Impo rtant - differences between EQ

and QCF ra te constants at low temperature q (Figs . Il(s)ato m iv’ F • DR resu lt -s in much more Impo rtant pseudo.
In I and also 12(a) in this paper], The semiclassicalcent : ifugal barriers in “ tur ning the corner” in the for-

mer reaction than in the latte r . That this should be the complex trajectory method (which was not studied here) - - --

case is apparent from a comparison of the skew angles may be able to descr ibe tunnelling quantitatIvely. “ In-
(defined in Pap er I) for these two systems . Fo r F • HI) te rnal excitation resonances seem to be ver y impo rtant -
this ang le is 3’l. 3’, while for F.  DR it- Is 56. 7 , thus at high er translational energies and will theref ore not-
indicating that the curvature along the reaction path be significant - in thermal experiments. They may be
should be much la r ger for F. Hi) than for F. DR . ~ 

important - in beam and hot- atom experiments if these
at- low transl ational ener gies do the centr ifuga l effects resonance effects carry ove r without - strong attenuation
become smal l enough to render F. RD dynamically al- into th ree dimens ions.5’ The current semiclassical theo.

rica do not- seem to furnish a comput-ational ly pract -ic ’glowed. For F • DH , on the other h and, the centr ifugal
effects are not Important in the energy range atud’ed, description of the interference effects associated wit-h

these resonance s.” Thre shold dy-’mical effects areand thus we observed very large reaction probabiliti es very significant for colhin ear F * Ii , and F . D,, and thisthroughout that energy range. leads to impo rtant differences between exact quantum
From FIg. 16 , we can also conclude that the rat e con- and qua siclaselcal reacti on probabilities and rate con-

Stant - for formation of OF Is predicted to be great er than st-ants for thermal distributions of reagent-s. These
that for formation ci HF (except at - very low tempera- t?reshold effects a re partially classical In nuture, since
tures (<ISV ) , where the slightly smaller effective we found that - the QCR method was capable cd describing
threshold Cd F. HI) becomes impo rt-anti . This disagrees roughly the proper threshold behavior within a corn -
with the experimental result” that - the rate of H atom pletely classical framew or k . An important result of
t ransfer is a factor Cd 1 , 45 faster than that for I) atom this pape r was the demons t ra tion that the un iform semi-
tran sfer at 290 II . The disagreement can p robabl y be classical method provides a gre auy improv ed descrip-
explained by noting that the distanc e Cd the H atom from Hon of threshold behavior Cd the quantum results in com-
the center Cd mass of IN) I~ about twice that Cd the D parison with the QCF method, How impo rtant t-heae
atom from the same center Cd mass. This m~ans th at threshold effects wil l be in three dimensions is not en-
H sweep, thro ugh a larger volume of apace than D when Urely clear from an analysis of existing expe rimental
MD rotat e, and thus is more “visible” to the attacking and theoretical studies , but- it i~~ears that the effect-s
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are at least partially attenuated by the averagi ng that W. H. MIller . J . Chern. Pays. 54, 5386 (1971); R. A. Mar—
inevitably occurs in experimenta l measurement-s. They cus . .1. Chem . Phys. 57. 4903 (l972) ~ 3. D. Dull and W. H.
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‘(a) 3. 7. Muckerynan , J. Cheat . Pays. 54, 1155 (1971); ~~ corpo rated subsequent ly, at the time some revisions aug-
fbid. 54, 2997 (1972). geated by the referee were made.

~J . C. Polsnyi and K. B. WoodsU, J . Chem. Pays. 57~ 1574 “3. 0. Duff and 0. 6. Truhlar , Chem. Pa ys. 4 . 1 (1974).
(1972). “Not, that for these calcu lations , a slightly different valu e of

‘3. hI. Bowman and A. Kuppermann , 3. Cheat. Pays. 59. $(HF) was used (2.208? A” , than In Pape r 1 (2. 2187 A” ).
6524 (1973). 1 A. Persicy , 3. Che m Phya. 59. 5578 (1973).

‘C. C. Rsnkin and W. II, MIller , 3 . Cheat, Pity s. 55, 3150 11M. Bier , U. Halave e . and A. Poraky, 3. Chem . Pays. 61.
0971). 4362 (1974).T W. H. Miller and T. F. George , 3. Cheat. Pays. 56, 5668 ~Recent three dimensio nal calculations on the 11< H~ reaction
(2972)~ J. 0. Deli. T. F. George . and W. II. Mi ller , J, indic ate that the attenu ation of resonance effecta in goIng
Cheat. Pays. SI, 1343 (1973); 3. Slim and R. A. Marcus . from b lo n D is not severe IC . C. Schaty and Arm, Kupper-
Chs.n . Phys. 1.1*. 16. 536 (1972). mann (to be pub liahed)l .
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A SEMI-NUMERICAL APPROACH TO THE CONSTRUC1 ION AND FITTING
OF TRIATOM IC POTENTIAL ENERGY SURFACES’

Jo eIM. HOV,7sfA N - 
—

Depati nice: of (7,entiur,. Illinois Ins:ituge of Technology. C7,scego. Illinois 60616. 1/54

and - - - -

- - Aron KUPP E RMAN N
A,llwr .4 peon Novea Lobonnosv of C7,enuc,l Physic i “. Cats/onsin Ins titute of Technology.
Pasadena, Calif onus 91123. t&4 - - - -

Received II April 1975

The Wall - Porl et method or rotatin g a Mors e (un ction to cons t ruct po’entiai energy surfaces rot collineu atom- diatom
ctsemkal ttactio,n is modified by using a nume,j ca l spline interp olat ion technique. This procedure ii ilsown to have great
flexi bility I n gwsng a potential sur face desired ch arac t eri st ics. such as the saddle—po int location and the barney height and
cur vatu re at thu point , log either symm et ri cal or un symmetr ical reactions. Extension s of the method to non-r eacti ve and
non-cotlines, potenlul surlaces are also discussed .

.
‘

The great difficulty in calculating potent ial energy lures of the surface along and transverse to the mini-
surfaces by accur a te ab ini t io techniques h~s neces.ti- mum energy pails at that point , which are important
tile d the use of phenome nologi~aI approaches of a features of ihe surface. Thus , the specification of I sese
iemi-empinc al n~stur e to gen e rate app r ox imate sur- important properties of a poieniial surface creates a
faces wtth reasonably realisti c topog rap hies for use in highly overdete rmined problem for the LEN funct ion.
atom- - molecule dynami cs calculations . The LFPS Second , th is function may develop spur ious “hollows”
method ( i J  ~s u sed extensively for this purpose since if il ls forced to have approximately the desired barrier
it provides the means for smoothl y and conven ient ly height and saddle point location. Third, it lx not possi.
mterpolating the pO lenttai surface between the va nous ble to make a change in a localized region of the po.
separated atom - diatom arrangement chann els, It suf ’ tent ial surface without significantly affect ing the en.
fei-s from several well-known shortcomir .gs , howeve r , tire surface, This aspeci of t isr LEN function makes
due to the simplicity of the nsa ll iemniic al fo rm of the it less than ideal for calculations which exp iore th e re-
LEP S function . 

- latiors ahip beiween potential surface character ist ics and
Let us consider as an examp le a linear t r i at omic sys. it ; reaction -dynamical prope r tie s (reaction cross sec-

tern. First , after specifying the polcnhiai function pa- tions , internal energy disth buu ions. et c.). Fourth . for
rsmeters of the diatornic reagent and product and the reactions in three dimensions (he problem of overde .
classical barrier height there is onl y one degree of free’ termination of the LEN function is compounded
dom left in t he LE PS function to deter mine the two greatly so that Il ls difficult for tilC important fea tures
position coordinaie s of the saddle point and the curva- considered above , in each ot’ ihe three regions connect•

ing the three separated a,ran gement channel s , to be
‘Won t supported In pa st by the United Sta rs At, Force ~~ 

specified even approximatel y. Clearly, thi s lack of flex .
flee of Scientific Research. ib ilit y of the TIPS function makes it in general un.
(‘otirribuilon No. 5094 . - su itabl e for fitting avallible ab initlo data points of a

- 
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sta~~~~l function o fR 1 and R 2 is given by

V(R 1.R2 )~~D(0) ( { I  exp~~0ftIeq O ) -  1)1 )2 I )

+ D(O~ O).

where

tan 0 --  R 10 V R 2 - R20 ) 
-

and

1= I(R 1 -- R10)2 4 (R2 R20)2 1’ ~
are t h e  circular polar coordinates of the point PIR 1.R , l

o with respect to a system whose origin is the swing
point S(R 10.R,0) and whose reference axis is anlipar.

hg . I - Swing coordinates 1.8 o f Mo . ’ - l.nciion about the ailel to 0R 2 , as indicated in fig. I - We determine thepoInt SiR ,o.R&. 0.dependence of the Mor se parameters 0(0 1. ~3 0l. and
1,~(0)  by assign:ng their values at a finite number of

given potential energy surface .
The Wall- Porter function 12 1 cleverly overcomes

sevetal of these shortcomings for coliinear collisions, 26

Let us consider the configuration space spanned by the
two internuclear distances R 1 and R , to the central 

25

atom. In the Wall Porter approach a Morse function
~ notated from the reagent region to the product Se-

- -‘ gion of this space around an adequately chosen point 2.3
in the high plateau region of the surface. The Morse
(Unction parameters are chosen to be simp le and simi •
las analytical functions of the rotation ang le , 0. Al- to
thou gh features such as saddle-point location and b ar-
tier height can be specified . t h e  simp le nature of the 0- ‘

~~ o.~dependence of the Morse parameters and their  interre- ~
lation reduces the usefulness of the method , since 06these characteristics prr clude making localized changes
in the potential . Furthermore , the resultin g potential _____________________________________
surface is no t as smooth as the corresponding LEN
surface. This lack ~f flexibility and smoothness of the
Wall Porter function is largely overcome by the HMF 4 6
(hyp erbolic map function) method of aun ker and co. >

3
workers 131, in which the Morse function parameters 0

are given by flexible anal ytical functions (e.g.. Ecka rt
functions) of the distance along a hyperbolic reaction 4 4

path . An alternative to the HMF extension of t lse Wall - _____________________________________

Porter appr oach is exp lored in the presen t paper. A 0 20 40 60 60

similar approach has recen ly been used by Conner et 0
al. f4j .  Fig. 2. Morse paran setens D. C. and ‘eq as a fu nction or swing

In the spiflt of the Wall— Poster method let us conS Ut5IC. ,. for th e scaled SSM I( H 3 potential sur face. The points
Indicated correspond to specified values of the parameter s andstruct a collinear potential energy surface by rotation the li,,es are obtained by a ibic sphne interpolation proce—of a Mor se function , Specifically, the potential as a d,.am
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40
1071Hfi

~o ’~~~~~o ’ 3’.o~~~~~~~~ 4o
R, (bois e)

Fig. 3. tqsiipotenslal contour plot or the tplinc.generaied hl~ potentia l energy surfa.~e of rig. 2.

values of 0 and th en performing a cubic sphne in..~rpo- plotted in fig. 2 ass  function of 0. The five indicated
lation (5) between the resulting points . This method points for each parameter are f or  0 equal to 0’, 45°,
of specifying the Morse parameters serves a dual pur. and 00° corresponding to reagents , transition state ,
pose Firs t , it allows us to require that  the potential and products , respectivel y , and also for 0 equal to 22.7 ’
energy surface have important desired charac t eristics , and 67 .3’. The interpolation between these points was
Thus , the saddle.point location. t he  barrie r height , the made using a cubic sphine (5). The resulting potential
curvature of the reac .ion path , et c. . can be directly energy surface is disp layed in fig. 3 in she form of an
specified . Second . this f i t t ing procedure can aid in t h e  equipot ent ial energy plot. The srsioothness of thu plot
ab lniuo mapping of a potential energy surface . A points out one desirable aspect of the spline method,
spline.geneested potential made to fit a small numbe r As another example consider a potential surface In
of ab irsj tio points could ss.ggest the locations of addi. which the Morse parameters of the nea~tan t BC mole.
tlonally needed ab in it io points. cule are , D 3.64 eV , R , * 2.68 bohr and a • 1.0

As an examp le of application of this splint tech ’ bohr 1 and of the product AB molecule are , 0 3.84
nique . consider the colhin ear H + 112 -‘H 2 + II reac~ eV, Re .4,4-6 bohr , and ~J ’  0.71 bohr ~, wit h a tar-
tion. Truh lar and Kupp er matitu (6( have gen erated a tier height of 1.5 kcah lmolc and for which the saddle
Wall- Porte , fit to the SSMK surfa ce (7) lot this reac. point location is given by R 1 = 5.2 bohr and R 2 •2.7
tion , with a corrected barrier heigh t of 9.8 kcallmoie , bohr , I t was found that the LEPS function could not
which has been used for extensive quantum mechan i. •- - - These parvneten wets chosen fo, a ground stat. isir facu incal (6) . classical (8) and semi.classacal (9) calculatsons. a ut ud y of an electronically ,sois’.diabtt lc chemical msctloaThe Morse par ametir r s D,~~, and I,,~ for this surface are 1101.
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R 1 (boh r )

FIg. 4, Equlpotentlal contour plot or the spline-geneyat ed potential surface dsicribed in lbs text , corresponding to the Morse param.
seem of fig- S. - -

satisf ~r these spec1flc.~fon s without also introducing possible exteirlon of the splint method Is to consider
spurious “hollowa ’ in the reactant entrance channel , a linear combination of a Mor se function VM and an

- The cubIc splint app roach can produce the desired sur- “an ti.Morse” function VIM . For nott .reactlve surfaces
face as seen in Pg. 4. The 0.dependen ce of the corr e. this linear combination could be of the fonts
spondingMorse parameters is given In fig. 5.Twetve V(R R ).~~e)V ( O ) + f l  — o(O)) V (0)
values of each parameter are specified. This was done 1’ 2 N aM ‘

because the potential of Interest Is somewhat long, where 0 ~~a ~ I .  This function g’ontalns three Morse
ringed and requires “anchoring” in the asymptotic re. parameter s , three ant i-Morse parameters, and the
gions of space. A shorter range potentia l could have “switch in g” parameter a all of which are functions of
been constructed with the above specifications and 0. As previously, these parameters would be spline’fit.
fewer poInts would have been required as Input , ted to give the desired potentIal surface. The second

There are two directions of Interest in which to cx- extension of interest Is to allow V to be a function of
- - tend the splint appro ac h ghcn above . The fi rst Is to the bond angle ‘v (as well as ofR 1 and R 2) . This ex•

noss.re,ctlve potential surfaces and to surfaces with tension Is necessary to describe reacti ons in three di.
cusps, such as the one corresponding to the first excit~ menslons. A straightforward way of doing this would
ed singlet state of H; ( I I ) .  A rotating Morse (unction be to multiply the function V(R 1 .R2. ‘)r O) by e
cannot represent such potential surface s accurate ly. A function of’s’ ca done by Bunker and co.workeus )31.
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mined by spline int.rpolations. Thus. a Iwo .d imenslon-40 
al spline routine would be required to g~rseraie a pa. . - - -

56 / tent ial surface for three -dImensional re acti ve scattering ‘ -

j  / - calculations . Bou t of the above extensions are current S * 
- —

2 ly under study. -

2 i ,,/“ One of us (1 M B .) gr atefull y acknowled ges ute of
_______ ________________ computing faci l ittes at the Illinois ln ut itute of Tech- -
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PROGRESS IN T}i~~ QUANTUM DYNAMICS OF REACTWE
- : ‘  MOLECULA R COLLISJONSt

-- Aron I uppez’masm

A~th ur Amos Noyes Laboratory of Chemical
Physict~,t California lr.stitutc of Technology ,
Pasadena , Californ ia 91125

- ABSTRACT
- 

Progres s in accurate quantum mechanical ca~~ulationsof reac tive collisions is reviewed. The results of three-
dimensional calculations arc described and compared
witi s those of approximate meth ods. Resonances in :eaetlve

- - ‘
.. nc.attering are discussed as well as elcctror.icaliy nonadiabatic

chemical i eac..ons.

- 
I. HISTORIcAL INTRODUCT ION 

. 

-

- Given an clectrontcally adiahatL~ potential energy
- sur face for a tr iatomic system , it is possible in principle tosolve the Schrödingcr equation describing the motion of the

nuclei on that surface and to obtain , from such solutions ,
- . state-to-state differential and integral reaction cross sections.

- These cross sections furnish very detailed information aboutthe dynamics ~-f the reaction and can also be used to calculate
rate constants for buhi ~ react ienc. This problem is , however ,cumputationally formidable , sa~ as a result the first attempts to
solve It were limited to collinear reactions in which the three

‘Supported In part by the U. S. Air Force Office of Scientific
Research , Grant No. AFOZR-7~~.2539.
t Contribut i on No. 5200.
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- ‘

t I
atoms were constrained to lie on a straight line. This reduces 

- 

-

the number of independent variables on which the wavefunct ion -

depends from six to two , l :r eatly si m p h i fy i n ~ the problem . - —The first  solution of this co lh inea r  pr oblem for a realistic
potential energy surface was thta~ned by Mertensen and
Pitzer (1) for the II + H; Cxc~1a n!~e reactio~i .stsd extended -

later (2) to some of its tsotsip ic counterp a rt s. The method —
used was a fin ite difference numeri cal sohttt io n of the two-
variable time—i ndep ci sdcnt ~clii’ öth in ~er par t i a l  d i f ferent i a l  - -

equation coupled wills an i terative procedure for irinosing the 
—appropri ate rea ctive~ scatt cr in g boundary cont ~it ion s.  A

vari ation of tho fin ite di f ferenc e method in which the boundary —

conditions were imposed by a no i t i ter at ive  approach involving
a suf f ic ien t ly  large nunsber of l incar ly  lndt ’peisdCnt solutions 

- -

of the Schrddissgei equation was developed by Diestler and
McKoy (3) and app lied by Trt t l i las’  and h-~ui)pez’man n (4) to -‘

H + 
~~2 and by Truhiar , Kupp ermana , and A dam s (5) to some

of its .~ otopic counterparts.  An itit cs ’est iisg variation of the
finite difference metisod was int .-oduccd by McColhough and - - 

- — -

Wyatt (t~ who used it to solve the t ime-dependen t Schsrödinger -

equation for the If + H, exchiamv ~e reaction , r epla-~ing thereby -
~~~~~

a boundary value problem by an initial value one. -

The finitc ’difference approach in any cC the variations 
- -~~

mentioned above is ~~nsiputat ionahl y  very iisc1~k-icnt and inappro—
1~ ’iate f~r extension to a wide enen~y range or to prehienis of -
higher din sens ional i ty .  A~ a i’est ilt , several other methods -

have been developed and used recent ly.  These ircludc the - 
~~
- - -

v ar ia t ional  approach used by Mortc ’nsen and Guewa (7) for
colhinear H + IL , and t i t ~ in tegra l  equation me th od developed
by Sams and Kouri  (8) and appli ed to several collin ear r.y~ tems
by Adams , Smith , am ;d Haves (9) , h owever , t h e  most widel y
used appi- .s ,ic l . for colh in ear  cel1i’;~ens has beets Ihe cot tple d— 

- . -equation (i .e.  , closc—c ou p l i r -~) nre t ~sod , in one of its several -

forms. The t ) aa ie  r.-r thed consist s in ch”osin~ a set of Iwo
com’etsie~’i vas’j~i,Jes , x and y,  to ih- ~.;c-ri~o ~he ~iste”aal corfi.~— -

ut ’aLion ot the system . These r.sr~~hles may ~~~~ d i f f e r en t  in -

diIIevent rc~ ions of ec~sfi- ~sst’at ioss .‘sice bt.t ~~~isCy th e ~~-nh ’at -

pro~ ei’ty that  for x eqs’al to :i coa~,t - it st  x th.~ i:o -au n t  energy -

func t i on  V(x , y) is hoctsd , The Wa’; ~ftmc (to’s - ,(
~

, y) is expanded . -

in eigen fui ’cti ois s of V(x , y), (e ’ii’.~s are eah1~i (h e ~‘ibz’at ionnl
ha9ia set) and (he resulUr a~ ecr~ ’) ‘1 ordinary “iIioi ’entia l
equ ation s in the x—d epcnden t  C i ) ” lh l , ’ lents of this ~xpansicsn are
solved. Vari :ttion s o~ ih is  irl iroat s h ave been de~’cloped by
Light (10), l<u pel ’ma ;-a ( 11), Dic-~; b r  (12), ned ,Iohnscm (13)
aisci anp lie ’I to a vat -  h-’t y of rol1i ’~e,r systems ( 10 .-IC ) ,  As a / -

resalt , a sigt.~ts’ant .sruouni of kI’is ’./Icd ge hs as :~r cun ssslater l  -
, - -  -

ah)oI.~t ‘he r eact ive sea ’ .t r i t ~~ ~~~~~ s ties of cot t inea r  i’cacti\ C 
- -

.

Systems . -

p.:
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Wh ets the iiiwt i ’ni i ,t of en l l in car i t v  Is
z’ehixed , the pz- .4’l -ia i ’eccanses r ,n i fu’a t s t tv  I I I O Y ’ C ’  (1) 110 u lt
For (‘oplan:ii’ (n at n:nir  s-(- ac ’t ‘Dos , I h p ~ ~

- .-:,~~‘ -~~
,,.-t inn sh~~’~-n ds

now on fops’ ~‘aniab)es (a r t t ’z ’ fhi ~ I I5O~ icn (, ‘ i tie i -  ‘utet’ of IisS ~~~is removed) and th e pab t: nt in) (‘DC I’~~V Cone I irS i V ott I t t j (’C - A
P artial wave expasssien s’ech ’sces th e ) ) F 0 ~) l&’ tf l  I t )  a set (I I

~~~~~~~~~~~~~~ 
pat -ti n I u-ave S’hr Mits ~-er ect,tiati on s slepending o~ the

Sante three variabl es as V (19 , 20) . One of th e -c is u s u a l ly  n itangle , n’~d expan sion cjC (hip ~‘,.:tvcCus ’f ion in ter n ’s (11 a ( ‘ O. t t 1 ,~( ’tC
set of basis funct ion s  of that  an g le  (th ~’ i’ota( 1 i,’a I t i n s  is set)
yie l d s  a s~ t of coupl c ’d~~ .’o— ~ :u’hhle par t ial  d i ft c r e t : ( , a I  equa-
tions. 1- ne (ri áThm ic s &‘;tdions in thr e e— disu~’nsioital space ,the ~‘avefunct ;en depends on si.~ ~‘. t t’Liblc ’ s , i~~” ~e of \- lib-li can
be chosen to be the ones on which V depends ~2i , 22 ) . I t is
possible to el imin at e the ,Ahei’ three variables .  ‘~y a par t ia l
wave expansion in t e rm s  of V/igne r t ub aL ion fesie ( in !ts , h ’adi ttg

- — to a set of vo’i~ 3 ’d pas ’1in5 u-ave Scbsrö dia~ er equ:1 ( ions depn, ,d—
big on the same fhree vas’i:,t’k-s :i.c V. A fw -t lse t ’ cx1uussimt in —

terms of the an~ulaz’ va t ’iab Ic usu a l ly  appeal ’ -~~~ iii \‘ lead’;
again to a set of coupled two—var i ab l e  I)art i: I di fic ’r ent m l
equations , the nusssIs-i ”~T wh ir ls  is usually aj~~rt ’ci ahi Iy  lai ’i~ei’
than for the coplanar case, There have beets r e lat ive ly  few
studies of such n on cohij uc ar  reac t ions .  The coplanar 1) 117system u as in vestig ated l,y coup le d— equation I e( ’isniqtte~; by
Light and co—workers (19) , using a sin gle v ibr a t ion al  basi ’ 

—function , and by Kuppeninass t 1 and co-workers ~~~~ in a con-
verged v ibrational— rotational expansion approach. l3aer and
Kourl (23) developed a coupled T-cperator integral equation
technique and app lied it to a simp le th r ee—d iin ’-’nsional model
atom pius diatom s stem in whi r l s  reaction wifli only one end
is permitted. \Volhen and Karp lus (2~) app lied an integro-
differ c,t l ia l  equation method prnpased by hi i l les ’  (25) to the
th ree—dimensiona l II ~ I react ive system using a otw—
vfl rational basis function appi ’oximat ion. ~‘ery r t ’ct ’t st ly ,Kuppermann a nd Schatz (21 ) have :tcitiev( ’d accur ate  % ib t ’ a t i o i t —
ally and rotational ly converged results by an extension of the

- - coupled-equation techniques previously used for collincas ’ and - -

copla nar systems (11, 20) , and Elkowit z and Wyatt (22) have
applied a different version of the coupled-equation method
using hindr ed rc~tor basis functions its the expansion (22 , 26) .
In a somewhat different vein , Mich.’s (27) has developed a -

.. - 
-

Fadecv-c4uatton approach to the problem of z’eactive scattering.

In this paper we focus attention on the accurate 3-1)
results (21 , 22) all of which have appeared since the previou sICPEAC nsee~in~ was he ld in Belgrade in July of 1973. Co-planar and collinear re sults as well as other ajijn ’o .simatemethods will be invoked mainly for comparison purposes.
However , som e recent accurate cotlinear studies of reactive
scatit ring resonances and of electrc ,nically-noaadtabatj c
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chemical reaction s will also be discussed. . -

II. POTENTIA L ENER GY SURFACES TN
SYMMETRIZED HYPERSUPER1CAL COORDINATES /

In order to sum marize the characteristics of the
reactive scattering problem and the approaches used to solve
It , it is useful to describe the nature of the interaction poten-
tials under consideration. For electronically adiabatic client-
feat reactions t h e  Born-Oppenhe imer separation approxima-
tion permits us to describe the motion of the nuclei during a
chemical reaction as that due to a potentiel energy function V
which depends on the relative positions of the nuclei but not /
on the electronic coordinates. V is obtainable by assuming
these nuclei to be fixed and solving the electronic motion
problem. The resulting electronic wavefun ction an .t energy -

- depend parametrically on the nuclear geometry. Let us - 

-

consider a system of three atolns Aa (
~~

A)
~ Afi (n B)P and

(S C). For notat ional purposes , let A v K  be any cyclic 
- 

-
.

permutation of aJ)y , meaning that A~ + A~A~ represents any - - 

-

of the eka’snels A + BC , B + CA , or C + All . Let and 
--

be respectively the vector from A~ to A,~ and from the center
of mass of A~A~ to A~ . For example , for A ti~ a~~y r’~ is
the vector from B to C and fl~ the vector from the center of
mass of RC to A. The potentIal energy function can be con-
sidererl to depend on any of the sets of variables (r~~, % , ~ Lj )

~ 
-

‘

(rh , R~ , rp )~ or (r~,,  R.~,, ,  y~ ) where y~~(X ~ a ,P,y) is the ‘ 
-/

angle in the (0,r) range bet;veer . and R~. 1~~

It has recently been shown that a very convenient set - 
-

of coordinates exists for mappin:~ ~‘ (28) . These are the sym-
ns c’tr ined hyperspherical coordinat e-c r = (t~~ + R~~~/2 , O

~ 
=

2 cos~ (R~ /r) and y~ , wlserc r~ 
= (~~~ /p~ i/-I rk , and fl~

(~~~ /~~~~)1/4fl’ are scaled (20-31) distances. The ns.ss~~s
and 

~~~~~~, ~~ are re spectively the i’educcd mass of A ,,K and -

of the Ax + A I/IK pa:r , the angle e\ is in the (0 , r) ran;e and
r is indepen dent of X (30 , 31). The factor 2 in the e::p:ession
for O~ is crucial and snakes the present hypez ’splserie at root ’—
dinates differ front th ose suggested previou :;ly (31,—3 2).  We -

now consider r , O~ , y
~ 

to be the :,1 Isct - i eal polat’ com’disrttcs
of a poi nt Px in a tiree -dimensional Internal :u ’t ’angetnent -

- - --—- - — —4 -,---

_
~~~

. - - — /  
- \ .

- - - 
-
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eonfiguration space 0X~Y~ ’/~ . In order for this space to be
completely scanned by those variables , we extend the range
of~~ from (0,r) to (-ir , r) by setting, for r~ < 0 ,

V(r , 
~~~~~~~~ 

The snapplag of V in th is space (but not in the

~pace in ~ lii~’h the factot ’ of 2 ‘ust mentioned Is omittcd) has -‘

t~vo very important propeitics: (a) an r , 0~ ‘~~
‘
~~ 

r , O~, ,y~, 
-
, 

-‘

transformation rotates equipotential surfaces ai’owtd 0Y~with out distort ing th em and ~b) the symmetry properties of
the map are the same as lli~ se of the reaction. For example,
the mapping for the II , system h a s  the zyniisset i ’y propes-tics - - - -

of an equilateral triangle and that for the FIL those of an
Isosecles triangle. -these symmetry properties do not depend
nn the choice of the arr angemcnt channel A and permit us to
visualize the characteristics of V for all configurations in one
single representation , the a one for example. -~~~~

- - 4 03 I.SW Z, o~s •~ w

~~~~ ~~~~~~~~~~~: 

-: 

FIgur e 1. Equipotential surfaces for H,. The cartesian coor-
dinaLe~TXa ,Ya , Za are r sin O

~~cos ya , r sin O~~sin y~ , and
r con er,, respectively , with r , 0a defined in the text , The
curves are Intersections of V(r ,Oa ,ya) = E surfaces with the

- - - planes 0X0Z0 (Fig. Ia) and OYa Za (Fi g. ib), The origin of
-. . measurement of E is the minimum of the 1-!, diatomic potential - - -

energy curve with the third ator~i removed to infinity . The
values of E range from 0.3 CV to 1.5 cV in steps of 0.3 cV , -

as indicated on top of figure. All points on Fig. la and those
on the 0Z~ axis of Fig. ~b correspond to linear configurations.
Those off the OZ axis on Fig. lb correspond to perpendicular
(L .a., lsosceles G trian gle) configurations in which Aa is the
odd atom .

_____ ‘- - —.- -•- - -- -— -- - - - — — - -~- - ~~- - -  -- —— —--.-- -~ - - - —~~ —a. —_-_- ~~~~~~~~~~
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Tn Fig. 1 we depict intersections of the equlpotent iat
surfaces with the 0X0 O0 and OY~ Z~ 

planes for the Porter 
- - -

and Karplus ( 3 )  potential function describing the H, system. 
- - ~
‘ 

-

The OYa axis, perpendicular to the plane of Fig. In , is a - - 
-

three-fold axis of symmetry of V, due to the equivalence of -

the three 11 atoms and ol the corresponding arrangement -
. -

channels. The angle between any of the three axes O~~~, OZ~,
and 0Z1, is 120 , rather than the usual 60° (34), due to the - 

A
factor 2 in the definition of O~. It is this factor which permits /‘/
the three arrangement channels Ax + A

VK 
(A = a ,13,y) to be ‘ . 

-‘

represented equivalently. The lower part of Fig. ib , In the
negative Z~ half-p lane, depicts in detail the “transition state” -

region of configuration space halfway between the + AaAp -

reactant and A~A8 + Afl product configurations. At any energy -

E, all cl,a sslcally allowed pathways leading from such reagents .

to such products must pass through the region enclosed by the — 
-

corresponding equipotentia l. The hatched area on the bot tom ‘ /of Fig. lb s enclosed by the E = 0.6 eV equipotential. The
smaller E , the more confined is this region and the less can -,

the intermediate reactive conf igurations deviate front cot-
linearity. The characteristics of these “passages” between -

reagents and products influence significantly the dynamical
properties of V. For exam ple , if they are narrow , the rcac-
tion is collinearly dominated. -

-
~~ With the help of these synimetrized coordinates we can

descr~~e graph lcaUy the nature of the atom—diatom reac-Uve - 
- - 

-scat ierin - pru ’j lem and of the methods i tSCI I  for solvipg it.
Collisions of Aa with A~A~ corz-cspond lo cosfi gurations in
Fig. 1 in~tially with X~ and of the order of the A~A~ equ l— - _

- 

- 
libriunt internuclear distance and Z0 large with respc-ct to I

that distance. After the collislcn has occurred , t he  system
- - rcbouuds into th at reg ion for r ,oorcactive coltiaions, or moves

to regio~ts in th~ v ic in i ty  of the 7,~ axis with large for - . -

reactive collisions re itt iu~; In A~ -
~ A .A~ urod~tcts or the

axis tot’ A), + AaA
0 

products. One mt’st obtain scattering -

wavefunct ieau whic h bc !iavc accordingly in Iheso different
regions of co-~~igurat ioit s~acc. tJs~in~ a tin~e—Oepencie nt - -

lan guage , a .r~vc pact -ct e ~roacliin c~ the origin 0 from the
Large Z direction j a p.~rttally reflected nnd p.u’UaIty b ifureates -

In to the 0/.~ and 07. dit ’e~t 1øns due to react ion of Aa with -

- H . ’
/ 

- - -- -- - - - -  ~~~
- - —  .- - - -
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-
~~~~
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either A~ or respectively . This bifurcation problem,
which encompasses the competition between these two reac- .- 

-

tions, Is conceptually a rather d ifficult one and has becit at
least partially responsible for the slowness of the progress
In the reaction dynamics of noncollinear systems.

ill. COUPLED -EQPATION METHOD I~~R - -

3-D REACTiVE SCATTERING
An approach we recently used in obtaining accurate

- ‘ 
- 

- solutions for the 3-D 11 + II , system (21) is summarized below.
The Schrödingcr equation for the triatomic system can be
considered to be a function of the six variables l~~, r~ ~~The f ir st three have been defined In the previous
section , O

~ 
and are the polar angles of In a laboratory- - 

-

fixed system of reference , and is the “tumbling ” angle
/ 

between the instantaneous triatom plane and a fixed reference
plane containing 

~!~~‘ 
We consider wavefunctions I’~j M of these

six variables which arc simultaneously solutions of the
Schrbdlnger equation and eigenfunct ions of the square of the
total angular momentum and its component along a laboratory- -

fixed Oz axis. We expand In terms of the Wigner rotation
functions (35) Db~~ ~~~~~~~~ 

and the spherical harmonics
A

~ ~
‘x’~

’ ). The resulting coefficients are functions of theA - -

two distances ~~~~~ and satisf y a set of coupled differential
equations. A final expansion is made in terms of local vibra-
tional wavefunctions , which are cuts of the rotationally aver-
aged potential along directions transverse to an appropriately
chosen propagation coordinate , which varies from region to
region of the R~, r~ configuration space. The resulting coupled
ordinary differential equations are integrated into the inter-
action region from each of the three A arrangement channel
regions, using the Gordon method (36) . These solutions are
then smoothly matched along three half-planes of the coat ig-

—~~~~~ 
. uration space of Fig. 1, all limited by the OYa axis of that

/ figure and contain ing the negative half of the 0Z0, OZ~ , and
0Z1, axes, respectively. This matching p:ocedure contains
built into It the solution to the bifurcation problem mentioned
In the previous section. It involves using basis functions for
the matching which are localized on those half-planes but

- -  -
-

-

- - - -

- -
~~~ 

- -- -
~~~~~~~~~~~

—
~~~~~~~
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- -

when taken together are complete ov r the entire v0 , y~ , or
angular range. Finally, linear r mbination s of the smoothly

matched solutions arc used to obta ’ - the reactance and scat-
tering matrices for each value of ~‘ from which the dif ferential
and Integral cross sections for re? ;ilve and nonreactive
processes are calculated.

IV. RESULTS AND DISCUSSION OF 3-D CALCULATIONS
The coupled—equation method described above was

applied to the H + IL system (21) using the Porter and Karplus
potential energy sur face (33) dep icted In Fig . 1. In addition
to distinguishable atom reactive and nonreactive cross sec-
tions, calculations were made of antisymmetrized cross see-
tions corresponding to scattering amplitudes which are the
appropriate linear combinations of the direct and exchange
contributions necessary to make the scattering wavetunction
antisymmetric with respect to the exchange of any two hydro-
gen atoms, in the 0. 40 to 0. 70 eV range of total energy E ,
up to 30 rotationa l , 4 vibrat ional , and 100 total basis functions
were foun d necessary for convergence of the results for each
J to within 5%. Convergence of the reactive differentia l  cross
sections required all values of 3 from 0 to about 12.

The J = 0 reactive probabilities have a dependence on
energy very similar to that of the corresponding coplanar and
colliricar ones , over severaL orders of magniLude of the prob-
abilities. These curves are shifted towards higher energies
by about 0.05 eV in going from 1-0 to 2-0 and from 2-0 to
3-0 probabilities, probably due to the zero point energy stored
in the bending mode of the transition state . This behavior —

suggests how 3-D probabilities can be obtained appro ~ inia tely
from 1-D ones (or this collinearly (lominated reaction (21).

in Fig. 2 we present the distinguishable atom integral
reaction cross sections Q~ from the ground v brattonal rtate
and Initial rotational state j (j 0, 1, 2) of the reagent , as a
function of E , fo r several calculat ions : the converged (2 1) (SK),
the hincired rotor (22) (EW) and the quasi-classical (37) (l~PS)
ones. The latter agree quite well with the SK cross sections
for ) 0 and 1, at energies above the effective quasi-classical
threshold. This agreement was to be e::pected , since it had
already been observed for the coli incar reaction (38). As a
consequence one cbtatns near equality in the SK iluantuni and
KPS quasi—classical thermal rate constants at 6001C. At

lower temperatures ~ic ef fects of tunnel ing becotr .e very
import ant , and the SI( rate constants are larger than the lU’S

____
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FI~~ire 2. Comparison of Figur e 3. Antisymmetrlzed
Tntegral reactive cross sec- ~ iUcrenti al cross sections
t ions from several H + H2 and their sum in the helicity
calculations, representation.

ones by factors of 3.2 and 18 at 300 eX and 200°K respective-
ly (21). The EW Q~~0 results have been recently decreased ,
hrlnglng them to within approximately 15% of the SK ones (39).
Tht~ one vibrational basis function integro-d ifferent lal equation
results of Wolken and Karplus for the antisymmetrized

01 cross section have an effective threshold about
0.05 cY lower than the SK ones and rise much more rapidly

- - with energy . This is probably due to the severely truncated
nature of their vibrational-rotational basis set. The Choi and
Tang distorted wave calculation (40), done at a higher energy, - - -

seems to fall on an extrapolation of the 5K Q~0,, 01 curve.

In Fig. 3 we plot the antisymmetrized O~O0_03m~
para — ortho differential cross sections as w~ll a~ their s~im,
as a function of ~~ scatterin g angle eR, for I m t  = 0 through
3. We see that the m~ = 0 cross section Is backward peaked and
that It dominates over the others. This highly nonstatistical
behavior of the polarization of the product s is the rnanifesta -

- - 1

— - - -
• •

. — --- - - - - — - 
--

--
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tion of an mj = 0 to m = 0 quasi-selection rule for low j which - : - -

ha s been proposed (21) for collinearly dominated reactions,due to maximum atom-diatom collinear overlap for those
values of m

1 and m .  In contrast , the degeneracy-averaged
(i. e., summed over m and averaged over ink ) product rota-
tional distributions can be fitted to temperature- like distribu—
tions to a high degree of accuracy, indica ting a statistical-
type behavior. The corresponding rotationa l temperature
parameters increase nearly linearly with energy from 228° Kat E = 0. 45 eV to 446 °K at 0.70 eV.

The degeneracy-averaged antisymmetrized para para
- differential cross sections a~~, 01’ to which only exchange

- collisions contribute , are smooth backward peaked functions
of the scattering angle . In contrast , the 000._02 pam — ortho
cross sections are peaked sideways, (Tue to the large contribu-
tion from direct processes , and display an oscillatory behavior
as a function of the scattering angle , due to t h e  interference
between the direct and exchange scattering amplitudes , both
of which contribute to this cross section. The backward-
peaked shape of the ~~~~~ differential cross section for the
coplanar react ion at an energy E is essentially identical to the
one for the 3-D reaction at an energy E + O.0~ CV over the• entire energy range considered. T h e  energy shift again sug— — - - -

-gusts an effect of the bending energy of the transition state.
The agreement in these an gular  distributions is not unexpected ,since the same potential is sampled in both cases and the
pri mary diffeten ce between the two calcuh tions is the addi-
tional centrifn gal coup ling re sultin g from the tumbling of the
three-atom plane. The existence of the strong product polar-
taatio ii effect inen t i ’ -~ned above indicate. ; t:iat such coupling is
weak compared vitti the p ot enti al coupling responsible for the
linear geometry rcc iui r cment. This suu!~csts a close similarity
b etween the 2-D and 3—I )  dynamics and cnnversion of 2—D re-
sults to 3-D ones promises to be an accurate approx in iate
technique. Anoth er pro~nis ing appr oximation i. the neglect of
t h e  weak coupling be tween different t~’mbl ing angul ar momenta ,
~vhi i cIi reduces the numer ical ef ~nrt in a 3-i) reactive scatter-
Ing caic’.~ation to (hat of a 2 -D one. - .

-- - 
-

- V. RESONANCES IN YU ACTWE SCATTERING

For (he H - 113 system , reactive scatter ing resonances
have been thsevv ’d Ia collinear (1t~) , coplanar , and 3-fl roUt- —sion~ (41). in Fig. 4 we depic t (he react to ?I i)~~~ahil i ties for
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1hc~;e three kinds of collibions . As can be seen, a dip appears
‘‘

0,:r ~~~~~~~~~~~~~~~~~~~~ 

‘

~~~~~ 

—i 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

I : j ’ ’--.. I ~ ,‘ I
I / í _.—t-~b~/’~j 

~

- ‘
~
iL1 -I, , •~~~~.-= ~, .

~~~~ ~~~~~~C ”,”

~~~ure 4. Collinear (I-fl) , coph~n?r (2-1)) , and three-dimen-- .
slön~1TFeaction (3-fl) reaction probab ilities as a function of
total energy- E and translational energy E0 . The n oncofl inear
results have been summed over all product rotationa l states
within the product vibrational manifold indicated.

in the vibrationally elastic reaction probability curves (left
side panel) and a peak in the vibz-at ionally inelast ic ones (right
side panel). For the 1-fl case , a time-delay analysis indi-
cates (16) that this structur e is due to interference between a
direct mechanism and a compound state one associated with
an internal excitation dynamical (I-’eshbach) resonance. A
vibrationally adiabatic analysis (42) of the collinear resonance
indica tes that in the region of the potential energy function
saddle point and at the resonance energy the systc.m has a 90%
probability of being foun d in the first vu rationally excited
state of the transverse (symmetric stretch) internally excited
mode of motion . This indicates that trapping of the energy in
this mode is responsible for the resonance. Estimates of the
energy dependence of the integral cross section for the reac-
tion from the ground vibrational-rotati onal state of the reagent
to the first vibrationa lly excited state of the product , for 3-D
collisions, is similar to that of the corresponding J = 0 reac-

- - tion probability, depic ted in the right panel of Fig. 4 , and has
a peak value of 0.05 bohr 2 . Therefore the partial wave and
product rotationa l state sums involved in the calculation o
this cross section do not wash out the resonances observed in - -~ --collinear collision s, at least for the present coilinearly domi-
nated reaction . This Is the first time that a resonance has
been predicted for a 3-fl reaction whose potential energy func-
t ion does not have an attractive well. Since Fcshbach reso-
nances have also been detected in collinear calculations for
the collinearly dominated F + 112 (D2, lID) (17) and Cl + H2

I

-
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(last of Ref. 18 papers) reactions (using potential energysurfaces devoid of wells), it Is quite possible that such reso-nances may exist for these reactions in the real world as well.
The shift in the position of the 1-D , 2-D , and 3-fl resonancesof FIg. 4 is appr oximately equal , once more , to the zero-point energy of the bending mode of the transition state. Thissuggests how the position of 1-I) resonances could be usedto predict where the 3-D ones should lie for coilinearly doai i-nated reactions. In going from the SSMK potential energysurface used in the study of Ref .  16 to the Porter and Karplus
one used in Ref. .11, the width of the 1-D H + 11 resonancebeing considered decreases from about 0.05 e’/ to 0.022 eV,Indicating a great sensitivity of the properties of the eeso-nance to the shape of the potential energy surface. As aresult , resonances may prove a sensitive probe for the experi-— 

- 

mental characterization of potential energy surfaces and forthe development and testing of approximate reaction-dynamic
theories.

VI. ELECTRONICALLY NONADIAI3ATIC - —-. -

CJIEIbIICAL REACTIONS
Partly as a result of the possibility of developing

chemical Lasers involving electronic state popul ation inver-
sions, interest in the theorct lcat understanding of electronic-ally chemiluminescent reactions has recently increased. Aparticular example Is the Ba + N20 — BaO + N2 reaction , inwhich the BaO may be for~ncd in an electronically excitedstate (43-45). No acct~rate theoretical calculation s for such
electrenically iion :tdiabatj c reactive processes have yet beenattempted. A classical t t-aje ctory-hcp p ing scheme has beendevclcpect and applied to the 1I~ + D~ — liD4 + D reaction (46).
In addition , a sem i-c~assicaI description of such rcacUons
based on the Feyninan prcpagator has been form&atud and
applied to thL$ same reaction (47). As a means of assessingthe vali dity of these approxi m ate schemes , an accurate two—pc tentia l enrrgy surface collinear reactive scatt erin,~ calc u-lation method vias developed and applied to a simpl i f ied modelof t h e Ba + N.,O — BaO + N~ reaction (-IS). These calculationsindicate that a substantial tract ion of the 13a0 product canindeed , for this model , he pro~luced in an electronicallyexcited state. These accurate colh inear calculati ons can now 

•be used to trs t the val idity of approximate ones for the samepot~atial energy surfaces.

- -  -
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VU. SUMMARY -

Substantial progress has occurred over the last fewyears In the development of accurate 3-fl quanthm mechanicalmethods for calculating cross sections of electronically adia-batic reactions. Out of such calculations hiwe emerged pre-dictions of a product polarization quasi-selection rule and ofthe existence of Feshbach resonances for colllnear !y domi-
nated reactions. Such predictive ability is Indic ative of thevigor of the field. Progress has also been made In the calcu-
lation of electronically nonadiabatic reaction cross sections.
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AN EXACT QUANTUM STUDY OF VIBRAT IONAL DEACTIVATION - -

BY R EACTIVE AND NON R EACTI V E COLLISIONS -

IN THE COLLI NEAR ISOTOPIC H + Ft-I SYSTEMS

O.ot,a C. Schatz and Aron Kupp.rvn.nn 
- —

Arthu, Amos Noyss Laboratory of Chi mical Physicst
California Institute of Tuchnology -

Puad.na, Cal ifornia 91125 -

I -
The success of the HI chemical laser depends to a large extent on .~~~. -

the relative rates o f :  (1) the F + H 2 pumping reaction which produces . -
vibra tiona lly excited HF (v) , and (2) the deactivation of HP(v) by - ,
collisions with H2, F, H, buffer gas , and HI itself. Although the
deactivation of HI by H 2 , ’ p ,2 and ~~~ h as been both experimen ta l ly and - ,
theoretically well-character ized with generally good agreement between 1

_
I ’

experiment and theory , the s i tuat ion is far less satisfactory for
H + FR and its isotopic counterparts , D + FD , H + PD , and D + FR. The - - - i -

three experimental determination s of the H + FR (v — 1) deactivation 
/

ra t e 2’4 ’ 5 give rate constants at 300°K of ~ (7 ± 4) x iOll ,4 5 9  x
109,2 and (1 .4  + 0.4) x iO u ctn3/mo le-sec ,~ thuS disagreein g with . 

- - 

/one another by amounts welt outside their resp ectiv e er ror limits . - -

Agreement p ith the results  of a theoretical (classical tr ajectory ) /
/

calcu lation of this rate constant is no better with a predicted value /
of 2.2 x 1012 cm3/riole-sec at 300°K . Similar experimental and theore t i- -

cal comp arisons of the rate constants fur the deactivation of D + FD
(v — 1),  D + FR (v — 1),  and H + PD (v — 1) ore also poor. 5

The approximation of classical dyn amics has been anal yzed in detail 
- -

for the F + 112 7 and P + D2 8 reactions , and its most important conse-
quences for reactiv e collisions were found to be an inadequate descrip-
tion of resonances , neg lect of tunneling, and dynamical threshold
effects . In c~nsidering vibrational deactivation processes , we must
also examine the validity of the quasi-classical predict ion6 that multi- -

quantum jump transitions are extremely important in deactivating
collis~~’ns (both nonreactive and reactive) for H + FR. If true , it
could be important , for it would mean that H atoms can be very efficient
deactivators of HF. In addition , much of thc theoretical analysis is
pred icated on the assumption of the dominance of e~.ng 1e quantum J um p
transitions .9 -

Th1s research was supported in part by a gran t (No. ~Z0SR-73-2539)
from the US Air Force Offi~e of Scientific Research. -

tContribution No. 5284. -
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- - ‘I - In this paper we exam ine the dynamics of reac t ive and non r eact ive -
~~

I H + FR and its isotopic counterpar ts  using accurate qu an tum mechanical
- - me thods. In all calculation s we restrict our considerations to collinear 

-

~ollis ions , an aprroximation which renders the quan tum mechanical - -

- problem tractable while still retaining many of the important dynamical
features of the th r ee-d ic~tnsion al (3-D) wor ld .’0’11

I 
The pot ential energy surfac e used was 1$.sckerman ’s Surface Five!2’13 -

whose LEPS par am eters are given by Scha tz et a1.~ This surface has a
barrier heigh t of 1.23 kcal/ tn ole for the collinear F + PH * HP + H - -

exchange reacl .ion. Recently, Bender et al)4 have shown that  th is 
-barrier is ser iousl y in error , the correct value being estimated at

about 40 kcal/mole . The present results may nevertheless be qual ita-
I tively correct if the quantum number of the initial vibrational states 

-

considered are increased so as to place these states above the correct 
- 

-

- barrier. - Those features of the results depending on the atomic masses
(such as the skew ang le between the coordinate axis in terms of which
the kinetic energy operator is diagonal) ~hou1d be correct. Calcula- - 

-- 
- - 

- t ions of the effect of barrier height on these results are in progress
and will be presented elsewhere.

- 
- 

- The me th od used in the calculation was a coupled-channe l propaga- - 
-

tion techni que 15 previous ly applied to H + H2, 16 F + H 2 7’17 and F + D2 .8
Convergence , conservation of flux , and microscop ic revers ibi l i ty  m di- 

- -
cate that the result s are accurate to 17. or better.

The transition probability from vibratIonal state v of the reagent
to stat e v ’ of the produc t is denoted by the symbol pR , - for reactive - -

- collision s and by P~~~, for nonreac t ive ones. Figures ”I throu gh 3
- dis p lay the reactive and nonreactive probabilities 

~3v ’ (v ’ — 0, 1,2) as
a function of the relative kinetic energy E3 of the reagents. In all -

‘
- these figures , reac tive probabilities exceed the nonreactiv e ones in -

the low kinetic energy -region important for thermal rate constants .
Furthermore , the mu lt iquantu m Jump probabilities are of the same magni-
tude a-s the single quantum jump ones . Similar results crc obtained for
v 2 .

Figures 4 and 5 depict several of the k~~ s and )C~~ , collinear rate
constants for H + Fit. They indicate that the react ive rate consta nts -

are in general significantly larger than the nonreactive ones . Figure 6
shows the total deactivation ra te constants 4 and k~. At 30001( , the - . -
ratio 4/k~ is 8.3 for v — 1, 8.5 for v 2 , and 3.5 for v 3. Figure 7 - 

-
• I contains Arrh er1us plots of k~0 and k~0 for H + PH , D + PD , H + PD , and -

D + PH , which indicate that •u&stitution of H by D does not qualitatively
affect these results , except for the H + PD system . -

- In suamary, for all transition probabilities and rate constants the - . 

-

reactive mechanism dominates over the nonreactive one in producing
- vibrational deactivation . This result is apparentl y of general validity

over a wid e range of impact parameter s since the same conc1usion~ (even 
- 

- -

the same ratios of rate constants) were obtained by Wilkins6 in his 3-D -

I - 

-

-

- - 

- 

- 
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classical calculations . Secondly, multiquantum ju mp t r an sition proba-
bilities ~re comparable in magnitude to single quantum jump transi tion
probabilities. This is clearly * consequence of the use oZ a reactive
potenti al energy surface since the analogous H + HP result. (for a

-
~~~ 

- surface which is nonreactive at the energies considered ) indicate that
single quantum ju mp transi tion probabilities are orders o~ magnitud e
larger than all others. Finally, we should reiterate that the potential
energy sur face used is of questionable validi ty because of its low
barrier heigh t, but that similar rs sulta nay still be obtained f o r
higher barriers for those reagen t vibr ational stateS which lie above

- - the barrier.
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Figure 1. Transition probabiliti es 
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and P’~0 for H + PH as
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I a function of the reagent relative translational energy 53.
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Dynamical Resonances in Collinear , Coplana r, and Three-Dimensional Quantu m
Mechanical Reactive Scattering

George C. Schatzt and At-on Kupperin ann
A,fher Amos Noy,c Labonzlo,y of Chemical 17,ysks, Calif orrda Inst hUe of Technology.

Pasad,,,a. Calib ra te 9112.5
(Received 27 M~y 1975)

We present results of one— , two— , end three—dlnten,lonaI c.Jculationa for the H ~ H, er-
change reaction which provide the fit -a t evidence -for d~-namIca1 internal cxclttUon (Feeb—
bich) resonances in chemical reactions using nonco&linear calculations. The change of the
resonance energy and width with coliisioo dimensi onali ty and with total angular momentu m
ii analyzed and indicates the exi stence of observable effects on certa b reactive cross see-

-‘ Internal excit3ti on reson an ces have been ob- them may pr ,ve sensitive probe in the experi-
served In it large oumber of diverse collision mental characte. .ation of these surfaces and In
phenomena includin g s-p scattering, ’ electr on- the development ed testing of approximate reac-
atom and electron-molecule scattering,’ and tion-dynamic theories.
(theoretically) rotationaLly inelastic atom-mote- The methods used for solving the Scl,r~d~
cule scattering,’ bu t they have yet to be detected equation for the collinear , coplanar , and three-
in atom-diatom reactive scattering experiments , di mensional H + H, collisions are the sam e as
Their existence has prev iously been established those we developed and used previously.” in
theoretically only in collinear models of these order to obtain accurate results in the 2-1) and
simple chemical reactions.~~’ The results of 3-D calculations at the relatively high energies
those colLtnear calculations indicate that these at which the resonances were found, quite lax-ge
resonances are responsible for oscillations in vibration-rotation basis sets were required , In-
the reaction probabilities near the resonance en- volving five or six vibration s and rotational quan—
ergies through their interference ’ with the di rect turn numbers j- 0 -— 6 to , 0—9 for each vibration
mechanisms. However, becau ie of partial-wave for a total of sixty coplanar channels (for all vat -
averaging, It was not known whether such reso- ues of total an gular momentu m quantum number
nances would exist In the three-dimensional J) , and 40 to 90 (J — 0 , 11 3-0 channels. For most
(3-1)) world. We present here the results of a~- of these noncollinear calculati ons, tests of con-
curate qu antum mechanical calculations for I-f), servation of flux , microscopic reversibility, and
2-1), and 3-1) collisions for the historically im- invar iance with respect to number and choice of - - - -

portant H -i- H, exchange react ini which pr ovide expansion functions indicat ed converg ence of 5 to —

the first evidence for dynamical resonances in 10% althou gh a few poorer results (20%) were In-
chemical reactions for noncollinear systems. cluded. The collinea r resu lts , for which ten vi-

- An understa nding of the relation between the brattonal basis functions were used, are aeon-
characteristics of such resonances and the na- rate to 0.5’i or better. The Port er-Karplus ” pa—
tin e of the potential surfaces which give rise to tentlal energy surface was used for all calcuta-
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tions. minimum at an energy f ,. Th e values of E ,,,,,
The resulting ID ,” 2-1), and 3-1) react I on are 0,420, 0.470, and 0.525 eV and oi E, are

probabilities P1, def ined in the figure caption , 0.873, 0.922 , and 0.975 eV for the 1-0, 2-1), and
are plotted as a fu nction of the total energy E in 3-I) systems , respectively. The v’brat ionally

Flg 1. it can be seen that all vlbrai ionally elan- inelastic P5 of Fig. 1(b) are also analogous to
tic probabIlities In FIg. 1(a) show a similar be- one another and display maxima at the s~tnie en-

havior , rising from an effect ive thr eshold ener- erg les E, for which the vibration ally elastic ones
gy E ,,~,,, (the value of E for which P1 =0.0 1) 10 a show minlmz . In a previous study, ’ we used a $
relatively flat plat eau, and dipping later to a delay-time analysis (for a slightly different H

+13, potential energy surf xtce ) to show that the
CCV I minima and maxima in the l-D P,_,1 curves are

02 03 04 03 0~ 07 05 the result of resonances. Since there are no at—

•
F 

~~~~~~~~ 
tractive wells in the H- i - H , potentia l surfa c’ , it

~~~~~ is inferred that these are Interni l excitalion
00 4 (Fetebbach) resonances. This inference is con--

I ~~~~~~~~~ i—I ‘~~ firmed for the 1-f) case by a vibration ally ad ia-
o.s s .— — - -  — -

~~ 
, , 

- balic analysis ’4 in which the scattering wave fun c—
lion from the t- =0 reagent state Is expand ed in

‘~ terms of the bound-state eigenfunctions of cuts

/ / ~~~~~~~~~~~~~~~~~~~~~~~ floe coordinate, in the region of the saddle point
of the potentIal surface tra ever se to the r~ . c —

~:: : 

~ I t l

this analysis indioa~es that at the resonance en-
ergy the system has a 90% pr -sbabllity of being
found in the v - I  stat e of this transverse (sym-

04 0.3 05 0.7 O S  O~ 0 II
C I ‘) 

- metric stretch) internally excited mode of motion
0~ I sV ) (i.e. , that the energy is trapped” in this mode).

0.0 O~~° 02  ~~ The physical situation In the 2-D and 3-0 eye-zo I

— ~ . (b) H..-i,~..oi— I4 (.~n.n tems Is anaxogou s to the 1-D one , and since the

• reaction probabilities in Fig. I for all these syn-

~ 
tems show similar dips and peaks, we conclude

• that Ut three correspond to a Feshbach reso-
0 

/

, 1,,,,,! nance centered at the values of E, given at~ ve,
and with approximate widths of 0.022 , 0.045, and

(-i / 0.035 eV for the 1-1), 2-D, and 3-1) case.., re— -

spectivel y. The P ,5(3-D , J ’- O ’j reaction prob-
ability Is dominate d by this resonance at ener-

________________________ __________ gies within 0.1 eV of the etfect lve threshold , in
0.4 05 05 0.7 00 0.4 .0 spite of the sum over all product rotational states .

£ i.Vi The change in re sonan ce ener gy with dimen-
FIG. 2. Colflnear (l-D). coplanar (2-0) , and three- slonallty i~ almost Identical to the corresponding - -

dimensional (3—D) re.ctioo probsbilitie. for the H + 11i change in the effective threshold energies and Is
exchange reaction as a function of the total enerx - F in the range 0.050 to 0.055 eV for both the 1-D to
and rela~tve trsrel*tional energy F .  P...I’ m d  p,.,~ 2-I) and 2-1) to 3-1) shIfts. These shiIt~ agree
ire the colilnear reaction probabilitie. from v —0 of the
reagent H, in p’-O and e.~ , respectively, of 

~~
, 

~~~~~~ 
w ith previous estimates ’3 of the additional zero-

duct H,. P,,..,5 sod P,,.. ~ rre the 2-I) or ~ 
point “bending ” energy which must be put into the

specified) reaction probabilities for the total angular triato~nie motions of the coplanar and 3-1) transi-
momentum 1—0 partisl ave from v — 0 , j  —0 of the r~t- tion states. This ind icates that these resonances
geat H 2 to .‘—O sod v~~l . respectivaly, of the produc t are influenced by the potential energy surface in
If , .wnm.d over all produc t rota tional etItel wi thlu ~ the strong incr act lon region. 130th coplanar and
given vibrational msntfo!d . (a) The vibratiocelly eli.— 31) calculations indicate that the resonar.ce has
tic ristios probabilities, (b) the vibratlonally inelas tic
u~ ’s. 11* pntsts actually computed are indicated by a si gnificant effect only on the .1—0—7 partial
g.owrt ,icsl symbo li.. Arrow in s~acisss indicate s ~~ 

waves (which appears to coincide with the range
.e.rgy at wtk b he v — 1 state 0 Ii~ becomes acceasi- of a for which Pn, ~. ,~~ is sign ificant), whereas-

ncmnegligible reaction prob abiliti es I’,, ~~ are
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. fo~tnd to- the wider J range 0—1 7. No signiuicanf knowledge of reactive collision dynamics . Since

She quatsfl~•~i ~~uzher Ju~ s dcteckdfor the 2-1) tnt er f~rence effects associated with the reso-
cha n,ee of either resoucnce energy or width with classical trajectory method s do not include the

system.” This very important result is probably nanet ’s, nor do most semlclassicai ? . 
~
‘ and ap-

due to the domin ant character of potential (r a th- - proximate quantum ~~~~~~~~~ a th eoretical 3-I)
er tha.. angular momentum) coupling in the re- treatment of resonances for most other chem i— 

—
gion of strong interaction , and suggests that the cal react ions will require the development of - -

partial-wave sum present in the expressions for better approximate techniques , and the resu ’ts - 
-

the reactton cross sections will not eliminate the presented here should be valuable in this endeav-
effect of the individual partia l-wave resonances , or . In addition , accurate quaii . rn mechanical
From the width of the 3-I) r esonance we estimate results (be they I-I ), 2-1), or 3-1)) can serve as
a lifetime of 3.8 ~- 10 sec (corresponding ap- a useful predictive guide in the experimental
prox imately to 2— 3 transition-state symmetric se’rch for dynamical resonances , and i t is hoped
stretch v4brat ions) , about of the 1-I) lifetirns . that the present paper will stimulate such a
A crude estimate of the effect of the resonance search.
on the int egral cross section a, ,_ ,~ for the reac- We thank Amba ss- .ior College for generous use
tion between distinguishable atoms in three di- of their computati c:.al tac il i t ies.
mensiona can readily be obtained by a simple in-
terpolat ion procedure. The shape of the coplanar ______________

P 5(J) curve both on and off resonance as a
f unction of J has a very simple monotonically de-

~Researeh supported in part by the U. S, Air royce
creasing form which is quite simila r in appear- Office of Scientific Research Grant No, AFOSR-73-
ance to the shape of P ‘(J) at lower collision 2539. - -

~~) -.0

energiea. Incomplete 3-f) calculations for the twork perf rmcd in par ed fulfil lmen t of the require ’
3.1) J2~ 1R(j) cuyve indicate that an analogous meets for the Ph .D. in Che,nistry at the Cal ifornia In-
comparison with th-? lower energy Pu, _ ,“ curves stitute of Technology.
is valid . We have therefore used these 3.0 ‘H , Cool, 0. )‘icctonl , and 1), Clark , Phys. Rev . ~~~~~,

Pu, ~.01(J) curves along with the accurately known 1082 (1956) ; H . K . Adair , P~- -s . 11ev. )j~, 338 (1959) ;
H . C.. aloorhouse , Annu . Re~- Nucl. Sd.  19, 301 (1969) .J =0, 1 values of I’u, ,5(J 1 and Its J = 7 cutoff to 

~G, J . Schul tz , Pti, s. 11ev. 1.. Ct . 10 , 104 (1963); P. G.interpolate the remaining J ’u, ~~“ ( I )  needed for ~ liurke , Ady . At. 1601. Phys , 4 . 173 (1965) , sod refer—
cross-section calculation. The reactive cross ences therein, —

section obtained in this manner shows an energy ‘D, A , -)icha , PIW s. Rev . ~~~~~~ 88 (1967) ; H . I), L~,-
dependence similar to t hat of P~ .,5 (J = 0) of Fig vine, it R. Johnson . J~ T. Mucke r-,n an , and H. H .  Re x-n-
1(b) , with a peak va lue of 0.014 A’ at the r eso- stein , J . Chem . Phy~. 2 9 , ~6 (196$).
;iance energy.’7 ’ ” To estimate the effect of the 

1D. C.. Truhlar and A . Kupper mann , J . Chem . Phys.
52 3$-i l (1970) , and 55. 2232 (1972) .resonance on the angular dependence of the dif- 
~~

7f t  fl L o )  and S. F. Wu , Chem , Phvs . Left , 11 ,ferentia l reactive cross sections (a~~ ~~ and 557 ( l 971 ; S. F. W0 and H , 0. Levine , Moi . Ph)-s . 22 ,
we note that below the resonance ener- 891 (1973) .

gy, th is dependence shows no oscillations and is “a. J , Diest ler , .1, Chem . P hvo . ~j, 454 7 (197 1).
backward peaked.” At the resonance ener gy, i-D. .1. Dk-st lcr , 11. G, Trublar , and A . Kuppermano , j - 

- 
-

one should expect oscillations to develop as a re— Chein . Ph~s. Loft. 13, I (1972) .
suIt of the interf e r ence between direct and reso— ‘B. Il . Johli~.Ofl , Che m . Pbys. Left. 13 , 172 (1972 ) .
nance n~echan ismn. ’°’ 20 1G. C . Schatz and A . Kuppermann , J . (‘hem . Pbys.

59 964 (19 73 ) .We conclude , in summary, that dynamical res— — ‘a Kupperniana , in Pot ential r , I , - ’~~r Suxface s  In
onances do ,nc od exist in ioncoilinear H + H, and Chemistry - edited t-~ W, Lester (University of Cal ifor-
can cause nonrit -g ligible effects on obser~rab le re — n im at San ta Cru t . San ta Cru e , Ca lif., 1970), pp . 121—
action cross sections . Such resonan ces are 129 , and in Pr oc.’edlnga of the Sr, ’~-nIh I ,ile r naflmxal
bound to exist in other rea ctions also , as th ey Conf erence on the Im~-s(cs of 1!ec( rm7fr and Atomic
have already been detected In collinear calcula- Cclhisio’iS. Am S I , I O I a m, 26—JO J s l ~ 19~ l. AP ’st r acts
lions for F + H , (1),. H I )) ” and Cl + H,,~’ whose ~~~ ~ ‘t”~~ edited b~ L. 16~ ltranncc.m h ci a! . (Norlh —

Hol land , Amnter ’Ia m , 197 1) , p. 3.potential energy surfaces a1s~ do not have attra e- io,~ Kuppe rynann , G . C. Schata , and 16, l3aer, J. Chem.tive wells. An understanding of the circurnst anc- Phv s . 61 1362 ( 197 4) .
es that give ri se to Feshb ach reso na nces can ‘~~~. ~~~~~~~~~ and C~. C. Sch~t z , J , (‘h em , i n ” ~. 52 ,
play an important role in the improvement of our 2502 (1 17Th
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0R N . Porter and M . Kai’plus . J .  (‘hem. Ph~-s . 40 , well. - - — 
- -

1105 (1964), “The individual p.x:tIal-wave ‘ontri ~ ’tions to the d if—
13’fl~ present results are essentially identical to those ferential cross sections are highi:’ oa~ilIat ~~ ’ in cx- -

of fl.f. Ss, lure , and fairly slight calculatioral inaccuracies In the
~~ M. Bowman, A , Kuppe rmanu, J . * . Adams , and elements of the scattering matrix eleme nt for one par— -

D. 0, ‘Fruhiar , Cb~m. Phys. left . 20 , 229 (1973). tial w ave are uaua11~ enoug h to upsel the delicate b~4—
‘2A . B, Elkowitz and H . E , Wyatt , J . Chem, Phys. 62 , ance between partial waves which leads to nono scilia-

3683 (1975) . tory d ifferential cross sections , thereby r esulting in
tCAouurate 3—I ) calcula tions for J >0 in the neighbor- strong spurious oscillations . It is reasonable to eSpedi -

hood of the resonance a l-v very diff icul t  to perform be- that the pr eience of resonances in some of the part i al - --v
cause of the large number of basis ftnactlons required waves which contribute stgn~ficant l y to the cross see—
in the close-coupling expansion. We do ,oeever have tions should have a similar effect , as Is experimenta~- -

-

some prel i minary 3-1)1>0 results wl’lch are In agree- ly observed for inelastic electron scattering. (Soe - 
-

m eat with the Italicized statement about the 2-fl system, 11. Ehrha rxlt , In Physics of the One amd Tao h’ieclros
“Since the distinguishable—atom nonreactive probabil-. Atoms , edited by F. Bopp and Ii , Klcinpoppen (Nor th-

Ity P.,.. ~”(J) is very similar In both cner~ - aral J depen- h olland , Amsterdam , 1969) , p. 598 . 
- -

dence to P.. .. ,1’tJ) , we expect that the nonreacti,-o Into - °Thls argument , developed for the distinguishable- - 
~~~~~ -.- -

gral cross section q~,,. ,” should also have a peak at the atom cross ~ect1ons , retains Its val idity for tndist in- : -
resonance energy. This implies that the effect of ato m guishable-atom par a -’- ortho channel ,.
indistinguishability should not appreciably alter the con- ~‘O. C. Schat z , J . hi . Bowman, and A. Kuppe r7nann , J . -

elusion, of this analysis . Chem. Thy.. 63. 674 . 685 ( 1975, . - -

“The smallness of this cross aectlon may load to cx— 22M. Beer, Mel . l’hys . 27 , 1429 (1974) . -

perimental detection difficulties, and othor reactive flj  16, Bowman ,~“d A . Kupper mann , .1, Chem . Phya ,
system. may be more favorable candidate s for exper- 59, 6524 (1973) ; for a counter-examp le , see 2. H . Stine
Irnental investigation . The point we are making is ncr- and It . A . Marcus , ( horn. limys . Left . 29, 575 (1974).
erthelea. of significant conceptual impo rtance , namely R For example , the distorted-wi ‘a method (K . T, Tang
that resonances can exist aixi play an important role in and M , Karplus , Phys. Rev , A 4 , 1544 (1971) 1 and the - - -

chemically reactive colilalon c for which the correspond- ono-vibrat )onal -basl,-functlon method IC.. Wolke n amid 
- 

- -
tag potential energy surface dues not have an attractive hi , Karplua , 2. Cheni . Thys. 60 , 351 (1974) 1.
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Quantum mechanical reactive scattering for planar atom _
; 

-. -
plus diatom systems. I. fl~~~.y *

- -: Aron Kuppermann , George C. Schatz ,’ and M . Baor t

‘ Arth ur Amos  Noyrs Laboral ,,iy of Clien ’ka I P *y~wm, Cal~fo ,nW I ,ur iru;e of Tectnolntj.. Pewd,na.
- - Catif eraie 91123

(Recervrd 22 December 1975)

A method is presented f or accursicly ,oirrng the Schrod,n~m equaiion for Ihe reactive coltr s,on of in
atom with a dratomic mole,.ulc on a spe~~-fzni  pian c. ll’c procedure cc,nmlt pr imar ily of Ia n step s Firal .
the Schmdiager equation in each of the three anangcnwni chanar i regions U i rsnu!nrmed int o a irt of
coupled differential squatloni and numer ically ioIr,t ,at ed in eac h el iheic vcpons in gCflcra re prmm,Iive ~ - ___
lointions. The rotamicinal part el the vibrat ,on-roat ,on bees funcliorn ,n~oI~ed a eel chan ged from I,..

Uymp(OLic form duong th is prop agation. bui the vib~sI,onsl c,~cnfunctioni as ~thI as the ,nicgra~ion
variable are ehangcd penodicaily io am to folios the absalucrnai mot ions in a ~ear Iy ad,ah.,ic manner In
the second smep, the pnm,hve noluiren s gener ated in ench of the Ihus srrangcmcn t ehannela are ,moothly
matched to each other on a set of appropnately chosen mat ching surI~cec The resuhing soiulion, are then
hncarly combined to sa t isf y  the proper a%smptoI,c bounde r) ~-ondit,ons. and the ac-atteong mainS ,
acsllcr~ng amplitudes, and cross section, are delerm,ned . Application of this procedure to the specuai case

- - - - of thi H + H , rtaction is disc ussed in detai l inciud ,n5 simp ituicaiion~ a rising frorr the additional symmetries
Involved. and the inclusion of cITes-is rcsutt i~ig from indis t ingii,uh abilut y of identical particles. . - -

-! I. INTRODUCTION - 
- 

converged calculations in three dimensions on a model

In recent years , much interest has developed in the (one reaction path ) irlat omic system in which one of the
ab iniff o calculation of bImo lecular reaction cross eec- aton ts v-as assum ed Inf initely heavy and in which the

lions on realistic potential energy surfaces by accurate simple potential used allowed a partially analytic t reat-
quantum mechanical techn iques . The motIvat ion for meat .

such calculations has been to interpret the results of In an earlier communication , t5 we pre sented prelimni-
- 

-
- -- - crossed molecula r beam experiments , to unoer stand the nary results of the first fully converged quantum me—

effect of the relat ive translational energy of the reac- chanical calculation for a coplanar reactbn on a realis-
taste and of their internal stat e on such cross aect lons tic e~eciron ically adiabat ic potential energy surface ,
and on the disposal of energy among the react ion prod- that for II + H,. These results indicated that the quasi-
ucta , to elucidate the role of dIrect and compound state t i t at ive differences between calculations in which closed
dynamical mechanisms , to test the range and degree of vibrations are included and those for which they are not
validity of approximate re actIon models (such as the can be quite serious. In this paper, we will present a

- - adiabatic and statistical ones), to deveiop new physical deta iled descrip t ion of the method used to perform Such
models of known reliability, to examIne the correct itess calculations. We will formulate the method for a gen-
of the dynamical assumptions of tr ansition state theory, eral atom plus diatomic molecule collision on a single - - -

to establish the conditions of applicabi lity of the quasi- reactive potential energy surface using H. H5 as a ape-
claas ,r al t r aj ect ory calculations and of senticlass,cal cUic example. A detailed description of the results of
Improvements ti,er eof , and las t , but not least , to make our extensive calculations on coplana r N . H , will be
detailed qualitative and quantitative pred ictIons from given elscwhere. ’°
fi rst principles about reactions di fficult to investigate T.me method Is based on an earlier coupled-channelexpe r imentally. -(i.e. , close-coup ling) propag at ion techniq ue which has

Owing in part to the lack of appropriat e numerical been extensively applied to the eolllnear H • H5 and F
techniques and to limitations of the memory size and • II, reactions, to The spirit of the coltume ar method Is I -

computationa l speed and cost of pre it eri t-day la rge com- to c hoose different variable s amid different paeudovlbra-
puters , most of these quantum calcul ations so far have tional basis functio ns for expansion of the solutions of
been performed for collinear atom—diatom reactlons. ’”  the Schr 6d inger equation in different local regions of the
In recent years , several attempts have be um mad e 1 do (colhinear ) configuration space so as to minimize the
calculatIons for nonl inear t r lat omic systems. Saxon number of terms needed for accurate conver gence of the
and Light ’° and Altenberger -SIczek and Light ” have In- expansions. This concept Is retained for the vibrat Ional
ve.tlgated Ih e coplanar H • H 2 exchange reaction by a motion in our applIca tion of the method to coplana r ccl-
coupled.cbanm- l tec hniqu e which exclud ed closed vibr a- ilsions . However , th e vari ables and basis functions
tional chann els, Wolken and K arp lu s ” have made a descrIbing rotational motion are not changed (and hence j
stud y of this s.sme reaction in three dimensions , also retain their a.aym;totic meanings) during the Integration , -
Ignoring closed vibrational channels . Wyatt and co- into the interaction region from each of Use three st-p.-
workers ” have developed techn iques which includ e - r ated arrange’ntcnt channel regIons of internal coni igura-
cIo~ed v ibrations in calculation s on one and two reac - tt oum - pace. As a resu lt , an additional ale-p is required
lion path al-s m plus dmafrmn reactI c’nv , and E lkowltz and at the complet ion of the mtegraiinc in which the promi-
W)stt tt has-c ap~lied these met hods to the thr c-e -dumeiv- live- anlta a-sts ui e-~ch -.f i,,. t l re .  srras~gem i-ss- clsame
sic wse.1 H .  114 re ,.1s~n. liar? amid P,~urt ” Last 4)15 , I * 1V ~~~~~~~~~I5 £~~C smi.e5i ~s maL~se - .~~‘ xa.,- — a of 

I 
‘ 

-

• - - S - 5 — — .~ 
.
~ ~~~  -i n •~ -~~~~~~~~ . -

_ _ _  _ _  --~~~~~~~~~~--- - - - --



r— 
~~~~~~~ ~~~~~~

- 

~~

---

~~~~~~~~~ 

--

~~~~

- 

~ 

- 

~~~~~~~~~~~~ 

_ - - -  - 

~~~~~~~~~~

-

‘- --- S. 

‘ 
Kuppermann, Schats . and Baer: Planar quantu m mechanical react ive scattering . I ~6V . ._ _ s ~s_ ‘ .

- 
- three appropriately chosen surfaces which separ - ‘ exchange of the space and spin coord inates of any two

these three regions .” The restrictio n t hat the th. cc identical nuclei of half odd-Integ ral (iMegral) nuclear
atoms shou ld be confined to a space-fixed plan e was in- spin. ‘

t roduced for computational convenience to test out the (c) It satisfiei the asymptotic conditions describ ingeff ectIveness of the method without excessive expendi— the collision phenomenon under consIderation , i.e .,tura of compution t im e. Extension to reactions in three .
the collisIon of A and BC with a given relative kin eticdimensional space Is reasonably atraighUorward arid energy and a given initial internal quantum state of BC,has recently been implemented by Ku ppermann and

SchatsU fo r 3D Ii • II , in the first fully converged to produce receding products A • BC, AB + C , or AC. B
in all possible internal atatea of the diatom compatibleturn mechanical treatment of a chemical reaction on a with the total energy of the system.realistic potent ial energy surface.

IS we can find a sufficient numbe r of independent so-In Sec. U of this paper we formulate the Schr ~dinger lutione sat isfying, Condition (a), it Ls possible to obtain - -

equatIon for the pmbleni and describe the partial wave linear combinatIons of them which , in addition , sat isfyexpansion used to obtain the partial differential equa- Cond it ions (b) (by postanttsymnset r izal ion methods~~)tiona , in Internal configurat ion coordinates , which must and Cc) (by reactance or scattering matrix analysisbe solved. The method used to integrate these equa- techniques~).lions In the different regions of configuration space is
described in Sec. III , and in Sec. IV we describe how B. Th. 5th’- -c ii9SI uqusti ’~.we smoothly match the solutions obtain ed from these in—
tegratlons. The asymptotic analysis I, developed irs Let R, be “~~ 1,ositIon vector of A with respect to the
Sec. V, including the method s of calculating the reac- center of mass of BC and r , the posItion vector of C
lance and scattering matrices , the scatte ring a rn pli- with resp ect to B, as indicated in Fig . 1. As R~ —~
tudes , and the cross sections. F inally , in Scc. VI we with ~, remaining fin ite , we denot e the corres ’ tiding
desc ribe the simplificattona and changes involved in an configuration as arrangement channel a.(A , DCI. Let
applicati on of the method to the H • H, exchange reaction (3~,, 0,,) and (ii,, 0.) be, respectively, the planar polar
due to the identicit~ of the three atom s , includ ing a dis- coordinates of a amid t~, with respect to a fixed system
cussion of the techniq ue of ari tisymmetriz ing the scat - of reference attached to the plane (all angle. be ing mea- I — —te ring wavefunction (post antisymmet r izat lon) in a way sured from the Or axis of Fig. 1). The reduced mass
which i~ applicable to the three-dimens ional case also, associated to the motion of C with respect to B I-s de-

noted by gs , and that associated to atom A with respect
II. FORMULATION OF THE PROBLEM to molecule BC Is p, ,  We define analogous vectors

~~ and F,, ~~, (Fig. 1) and associated coord inatesA, Gsnsvsl coniiderst ons and reduced masses so that as — ~ or — with ~~We are interested in calculating cross sections for or ~, finite, we obtain the ar rangement channels $ - -
the exchange reaction A + DC — AD • C, AC • B in which ‘(B , CA) and y’ (C, AB), re8pe~tively. )Iote that the
the three atom, A , B, and C are confined to remain on directlor.a of the vectors in Fig. I are defined in a cy-
a space-fixed plane, We assum e that the Born —Opp en- clic manner In the Indices a$y. F inally, let Ap t  rep-
heimner separation approximation between the electron resent any one of the three possible cyclic permutations
and nuclea r motions is valid and that the resulting O~Iy, $~‘a, and ya$.

- - ground electronic state potential energy surface V is
known. We further assume that all higher potential en- -

ergy surfaces are sufficiently gi-eater than the total en- A

for us to be able to neglect their Influence on the cross
sections. This “single potentia l energy surface ” model
is applicable to a high degree of accuracy to many tn-
atomic reactions. We also assume that E is sufficiently
low for the existence and effect o~ break-up collisions
of the t y p e A + B C — A + D + C  lo be neglig,ble. Finally,
we assum e that the inter actions between the nuclear

ergy E of the system everywhere in config u ration space

spin and nuclear orbital s~,gular momenta ~~e negligible. 

Ga;1

Let r~, c, and i- ‘.me the position vecto.s of nuclei
A , B, &nd C , respectively, with respect t- their center
of mas s, We wish to obtain a solution to the time-j ad e- B 

—pendent Sch~~dinger equat ion for the motion of the nu- 
- 

C

cit-i whIch satisfi es the fo llowing three conditions:
La

(a) In configw’at ion apace i,, 1 5,  i~ li la everywhere 5 I •-~ -
single valued amid continuous and has grad ients which FIG. 1. Vectors used to spec ify the locaSoc of three &‘SILI Is
are everywhere ecsstumuou~ (e-xce-i1 at points Iu thaf t~~ A. B. C’ cotlisioc s’ am rids-u,. to the center of mass 0.
5451CC for statS two of the three- aiaerss c~ancsd,~, C,~-. G,~.. and C~~ de~~~~ the- Soc-ami ss. of ~~~ ce-sW,-. ~~of ~~ ~~~~~~~~ ac . AC. ~r- re~~~~-a-vsty. t_. ? . i~~

- B ~, ,~~r~~~~~ es’~~ ~~~~~~~~~~~ -s  s~~5 ?e5t cl le ,, 5.,. -. .xv ~~~~~~~ ~~ ~~~~~~
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- - Kupperman n, Schatz . and Bat-c: Planar quantum mechanical reactive scattering. I

In the system of coordinates cha racterized by index R 5 dire ctt on rather than the laboratory-fixed Ox axis.
a (. a, $ or y), the ScSsr~dthger equation descr ibing the SimIlarly, R5, 0~, ro, y~ are called the body-fixed A co-
internal motion of the ~s’ee-particle system is ordinates. The Independen ce of V° on e5 in in. above

equat ion introduces very convenient sImnpllfi cattons , as
I I’ /1 • — • 5 is shown in the next section.

S I •~~~s C. P t i a l wSvS expansionA s

~~ ik ~ &i~~ + 

~~ The total angular momentu m .7 of the tr iato r nic sys-
tem (with respect to Its center of mass) is a constant

+ v~~~,ffo,,~) —  R}s’(~o,i&, e,~, e5)~ 0 , (2. 1) of the it .,. -on which commutes with the Hamiltonian H.
The solution of the SchrBd tnger equation we are seeking,

where V~ is the potential energy func~.on of the system satisfy ing Conditions (a) , (b), and (c) of Sec. B A , is
~~~ressed in A coord inates, and £ is its tot al energy , not an elgenfunction of J. ~~ I l l s, however , convenient
v, is by definition the countercloc k wise angle from n’, to perform the coplanar analog of partial wave analysis
to 

~~
,. it lies in the Oto 2, range and is equal to 0,, — 8 , by expand ing +‘ in terms of the sImultaneous eigenfunc-

modulo 2,. In the absence of external iields , the p0- t lons 4’~, of H and.7.
tential function depends only on the internal variables In the system of coordin at es r5, R,,, ~~ 0, the opera-A’,, F,, 1, and satisfies the relation v ’~A’,, ~~, ~~~ V’~1,., tor J is given by
~~~~

Let us now intr oduce a set of coord inates used .~~~- j  .1~’ ~
vioiasly by Delves,b J epsen and Hirschfelder ,~ and ~~ ~~~~~~~~~~~~ = o,~ ,y ,  (2. 7)

Smith, ’ They have the advantage of leading to an equa- where i Is the unit vector perpendicular to the fixed
lion containing a single effective mass g~ which Is lode- plan e of motion of the three particles. We recognize
pendant of the arrangement channel A; this sin-rpliJies from Eq. (2.7) that .1 la the aigcbraic awn of the rota-
rnan~ of the equations presented be low. These coordi- tlonal angular momentum h~~(1/’)(a/a0,~).,* and the
sates are orbital angular momen~-wn l5~~(A/i)(b/e0 5)e-,5i. Trans-

1,. a~ f ~~ 
fo rrn ing J to the angula r variables 0,, y,, we get

(2.~~ ) .7 ~~~~~~~~~ x~ a, p, y ,

where a0 In a dImensionless acauing Conalant defined by which may be physically interpreted as indicat ing that if
(2.3) y, is maintained ccnstant , a variat ion of the angular co-

ordinate 0, of B, produces a rotatie of the entire U-i-Substitution into Eq. (2. 1) leads to atomic system.
f A ’/ l  S a 1 5’ 1 a a I 5’’1~iiI-~ 

i—~~0 i—. + —g w- • 
~~ m

- ~~ 0 ~~g -
~~ -i) The orthonormal elgenfuncttons . ‘tJ are given by ~

c,(oi)~ (2,ru*exp(iJo 0) J~ 0, i I , *2 ,... (2.9) - 
- 

-

+ V a(r 5, R &, y,) — E} *~(,‘,, Ro, 8,,, 0~ 0 , (2.4) The Simultaneou s eigenfunctions of H with energy £ and
of .7  with total angular momentum JA are of the formwhere the circular polar angies of B0, F, are the sam e

a~s those of B,, F,., and M is the effective mass alluded $~ (r,, R0, ~~~ 
0,) ç,(0,) ~~~~~ Ro, y,) , (2. 10)

to above and defined by where —

(2. 5) 
~~, I s a I b • I a i

where ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
M.m5 +m 5 .m, I S

is the total mass of the system , and n~ m5, and m, a
are the masses c f atoms A , B, and C, respectively .
We now change from the angular varIables 8,,, 0, to — £~x ~(r0, R u y~).’ 0 , (2. 11)
y,, 8,, obtaining the following expression from Eq .
(2.4): Any solution *~ of the Schr8d Ingor equation which I-. iot

necessarily an cigcnfun ct ion of .7 can be written as
( 8 5 1 1 5 5 I S ~ i s  a
l 2 M ~~~ i ’~i~~~~ ~~~~~~~~~~~ $0(ro,R,,y,, 0,)~ E C~,*~(ro,R,,y,,0,). (2.12)

4—
l ( a ’ •1 e ’Vl— 2  

~~~
——  .-~-i )J + V’(r~,Ro , y)  The constant coefficients C~j appropriate for the prob-

lem being considered will be determined b!’ the asym p-
_E } l,5(r I, R s,)~,8&) . O .  totic conditions c~ecified in Rettulrement (c) of Sec.

i1 .Aazxiwil l be dlscussed in Sec. V.B .
ra~$.d t h~ b-s~v - ‘zxed 5-c kr~~tncc r e~aoatsne., be- 3 a crow tun plth F ~~. (2. 11) by defusing a new lane-

~ the- a s .  sd wIts re- wrc’t ’~ •
~~~ t.-.i-.—’-.apd tsOe ;~~ 1w

— —- ‘, .5 — - 
~~~~~~ 

- -~~~~~~~~~~~~~~~- - -~~~~~~~~~~~~~~~~~
- --  -

~~~~~~
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~~~ ~~~
•~(r0,R 0,y,) ( v ~fty”~ 5,(r ,,R0,v, ) . (2. 13) of the three tubes corresponding to a separated atom

plus diatom , along with that part of the Interaction Fe-
Substituting this Into Eq. (2. 11), we obtain gina which retains the ‘~genera l appearance” of that par-
I o’ r 5a ~a ~ ~, s ~ (_J’_ 21., 1. •~ ~~~ 

ticsil?~r tube. Fo r the I-f . H 3 system , a very natural

~~~~~~ 
+-;-

~ 
-
~;;-~ ~~~~ ~~~ ~

-
~i)i 

separation of the three arrangement channel regions is
obtained by the use of the three ha ll-planes a,,, a,,,, and

+ v0 _ E~ 4~,(ro, R0, ~~~~~ 0 . (2. 14) ~~ 
whose comnson edge is the 01, asia and which inter-

Sect the 0X0Z0 plane in the symmetrical positions de-

This equat ion is solved numerically by the method de- picted in Fig. 2(a). A general definition of these three

acr ibed in Sees. ifi and IV. - h5lf~ )l555CS which is also applicable to reactions other
t h a n H + H5 is

III. INTEGRATIONOF THE SCHROOINGER w,~: r,~ r, Oey, e s/2 and 3v/2~ v~<2 y , (3.2k)
EQUATION

w~~: r~~ r, Oay, e ,/2 and 3t/2 y, <2v , (3.21,)
A. The paflition~ing ‘ I configuration spans into

~ rangementchanneI regions w~ : r,- r, 0~~y5~~,/2 and 3r/2~~y, <2v . (3.2c)

We now wish to expand 4~,(r,, R0, y,) in terms of sets A proof that these eqs~ations do indeed define hall-planes

of two-variable int ernal state basis functions in order whose edge is the 01, axis, as gra phically I tested in
to reduce the part ial dUferent ial equation (2. 14) to a Fig. 2(a) , is given in Appendix A along with ~ — equa-
system of coupled ordinary differential equations, our tions deacrib ing the a to v coordinate transformation.
choice for the intern al state basis functions and the cot- For some reactions , the hall-planes defined above m a y

responding variables viU be different in differe nt re- be Inadequate as they may not separat e the three ar-
glons of the three-dim ensional int ez-nai configuration rangement channel regions Into ph)sically intuitive ones
space r0,R0,y, and will be largely determined by the lo- as determ ined by the shape of the Potential functions.
cal shape of the potential energy functIon V’(r ,,R,1.~-0) . In these cases , alternative surfaces may be chosen and
This is done In order to represent solutions of the mull treated by a straightforward extension of the theory pre-
Schr&Ilnger equation in an efficient manner in all re- sent ed In this paper. For the reactions H + H5, I) + I-f e,

-
. gions of configuration space so as to reduce compsata- H • D,, etc. , the hali-planr~ Eqs. (3. 1) are quite

ti on tim e as much as possible . A vscful conceptuanza satisfactory, so we shall ~ - .. .~rd to formulate our the —
tion of the nature of the p roblem can be gained Isy noting ory using the arrangement channel regions into which
the app earance of the potential energy function V °(r 0, they dsvlde internal confIguratIon space.
R 0,y0). This function is most co’sven tently displayed With the arrangement channel regions thus defined ,
with the aid of a mapping procedur e previously de- we or ganize the work involved in solving Eq. (2. 14) int o
veloped for this porpose. ‘° In thi s mapping we consider two steps. First , within each of the three arrangement
a space ox0r,z, in which a point P has spheri. al polar channel re ;ions , we integrate the Sch r~dinger equat ion
coordinates C , u,, Vu where the radial variable C Is de- using rotational coord inates and basis functions appro-
fin ed by 

- 
priate to the asymptotic part of that arrangement chan-

C (r~ + R !Y” (3. Ia) nd but changing vib rat ional coordinates and basis func-
tions In away which transforms ‘~smooth 1y ’ from one

and is independent of a as shown in Eq. (A S) of Appen- arrangement channel to another. Then , we match the
dix A, and the polar angle w~ is defined by resulting th r ee set s of solutions to one another on the

u~’ Zt a n ’(r 5/R,) , 0 a w 0 ~~~,. (3. Ib) th ree hall-planes r~ ~~ s, described above (and here-
after called the niatching surfaces). Since the vibra-

The azimuthal angle y, has been def in ed o!ier Eq. (2. 1). tional coordinates are designed to transform smoothly
Using the example of the H + .’5 reactIon , the resulting from one arra ngement channel to t he others , It Is pri—
contour plot of the Porter—Ka r plus” potenti al for six ma n ly the rotational part s of th e wavefunct ions which
diffe rent values of y5 Is depicted in FIg. 2 This rep- must be consiuered in the matching procedure, Our mo-
resent ation has the advantage of treating all three ar - tat lonal expansion is similar to that of Saxon and Light ,”
-angeinent cha’snels equ iva lently in t hat a change from but not in that of Wyatt and co-workers,” who allow

coord inates a -n coordinates v produces a clockwise mo- both their vibrational and rotationa l coordinates tc
tatlon without distort ion of Fig. 2 around the 01, axis transform smoothly In going from one ar rangement
‘-j  an angle of 120’,w We see from the figure that the channel to the next ,
occe sstb le ar eas of configurat ion epace are in the form -

of three tubelilce regions whose mutua l Int er SectIon de— In the remainder of this section , we will detail the - 
-

fines the t~ ree-particle interaction region. For h. method used for integrating the Schr6d tngrr r~uation in
symmet ric potentia ls Fig. 2 would be less symmetric , each of the ar rangement channel regions. T’s’ crucial
but tl’e considerations below have general validity . - 

smooth matchi ng p rocedure is outlined In Sec. IV.

(‘j ut approach for solving the Schrdd inger equation s. m. rotationsi.’y cosaplsd Sthród ing,r equations
cot isints of div’4 ng the conf igism-atton space depicted In
FI g. 2 into three sut,epace, C*lled er’r5’t~-~~dwt ~~~~~~~~ We now consider the scrht- n of Eq. (2. 141 l~ ‘aeb of
rr~-on~ ~~~ ~~~~~~~~ ~~~ 

•.
~~ ~~~~ ~, 

Ui. three- airs ent ch~~~e-4 rr~ ice. S • c,,,,..
t,. 4 ~r~’,w ~~~~~~~~ ~~~~~~~~~ - -~ ~~~~ - S ~~~~~ -~-5i~~ ‘5~~~ YV-.. 5~~~ L.&? ~~~~~~~~~~~~~~ ~~~~ 1’~~~~ Z

- - -- - -t a e - 

—-~~~~~~~~~~~~~~~ - - ~~~~~~ - --- .~~---- -- -- ---—- - - --- ~~~~~~~~- - -~~~~~~~- -  -~~~~- - -~ _ _
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______ 
V,’ISO’ j 0  y,’270’ )~.eO.
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~~~~~~~~~~~~~~~~~~~ 

~~~r~~~~~~~~~~~

J

~~~v

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~ 

- 

—

~~1 (b olmv )

~~~~~~~~~ ~ 
-r 

~~~~~~~

~ 0.3 11
1 FIG. 2. Plot of potenual contour s for ~~ H + H~ r*ac*ion In

I - I I I. the OX,Y,Z, apace 6Ci1D~d In the ttxt using th* phertcal polar
- I I ) fj  

~\ 
S~ \ \ coordln~te mspçtng of Ec~ - (~.1i, for aix fled values of the

f  /  /  /1/ \\\ \ \ \w~ uImuthal ang!e 1,~. I 1,~”O aM l5O’, (Wy ~.45 and225’,
.._ c / / / I/f —.

~~
\.-— \ \ \. (c)~~ -9O~ and 27o . In (sJ we ai so depict the llne. ofinter- .

,4c ,/ / / flj 0 
~~ ~ ~ \,~ section of the~ ,~ O’, l8O’ pl sne wlth theha li-pIanea s,4 T~~ 

—

- 

~~~~~~~~~~ ~~J) ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~3 J J - v~~, determined by OZ, and the corresponding smallest 
~~ 

with

\ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~I 2 ~” j  - the W~ Yk plane
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-‘ 

~~~~~~~~~~~~ 
-

Wa oI~w)

j , associated with r~ is defined as scaled distances r,,R1:

~~J(L~
) 

i , cs. s~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~by •4lb ’i ii v~ r5 *
and its etgenfunctlons are

• 4. ~~~~~~~ R,) F ,4’v~, R,~
~,,(y11~s (2 s) h ’*exp(fj 5y 5) j~— O, *1. *2,... (3.4)

The expansion of t~,, defined by Eq. (2. 13) , In term S • EF~,,(r~ R~) J,j~~ 0, * 1, *2 , ... , (3.6)
of tMse etgenlunctIons is where

E ~~~~~~~~~~ Ri). (3.5) i’ ~~~4(r,, R~ 1 . (JJ V~~j ~>

Sof*t*at~~~thF ieeo Eq. (2. 14l~ t~~ ng th, ,csiaz p lof.  . f ; ) i ” ,-.,P ,. , L ’ ...~~~. ~& 71
are of ~~~~~~ sles be 0r• ~~ ~~~~~~~~~~~~~~ ‘~~~~ 

-.r~.-’ - ,  -
a.~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~ 

.— f .‘ -‘_ -. ¶ — - -. - - .  . - ‘ - ~~~ -~~ __
~~ _~~~•j •
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whose element s are the V~ ‘d efined by Eq. (3. 9) wh: le - -V (r ,1, R~,y,) =  i.., V a(r *. R~)c0s(tr, &) (3 .Sa ) V~ Is the diagonal cent r ifugj~l potential matrix def id
by

where

V ( r ,, R1) = 
(1 Ô,~ )T f

’ cos(t-1’1)V 1(r1, R1, ~- 1)d~~. 
1V~’(r5. R1)1,~~’ ~

jQ-1;
~
j-
~
- + (J — 

~)6hI
.
A . (~• ‘3)

(3 Sb) 
From Eqs. (3.6) and (3. 9) we conclude that t -~~ F~~
for different j~ are coupled through the V < r 4, Rj  func-

Substituting Eq. (3. 8) int o (3. ”~ and Integrat ing, we find ttons with * >0 , I’ rep resenting a noncou pling poten-
that tial.

V ~~~~~ R8) 2 — 6  
1 v ~~~~~~~ R1) C. The division of r~. ~~A space into i-egions and the

Si *.,1l .o choice of var iables in each region

..! 
f cos(I)& _)~ Iv *)V ’(r *. fi 1~v*) dv1 . We now consider the expansion of the function F~,,1,-1,

‘ (3.9) R~) in terms of a set of single-variable functions winch
Equation (3. 9) shows t hat V~ j 1  depe nds oil j~ and j ’~ only desc ribe a vlbration iike motion. To pick this vibration
through lj 1 —j ~I .  We can write Eq. (3 .6) in a condensed variable and the corresp onding vibrational basis set , it
mat r ix notation by regard ing )‘~ (r 1, R 4) as a column is convenient to examtne the behavtor of V~ (r u Jl &)
vector whose elements are the F~,,1(r ,,R 1). We get since , as one can conclud e from the remark at the end

& ~ 
of Sec. ill. B , this function together with the centrifuga l

T F,.V ,, F , . £F , (3. 10) ~ -‘ *potential (h /2g4(j 
~~
_ 4)/ r 1 determ ines the p

~~ 
depen-

where T 4 is the kinet ic energy operator dence of T in the absence otj , (i. e., rotational) coo-

A s / ~ pling. For the ft ,H5 reaction , equipotentials of V~ (r 1,
T 1.’ —~~— ( ~

-
~~-i .-

~
---

~~) 
(3. 11) R 1) are re-presented in Fig. 3, together with the c-orre-

I I sponding line I. of steepest ascents and descents. Cuts
and V~’(,-1. R 1) is an effective potential energy matrix of V~

1 normal to L look like dla to mIc internuc lear po- - 
--

defined by tential energy functions , displaying a minimum on L , a

(3. ~2) 
dissociation plateau in the dir ection away fro m the co-

- 
- 

ordtnat e axes , and a steep repulsIve point in the oppo -
V~ is th~ J-independent inter a ction potentia l matrix site direction. These chara cteristics are ana logous to

those present ed by colltnear trtatomlc potential energy
— - — i ~~~r f unctions and suggest t hat we divide the v~, R1 space in

I 
- 

regions In ‘-lanner .inalogous to that employed for col-
F~lr &~ RQ linear react,,ns,~~10 using different coordinates and/or 

- 
-

6 - - vibration basis functions in each region. The C re-
I ~ spending vibratIon coordinates will be a distance along
I 12 ~ appropria ’cly chosen lines transverse (but not neces-

06 l B - sar lly orthogonal) to L. In sac h region , In addition to
such vibration coord inates , the re s-ill be a “prop aga-
lion ” coordinate In terms of which Eq. (3.6), sill be

U vi,, p (t~~.R 1 ) expr essed as a syst em of coupled ordinary different ial
B equatIons. For H .  H 5 we indicate a convenient choice

—
~~ I ,-/ for these regions In FIg. 3. They are denot ed as fol-

I -‘ lows : I—the asymptot ic region; I l—the weak interac-
\ 

~~~~~~~

. / _—“ lion region; EU— th e strong Interact Ion region; and 1%’ —
— , the matchi ng reg ion. The boundary poInts P , P~, and

- 
~~ o P, in Fig. 3 are ci ~en as foUows. The abscissa “¼ of

- - —~~~ J’~ and p0 i~ chosen so that these points lie in the clas-
~~ Ph,, 

~ 
sica lly forbidde n plateau area where the wavefunction —

I 
- may be assum ed to vanish . The ordinate P’~ of P IS

picked large enough so that the potential V,~ r1, R ,) is
independent of it~ f or R 1 R’~. R ,0 is dete rmined by

I 
setting ,~~~ of Fig. 3 equal to s/I .. a,,/2, from wht~h

2 3 ~ 
we get

(b ohr ) R ,~ = i’¼ tan (o ,,J 2) . - (3.14)

Fit . 3. I ~~ ,—. ol t-t, P~, r, space In to fou r legions , I . It . The reason for Ih i  t,oiec is that in order to perform
~wi :‘ - ‘ —I ’..rs ar e _ ‘~-cn usI i ol the ~ *Lri ~ the mat ching ~! t - - - different  arra ngement chsnnei solu-

$ I — - -- ‘.~~~~. ~ F~~. 
~~~

- 
~~
. l - ~

- r ? — ~ i . . . 
~~~~~ ~~~~~~~ S e ,  I I I . A , nerd t ’e F’ .

— ~~~~~~~~~ -,~ •- —~~ -e 
0’ P 1 — ~~— .. * _  —~~ —I-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~ -—
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determine thi s wasefunetion on the matching surfaces
v,~ and 

~~I rather than on the w1 • constant cones since
it is on these surfaces that we will smoothly match the

- _ — %(r~0. ~~~~ solutions obtained from the integr at ion of the Schrdd &ng~
— er equation In the three arra ngements chacr iels ~

- $, y. However , for a given &~ (w~ih1n a ce rtain range)
we do have the wavelunctions on the lines of interaec-

Pt , 1 R1) tion of the constant w5 cone with the bait—planes T,~ and
v
~ 

(see Fig. 5(a)). The relation between u,~ and y~ at -- 
-

the lines of intersection with r,~ Is given by Eq. (Al4)
o f A ppend ls A. A swl ts scsnned from w¼ .’2’1.t o w *%
— 2q51 (FIgs. 3 and 5), these Intersection tines scan the

C entIre c ,~ matching half-plane and thus we can obtain
- the desired wavefunctton f-~ on It from a knowledge of

- 
the F (C, oh) fo r ‘l~ in the range ‘h, to tp~,. The angles

- 
- - and w51 correspond to the Intersection of v~ with

the y5 0 and y1.’ i/2 hall-plane, respectively (in
- 

- 
OJ4Y1Z,, Internal configuratIon space). From Eq. (A14)

- we find that w,0 . ’ s — O,1*nd 51¼ .’r/2. These values de-
- 

- 
- terinine the values of ‘1¼ ~~~~~ Oh , of FIg. 3 through Eq.

C - - (o)
“ ,,w5 ~~ i

FIG. 4 . The polar coordir,aiea Pu e~ and t. it1 and their Inter-
reiadonihlpp in R~ ‘t pace. - - 

- - -

1
~ - -
‘I’- --Z~~

= s/4 , f rom which we get (see Fig. 3) - “n - -

R11= r~~. (3. t5) 
- 

- “ :,‘ ,/‘,
This common v’tIue of and ~~ is chosen so that - 

- 

- ‘‘ : ,~‘,‘ 
- -

- 
- P5(r51,R,1) also lies in the plateau region. -~~ — - •~ : r

The cocrdinate systems used in each of these four re- - 

- 

“n I 
-

gions are as foUows . In the asymptotic region (I) and - ‘
\ — a1

is the weak interaction region (U), we use the Cartesian -

coordinates r~, R 1 as vibration and propagatIon coordl- 
-

• nates, res pectively. In the strong interaction region
- 

- 
- (Iii) we ewitch to the polar coordinates p5, Q1 (as de-

picted in Fig. 4) with Po(r ,Q, R¼) as orig in and related
tor,,R5 by -

- 

- 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
set of polar coordinates (C, o~1) which have their origin 

~~~

~ 

which are related to v5, R1 by 

~ ila) /“~
‘
,/“ \

\ 

\‘n~
\

R5 ”CcosC5 . - (3. l7b)

- - ~ (sO) and ~ (in range 0—s/I) are, respect ively, the /
vibration and propagation variablea for Region .’. W.
note that the C deft—ed here Is identical to that given by 

____________ - -

Eq. (3. 1*) , whUe the angles uo~ and iti are related , as
can be seen from Eqs. (3. 17) a-d (3. lb) , t-y

PIG . ; .  ‘a) ptat ~ 8w ~~~~~~~~~~~ ~ 9-ç’.~ e ,~~ 
- -

‘~i~~2 ’ti . - 
(3. 111 ~~~rta -~~--5-s .s* S ~~~~~~ ~~~~~~~~~~~~~~

w= ~~~~~ t~’ • F - 
- ~a~~~x-e , — r a — - es.— - ~~~~‘w ~~~~ — 5 1 ~~~~~~~~ ~~~~_ Sib~~~ -

- —Ic _s . — ‘-S. —. I ‘~~~-_- . - ~—s — * - a — —
.‘~~~ ‘ ‘~~—_ .si.. ~.. •~~ — ‘- .. St . r -t e  

~~~~ ., q
~ 

, -— , 
* ~~~~~~~~~~~~ , ~.

— - -- 
— 

S ‘ - S.. - e - — — -- S- * ~~ W -  • ~,. - — •. rn. .- .-

t. — S - - - - ~~‘ - ~‘—.-- ,- - - * - — •_ —

__

L -. ——
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(3. II ) , and consequently the positions of P0 and P0. In- V1(r ,,, R5 ? R~ ) s v ’(r 5 )i , (3. 20)deed , by using Eqs . (3. 17) and (3. 18) toguther with the
values of 

~~ ~~~ ~ 1I given above , we obtain the equa - where I is the Identity matrix. This lead s to a total de-
tions (3. 14) and (3. 15) that were prev iously used in 10- coupling of Eqs . (3. 6) and (3. 10). For a given J and j ,, ~ 

-

eating P0 and P2.~ One additional complication in this V~ Obtain
procedure ar ises when ,n~s in, (fo r th e int egr at Ion in 

~ ~~~i’~~’ a ’ 
~~~~~~~ ________arrangement channel it). In t hat case , the angles a,~ .I ~ 1Si~~ Th~ r~ ft 1
__________ I

and a~_ are d ifferent j ane Eq. (A3)J so that the value 
) ] F ~ ; :..EF ~~~ , (3.21)of 

~¼ for s,~ (t. e. , ui~ ~ ~ o~ ) is different from u4, + ,
for w~, (w~, = , — as,,). In order to obtain the wavefunc-
lion on both of the mat ching surf aces i,~ and s,, we where the superscri pt (a) refers to the asymptotic re-modify our di-flnit ion of 

~
,¼ to gin ThIs equa tt on may be solved by separation of

W¼.mth( ._ a,~, v — G b) .  (S ag) variables. The solution can be expanded as

on the other hand, is mass independent and always F~°;(~ , R1) ~ : ~~~~~~~~~~~~~~~ (3. 22)equal to ./2 for the choice of matching surfaces given •1
by Eq. (3. 2). wher e Is a vibrational etgenfunction with vibra-

Having defined the four regions of each rS, ft 5 space tional energy ~~~ satisfying the equation
(A~ a,~~,y) and th eir associated vibration—propagation ( ir’ i’
coord in*te systems, we a re rea dy to introduce a vibra - ~~~~~~ ~~~~~ +v  (r1)+ L i) ø~~ = t J~o~.~ (3.23)
tional expansion into the Schr ~dinger- equations Eq.
(3.6) (or thel, matrix counterpart Eq. (3. 10)), thus oh- with boundary Conditi ons
lathing the actua l ordinary coupled differential equa - g~~ ,5(R 1) describes the translational motion associated -

lions to be Integrated. We shall do this for each r egion with the propagat ion variable , R1’ and satisfies the
separately , starting with the asympt otic region, equation

(d’ CT—j , )
~ —’ “'‘

D. Tb. coupled Sctirod inger equations in the 
— 

Rt 
. ~~~ ~~~~~~~~ 

(3.24)
propagation var iable where
1. The asymptotic region 

~sti,a . 
~~ — ~&* P) (3.25)5515 ~~~As mentioned above, the vibration and propagat ion

var iables for this r egion are s-~ and R1’ respectively. is th e square of the relative motion wave number when
The function V 5(r1’R1’y5) becom --; the Isolated diatomic the diatom Is in the vibration—rotation state labeled by
potential v 5(r 5) for R5 a k’1,,, and the potential matr ix the quantwn numbers t-5,j 5. Equation (3.24 ) is closely — -

V1 appearing in the right hand side of Eq. (3. 12) be- related to th e Bessel equation , and its gcnera i solution
comes diagonal: can be written as

N’) (R 5) ~~~~~ 5y,*{ i1~ “s ’ ~ * ,515Y,.,5(k~~ R 5) for K (open channels)
(3. 26)~~ 15515 

~~~~~~~~ ~~~ IR 5)• c~,,,5K,., ,( k.~5j~j  R5) for K (closed channels)

The fun ctionsj , and Y, are , revp ect ive ly, the regular tor whose elements , labeled by the t~ j~ index pair , areand ir regu la: ordinary l3 essel fun ct ions 1’ of order I and given by Eq. (3.26). When rep laced Into Eqs. (3. 22),have the asymptotic behavior (3. 3), ar.J (2. 13), it furni shes a single X~(R S, 4, y j ,
z”J1(1) ~‘~~(2/e)” cos(x — 1./I — sf4) , (3. 27a) corresponding to a single 5k,, c~ column vecto r pair ,

she elerr~-nts of which are the and of Eq.
x “~ ) ,(x) ~~g (2/s)” sin(x — 11/2 — 1/4 ) , (3. 27b) (3.25). in order to satisfy Condition (c) of Sec. II. A ,

wc e’ill need a complete set of linearly independent so-wherea s I, and K, are the modified Bessel functions 3’ lutiorni of the Schr~dtnger equation. The number of so-
and have the asymptotic behavior lutions in such a set is twice the number of v, ft5 than-

x ”1,(x)~~’c (2r ~~”exp(x) , (3.28a) nels Includ ed in the expansions of Eqs. (3.22) and (3. 5),
which should be sofinit e big for practical reasons are

~~~~~~~~~~~~~~~~~ x) . (S. 28b) t runcat ed at a finit e namber N. (The errors introduced
by th is trun a son will be d iscuaced subseqventlv.w)Is Sec. ‘. as sil l ccoa~’=r acsttertr* asyn~ totic c-on-
~ae can sa~en~bLe the corre~pondutg j~~~~’ vectors to~.tatss w*scO w~j deiera-. i-w t~~ c1~~~~s.ws
f n r  :s-., s-~- .j c-, -at --w,-s at . - n~--n Y,~. N we—.-. -

i~~w* ~~~~~~~~~~~~~~~~~~~~~ it
• _* : .. : - =- -— —~~ ~~~~~ 

- — ~ -t.- ’.- ~~~ —-
~~~~ ~— ~~~ ~~~~~ - ~ ~— —

• 
.. — 

— ~~. -,- —. - — - - - - 

~*-~~4 ~~ ~~~-
— - - - - -- - -n ‘ - - — -a ~~ -

- —
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propagation from Region I to IV and those labeled (— ) 
~~~~~~~~~~~~~~~~~~~~~~~~ , (3.30)by a prop agation in the opposite directio n, If we stint-

wherelarly form the matrices a~ and e~ from the corr e-
spending i~ and c~ vector s, we can rewr ite Eqs . (3, 24) 

~~~ Ks l s)3 + U ~u.) -and (3.26) as (3.31)
1K ””J”~’~. O’1~ k~”_______ 

,
~~~ 

.
~~ ~~ (3. 32)‘

d~’
— ‘U~~ ” (R 5)g~ ,

” (3. 29) -

tu~~”j ’~
4

~ 6
’~1lS~~~~JJ ’— 

~and Pill •~1~ ‘ (3.33)

for ~~~~~~ K (open channels)
a ( k,’~~ JR 5)11’ 

~~~~~~~ (k~5~ I R5) - for ~~~~ K (closed channels) , ~~~~ 34)

V1.,, (k~ ,’,~R5) for F (open channels) - 
/

K1.~,( (~~~~IR 1) for ~~~ > K (closed channels ) - 
(3.35)

In Eqs. (3. 32) through (S. 35) the subscripts in a matrix element represent its row label and the superscript s i~scolumn label. Equat ions analogous to Eq. (3. 29) will be developed for each of the Other three subregions. Equa-
tion (3. 30) and aimilar equations wtU be used in the reactance matrix analysts (Sec. V).

F-
2 The neak intl,-action region suit s to the choIce of V ,,. Equation (S. 3~i) is the radial

Sch r~4thge r equation of a paeudomolecule whose inter-in this region, we retain the vibration—prop agation
variables r,,R5. However, since Y ’(ru R i,y s) 2~~~~ 

ainmic potentIal is V ,,(r,1R°9), charactertøitc of Sub-
V5(,

51R 5) do vary wIth R1’ the asymptotic vibrational r egion II ,, rat her Than v 5(y5),  which characterizes the
elgentunctions ~~~ are not necessari ly the best basis asymp totic region. (its centrifugal potential is, how-
for expand ing the F~,,5(r~ R 5). To optimi ze a choice of ever , not the normal j 5(j 5 , l )li ’/2,sr tone. J The
basis Iunctionr , we divide Region II into n~1 subregions and arc ottained by numerically solving Eq.
B, (is 1,2, ... ,,,‘~,) by constant R , lines having ft (3. 86)~3’ subject to the boundary condition s l.sst men-

tioned. - -~ (Ri,, R ,,. ., R4 R,0). The rang! of ft 5 for th e ith
subregion is R~,,1 a ft 5 a R~,. Let R~, be a selected We now expand F~,,(r5, A5) in term s of the above vi-
value of ft5 In th!a range, such as its midpoint . We brat tonal basis functions:
chooøe as a basis set for expansion In this subregIon -
the functions ~~J (v, ;R~1) which satisfy the eigenvalue F~ j ” (ra, Rs)=E  ~~~~~~~~~~~~~~~~~~~~~~~~~ (3. 37)
equation

( 
~ (r5- R °~,) + 

‘5 
~ ~~

‘) “s’ Substituting this tnto Eq. (S. 6), mult iplying by ~~~ (r,,
215 ~~~~ 

+ ~~~ 2~ r!~ ~~~~ R~,) and integrating over r,, then interchang ing v5 and
~ ~~~~~~ (R~~~) 

.iIiV) (3. 36) t’~ and express ing the r esult ing coupled equations in the
matrix form of the previous section , we getwith boundary conditions ~~~~~~~~~~~~~~~~~~~~

~O. The superscript ( iv)  refers to the weak interaction (3,38region. V~,,(r5;R~,l Is the vahi - of a reference poten-
tial V~ ,(r5, R5) at R 5 a R ~~ It Is , in principle, arbi- where
tra ry, but in practice must he chosen so that the ~sbra.
ttonal basis luncttons serve as an efficient repre- — + us”” + ut ’— ’ . (3. ~~)aentation of the r~ dependence ut the functtons F~,5(r 5, Tb. diagonal matrices K~”’

1 and U~
45’ are defined byA,). Examples of possible reference potentials are (a) Eqs . (3. 32) and (3. 33). respectively, with the super.the (tret cocfttctent In the 5~ourter expansion [Eq. (S. ~)) script (a) replaced by (iv), while the J-thdependent cou-V~(r5, R5), and (b) the ex~-t potentIa l V 5(R 5, r5, ~,) for pltng “potential” matrix U~~ (R5; R~,) (whoee physicala fix ed 

~~~. Ore im portan t te of vibrat ion i!  conver- dimension is that of the square of a wave number) isgence in our method is the in- ulance of t h e  iina l re- given b~

(U~’’ (R 1; i?, )) — ~~ (d~~7,~(r5; R~,)! V,,,1(r5. R5) — V~,,(r5; ~~~~ ~;~~
r~; R~,)) 

- 

-

R~~. V~tr5. As.,,).. Y~~ tr 1~ P ’  ~~~~~~~ ~~~~~~~~~ 

. 4 ’ ‘ 
-

— — -



- 
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-
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As long as the anl eotr opy of the potential remai ns small For each such subregion. we choose a cut at a specific ~and the refe rence potential provides an efficient vibra- value q’~, ~~ Ø~ (where 
~~~~, 

n ~~~~~ g,,)  to define our vi- ‘ ;
tlnnal basis set for expanding the functions 1,5(r5;R 5) brattonal basis functions 4i~ ”(p~; p ?.)  ~~ ~~~~~ elgen- ~within each subre gion , the matrix Ut”'’ should be near— values ~~~~ h5(~~~~~ ) as the solution . of thi $cbrödlnger ‘ -
ly diagonal , and Eqs . (3 . 38) are only weakly coupled. equation: I
The numbe t and size of the subreg ions int o which Re- ~~ dt II 

)~~~
“ Igion Il ls divided depends on the steepne ss of the var t — ~~~~~~ 

V~,,(p 5 ; i)) *~~’ s; 4) .
~~~~~ Q&4 - ~ • i

This nwnber ls generally small (i .e., less than 3). (3 .45) ~ -1atlon of the potentIal matrix (,‘,j5 1 V~~r~j ) with ft5.
satisfying the boundary condition. ~~ “(p~ a 0) a ~~~“(p~

As we propagate the solutions of Eq. (3. 38) through =p ,) = 0, where p , is the value of p5 at the Intersection ~Region II towards Regions I or Dl, the wavefunctions of the line ~~~~~ wi th the ft 5 axis (Fig. 3). The poles-
xj (r5, R5 , j ~5) must remain continuous and smooth during tIM V~,,(p 5, q ’,) is one of the reference potentials J

- 
7~ 

- the change of basis functions that occurs at the bound- V ,,(r5, R5) defined in Sec. In. 1). 2 expressed In p1 • I
aries of neIghboring subregions . This requirement coordinale.. Note that we have not included any J~-d.- I
leads to the b lowing relations between the functions pendant cmth tfugal terms in the Hamutosir.n of Eq. I
g~/,~ 5(R5; R~1) and g~~J5(R 5; R~,,5) and the ir derivatives - (3.45) (all of tr~ae terms being included in the “prcpaga— I
at the boundszy of Subregions Il~ and U01: tinS part” of the RamUtonlan), and hence mar elgenval- I

ues and eigenfusctions depend only o~ the vibrational
- (3.41a) quantum numbet V5. This Ii done for computational I

~~~~~~~~~ R~,,1)_ 5 )~~) ~~‘(R~,; R( ,) convenience and does sot seriously decrease the rate of - 
—(3.41b) .- 4Ri figs convergence of our coupled-channel expansion.

where the overlap matrix St” is given by We now expand the solutions P~ ” of Eq. (3.43) in
- (3.42) terms of the pseudovlbrational fianc Uoni ~~~~~~~~

subregions is that the ~~~~ should be nearly orthogonal (3 44)
An important criterion for the choice of the size of the F~~~’( p 5, ~~~~~~~~~~~~~~~~~ q~~1)~~~~I)(p5; ç~~) .

matrices. Lack of orthogonality implies lack of corn-
pleteness of the basis Sets ~ ‘7’ and resul ts in the lose ~~ counterpart of Eq. (3.38) becomes 

-

of information about the waveWnctlon as a result of the d’g
~

’)1
_ U~ .)(~, . g’f5

)p
~~
” 

- (3.47) 1transformation of Eqs. (3.11). The relations at the
- - - boundary separating Regions I and II are achieved by - II

where the effective “potentIal” matrix ~~~~~ (who.. •le~ . 
-

setting I.O in Eqs. (3.41) and Interpret ing R°~ to mean menta are dtmens iontes.t) can u s written as s-R~ and ~~J(r5;R~,) to mean 
~~~~~~~~~~~ - 

- 
I:

U ” .p{(c~,)U~ ”(~ 5; ~ S )  
- (3.48)

2 The strong interaction region
In whlch

~~ 

- garding ~~ as the pr’spagation variable. If we trans - U, a — K~”~ + U~ + Ut’’ .
in this region we use the polar coordinates p5. so~ re-

I I
form Eq. (3.10) to these polar coordinates with the aid The matrix p~ is given byof Eq. (3.16). we obtain the vector equation 

~~~~~~~~~~~~~~~~~ 
. 

- (3.49)
Ta” F~”(p, , q’~) +V~F”~ 2’s” “K y’~” - (3.43~ The matrix K’-”~’ and the “potential” coupling matr ix -

where the superscript (a) refers to “strong interaction Ui” are quite similar to those in Eqs. (3. 32) and (3.40) - Iregion. 75111 Is given by 
- and a’- - --e n by I

I ’ -— I

- I45/ 51 1 5 1 e’~ L K51 q’~ ~j a b ’~~ 
~~ 

( K— c~”(g~)I (3.50)• -(3.44) H’ isis n ’s

and the matrix Vr”(p,, ~~) is simply V~’(r5, A5) ea- 
*iid 

-

pressed in the coordinates p5, Q~~. - (1,M a ( ~~~. ~‘)~~L ~~ ~~~~~~ ~s~,)I 
~ Z,’t(~. -  ~~Tor a typical reference pot.ntial Vt,,, such as the

V,~(r5, R 5) defined by Eq. (3. Sb) arid plotted in Pig . S for — P~,, (p5; v,,-,~~~”(p 5; g45) ) ,
- H + H ,, the shape of thy potentIal asafunct lon o fp 5 for (3.51)
I fixed 4,5(0~ ~~ ~~

) is very much Rice tha t for a di- respectively, but the centrifugal potential matrix is now
atomic molecule. The deep potential well character of defined as
tbe~e cuts at conStant u, permits ma. to use their bound 

- 1state elgeptunctions to effIcIently represent the p5 de. - 
t U?”(.1. .~,)I~~~~.(s’J

of the w*v,fnic~~~ in thIa region, Aecording- ~~~~~~~~~~~~~ 
- 

- 
-

ly, w ~ivtee ~.gIes ~~ ~~o ~~~ sutu’eg~~~ ~~~~~
, , - “- ~jf.. ~ 

- I
2. . . . - b~ L~~. ~~~ e~~~.ane - 

- -,, ‘~~ “~~~~

4, ~~ • S . •~ . •
se~~~ w,~~~~~~ w~q-~~~~ ~~ t~, 1. ~~~~

.~~~~.. ~~. — a. a- ~~~~~~ ~~‘-

~- 1
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arises from the rotation of the diatom , the second from where
rotation of thi atom— diatom system, and the third is a
pmsudocentriftagal potential arising from the use of the ~~‘~~~._.!!(~~ 

1~ I 51 ’
z~~ii’~ iii~ Fii~) ,

p5, ~~ coord inates and associated wi t a  -he nonphysical
swinging motion around the point P~ of Fig. 3*5 w~ is The superscript (?n ) denotes “matching region, ” and
changed. The centrirugal coupling tEq . (3.52) 1 ii still V~ ’~~(f, i~) Is obtained from V~’(r5, A5) by using Eq.
diagonal in J5(aa is its counterpart for the (a) *nd (w) (3. 17~. The division of Region IV into subregions is - -

regions) bat no longer in V1. In addition to the usual ars’.E lgous tO thai for Regions II and III, and lbs vlbra-
potential coupling resulting from the oft-.diagonal terms tional basis functions # 1(C; ij~~~) with sigenv~tlue

- : of U~’1 , we also have coupling arising from the nondi- ~~~ °(ll~~) satisfy the equation
- 

~~~~
- - agonal p~ matrix which appears in Eq. (3.48) as a re- ~a a

suit of the swinging motion around P0. The neglect of (—~
—

~~~ + ~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
(3.58) 

- 

—
this latter coupling could introduce seri ous errors since
p~ has large off-dia~onal elements . Such an appro-atma- with boundary conditions O~ (0) —~~ ”5(C.c,).o, The - 

-

lion has nevertheless often been used, ~~~ since il ls potential V,~..(C. ij~~) is one of the reference potentials -- -one of the consequences of the one-vibrational-basIs - V ,, detkned ba Sic. 111.11.2 arid IU.D.3 but expressed
functio ~ppr~jztmation . t”ote also that the effective in C, ‘i~ coordinates. Writing
potential matrix U~J”’ Is not symmetric, but is the prod -
uct of two symmetric matrices as can be seen from F~,5

1 — f’113 ~~ g~
11~~(~~• ~$ )  ,i(sb

(~~. ‘i~ ) . (3.59)
‘ Eq. (3.48). In Sec. 111. E we discuss the Gordon meth-

odu used to integrate Eq. (3 , 47) LId the modifications tire counte rpa rt of Eq. (S. 47) becomes
of it which are required when dealing with matrices of
this typ.. ~~~~~~~~~~~~~~~~~~~~~~~~~~ , (3.60)

The smooth matching across the bc~.ada ry separating where tIr e effective potential matrix (again being plays- 
- 

-any two neighboring subregions 111: end is achieved tc~ ily dimensionless) isthrough expressions analogous to Eqs. (~~. 41) In which
lb. overlap matrIx 5) is given by IJ~’•~ .~ ‘(Tl ~1) U~~”(1I5; T~~ ) (3.61)
(S)(c’~ ))’1a6,,. (~s~’~(p,; 4’~,~)t 

~~~ 
(Ps ; c~~)) (‘.53) wilt

and has elements which arw Independent of j ~ ,J~, Since U~/”(n5 ; ‘7~ ).’ — ~~~~~ +u~ ”’ • . (3.62)the general characteristIcs of tire p5 dependence of the
referenc e potential V ,,(p5 , c’)  us~saiiy change quite The matrix f (rl~) i.e defined analogously to p~ of Eq.
rapidly as c’~ Is changed , the number of subregti-ne in (3,49) with p5 replaced by C and c’5 by f ~ . The matrices

- 
N - RegIon 111 required to keeps) nearly orthogonal .~av a i( ai0 and U~~~’ are given by expressions similar to Eqs.

truncated vibrittorial basis set is generally Large ~~~~~ (3 .50) and (3.51) . respectively, with the superscript
the order of 20—30). (in) replacing (a) and appropriate coordinate changes

made, while the centrifugal potentIal matrix is given byThe smooth matcMrag of the wavefunc tloir ~~ across
the boundary between Regions II and III i& achieval by [u~””’( n5; I1~ )C~~
the relations & (.1 — ,t~,)I — 

— ~~y )  v~) 6,~~ . (3.63)
6~(Iia •

c’ 0;9S ) PitIa 9i(~)s(R RO )  (3.54a) 
“ 

tr! TI~~
’ C’co51i~

Smooth transformation between subreglous in P.egioia
IV Involves Eqs. (3.41) with the overlap matrix 5) given

—~~-—(c’1— 0 ; c ’~ ) — — p ~” 
~~~~~~

(R i
~

;R?,,t ) , 
(3.54b) by -

where ~~~~~~~~~~ 5 ~~~~~~ ~~~~~~~ 
~~~~~~~~ 

• (3.64)
m d  th. transformation between Regions III and IV is

(p))
~~~ 

-(ø~ ”(~.; c’~)I p)I 
~~~~~ 

(r50 - ~~ ; R
~.h)) o~~ achieved with equations

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3.65a)

and
4. The ,nstchinsj  I’~V’O~7

.).
A. described in Sec. ~LC. the cooriltnate. used in 4~~ (’1Q ‘i )”t”5 —(~~,. ci?~~~) .  (L6~~)tide region ar, th. polar var iables C, it, depicted in Fag.

4, with ‘7~ betng the pr~~~zatioqa rariab,e. Thr Scbr-’ ~~~~~~
ding.. .qsatIea te~~~~mns TV is ,a.r— ,heUar n, ’~~ is

~~ ‘see Es.. 3 $1~— 1 12 wee ~ ,. ~w C’
:. -a_ .  Pr ’~~ ~as l ’.’ ~~ I L ~~~ su -

~~~~ -

~~~~ 
• ‘ -. 

~~~~ ~~~. 
- - -

- -— ‘~~. “~~~w~
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E. ln~~~ation of the ~~~~~~~~~~~~~~~~~~~~ 
ion tam ing an efficient representat ion of the wavefuncti oo in

the vicinity of the matching surfaces. This requires us
We generate solutions s~ 

and the ir derivat ives with to avoid too large a pete nti a, anisotr opy in the matching
respect to the propagation variable by choosing at R, region, foe in tlat case, our coup&ed-cluuuiel solution
~~~ arbitrary initial va lues for these two matri ces and will require many closed rotational channels for coo-

itegi at lng num erical ly Eqs. (3.38) , (3. 47), and (3.60) vergenc.. At the same time, too small a potential an-
trom the beginning of Region U to the end of Region I V • isotropy (r re ulting in considerable fli~ leak age”
Similarly, we generate the ~~ sol~Uons and their de- thio ngh ~~~“ sf2 configurations In the mat ching region)
r~vattves by choosing arbitrary initial values for these can result in poor convergenc, of the mat ching g.ioce-
two matr ices at ~~~~~ and numerically integrating these dun , (as will be di ciasei’ in Sec . IV). One therefore
equations from the end of Region IV to the beginning of needs to be clever in choosing these surfaces, and it Is
RC~1on II. possible that for certain reactions, no choice satis fies

Any approp~ late numerical procedure may be em- all of the shove criteria and einiultazaeously lead . to *
ployed to Integr ate the coupled equations. The one we mathemsUCaliy tractable matching procedure.
used, wh ich In well suited to equations of the type of One case where (be choice ot surfaces epectiied by
Eqs. (3 . 38). (3.47), and (3. 60), is the one developed by Eqs . ‘3 . 2) leads to a set of coupled equations in the
Gordon .” In E tion U, it can be applied witho ut modi matching region (Eqs. (3.60)J , whi ch i~ not easily

• ,
. 

fication, a but in Regions lU and IV , the nonaymm et ri c solved without inc luding a large numbe r ef closed rota-
nature of the effective interac tion potenti al matri ces tiona l chan nels, is when a,,, (or o,~~n 3,/4. (See Eq.
(Eq s. (3 .48) and (3.61)1 requires a short modification °~ (A3) for the definition of these angles. The reason for
the inethot~. As fo rm ulat ed by Gordon, in propagating a this . . 4  ~ ien this inequali ty is satistied, integration
system of coupled equations , a transformation to a rep- In the matciung region will ext”nd into those regions of
eesentat .ion in which the effective potential matrix (say configuration space for which r , (or r,)n 0, and hence
U .aecomes di agonal is required. This necessitat es will sample the very high po~~nU a1 energy in thos, coo-
finding the eigenva lues of U. In the special case where figurations (for wt.~~h y,. 0 (or ,)J whil e possibly sam-
U is real and symmetric , these e igenvalues are real pang low potential ene rgy for other configu rations (near
and the eigenvector matrix is orthogonal. This simp!l- v r/2) . That this is the cane can be verified by noting
‘ies the calcula tion and allows for an efficient proi ram. that durin g the integration in the matching region, n,
The effective potential matrices of Regions Ill and IV must sca., the range fro m ~ ,— a.,,,)/ 2 to sf4 (from Eqs.
as given by Eqs. (3. 48) and (3. 61) a r e real but nonsym- (3. 14), (3. 15), and (~. .‘?;~ and that Eq. (*5) yields r ,.0
metric and thus could have complex eigrnva lucs and ci- when y, .O and a,, 3s, 4 at some a~, ~ u ’h1n this range.
genvectors. These potential matrices are , however , From Eqs. (*3) we note that ;~~ 3s/4 implies m~(m,
equal to the product of t’:o symm etr ic mat rices , one of 

* ~~,. m ) c  ,,s ,m , so that th is restriction 4plies pet-
which (o~ for Region Ill and 

~
‘ fo r Region IV) I s th~ ma- man ly to reac tions with one atom 1 the trtate .nlc sys-

trtx reciresenta tion of a positive definite operator (P~ or tern considerably Ught er than the other two. We shoolit
C’) and henc e has positive definite eigenvalueti. ~~ US- also point o~’ that this ~rob1em can be eI.tzni..ated by the
ing these special pro perties to define the ‘ square root use of a different coord ina te system In the ~ ~chin g re-

• of pf and C’, it i s show n In Apiend lx B that bot . the ci - gion or by the use of ‘rotati o.tally adiabatic” rotational
genvatues and eigenvectors of the effec tive potential baa!. function s (rather than
matrix are always real but the elgenvector matrix là
not gener ully orthogona l. This allow s •i~ to use real Wh en one of the three ar r angement chan~. s closed,
var iab les throughout the integration , with the only the m ethod m ust be somewhat modified, t1 but this s net

• - major program chai.~es from the usual Gordon method a complicati on . CL,er practical Umitat iona I,. the
being in the routines needed to fi nd the eigenvalucs and method occur for rea r ’ -‘os where b.e.mk- up collisions
elgenvert or s of the effective potenti al matrix , and in are allowed or for .hk h virtual excitation s to ci~~ed
the manipulation of the eigenvcctor matrices , dI ssociative cha~nels influence the eth er re act ive and

no. react ive processes slenificanuy. The present
F. Restrictions ari d Iin ’ilat ions metnc d is not capable of treati ng any dissoci ation pro-

cess, b .t  this Is not a serin’ :s limi t at ion for many re-
• We should at this point summarize the possible u r n -  actions at energies of chemical interest. A ni .re gen-

Sht ions and restr ictl — s on the method other than those era.l method which util izes gener.,lized byperspherical- . inherent in the numerical pro cedure s I nvol ved or those ‘unctions is cur rently being de~’cIoped I n these labor s-
• 
. at tain from co,npute r limit a tions , tories for the pur pose . 1  ~.~ atI n ~ both break-up antI re-

• - First, the ch oice of matching s~irface s in Eq s. (3 . 2) arr angement olll.Aons,
is l argely determ Ined by the ah~ipe of the pote nt i4i 5n
ergy surface In Fig. 2, and fo r many “~act io r.s, an ef- IV. THE MP .TC I .IING
flc,ent choice will require *omewhat dtflereit match ing A. I’~o~,rbon ui th~ tusv.f unction ‘OW the matching
plan... A t~bange in the %rA4% ~~~~~~~~~~~~~~~ 

~~~~~~~~~~ ~, •~~ ~~~~~~~th m~~ehi ng surfaces can significantly a llcct the de-
tmt. of the Integra tion in Region IV and In the mat :hing At the complet ion of the Lnte grat ion In arrangenmeut
~~~~~~~~ aIthuu~h the basl . concepts will be pre- channel _‘gi ~. we ha ve gencrt ied solution,m which -

.‘.‘i’.ei d. Is choosi ng the match ing suri .aeeq I ~r a given satisfy the Schr ddi nge r equat Ion in that region, ~iut
—~~ mu.~~ er~mary consideration should be given to ob- •vhi ch do not , in genori ~’, match smoothl y vit h ’ me cot-

j . awm. P?uyL . Vol. 65. Na. i i , I Dec wvt.c I0?6
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4608 Kuppermann, Schatz. and Baer: Planar quantum mechanical reactive ~ attering. I

responding wavefunctions obtained from the integrations i2q, (8)~ •~~~
(
~,‘i,,Vj), (4. 2)in the other arrangement channel regions i’ and s. In * ‘A’ (~~, C, Ih, vA )=

~~
1z (sifl~,, )~

Iz 
~

this section we describe the procedure for accomplish-
tog this smooth matchlng. This procedure may con- where

veniently be broken up into two parts. First, we con-
sider the projection of the full wavefunction and its de- E Q,~~(VA)ø ~~~~~~~~~~ (4. 3)
rivative normal to the matching surface onto a set of
orthonormal basis functions which span the matching ()~ the matching surface w~ , ,~~ and y~ are related to
surfaces. Second, we take linear combinations of thr each other by the equation [from Eqs. (A14) and (3. 18)]
wavefunctions in each arrangement channel region and 31
match them smoothly, on these surfaces, to linear corn- coub~~ — coto~~cosy~, O~ v~~ ~ and 

~~~ 
i1,c 2~ .

binations of the corresponding wavefunctions In the other (4. 4)
arrangement channel regions. The resulting matrix Hence, If we substitute t~ (y~) as obtained from Eq.
equations can be solved to yield a set of solutions which (4.4) into Eqs. (4. 2) and (4. 3), we obtain the desired

wavefuncUon on 1,,~.satisfy Condition (a) of Sec. ii. A and can subsequently
(see Sec. V. A) be used to form the scattering solutions In order to Insure a smooth matching of the wavefunc-
satisfying Condition (c) of that section. Uons, we need also to match the derivative of the wave-

function of Eqs. (4.2) and (4.3) at the matching sur-
Let us consider the projection procedure for the faces. Although many types of derivaUves are possible,

matching surface s~ [Fig. 2(a) ].. The analogous equa- the normal derivative 8/4n~ to the matching half-plane
Uons for s, and i,, are obtained from those derived be- possesses many useful mathematical properties (some
low by cyclic permutation of the Indices ~vs. We first of which are seen below ), and for this reason we will
consider the wavef unction on ir.~ obtained from the inte- consider It in the following discussion. Expressions for
gratlon in arrangement channel i~. Using Eqs. (3. 59), 9/5n~ in terms of ~~, ~~~~ and ~ are derived in Appendix
(3. 5), (2.13), and (2. 10), we get the following expres- A [Eq. (Ala)] . Since these are internal configuration
sion for the wavef unction In Region IV (Subregion 1): coordinates (I.e., those on which V A depends) we are

free to choose any one external variable (such as 82 or •
*~“~“~‘(8u, ~ t7~ v~

) 8~) to hold constant during the differentiation process.
We must, however, use this same variable in deriving12Y’,(08)

sln2ii~)”2~,,5, 
w,2(v ) ‘t’, C, )g ~~~~~~ all equations concerning the derivative matching on 

~~k•Choosing this external variable to be °A and Introducing
(4. 1) Eq. (Al8) into Eqs. (4. 2) and (4. 3), and then using Eq.

(4.4) to express everything on the matching surface, weThroughout Sec. !V we will consider superscript (rn )  of obtai nSec. III. D. 4 to be present implicitly and will omit writ-
ing It explicitly. We have, however, added the indices a ’~~’ - i2q’, (e2)sl na ,.~v~j ~ to denote different linearly independent Solutions - c” (sin2IlA)”5 

~~~~~~~~~~~~ VA), (4. 5)

obtained by using different initial conditions in the nu-
merical solution of the Schrodinger equation. As ex- where

• plained in Sec. lB. D. I, If we truncate the close cou- ~~~~~~~~ v2)pling expansion alter N vibration—rotation bases func-
tions, there will be N sets of indices I’~j~ in Eq. (4. 1). = ~~ ~~~ 

d4~j  ÷ cot;A( COSy2

The expression In large parentheses in Eq. (4. 1) Is
expanded In terms of a different set of vibrational func- +ii2 sinv*)~,~j2[vI2(v2)]). (4 8)
lions O~,(C;’i~ ) for each subregion i of Region IV. We
now transform to a representation in terms of a single The derivative dg/ di~ must be evaluated by allowing i~2
set of vibration—rotation basis functions ~p,2 (yA)~i.

A
~(C) to be independent of y2 before the expression ‘I~for all of Region IV. The actual functions ø~ (~) to be given by Eq. (4.4) Is used.

used are arbitrary, but for reactions such as H + H2 A.(,1* 
andWe now wish to expand the functions ~~,Which favor reaction through colllnear geometries, the . on the matching surface e~ in terms of a set ofmost efficient set for this purpose (as will be explained

In more detail below ) are the functions ,(C;~t~,) de- basis functions w hich span that surfac e, ~ and v2
fined along the cut ~~~~~~~ and which will be denoted by being the Independent variables. We choose the

to be
•~~~) simply. The transformation equations associated 

-‘

with the change In the vibrational basis set are given by 
~~~ v~) 

A~ 
)A;~(v8) , (4. 7)

equation, similar to Eqs. (3.41) and (3.~ 3), where a
different overlap matrix will be generated for eac h sub- where the Ø~,’s were defined above [in the paragraph
region I. We will denote the new ‘~q” function thus oh- preceding Eq. (4. 2) ], and the A~ (y1) are a set of rota- 

- 

/ 

I
tam ed by 1~~~(’(1~8) (we will omit the parameter i~~). lions! functions which we shalL require to be orthonor-
With this change of vibrational basis, we can write a mal and complete on the domain 0~ v1’ ~v, ~ 3w~ VA
single expression for $~‘i~t’ valid throughout all of Re- ‘2r For convenience, we will also Impose the condi-
~ on W: Hon thai A~~~(v2) be real and that 
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This is not a signilicar~tly restrictive assumption, and
will lead to matching equations involving only real quan-
tities. 2

A~~~(y,)— (— 1)~’A~ (2s — y,) . (4 8) ( 

~~~~~ 
‘

The crucial characteristic In our choice of the rota-

done Is to divide the domain of y, into two equal 

~~~~~~~~~~~~~~~tional basis functions A Is that they be complete for the 
• 

•

domain On y,~ ~w, ~ 3w~c y,< 2t. This contrasts with
the 0 to 2w interval over which the asymptotic rotational 2 ~ • 

• 

•

functions ~,,
(v,) are complete. What we have a~tually .4~’

6 -mains: (a) 0 to 3i’ and ~3w to 21, on which we choose 

~the s,, rotational functions A7~(y ,) , and (b) ~w to ~3it,

where we use the analogous functions A ,~(y,) w lih n span ~ ,~ .3IJ

I,,. The union A~~2
(y,) of the two sets of functions

{A~~~,A~~~ } forms a set of rotational functions which spans 
~~ 3O

(0, 2w) and this allows us to establish a one-to-one cor-
respondence between the rotational functions A~, which •

span the pair of matching surfaces w , and w,,, and the ~ 3 2 -~ 0 I 2 3 4 ~
asymptotic functions ~~~~~ More specifically, If we (bohr )
have N vibration—rotation basis functions asymptotical- FIG. 6. plot of equipotenllal contours on the matching surface
ly in arrangement channel A, the sum of the number of a,, for the II 

~? 
reaction In the Cartesian coordinate system

B” and B” functions must be N. For a symmetriC re- W,, F2, where W, X~stn?U,e+Z~coe?o,,)h/? and the system
action (I.e., one in which channels v and s are equlva- X,, F,, Z, is the one described in Sec. llI.A. llec.u.e of the
lent), we must use N/2 functions in each of these two symmotry of the 114 system, FIg. 6 Is equivalent to the lower

half of Fig. 2(c) since the Z,< 0 half—plane of the 0Y Z , planesets. In thi s case, the rotational quantum numbers), is for this system the same as the a,, matching plane. The
spanned by the B~ ,, (for each vibrational quantum num- half-lines emanating from the origin correspond to constant
ber t’,) include only one-half of those spanned by the values of 

~, 
and it,, as indicated. To each suet, half—line, for

asymptotic functions ~~ The number of the latter which 
~~~~~~~~ 

there corresponda a symmetric one with respec t
should in such cases be even, which Is not a severe to the vertical sats, having the same value of ii, and a value
constraint. o~ -~,= 360 —~~, in the 270 to 360 ’ range.

We now discuss possible choices for the functions
A ?. Two sets of functions which are both orthonormal v, 0, i.e., near = i~~. For this reason, we previous-

Complete over the range 0 -~ y,c w and ~ 3w ~ v, ~ 2w ly chose the vibrational elgenlunctions d~,
(L) to be solu-

are (w~~”2exp(2ij ,~r,) and (w ) t
~”exp((2j ,. l)iy,] for)2 tions to Eq. (3.5) for ~~~~~ 

[See paragraph preceding
= 0, ii , *2, ... These do not satisfy the condition of Eq. (4. 2)]. Although there Is no single ~,-dependent
Eq. (4. 8), but cert ain linear combinations of them do rotational potential which describes the rotations! mo-
such as (a) (~ )~~~2, (2/w)~~ cos2y,, (2/s)”2 sin2v,, tion on the matching surface correctly for all ~ , it
(2/,)~

8 cos4y,, (21w) t12 sin4y, md (b) (2/s)”sln~2, should be clear fro~n Fig. 6 that rotational functions
(2/ir)” cosy,, (21w) ’’2 sin3y,, (2,w) ’ ’2 cos3y,, ... We which are numertca’ ,y determined from the potential on
can also choose mixtures of (a) and (b) above such as the matching surface for a fixed C (such as the C for
(c) (2/i)’ 12cosy,, (2/1)112 sln2v,, (2/ir)l~Z cos3v,, -

~~ which this potential, at v, 0, has a mini m um ) wi l l  be
This last set of functions (corresponding t O)~ 0, l~ localized near y,= 0 and must be c b s ’ to zero near V,
2, . ..,  respectively) has the property that all its mcm- w/2 and 3w /2. For this reason, the analytical set (c)
bers vanish at v, = w/2 and 3w/2. This makes these should be efficient for expanding the wavef unction on
functions very efficient for expanding the wavefunct ions w,,. Finally, we should mention that an Important test
for ce rtain reactions, as desc ribed below. An alterna- of the correctness of the method is to demonstrate the
live to analytical functions would be a numerically de- invaniance of the fins! converged results with respect to
termined set such as the rotational eigenfuncUons for the choice of As,

.
some approximate potential on the matching surface.
‘I’o see what these funcUons might look like for H • H2, We now expand the functions $~‘k’~’ and ~~

‘A A ’ [de-
in Fig. 6 we plot contours of lie Porter—Karplus p0- fined by Eqs. (4. 3) and (4. 6)) in terms of the matching
tentiaf’ on the two-dimensional matching half-plane øurfac e functions B ’,9, as follows:
s., The lines converging at the origin are intersec-
tions of s,, with v, • constant planes and correspond • ‘~“ — E ~:~: B~ ,,(L, VA) , (4.9)
therefore to constant values of yp,. The figure indicates PAIl
that only the region of the matching surface for which
y, is in the range 0—60’ and 300’..360 (ard it, in the •~~“ E ~~~~~~~~ yb) . (4. 10)
range Ip,,- 30’—36. 9’) has a low enough potential ener- “i’

gy to contribute significantly to the reaction at energies whereas the indices t ’j ~ assume N values, ,‘,j, assume
less than 1 cv . This implies that we should choose a fewer values than that. In view of our previous discus-
basis set B” which describes the wavef unction beat near sion, N/2 is a convenient choice for this number for

J. aiim. Phya, Vol. 66, No. it , I Dec*mb~ 1976
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‘ 1the td~hty symmetric ii ~ system. The coefficients tlon of Eq. (4. 13) on the matching surface a .,, we must
“h i’

~~~~~~~~ 
and li’,, ,1, may be found by equating Eq. (4.3) on remember that 8, must be held constant during the dii-

i’, with Eq. (4.9), and Eq. (4.6) with Eq. (4. iO), mu!- ferenUation. It is therefore desirable to express 8, In
tiplying the resulting expressions by l3~~~,, and Ante- terms of 9,,
grating them over C and v,. (icing the orthonormaiity 9, = 9,. a,,’ , 

• (4. 16)
of the B?,,, functions on the matching surfac e and Eq.
(4. 8), and interchanging In the end the ,‘~‘j~’ 

indices with where ~~~, is a function of the Internal variables R,, r,,
the v,j , ones, we get v, Only as seen in Eqs. (A9) of the Appendix. U we cx-

press those two equations in terms of the variables C,
a/a (cos) 

~“t 
, ,, and y’,, then find the normal derivative of a,,, using

~~~~ J~ ~~ J ~~~~~~~~~~~~~~~~~~~~~~~~~~ Eq. (*18) and finally use Eq. (4. 4) to express all quan- •

tities on the matching surface w,,, we obtain the very
(4. 11) useful equation valid only on this surface:

~~~~~~ 
I

(4. 17) 1 1h,,,1, =—
~i; E f ~~~~~~~~~~~~~~~~~~~~~ 

BA

‘A

‘ I
Icosj ~’y,~ r icos(j ’,’ • ~~~ As a consequence of this simplification , we can express

xl’ I • cota,, I(j~’ ~)( -~~. i)v,) the normal derivative of the wavefunctlon in arrange-tistnj’,’v,.I I Aisin(j,
ment channel v on s,,~ by I I

ki sin(j~’ — l)~’, an.., 
- 
t smz(sln qj171 / (C, V.) , (4. 18)— o” — 4>

/costi~ — 1WA
)]g~:~~ En~(v~1} . air,” i2q,,(9,)e” 1 1

(4. 12) where
where the upper term in the large parentheses Is to be •

used for even j ,, and the lower for odd j ,, and use was •~r.f.I~’ (C, v,) ~2 Q,,(v,)0 ,(.C )Il (
~
‘
~ 

“

~made of Eq. (4.8). “ ‘. ~~ dii .. ~~~~~~~

We now must consider expansion of the wavefunc- 
— cota,,,U cowy, + ij,, alnv..)~~~.?’?tn~(v~)I}

.tion obtained from the it’ ration In channel i’, in the
same matching surface b~.sls functions B~~,, of Eq. (4. 19)
(4. ‘7). To do this we first express the wavefunction and W e  now expand the functions ~~~~~~~~~ ~~ ,.‘.s.. in
its normal derivative in a form analogous to Eqs. (4. 2). terms of the matching surface functions B~~,,(C, v,).
(4. 3), (4. 5), *nd (4. 6). For the vavef unction we get Note that we use the A arrangement channel variables

to express the v arrangement channel wavefunction,
‘if= 

~~ (jln2Il,)21’ ~~~~~~~~ ~ ,) , 
(4. 13) using the transformat :~n equ ations (A12), (*14), and

(3.18) 10 relate the A and v sets of variables. The re-
suiting expansions are •where

a (4.20)
~~ ,4.(V.,) ’~ç(C )g ,,,,,,,(7;.. ) - (4. 14) 4’, (C,v, )

1 1 -

The vibrational baste function ç,(C) is defined in a man- ,., ‘,.,
ncr similar to Ø~,(L) and, in fact , may be identical to il ~‘, (C,h) E 7~~~”8~,,(C ,v,) , (4.23) 1 

- •
(for t’,=v ,) if the reference potentials are defined ap-
propriately. In terms of the v arrangement channel where the expansion coeffic ients are given bycoordinates, the relation between it, and V, on the match- IJing surfac e i,, is given by —,.•,,I’,• !

~~ 
— ‘~~~

cot2i7,~ coto,, cosy, f w ~ v,~ 
j 3w . (4.15) IJ..1.. 

~~‘ 
) dv, E (—

0

This Is easily derived from Eq. (4. 4), using the rela-
tton~ (*12) and (AIS) of the Appendix and Eq. (3.18). .,.,,,, cOsj~ v2) (4.2 2)

In calculating the normal derivative of the wave! unc- (i sin i:’v,

-i
• ii

—~.1I~~ ~ (_ 1)’~S .; A~ (v,){( ~~~~~~ ( cosj ’v, ) • t I
f .a,,g, •_~çf dy, d~ ~~~~~~~ — islnj : ’V,

~~~~ 
cos(5 ’.. l)y, 

) ( ~ f 4 ) ( cos(j~’— 1)v2 ‘1 ‘~.‘;•
—1 ein(j ’ + 1)y, ~— j  sto(~ ’ — ~~~~~~~~~~~~~~~~~ (4.23) - - _
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~‘;I;’ 11.1. — “ k .— ,(I).I— \
where 

~~~ ~~ (i.. .~ .. c,,,~,, • ~~~~~ ~~~~~
s’.’,,.,. —f ,~ (t) ~~,.(C) d C . (4. 24) (4.28) - 

-
p

with the analogous equation for derivatives obtained by
As before, the upper term in the large parentheses is using J’ and 7’ instead of ) and 7 above. The mat rix
used for even j ,, and the lower for odd j ,. 1, Is defined by

— a /A
B. The imtching 1 zf  A~~A~,CosJA.2 d~, for I, .1., = even

With the wavefunct ions from the integrations in both ~~~~~~~~ = I
,/a •channels ,‘and A expressed in terms of the basis set 1211 A~ A~~sir.IA,,dy , for I, +j , - odd

on v,,, we can now take the appropriate tin- I
ear combinations of these solutions to yield solutions to (4,29)
the full Schrödinger equation which are continuous and or, by the expression (which is only equivalent to it for
smooth throughout all of configuration space. Let us a corn /a!elc set of functions B”) \ienote the fully matched solutions thus obtained by
+/~.1• There are N sets of indices vj, and the super- 5~ ~~~~~5 ’) - (4. 30)
scr ipt Ci) can have the values 1, 2, or 3. The full set
of indices (i),’j thus scans 3N values, and we wilt there- where

fore obtain 3N linearly independent solutions to the (4*)P~/: (,., j A .jg.) - (4. 31)Schrödinger equation.’1 -

We now write 4’~”~ in terms of the solutions ~~~ As should beevident from Eqs. (4.30) and (4.31), the ma-
and also in terms of the + ‘

~“ : trix it, is unitary since 4,,, is real, and therefore 4PA

is Hermitian.
= ~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ‘\

‘ ~~~~~~ 
By examining the definitions given in Eqs. (4.11),

(4.12), (4.22), (4.23), and (4 .29) for the various sym-
bols used in Eq. (4.28) and its equivalent for the deriva-E ~~~~~ ~~~~~ ~~~~ 

(I) I= , c,,,~~ • s, c,,:.) (4.25) lives, we find that the latter set of equations involve‘S.. either purely real terms or purely Imaginary terms.
and Let us omit the factor * appearing In Eqs. (4.11), (4.12),

~~ (a*~~
SL’

c1.1~,. a’i’ ’~’~ 
(4.22) , and (4.23) and replace it in Eq. (4.29) by C— i)” .

an,,, ,. • ,, ~~~~~ ~ 
c~,’j ~’;.j We denote all of the real coefficients thus obtained by

A removing the bars which previously appeared above

= E (a+ ’
~
’
~ C(

~ .I. as ’~~ \ their symbols. Equation (4. 28) and its normal deriva-

,,,, an,, ~~~~~~ an, c~ :~~) .  (4.26) tive counterpart continue lo be valid for the unbarred
A quantities; which permits all of the calculations associ-

ated with the matching to be performed using real nuni-The coefficients c
~~~h and are to be determined ber arithmetic , a considerable computational slmplifica-by applying these two sets of equations on a,, (and simt- tion . Regarding the ‘~‘a~ coefficients appearing in thesebar equations on i,, and s,,), and by imposing the scat- equations as e’ementa of matrices , we can rewrite • /tering solution boundary conditions as explained in Sec. them asV.A. Equations (4.25) and (4.26), when evaluated on

s,, comprise the smooth matching conditions. h~’C~~’ • = ~~~~~~~~~~~~~ • ~~~~~~ (4 .32)
By substituting Eqs. (4.2), (4.13), and (4.16) into and

Eqs. (4.25),we obtain the following expression: h;•cy:•+h;’-c~~
- =~~,(I;’ c~~” .f;’— c~~-) - (4.33 )

I’~ ~~~ Tbehnatrlx st, Is related to i~, by the unitary transfor-~~ ~~~~~~~~~ + ~~ CJ~aA ILJ niationl’itl, where I is the unitary diagonal matrix

E ~~~ .,.
~~,

.. ~~~~~~ 
whose diagonal elements alternate between 1 and I.

• , C,,,.,,~-..4 ’, C,,,.,~) . (4.27) Therefore, If the B” fo rm a complete set, s~, Is unitary,and since it is realdt is also orthogonal. As shown In
The analogous expression for the normal derivatives Is the previous section, the number of basis functions
obtained from Eq. (4.27) by replacing the 4’ by the 4” in B~ 1, used to expand the wavefunction on a,, Is N/2. ¶
that equation. U we now substitute the expansions given where N is the total number of vibration—rotation func-
by Eqs. (4.0), (4.10), (4.20), and (4.21) into Eq. (4.27) lions used in the coupled-channel expansion. This tin-
and into it~ equivalent for the normal derivatives, then plies that there should only be N/2 rows in the matrices

• multiply through by B~~,,(C,v,), and integrate over C h~’. There are, however, N columns because the differ-
and v,, we obtain the following system of linear alge— ent columns denn.e the N linearly Independent solutions
braic equations: • propagated In either the forw ard (+) or backwards (—)

integrations. Summartaing, the dimensions of the van-
~~s ~~~~~~~~~ ii,.,. —A .~I~— ti).J— \

• - j,,, ~h,, ,,, C,,,~~ • h,,,,, C,,..,,1) .sis matrices in Eqs. (4 .32) or (4.33) are symbolically
• represented as follows:

• • i Chin,. Phyt. Vol. 65. No. II, I Ds~~mber 1976 
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(N/ 2xN) (NxN) +(y ’zxN) (.vxze) equation for the two 3Nx 3N unknown matrices C~ . This

tells us that our matched solutions are not completely
=(.N/ 2x X/ 2) t ( N/ 2x N ) ( N x N ) ,(N1 2xX) (N ’c N)) . 

~~ 
unique, whIch is not unexpected since we have not yet
specified the asymptotic conditions whIch our matchedWe can combine Eqs. (4.32) and (4.33 ) into a single ex- wavefunctio ns must sattsfy. We eill do so In the next

pression which contains only square NaN matrices by secti on, and when these additional conattiona are corn-
defining the argumented NxN matrices ~~~

‘. f~’, and bined with Eq. (4 .44) , we will obtam unique expressions
5$ for the coefficient matrices C~ .

(4.35)
‘ • V. ASYMPTOT IC ANALYSIS

A. The reactance and scattering matrices(4.36) ii(,
~
...) We will now describe how to obtain the reactance

(R,) and scattering (S.,) matrices from the asymptotic
at, 0 ”  (4.37) values of (he primitive (but s~”oothIy matched) solutions •

o at ,) ~4I)~I described in the previous section. These func-
tions are defined in the entire configuration space. - ¶

where 0 denotes an (N 72xN/2) matrix of zeros. The Their asymptotic behavior In each of the three arrange-
resulting matching equation on a,, becomes ment channels A = a, ~ , 

y can be obtained from Eqs.
h~ C” ~‘ “ =i~, (17C~~’ +P C ,’.~ ) - (4 .38) (3.22) . (3. 5) , (2.13), (2.10), and (4.25) and IsI, •

In order to solve for the unknown coefficient matrices •
4,Ii .~I ø,(9,)~~ ~~~ S~A!±~~’Afr,)

~~~~ ~~~ (and Cs’ ’). we must couple Eq. (4 . 38) with — ,,s, ~ r,R,
the corresponding equations obtained from the matching I -
on a,, and a,, . Using the same notation as In Eq. (4. 38), x ~~~ ~~~~~~~~~~~~~~~ . g ’,’~~ . ( R ,) C” ‘

I -the matching equations on these two additional surfaces - -
& &

are
)& =a ,p, y ,  (5.1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4 ‘~ s
where we have dropped the superscript (a) as it will be
implicit throughout Sec. V. The product functions

are the asymptotic vibration—rota-
h~~C~I’! +G~ C~~ = it.(i~’C~/~’ .l~

-c
~/:

-) 
- lion wavefunCt ions of the diatonic molecule correspond-

We can now combine Eqs. (4.38) , (4 .39) , and (4.40) Ir, 
ing to the A arrangement channel. We note that
vanishes in the asymptotic regions of arrangement

— Iithe following single matrix equation which ;,volves channels i- and s because r,—~ in these regions. As asquare matrices of dimension 3.%a3.V : result, Eq. (5.1) can be rewritten as
N;c; .N;c ;=o , (4.4 1)

where ~~~~~~~~~~~~~~~~~~~~~~ 
ce,,(v,W’~,h(

r1) ilk-I CR,) , (5. 2)
A i~~

— C,,.,,,

( ‘where
~~~ -;t,~~

- 0
N~ 0 — (4 42) ~~~ = ~~ 

~~~~~~~~~~~~ 
+g~~~,~

•• c~~~;..) , (5. 3)

-~~~.i~ ’ 0 
~~~ 
) - 

~~~~~~ 

-

IS.

and the A sumn,ation extends over arrangement channels

ft~~a(a/ aR,)(k~~ *~f S&J , is obtained from Eqs. (5.2) and
= c~J’ C?;’ C~~’ 1 . (4.43) (5.3 ) by replacing 

~~~~~~ by dA’~~,,’,’ /dR, in the latter.~~, (c

~~ 

C?:’ c?:’\ a, Ø and ~~. The anat~gous eapres~ton for the function

CY~ C~/~ C~,?J We now define the reactance and scattering matrix
solutions for each partial wave J. In analogy with their

and the 0 stands for a matrix of zeros of the appropriate corresponding three-di’nensiona) multichannob del ink-
dimensionality. Let us rearrange Eq. (4.41) to the fozm tions,” and using the asymptotic behavior of the co-

planar aolutions given in Eqs. (3.26), we define the Fe-
c~(c;)-i =~~ 

(N,)-’ N; - (4.44 ) actance and scattering solutions and the correaponding
matrices as follows:

Equation (4.44) is the essential result of the smooth
matching procedure . It expresses the unknown coeff i- ~-~‘,‘h~ t R or
d ents C~, in terms oc the known N~ and thus determines
whIch linear combination of the solutions obtaI,,~d from ~~ ~~~~~~~~~~~~~~~~~~~~ ER or $j , (5.4 )the Integrations in each arrangement channel region
will produce smoothly matched wavefunctiona. Of
course, Eq. (4.44) supplies only one 3.Vx3N matrix where, for the R, matrix solution,

.1. Diem. P1w,.. Vol. 85. No. II, I O.csmbw 1916
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R 
çJ

,_,
,
(k~,,, R,) ~~~~~~~~ * 1., .~,(k,,,, It,) ~~~~~ (for the open channels) 

-

(5.5) - . 
-

(fo r the closed channels) ,
and for the 5, matrix solution

(
‘~ (k ,,,R~) 6~~’~’,. ~~~~~~~~~~~~~~~~ (fo r the open channels)

b~.,~~( SI = ( 3 ±~&) ”~ (5.6)

I ~~~~~~~~~ + K ,_,,(j k~,,j It,) ~~~ ,, , (for the closed channels),

and (tie Hankel functions H, are related to the Bessel (V i / t ) AaA~
IA~ 6,,. 6”~ (I’~ 

)u/t (5.12a)
functions Ji. 1, by 

- 
~~Sr, A~A

~‘• I  ~~~~~~~~~ , — (5.12b),,4I ,Z)  = J i  II, . (5.7) ‘

I~, )
A• &~~~li~~~~p o”Ok 1R ~~~The asymptotIc sign in Eq. (5.4) signifies that for .‘ ‘a~j , “‘ ,,i, I ,.~1,I A

each A In the summation the corresponding It, goes
to Infinity. The R, and S., matrices defined in x ~~~~~~~~~~ (open channels) 

(5 13)
Eqs. (5.5) and (5.6) have dimension 3N X 3 N and In- ~~~~~~~~~~ (closed channels)
d ude both open and closed channel Initial and final
states. On’y the open — open transitions have direct (y,)”t”  = f,,. ~~~~physical significance, and we will label the submatrices I

formed by the corresponding matrix elements by the Y,~, (ks,, R,) (open channels)
symbols R~ and S~. Il ls these open channel matrices S (5.14) /

R~ and 5 which obey the usual properties that R~, is t K
~

_1A 
( I k .,,,I R,) (closed channels)

real and symmetric and S~ is unitary and symmetric ,” and 
~, is the transpose of R,. The elements of the .,as a result of the time reversal Invariance and conser- and b, matrices are the ~~~~ and ~~~~~~~ respec-

vation of flux properties of the Schrddtnger equation, lively. In all these matrix eiements, the subscripts
Actually, Eqs . (5.4 )—(5.7 ) are expressed In terms of other than Jdenote the row and the superscripts the
the mass-scaled variables r,, R, of Eqs. (2. 2a) and column to wtttctt they belong. The reactance matrix
(2.2b), whereas (he reactive and scattering matrices solution ,74”A’ (RJ can be obtained from our numerical-
we are interested in are defined in terms of equivalent ly determined solutions +~,“ by taking linear combina-
expressions involving the unscaled I,, R,. However, tions of the latter:
Eq. (5.4) and Its unscaled variable counterpart are pro-
portions) to one another, and as a result R, and S., are “S (RI = ~~ ~~4’~” Q(~,7” . (5.15)
invariant under the r,, R,—~,, fi , transformation : this ‘~ a,

permIts us to use di’~ectIy (he unbarred variable results As w as mentioned at the end of Sec . IV, the matching
to calculate these matrices. From Eqs. (5.7 ) , Eqs . equation [Eq. (4.44 ) ( determines C~ (C )’i but not C,
(5.5) and (5.6), we can obtain the following relation be- or C~ individually. ,To complete their evaluation we
(wren the open channel subblocks of the reactance and choose Q~~~~~

” = 
~~~ 

i.n Eq. (5.15), whIch Is equiv-
scattering matrices, analogous o the one vaild for alent to requiring that the C~, produce solutions which
three dimensio ns” : are not only smoothly matched, but satisfy the reac-

t ance asymptotic conditions as well. (It will soon be- - — - - .  -

- ( I— iR~ ) ( I +  IR~r’ . (5.8) come apparent that there are enough degrees of freedom
left over to permit this condition to be imposed .) We

where I is (he identity matrix . We will discuss the then substitute Eqs. (5.2) and (5.4) Into Eq. (5.15) and
physical significance of the scattering matrix at the end equate coefficients of terms having the same arrange-
of this section . ment channel A and vibration—rotation basi,~ functions

Let us indicate how R, can be obtained from the flu- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - 

&

merlcally determined solutions 4’, - We rewrite Eqs. ixin(5.3) and (5.5) In 3Nx 3N matrix form as

s , —g ~C~ .1;c; ~~~ ~~~~ +g ; c~)=v -i/2u, .y,~~,) . (5.16)

The analogous equation for the derivative (R,)~~i (8 /and 
- 

- - CR ,) [( R,) u / * $ , ( RI J i . s  -

(5.10)
(gy C , .g;’C )— v ’” u, .v ,~~,) , (5.17)

where

P (5 ~~ 
where prime denotes dIffer entiatIon with respect to R,,

in,i~ 
NJ.,,, with A - s , $, y as appropriate. These last tw~ equa-
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Lions and Eq. (4.44) can then be simultaneously solved be considered in Sec. V1. B. As mentioned in Sec.
to yield the following expression for R,,: II. C, the tots) angular momentum is simply equal to the
i, = _v ihZ w;h[(J g;t}(N~).i N; — (.J/g —J ,g; ’)I 

algebraIc sum of the rotational and orbital angular n,o-
n’tent.a, I.e., J =j , +I ,, which allows us to re-express

x((Y g, — Y, g~’) (N,Yi N:, — (Y~~ ~~ 
— 
~
‘1 9Y~~~ 

w , V’i~ p’~ ’A’1A’ in terms of initial and final orbital angular mo—
(5. 18) menta I, and l,~. This has a useful semiclassical in- . -

where terpretation since the Initial orbital angular momentum
(5.19) quantum number !, is related to the classical impact

parameter b, through the relation
is the diagonal matrix whose diagonal element s are the 

(5,21)Wronsklans of the regular and Irregular ordInary or - -

modified Bessel fundtions.~ None of the mat,ies where 
~~ 

is the wave number in the ~~,, ~, coordinate
whose inverses appear in Eq. (5.18) are in general system (defined in Sec. fl.B)
singular. Transposition of Eq. (5.18) gives R,, and I/i
Eqs. (5.18) and (4 .44) when substituted into Eqs . (5.16) -

or (5.17) permit an explicit and unique determination -

ofC~~and C,. =a,4~ 1,. (5.22)
The procedure Just described furnished the full R, B. Distinguishabbe.aiom scattering amplitudesmatrix . Its closed channel parts may now be discarded and cross actionsand the open channel part of the sc attering matr ix S°.

may then be used to calculate P~~~~’,~’ - the i rcbabiiity In this section we define a coplanar dimensionless dis-
of transition from a given initial arrangement channel tinguishable-atom scattering amplitude and give Its re-
A’ and internal state v,. j,. (for a given total angular mo- latton to the coplanar scattering matrix and differential
mentum quantum number J) through the relation and integral cross sections.

—— I ~~~~~~ (‘ . (5. 20) Let +‘ A’A(PJ be a “physical” solution to the Schr6-
dinge? equation (2, 4), involving the mass-scaled co-

Note that this Is a dlstingutshabte-atoin transition prob- ordinates r,, It,, which behaves asymptotically at
ability. Effects of Indistinguishability of particles will large It,, R,, and R, as

~~~ [6
’
~~~
.’1. U’ ~,,s,. ,,. ~,.kl~~J, 

C
~~l~•S~

K -

+ 
~~~~~~~~~ 

J~~~ 1lh’(e,.)R./* e55 s’t.51’]Q,,.(e )r Ius~i
1,’,.,,. (r,.) . - (5.23)

- 
• I — .

This solution describes a collision between atom A, where i~,,, is the unscaled initial relative moticn wave
and molecule A,A.,, in internal vlbratlonat—rotatj onaj number of the colliding particiei’. For either reactive
state v,j,, with the relative initial velocity of colliding or nonreactive collisIons, 9,. Is the angle between the
partners, in scaled coordinates, being I’,,~,. The dl- Init Ial and Ilnal velocity vectors of the atom with re-
rection of relative approach of the colliding partners spect to the diatom In the center of mass system Oxy of
is the x axIs of FIg. 1, The ecaled coordinate relative Fig. I. The Integral cross section for the same pro-
motion wave number k~ ,,,, Is real positive for, open cess Is
channels and Imaginary positive for closed ones. The •“t ‘,•_ Ifirst and second R ,.-dependent terms in Eq. (5. 23) rep— Q .,, - 

,, 
a,~ , ’(0 ,.) d9,. , (5.25)

resent, respectively, the incIdent relative motion line -

wave and the scattered circular wave, which can be non- e and Q have dimensIons of a length per unit angle and
reactive (X ’ .~A) or reactive (A ’s A), These are the 2D of a length, respectively. , /analogues of the 3D incident plane wave and scattered We now relate the scattering amplitudes to the scat-spherical waves. The factor outside the square brackets tering matrix . To do this, we expand the physicalIs the planar-motion vIbrational— rotational wavefunction solution Eq. (5. 23) in terms of the scattering matrixof the isolated A,. Ar molecule In state u,1., J~•~ 

In solution [Eqs. (5.4) and (5. 6)J using an equation anal-scaled coordinates, ous to (2. 12); A

Equation (5. 23) defInes a set of dimensIonless dls- —
• ttngulahable atom scattering amplitudea .7(9,.). The dif- 

- *1”t[PJ ~~ C’7”t$’,”[S) . (5. 26)
ferenttal cross section for the Av,J ,  — A’v,.j,. process ‘~~ — -

(assuming that both these states are open at the tots) To find expressions for the coefficients C~”~’ and the
ener~~ i being considered) is related to the correspond- scattering amplitudes f,,,,~, , we first expand the 8,.—
IngI ~~ dependent portions of Eq. (5.23) In terms of the eigen-

~~“(~ ). (1/ k~,,,) l/ ”A ’hi ’ ~ 
functions q’,(O,.), then express the R,.-oependent per—

i ,u,i, I ‘ (5.24) Hone of Eqs. (5. 23) and (5.6) in their asymptotic forms 

-~~~~~~~~~
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(Eq. (3. 27)1 involvIng exponentials. We finally equate VI. APPLICATION TO PLANAR H + H,
the coefficients of the corresponding R,. exponentials, A. The integration, matching , and distinguishable atom “ - —
9,(o,.) and rotation—vibration basis functions in both asymptotic analysissides of Eq. (5.26) and solve the resulting equations
for Cr ” and for the coefficients of the expansion of In the application of the methods described In Sec.

In the c’,(9,.). UI and IV to the H + Ii, exchange reaction, a consider-
able reduction in computation time can be realized byThe expansion for the line wave is utilizing two important symmetry properties of this

= ~~ ile~~~
iJ ,(<.,,,R,.) 

collision system. The f1rst is the invariance of the
collision system and associated coordinate systems
with respect to a cyclic permutation of the three atoms.

1 ~ ~~~~~~~~~~~~~~ Mathematically this means that all equations derived
“ k’ , It . jç ,, in Secs. UI—V are Invariant to a cyclic permutation ofl~~s, ‘ the indices ~~~ which implIes (1) that we need to in-

tegrate the Schrddinger equation In only one of the
(5. 27) three arrangement channel regions depicted in FIg. 2,

As result of the relation between y,, 0,, and 9 (2) that we r.eed only calculate the proJection coeffl-
~1given alter Eq. (2.1), and of Eq. (2.9), we have cients E, 11’, ) and J’ defined in Eqs. (4.11), (4. 12), -

•

(4. 22), and (4. 23) on one of the three matching sur-
Q,,(9,,,)= (27)u/Z Q, ~~~~ (y,~) . (5.28) faces (such as a,,), and (3) that the A ‘-v, v—sc , and 

. ~ /Using Eqs. (5. 26)—(5. c8) and following the procedure sc — A distinguishable-atom scattering amplitudes are
outlined above, we get all identical, as are v — A, A — a, a — v, and A — A, v

it, ~~~ — v, sc — ii, so we may restrict ourselves to a calcula-
(5.29) tlon of the A — A, A — v, and A — a scattering amplitudesC~” - (

~
) exp[i(J—j,)~rJ 

only. The second symmetry property Is related to the
and, for the dimensionless scattering amplitudes to invariance of the collision system (but not the associated —- -

open channels, coordinate systems) with respect to an Interchange of
any two of the three atoms. This results in a potential

1,~,’~”(o ,.) =exp(— if,. 9,.) exp[i(j ,. .,j, — 
~~~~ 

function V’(r,, It,, y,) which f~ symmetric about V, = a!
2 and 3v/2:

x ~‘ ~~~~~~~~~~~~

~ 
,,,,,, — ~~~~~~~~~~ . (5. 30) V’(r,, A,, a — y,) = V’(r,, R,, v,) for Oey, ’i (6.1)

P 1(r ,, It ,, l s—y, ) = V’(r,, It ,, y,) for ,<v,<2w .

Equation (5. 30) differs from that obtained by Walker and To a large extent, the consequences of this property
Wyatt” only by the phase factor exp(— ij,.9,.). Sub- depend on the coordinate system being used, for while
stltution of Eq. (5. 30) into (5. 24) and of the result into Eq. (6.1) Is valid in all regions of confIguration space,
Eq. (5.25) leads to the following rather simple expres- the A arrangement channel coordinates r,, A,, v, are
sion for the Integral cross section: not the most convenient coordinates to use In all three

— arrangement channel regions. In arrangement channelI
- 

,~~ i s” — o’” I’ . (5.31) regIon A, Eq. (6. 1) has the immediate effect of de-
Ji,

~
1
~ 

t,, J,- 

~~~1, —— Coupling rotational states of even and odd quantum num-
bers j ,. This means that the integration in arrangement

EquatIons (5.35) and (5.36) may be written in terms of a channel region A can be done In two separate steps, one
sum over J from 0 to ~ by using the relation for even j , and one for odd j,. In each of these steps the

= e”~
-,
~’ 

tots) number of basis functions required Is on’y about
~~~ -jl i

~-~~ 
. (5.32) half of that needed in the absence of thIs decoupling.

Since the computation time varies as N’, where N is
This expression is a consequence of the symmetry of the number of states becog Integrated and a Is 2 for
the Hamiltonian with respect to reflection through the Nc 10 and 3 for N> 20, ~‘ we see that a saving o~ factorsplane of motion. Additional symmetry relations which of 2 to 4 In computation time may be realized by this
follow from Eq. (5. 32) are decoupling. In a similar manner, the calculation of the

9 ) ,
,‘ ,,,, ,. matching surface coefficients of Eqs. (4 . 11), (4. 12),

— • ,, ,, ~, 
(9,.) (5.33) (4.22), and (4 .23) may be done In two separate steps,

one for even j, and one for oddj,. and the coefficient
and matrices 17 and i” may be obtained from I,~, and h’,’-’

~~~~~ “.“. (5. 34) by using the simple relations
— ~~~~~~ - 

( f )1(’i 
~ 

(_ l)”(h’i ’~~ , (6. 2a)
~ II’SEquations (5. 32), through (5.34) are valid for any planar

- atom plus diatomlc molecule collision process. For 
(J
.l.l )lf~1 = — (— l)”~ (h’)’)~

11 (6, 2b)reactions of higher symmetry such as H + H~, there
exist additional relatIonships, some of which wIiL be We must note, however, that the number of matching
discussed in the next section. surface functions ~~~ is still N/2, where N is the total
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number of even plus odd 5, states . The matching pro- method outlined in this paper for distinguishable parti-
cedure ultimately couples the even and odd rotational des , antlsyninietrize the resultant primitive wave-
states 5, [through Eq. (4.44)1 so that decoupling beyond functions, and use the asyinptoti~ form of these anti-
that point is Lost. However, symmetry of the system symmetr lzed wavefunct ions to obtain the Indistinguish-
about y,= a/2 and 3,i’2 [Eq. (6 . l)J may be used to relate able-atom scattering amplitudes. A related procedure •.

the A — v  and A — ic scattering amplitudes according to was considered by Truhlar and Abdallah ’3 in their meth-

~~~ 
(
~ l)”I”” 

• od for studying rearrangement collisions.
‘‘.1 • (6.3)

3. We n~ay use the distinguishable-atom primitiveas is shown in AppendIx C. Equation (6.3) may be osed
wavefunct ions generated In (2) to determIne the dix-to reduce the work involved In the asymptotic analysis

to the calculation of only the A — and ~s —  ~. scattering tinguishable-atoni scatter ing amplitudes. These am—

amplitudes. An additional consequence of Eq. ~ 
plitudes may then be linearly combined to yield the cor-

valid only for the A— A scattering amplitudes (i.e., the responding Indistinguishable-atom amplitudes. This

nonreactive iransltlons) is the familiar relation (1150 is the usual procedure of postantisymmetrlzation’3

derived In Appendix C) which we have used and whic,i is described for the case
of hydrogen atom exchange in Appendix D.

f~ ’~’=0 IorJ—j ’ =odd , (6.4) If exact solutions to the Schrfidlngs’r equation are
and the incorporation of this relation into the asymptotic used, then all three methods should give the same re-
analysis can also result in a reduction of computational suIts, but the use of approximate solutions can lead to
effort . We should note, however , that the two syni- different results even when comparing methods ~2) and
metrics given by Eqs. (6.3) and (6,4) depend on our (3) where the same distin,uishable-atom primitive
use of a complete basis set l3~ , for expanding the wave- wavefunctions are used. An example of this arises
function on the matching surface and therefore may be when distInguishable-atom solutions that do not obey
used .is a test of the convergence of the method pro- microscopic reversibility are considered. In this case
vided these symmetries are not built into the calcula- the process of antlsymmetrlzatlon of the wavefunction
tiona. is not interchangeable with that ~f extracting the asymp-

totic form of the wavefunction, thus leading to dif-
ferent results when methods (2) and (3) are applied.

B. Postantisymmetrization Since the numerical method descrtbed In this paper is
Up to this point, we have considered the three ato m s designed to provide accurate solutions to the Schr6-

to be distinguishable. However, to c’lcu late physically dinger equation for distinguishable atoms, the dll-
measurable quantities such as cross sections (or re- ferences between methods (21 and (3) are of secondary
actions like H+H,, we must include for effects due to importance and we shall restrict ourselves to con-
indistinguishability of the three atoms and the Pauli sidering method (3) for the remainder of this paper.
principle. This means that the physically meaningful The re’ ulttng expressions (or the Indistinguishable-
solutions to the Schrödinger equation must be antis~m- particle transition amplitudes in terms of their dis—
metric with respect to interchange of hydrogen nuclei tinguishable-atoni counterparts , as described in Ap-
(which have spin ~

) . Some conceptual difficulties are penthx D and also by Doll, George, and Miller,” are

occasionally encountered when using time-Independent sunilOarI red below (where the direct and exchange am-
solutions, since antlsymmetrlzat ion seems to imply plitudes d andf of that Appendix are relabeled as
incoming waves in all three arrangement channels 1’

~ 
and I , respectively):

asymptotically. A consideration of the time-dependent (a) para — para:wavepacket generated from the time-independent solu-
tions resolves this, however. As Taylor has shown, ‘~
the asymptotic indistinguishable-atom wave packet is e~~ ’( O) = 

~ r IJ~”~( °) —1~ ”(°) I’ , (6 5a)
.1

identical to its distinguishable-atom counterpart , so that (b) para—ortho :at any given time before the collision, the Incoming
wave is localized In a single distinguishable-atom ar- 3 -

rangement channel. Once the collision begins, such a~~”(8) =p — lf~ ’~(0)I’ , (6.5b) . 
-

localization is lost and the concept of distinguishable- (c) ortho — para:atom arrangement channels becomes meaningless.

There is actually a number of ways by which Indis- e~~1’ (O) =  p— If~ ”(o)I’ , (6.5c) • 
—

tinguishabte-atom scattering amplitudes may be obtained .1 • •

from time-inde~,endent wavefunctions: (d) ortho~”ortho:
• - •

1, We can pjeantisyrnmetrlze the wavefunction, and I
solve the coupled integrodifferenital equations generated e~~”(O) = ~r 1if ,’.’?.s9 ) +f ~”( e) I’ 

•‘I
when this wavefunction is substituted into the Schrd-
dinger equation. Such a procedure was used by Wolken • 2 IJ ~ ”(0) I’ I . (6.5d)
and Ifarplus” and the resulting solutions yield directly - 

. -

Note that there Is no reference to arrangement channelthe indistinguishable-atom scattering amplitudes.
2. We can solve the Schrddinger equation usIng the no meaning after the effect of the Pauli principle is j —

I~
.1. Oiem P,
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on the left sides of Eqs. (6.5) since this distinction has

~/
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included. The corresponding integral cross lectio ns are channel coordinates H,, r, and B,,, r. explicitly. The - -

(a) para—para: corresponding relationships between B,,, r,, and B,, r,,
and between R~, r,, and B,, r, may be obtained by cyclic - - -

0~ ’,’ — ~““ J Z (6. 6a) permutation of the Indices Avic .
‘~~ 

)?~ J’ — 

The following relations between the Vectors 
~~
,, ?,

.1 /~,.I

(b) para —ortho: and ~~~~ I’,,, valid for any configuration of the three - - -
3 atoms, follows from Fig. I:

E s~ it8 , • (6.6b)
.1 ~ H, —!’,— - -— f ,

(c) ortho — para: m5 • rn, J - —.

~~ (6.6c) F,, .R , — m
tm’ ~ -

From these and Eqs. (2.2) we get(d) ortho — ortilo:

~ (I~~~I’._6 : ”+s /’[’+2 Is ~~/’~* . (n,\ ‘H,’ (Al)
(6.6d) s r,, \t1,

As expected, the para—ortho and ortho — para cross where M is the 2x2 orthogonal matrixsections are simply proportional to the distinguishable-
• atom reactive cross sections since only esdiange scat.. I coso,,, — slncs,,, \

tering amplitudes contribute to them. These cross see- M 
~~~~~ coso.,) 

(4’~~~
tions furnish direct information on the reactive pro-
cess alone. The para — pars and ortho — ortho cross a,, being the angle between v/2 and a determined by . . -

sections will show effects due to the intederence be-
/ m,m ‘~‘tween the reactive and nonreactive (I. e., direct and cx- cosa,,, —i

change) scattering amplitudes, The lnterference~effecta ~(m,+ m,)( rn... ,fl )) 
(A3a)

should be most important when these two amplitudes and
have comparable magnitudes. We will discuss this I m M  ~~~~ . -
interference phenomenon in more detail when presenting sina.5~ (our results for planar + H,. 50 As pointed out in (m, • rn,)(rn, + ,~)) (ASb)

Appendix D, Eqs. (6. 5) above are also valid for the From these expressions we can get the equations for
three-dimensional H+ H, reaction once the quantum - thee,, R~, r,, v, — 9., R,,, s’,,, y,.transformation. In-
numbers m, are added to the v aad j ones and i,’, is deed, from Eqs. (Al) and (A2) and the definition of y, - -
replaced by (c,)’. following Eq. (2.1) we get

- 
R H,.’ B, = COs’a,, R~+ sin’a,., r~ — sin2a,, r,R,cosv, ,
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1L,,r,sinv,,=R,r,siny,. (Ala)APPENDIX A: THE A - v  TRANSFORMATION
EQUATIONS AND RELATIONS ON THE MATCHING Since y, is in the range 0—2w , in order to have it corn-
SURFACES pletely specified we should obtain its cosine. Also from

Eqs. (A4) and (AS) we getIn this Appendix we derive the important relations
• between the mass-scaled coordinates B,, r, (A= a, A ~ ) cosy,.= ~~~~~~~~~defined by Eqs. (2. 2). They permit us to change from

coordinates appropriate for one arrangement channel
to those appropriate for another one. We also examine 

~~~~~~~ 
U sIn2ia,,(R~~ r~)+ coe2o,, cosy,R,r,J

the simplifications that occur when these relationships • 
(Am)

are evaluated on the matching surfaces defined by Eq. EquatIons (A4), (AS), and (Al) eomplete’y describe the
(3.2), This will allow us to prove that these surfaces R,, r,, v,— R ,,, s-’, v, transformation. To complete the
are half-planes whose edge is the 01, axIs In the A — v  transformation we define the angle &,,,
OX, Y,Z, spare introduced in Sec. Ill. A. We will con- -

sider only the relationships between the arrangement 4,, 9 ,— e,, (AB)

.1. Owns. Phyi, Vol. 65. No. 11. 1 D.annber 1976
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I / ‘and express it in terms of the A coordinates. We can cots,, — cola,,, easy, 0 a y5 a a/2 and 31/2 cv, <2, 
~‘ -write (A14)

R,=R,(cos9,i+sln9,~ ) , 
• for the equition of r,,, in spherical polar coordinates. •

lnad4itton, irom Eqs. (3.lb)anAtMO)we have, on a,, ,
r,=r ,[ cos (e,+y, ) i+si n (9,+y , )~ J , W,— I & •.  (AIS)

where ~ ansi ~ are the unit vectors along the taboratory- To display the geometrical character of a,, we switchfixed axis depicted in Fig, 1. From these expressions, from polar =oordi nates f,  .1,, v, to Cartesian onestheir v counterpart and Eqs. (Al) and (A2) ‘ee can easily x,, r,, 2,. Equation (A14) then becomesobtain the following expressions which determine A,,~modulo 2w: Z,= — cota,,X, 0ey, a a/2 and 3s/2 C y~< 2a. (A16)

R,cosA,, = R, cosa,, — r, sina,,, cosy, , (A9a) This Is the equation of a half-plane whose edge is the
1, axis and which makes an antic a — a,,, with the 02,R,sinA,, = — r,sino,,,siny,. (A9b) axis (measured counter clockwise from 02, to a,- as

We see that 8,, is independent of B, and a function of vIewed from Or,).
R,, r,, and y, only. This is due to the fact that these Another quantity of considerable Importance in thethree variables uniquely determine the is,ternat config- matching procedure Is the dertvative operator 8/in,,,uration of the triatomic system and hence the angle normal to the surface a,,, in the disection of increasingA,, between B, and B, (see Fig. 1). 

‘i, , (Sec IV. A). Since this surface is a half-plane, this •

Equations (A4), (A5), and (A fl— (A9) completely de- operator is easily found by using the standard expres-
scribe the A — y  transformation. It is useful to obtain Sion
the expressions they reduce to on the a,,, surface defined 

~~~~~~~ i,,, . v , (All)
by Eq. (3. 2a). In view of this definition and of Eq.
(A6) we have, on this surface, where &,,, is a unit vector normal to a,,, in the direction

of Increasing s,,, and V is the gradient ope rator in
r,= r,, (AlOa) X,Y,Z,c3ordinates. Expresstng Eq. (Al7) in the
R,=R,. (Alob) spherical polar coordinates C, s,~, and v, we find

“S
...a I ‘ sinv,(~~~~’From these and Eq. (A4) we get the very useful relation = —

On,, C BiTs~~, ,l~~
_
~ )~~

+ cota,,, ,., ~~~R,/r ,= — cola,, cosy,+ (1 + cot’a,,cos’y,)” (All) ‘

between R,/r, and y, on this surface. Other important ‘~ (al~’a~’ coS’a.& cos’V,)”*[(j—)
relations among the internal variables are obtained by
substituting Eqs. (Ala) and (AU) into (A’l). We find + cola,, sln~’, (i~;-)_,,f]

siny,= slny,
‘~~~‘ I 

- - •

and, after some algebraic effort , = C sin2,~,~,2 (~3—q,) 
+cota,, sinv,(1...-)

s,
(A18)cOsy,,= — cosy, ,

and the indicated differentiations must be done on thewhich imply that full wavefunciion with C, ,s~ (or ‘~~ and y, considered
y,= a—v, mod2s- . (A12) as indepe ndent variables before the relation between • - 

.

C,,, (or ‘J,) and y, describing r,,, is used. The third lineSince 0ay, c a/2 or 3w/2ay, <2w , we see that w/2~~y, of Eq. (Al8) results from the use of v~, rather than w, - - •

e3r/2 Oil f,~. as discussed Ic. Sec. 111.13. Equation (A17) can also be
From Eqs. (A lO)— (A12) plus the expressions result- evaluated in terms of v arrangement ch.,nnel coordi-

ing from replacing those equations in (A9), the A — v  nates , in which-case we find

are completely specified. In additio~ since from = — 

~ ~~, 
,ssinvs(~~~) }

transformation equations on the ir,, matching surface 
~ ! !~!~~rs. ~‘ ~ 

— cota
Eqs. (A9) and

1,1 1.1 8  \cosA,,, =cosa,, — sina,,cosy,(r,/R,) (A13a) - = —  ‘~~
- ~sin’a,, ,cos5a,,,cos’y,) 

~~~~~and
• 

— eota,, sIny,sinA,,= — (r,/R,)sina,, sin v, , (A13b) (1~) ,,j
—cot ta —

and since from Eq. (All), r,IR, is a function of y, ~ ~~~~~~~~~ ~‘1 I ~ ( 
a 
)only (on a,,,), so is A,,. I sin2n, [~ ~~~~~~~ 

,,siny, Oy,, ,,j
We shalt row Show that Eq. (All) when evaluated (A19)

over the range 0’ y, c a/S and 3w/2 e y,< 2w represents APPENDIX B: ESGENVALUES OF A MATRIX OF THEa half-pLane whose edge I~ the OY, axis in the OX, 1,2, FORM U .p’ V . 
-

space defIned in Sec. III. A and illustrated in Fig. 2.
From Eqs. (3.1) and (All), we obtain the simple cx- In this Appendix we show that the potential matrices
pression in the strong interaction and matching regions [Eqs. - - -

.1. ch.,n. Pliys , Vol. 65. No. 11, 1 D.smbst 1976
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(3.48) and (3.6l) j always have real eigenvalues even orthogonal matrix which we denote by 1’:
though they are not syns ’.,etric. These matrices have fw - r =E . (86)

‘S the general form
USp3V , (81) The diagonal matrix £ contains the real eigenvalues of

w.
where the real matrix p’ is the matrix representation
of a positive definitive operator [Eq. (3. 49)j and there- Finally, if we define the n~northogonal, nonsymmetric,

but real matrix Shyfore has positive real eigenvalues. V is a rca’ sym-
metric matrix whose eigenvalues may be po~itlve, S=pT , (87) . I

• 
- negative, or zero. we obtaIn, from Eqs. (B5) and (136),

• The first step in finding the eige nvalues of U Involves 
~-1~~~= E , (88)a diagonalization of p’,

K p’K = A , CBS) which proves that the matrix S diagonalizes U with the
resulting real elgenvalues contained in E.

where A is a diagonal matrix whose slements are the
(positive) eigenvalues of p’, and K is the real orthogo-

- - nal matrix of elgenvectors of p2. We now form the real APPENDIX C: RELATIONS !3ETWEEN
symmetric matrix p by DIsTINGUIsHAeL E ATOM SCATTt~RING AMPLI’I ~JDES

p- I~A”K (113) FOR ATOM.DIATOM REACTIONS INVOLVING
HOMONUCLEAR DIATOMIC MOL ECULES

where the diagonal matrix 41 has diagonal elements In this Appendix we investigate the consequences ofwhich are the square roots of those of A . p behaves as two-ato m permulational Symmetry (as discussed In Sec. Sif it were the “square root” of p2 in n’any applications, VI. A) on the distinguishable-atom scattering ampll-since, from Eqs. (Ill) and (113). bides. We show that in collisions for which Eq. (6. 1)
(134) is valid (i.e. , collisions of an atom with a homonuclear

diaton~lc molecule), the resuliajit scattering amplitudesNext, we define the real matrix W as 
f~’,” 

and f,~” are related by Eq. (6. 3) and that J,~”
W= P ’UP = PVP , (135) obeys Eq. (6.4). (The circumflex onf of Eq. (5.28)

will be omitted in this Appendix .whcre the second equality in E~. (135) follow s from Eq.
(131). From Eq (115), it is obvious that W Is real sym- We first rewrite the asymptotic behavior of the scat-
metric, and it may therefore be diagonalized by a real tering solution Eq. (5. 23) as

E D~’ -RiI’ ~~ ____________

+ __-
~~~1— t , J ( 9,)~ ,~(6 ,,) ~~~~~~~~~ 

~ \i/l

~~~ p] ..~~ ~~~~~~ ‘=“~p,,(O,,)5~—~ ‘i _ i

~~~~~~ / ~ \II2

~, 
~~~~~~~~~~~~~~~~~~ ,,~“ 

I
~j.iI L-;,,,,,lI

_________ ~;, 
(,.,) / ~ Il:

,“
~
, R~~ 

f,
~’:I:(°.)

~,.(°~.
) —-;.-

~7T— I.,,= l t’ ,I) 
. (Cl)

U the diatomic target in the incident channel is homonuclear , the physical system should be invariant to the op-
erator .1’,,, which interchanges (he two identical atoms A,, and A, involved. If we perform this interchange, the co-

• ordinates which define the system in each arrangement channel become (by inspection of Fig. 1) 
-

CR.,, r,)— (R,. — r,), (B.~, r,,)— (B.~, — r,), (H,,, r,)— CR.,,, — r,,) , (C2)

which is cquivalent to

(it,, 8,) — CR,, e,), (r,, e,,)— (r,, 9,., + ~~), 
(a,,, 9,.)— (it,, e.1,

(s, 0,,,)— Cr,, 9, • a), CR,, 8,) —  (it,,, 8,,) , (r ,, 0,,)— Cr,, 9, ,, + a)

If we make these substitutions into Eq. (C I )  realizing that ,p,,(9, + w ) = (— ~~~~~~~ and appropriately relabel the
quantum numbers which serve ss summailon Indlcos , we obtain

~ 
~~~~~~~ z.. (— ~~~~~~~~~~~~~ ~ 

~~~~~~~ ~
~.,i ~~fl7 j)p,,,*’Mi (Pl 

,~~
__  

C— 1)’, ~~~~~~~~~~~~~ r~’1 +

e’~~’~ ~ ~ 
•~,,,(r.)/ n \“ 

- 
•

,
=.. Ri.” f:’ i’(°. ‘ r~f’ ~M l v ; ,,,,,I/

~~ s,, ~ si/a
__ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ rr ULlv:,,,,,l) 

(Cs)
a.-— .~~

,,
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The line-wave pa~ of (C3) differs only by a factor of APPENDIX 0: POSTANTISYMMETRIZAT ,ON FOR(— I)” from tbe corresponding part of (cI). Since the THE H+H 1 EXCHAN G E REACT ION -scattering solutions are unique (except for a normaliza-
(Ion constant), this implies that this proportionality re- Although correct expressions for (he indIstinguishable
latlon must hold over the entire cor.figur~’~ in space, (an~isymmetrized) cross sections in terms of the dis-
i.e., that tinguishable atom reactive and nonreactive amplitudes

have been listed by Dol’ , George, and Miller,” who -

P,,.V-”4~~ J = ( —  lY’~~i’4pJ (C4) have obtained their results using the integrodiflerential - ‘
- I

everywhere. Replacement of Eqs. (Cl) and c3 into equation approach de3cribed by Miller,” there seems
(C4) and identification of the corresponding outgoing to be confusion in the use oZ these expressions so we

shall derive them here in order to clarify their mean-wave parts In channel t Immediately yields ings. We will follow the postantieymmetr ization pro-
f ~~’ = (— l)” f~~’; , (Cs) cedure outlined by SChI112’ which Is somewhat more . - -

.

which is equivalent to Eq. (6.4). In order to compare t~~~ p~ ’Cuut than Miller ’s. In all of our treatment be-
low we assume that the interaction potential is not Spin . 

-the outgoing wave solutions in channels i’ and a , we first
must realize that the 

~~~ , Cr,) (and k ,,, ) of Eq. (c3), dependent and that there are no external magnetic fields I - - -

and the ø ,,,.(r.) (and k’,.1) of Eq. (CI) are identical since present . I -

these represent vibrational wavefunctions in the two We stat-i by rewriting the asymptotic physical solu- - 
-

product arrangement channels A,A, and A,A,,, both of lion (Eq . (5. 23)) for distinguishable-atom scattering (in
which are the same for a homonuclea r target A,,A,. This the mass-scaled coordinate sYstem). To simplify the
aflows us to compare the outgoing wave solutions in notation we omit the symbol (p) (whicti w ill be implied
channels e and a in Eq. (C4) , obtaining throughout this Appendix ) and replace the labels (sa ,$,y) - 

-
I,,.,. —- t— l)” f~~,’~ (c6) by (1,2,3). Therefore , ( t vK )  will stand for one of the

cyclic permutations (1.2,3), (2,3, 1), and (3, 1, 2). -

In both cases. Equat’on (CS) 10 identical to Eq. (6. 3). Choosing the first of these we get ‘? —-

U atoms A, and A, are identical, a derivation similar
to that of (c4) leads to +“(l, 2,3) -~~. c~~

1
i~ i ‘Lw,’1,,(2, 3) 

-•

S i -— . -

P,,. *’~
,h,( P ) s  C— 1Yi~/P ’~~(pj  , (Cl) E ‘~~~~~‘

and if A, and A, are Identical we get 
+ 
.~~~ R’~’2 w,,~~(2 , 3) ’(~?,~ ’j(9 ,)

P,,, *”ii4p)~ C— iY’~”[p) , (c8) ~~ e”~,st”a 
w:,,,,(3, I) 1~J~z(e.)

From Eq. (Cl) results
(DI)

“I, ________

1 5 ,~,,. (_ l ’~’T,~,
t
~1. (C9) C~ ’)~)~

$ 
~~~~~ ‘.)~~~~j ~’~’i(o,) ,

~~~~~~~~~~~~~~~~ , (d o)

(cli ) where

and analogous expressions stem from Eq. (C8): W~,,,(p, e) = (132) -

~~ gI. — I,,,, ,,, ~— I Y”f,’~’,- , (C12)
% i Il -

~~i~~5l~~= I~ l)”f,~,’; , (C13) C~”~~ (~~~y ’1 (133)
“

I,
(— xV a ’~~~~

. 
. (Cu) 

Note that we have used the numbers 1, 2, and 3 as both I

If all three atomS are identical , Eqs. (C4)— (C14) are an arrangement channel label ends particle label. Pro-
all valid, as well as expressions resulting from cyclic vided that we always permute particles in a cyclic way -permutations of indices t, i’, a. in our arrangement channel labeling, the two designs-

For reactions in three dimensions , Eqs. (CS) are still tlons are identical and we will consider this to be the -\
valid. The rotational diatomic wavcfunctiona ~~~ 

cast- here. This means that the coordinate r1 is ili~ in- - 
-

are replaced by the spherical harmonics y~_, (~ ~~~~ ) 
teniuclea.j • vector from particle 2 to particle 3 (in the I

where 0,,, ~~,, are the spherical polar angles of r,, and R,. r, conrdinate system), and therefore the 2,3 ~‘iatom-
j,, so,, are the diatom’s angular momentum quantum ic molecule wavefunct ion is a function of r,. For H • H,,
numbers. Replacement of 1’, by — r, is equivalent to re- the separated arrangement channel quantum states are
plac ing those polar angles by n— B ,,, and 

~~,, 
a C, respec- 

all identical, so the labels i-u i ,  ~~~ and t’~J~ are es-
sentIally dummy indices and do not imply, for example,lively. Th. relation Y,,_,(c _ 8,,, g~, * a) ~ that W,~,1 differs in its functional form from W t

1, orx Y ,,.,(0,~, ~~,,,), which is analogous to the relation
+ a~— C— lY’q’,,(O,,) uSed to derive Eq. (C4). As a W~ ,, when J, -j ,~j , and i-~ — ‘~~‘ r,. As a result , we

result, that equation, as well as Eqs. (C5)—(dl4) are may drop the subScripts I of the quantum numbers ,- ,J, - -‘S-

also valid in three dimens ions, as long as the quantum and the Constants C, as well as the superscript in the - 
-

numbers rJ, (and iheir v and a counterparts) are ~~~~~ W, 8, and V. Using Eq. (C4) for the cyclic permuta- 
j

mented by the diatomic rotations~ angular momentum ftoui (t ,v,~c) = (1,2,3), we get
projection quantum number so1,. P,,-1’~”ft, 3, 2)~ +“ (I, 2, 3 )— C— 1Y* 1”(l, Z, 2) , (D4a) ...~~~

‘
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TAbLE I. Antisymmetrised scattering ampiitudesJf)’~~” and their relauon to the distinguishabi. . . 
- -

atom asnplItude.f )”~~ and/i;”.

1 2 3 4 5 6 7 8 -
—ill ,., -I Odd Odd Odd Odd Odd Odd Even Even

liii li ii It~~>’
\
\ 

ortho ortho ortho ortho ortho ortho pars pars -

.

1 odd ortho J) . J~ 
0 0 0 0 0 0 0

2 Odd urtho 0 1) ‘1211 0 0 0 v’2J1 0

3 Odd ortt.o 0 12/I /1,11 0 0 0 —/~ 
0

4 Odd oi-tho 0 0 0 J)~JI 121( 0 0 ii -

S Odd ortho 0 0 0 ~P2J( f 0 0 — 1 2/ I

6 Odd ortho 0 0 0 0 0 /1+2/ I  0

7 Even pars 0 — s ’2j ~ /~
‘ o 0 0 f)_j

~ 
o

8 Even pars 0 0 0 —J~ 12/1 0 o

The indices vj and v ’j ’  on the/~~” snd/j ;” are omitted.

which is valid in all of conf iguration space. In addition, The tctal separated atom plus diatom wavefunctions (in-
using the cyclic permutation (t, v , a) -~ (2, 3, 1), Eq. (Cl) cluding space and spin coordinates) are then
furnishes

P,3+5”(2, 3, l ) =  C— I)’+”(3, 1,2) - (D4b) ,‘‘~‘‘(1, 2, 3)= 4.i~1(1, 2, 3)u-~(1, 2,3) i~ 1—8 , (~ z)

Let us now consider the spin wavefunctions of the where (I) designates the spin state of the system. Since - - .
separated atom plus diatom system in arrangement •“(1,2,3) must be antisymmetric with respect lo pe--
channel 1. Since the three hydrogen atoms have spin .~. mut.ation ot particles 2 and 3, we have the requirements
there are eight such wavefunciions which can be chosen (in view of Eqs. (D4) and (136)1 that
to be - :

t-~(l , 2,3) e(1)a(2)o(3) , (D5a ) 
~ = 

Jodd for I = 1—6 (ortho state8) (D8)
i-,(l , 2, 3)= $(l)a(2)a(3) , (135b) leven for I = 7,8 (para states) . . 

-

i- ,(l,2,3) = ~~
— a(l)j o(2)3(3) ÷ i3(2)o(3)I , (D5c) We now form the completely antisymmetric wavefunc-

‘/2 tion +~~‘~“(l,2,3) by taking the symmetric linear corn-
- bination of the partly antisymmetrIc wavefunctions

i-~(i ,2,3) 7—$(l )( a(2)$(3)+j3 (2. o(3)l 
•“(ivit) for the three cyclic permutations of (1,2,3)

t-~(l ,2,3)= o(l)$(2)$(3) , (D5e ) 
having the same initial s~j:

i-,(l 2 3)— $(1)pt2)B(3) (Dsf ) +~~ ‘~“ = ~
i51 tl ‘(1 2 3) + ~~‘~‘‘(2 3 1). ,~‘“‘(3 1 2)

i,l, 2, 3) a(1)[e(2~3(3)- $(2)a(3) ) ,  (D5g) 1=1-8. (Do)

Equations (134), (DC ), and (138) can be used to pcove that
t ’,(l , 2, 3~— -7— pt I)(a(2)$(3)—$(2)a(3)1 . (D5h) •

A.I(t) is antisymmetric under a permutation of any two
v 2 of the three partIcles in the system. This then is the

They are orthonormai eigenfunciions of S, but not of S’ correct scattering solution, and its asymptotic behavior
and have the symmetry property can be used to determine the correct antisymmetrized

- f~ 5 3% - 
~ 6 scattering amplitudes. This asymptotic behavior can

v1(l , 3,2). ~‘ ‘ ‘ 
- — (DC) be detcrmincd by evaluating +5~~

, ~~~ at large values of
I— i~(1, 2,3) 1—1,8 . R 1 (or R, or R,), which yields 

‘

,Ir”t~’(l,2,3) ete., altV,,( , 3), 1 (1 ,2,3) -

S~-~

+ ~~ 
~

--
~~ r ’ w,’., .(2 , 1)C’ ’ ~~~~ (1, 2, 3) + a~

” ~~~ (2 , 3, 1) +?~~~~
‘ ‘t-~ (S, 1,2)) , (Dlo)
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This has the form of a physical scatte~tng solution , bttt Department of Chemical Physics, The Welzmsnn Institute of
the expression in large parentheses must be re-ex- Science, P. 0. fox 26, Rchovot, Israel.
pressed in terms of the ,,(l, 2,3) spin functions of the 1Con~rtbutton No. 5248.
final separated atom—diatom (8- 1—8). AccordIngly, 

1E. M. Mortenson and K. S. Pu re r, Chain. Soc. (London)
we write - Spec. l’ubl. 16, 57 t1962)~ E. N. Mortanson, .1. Cisem.

Phys. 48, 4029 (1968).
1,~” t 1(l , 2, 3)+)~.’’~v1(2. 3, l)+ ~~~~~~~~ 1,2) J. Dicst ler pnd V. McKoy, 2. Chem. Phya. 48, 2951 (1988). 

—1C. C. Rankt n and 2. C. Light, 2. Chem. Phys. 51, 1101 - —

(1311) (1971), G. Miller arid .7. C. Light, 2. Chem. Phy.. 54, 1635
,.i (1971)~ ibid. 54, 1643 (1971).

4D.- 2. Truhlar and A. Nuppermann, 2. Chem. Pbya. 62, 3841where f(fl~r” is the antisymmetrized scattering ampli— (3970) ibid. 56, 2232 (1972).
tude for scattering f rom initial state (t )~ (spin state i) 1A. Kuppermann, Proc. Conf. Potential Energy Surf. Chem.
to final state (k)v ’j ’ (where Eq. (138) must be satisfi ed u. C. Santa Crux , Augu st 1970 (1971), p. 121; Eh~cfrosic
for both of these states l. We can solve for the f,4j~’,’ “ awl Ato,n ic Collisions , Proceedings 0’ Va ICPL4C (North—
by multiply ing Eq. (DII) by *- ,(t , 2, 3), integrating over Itolland, Amsterdam, 1911), p. 3.
all spin variables and then replacing the index (by k in D. 2. Oteatler, 2. Chem. Phys. 54, 454 7 (1971).

TB. R. Johnson, Chens . Phys. LoU. 13, 112 (1s72).the result. The resulting expressions for f~fl~~ ui 
~ $~~• F. Wu m d  R. D. Levine , Mo) . Phya. 22, 881 (1971). —

ter ms of the dIst inguishable—atom scatteri ng ampli- 5E. Shipsey. J. Chem. Phy~. 58, 232 (1913).
bides are given in Table I. The expressions in that luG. c. Schata, 2. Bowman, and A. )

~uppermann, 2. Chem.
table have been simplified by the use of the relation [see Phys. 58, 4023 (1973)~ C. C. Schatz and A. Kuppermann.
Eqs, (6. 3)): - 

- 2. Chem. Phys. 59, 964 (1973)i J. M. Bowman, C. C.
Schata, and A. hupperunann, Chem. Phya. Lett. 24, 378Ite.j ,, 

(
~s .‘1Y”j~~” . (DIS) (l9?4)

~ C. C. Schatz, 2. M. Bowman, and A. b.uppermanri,
J. Chem. Ptuys. 63, 674, 885 (1975).In the notation of Doll , George, and MilIer,”J1~ ’~ is 11~• T. Adams, R. L. Smith, and E. F. Haye c, 2. Chem.the direct while j~~~’ is the exchange scattering arnpli- Ph~ys. 61, 2193 (1914).tude. 0M. laer ~ad I). ,1. I~ouri , Chem. Phy.. Lett. 24, 31 (1974)~

The state-to-state cross sections are (from Eq. (5. 24)1 
M. ilser, 2. Chain. Phys. 60, 1057 (1974), A. Penalty and M.
Baer, 2. Chem. Pbys. 60, 133 (1914). M. Iteer, U. Halavce,
and A. Peraky, 3. Chem. Phya. 61, 5122 (1974).- 

1 
~~~~~~~ (Dl3) 13P. B. Middleton and B. E. Wyatt, 2. Chinn. Phys. 56, 2702

— fai,, ,8,,, 
(1972); E. A. McCollough and B. E. Wyatt, J. Chcm. Phys. - -and the cross sections of Eq. (6. 5) are obtained by sum- 54, 3578, 3592 (1971).

ming Eq. (D13) over final spin states and averaging over ttR. P. Saxon end J. C. Light, J. Chem. Phys . 56, 3874 , 3885
Initial ones. As an example, the para-to-ortho cross (1972).
section (Eq. (6. Sb)) is given by (dropping the 

~~~~~~~~~ ~~~- 
U~ • Altenbergor—Siceek and.. c. Light, J. Chem. Phys. 61,

-1373 (1974). -dices but retaining the spin labels) 
~~ WQlken and M. KarpIus~ 3. Chom. Phys. 60, 351 (1974).
15(p) A. B. Elkowitz and R. E. Wyatt , .1. Chem. Phys. 62,

2504, 3683 (1975); (b) S. A. Harms and B. E. Wyatt, 2.
3 Chain . Phya. 57, 2722 (1972); ibid. 62, 3162, 3173 (1975).

— ~IJ:Iu . (1314) “M. Baor and U. .1. Kourt, Chain. Phya . Lett. 11, 238 (1911);
3. Chem . Phys. 56, 1758 (1972); ibid. 57, 3991 (1972).

The derivat ion of the antisymmetrized scattering am- ‘A. Kuppemmann, 0. C. Schats, and M. Baer, .1. Chent. Phys.
plltudes of Table I was based on the validity of Eqs. (134) 61, 4362 (1974).
and (DC). The latter comes from the properties of the ~~~ C. Schatz and A. Kuppe rmann, 2. Chem. Phys. 65, 4624
spin states of Eq. (D5) which are the correct ones for (1976), following paper.

51For reactions for which one of the three arrangement channelsthe three-dimensional world. Equations -(D4a) and (a energetically Inaccessible , the integration needs to be done(D4b) came from Eqs. (Cd) and (C7), respectively , uauaJly In only the two remaining open arrangement channelswhich as pointed out at the end of Appendix C, a~-e also sat a somewhat different and simpler matching procedure is
valid in t hree dimensions alter includi ng the projection required. This Situation Is not described in this paper
quantwn numbers m1. The other characteristics of Eq. although it can be bandied by a straightforward modification of
(Dl) which change in going from 213 to 31) are irrele vant the theory here presented.
for the derivation of the antisymmetrixed scattering nA. huppermann and C. C. Schalz, 2. Chain. Phys. 62, 2502

amplitudes. As a result , the formulas of Table I are (1975k see also the second (p. 4642) and third (p. 4668) ~a-
per following this one.also valid in t hree dimensions when augmented by th e BL. I. Sohif f, ~~~~~~ AI,cts~~ ics (Mc G r aw-Hill , New York,-quantum numbers so1. A similar statement is valid for 1968), 3rd ed., p. 384—395. -

Eqs . (6. 5) if k’,,, lx replaced by ~~~~ “A. M. Lane and R. 0. Thomas, Rev. Mod. Phya. 30, 257
(1958), these authors use the term ‘collialon matrix” In lieu

- of “ Sc atter ing matrix .” 1 -
‘Work supported in part by the United States Air Force Office ~L. M. Delves, NucI. P~u’~. 9, 391 (1959), 20, 275 (1960).
of scienttfk Research (Grant No. A FOSR-73—2539). 

~‘D. Jepsen aridj . 0. Itirscbfetder, Proc . Nail . Ac ed . Sc).
tWork performed In par tial fulfillment of the requirements for 45, 249 (1959).

the Ph.D. degree In Chemistry at the Cslifornla Institute of 15y. T. Smith, 3. Math. Phya. 3, 735 (1962). DIfferent peta IITechnology. Present addrea. Department of Chemistry, of mass-sc aled coordinates have been used by R. A. Marcus,
Northwe.tem UniversIty, Evanston . Illiooi, 60201. 2. Client . Phys. 41, 603 (1964), by K. T. Tang, B. hielnman,tPzeaeit Iddteia: Soreq Nuclear Center, ‘1 avruo, Israel, and aid N. Karplus, 2. diem. Phys. 50, 1119 (1969), and by
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many others, but they do not displ ay sit of the conven ient There will , in general, be N of these kinds of ecattsring sole—
properties of the coordina’.ea of Eq. (2.2). ions which are linearly independent Uor a coupled-channel

BThis Is true because the incIdent plane—(i.e., line—) ~~~~ ~~~
... ex pansion t runcated at N terms in each arrangement channel),

lution discussed In Sec . V.B contains a whole spectrum of ~~— along with N having incoming waves in channel a and N with

1*1 angular momenta (corresponding classically to a range of incomir’g waves in channel a for a tota l of 3N solutions. The
impact parameters) , many of wh ich contribute to the react Ion , latter two sets of solutions will have only outgoing waves in

DThe angles 8,, and 8~ diffe r by an angle a,,, which is a function channel A and, In the absence of the Inclusion of dissociated

of 
~~~ 

R,, and ~~ only as seen in Eqa. (All) arid (A9). In add i- states , it Will be impossible to linearly combine these latter
Bon . Eqs. (A7) show (hat ~ also depends on those three 2N eolutiona to ge.erate the N sets of solutions which ~rco

var Iables only. Therefore . Q,(80) is also an eigenfunction Incoming waves In channel A. Therefore we have SN scatter—
of fl /tfa /88,,),,, wIth the same cigenv alue j t . ii,e quantu m lng solutions which are linearly independents hen the entire
number J is, as a reaul t, Independent of the arrangement conf iguration space is considered, although only ZN of them
channel A used to obtain n. are Independent in any one asymptotic arrangement channel.

B(al A. Kupperinann, Cheun . Phys. Lctt . 32, 374 (1975). (b) “ N. S. F. Mott and H. S. W. Massey , The Theory ofAtowr*c
Ibid. J. Chern. Phys. (to be published ). Collisions (Clarendon. Oxford, 1958), 3rd at., Chaps, 14 sad - 

- -

“ R. N. Porter and N. Karplua, J. Chom. Phys. 40, 1105
(1964). TMNOte that there are a few differences in phases and signs be—

‘2Actually, values of w., arr ailer than 5 — O ,,~ and of ~~ greater Iween the formulas which describe coplanar scattering aid
than 5/2 are also permIss ible but are not needed to determine those for 3D.B These changes result From the differences be—

the wavefunction on the matchi ng hsll~plane t,,~. 
(wean the phases of the cylindrical aid spherical Beasel func—

~ Hai.dbooh of .tfalhematical Fuectioas , edited by N. Abranto— ions53 and, of course, have no physical significance.
wi ta and I. A. Stegun (National Bureau of Standards . Washing- 

tThis expression Is obtained from Ft.!. 33, p. 351, Eq. 9.1.41
ton, D.C., 1964), Chap. ~ 

by setUng t-iexp(iG,.).

~D. C. Trublar, dissertation, California Ins titute of Tech- 
41R. B. Walksr and R. E. Wyatt , 3. Chem. Phy.. 61, 4839

uuotogy, 1970, Appendix 4. (1974).
BR. Gordon , J. Chem. Phys . 51, 14 (1969). ~3J. R, Taylor, ScaUev~’V Theory (W iley, New York, 1972),
TMWe used a version of Gordon ’s method developed by A. Wag— Chap. 22 ,

nor for Inelastic atom—diatom collisions. See A. Wagner ~~ ‘~0, G. Trublar and 3. Abdalish, Phya. Rev. A 9, 297

V. Mchoy, J. Client. Pbya. 58, 5561 (1973). (1974).
tmTo clarify this concept, let us consider a scattering aolution Ii j, I). Doll, T. F. George, and W. N. Miller, 2. Chant .
consisting of an incoming wave In arrangen tent channel A and PItys. 58, 1343 (1973).
outgoing waves ~,n all three arrangement channels, )., ,~, ~ . ‘1W. II. Miller , 3. diem. P h .  50, 407 (1969).
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Quantum mechanical reactive scattering for planar atom -

plus diatom systems. II. Accurate cross sections for
H+H2* -

George C. Schatz~ and Aron Kuppermann
Arthvr Amos Noyen Laboratory of Chemical Phys ics Dii-isio,, of Chemistry and CI,en,wal Ei~ginei”ing. 

-

California lrafltuie of Technology. Pasadena.. California 91113
(Received 22 December 1975)

The rerults of an accurate q ianium mechanical t reatment of the planar Il +14 1 euchsnge react ion on a
realistic potential energy surface are presenied Full v ibrat io n—r otation converge nce was achieved in Ihe
calculat ions, and this , togeihor s i ih a large number ,‘f auxi liary converg ence and inva riance teds. ,nd ic,ten
that SIte cross sections are accura te to 5”~- or belier The reac i,se diflc rent,aI cross scc t ions are alw ays
backward pcaked once the range of iotal energies from 0.3 10065 eV . Nonreactive j  0 to 1 2 cross
sections are backward pea ked at low enf res 104 ~Vl shilling to si dew ards peaking for F>0 S eV- Ouunlum
symmetry interfeterscc osciltainoiss ire very ~igni (k-ant in the j  0 to = 2 pars-to--pars cross stctio ns - - -

for S �0.6 eV. Reactive inte gral cross sections show two d,siincl kinds of encrgy dependence Ar low
energy (cO. 5 cV). bamer funneling giv en then, a largely eaponential energy dependence while shove 0.5 eV
(the effective thr eshol d energy) the cross seci ions very nearly linearly. Comparison of cofline sr and
coplana r iransi tson probabilit ies indicates similar ID and 2!) energy dependence bui with a sh ifl in energy S.
f rom ID to 3D due to bending motions in the transition state. An anal ysis of ro is tson s l d istributions
indicates su rpnsi ngl y good corr espondence with tempers ture like d istn hultc ns The resu lts of a one-
v.bvalio n-approni muti on calculation are essmin ed. and errors of as much as three orders of magnitude are
found at sonic energies. Shapes of sngu is r distnbut usn s are, however, accurately predicted by thin
approximate method Additional analyses include compsnsonn with previous distorted wa ne and coupled-
channel i-esulis, and calculations of thermal rate constanis. -

I. INTRODUCTION preliminary communication, ‘~ we examined the impor-

A reaction of fundamental interest in the f Ield of tance of closed vibrational channels in a vibration-. -

chemical dynamics Is the H }l~ hydrogen atom exchange mtatton cotipted-chasmet (i.e., ctose-coupUng~° on-
reaction . This simplest of chemical react ions has pansion and found that the errors assoc iated with an
been the subject of numerous dynam ical Studi es ~~ early truncation of the vibrational basis set expansion
quas iclassi cal , ~~ semiclassical , ~~‘ and quantum me- cou ld be very serious in many cases although qualita-
chanicai’~t’ methods and has been the focal point for t-ive trends obtained with the truncated basis were often
the development of many approx imate reaction rate pro perly described . We wt U enazatne the one vibes.-
theor ies. ” In addition, this system provides the funda- t lonal basis function approximation in somewhat greater
ment al example for characterizing quantum effects in detail in this paper, and wi ll , in addition , comp are 

-

chemica l reactions and determining the i r importance on our resu lts with the approximate results of others in
experimental obs ervables . For these reason s, the cal - which different melhods , typ es of approximations , and

culatlon of accurate quantum mechanical cro ss sections potent ial surf aces were used .
for 14+ 

~1 
Is of great importance. Unfortunate ly, unt i l As pointed out In Paper 1, the method we have de-

recently there existed neither the proper methods for veloped for solving the Schr~dinger equa tion for planar 
- —efficiently solving the Schr~dinser equation for this sys - atom plus dlatomi c molecule co llisions can be extended

t ern nor adequately powerful computers to handl e the to 3D systems without significant conceptual changes, - - -

computations involved without the introduct ion of ap- •3 an add itiona l reason for undertaking the current cal-
prox imation s of unknow n accuracy. culations was to test the feasibility of the method in 

- - - 
-

in the preceding pape r ’ (hereafter referred to as 1) preparation for its application to 3D reactive systems .
we presented a method for accurately and efficiently The calculations for the 3)) H • 143 sy s tem have now been
solving the Schr6dinge r equation for reactive collisions comp leted and are presented in detail in the following
of an atom with a diatornic molecule moving on a fixed two papers,t1 A preliminary commun icat ion ot the
plane , The planar motion restr iction was introduced results of this 3D work and ita relation ship with some -

limitation s involved in applying a similar procedure published , ’t
to three-dimensional collision s as well. In this paper,
we preaent the results of an application of this method In Sec. I) we describe the reactive scattering calcu la- - 

-

to planar H • )4~ on a realistic potent ial energy sur - tions , including converg ence tests and computational
face, t. The results to be d ls cusø ed Includ e reactive considerations , and the representation of the potential
and nonreactive transition probabilities , differential energy su rface. The results of tha calcu lations are
eros . sections and integ ral cross sections , product ro- presented and discussed In Sec . m. Section IV con-
tational state distributio ns, and rate constant s . In a talna a general summary and discussion. :

4624 Tb. Joue’,sI of Osemica l Physics, Vol. 65. No. II. I Decembe r 1976 CopyrIght 0 1976 Amer Ican Institute of Phyica
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II. QUANTUM MECHANICAL CALCULATI ONS FOR ence potential V,,,1 used to generate these functions, (c)
PLA NAR REACTIVE H + H3 the representation of the potential surface (see Sec.

H. H), and (d) the nature of the functions used to repre-
A. General description of the method gent the wavefunction on the matching surface (I. e., the

“matching surface basis functions” of Paper I).The method used to solve the Schrôdlnger equation
for planar reactive and nonreactive H + H1 collisions As discussed in Paper I, a number of symmetry
has been extensively described in Paper I. As out- properties inherent in H+ 113 and simil ar systems may
lined there, the procedure for obtaining the full set be util ized to reduce the computation time involved in
of primitive solutions to the part ial-wave Schr~dinger doing these calculations. Most significant in this re-
equation is divided into two stages. In the first one, a spect are (a) cyclic permutational symmetry of the - 

- - - -
coupled- channelt° method is used to generate solutions three-atom system which allows one to consider onl y
to the Sclsr6dinger equation in each of the three arrange- one arrangement channel region in doing all calcula-
ment channel regions of internal configuration space. tions, and ~~) two-atom permutational symmetry, which
These solutions are then smoothly matched to one an- allows one to decouple the even and odd rotational —
other in the second stage, and the resulting primitive states throughout most of the calculation. These same
solutions, which are everywhere smoothly cont inuous, symmetry propertieg allow us to reduce the number of
are then linearly combined to yield the appropriate re- different distinguishable atom scattering amplitudes
actance and scattering matrix solutions. This proce- between a given initial vibration—rotation state of the
dure is then repeated for a sufficient number of partial reagent H3 and a given final state of the product H1 to
waves to obtain converged reactive, inelastic , and (if Just two: one reactive and one nonreactive amolitude.
desired) elastic cross sections. The potential energy We shall denote the reagent diatomic states by the vi-
surface used in all the calculations was the semi- bration—rotation quantum numbers r~ and the product
empirical ground electronic state H, surface of Porter ones by s”j’. Distinguishable-atom reacti ve transi- - - -

and Karplust’ (all coupling to excited electronic sur- tions will be designated by the superscript R, non-
faces being neglected). In solving the Schr~dinger equa- reactive ones by N, and (indistinguishable) antisym-
tlon for these reactive collision systems, great care metrized ones by A. In this notation, the relation be— -—

must be exercised to insure adequate invariance of the tween the antisymmetrized differential cross sections
results with respect to a change in (a) the number of and the distinguishable-atom dimensionless scattering
vibration—rotation basis functions used, (b) the refer- amplitudes [Eqs. (6. 5) of Paper I ) is — ‘ - 

-

~~
— 

~~~~~~~~~~~~ (j, j ’ even, para—para)

i— ~~~~~~~~~~~~~ (j even, j ’ odd, para—ortho)
- (2,1)

~~~
— It~,-..,

. ~~~~~~ (j odd, j ’ even, orth o- . para) 
— —

~~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~ (j, j ’ odd, ortho—or t ho) , - 
-

where k ,, is the (unsc~led) wave number (i,, of Paper I), (valid for 14, 14, or A transitions):
andf,~~,,.,. ; ndf,,~~,,,, were denoted t~yf~~~’ and/~~”,respectively, In Paper I. For planar systems , the di- a,,,.,.(8) a,,,.,_,,.,.,,(2g~~9) (2 3)
atom rotational quantum number j t~ an algebraic in- andteger and may be either positive, negative, or zero. -

Fo r j# O , the two state s j and —j  are degenerate and Q,,. ,.,.= Q,,,, ,..,. . (2.4) 
- -raid to have different polarizations. Differential cross

sections whIch have been summed over fInal rotational A* defined ~n Paper I, the scattering angle 8 is the
(,oiarlzationa and averaged over initial ones will be angle between the directions of motion of the final and
indicated by the symbol ~~~~~~~~ and the corresponding init ial H atoms in the center of mass system and
integral cross sections by , ,,~ .. For exam ple, the spans the range 0a9 a 2s . For reactiiie differential
integral cross section ~~~~ is given by cross sections , the more customary angle to use I.

the angle 9, of the d(rection of the product 115 with re-
Q~ _N~ 1(QL~~~

. QL..4 . Q~
_
~.w + ~~~~~~~ (2,2) -apect to the direction of the incide nt H, and is related

t o e b y
In Sec. V. B of Paper I we found that the symmetry of 

• od 2 ) 2 5)the Hamiltonian with respect to reflection through the ~ m i .

triatom plane leads to the fcllowing relations ~ -tween Therefore, the backward reactive scattering direction
cross sections wIthin the caine rotational manifolds correa~~nda to 0,,. w and 9 s O . - 

-

- 
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B. Representation of the potential energy surface 
~( R~) - 

(1 + ~50 t 5 cosky ~ V 5 (r5, R~, v~
) dy

~,In setting up the cou pled differential equations which
must be solved in each arrangement channel region

4 v, the potential energy surface V t(r 1, Jf k, y~) (2. 7)
and the effort involved in computing this integralis expanded (see definitio ns In Paper I) in a cosine

Fourier series of the angle y~ [Eq. (3 . 8a) of Paper II negates the advantage of using an expression which is
analytical In y5 su et, as Eq . (2. 6). However , for the

V 1(r3, R3, v5)~ ~~ V~(rh. R))cos #y k .  (2.6) Porter—Karplus ~oteniiai surface~ (and for many others - - -

h_s as well), in the regions of intern al config uration space
In the cas e of the H+ H3 reaction, t’5(r5, R3, y~) is sampled in the calculation, the expansion Eq. (2.6) con-
symmetric about y5 = vIZ and 3v/2- (Eq. (6. 1) of Paper verges very rapidly (after only three or four terms).
1J, so only even k terms need be included in Eq. (2, 6). We can then redef ine the l’ by requiring that, instead
Once the coefficients ~~~~ R~) are determined, the of satisfying Eq. (2.7), they lorce Eq. (2.6), with a
rotational coupling in the Schrffdinger equation can be finite number n of even terms, to be satisfied exactly
analytically evaluated [as in Eq. (3.9) of Paper IL this at n values of 

~~~ For example , if three terms are . -
greatly facilitates the determination of the potential included, then we can find V~~, V~ , and V~ by solving
matrix elements needed in the integration procedure, the three algebraic equations obtained when Eq. (2.6),
Unfortunately, in general, the V~(r1, R~) must be cal- truncated after three even terms, is evaluated at ~culated numerically from the relation w/4, and r/2, The result is

R 5) = ( ~ o V~(r~, R 5, v5 =~ /4) ) . (2.8)

fv oL(rs. Ri

))  

/ +~ 
~ 

/ V~(r5, R 3, v~=0) \
V~(r 5,  R5 ) 

\~ 
—

~~ ~/ \
V ( r ~, R 5, )~s = Ir/2)J

For a small number of terms in the potential function S, be unitary and symmetric for each total angularexpansion, the above interpolative procedure yields a momentum quantum number J and therefore that therepresentation of the full potential function V 1(r5, R~, corresponding probability matrix P, (defined by Eq. —
y~) which is computattonally more efficient but has (5. 20) of Paper I) be symmetric and that the sum of theabout the same accuracy as the one generated using elements of each of its rows (or colun~ns) should equalEq. (2. 7). Of course, the goodness of this procedure unity. These criteria are necessary but not sufficient — ‘ 

-depends very Lignificantly on the nature of the potential to insure accurate results. - - 
-

energy surface being considered, but for the Porter—
Karplus H, surface, It allows an adequate representa- In the results to be discussed in detail in Sec. HI, -- -tion of the potential while requiring an exact evaluation we consider a range of total energies E from 0.30 toof V t at only three or four values of v~ (and the use of 0.75 ev (translational energies relative to the t ’=O,Eq. (2.6) for all othersi. In Fig. l~, of Paper I~’ we j =0  reagent 113 state of 0. 03—0 . 48 eV). Flux conserva-depicted equipotential contours of the potential energy lion and microscopic reversibility were checked in , -surface at y5 =0~ v/4, and v/2, the values required in each calculation, and for £ a 0.60 eV, deviations fromthe evaluation of Eq. (2.8). flux conservation were never worse than 1% and from

symmetry less thar about 5% (for nonnegltgible transi-C. Convergence and sccuracy tests lion probabilities). For 0.60 eV <EaO .75 eV, deviz-
ft is of crucial importance in coupled-channel cal- tions from flux conservation were less than 3% and

culations to establish that the resulting reaction prob- from symmetry less than 10%. In order to insure sat is- - -

abilities and cross sections h tve converged adequate- factory convergence (better than 5%) in the calculation,
vibration— rotation basis sets including 40—60 termsly. Indeed, we shall see later that premature trunca-

tion of the vibration—rotation basis set expansion can (channels) were required. For energies less than 0. 50
result in errors in the final integral cross sections by cv, a 40 channel basis consisting of 5 vibrational
several orders of magnitude, even though other tests , wavefunctions combined with 10, 10, 8, 6, and 6 rota-
euch as conservation of flux, may be approximately tional wavefunctions for r- =0, 1, 2, 3, and 4, respec- I
satisfIed. Furthermore, many approximation quantum tively, were used in general. In the 0. 50—0,60 eV —

methods involve various klnda of truncations and/or range, a 48 channel basis set of 4 vibrations and 12
other approximations, and it ie highly desirable to ob- rotations per vibration was adequate, while for energies —

above 0.60 eV, a 60 channel basis of 5 vibrations andlain fully converged resu its which are of sufficient 
12 rotations per vibration was used. Typical probabili. Icuracy to assess the val idity of those methods.
ty matrices from these calculations (for a 48 channel

The most obvious criteria which must be satisf led calculation at 0. 55 cv ) are given in Table I. lloth the Iby the result s of an accurate quantum calculat’ an are Leactive and nonreactive transition probability ma- Iconservation of flux and time reversal invariance. trices are highly symmetr ic , and the sums of the prob-
These two principles require that the scattering matrix abilities in eath row or column differs from unity by a I

J Osm, PtIyL, Vol. 65. No. i t . I Dinembee 1978 1
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TA tt LE I. Nonreac tiv e (N) and reactiv e th) probability matr iecS fo, ’ E~~0. 55 cv, J~ 2.~

(vi)  (v ’j ’ )= tOO)  (01) 10 , — i )  (02) (O,— 2) (03) (0,—3 )

N
(00) 0.0186 0.2631—8) 0.1131—6) 0.401 0.276 0.370t—7) 0,2481—7)
(01) O,287(—7) 0,0134 0.477 - 

0.68 9 i—7) 0.1041—7) 0.199 0.0629
40,— i )  0.337(—7) 0,477 0.0899 0.897(—7) 0. 1121— 7) 0.129 0. 1-tO , 

- 
- .- ‘S.’402) 0.406 0,204 4—7 ) 0.2251—7) 0.240 0.172 0.2891—7) O.108(—7)

(O , —2)  0 .277 0,5301—8) 0,2981—7) 0.271 0, 474 0. 2874— 8 ) 0.496 )—b)
(03) 0.6331—8) 0,199 0.129 0.1264—8) 0. 34 31—8) 0.636 0. 6111—2)
(0,—3) 0.5271—8) 0,0624 0.140 0.3271—8) 0,4681—8) 0.6531—2) 0.785

It

(00) 0.0436 0,0380 0 .026 1 0. 0167 0.0803)—i) 0.0347(— 1) 0.9111—3)
(01) 0.O3~0 0.0317 0. 0219 0.0178 0.0 1674— 1) 0.03781—1) O.621(—3)
(0.—i)  0,0261 0.0220 0.0167 0.0980 1— 1) 0.0 102)—i) 0.01814— 1) 0.664 1—3)
(02) 0 .0174 0 ,0175 0.O’JGl (— l) 0 .0857)—i)  0.02461—i) 0. 02 111—1) 0. 232 1—3) I - -

(0,—2 ) 0 .0771)— i) 0,0588 )—i ) 0. u518 (— 1 ) 0.0232 1—2) o.0i~0 )— i )  0.412 1—3 ) 0. 2131—3)
(03) 0,03561—1) 0.03731—1) 0.U1~1),— 1) 0.02001— 1) O .41 2 i— 3 ) 0. 500 1—3) 0,40 7(— 4)
(0 , — 3) 0,879 1—3 ) 0.6191—3) 0.6151—3) 0.237 1—3) t, .2 3 - I t— 3)  0.398 1—4 ) 0.3861—41

Sums5 1.0014 0.9997 1.0003 0.9980 1.000 1 0.9999 1.0005

‘Not all allowed tramitions arc shown. Nunthers in parentheses inilicaic iuwers of 10 by which numbers pre—
ceding them should be multiplied.

5Sum of probabilities fron, a given initial Stale o’.-er all possi ble final states and arrangement channels.

very small amount in every case. InTableliwee xam- abilities obtained with the t’),(r,, R,) reference poten- - 
-

Inc the convergence behavior of the transition prob- hal and a 50 channel basis (5 vibrations, 12, 12, 10, 8,
abilities both as the number of vibrations per rotation and 8 rotations in s’ = 0, 1, 2, 3, and 4, respectively).
is increased and as the number of rotations per vibra- The deviations between the corresponding probabilities
tion is increased (all at 0.6 cv), In Part A of that table is less than 5%. This result is typical of the accuracy
we see that the resul ts change by less than 5% in going for energies E ~ 0.60 eV. Somewhat lar ger chan ges
from 12 to 14 rotations per vibration and by somewhat are found for 0,6 e V< Ea O . 75 eV, but usually less than
larger amounts in going from 10 ho 14. With fewer 10%.
than 10 rotations, errors of 10% to nearly 100% are oh-

Two additional accuracy tests are (a) convergence ofserved in certain transition probabilities. When vibra-
t ional convergence is examined (Part 13) of Table II) the results with respect to the number of terms in the
we find that 2% convergence is attained with 4 vibra- expansion of the potential [Eq. (2.6)),, and (b) invariance
(ions and that the use of fewer than that number can
lead to errors as large as 50% along with poor flux TABLE II. Rotational and vibrational convergence of coplanar
conservation , transiti on probabilities at E = 0 .60 cV, J” 1. N-aAnother important accuracy test in these calculations 

~~ ~~~~~~ ~‘(Ie-l ~‘,s -ih ‘u -si P~~.5.1is the invariance of the results to changes In the char- __________________________________________________

acter of the vibration—rotation basis set . There are A. ltot~,iio,,ai converge nce lviii , 4 vibrations and N rotations 
- -

two important ways to test this. First , one should be per vibration)
able to change the number of rotations per vibration or 6 1.035 0.293 0.435 0.0738 0.0667 0.(...56
the number of vibrations per rotation without changing 8 1.020 (~ ..76 0.339 0.0743 0.0525 0.0380

the results as long as convergence has been attained. 10 1.010 (p.202 0.257 0.0840 0.0706 0.0416
Second, the results should be indep endent of the ref- 12 1.00-) 0 .194 0.230 0.0829 0.0645 0.0396

14 i.Cc-2 0. 189 0, 221 0.0821 0,0673 0.0397erence potential V,,( r5, R 3) LEq. (3.36) of Paper I)
wh ich serves to define the v ibrati o r,.~ basis functions B. Vibrational convergence lwith 51 vIbrations and 12 rotations
as long as Vr,,~ becomes equal to the correct diatomic per vibration)
potential i(r 5) In the-limit R5 —’e . In Table III we pre- 1~ l.U03 0.259 0.260 0.0404 0.0372 0.0295sent the results of these two kinds of tests . T he first 2 1.063 0.161 0.204 0.0895 0.0738 0.0477
column tabulates representative nonreactive and re- 3 1.063 0.238 0.315 0.0749 0.0578 0.0329
active transition probabilities for £s O . 50 eV, JsO 4 1.004 0.194 0, 230 0.0829 0.064 5 0.0396
calculations with a 48 channel basis (4 vibrations, 12 5 1.007 0.195 0. 233 0.0832 0.0646 0.0396
rotations/vibration) and a reference potential V,~ -

Vfr5 , fl ~, v5 0) (the one actually used in most of the ‘~ IlldlC’StoS the sum of all transition probabtlitles f rom a
calculations). In the second column we give the corro- spscilk i.) state which differs by the largest amount from

unity and honce is a conservaUve measure of deviation. fromspending probabilities obtained when the reference po- flux conservation.
tential V,,,1 = V) , (r 1, R1) is used (Eqs. (2.6) and (2.8) ). 5’rhe one vibration results were calculated according to the pro—
Finally , in the last column we give the transition prob-. cedui’e outlined in Sec. 11.0.
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TABLE Ill. Nonreactive and reacti ve transition prob ab il ities as this happens and since a nonorthogonal matching 
—

for £~‘O.5O eV. J~~0. procedure has no effect on ineiastic transition probabili-
ties in the absence of react ion, ~ the problem with coin-

N 4 8 , V,,.~1 5 N 4 8 , V, 1. 50, %~ pleteness of the matching surface functions disappears
- 0.180 0.180 0.183 at higher .1. No artificial orthogonalization procedures

~~~~~~ 0.383 0. 353 0.383 were introduced in the calculation (such as were used by
Saxon and Light’), and therefore unitarity of S, and - -

~~~~~ 
0.207 - 0.207 0.211 zeroness of the even-to-odd reactive transition prob-

P~,1.. .1 0.583 0.58 2 0.580 abilities are tests of the completeness of B’°.
0.787x10 ~ 0.787,,10 ’ 0.755 x i0 2 

We conclude this section by quoting some computa-

~~~~~ 0.580v10’ 0.578xiO ~ 0.557x10~ tion times for these calculahions. Both the integration

~ :.1-.,.1 O.422xi0 ’~ 0,4 i 9x10 ’~ 0. 404 x 10’~ 
and mat ching times vary roughly as N’ for N> 20,
where N is the number of channels. For 48 channel —- 

—
PL’.i.isi O.4 i3x1O’ ~ 0.410 l0’~ 0.395x10’t calculations using an HIM 370-158 computer, about 22

- mm of computation tIme per partial wave J was re-
Me channels ti 0—3~ 12 rotations/vibration), V,,1 = V,,~1
~ V(v,, Ru ~~=O). - quired, of which 17 mm was spent in the integration of

‘48 channels Iv = 0.—3~ 12 rotatlo0s/vibratlon), V,,1.’ V~)r0 R5). the coupled equations and the rest in the matching and - - - -

‘50 channels It’ 0—I. 12 , 12~ 10, 8, 8 vibrations for ,‘~~ 0, 1, asymptotic analys ts . About 13 partIal waves (J 0— 12)
2, 3, 4, respectively), V1,,, ~- V.t(r0 R5t. were required for convergence of the reactive cross

- sections and 30 partial waves (J= 0—2 9) for conver-
of the results with resp~-’ct to a change in th I matc hing gence of the inelastic nonreactive cross sections at

surface basis functions B’5 [Eq. (4.7) of Paper I). We energies near E.’0.50 eV.
find that the reaction probabilities change by less than
5%-in going from three to four terms in Eq. (2.6) [with 0. The one-vibrational-bas is-fun ction approximation
the coefficients calculated as described before Eq. (OVA)
(2.8)) and virtually not at all in going from four to five An often used’~~° (but seldom just ified) approximation
terms, All calculations reported in this paper were in quantum calculations has been the neglect of closed
done with three terms in Eq. (2.6) and using Eq. (2.8) vibrational channels in the vibration—rotation coupled-
to calculate Ii,, V5 and V,. The effects of complete- channel expansion. For 11+ Ii~ at low energies, only
ness of the expansion of the wavefunction on the match- the ground vibrational level is open, so this approxi- - -

Ing surface were studied in two ways. First, several mation involves the use of only one vibrational basis - - -

di fferent choices of matching surface basis functions function plus a complete set of rotational functions for
B’5 were used [different sine and cosine combinations that vibration. The main reason for using this approxi-
(see Paper I) and Legendre polynomials) and invariance mation is the large reduction in computation time (by
of the results to within 2% was found. Best unitarity of 1—2 orders of magnitude for 13+ H,) compared to a vibra-
S, was obtained with the basis set (c) of Sec. IV . A of . tionaily converged calculation. One of the objectives -

~~ - - -
Paper I, and this choice was used in all further cal- of this paper is to examine the acc uracy of this approxi-
culations. Second, the degree of completeness of the mation by comparing the results of its application with
matching surface basis functions B’5 determines the the fully converged ones.
degree of orthogonality of the matrix s~ 

of Eq. (4 .32) of
Paper I which transforms the solution in v coordinates The procedure tLat we have used to perform these

to that in coordinates A, This property of s~ determines one-vibration-approximation (OVA) calculations is al-
the unitarity property of the scattering matrix S, to a most identical to the fully converged one outlined in
certain extent but th is also necessary if the nonreactive Paper I. The following modifications are, however,
transition probabilities between even and odd rotational ne~d6d
etatea are to vanish as required by the symmetry of the (a) The overlap matrix S~ between the vibration—ro-
H, system [see Eq. (6.4) of Paper I). Examples of the tatlon basis sets in subregions i and i + 1 [Eq. (3. 42) of
effects of a nonorthogonal .~ are seen in Table 1, where Paper I) is orthogonaiized according to the Schmidt
the nonreactive ortho to pars t’ansitlon probabilities procedure.1’ This is required because otherwise the
typically have magnitudes of 10 rather than 10”. strongly nonorthogonal overlap matrix associated with
which is more typically the caseU when the orthogonality this severe truncation of the vibrational expansion re-
ii built in through the use of Eq. (4.30) of Paper I. In stilts In an excessive lack of flux conservation.
that equation, the matrix i, (the complex counterpart of
.~,) Ia related to a real symmetric matr ix A” via (b) The effective potential matrix in the strong in-

teraction region (and analogously in the matching re-
(~.exp(iJA”) . (2.9) gion) is modified to [see Eq. (3.48) of Paper iJ

This expres.ton is inherently unitary even when a -

truncated basis i~ used to calculate A’s. It should be ~~~~~~~~~~~~ [
~~ 

[V ~51~— ~~~~~~~ E—
apparent that thi. error Is of negligible importance for —

the example given in Table I, but as I increases, the ‘ f~’~ ~ (
~~ ia) ’

~ ~4 ,
deviations from orthogonality of ..

~, 
also increase. ~ (r,,—n,coac,)’ + — p5 ainQ~~ 

— 

~r)11t~
,

Fortunately, the react ion probabilities decrease rapidly (2. 10) 
- - -
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~ (.0.30ev ,,~-I0~ FIG. 3. Converged coplanar reaction probability P~~ ,.04 an
a function of the total angular momentum quantum number J. - t -

-8 -6 -4 -2 0 2 4 6 5 Symbols correspond to same values of energy E as in Fig. 2. 
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-

J
PIG. 1. Converged coplanar reaction probabill ty P~,,, .., , (for Hi . R ESUL TS FOR COPLANAR H+H2the c.’0, 1=0—c ’ =0, j ’ = 1 transiUon) as a function of the total
angular momentum quantum number J for £ 0. 30 eV tcrosses), A. Transition probabiliti~~0.35 eV (triangles), 0. 40 cv thqusrea), and 0.45 eV-(c irc leal .
Smooth curves have been drawn through the points. In this section we shall examine the J dependence of

the distinguishable-atom reactive ar,d inelastic non-
- reactive transition probabilities, The reactive prob-

where the only allowed values of i’~ and t’~ are zero, For abilities P~,00.01 (for the t ’= O, j =0- -v’=O, j’=I
a complete vibralion—rotation basis set expansion, this transition) are plotted in Figs. 1 and 2 for several en-
expression is identical to that in Eq. (3.48) of Paper I, ergies as a function of J. The probabUities for negative
but in the OVA they dif fer, the above expression being J are obtained from those for positive J through the use
the more consistent one.” of the relation (resulting from Eqs. (5.20) and (5. 32)

of Paper I and valid for R and N probabilities)
Even with these modifications, there are still many

ambiguities in the application of this procedure. The ~~~~~~~~~~~~~~~~~~ . (3.1)
most serious of these is the lack of invariance of the Figures 1 and 2 indicate that P~~o,_c ,, has a maximum
results to our choice of V,,,(r 5, R 5) . In Sec. III we near J= 0  for small £ wtth the peak gradually shifting —

.
shall examine results for 5’,,~ V(r 5,  R5, y 5 = 0) and to small positive j  as E is incr-~ased. Furthermore,

= V~(r5, R5), w ith the hope that the range of results the number of values of I which must be included, In or-
provided by these two calculations is representative of der that the differential reaction cross sections [see - - -

what can generally be obtained in this approximation. Eq. (5. 30) of Paper 1) should have converged to within
approxImately 2~ increases with £ from about 9 at
E =0 .30 eV (i.e., I J I n 4 )  to about 23 at E=0. 65 eV . -

(Ill 11). The maximum in the reaction probabilities

O(J: R
’ ’ ’ ’ l ’ ’ ’

~~~~~~

’ at amall .1 indicates that only small impact parameter
collisions contribute significantly to the reaction cross
section. Tue aemic’ sasical relation between the Impact
parameter b and the ot-bital angular momentum I [as
given by Eq. (5.21) of 1) Is°

~i
£ ‘0.60eV

where we define the sign of bto be the same as that of~~ 0O4

~

,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( ‘ O65eV 

b 1/k ,,, (3.2)

1, and 8,, is the wave number associated with the m ci- - 
-

dent state. Since 1 = J —j ,  an d j = 0  for the transitions
considered in Figs. 1 and 2, we see that 8 is propor-
tional to I, and thus the range of impact parameters(‘050eV
which contribute significantly to the reaction cross see-

0
-12 -(5 —5 ‘6 -4 ‘2 0 2 4 6 8 K) u~ tion Increases w ith £ in those figures (from 181 sl .74

.1 bohr at 0.45 eV to 181 ~ 2.22 bohr at 0,65 eV). In Fig.

FIG. 2. Reaction psobabillty ~~~~~~ as * function of the total 
S we plot the reaction probabilities vs Jat several en-

angular momentum quantum number J ~~~~~ ~~ FIR . 1 ~~ 
ergiea for the transition v .0, j  .0 ‘—v ’ • 0, j  ‘-0. - -

at total energies of 0, 50 ~V (crosses), 0.55 eV (triangles), EquatIon (3. 1) IndIcates thai this transition probability
0.60 eV (squares), and 0.6$ eV (circles), should be symmetric about 1.0, but aside from that
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FIG. 4. Coptanar r acUon prob,bIlity P~,ie.. f o r E= 0 . 6O eV
(translational energy ~~~~ 0.33 eV) vs the total angular momen— FIG. 6. Schematic reprcsentsiioo of dominant collisions con—
turn quantum number J. Squares indicate the converged re- trihoung to thej  =0-.j ’  >0 collisional (nonreactive) excitation
ault while circles Indicate the OVA probability for the coilinoar process. Shown are (a) the initial approach of the collision
reference potentiul (V,,,,= V(r 5, R5, y~~0) l. partner, in the center of mass coordinate system , (b) the coUi—

aion Itself with the direction of the rotational polarization in-
dicated by curved arrows, and (c) the receding scaltermi parti.

restriction, we find that the curves in that figure are cb s. Collision I considers 1 (end hence b) initially pooltive
otherwise very similar in appearance to those in Fig. t relative to the coo rdinate system shown). Collision II con-

- 2. This conclusion applies quite generally to the re- atnsre negative initial I and 8. Note that th diatomS rotor
w,th 1=0 is classically motionleaa with equal probability foraction probability vs .1 plo ts obtained for most other 
~~ rotational phase. The partcular phase chosen was that

reactive transitions, A discussion of (he energy de- believed to give significant rotational excitation for each altos—
pendence of the reaction probabilities will be given iii tion pictured.
Sec. flI.D.

In PIg. 4 we compare the converged reaction prob- = V~(r,, R5) yield probabilities which are only slightly 
- 

/abilities J-’~,,,.,, with the corresponding OVA results dill eretzt from the OVA results In FIg. 4. (For cx-
for a collinear reference potent ial V,,,, = V 8(r5, R~~ ample, the V,,, - I’ OVA reaction probability for 1=0 - -v,~ 0) at an energy of 0.60 cv. We see that the OVA re- is 0,0397 compared to 0.0420 in Fig. 4). The analo-
suit has the correct functional dependence on I but that gnus comparison at other energies between 0.3 and
the magnitudes of the probabilities at each J are nearly 0.6 eV i ndicates that the OVA probabilities for the two ‘

* factor of 2 too small. OVA calculations using ~~ choices of V,,1 always have values within 30% of one - -

another. More important, the OVA probabilities and 
- - - 

—

converged results are generally In good agreement
- , . , , , ,  in thetr I dependence, but in very poor agreement in

energy dependence, differing by several orders of - 
-

of the reaction cross sections, as will be discussed in
E.~ 5OeV / \I- Sec. m. C. .- 

-
-1 fi4

In Fig. 5 we plot the inelastic nonreactive probabili—
tIes for the transition v.0, j  = 0 — v ’= O, j ’=2 vs J for

0.3 several energies E. The inelastic probabilities are -— - - 
- -

~~O2 

- 

- 

dependence has a dominant influence on the behavior

seen to span a much larger range of l’ s than the re-

o.s 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t o6o,v magnitude at low energies. This difference in enerçj

active ones, indicating that larger ‘mpact parameter
collisions can contribute significantly to the inelastic
processes. At all energies in Fig. 6, the maximum 

- -z— / 
- 

rotatbnal excitation probability occurs for .7 positive
(although a smaller magnitude negative I peak does -- 

-
appear at the higher energies). The increased likell-

‘fiS

~~

.

~~ 

,, hood of exciting a posItIve rotational sublevel ins non-
_________________________________________ reactive collision with .7 InItially positive is in agree-

-25 ‘20 -15 -10 -5 0 5 0 5 20 25 ment with the classical picturo of the collision shown in
J Fig. 6 (CollisIon I) in which the incident atom having a

FIG. 5. Coplanar converged inelastic probability 
~~~~~ •s 

a positive impact parameter [see Eq. (3. 2)~ impulilveiy
function ofj for total energies £=O.40 eV (dash—dot), 0.50 .v strikes the “bottom” atom of the diatoinic molecule in
(dashed). 0.60 eV isolid), arid 0, 70 eV (solid). FIg. 6, 1(a), thus exerting positive torque on that 

- 

-
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FIG. 7. Convergc.l coplanar reactive differential cross sec — 8p(deqreea l
uost 4,.51vs the scattering angie 8~ for total energies E~~0.30, I

0.35, 0.40, and 0.45 eV. FIG. 9. Converged coplanar neactive differeatial cross see—
1100 O~6.n5 vs scattering angle 9~ at same energies as In FIg. 8.

- 
. Th~ae curves are symnnctric about 8~ -i80’ . -- 

--

molecule and exciting it Into a rot ational state with I - -

posit tve j’. For this collision, one would expect the abilities in Figs. 1, 2, and 3, respectively. The v=0, I - -

dominant scattering angle 6 (0 lie between l80 and 360~ j = 0 — n ”=0 , J’~~ 
1 distinguishable-atom reactive cross -

relative -to the y axis of Fig. 6, In the next section we sections of Figs. 7 and 8 can be trivially converted to -

shall see that this is precisely what the differential the corresponding antisymmetrlzed para — ortho quanti-
cross sections indicate. St ill unexplained, however, ties by multiplication by 3 ~see (Eq. 2.1)j . Because of - - 

-

are the double—peaked dIstributions at the higher ener- Eq. (2. 3), the curves in Fig. 9 are exactly symmetric -
‘

gins In Fig. 5. - Intuitively, one would expect that the about 8k -. 183 ’. We see that all reactive differential - - Tv
positive J peak results from the mechanism described cross sections are strongly backward peaked. This is
above (Collision I in Fig. 6). The negative J peak must in agreement with the results of three- and two-di- 

- - - 
-

arl3e from a different collision mechanism, quite pos- mensional quasiclassical calculations’~
t and with the - - 

- -sibly that pictured in Collision II of Fig. 6, in which the results of experiments on D~ H12’ and H+ T5, ~ and is
incident at6m, having small negative im pact parameter, consistent with a rebound-type collision mechanism. - 

- 
-

still strikes the bcttom atom of the diatom in Fig: 6, The magnitudes of the differential cross sections near
h a , but rebounds into the 00 

~i 0 ~ 180’ hemisphere. 6~ = 00 are all sufficiently small to allow us to conclude
that forw ard scattering contributions to the reactive

B. Differential aons sections angular distributions are negligible. The small-ampli-
tude oscillat ions in some ‘~f the higher energy differen-

FIgures 7, 8, and 9 depict the di f ferential reactive
tial cross sections in Figs. 8 and 9 are very likelycross sections corresponding to the same transitions

and .. - ergy ranges as were used for the reaction prob— spurious since they typically result from Incomplete - . -

- interference between different partial waves. This type
of oscillatory behavior can be caused by as little as a -

.

5% relative er-or in the matrix elements of 8, for a
single partial wave, thus pointing out that equally ac- -

008 curate calculations for each partial wave (even those
contributing relatively little to the integral cross eec- , - 

-,
lions) are necessary if spurious ef fects of this type are - -

006 ~~‘ to be avoided. Of course, if there were rotational reso-
V

nances In certain partial raves, then we would properly -

expect to see some form of oscillatory behavior in the
004 angular dist*ibutlons. Rotational resonances have in- -

deed been observed In calculations on nonreactive atom -b
diatom scattering, but these resonances have always - - - .  - 

-
been associated with attractive wells in the potential - 

-
0021

surfaces used. ~‘ In the case of the purely repulsive
- Porter—Karplus” potential, such wells do not exist,- - - o•~~O 90 80 210 

0 
360 and thus purely rotational resonances are unlikely. -

8,(degreesl The full-width at half-maximum (FWIIM) of the back-
FIG. 8. Converged coplanar reactive differential cross sec— ward-scattered peak in the differential cross section 

-
tion ~~~~~ as a functi on of the scattering angle 8~ analogous to remains relatively constant over the energy range
Fl8. 3 but at total energies £—0 .50, 0.55, 0.60, sod 0.65 eV. studied and roughly equal to 70’ (I.e., 145’ s8 5a215 )
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coNvrRGED 

I 

0.8

040 T ,  I I -r I I

008

~ 0.60
0

C OVA IVCOLL )

~~ 0.O6 

‘
~~04

0
.0

0004
-o

002

90 80 270 360 -

OR(deqrees) ~~O0 O?

I I81G. 10. Vibratlonally converged and OVA differential cross 0. 90 480section ° ,‘pI ass  function of scattering angle e~ St 5=0.60 eV 
8 (degrees)(E,=0.33 eV), The OVA cross section wan ‘~omputed with a

colbnear reference potential ~V,,11 — V(r ,,R~~~1 = 0) ) .  The FIG. 12 . Nonreactive (so lid), reacti ve (dashed ), and antAa ym—
cross section for this transition is symmetr ic about O~, - 180’ . metrized (dash—dot) differential cross sections as a (unction ~

scattering angle for the coplanar v’~0, J O - v ’ O , lj ’l 2
transition (eummed over final r ‘tauonal polarirations) atE

in Fig. 9. Some broadening does, however, occu r -~~ 0.5o eV (4—0.23 cv). Note th-t the scattering angle used is
• and 8 = 0 corresponds, for reactive scattering, to 8,~ 180’the higher energies. ieee Eq. (2.5)l.

The aflgular distributions for the OVA results pre-
viously considered in Fig. 4 are plotted in Fig. 10. As . - 

-

in Fig. 4, we see that the shape of the converged curve tributions clearly reflect the one- or two-peaked nature

Is qualitatively well approximated by that of the OVA of the nonreactive probability plots of Fig. 5 and show

one, but there is about a factor of 2 difference in the predominantly backward to sidewards peaking with the
magnitudes of the cross aections , This similarity in position of the maximum shifting gradually to a more 

- -

iorward direction with increasing energy. The maxi- —

shape continues to exist at other energies as well, but
the ~IIiferences in magnitude can become much larger, mum value of a~,.,w always occurs for 180’ sO a 360’,

as discussed in Sec. in. ~~. 
in agreement with our qualitative classical ideas of
Sec. Il l. A. At higher energies we see double-peaked

In Fig. 11 we plot the distinguishable atom nonreac- distrtbutions, possibly corresponding to the two snech-
tive inelastic differential cross sections CT

~~,w at F anisms pictured in Fig. 6. There is little evidence of
= 0.40, 0,50, 0. 60, and 0.70 eV. These angular die- any high frequency oscillations in any of the cross sec-

tions plotted in Fig. 11, which indicates that the col-
lision process is pretominantly direct (nonresonant).
The small-amplitude oscillations occurring at 8 <100’

e oeo~v E’o.7O,v for S nO.60 and 0.70 eV are probably spurious and of

Figs. B ahd 9.I
Since the t ’ = 0, Jr 0 —  v’ 0, j ’ = 2 transition considered

in Fig, 11 corresponds to a para-to-para transition04 

~~~~~~~~~~~~ 
- 

which can occur ty both nonreactive and reactive mech-
)_02

,/ \  

same origin as those for the reactive cross secttuns In

anisins, the correct physically measurable quantity (in
a 2D world) to consider is the antisymmetrized para-

0.2 / to-para cross sections which can be obtained through the

/ I, 
~
,, use of Eq. (2.1). In Figs. 12, 13, and 14 we plot the

— 

,/ ,‘ - resulting antisymmetrized angular distributions ~~~~
(summed over degenerate product rotational polariza-

- 

~o 
I 

~~~~ ~,6O (ions) for total energies of 0.5, 0.6, and 0,7 eV, re-
8 (degreesl spectively. Also plotted for comparison are the cor-

FIG. U. InelastIc nonreactive (converged) dllfe*-,,ntlal cross responding ~‘atinpuishable-atom nonreactive and re-
.ection4 ,2 for the coplanar v=0 , j = Q-~~.’ =0, j ’ 2 iran— active cross sections where, for consistency, the angle
alto,, as a function of scatte ring angle at total energies 5=0.40 0 rather than 8~ [see Eq. (2. 5)) is used for plotting the
CV (daah—dot), 0.50 eV (dashed), 0.60 eV (aoHi), and 0.70 eV reactive differential cross sections. In terms of 8, the

— 
- (solid), reactive cross section is forward peaked (I.e., back- 

-
~~~

~~1
- - 
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E0(eV)
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0.3[‘0.60ev
08 -

04  02  03  0.4

0.2

/ ~~06 =..

~~~~~~~- \ 
/0 oJ -

oDe-”0)~, 04

-s o, / ~~~~~ x lO 2 00 ——

-- ,~~41 
- 0 (b

V‘I, ‘-s..
-~ I I00 0 no ‘80

FIG. 13. Nonreactive, reactive, and sntiaymmetrized dIffe r—
B (degrees)

ential cross sections analogous to Fig. l2 at 5=0.60 ev (E, 10
=0.33 cv). See remark about C in the caption fcr that figure.

ward peaked in terms of o s ) , while the nonreactive one ~ -ic - —

is backward peaked at 0.5 eV shifting to sidewards 03 04 0.5 0.6 0.7

peaking at the higher energies. At 0. 50 eV (Fig. 12), E(eV)
the reactive cross section has a maximum value of FIG. 15. Converged integral reactive cross sections
0.004 5 bohr/rad, which is over 200 times smaller than Q~?, 

..~,, and 
~~~ 

(summed over final rotati.sial polarizations)
the maximum value of the nonreactive one, 0. 92 bohr! vs total energy S and U-anslatlonai energy 5.: Ia) lLear scale,

rad. This implies thatf ’,.,,,.,. in Eq. (
~~
. 1) has a much (b) semiluganthmlc scale.

larger absolute value than 
~~~~~~~~~ 

so that the anttsym-
inetrized and nonreactive differential ct oss sections are nearly Identical. Some small amplitude osctllations are

seen in ~~~~ at small 9 in the neighborhood of the region - : -  —

______________ - where the reactive cross section has a max imum.
These oscillations a—c real and result irom interference

I “
\,, _. (‘0.70ev between the direct and exchange contributions to the

antisymnietrized cross section. They are similar in 
= 

-

origin to the quantunl symmetry oscillations which08 
* have been obse~~ed in Stom—atom elastic and inelastic

00 02 scattering. ’0 As the energy Is ~ncreased, tile reactive

nonreactive ones (at all scattering angles), and (a.s is
~ 06a Indicated in FIgs. 13 and 14) the oscillations in the anti-

—

04 1\ ~~ ~~~~~ 

cross sections increase much more rapidly than do the

symmetrized differential cross sections for 8<60’ be--c0 come quite pronounced in the forward 9 (backward e~).0
direction. (The oscillations in the antisym.nctrized

/ 

\ ~8o—oz \

- curve of Fig, 14 at 9>80’ correlate with those in the
~~~~ 

%~~~ xI0

reactive curve . As for Figs. 8 and 9, the latter are
probably spurious, and therefore the former ehould

- not be considered to be real either. ) A small increase0-2
-- in the oscillation frequency w’. . increasing energy is

also apparent from the figures.- 

Io.o C. lnts~ al a-cu sections -o 90 - 480
o (deqrees) In Fig. 15 we plot the reactive integral cross aec-

FIG. 14. Nonreac tiVe, reactive, and anlisymmetrtzed differ— tions 
~~~~~ ~~~~~~~~~ and 

~~~~~~ 
(summed over final ro-

.58.1 cross secti ons analogous to FIg. 12 at E”0.70 .v is, tational polarizations) as a function of the total energy
—0.43 OV). See remark about Sin Ute carton of that figure, 5 and initial translrtional energy S~. Both linear and
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E0(eV ) m I t  (using V,~ — V(r,, RL, v~=0)~. As mentioned in
0.’ - 0.2 0.3 Sec. lB. A, the results obtained using V1,,= V~(r~, R~)

have almost the same energy dependence. It is ap-
(a)

05 - 
parent from the figure that the vibrationally converged

7 integral cross section dUfers quite significantly from
the OVA result over much of the energy range con-0.4 - - sidered, the dUference being about S orders of mi ri_
tude for total energies be~~a 3..it. eV. The two curves - -03 - do cross near S = 0. 52 eV, which is quite interesting, —

02 IVcou.) (on a slightly different potential surface) indic ated that

2 0.0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

since a previous analysis of the coltinear H + H3 system .-~ 
- - 

-

this reaction is very nearly vibrationally adiabatic at
— 0.1 - this energy. ’t Since, as we shalt see in the next sec-

tion, collinear and coplanar calculations can be re-
Iated in a reasonably accurate manner, one might be

and three dimensions by analyzing the extent of vibra-p0_a - - tional adiabaticity in the corresponding collinear sys-
tems.

10-a - - -
In Fig. 1’? we compare the nonreactive and antisym-

~~~~~~~~~~~~~~~~

0NV(RG

~~~~~~~~~~~~~~~~ 

- able to assess the accuracy of OVA calculations in two I - - - -

p0-C metrized integral cross sections Q~.,r and ~~~~ as a
function of S and E~. The rotationally inelastic cross
sections have much larger magnitudes than the reactivep0-s - ones of Figs, 15 and iS with a peak value of 3.76 bohr
near 5=0.54 eV, Since the v’=O, j ’ ~~2 state of H3

b .c
becomes energetically accessible at S = 0.30 eV, we see
that there is essentially zero threshold energy for the - 

-

04 0.6 nonreactive process so that ~~~~ coincides almost cx-
E(eV) ach y with its distinguishable-atom counterpart ~~at all energies below 0. 50 eV. Thereafter , ~~~~~~~~ 

be-FIG. 16. tntegtat reactive CTOSS section t~~ tswnmeti over
all accessible final states) vs total energy S and relative comes progressively larger than ~~~ with no apparent
energy s,. Circles represent vtbrauonally converged results oscillatory behavior as a function of energy resulting,
and squares the OVA ones using a collinear reference poten— in contrast to the angular distributions of Figs. 12— 14 .
hal: (a) lineir scale, ib) aemiio~aritluntc scale.

E0(eV)
aemllogarithmlc scales are used to show the functional 40 01 02 03 04

dependence of these cross sections over a wide range
of energies. If we define the effective threshold ener~~for a process as being that value of £ for wt-.ich the cor-
responding integral cross section is 0.01 bohr, then the
threshold energies for 

~~~~~, ~~~~~ 
and 

~~~~~~ 
are 

‘V.

0.49 eV, 0.55 eV, and >0 .75  eV, respectively. A dis-
cussion of the significance of the effective threshold
energies will be deferred to Sec. lB. D, where we also o~ 

-

compare the coplanar results with those of collinear
calculations on the same potential energy surface. 2 2~
Above threshold, ~~~~ rises in a nearly linear manner 0 ‘
with F up to about 0.65 cv and achieves a maximum
value of 0.31 bohr at about 5. 0. 70 eV, 

~~~~~~~~ 
and

~&.,  increase monotonically in the energy range
spanned by this figure but may level off at higher en- ‘0
ergie.. At very low energies, the integral cross sec-
tiona exhibit approx imate exponential dependence on 

- ~~~ 
-

5. A characterization of the product rotational state
dIatributlon implicit in Fig. 15 Is given In Sec . UI. E. 3 —

We should finally note that the reactive cross sections 0C03 04 ~~ 06 0? ~ II I I

in Fig. 15 can be converted to the corresponding oars -

—ortho quantities by multiplication by 3.
PlO. 17. Inelastic nonreactive Integral cro. . sections 

~~•-~~in Fig. 16 we compare the reactive cross section and 
~~~~~~ isummed over final polarizations) vs the total

~~ (aunimed over all product ltStes) with the OVA re- energy S sod relative translational energy E~.

- J. Dw.n. Pbya. Vol. 65, No. II. I Decimbee 1976
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-

D. Com~s,ison of pIan~ and coilinear results E0(eV ) - —0.1 0.2 0-3 0.4

of length while collinear ones are dimensionless (i.e., (o)
the collinear cross section is equal to the collinear re- 0.5 -

action probability), a dire,~t comparison of these quanti-
ties is not possible. One could devise models for con- 0.4
verting collinear results into planar ones by assigning -

a model impact parameter dependence to the collinear 03 - 
•0)

Because planar cross sections have the dimensions 0_a -

reaction probabilities. A more straightforward con,- >-pariaon can be effected instead by examining the be- ~ 02
havior of the corresponding coliinear’t.” and planar

-
- 

-
~

reaction probabilities (the tatter (or J = 0) as are plotted ~ 1/in Fig. 18. Probabilities for other J’5 or different o
initial i4 states could have been used, but those for 0-C —~~—--o——---o- 

-

J = 0 and t’ =j = 0 were chosen for this comparison be- z
cause they correspond more closely to the collinear
conditions. This choice is furthermore Justified by the t iO~

fact that the form of the energy dependence of the planar 
~~ ~~~~ /probabilities for different J or j  (for reasonably small

values of these quantum numbers) Is essentially the /same as that of P~ (.1=0), as is demonstrated in Fig. -,

19 [where P~ (.1=0), P~ (.1-4), and P~ ( .1=0)  are 
/ 

P0~(~ 4)

lie between the corresponding curves for .1=0 and J=4 . ~~~~~ - 

I

plottedJ. The P~~(J) curves, for J= 1, 2, 3, would all

Figure 18 indicates that the coiiinear and coplanar re- ///suIts have nearly the same energy d pendcnce, the en- 
to ? . - - -

I I I I
0.3 0.4 0.5 Oh 0.7

E0(eV) ((c v)
0’ 02 03 0.4 FIG. 19. Coplanar total reaction probabilities !-‘~ (J=0) (cir—

~~~~~~~~~~~~~~~~~~~~~

(2D J 0) 

des , solid curve), P~QtJ 4) (tri angles, dabb—doUed curve),0.6
and I’~’~ (J =0) (squares, dotted curve) summed over all final

0_s -

0.4 
P05l101 

states vs to~~ ene~~~ S and translational ene~~ 5,: (a) linear
scale, (b) logarithmic scale.

ergy scale being shifted upwards by about 0.055 eV in
going from the collinear to the coplanar curves. In ad-
di t ion, the maximum value of the collinear reaction

- probability is 1.0, whereas that of the coplanar one is~~ :: sOG 

relatively simple concepls. To understand the energy

about 0.6. Both the energy shift and the difference in
4 0.’ the maximum probability are explainable in terms of
0
~ 00 shift, we examine the nature of the triatomic H, sys—
z I tern in its transition state , In the linear case, this tn-o P~’IID)

atomic pseudomolecule has two vibrational degrees of
lot freedom: an asymmetric stretch mode, which ii un-

w stable and leads to motion along the reaction coordin.~te,
and a stable symmetric stretch mode. When the reac-~~~~~~~~~~~~~~~~~~ D,J’OI-
tion occurs and the system passes through the transi-
tion state region, the total energy partitions itself be-
tween these two vibrational modes. Energy in the sym-

S’ S ( metric stretch mode Is not easily converted into the
asymmetric stretch ntode making it unavailable to over-
come the potential surface barrier. Thia Is a partial - -to- ’ 0 -
physical interpretatIon of the fact that the collinear

to-c I I

0.3 0.4 0.5 0.6 0.7 threshold energy (the value of S at which the reaction
E(eV) probability is 0. 01) is 0.42 eV, which is somewhat

1 ;,~
FIG. 19. Total reaction prohabiliUca r~’(lD) (cohinear) and larger than the 0.396 eV Porter—Karplus surface bar-

7’ p
~(2D , .1-0) (coplanar, 10 . v - 0 , j = 0  and summed over ~~ 

ncr height. Collincar threshold phenomena such as

final states) vs the total energy S and tr,neia ’ionai energy s, this have been analyzed in detail elsewhere,~~tt In going
(a) linear scale, with the collinear results multiplied by O.6 • from a linear to a planar transition state we add one /
(b) semliogsrithmic seal., bending degree of freedom to the internal motion of the . - -

J. Chem. Phys., V~P . 65. No. 11, 1 Deon,nhst 1976
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j’ probability elsewhere, we obtain a coplanar reaction - - _ -
0 I 2 3 4 probability of 0.60 in agreement with Fig. 18. The 54’I I cut-off angle is In reasonable agreement with previous

0.3 - - estImates of the orientation dependence of the reaction
probability obtained from distorted wave results” and

- from classical trajectory results,’
(‘065ev

E. Product state rotational dittributions -

In Fig. 20 we plot the integral cross sections Q
~~,,.(summed over final 1-otational polarizations) as a func-

0.2 (ion of the production rotational energy and quantum
number for several total energies S. We see from the

- figure that only small j’ rotational states are apprecta-
- 

bly excited in these reactive collisions. The relative
population of final rotational states is not strongly de-

0 pendent on total energy although some broadening of the
dist r ibution does occur at higher S. Not shown in the
figure are the final rotational state distributions from
initial states j *0. The qualitative shapes of these dis-— - 0I
tnibutions are not strongly dependent on j  and look very
much like those for j  = 0 in Fig. 20. However, the
magnitudes of the Q ,.,1. decrease monotonically with
IncreasIng) for a givenj’.~~

To a large extent , the distributions in Fig. 20 re-
semble rotational Boltzman-like distributions with a(‘0.50ev
single temperature parameter. Distribut ions of this

0~ 

‘
‘
~~~~~~~~~~~

—_--y type, for a planar system, may be expected to have the
E1. (eV) form”

FIG. 20. Converged coplanar integral reaction cross sec tions f ,.(E) A (S) (2 — 6,.,)e ’r~’Tt1t , (3.3)
vs the final rotational energy at total energies 5=0 .50

eV (triangle.), 0.55 ev (triangles), 0.60 ev (squa res) , ~~ w here A (S) and T(E ) are energy dependent constants
0.65 eV (circles). The arrow, in lower and upper abeissa m di— and 2 —  6,.~, is a degeneracy facto r . In Fig. 21 we plot
cats the E~. rotaUonal energies. The curves are draw n [2/ (2— ~~~~~~~~~~~~~~~~~ as a f unc tion of the product rota- / -

smoothly through the points. ttonal energy on a toga~ ,thmic ordinate scale. The re- -
. 

-

- suiting curves for different £ are approximately linear
transition state which also does not contribute effective- (most nearly so at the higher energies) in agreement

ly to motion along the reaction coordinate and which will with the predictions of Eq. (3,3), with temperature

also tie up sor,e of the energy r.eeded to overcome the parameters T(E) in the neighborhood of 250—400 K. - --

ac t ivation barrier , This additional energy in the bend- We should point out that although the rotational distni-

ing motion is a plausible exolanation for the 0.055 eV 
buttons are temperaturelike, we find no evidence of

upward energy shift observed In Fig, 18 and is approxi- long lived compound state (i.e., complex) formation In

mately equal to the zero point bending energy of about this reaction at the energies being considered.” The

0,05 eV for the surface used. ” Much of the above ex- rotational distributions seem to be determined to a
planation has its basis on an approximate statistical large extent by the shape of the potenttsl energy a:r-
theory proposed by Marcus.” The difference in the face in the transition state region of configuration space
maximum probabilities attained by the collinear and (see lower half of Fig. 2(c ) of P~per I). In this transi- —

coplanar results can be understood by examining the lion state , the asymptotic free rotational motion has

orientation dependence of the reaction probability. In 
become a seriously restricted bending motion. This

the planar case with j  0 initially, the di~tomIc mole- bending motion becomes again a free rotational motion

cule does not rotate and has equal probability of being alter the reaction, and, at least qualitatively, the dia-
in any orientation with respect to the dlrection of ap— tribution of different product rotational states appears
proacit of the incident atom. Since the barrier height of to be detern,ined by the overlap of thIs bending wave-
the potential energy surface is 0.396 eV for collinear function and the asymi*ottc free rotor warefunction. U
collisions and increases to 2.8 eV for pe rpendicular 

this reasoning is correct , the resemblance of the ro-
ones, we would expect that in bie energy range being tational distribution in Figs. 20 and 21 to thermal dis-
considered, the reaction probability should be greater tributions is at least partially coincidental. This phe— - 

-

for linear collIsions and decrease to zero for perpendic. nomenon should, however, be quite common since re-
utar onee. The coplanar probability should represent stnicted bending motion in the transition state region is
an average over all init ial orientations and if we assume a common feature of the potential energy-surfaces for

unit reaction probability for 0 xy, 54~ ~~ 3C)5~ 
many reactions. _ -

s S6O’ and, by •ymn)etry, for 1180’— v, l a 54’ and zero In Fig. 22 we plot the OVA cross sections m a  man-

J. O~sm. Ph~t, Vol. 65. No. II. I D,on,rbsr 1978
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FIG. 21. Semllogarithmic plot of the integral reactive cross 
_______________________________

secOon 
~~~~~ 

Ix Z / (2— 6,.,)l vs the Snal rotational energy at 0.50 0.60 0.70 0.80
total energiea 5— 0 .50, 0.55, 0.60, and 0, 65 eV (symbols E (cv)
analogous to those of Fig. 20). Straight lines are draw n con—
aecUrg the lowj ’ points. The arrows are as in Fig. 20. FIG. 23. Integral cross Section Q~ . 1 vs total energy S and

translational energy 5, for several exact and approximate co—
p~ansr calculations. Q~ ..,,tSK) refe re to the present converged
results, Q~ ..51 (SM, OVA) are the present one—vlbrstion—sp—

o t 2 3 ~ proidmatlon results, for a collinear V,,5. obtained as described
.L I I I 

~ 5ev, 11.1), ~~~~~~~~ WE) and Q~ ,,,tWW,SE) are the Ye-
suIts of distorwd wave calculations of Ref. 15, and Q~

.,, (AL)
OVA is the OVA result tori a different potential surface and using a

method somewhat different from ours) of Ret, 10. •

( ‘060ev
ncr analogous to that done for the converged cross sec-
lions in Fig, 21. Figure 22 indicates that the OVA ro-•0~ tattonal distributions fit the temperaturelike diatribe-f~g El 5S.. tion given in Eq. (3,3) to about the same accuracy asN
the converged results , However, the OVA temlt ’ra-

-? ture paranieters are somewhat higher (450—620 K), in-0
- dicating that this approximate procedure predicts ro-

ö’ El’s - - tattonal distributions which are much broader than the
I a converged ones.
0

F, Compsriwns with othw copisnsr calculations
- - In Fig. 23 we plot our converged Q~~ei (SE) and the

corresponding one-vibration-approximation results
Q&.1 (SE, OVA) using a collinear reference function
(see Sec. H. D), along with the resulte of two other
studies on coplanar H+H,. Q~~~,,, 

(WW, SE)and Q ,,,~, - 
-

-

(‘NW, WE) come trotn two different applications of the - - - - -1 ~~ 1 040 ~‘
• E11(.v) distorted wave approximation by Walker and Wyatt” on _; - 

- -

FIG. 22. Ssmilogsrithinic plot of th. OVA reactive cross the Porier—Karplus surface . SE and WE refer , re-
deS ~~.,pfr W12 6,,.) l us function of the final rv’ational snectivel y, (0 the strong and weak expansion path

- - .eergy It energies 5 0.50 , 0.55, sod 0.60 eV. The atraigiit choice. of the nonreactive reference potential used to ., -

lines drawn connect the Iow i points . The arrow s are as in generate the distorted wavefunctiona. Q~,_,, (AL) is the
FIg. ~~~, coupled-channel result (using one var iation of the OVA)

J.Ow,n. Phyt, Vol. 65, No.11,1 Osmmt,., 1976  

— -- - - - - - - —-—-  - - -- -
~~~~

. = _— -
~~
- .S.---- - - -  -

~~~
- -= - - - -  - -.-- ---- — -—--------- -~~~~~~



4638 G. C. Schatz and A. Kupermann: Planar quantum mechanica l reactive scattering. II

I —r ‘ 23 cannot be quantitatively compared with ours because -

012 - (o) of the difference In potential energy surfaces used in the
>-
I- 

- neverthel~’ss appropriate, First, the effective threshold
~ P . {ww~~

.
~~~~~~~ Z7~~~~~~~~

} 

two calculations, but sonic qualitative observations are

energies (defined in Sec. III . C) of the integral cross
008 sections are about 0. 50 eV for the converged Q~~,,(SK),0

0. 49 eV for the Q 0.,,(SK , OVA) , and 0.53 eV for
Q ,.,01(AL). The difference of 0.04 eV between these - -z

0 last two numbers Is approximately equal to the 0.03
~ 004
C-, eV difference between the heights of the respective
4 potential barrters (0.396 eV and 0.425 eV) in the sur-Li

faces used in the calculations, Since the properties of~
I I I ~__________________________________________ 

the saddle point regions of these surfaces are similar, - -
00C.2 -8 -4 0 4 8 2 one might expect that a small change in barrier height

__________________________________________ 
should indeed reeult in a correspondingly small change -012 

‘ I 
,

_~I 
- 1 

in effective threshold energy as observed. Socond, - -(b) / \ / ~_ W W v ~~, . even if the ALcurve is shifted to lower energies by 0.03 
-000—0.~- .-~--SK eV to correct for this difference in barrier heights, It

A 

agrees neither with our converged nor with our OVA -
008-n results; above the phenomenological threshold, It in- - -

a
creases more rapidly with energy and to larger values - 

-than either of the latter. This maybedue to differences -0
-o >~~ ~/ /  

,
1 

- in the characteristics of the twn surfaces other than the
barrier heights. ~‘hird, except for sonic possibly -

spurious oscillations, the Altenberger-Siczek and Light 
. -/ ,,/ angular distributions (Figs. 8— 10 of Ref. 10) have -

— - I-—-. .-I-- — 
/ 

I C — 
~ — - shapes which are generally similar to ours (Figs. 8, I - 

- - -

°~
)°c, 91) ISO Z~?O 360 9 of this paper) for all transitions considered. The - 

-O~(degrees) dominant peak near 180 In their angi lar distributions -

FIG. 24. Reaction probabilities Pr,,, ,, and P~~,.,1 and differ- is somewhat narrower than ours and heir reaction -

cntial cross sections e ,.~, and ~~~~ as a function of react ive probabilities fall off more rapidly wt ;i increasing lJl
scatter ing angle 8~. WW refer, to the SE resul ts of Ref. 15 than do ours in Figs. 1—3 . 130th of these differenceswith long dashed curve, referring to 00—00  transitIons and could be a result of the different potential surfaces .~~ —- . - -dash—dot curves to 00—01 ones. SK refers to the results of 

used, since as seen in Figs. 4 and 10 the OVA does not - - -
this paper (Figs. 2 , 3, 8~ and 9) with solid curve , for 00 —00 

strongly auect the shapes of c~ vs O,~ and P* vs J -
— sod short dashed for 00—0 1 transitIons. WW results are at

£.~~O,34 eV tE~ 0.61 eV) , while SK results are at E~- 0. 33 ~~
- curves, —

(5=0.60 eV), 
. -

C. Rate constants . 
— 

-

In this section we e~amtne the behavior of the pars- - -of Altenberger-Siczek and Light, ‘° in which an earlier to-ortho thermal rate constant k,_,(T). The ortho-to- -

calculation of Saxon and Light’ is corrected. These para rate constant can, of course, be obtained from - 
- 

-calculations were done for an analytical surface fitted k,., by using the easily calculable equilibrium constant - 
-to the ab intl to SSMKu surface . The two approximate tot this reaction,” computed for the coplanar world - 

-calculatIons of Walker and Wyatt seem to bracket our of this paper. To obtain k,,,,(T) we first require the -— — -

result at low energies, but for 5>0,60 eV, the absence para-to-ort ho cross sections Q , [summed over allof conservation of f lux  in the distorted wav e calculation final ortho states and averaged over initial (para) ro- -
results in a gross overestimat ion of the Integral cross tat tonal polartsat ions~. These are listed in Table IVsections. Thu., the distorted wave method rem .ins for both the converged and OVA calculations, —accurate only when the reaction probabi’~tiea or cross
sections are small. A similar conclusion was also The planar para-to-ortho rate constant is given by -

drawn from an analogous collinear comparison, ~ The ! ~ ~ ~~~~~~~~~~~~~~~~ (3 4)shapes of the distorted wave differential cross section k,.,,(fl = 
~vs reactive scattering angle 6~ (Fig. 24) are in 

~~~ - - 
- -

- -- good agreement with the corresponding results of our
where Z Li the planar partition functionconverged calculations, but not the magnitude of those

cross sections, A similar comparison ol the cross z .~~~ E (2 .- 6,,)e-’,’s,51’ (3.5)sections ( ,. ,, in that figure indIcates serious disagree- 
5~4 . -

ment in both shape and magnitude, apparently due to a
much more rapId falioff in the distorted wave reaction and
probabilities with decreasing J~J< 0) than I. the ease 

2)t~a 
_.! . 

~~ 
~~~~~~~~~~~~~~~~~~~with our results (a. seen in Fig. 24(a)J. k~ ,(T) = (; sr , -The results of Altenberger-S.czek and Light” of Fig. (3.6) 

-.
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TABLE IV. Psra-to—ortbo integral cross sections (is bohr) for II. H2.’ 
. 

- - -

Converged OVA

£ ~~~~~~~~~~ . 
_ _ _ _ _ _ _ _ _ _  

-

0.30 0,3$6(—1l) ... ... 0. 5431— 8) ... ,,,

0.35 0.144(—6) 0.137(—7) .‘‘ 0. 343(—3) 0.2211—4) ‘‘‘ 
- -

0,40 0.4991—4) 0.8681—5) 0.400 1— 4) U. 280(—2) 0.9761—3) 0. 228(—7)
0,45 0.299(—2) 0.7211—3) 0. l 04 (—5) 0.024 9 0.9581—2) 0. t88(—3) -

0. 50 0,0543 0,0319 0.1271—3) 0.0918 0.0416 0,3 361—2)
0.55 0.391 0, 140 0.3091—2) 0.294 0.166 0. 3250
0.60 0.841 0.361 0.0233 0.533 0.339 0.0727
0.65 1.025 0.619 0,0724 b b b : -
0.70 1.134 0.877 0.194 b b b
-0.75 1.204 1.088 0.344 b b b

‘All cross sections have been aummed over final ortho todd j ’) 51aw8 and aversged ..-
. -

over initial rotational polarizations. The numbers in parentheses indicate powers
of 10 by which the numbers preceding the-rn are multiplied. • , -

‘Those cross sections were not calculated, but estimates of their values (through various
extrapolation procedures) were used In the rate constant calculations. Because they in—
volvo higher energy results, the ir contributions to the rite consta nts are small, and the
errors in thes e rate constants resulting from the extrapolations are usually less than 10%. ‘ -

- 
is the vibration—rotation energy of the Initial state likely that sim ilar ones will be done on more than the 

- 

- -

with-quantum numbers t~~, and F~ Is the translational very simplest of chemical systems. Rather , the pri - -

energy relative to that state (E~,=E— 5,, ). u is the mary emphasis Is to use these results as benchmarks
reduced mass associated with the relative motion of against which approximate theories may be compared,
the reagents and the factor 2 — 6,o is introduced to Sc- w ith the hope that these theories may be in turn applied
count expliditly for rotational degeneracy. The initial

- - spin degeneracy is 1 for all pars states. The rate con-
stant thus defined has the units cm’/molecule . sec, T(K) -

which is appropriate for a planar world in which con- 1200 0~)0 600 500 400 300 90 200 -

centrations are measured in molecule/c m2. I =
Using Eqs. (3.4)-.(3.6) along with the data in Table -

N, k,.,(T) has been calculated, and the resulting Ar- - -

rhenius plots for the vibrationally converged and OVA ‘0 
-

[ v,..,= V(r,, R 5, y5 = 0 ) J  results are presented In Fig.

- 
- 25. As might be expected front the appearance of the

Integral cross sections i~ Fig. 16, the OVA rate con— , -
stant Is considerably larger than the converged one at 10 - -

low temperatures, with the ratio of the two being 12. 4 ‘
~~

and 2,83 at 200 V. and 300 IC, respectively. At high VI 
-

temperatures, the two rate constants approach each 0 ~ 
-

- - - other quite closely, a reflectIon of the similar effective ~~ ‘0’ - V 
. -

threshold energies of the converged and OVA cross
sections. The high temperature portions of the Ar- 2
rhenius plots In Fig. 25 are nearly linear with resulting T ‘0~Arrhenius activation energies of 5. 2 and 5. 0 kcal/mole .~~~
for the converged and OVA results, respectively. The
high temperature Arrhenius straight line corresponding
to the converged results is represented by the dashed ‘0-• . CONVERGED - 

-line of Fig. 25. We will defer a detailed comparison of —
~~

these rate constants with those of accurate one- and
three-dimensional calculations and with approximate - - -

- 
theoretical and experimental ones to a separate paper. 

,~~
., . . 

. - — 
-

I -
— -

IV. CONCLUSION - 2 3 4 5 -
1000K /T

It should be apparent from the wealth of dynamical FIG. 25. Arrbrnlul plot of the converged and OVA pars-to- . —. -

iniortnation presented in Sec. III that these calculations ortho ooptaasr thermal rate constants for 1(4 R~ for the coo—
can be ext remely useful to our understandIng of chemi- verged and OVA (collinear reference potential) resells. The
cal dynamics. We would like to stress t hat these cal- dashed straight tine is tangent to the converged ons at high tern-
culations are not overly time consun.i~g, but ills un- p.rsteros.
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to more complicated systems . ‘The comparisons with ~51, Karplus, 8. N. Porter , and It. 1). Sharma, J. Chem.- 
approxImate calculatIons presented in Sec. ill, F were Phys. 43 , 3259 (1965)~ the classical angular distribution Is -

incomplete In that the results of quasiclassical and reported In Ref. 9.
~R. P. Saxon and .7. C. Ught , .7. Chem. Phys. 57, 2758 (1972).semiclassical coplanar calculations on the Porter— 3J M. Bowman and A. Kuppermann, J. Chern. Phys. 59, 6524Karplus H, sur fa ce are needed to assess the quanti- (l’~ 3) - — —

tative accuracy of these important approximate theories. 
~,J, ~ BOB, ~~ . ~~. ~~~~ and W. H. Miller, .7. Chem. Phya.

Also requiring further consideration is the use of col- 
~~~, 1343 (1973). -

linear-type theories to provide approximate coplanar re- ~J. .7. Tyson, H. P. Saxon, and.7. C. Light, .7. Chem, Phy..
suits, and similarly of coplanar theories to describe 59, 363 (1973).
the three-dImensional world, ~ This was discussed iD C. Truhlar and A. Xupperrnann, .7. Chem. Phys. 56, 2232

briefly in Sec . Ill . 1) and will be further investigated in (1972).
~G. C. Schatz and A. Kuppermann, .7. Chem. Phys. 59, 964 

-
a separate paper. (1973).

The coplanar calculations are also import ant in R. P. Saxon and .7. C. Light, .7, Chem, Phys. 54, 3874 (1972),
elucidating what kinds of phenomena are significant in ~ ~~~ (1972), , 

-

1G. Welken snd N. Karplus, J. Chem. Phys. 60, 351 (1974).chemical reactions, The magnitude of the quantum 5A. Altenbe rger—Siczck and J. C. Ught, J. Chem. Phys. 61, - 
-symmetry oscillations in the para-to-para angular 4373 (1974).

distributions (Sec. III. B) as a funct ion  of energy (Sec. tt A Kuppermann, G. C. Schatz , and lii . Beer, J. Chem.
111. C) and their absence in the corresponding integral Phys. 61, 4362 (1974) .
cross sectIons are a good example , Such quantum 0A. Kuppermann and C. C. Schstz, .1. Chem. Pays. 62, 2502
symmetry effects may eventually be a useful expert-
mental tool for characterizing reactive potential sur- i2~~ T. Tang and St. Karplus, Phys. Rev. A 4, 1844 (1971). -

faces , Also of great importance Is the characteriza- ‘~K. T. Tang and B, II. Choi, J. Chern. Phya. 62, 364 2 -

(1975).lion of the reaction in terms of direct and resonant 
~~~ It . Wal ker and It. E. Wyatt, J. Cbem. Phys. 61, 4839mechanisms. This was briefly mentioned in Sec. B. B, (1974)

where we remarked that the reaction appeared to be tt RCfere nCC 2 contains an ext ensive list of co llinear studies of
completely dominated by the direct mechanism, A more thi s react ion,
detailed analysis at energies hig her thanwere considered 1TH. S. Johnston, Gas-Phase Rca~Ho’, Rate Theo,’v (Ronald, -In this work indicates that in the neighborhood of cer- New York, 1906) , Chap. 10 and references therein.

- 
lain energies (such as 6 — 0 .92 cv) this no longer seems 13A. huppermann, C. C. Schatz , and N. 115cr, .7. Chem. Phys. I -

-

to be correct as very sIgnificant resonantlike effects 65 , 4596 (1976) , precedIng pape r , referred to as Pape r I in —
the present paper .are observed . ‘The importance ol these resonant pro- 11R N. Porte r and N. Xarplus, J. Chem. Phya. 40, 1105 

- 
- - -

cessej is discussed elsewhere.” (1504) I -

Finally, as was mentioned in the introduction, these 5We prefer the terms “coupled channel ”or “coupled equation” - 
- - —rather thin “close couphng” because we have found that manycalculations are sIgnificant In that they demonstr ate the channels art. needed to achieve convergence, including thosefeasibility of the method outlined in Paper I for doing 

whi ch arc not ‘ close ’ to either the initial or final slates con—
quantum 2D scattering calculations. Extension of this sidered. Imethod to the 31) problem h~s recently been accom- 11G. C. Schstz and A. Kuppermann, J. Cbem. Phys. 65 , 4642
plished, h*M and the results of these 3D calculations •.nd (1976). 65 , 4668 (1976) . followIng two pspei’a. - 

-

their comparison with 2D and lZ~ ~nes should be p.~ ~DoubIc precision (64 bit) arithmetic was used for all calculi— 1
tremely useful to our understanding 01 chemIcal dynam- tions.

~~~ ~ increases , the repulsive centrifugal potential increases ,Ics .
effectively raising the potential in the interaction region and
decreasing the reac tion probability. The “physical” scatter- - 

-

ACKNOWLE DGMENT leg wavefunctión becomes small In the tsterlction region as
this happens. On the other hand, when integrating the cota— -

Special thanks are due to Professor J . 1). Robert s, pled-channel equa ti ons , the closed-channel wavefunctions 
- 

-who as chairman of the Division of Chemistry and always increase exponentially in the dIrection of Integration
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stages of this research mustered the fInancial resources lion over the decre asing one. For large I, all channels are -

and offered the encouragement w hich were central to its cloaed in the strong Interaction region. As a resul t, the : -
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—- 

minus solutions, which decrease exponentially as one pene— -

trat es the potential barrier , sre the only physically mcanlng~ful one, and therefore the only ones which will contribute sig-
nIficantly to the physIcal solution. This implies that the -Wovit supported in part by the United States Air Forc e Office matching procedure wI ll sttac b a very small weight to the

of Scientific Research (Grant No. A FO.SR.43—2539(. plus aoluUona II.e., C ,(c ,rt sa in Eq. t~.44I of Paper Ii.
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Technology, dependent of any Information about the matching, and hence

I

.7. Chins- Phyt . Vol. 85, No. I I , 1 December 1976 
-~~~~~~~~~~ I

L - - - 

tCon~~bution No, 524 9. the reselling nonreactive transition prob~~Ilitiea will not be

-
— 

‘.- 
-

- 
~~~

. - - 

~~~~~~~~~~~~- - ,‘ -

----.44



_ _  _ _  -

G. C. Schala and A. Kupermann: Planar quantum mechanical reactive scattering. II 46*1

sensitive to the lack of orthugonality of s~~. 
.7. N, Fsrrar and • T. 1,-cc, J. Chem, Phys. 57, 5492

t4For example , see R, Courant and U. Ililbert, Methods of (1972), II. Ilaberland, C. H. Chen. and Y. T. Lee, At. Pays.
Mathematical Phrslc g (lnterseicncc, New York~ 1970) , Vol . 3, 339 (1973); B, Andresen and A. Kuppermann. Mo). Pays. - —
I, p. 4. 30, 997 (19’Zs).

~We have tested both e,q reasions In doing the OVA calculs- 31j, M. Bowman, A. Xuppermsna, .7. T. Adams, and 0. C. ___—

tiona, arid have found that Eq. (3.48) ...f Paper I leads to a Truhlar, Chem. Phya. LetI. 20, 229 (1973).
much poorer approidmatioo to the converged results than U0, C, Schata and A. Kuppermsnn, Phys. Rev. Lett. -35, 1266

does Eq. 42 .10) of the present paper, and that use of the (1975).
former expression can actually lead to spurious resonantlike U(5) I). J . Diestier. J. Chem. Phys. 54, 4547 (1971), (b) .7.

behavior In some transition probabilities. This could pre- W. Duff and 0. 0. Truhlsr. Client. Phys. Lett. 23, 327 -

sumably result from the tac t that in Eq. 12.10) . we have (1973), _ _.- ‘ -

analytically assumed completeness in carry ing out the matrix MA. B. Elkowi ta and It. E. Wyatt, J. Chem. Phys. 63, 702 -

multIplIcation present In Eq. (3.48) of Paper I. so the effec ts (1975).
of a severe basis act truncation might be less important than ~R. A. Marcus , .1. diem. Phys . 46, 959 (1967). 

— 
-

in Eq. (3.48) of I, where this completeness is neither assumed 3t tis ing microscopic reversibility the dependence of (4k,.. on - - -

nor ex plicitly Included . J can be extracted from the 
~~4I~~~ 

in Fig. 21 by mulUplying
Ij~ Geddes, H. F. Krause, and %V. L. Fite, .1. Chom. Phys. the latter by the ratio 2kW/thU11 .6~)I. where the wave num— —- -

56, 3298 (1972). hers k~ and k,1 refer to the t ’=O, j = O  and v~ O, j = 2 states of
11G. H. Kwei , V. W. S. Lu, and E. A. Entcmann, J. diem. H1, respectively, and (1 +ô g)/2 is a degeneracy factor. -
Pays. 59, 3421 41973). 5tThe diatribuUon may be derived from an information theoretic -

lID. A. Micha, Phya. Rev. 162, 88 41967); 0. A. Micha, formalism face, for example, A. IIen—Shaul, R, D. Levine,
Chem. Phys. Lett. 1, 139 (19C7)• It. 1). Levine, B. it. and It. B. BernsteIn, .1. Chum. l’hys. 57, 54 27 (1972)) by - -

Johnson, J. T. Sluc.crman, and R. Ii. ltern stt’in, J. Chem. assuming that the surprisal function is linear In the product - -
Phya. 49, 56 (l968)~ ft. D. Levine and It. B. j lcrn stejn , j~ rotational energy. Note that the ID trsnslaUonsl density of
Chem. Phys. 53, 686 11970). states is independent of £,. and is therefore omitted from -

- -

~This argument does not rule out vibrational Internal exci t a— Eq. (3 .3).
lion resonances. These resonances have actually been ob— ~I. Sh&Vltt , R. M. Steveng, F. L. Mimi. and M. Karplua, .7.

served In planar and 30 11 ‘ lt 1~~ tat higher energies than are Chem. Pays. 48 , 2700 (1968). -

considered In this paper). As one iiiight expect, however, flfl. B. W alker and It. E. Wyatt , Chem. Pays. Lett. 16, 52
they affect more than one partial wave 33 and are probably not (1972). - 

-

responsible for the oscillations observed here. ~A. Farkas, OrI hoh-i~drogeu,, Parahydroges awi Heavy Hydre—
TM For examples, sceJ. N. Farrer and V . T . Lee, .7. Chen i. get,, (Cambridge U.P., London, 1935) , p. 13. - -

Phys . 56, 5901 11972) .P. E. Siska, J. SI. l’arso n, T. P. 41For a recent paper on this subject, see It. It. Walker slid It. --
- Schafer, and 1. 1. 1,-c, .1. Chent. l’hy... 55, 5762 U971), E. Wyatt , Not . Plays. 28, 101 (1974). 
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Quantum mechanical reactive scattering for three-
dimensional atom plus diatom systems. I. Theory~ -

~

George C. Schatz’ and Aron Kuppermann
Anhiie Into, Noys’s Labomio.y of Chesticol Physic,) Caitufu.uiiiua lut,:uiua r of Technology. Pasadena.
Cahfotnia 91125
tRteetsed 21 December 1975)

A method as presented for accurstsly so is ing the Schrudinger equal lo,, for the react is e coll usion of an - -

atom w il t, a dhatom,~ molecule in three d,mensuons on a single Born-Oppenheimer potential energy
surface. The Schroditsgcv equation us lit-st expresscd in body-fused coordinates The was efun ction is then
expanded in a set of s ubr ,ti on —rot at uo n functi ons, and the resulting cou pled equations are int egrated in
each of the three srrs ngement chann el legions to generate pr ,m ut ise sol ution s. Net-i. ibm,. are smoothly
matc hed to each other on Ihree matching sut-la ccs which appropriatl ely sepa rate the arrangeme ni channel

- regions. The resu lt ing nsatc)sed solutions are linearl y combined to get ,erate w ase func iio ns w hich sat is fy the I 
~~~ -reactanc e intl scatientig mains boundary conditions. from whic h th e c ’uesponding S and S matr ices are - - - -

obtained The scat teang amplit udes in the heli cuiy rep re-sen tauuo n are eas il y calcul~ied from the buidy lined
S matrices, and from t hesc scat tenng ampl itude s sesersl types of differen t ia l and iniegr al cross sections are
obtained. Simpiifk’ati ons arising from, the use of pattt ~ sym meiiy to dca.-ouplc the cou pled-c hannel j 

-

equation,, the mat c ht ,ag procedures and the asy nipt otic anal ysis are discussed in detail . Relaluo ns between
certain important angul ar momeniuto operators in body- fused coo rdinat e s)slean s ire dens ed and th e I
asymptotic solution s to the body-fit-ed Scheodunger equat ion are analyz ed estensi sel y Appl ication of this I - 

-

fo rmalism to the thre e -dimensu ottai II -s It. reaction is considere d inc ludtn k th e use of arrangement channel I -
- permutation sy mtn etr )- . ese n—odd rota tional decoupling and posta nuu symm ei r lzati on The range of

applicability and limitations of the method are discussed.

I. IN TRODUCTION what different coupled-equation procedure in which
closed channels are included and for which the use of 

-

One of the most important goats of chemical dynamics hindered rotor basis functions Leads to simple bUst-rca—i~ the accurate calculation of cross sect ions for reactive lion properties. Quite recently, Elkowitz arid Wyatt °bimolecular collisions, Such calculations can be used have applied this procedure to the three-dimensional a
t o develop and test approximate reaction dynansic the- H • 11, reaction. Wolken and Karplus t’ have applied anon es and statistical theories , to advance our under- integrod ilfe rentiat equation method proposed by Miller” I

Istanding of dynamical processes governing reactive col- to 3DH + H. using a one-vibrational-basis-functIon ap- I - Ilisions, and to interpret , analyze, and make predictions proxiniation.concerning the results of experiments. - 
- 
I

In recent years . a number of attempts have been In a previous paper ” (hereafter referred to as Paper
made to solve this problem accurately (i.e. , quantum I) we described a method for accurately solving the - - -

mechanically) fcr the simplest possible such chemical Schr6dingcr equation for reactions of the type A * BC - 
‘.

reaction, the collision cit an atom with a dtatomsc mole- — AD. C or AC B on a single electronic potential ener-
cule on a single electronically adiabatic potential cner- gy Surface with the restriction that the m otions of the
gy surface, One of the ma)or difficul, - • in achieving three atoms be constrained to lie in a single space-f ixed I

this goal in the past hari been the abse, -.~~ of computa. plane. An extensive application of this method to the -

tionatty efficient procedures for obtaining accurate so- planar H • Il~ exchange reaction has now been made.20’ t’
lutionS to the Schrödinger equation for reactive colli. The present paper descr~bcs an extension of this mettiad - -

gions. F’or the simple case in whic h the three atoms to three-dimensIonal atom—diatom collisions. It yields - -

are confined to move on a space-fixed strriight line, a computatiotsally it racticat procedure for accurately
adequately accurate and efficient meth.,ds have been de- calculating reaction cross sections for many atom— —

veloped within the last several years and applied to a diatom chemic al reactions. A number of additional con- $

variety of systems, ~“ i, However , vh t ’a the collinearity cepts not present in the planar problem are introduced,
- restri ct ion sa eliminated , the problem becomes more and the simplificattons occurring in an application to - 

-

difficult , especially when the atom is permitted to react three-dimensional II * H2 are discussed. Preltmtnary --

- 
with either end of the diatom. To tackle such noncollin- results of an application of this method to the He H2 re- - -

oar problems, several different techniques hate been action on a realistic potential surface have recently -

proposed and to a certain extent tested , Itaer and been published,28 providing the firs t fully converged I
Kour i ” have develop ed an integral equation method and quantum mechanical cross sections for a chemIcal re- 1
have applied it to a simple three -dimensional model action. The extens ion of these calculations to energies
atom plua diatom Sy Stem in wh ich react ion with only one above the threshold for vi5,rational excitation has lead I -

end Ia permitted . Saxon and Light , and Altenberger- - to (t i e discovery of an internal excitation reso nance ’0 -
Siczek and Light , t- have Investig ated the Cop lanar H. H2 for that reaction , a Phenomenon whose experimental I
reaction using a coupled-equatIon (I.e. , close-coupling ) detection may be an Impo rtant tool in the charactert ia- I -

procedure which ignored closed vibrattondi channela , tion of reactIve potential energy surfaces. A more I
while Wyatt and co-workers ” have developed a some- complet e description of these results for H .H1 follow~~’ I
4642 The Journal sat Chemical Physics , Vet 65, No. 11, 1 Decmxtusr 1978 Co~yr.glut C) 1976 A mer,can m t-tout. of Pityici 
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The method utilizes a coupled-channel (i.e. , close- A
coupling) propagation technique to generate complete

nd regions of co nfiguration space , followed by a
“matching procedure” in which the solutions are
smootniy matched to one another on a set of three ap-
propriately chosen surfaces which separate these three
reg ions. The scattering matrices , amlilitUdeS. and 

-

sets of solutions in each of the three arrangenient c’han-

- — cross secliotis are then determined by analyzing the
asymptotic behavior of these matched solutions. As
thus formulated, the method is similar in spirit to the
corresponding planar theory described in Paper I and, 

Va
for this reason, many of the concepts presented in that o
paper and which carry into the three-dimensional world
without modification will only be summarized briefly,
There are, however , some aspects which are different , - 

-

most notably in the mat ching procedure, and these will FIG. 1. Vectors used to specify the location of the three atomS
be discussed in detail. In addition, the concepts of A , Ii, and C relatIve to (lie center u)I ni t -as 0. 

~~~~~~ ~~~ 
and -

angular momentum coupling, of body- and space- fixed CAB denote the locations of the centers of ma.s~ of the diatoms
ftC , AC . and Aft . respectively. The vectors Ni . r~ - ft , .  r~,

co”rdinate sysiems , and of parity symmetry decoupling 
~ r are tiefineci in text.

will be developed thoroug”!y as their utilization is of
great impo rtance to the three-dimensional method.

In Sec. II we discuss the body- fixed partial wave (aØy~ fly a, and ~-aB, and define the vectors fl~, i1,,k,,,i,,
Schr6dinger equation along with angular niotos-titum cou- and )~ ,, r, accord ingly . We also introduce the scaled
pling and the division of configuration space into an- variables R,, rt- which are related to at- , it- by
rangement channel regions. The fully coupled Schr~- r, = a;’ £, , (2. Ia)
dinger equation for the four different internal configura- —

(ion space regions of each arrangement channel region lit- , (2. ib)

is discussed in Sec. III and the matching procedure is where - ‘ -
described in Sec. IV. In Sec. V. the body-fixcd R and
S matrices are defined and their relationships to the = (.u t- ,.,,1i-* .-.)~” (2. 2a) A -

holicIty representation scatteri ng amplitudes and cross and i,,,, and p~ , are the reduced masses correspondingsections are derived. In See , VI we discuss the limita- to ~~, and , motion , respectively:
tions of the method and its possible i~eneraltzat ions. In
each section, where appropriate, the simpliflcatiOns i’i,.. = ‘;it- (’n~ + m,)/(in, + its ,, + m,) , (2. 2b) 

- 
— -

pertinent to the H + 
~~t- exchange reaction are indicated. = ~~~~~~ + a,,) , (2. 2c)

Appendix A outlines the derivation of the body-fixed
Schrödinger equation and indicates relationships between This notation is identical to (hat used In Paper I and is
several Important angular momentum operators. Isp.. dictated by the considerable mathematical convenience
pendix B includes a discussion of parity symmetry and associated with using scaled variables. ~~~~~

the simplifications in the metnod which may be gained We are interested in solving the six-dimensional 
-

- -

by explicitly including it. Schrödinger equation for the motion of the three nuclei, , 
-

on a single electronically adiabatic potential energy sur-
II. THE BODY-FIXED ROTATIONALLY COUPLED face , obtained after the motion of the center of mass -

SCHRODINGER EQUATION of the system is removed. The surface (in the absence

A. Separation of internal configurat ion spaos into of external fields ) is a function of only three appru-

a~angsment dsannel ~~~~~~ 
priately chosen variables which specify the internal con- - -

- - figuration of the system. A convenient representat ion
We consider the three-dimensional col lision of an of this potential V is afforded by the use of the variables

atom A with a diatomic molecule tiC and, in parallel, Rt-, rt-, and 
~‘t- 

(t a ~~ , ~~, or y ) , where yt- is the angle be-
the U plus CA and C plus AB collisions, A convenient tween Rt- and ,‘

~ 
defined by

procedure for specifying the locations of A (a A s ),
B (a As), and C (~ A,) in the center of mass system Is yt - a coe ’ Rt- ’ i’ t- On  y, ai (2. 3)

I Rt- l I r~ldepicted In Fig. 1. L~ is the vector from the center of
mass of BC to A, and i• is the 13 10 C internuclear vec- in terms of which V = Vt- (r t - , R5,y , ) . As was discussed in 

—

tot. As ika I — ~~, with I remaining finite , we obtain Paper I (Sec . Ill . A), the variables lit- , r, are useful for ‘- - - -

the sep arated A • BC arrangement channel (denoted by describing the triatomlc motions only for configurations
the symbol a), The vectors lL~, F, and 1%,, j, are de- in which R, is significantly larger than , say , R, or R,. 

--

fined analogously for the arrangement cha..nets 8 (B + AC) This is most easily understood by representing 1” in
- and v (C • Aft ), res pect ively . Note thai the arrangement terms of variables ~ 

(r,’. 02)1/1 Iwbich , as shown in -

of the vectors in Fig . I is cyclic in the indice s aøy . We Eq. (A6) of Paper I is independent of s), sst- u 2 tan’’(,-t-/
let t i-s represent any one of the cyclic permutations R,) (in the 0 to a range), and 

~
- t- . The properties of such -
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a representatli- i have been discussed elsewhere, ~‘ the dix A of that paper. They are of great importance in 
—-

most tmpo: cant one being that a change Irons polar co- the matching procedure of Sec. IV . and the method of
ordinates ~~, wt- , vt - to ~~, u ,,, V, rotates the map of I’ solution of the SchrödInger equation in each arrange~nvnt
without distorting it. For the Porter—Karplus Ht- sur- channel region must include a procedure for ~e(ermIn-
face, this representation of I’ is given in Fig. 2 of Pt-- Ing the wavefunction of these surfaces. The remainder
per I and discussed in Sec. III. A of that paper. How- of this section will be concerned with th~’ rotationally
ever , the range of y.. in the 3D case if 0 to a rather than coupled Schrödinger equations for each arrangement

- . the 0 to 2s of the 20 case. From that figure one can channel region.
see that the three-dimensional internal configuration
space is naturally divided into arrangement channel re- B. Partial v.eve analyiis
gion eubspaces. labeled by the indices Si = O,5l,V. In re- In the system of coo rdinates spec ified by the index Si ,
gion Si, for large ~~, Rt- is approximately equal to Zt- and the Schrödinger equation for the motions of the three
rt- is approximately haLf of the distance uf the point nuclei is
P(-t, ie~.yt - ) to the Z1 axis. Therefore, in that region .
R~, rt-, yt- are the “natural” variables for describing /

the translational, vibrational, and rotational motions, ( 
~~~~~ 

— ~~ L_ ~+ i~(~t-, Rt- ,yt -)— E) 4’t-(~ t- , ~t- )a 0, 
- - -- 

-

respectively, of the three atoms , but these same van - (2.6)
able a are both awkwar d and inefficient for representing where and are the appropriate Laplacian opera-
the corresponding motions in arrangemen’ channels t-~ 

tors , and E is the total energy excluding that associated
- and a. As a result , we will use Rt- , it- , vt -  in region Si with the motion of the center of mass. Upon Introduc- -

only. Associated to these , we will pick a set of three tion of the scaled coordinates of Eq. (2. 1) , Eq- (2.8) is 
-

additional external variables (which specify (he orienta- converted to - -

tion of the instantaneous three-atom triangle with re-
spect to a laboratory system) which will also be differ- (— ~~~~~~~~ + ci t- ) ÷ l’t-(r~, Rt- ,yt - )— L) +t- (rt-, Rt- )= 0 , (2.7) - 

-

ent for different arrangement channel regions. Accord-
ingly, our procedure for solving the Schrödinger equa- where the reduced mass p is given by - -

(ion involves first (he generation of solutions in each of = (~
, t- ~, ,)uz =( ~~~~~~~~~~~~ + in,,. rn,)~~’ (2. 8)

the three arrangement channel regions Si a, jl,y in
separate calculations using variables appropriate to and is independent of the choice of arrangement channel.
each region. This is followed by a matching procedure We now introduce the space fixed coordinate system
which yields a set of smooth and continuous solutions Ot--~z (Fig. 2) centered c-n the center of mass 0 of the
throughout all of configuration space. To complete the triatom system and whose axes are constantly parallel
problem, we need to linearly combine these “pnimitise” to the axes of a laboratory-fixed system of coordinates .
solutions to generate ones which satisfy the desired In Oxyt the polar and azimuthal angles of lit- and Ft- are
asymptotic boundary conditions. 

9t- ~~. and e,t- ,~ ,t- , respectively. By expressing the
- The procedure thus outlined is general and cm be Laplacian operators in Eq. (2.7) in terms of Rt- , rt- and 

-

applied to any nondissociative reactive system, but in these angles, the Schrödinger equation can be rewritten
any specific application., we must specify the boundaries
(in internal configuration space) of the three arrange- . -

‘

ment channel regions. As was discussed in Sec. III. A
of Paper I, the choice of boundary surfaces is primarily
determined by the nature of the potential surface , but 1s’” t-
for H + Ht- and many other reactive systems , a very
useful separation is obtained by the use of the three A t-half-pl:LneB a,,t- , a,.,,, and 5t-. of Fig. 2 of I and defined
by Eq. (3. 2) of that paper. They are limited by and
intersect on the 0Y~ axis. a,,t- makes an angle P~t- (in
the 0 to v/Z range) with the O’4Zt- plane given by

in .5/ 
, 

Pt-
“Hicos~~t- ’ + ~~~~~~~~~ 

(2. 4a) I ‘ 0

ii 3I

where

sin$,,t- = (~- -—.-— j ~ --——-_ ) , (2. 4b) et- ,‘ S
-. V ~t-

a ni t- + in, + in,, , 
- 

(2. 5) 

A r
n’s

~
Analogous expressions are valid for the angles between

A lta,,. and OY,Z ,, and between s t -i and UY t- Z.. These ‘~..t-

surfaces (i-Si aØ, øy, va) , hereafter called ihe matching y~ç, 2. Space_fixed eo.,rdinate system Oxy r and body-fixed
surfaces , are analogous to those used in Paper I, and system s OX t- y t-Z , and Os ~v ‘z~, (See. flIt). The origIn 0 of

their prop erties are described in great detail in Appen- this f Igure is the sense as that of Fig. 1.
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as by rotating it counterclockwise about 0Zt- (r 04) by an

~ 
h’/ 1 at- 1 o~ ~ angle (t - (in the 0 to Za range) so as to bring Ox, into / 

/

~~ ~
‘
~~~

“t-) (he kt- , r, plane and Oy’ (which is independent of A ) per-
pendicuiar to it and oriented in the directIon of lit- • rt- : 

-

-i
(2.9) -, Rt- . r 5 (2 12)2prt- 2gi

~ i R t- .rt- i ’
where I, and ~t- are the usual orbital and rotational an- The Euler angles which rotate 0x~z Into 0$~’4 are 

-~gular momentum Operators expressed in the s lher ica l 
therefore a=t t -, $=8 t-, y = i ,. In either of the body-coordinates et-, t- t- and 0,,, o, and are given in Appendix fi xed coordinate systems OX,l~,Z, or 0%,y’4 the van - —

A. The total angular momentum operator .1 is the vec-
ables used to describe the system are ~~~~~~~~~~~~~~~ 

-
tor sum of l~ and 1I~ As seen from Fig. 2, d~ is the counterclockwise angle

J a1 , +j , , (2, 10) f rom 0)’t- to Oy ’ or from OXt- to 0$ as viewed from the -

and is independent of arrangement channel, positive OZ t- axis. Since OF, is perpendicular to the
OX t- Zt- plane and therefore (he lit-, Or plane , and Os-’ is 

- — 
‘-

The operators Jt- and J, ((he z component of J) cons- - perpendicular to the lit-, rt- planeS, we conclude that 
~ t-nsute with each other and with the liamiltontan H. In is the angle between these las t two planes. This can --  —~~~~

the partial wa ve analysis procedure , we ex pand +t-(r,,Rt- ) also be seen by noticing that th~ plane cont aining the
In terms of simultaneous eigenfunctions +~5 (r,. lit-) of three axes OX,, 0$, and 0) , is perpendicular to the
Jt a,, and!! with eigenvalues tzt-J (J ÷  1) , 11.1!, and E, R, vect or and intersects the lit - , Os and Rt -, r, planes
respectively: along the OX, and 0$ axes, resp”ctivety. Therefore, 

- -
— 

- 
1 the angle d, between these two aaes is equal to the ang le

4”(r,, lit-) = k,,, ~~ C~i.J $~5(r ,, at- ) . (2. 11) between those two planes. A motion in which R,, ~~~i.e i.-i 9t -, rt -, and yt- are kept consta nt but f t - var ies is a “tons- - - —
The +t-,,, stilt satisf y Eq. (2. 9). bl ing” (i.e., rigid rotation ) of the trtato mic system

arou nd t he R, vector , and for this reason the ii, angle
C. The body-fixed Schrödin9er equation will be called t he tumbling angle. in wha l folIo s -s we 

— -—

In th e standard space-fixed theory (as forn s ulated , will find it most convenient to use the coordinate sys -
for example , by Art hurs and Eialga rnns t -t -

~ , one now ex - tens OX t- Y,Z, for deriving the cou pled form of the Schnii- -

panda ‘l’~~ in terms of a set of simulataneous eigenrutsc- dinger equation and O$y’z,~ in developing the matching
lions of Jt- , J~, l~, and ,~~, thereb y obtainieg a set procedure. The procedure for expressing the operators • .  -

coupled equations in the quantum numbers j , and ~,, 
J~ and l~ of Eq. (2.9) in variables 

~~~~~~~~~~~~~ 
is de-

scribed in Appendix A. -This derivation is sunimarizel in Appendix A. A more
convenient .t-nd computationally efffr icnt procedure for We now expand ~~ in terms of the elements of the
our purposes is to ti-ant-form to a system of body-fixed Wigner rotation matrix 0 (a ,13,y) as follows3t: -~~~
coordinates. Those coordinate systems were applied
to quantum mechanical problems long ago by Hirsch- 4-~,5(r t- , R,) = ~~ D~0t- (~ ,, 8,, O)4’~,0t- (r t-,Rt-, Vt- , d’t-) .
felder and Wignor’° and have been discussed extent- is ely oi.-J (2.13)
by Curt iss, Hirsc hf elder , and Ad ler 3t - and nt -ore recent- The notation used for t he matrix elements is that of

follow that of Pack. In a fully cons-erged calculation, The quantum number f~i, in Eq. (2.13) spec if ies (he
iy by Pack,3t- and much of the present deve icpnsent will Davydov .” +~~t-, is called a body-fixed wavefunction.

both the body- fixed and space-f ix ed formalisms lead to component of the total angular momentum J around Rt-
the same nunsber of coupled equations and, for fully or, equivalently, OZ,. The component of it- (the angular
converged nonreactive atom diatom calculations, they momentum conjugate to lit-) around this axis vanishes
may be implemented with comp ar.sble ease. However , and therefore It, also specifies the Z, component of the
body-fixed co ’ rdtnate systems Lead to t -n appro xim ate rotational angular monsentum 3, in  the body-fixed frame. - -

decoupling of Certain degrees of freedom which is not The equality of J5, andJ,5, is verified indep endently in
naturally present in the space-fixed analysis and which Table I (which is described in Appendix A). We will -

Is usefu l its the development of approximate theories. 
- refer to either J~, or jt- ,~, 

as the tumbling angu.ar mo-
More important, the body-fixed analyst-s leads to both mentum (since it describes the tumbling of the triutom

‘ computational a.sd conceptual simplificatlons in the around Rt-) and It, as the tumbling quantum nu nsber in
matching procedure, thus providing a considerable ad- arrangement  channel  A.

- . vantagc in ritactive scattering calculations over the cor-
responding space-fixed theory. As outlined in Appendix A- substitution of Eq. (2.13)

into Eq. (2. 9) yIelds the following set of fIt- -coupled -

We now introduce the two different body fixed coor- equations for the
dinate systems OX, Y,Z, and O$y ’4 (see Fig. 2) as fol-
lows: (1) OX,Y,Z, (not lo be confused with the interna l ~~~~~~~~~~ Ht-~’~~ t-,~ ~‘~~,o t-.i ~ ~~0~,0 t-t-~t-

g.~~,0t-,,t- a

configuration space cco rdt nate system OX,Y,Z, of Fig. (2 .34)
2 of Paper I) is obtained fi-oni Os vz by rotating through The H

~’,n~ 
can be considered as the elements of a tn -

t he Euler anglest-t- a =q t i,, f l=Ot- , v =0 so that the resuit- diagonat-) Hsmii1onlan operator matrix H’t-(r,,R,,y,,f’,)
ing 2, ax is point s along the K, di rection and the F, axis whose diagonal and off-diagonal elements are define d,
Lies In the xy plane; (2) O$y’4 is obtained from OX,F,Z, respectively, by
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TABl E I. Angular momentum opt- rators in iipace-f....c-d j nd body -fise,l coonit itute ,isstc;ni.

Oxys 
- OX,Y,Z, Ox~~’ z~

~ 3 ~~~~~~ ~~~~~~~ .cos8~~) J,1 _th (_~~~~~
_

~
dIflO a 

ic ott’co.~

Jt~
s _ li(_3inoe0t9~~~ .7,, 

_ EJi~~j  .7,.-

• 
- :  ~~~~~~~~~~~~~ 4cO.~~~ _ c ot8aIn4~~ )

- - 
~~~~~~ ~Z, ’~~~5 J,• - .- i5~~ - 

-
-

j, • = _Ih[cosCsine.sInOsin cot-p hi, -. _ iE(_cos.!cot-v~~ - _~ii (_ccit > 

~
_co co cos.!cot))a~ 

_siii~ 5~) - -

_(stno cos
~

’co cos8stn.!)
~~ J

it-, _ m[isin.~atne —cosôsIri4 cot-i It-i, 
- —ih (_siti.! cot

—.In&Cos 8 Ccie~~cot-i ) 1~ • Cos.~~ )

• (Co8~~cos.! _ alnóco 6sinJ~~]

Jt-, _i5 [(cos0 ~~~~~~~ cot-,) it- s. 
- -i t - i,. ~ 

-

-.lnesin,

— 
- ,, ? j~ .~; 

,,~ j ? -4 .4 .4 j? j ? ,j ’ ,j !, - - 
—

= a~[~~~.e~to j  
2cos O ~ ? 

~thcot8Jr,

.tt, 8 a.- — stn-8 5~.3. 
- 

-

— - i~ 
= _,~~,.,i , -11. )~~ J.z, ‘)~r, 7i5 , J~ )~~ • ‘.7k, ’

=_ a 2(~~~.cot.i;; -j4,~
_
~ç ~~~~~~ 

— iScoti),,.

it- ’~ it-,1. ‘j ,,J,t-i,S, ~ , ‘J - it-z,Jz, ~~~~~ J,’J ‘h,~
- ,rco,~~cotV _!L_ 

~~~~~~ .
~~ — ~~ ~~ .7- 

- 
-

~~~~ I sine a,ao s in8 ?iSC Jt-rt- Jy, j ,,.J,. .- C i ,. 
- -

—aInicotO —sIn e Cot) 
~~~~~

82 a’]
‘coe d ‘(1 — ‘oa~ cot-b cot8 )-~-~-, -

‘rhe sutiecrt- it A has been omitted From the symbols 8, ‘
~. 

-
~
, I- The expressions for j ? , ~~~ and j ,. J in te rns . of

8, ~~. ~ . 4 are tndcpett-dent of coordinat e system.

- ~ 1! 55 ~~5* \ ~~ 
(2.15) results directl y fr om (he lf/2p.R~ term in Eq. - -

~~~~~ 2~s ~r, ~~ rt- 
~R, aRt-,”1’) + 2iir~ (2.9>. Defini ng $~ as the (2fI, + 1)-dimensional column

.15, vector whose elements are (he ~~~~ Eq. (2.14) car. be
• 1j ilJ(J + 1)31’ — 2fl,fl it-,, • • Vt- (r ,,R,, v,) 1,ut in the matrix form

and . (2.17)

_________________ Equations (2. 14) or (2. 17) are the body-fixed partiaL

- - 
~
‘
~:.~~t-t-.t- 

—~11J ~J +  1) — f I,(It,* 1) J . (2. 63 
~-a ve Schr &i inger equation. Equation (2. 34) is Identical

- t o tn e co rresponding result of Pack 3t and indicates thai - 
-

The j
~ 

are t he lowering (-4 and raising (+) oserators of tho kinetic energy operator is no longer diagonal in (he
• the rotationa l ang ular momentum Jt- in the i’ody -fi xed body-fixed representation and is the sole nioc hanist n

OX/,Tt-Z, coordinate system. The 1/2pR~ term in Eq. which couples different tumbling quantum numbers It,. 
-
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- 
-

The potentia! coupling Is diagonal in It, and is respon- tion and matching regio ns. This sep aration of kine - - -

sib lit for c’:j pling between states of different vibration— mat te and potential coupling is of print-c importance in - 
- .

rotation quantum tiumbers v, ~,, 
as indicated later in the development of approximate decouplin .~ procedures ,

Eq (3. 16) and its counterparts for the strong ir.terac- as will be discussed in the next section. . 
-

____-- _ .__ . J 
-

D. The rotationally coupled Schröd,nger equa3ion; tumbling-decoupling approximations - —

We now expand the body-fixed wavefunctions ‘l’~ t-t-, in tt- rms of the spherical h~,rnionics Y,,0,(y, , i f ,) which , as dis-
cussed in Appendix A, are the simultaneous eigemfunctions of j~ and fit-,,

;

*‘,0,(r ,,R,,v,,4,) =  >,.. Y,,0,(v,,f, )u t-,,,0,(r,,R ,) (3, = — J , — J + 1 , ..., J; J r  0, 1, 2 , ... (2.18) -
~

- . - - 
1,.ui,

if we substitute this Into Eq. (2. 14), multiply throughout by 
~
;‘LOf~~t-~ 

4-,) and integrate over and f, (us ing the solid -

angle volum e element siny , dy,d4’ ,) , and finally interchange the prit ned and unprim e— ’ quantum number s , it becomes
a Schr~dinger equation in the two scaled distances r,,R,:

= 

(i
~~tt, — E) u-~.,,o, (y t-, R,) + > V,~~ u~,,.0,(r,,R,) +1~~’~t- ,,1u-~,, ,0,,,(r,,R,) ~~~~~~~~~~~~~~~~~ =0

J = 0 , 1, 2 , . . .;  It, = — j , — J . I  J ; j , =~ It , j ,  ;~~, I + i , ... , (2 ct -

where -

s~’~’ 
- 

~~~
—(

~~
- h-yR, ÷ 1 j,(i1 +1)31 t - 

~-~- J ~J +  1)— 2It~+ j, ( j ,  + ill , (2.20)

= — 
~~~~~~~~~~ 

( ;, fl ,)~~ ( it-, l-Z t-~ , (2.21)

~,Cj,fl ,) = [J ( ,~r ÷ 1)— (2,(It, 1)1’ ‘t- nJ , (2.22) 
-

- . and -

-- - V °,~,
(r,,R,)= (it-fl t-l V’(r ,,R,,y,~I j ’,It ,) 

— 

(2.23)

— Equation t2. 19) is the three-dimensional generali zation ekments , scanned by 5,0,, are the functions t4-~,,n,(r,R,)
of an analogou s equation for co l linear ant-i copl anar ’t - Eq. (2. 19) can be rewritten as - , : -
reactions. None of the four ang ular coo rdinat es 0,, fit- , ,t- - 

- 

2 263v,, 4-, appear in it, with otily the two scaled distances t -t + V ) .. — Ew1 - . ‘I. .

r,,R, remaining. In the co ll inear case , none of the Equation (2.26) shows clearly that the potential coo -
angular momentum quantum numbers J, It,, or I, ap- pling in diagonal in 13,. Thk, along with the weakness - -

pear , and we have only one sod , equation. For sys- of the :en.i-i(ugal coupling (due to the tern .s in t ’t- ,~t -f(ems confined to a space-fixed plane, It, does not ap- angular ori~’,r.) for small J and e t- has lead to the deve i-
- pear (or it can be considered to nave the f ixed value opment of fairly accurate tun,bl nt’-.decoupling approxi— —

zero) since the system does not tumble, and there is mations by several ~~~~~~~~~~~~~~~ - it- , studies of nonrean— - .
t herefore ito It, coupling. In that case. j, assumes all tive atom—diato m scattering , in such g~oce4ures, the
integer values, including negative ones , and there is 

~~~~~ t erms in Eqs. (2. 1~ ) and (~ .24) are neglected ,
one set of j ,-coup l-t -d equations for each J. In the pres- (hereby making Eq. (2.26) be diagon al In il ,. In addi-
ent three- di mensiona l case , there Is beth it- and f2t- tion, the i1t-/2gR~ term in Eq. (2. 20) [wh ch arises
coupling, but still noJ coupling. Let us co,isider a ki- front- t-hc i~ term in Eq. (2.9)1 is usually replaced by an
netic energy matrix (“(r,,R,) (wh ich includes th e cen- approximate expression. Pa-k t-2 replaces it by - -

tnifugal potential terms) and a potential energy matrix ?I t-J f ,J + 1)/2 p R ~, and McGuire and Kouri” b, 31’z ( z  • 1)/ -\
Vt-(r ,.R,) whose rcws and col umns at- scanned by the 2pR ,t- , wher e it- ij the orbital ang ular momentum quan - -
indices ,,, fl, snd j ~,il~, ies pect lve ly . They are defined to m number In the space-fixed system of coordinates.3’

- f.i ch addition al approximations are unnecessary to pro- -

• ~2 24t- 
duce It, decoupling and may furthermore Intro b.i’ e ad-

1,0t- It-It- Ii,. O t-~I O,.i$,•i ‘ ditlonal errors without significant computational sim—
plification; we suggest that they should be omitted. For

‘V ’)’t°3 6 V’° ‘2 25) 
the case of reactive scatter r ng, an It, decoupling re- —

it- a, °t- t-4 “4 ‘ qu ires negl ect of the ~~~~~ 
In Eq. (2.19) for each -

respect)’ ely. where the reveral f and V were def ined s rran g?ni ent channe l region A • 
~~ , 13, ~-. The exact -

- - by Eqs. (2 .20)— (2 .23) . It can be seen that I’’ is diag- matching procedure described In gee. UI may be re- -

onal in 5, (and (nidiagoral in It,) whereas V t- is diagonal tam ed, or be replaced by approximate ones shich re- 
- 

-

in 12,. Defining ~4(r,,R,) as the column vector whose lain the spirit of It, decou pling. In a separate pape:
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we will present act -me results of an application of son ic ~~~1~~~~ I

The elements of the potential coupling matr ix of Eqs. 
—

of these possible procedures (0 31) reactive scatteri ng. — ~ ‘(, R’ Io. k o
6 Ii I(2.23) and (2.26) may be conv enientLy calculated by cx- Ipamiding the potential Vt-(r,,R,,y,,) in a se ries of 

1 .2 2.4eLegendr e polynomials 
i 0.6 18

t~ ir,,R,) -—~~~ 

~ ~ , ~. I

V’(r,,R,,)- ,) =~~~ V~(r,,R,) P,(c osy, ) (2.27) 

- 
I*.0

wh ich, when substituted int o Eq. (2. 23), leads to t -’ 112
o

~~~~~~~~~~~~~~~~~~~~~~~ 
.0 •C ( j , kj ; 0 ,00,)1,4 ,_, 2j~+ I~ 
~ 3 , I I

C ( i ,k j; 0 0 O) V~(r ,,R,) , (2.28 ) -

wher e t he Clebsc h—fj ordan coef ficients C are eapress ed ,
in the not ation of Ros e. ’7 For collisions of an ato’n Th~with a honionuclear diatomic mole cule (as in II + H,), the
only nonz ero tern is in Eq. (2.27) occur for even k
Isinc e V’(r ,,R,,y,) is ..ymmetr ic about y, =a/ 21. Since”

we see that Vt- does not couple ~~en with odd rotational

C (J , kj~; 000) =0 for j,+k.j ,’~~odd, (2 29) 0.6 12 1$ 2.4eV

I 2 3 4 5 5 - 
-- -sl a(es. Use of t his decoup ling in reducing the necessary r~ 

(bohr)calculailons for reactions like H * H~ was discussed in
Paper I for the planar cas e , and most of the si mpli fi - i1( . 3. I)tVtSlOfl of the R,, r, s~wce into four regions. I. Ii .
cat lo ns descri bed (here are valid fo r 3D collisions as III , and I S .  The contourS are t’quipotenttals of th e matr ls dc -
well. Note that Eq. (2.28) involves a single sum over m5’nt l~ (r t - .  R ,) It-ce Er1. (2 .2 7; i in cY for the 1~ oter— Kar-

plus II - II. pr*crsial energy function . The dashed tine is theproducts of Clebs ch—Gordan coeffi cients , a ,ubs t an t ial lint- of miteepcst at -cents for V~. The locaiions of the pointssim plif ication over th e corre s po.-idm ng space-f ixed cx- P~ I’o and J’~ arc’ di~ cust -cd in Sec . III.A of the text. Q is . -

pansion which requires 6-) symbols ” (he origin of (hi t - space.
Let us now define a new function F~,,g,(r,,R,) by

?,,n, (r,,R,) =R,v,u~,,0,(r,. Nt-) (2. 30) pseud os -ibrationa t fut ic t io ns whic h loca lly span the r,,R,
Substitution of this Into Eq. (2. 19) leads to confi guration space along cuts which are appro atm ately 

• 
I

perpendicular to a conveniently defined reaction coordi-
(It-I, —F)?,,,0, nate. The resulting expansioii coeff icients satisfy or- -• at- n,

dinary coupled differential equations whic h must be

• ~ V~;:I;~ ~~ * “t- 

~~~~~~~~~~~ 
÷, ~~~~~

,
_ , F~,,,0,_ , = 0 numerically integrated through th e arrangement channel I - -

n,.o u’i region A to generate a set of so lutions to (he Schr ödin ger I - --
(2.31) equation In that region. In order to obtain an efficient I -

where representation of the pseudo v ibra tl onal motion every- -

8’ (a ’ at- \ j t -(j t- • where, a-’- must change both coordinate systems and :at-n, 
— 

~~~ ~~~~
T t -  a~~) bas is sets fr equently during this prop agati on. This may

be done in many d ift c rent ways depending on the bound- “
5

aries of the arran ge ment chann el regions and the shape -• ~~~iJ a. 1)— 213 • i,(j , • 1)1 , (2.32) of the pot ential energy surface it. these regions. For
the H * H, reaction, and most others for whi ch theand the remaining qu antities are defined by Eqs. (2.21 )— choice of matchin g surfaces is g iven by Eq. (3.2) of(2.23). In matrix form , Eq. (2.31) can be writt en as Part-c r I, a conven ient procedure consists of d ividing the

(j l t- ÷y t -)p~~ 
~~~~~~~~ , (2.33) r,.R, conf iguration space into four areas call ed reg ions ,

as depicted in Fig. 3. For reference Contours of the
wh ere t ” Is defined aint-ilarly to t ’t - and F~ similarly potential matrix element t’0(r,,R,) of Eq. (2.27) for thc
t ow s . Equations (2.33 ) and (2.33) are called the body. H, Por ter—K arp lus surfac e” are plotted on the same
fixed ru(a(lonally coupled Schröd inger equation. f igure. The regions are denoted as follows: I—asymnp-

t ot ic  reg ion; LI—w eak interaction region; Ill—strong
ill . THE INTEGRAT lON IN ARRANGEMENT interaction region; and tV—match ing region. The
CHANNEL REGIO N X boundary point s P~. P,. and Pt- are requ ired to lie in

the high-energy plateau region corr espo nding to dtsgo-A. Division of r,, R, configuration tps~~ •nto regions elation of the t riatoni j c system int o A fl ÷C (i.e , -

To solve Eq. (2.31) or (2.33) w e expand the wave- large r, and R,), in positions which are primarily de- - N,
funct i on ?,,, 0,(r,,Rt- ) In term~ of a set of one-variabl e ter mi ned by certain geometrical c riteria. These are 

- 

-
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described in detail in Sec. lll. C of Paper I and are Un- Of cour se , as 14— ‘ (the “ far ” asymptotic regi ot i) , ‘ -

changed iii (lie present application. Within each regioti. Eqs. (3.4) completely uncouple and the ~~~~~~ 
become

we choose a set of orth ogonal coot-dmnates which eH i— solutions to r -

ciently describe the local vibrational amid translation al 
~ dt- 

kt-I~
)’
~ ~~~ (Rj - 0 , (3.6)motion. The choice of these co or d inates is also the ~—~7~

-y n51t- ,g,,,,t-0, -

sa m e as its Sec . lII. C of Paper I. -
which are sift-lilY litsear combinations of exp (u ik~~~R,)

B. The coupled Schrödinger equatio n in the for open channels (K ’ ~~~~~~~ and exp(t ~ ~~ 114) for

~~Op.gatiOn var iable closed ones (F’- ~~~~~~~~ Equation (3.4) may be solved
analytically either by diagona lizin g the l i ansi ltot s iat s in

We now consider the solution of Eq. (2. 31) in each of ( It -at equation or by reali zi ng that the corre spo nding
the tour regions in arrangement channel region A~ Much space-f ixed Schr~dinger equatiots is already diagonal,”
of this treatment is completely analogous to the corre-  and (It -us its solutions may be line arly comb ine d to sat-
sponding coplanar theory (Sec. III. B of Pape r I), and is ty Eq. (3. 4). ” The solutions of the space-fixed
that paper should be consulted for a tsiore detailed ex - Schr&linger equation for open channels are related to
planation o f the concepts involved, the regular and irregular spherical Ijessei functions -

.

j 1,(L’~.1j ~R,) and v,,(?~~~R,),” where I, is the orbital
1. The asymptotic region angulam’ mit-omenium quantum number. The correspo nd-

The coordinates for this region are t- ,, 8,. Ia term s ing body-fixed solutions are round by equalin g Eqs. (A5 )

of the se, the potential function V t- (r,, 14,),) becomes and (A1 3) of Appendix A and usi ng Eq. (A l4) to solve

the iso) s led d iat omic potential ,- ‘(r,) slit-c e the bound- for the body-fixed Coefficients m,-~,,,0,. Since Eqs. (2.30)

aries of the asymptotic region am-c chosent° so that  in i t  at id (3.1 )  apply equally to space-fixed and body-fixed

the potential has assumed its asymptotic form. We now solutions, we cat , immediately write (he asymptotic

expand the was -efuncti on F~,,0 (r,, 8,) of Eq. (2. 31) in body-fixed solutions for open channels as linear corn-

terms of the eigenfunctions ~~j )(,,) of tt ,e v ibrat m ot s al bin ations of the regular and i r regu la r  solutions

Hamiltonian : ( 2 J 4 I) i I t - ( l ) ’
~~~

t-
’~~~ N,

Ft - ’,,,0 j r ,, R,) E ~~~~~~~~~ ~~~ (v t-I, (3. 1) 
/~ 1t-

(a- ~~‘,Rt-)\
xE C J.it- 1,; fi t- — Il ,0)~,where the (a) refers to asym ptotic region , and the it-

ar e vibrationa l basis functions which satisfy

/ lit- dt- J,( it- s l)Ii t- (K > e~~~) , (3. 1)

2gr~ 
~ (r,),c~m~j~ (t - -t- ) - ~~ ~t-~~~ ( r t- ) where the uppe r (lower ) term in the large parenthese s

(3.2) refers to the regular (irregular) solution. The use of
with boundary conditions Eq. (3. 6) in formulating the asymptotic N and S matrix

~~~~ 0) 0. (3 3) boundary conditions will Lie discussed in Sec. V. A .
For closed channels, the body-fixed sot .ition is stiLl of -

is the asymptotic diatomic vibration—rotation ener- the form in Eq. (3. 7) but with the sp herical Bessel

gy, and r ~‘ i~~ ( r,), except for a normali zation con- functi ot is ;~, and v~, rep la c d  by t m e  modified sp herical -

stant , is the radial part of the correspond ing dm~ tomic Bessel functions ,,,(I ~~~~ 14) and i-,,(I k ” ’  8 1 t-°
.t-It- t - ’

eigenfu nct ion. Subst it uti ng Eq. (3. 1) into Eq. (2. 31) , Let us now introduce a matrix notation for the SchriL
usi ng Eq. (3. 2), multi plyi ng by ~~~~r,), integrati ng dinger equation (Eq. (3.4)) . We consider the
over r,, and replacing ,-~ by m’,, we obtain t Ime Schrö- as elements of a column vector ~~~ whose elements
dinger equation for translational N, motion in the arc labeled by the indices i t- ~,

I2,, which are assumed
asymptotic region: to scan a total of N values (in a tru nc ated co uphed-chan- -

/ 4’ 1

~ ~~~~ — ~-t1J(J. I ) —  2fl~~ *j ,(j, ~ l))~~ ~~~~~~~~~~~~~~ 
~el expansion ). This vector represents ot t -c of 2X pos-
sible h it-early independent solutions of Eq. (3. 4) . These
28 solutions which form ZN column veciors can be as-

• -i-t I (,(J, ~4fl.(j,, ~~~~~~~~~~ 
sent-bled Into two l it -atm - ices of d iniet is ion .\‘ x N which we
labe l as gj~~t- and gJ ’°” , where a set of indices ,- ,,‘I1~ - - - -

analogous to the row indices ex plained above is asso-
~~~~~~ ~t-~~.(i5• ~~~~~~~~~~ 0, (3.4) d ated with each column. ” The labels a are In general

arbitrary, but may be chosen to dis5inguigh the SOIu-
where tions generated in (lie propagation from Iteg lon t— lV

(labeled pitis ) and front - IV—I (labeled minus). Roth - -- - -

- (F — g t-1 )) (3. 5) propagations are necessary to generate all 28 solutions.t-h ~~~~ •,‘, 
-

(we get N from the propagation In each direction). Us-
Note that while no vibrationa l or rotat ional coupli ng tog this notat ion , Eq. (3.4) niay be written as -

exists in Eq. (3. 4), the kinetic energy coupling be-
tween g’a of dtfferent fi, persists In this asymptoti c re- “UJ’ ’(R,)g)t°” , (3.8) -

gion, decreasing only as 8 ’ (rathe m than exp o nential- dR~
ly or a. R~’ as is often the case w ith potential coopling ). where - 

-
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Uit.t - — k t - 1 1t- 
4 Ujt -(.i , (3.9) dt-g,~~

1
~ u~~

’t -(R, , ,
~

8 ° ) “““ (3.34)  .~
— —

- -

(k
iu1)t- )m

~ 6’~ L”” , (3.10)
t-’ it- it- It- where

t - i~~l — u~
t - ’
~ ’ t -4~ I (3.15)ô’

•t- ’t U_I — I~t- (~ ) i~(U, ).t- ~~~~~~~ (o ,t- ,,~(j~
j 

+ I) — 2fi~ + it-(it- 
The mnatrict- s K ”” ” and U~~

t-
~~~

’ are given by Eqs. (3. tO)
— 60 ,i,n .~J, fi ,)4(j, ,Pt- ) and (3. II) w ith the superscript (u-) substituted for (a), - -

while the J.mndcpendenl potential coupling potential mt- ia- 
- -— 60,_ 1,0~~ _(J, (It- )f_ ( i t - ,  nt-1)} . (3.11) tm- lit U,””’ is given by - /

I ‘ -The symbol 1, stands for (he set of indices it- ~t-~~t- and u~~ ’~: ~4 4t- ,o~ J ~
-~:7(r t-: R~~ )the subscript s and superscripts on a matri x elemetit

designate its row and column, respectively. The Uf’° 
~~ 

I’~~~(m
-t-.R,— , rt- :R~~) k-~~ .’(r ,;R~1)dr, (3.16) 

-matrix arises Irons the l/R~ centrifugal ternis. Equa- 
- - -tlon (3. 6) is the full coupled propagatiots equation for - t ’ (r,, 8,. >,) — V~•1(r,; lf~1) I .the asyniptotic region I. 

Iwhere I, was defined aSter Eq. (3.11) and the 
~, 

Integral
- 2. The ,eeak interaction region is performed as Indicated In Eq. (2 .23 ) .  EquatIon 

-(3.16) clearly shows that this potential energy mat r ix -
In this region we still use.the variables r, and N, to 

is diagon al in U, but cauples States of different vibra-represent vibrational and translational motion, but the 
tion—rotation quantum numbers i-,j ,. as stated at thepotential V ’(r,,R,,y,) is now dependent on N, and ‘a t -  55 
end of Sec. 11.13. Equatiomi (3.14 ) must now be inte-well as ,‘ ,, so we no longer use the asyn,ptotic t-ibra- 
grated (as described in Sec. llI.C) through each sub- - 

-tiónal eigenfunctions of Eqs. (3. 1) and (3.2) to expand 
region i of Region II. At the boundary between two sub- Ithe wavefunction. Stnce it may be desirable to change 
regions (say, i and i s I ) , a vibrational basis set changevibrational basis functions several times within Region 
is performed . If one makes both 4

~~ t- and its der iva-
/

H, we subdivide that region into n~ subregions sepa - tive with respect to 14 contInuous at this boundary R, /raled by lines of constant Rt- at 
~k , the following relations between the “g ” coefti- 

-R,~ R ,, R~~, ..., R~_, ~R,, . d ents In two adjacent subreg ions are obtained:

The range of R, f or the ills subregion is 
~~~ ~ R,~~R 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (3.17a) -\

- - and we choose the expansion basis functions I or that
subregion to be (he eigenlunctions of a reference po(en- da~.’t-”~~~jR~, ) 

~~~~~~~~~~~~~~~~~~ (3. llb) - 
-

h a l  V~,~(r t- ;R~,
) at a point ~~ belonging to the subre- ~~~~~ dlt t- -

gion (such as the midpoint). The reference potentiaL where the overlap matrix S~t-” is given by
V~.1(r , ;R,) is iii general arbitrary provided that a com a-
plete vibration—rotation expansion is used, but an eff ,— 

(s~
4
~~II

’
~ 5’~

°
~ ‘“'‘fr,; ~~~~~ c~~7~’f rt-; R~,)) - ( 3.18 )m i a t-n t- ~t- j t-Cient representation of the vibrational motions can

greatly reduce the nuttibe r of closed channels required As discussed itt- raper I (Sec . tIL.D), Sr_ i shouLd be ..- 
-

or such completeness. Ex at ap tes of reference Ix4en- orthogonal for a cunt-plete vibrational expansion. For
tials are the V~(rt- , Rt- ) of Eq. (2.27) and the exact pa- a truncated expansion, as required by practical con- -

tentiat V ’(r t- , R~~5;,) at fixed 5;,. Onc e a reference po- slderations, S~” '’ must be nearly orthogonal in order
(entm~l is chosen, the vtbrational basis functions for for us to obtait, scattering matrices which Satisfy con-
subregion I may be determined by solving servation of flux (5cc’ Sec . V) to an acceptable degree

of accuracy. The transform-nation between Regions I

( 

‘I’ dt- b (at- * 1)11 ’ V,,, (r, R~~)~~~’~~(r, ;R~,) and Ills accomplished by setting i ‘0 In Eqs. (3. 17) and
2 2 +V 2~1~i~ Interpreting lf ~t- to mean l4, (Fig. 3) and c ,’~ t-’f ,-,~Rt-,,) to

mean ~- I r ,).
- — 

~~~~~~~ 
(3. 12)

3 The strong interaction regionsubject to boundary condit ions ana logou s to Eq. (3.3)
where the superscript (u-) indicates weak interaction In this region we use the polar coordinate. p

~, w, of
region. We now expan d the w avef anct iu n F~,,n, 

in term tt - s Eq. (3.16 ) of I t-nd regard .,- t- as Itt-c propagation sari-
of these basis functions, able. Before we can expand the wavefunctton in terms

of a set of pseudovl bra liona l eigen fun cti ons In the va n - -/

F~’,’~’,,(r,,R,) = E g)~’~~0,(R, ~~~~~~~~~~ ;R
~~

). - able p,, we must first transform Eq. (2. 3*) to these
, polar coo rdinates. The only important thange In this(3.13) trasaformaitun occurs In I” lot Eq. (2.32)), whichat-n,,Substituting this into Eq. (2. 31), using Eq. (3.121 (0 becomes 

-simplify, (hen niulliplying by ~‘~ (r t- ; n~1~ 
and integral- 

ii m a a i it-f ~t- .1 )#‘lng over r,, we obtain the following coupled differential at- n, - —
~~

—(. .
~~

_ ‘ t- 
~~~~~~ 

‘~~
) ‘2~ (r—~~ pt cus,equations (in the matrix notation c f  Sec. (U. 0.1) :
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hj  J(J . 1)— 20f ~)L
(J 1))  4I

~~
” independent of ,,, which simplifies the matching

- 
- 

+ 211(R,0 — p,51n4-,)1 . ( .19) procedure (Sec. lv) and should isot seriously stow down -

the rate of convergence of the vibrational expansion. IfAs for Region II, w e d,v ide Region Ill into ~~~ subre- we now expand b~,,, In terms of these ~~~~
“.glons bounded by lines of const ant t- ‘

t

~

) - ~~~~~~~~ w,) ~~~ ~~‘iii (3.21)
We choose our vibrattonat basis set to satisfy we obtain the folLowIng matrix equation:

( h  
4° 

+ 1 .c(isi ; ~~~~ ~ t- ( It ( pt- • • )  * ““(°)“°‘ = ~t-tii(q, q,O i gt-(a)_ 
, (3.22’

(3.20) where 
-

with boundary conditions analogous to Eq. ~3. 3). c~ t
is generally a point within the ith subregion and Ihe (J~,’ , )UY’ cs,;e’~4 ) (3 . 23) - 

.
reference potential has been re-expressed in the and j - 

- 
-

polar coordinates p,, q’, so that it has the shape 01 
~~~~~~~ 

. - KM~~ ~~~ Ut-U1 3 24 
-

a diatont-ic potential as a function of p, for a given c~ 1 
I ~t-~tt- t- 4 

- — + U1
- - — wIthin Region Ill (see Fig. 3). The superscript (-‘1 in The matrix p~ (whos e elements have the physical dl- -

Eq. (3.20) refers to strong interaction regIon. Note menslon of the square of a length) is given by
thaI the centrifugal term appearing in Eqs. (3.2) and 

~, ~ liL - ~~~~~ .- - 14 -
, 3 25 

-

(3:12) has been omitted , [It has been transferred to ~~‘ ~~~ ~t- 
- ,t-0~~~’ 

IIPt- I tm t-,

Eq. (3.26) below . This resu !ts In ., vibrational (unction while the centrifugal coupling matrix Ut,’”’ Is
— - - - - — . - J

[U?4 t (~ ,;y~j ) 6 ~~~ [(, , j (_ ~~~ •i !—2fl L~i i._~.1) , Jk (iA *1) 
~) 

it, :) / 

-

— 64,1 (t’t - I (R t-—~~ ~,sInmp,~t- i t- ,) I6~,.i .it-,,, (, (J , fl ,,)(,(j,, 11,) .  
~~~~~~~~~~ 

LW, fl,)L(j,, fl~)I} . (3.26 )

The matrices Kt -” ° and U~
4 1’ are given by equations analogous to Eqs. (3.10) and (3.16) with superscripts and co-

Ordinates appropriate to the strong interaction region substituted where necess’ry. Note that the centrifugal cou—
pling (Eq. (3 .26) is no longer diagonaL in ,- ,. The eff ect ive potentia l matr ix 0)” is not symmetric In this region
but rather is equal to the product of two symmetric mat rices [Eq. (3 . 2 3 )) ,  one of which (p~) is the matrix repre-
sentation of a positive definite operator . The nonsymmetnic nature of U)” complicates the integratIon of Eq. (3.22k
and a way of handling this problem was described in l~aper I (Sec . I11.E and Appendix B).

To solve the Schri~dinger equation in Region III . w e need to propagate the solution of Eq. (3.22) through each
subregion of that region, relating solutions In adjacent subregions by equations analogous to Eqs. tJ. 17) and (3. 18).
To relate the solutions at the boundary of Regions U and Ill , we u~.e the following formula (which is derived In a
manner analogous to Eq. (3.17)):

- 
“( ~, 0;~~~ ) *p g~ ” ” (R ,,,;R[ _~) . (3.27a ) 

-
~ 

-
-

0; Q~,
) ‘itt-,’, — p~’° [dsj ’~ ’t- (R ,,,; R~~,) ‘414) , (3. 2’lb)

where

(• ~
‘t- (P,; c’,) [p~ I ~~~~~rt-. — p,; R~~,)’t- b 

~i, L (3, 28)

4. The mea’ching region
~,1 -

The polar coordinates C, ‘it- of Eq. (3. Il) of I are used in Region IV with ‘it- acting as the propagation variable.
Upon transformation of Eq. (2. 31) to lhe~e coordinates, the operator i’~

t-’f~ of Eq. (2.32) becomes

T’t--’ !~t!. _!. • ~ • \ f i 2
~i5ji~

, I )  ~ °jJ ( J +  1) —  2fl~ sj ,(j, .l1) 
(3 29ms,d~ 2ii~~C •( Cf ~~~~ 2i,f ’sln °r),’ 2gC°~os’ri,

In analogy w ith Region UI, Region IV is divided tnto nt,, subregions by lines of constant ‘it-, wIth the vibrational — - -
etg.nluncuons of each subregion sa(i.fyiog an equation analogous to (3. 20):

(—
~ 

‘
~
‘
~t-
. 
~
‘,d(C; ~~~)~

f)t4_t (C; ~~~~~~~~~~~~~~~~ , (3. 30) 
- -

where the superscrIpt (in)  denote s matching region. Writing
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‘4_ li i/i ‘. gt-4
~
0• (1,,,~~t-

(C, qt-)= ~~
— 

,,,,t-,,,.’it-; ,)~~~~i(C, i~ 1) , (3.31)
“ii

the counterpart of Eq. (3, 22 ) becomes

its
-
~~

- g
~/ ” . U’/” (’it-; ‘ i ) g~,’~~

t- , - 
(3.32)

where -

~~~~~~~~~~~~~~~ ‘i~ ) (3.33) - 
— -

I — —

and

U~” t -(’ it -; vi~~
) = — Ki t -_ It 

+ U’,’ ’ • U~4 ’  . (3. 34)

The matrix f ’(i~ 1) is defined analogously to p~ of Eq. (3, 25) with C substituted fur p,. The matrices K ” ”  and U~t’°
are given by equations similar to Eqs. (3. 10) and (3. 16), respectively, with the sup erscript (in) inserted and the ap-
proprIate coordinate changes made . The centrifugal coupling matrix U’/’ t- is given by

Lu’, ’ ’(c, t-~ q~ ) j ~ (r ’, )~~~~~ (~~
-
~~) ((5~~~ 1— -+ (J(J -.  I )  — 2f z~,j , (j t -, I )J/cost ’i, .j ,(j, -. )/sln”i, } (3.35)

— 6,,.i~ 
(6Qt-•~ of (,(J, 1I,) ( , ( j t - ,  II,)

• ~~~~~~~~ L W. f l~) i_ Ot - ,  05 )J/cos ”i,) . 
- 

- - 
—

To solve the Schrddinge r equation in Region It-I, one must integrate Eq. (3.32) through each subregion, relating
solutions in adjacent subregions by equations analogous to Eqs. (3. 17) and (3. 18). The transformation between Re-
gions Ill and IV is accomplished by equations analogous to Eqs. (3. 27a) and (3. 27b) (with a plus rather than a
minus sign in the right hand side of the latter) and the matrix C’ substituted For p~, where

tc t-i::= 6~~~~~~~ ’(C , ~~~ ~~~~~~~~~~~~~~~~~ 
C, ~

,
~t-t -) )  

b~ ~ , . (3.36)

with pt- t-, defined in Fig. 3.

C. Integration of the Sctwödinger equation (I. e., inversion through th~ center of mass) symmetry,
as shown for triatomic syste ms In Appendix II . Al- -

W e generate the solution g a.? and its derivative with though the body-fixed waveft’netionq obtaIned from Eqs.
respect to the propagation variable by choosIng at R, (2. 13), (2. 18), (2. 30), and eIther (3. 1). (3. 13), (3 . 21),
=R~ (Fig. 3) arbitrary initial values for these two or (.,.3l) are not cigenfunctions of the parity operator ,
m.itrices :~nd integrating numerically Eqs . (3. 8), (3. 14) , they may be linearly combined to yield solutions which
(3,22), and (3. 32) from the beginning of Region II to th~ are, and this transformation to the “parity representa-
end of Region IV, The sotution g’,’ and its derivative are tion” results in a lt-artt-al decoupling of Eqs. (3. 8), - -

determined by Integrating the same equations front- the (3 14), (3. 22), and (3. 32) into two sets, one for even . -

cr4 of Region IV to the begin~ing of Region II. Any ap- and one for nid parity. A description of this trans - ~.
. —

propriate numerical procedure may be used to solve formation and other consequences of the parity opera-
these coupled ordinary second order differential equa- hon are given in Appendix LI. By using parity elgen-
lions. A particular one which is well suited to such functions, the Integration In each arrangenient channel
equations and which we used Is the Gordon n,ethod.” is done In two separate steps (four for honionuctear tar-
More part iculars of this procedure are described in gets), Since the transforn iatlon between arrangement
Paper I (Sec. III.E). channels preserves parity (as shown in Appendix 13),

For the H. Ii, reaction, the coupled equations need the matching procedure also can be done separately for
only be solved In one of the three equivalent arrange- solutions of each parity, as can the calculation of the
ment channels . Reactions of the type A . I3~ involving reactance and scattering matrices . The final plane
two Identical atoms will require two such integrations, wave solution is not, however, an elgenlunction of the 

- -
and reactions with three dif ferent atonis will require parity operator , and as a result the calculation of scat-
three. For arrangement char.nels for which the target tert ng amplitudes requires a transformation back to the
is honsonuclear , Eq. (2, 29) implies zero potential body-fixed representation of the previous two sec tions.
coupling between odd and even rotational states . Since The enormous reduction in computatIon time nt-ore than
alt kinetic energy coupling is diagonal inj, in all four outweighs the additional work involved In this traits-
regions , our matrIx differential equations mat- be ~~ ‘.. formation. Appendix B describes this In more detail.
cot’pled Into two separate ones for the even and odd

IV. THE MATCHING .rotational states with a consequent savings in computa..
- -.•- (ion time . Both must be integrated before the matching, A. The X to v trindormation

whIch mixes these two sets of solutions, is performed,
At the completion of the integratIons In each of the - 

-

Any chemical reaction displays in addition parity . three srrangement channel regions, one has soluti ons
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to the Schrddinger equation which span all of conftgura- r,, y, coordinates. II Eqs. (4 .8) and (4.9) and Eq. -
tion space but which are neither smooth nor continuous (3.2) of I are now substituted into Eq. (4 . 5), we f ind
at the Internal configuration space boundaries of these cosv.,= — cosy, ,  -

regIons. - In this section we describe the procedure for
li nearly combining these solutions so as to produce a and since yt- and y, are in the range 0 to s we conclude
smooth matching at those boundaries. This procedure that on — -

will also include the transformation front- A to p Co. -‘~ 
-

ordinates (appropriate for arrangement channels A and ) ‘  I~~~V5~~ 
(4.10)

v, respectIvely), a transformation which is both con- EquatIons (4 . 7)—(4 . 9) and Eq. (3. 2) of I may be corn- .7
I- jceptually and numerically facilitated by the use of bined to yield

body-fixed coordinates. Our analysis will focus pri-
cos&,,, coso ,t- — sims,,, cosy, [cots,,, cosv, - - Iman ly on the behavior of the wavefunction In the vi-

clnity of the half-plane matching surfaces defined in + (1,cottc,.,,costy,)”I , (4.11) -‘

Eq. (3,3) of I. -

which implIes that on ,,, the angle A.,,, is a function of -

Equations describing the A to p transformation have v, only.
- - - - been derived for coplanar reactions in Appendix A of

It will also be useful to convert from R,, a’, to thePaper I, and most of these expressions are stilt valid
in 3D. However , some angles which span a range of polax coordinates C, ‘J, [of Eqs. (3. 17) of Paper I). —

.

2s in 21) become polar angles in 3!) (-with a range of ,> First, from Eqs. (3.17) of Paper I and (4 8), we have

- — so sont- e Care is requIred in making the analogy. The q,= ii, on c , (4J2) — -
- - tt-asic equations which govern the transformation are and, alter some manipulation, Eq. (4. 9) becomesgiven byil -

cot2qt- i— co t a ,,, cosy, on s,,, - (4,13)
- (P

.) 
(cosa.t _

~ int-~.s~~(R.~
r,, sims,,, COS(P,,, / kr,) 

(4.1) which Is the equation of i., In f, i,, y, coordinates,
Since 17,= ta n”(r,/R ,) and is in the 0 to s/2 range, we
conclude thatwhere a,,, is (he angle betwee n s/2 and a defined by

r& ,_ zIu,, (4.14) 
-(4 .2) -

where wt- was defined afte r Eq. (2. 3). Therefore,4,, having been given by Eqs. (2.4). Equation ~~ Eq. (4. 13) is equivalent tomay be easily derived from Fig. I and Eq. (2.1). By
taking the scalar products R,,.R,,, r,,.r,., and R,,.r,, cotw,= — cola,,, cosy,, - (4. 15)
and using Eqs. (4.1) and (2.3), we find the - following• which is the equation of the c,t- hall-plane af Fig, 2 of 

-expressIons for the R,, ,‘ ,, y,— R ,,, r,,, v. transfornia- I in the polar coordinates C, w,, y, . Finally, Eq. 
- -

- - (4 . 11) may be re-expressed In rj, , y, coordinates as -

R~ cos’cs,,, R~ + sin’a,,, r~ sin2o,,, Cosy,r,R, , (4 .3) CoS a,,, = cosa,,, —5ifla,,~cOs)-,tanth . (4, 16) -

~~sin2a,,,R~+cos ’a,,r~.sin2o,,,cosy , r,R, 
‘ We now consider the transformation from the body-

cosv,- (R,r,,) ’1U(R~ — ,-~)sin 2n ,,, - fixed coordinate system Ox~ - ’z~ (FIg. 2) to Ox~v’z . 
-

• R,,l’,cosZa,,, cosv,) (4 5) Both systems it-av e the same axis (which Is per-
pendicular to the three-atom plane), and from Eq. (4. 7)

Equations (4 .3) and (4 4) may be combined to yield and Fig. 2 It can easily be shown that this coordinate

R~4 v~~.R ~ + r~ 
- (4.6) transformation is a clockwise rotation about Ov’ by - - -A,,, . —

- - . -

whIch, together with Eq. (3.11) of I proves the in- Let us determine the effect of the (B,, r,) — (B ,, r,,)varIance of C to arrangement channel. Also of use in transformation on the wavefunctlons. The completeour analysis below is the polar angle AlL (in the 0 to a
body-fixed wavefunctlon, as obtained from Eqs. (2. 13),range) between P5 and B, which is determined by (2. 18), and (2.30) is — 

-

cOsA,,5 = ~~~~ costs,,, — Sifla ,,,CO5V, 

~ ~~~~~~~ 5” D’,,,(ç~t-,, 9,, 0) 1150jv,, t--’,~) 
F~,,,0,fr,, R,) -

(4 7) r,R,
- We now examine the consequences of Eqs. (4.3)..
(4,7) on the matching surfsce i,,, Combining Eq. i2~ ~~~DL01(4t-,, •,, #,)r~ 05(a’,, R,, v,) 1 (4. 17)

- (3 2a) of I with Eq. (4.6) gives 
- 

- 
-

where, from Eq. (A3),
- (4, 8)

and this equation together with Eqs. (3,2a)ol land (4. 3) x~.o, E • osy,)F,~ 0,(r,, R,) (4, 18)
,,,lo ,i -leads to -

- 
- 

R,/r,. — cota ,,cosy,• (I • ~~~~~~~~~~~~~ (4 9) 
In the second line of Eq. (4. 17), the expftl,4’, part of

- T,,05(v, , 4~,) has bcen incorporated into the rr ..tlon
/ - which In the equatIon of the matching surface w ,, In R,, matrix D~~~, which trivially convertS *,~, -.‘om the -
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OX, Y,Z, to the Ox~~-’z~ coordinate systen,. 11 +,~, is implicit throughout this section, but we have Included -

fully n,atched (i.e., a smoothly continuous solution of the labels I~s - (t- J~ fi~ a) to denote the ZN iinearly m dc-
the Schrddingez’ equation), it nt-ay be expressed in the pendent solutions obt ained (from an N coupled-channel -
O r v ’z coordinate system in an analogous way: calculation). Equation (4. 23) may be evaluated on a,,, —

by using Eq. (4, 13) to i-elat e q, and y,, Since Os v,
7 ~~ L)~n,,(ø,,. 9 ,,, ~~~~~~~~ R,,, v,) . ‘- a/2 on a,,,, we find thai ,~, must lie between ~~~~~ - ‘ “ j

0,, — a,,, )/2 and ‘I,, r/4 to satisfy Eq. (4. 13). In order to
(4 19) evaluate Eq. (4, 23) over this range of ‘I,. it is conve-

We now define 4’,, X~.(r,, R,, y,), and X”,(r,,, R,,, ~‘ )  niunt to change to a comn,on Set of vIbr~iiona1 basis func- - --a-s the (2,Ii l)-dime’s,onal colunt-n vectors whose cona- t ions ~~,(f) for all subregions i. This is accomplished
- ponents are, respectively, the *,~~, X~,n,, and a”,,~ , by transformations analogous to Eq. (3. 1.) and (3. 18), -

where each one of the indIces .11, f7,, and 11,, assumes with the result that ‘ - 
- - -

the values (top to bottom) J, J— 1, ...,— J . In nt-a- —

tnix notation, Eqs. (4.17) and (4. 19) can be written as j
~’J,~’ 

= 2C ” (sin2q,) t - 4’~~’, (4.24)

4’~ = D’(~~ ,, 8,, ~~~~~~~ R,, ~,) where - 

- 

-

--
‘ = ~~ ,i-~~(cosv,) ,(C)g~,~~,0,(q,) . (4. 25) - -

— 
t-
,2_ D’(d ,,, 9,,, 4’,,)Z~,(r,,, R,,, v,,) , s’”

To insure a smooth matching, we must also consider
from which one gets the derivative of j  normal to a,,, (other derivatives

are possible) for points on this plane, Expressions for -

Z’i ’ D~
” t1~,, 8,, 4-,)D’(~~,,, 9,,, 4~)z~, . (4 . 20) this normal derivative operator were derived in Paper

The Ox~-z — Ox ,’ y’z,’ tr ansforn iation , which is a rotation I (Appendix A), where it was found that - 
-

defined by the Euler angles ci,, 8,, •‘-,, can be ac- 
- 
I

complished through a sequence of two rotat ions, the 
~~~~~~ ~ ~~, ( -  •

Oxvz — Os~ y’z~ one (Euler angles c’,,, 8,,, i,,) followed
by Ox ’z~—O r ~v’z~ (Euler angles 0, A,,,, 0). From 

- ~~~~~~~~~~~~~ ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~
this results (he relation D’(~i,,, e,,, - ,,) = D (4~)~~ 0,, — 

C sin2q, \2 Sq,
4~)d’(A,,,), where d’(A,, ) = D’(O, A,,,, 0). Since the D’
are unitary and d’ Is in addition real, we get from Eq, 

~~~~~ ~~~

- — cot ,~,~ sin)s -~ _ -) . (4. 26) — --

(4. 20) —
~~ sin2 q,

/ z~4a’(A ,,,)rX,~ ~ ‘(A ,,,) , Applying (his operator to Eq, (4.23) , and evaluating the  -

and therefore, in the notation of Davydov , at- result on we find 
-

~~~~ ~: 4;-
~°r, 

—U,’. - 
-

- - 
‘ (A ,,,)f,0 . (4 . 21) 5X1~, 2sIno , 4,,u~. , (4. 27) —

- -

Sn,,~ C~”sin12q, ~~

This equation relating the nt-atched solutions t~ and y” whereis valid for any internal configuration of the triatom 
-(I.e., is not restricted to those configurations corre- v u’,a 

~~ d~,( C )G”~
’ (4. 28)5151505eponding to the ç, matching surface). C,,, - -

B. Projection of the wavefunction onto the ~isd 
- - -

n tthin9 surfam basis functions 
G”~ ’ v~,’(cosy,) 

dg) ,ojii , (y, ) 1
—c ot ts,,,J,, l~0~In this section we consider the evaluation of the un-

matched wavefunclions and normal deriva t ives obtained 
( () ) [ .  cosy, t-’~ (cosy,)from the integrations in both channels a and v on the ~matching surface a,,,, and their expansion in a set of - -

functions b~ ,,,t-, If y,) which span that surface, The (!~L~~Jy” 1115 + l)’ _ Q
~~”~

.
~~i(cosv,)] . (4. a9)complete , unmatched wavefunction in the Ox’, -,’z ’, co- \ 2j,. 3

ordinate system in Region IV of internal configuration
space (subregion i) is 

~
f rom Eqs. (4. 17), (4. 18), and In deriving Eq. (4,29), the use has been made of Eq.

(3.31)) (A2) and certain recursion relations between the
associated Legendre polynomials,”

•
L4I . 

~~~~~~~~~ D~01(d~,9,, ~~ ~~~~~ v,) , (4. 22) We now wish to expand Eqs. (4. 25) and (4. 28) on the‘I
matching surface in terms of a set of functions B~~,,0,where x(f ,y,) which are orthonormal ~nd complete on it . (We

—
~~~• . ~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~ . (4.23) choose f and y,to be the independent variables which

L.. f ”  eth2i~, 
scan a,, .) The are given by - 

-

Here we have droppea the superscript (m) ,  as it will be ~~~~~~~~~~ ~C) A~~0,(y,) , 
- 

(4. 30)
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wh ere the t~ ,’s are those of Eq. (4. 25) and the A’,~Ø, are where Eq. (4. 29) is to be used in evaluating Eq. (4 35).
a set of rotational functions which faust be orthonormal Note that the row (lower) indices ,-,j,C, in Eqs. (4. 32)—
(with weight function siny,) and complete on the domain (4, 35) can assume only N/2 values (from the discussion
O~~y,s a/2. The reason b r  this choice of the domain above), whereas the column (upper) indices s~j’,

(
~ (im-

of y, is analogous to that used for the coplanar matching plied in I~) scan N values. This nt-cans that the nt-atri -

In Paper I (Sec. IV A). An important consequence of ces h~ and I.’,’ have dimensions N/2xN, - - -

this procedure is that the nunt-ber of functions B,’~,,Q, We now consider the expar.aion of the wav~’function
- - 

used to expand the wavefu,iction of Eq. (4. 25) for each 
~~~~~ obtained front- the integration in arrangement

- -  - vu £1, must be less than the number of vibration ,‘ota- channel region v on a,,, in a manner analogous to that
tion basis functions ifi ,,,(f ),v~” (cosy ,) in that equat ion, for ~~~~~ The expressions for the wavefenctions are
For many reaction s , includ ing H • H,, the number of given by Eqs. (4. 24) and (4. 25) with n replacing 7~shou ld be half the number of vibrat ion—rotat ion everywhere. To find the normal derivatives , the right - -

basis functions , and we shall use this nunaber in the- . most side of Eq. ( 4.26) is used. The resulting expres-
discussion below, This would tnt -ply that the number of - -

j ,’s for each t-,, ~~, used in the close coupling expansion 
s,on is given by Eqs. (4. 27) and (4 . 28 ) with v rep laced
by a and with the function ( ,‘Z,c,, given bymust be even, An example of it-ow this n,ight be done

a given v ibrational nian ifold , except for (t ie case j , 6’~’’  = — (~ l)~~~ 
- - 

d~,1,,~,0,,1ii1(v5 ) J - - -would be to use a complete set of l~,’s for each), within { ~ ‘ dq,, - - -

=),
~~

, For this case (as tong as J i,_,,) one uses - -

0,- i,~~, — I, j , ,, — 3 . .. . , — 1,_,+ I. For J~- ,,,,, we
use the same procedure -and then clint-m ate those 

~~, 
for ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

which 10,1 >J. Other choices are possible , but this
particular set of quantum nu,nbe rs is useful because it
leads , for) , =j , ,,,,,, to an asymptotic uncoup ling of those ~2j,,÷ 3 )  ~

+ I)’ — 0~ 
)i/* e.~:.i(cosv, )J} . - 

-

-

ter it-t -s in Eq. (2, 31) which are not diagonal in Il,, and
this allow- s us to so lve for the asymptotic behav Ior of - 

(4.36)
these partial ly truncated solutions in a simple way.” Note that Eq. (4 . 10) has been used in Eq. (4. 36) talong
Whatever the choice , this restriction on the method is with the property e ’ r (— x)= (— l)”t.7(r)J to express all
seldom a serious limitation because it only affects the quantities In terms of ~~,. The relation between i~ and

highest rotational slate j, for each ,-,, 0,, and this ch-sn- ~, on a,,, is obtained front - Eqs. (4. 12) and (4.13).
nel is usually closed in a coit-verged treatnt-ent . An ex-
ample of a choice of A~,’0 which is real and orthonor- The expansions analogous to Eqs. (4. 32) and (4. 33)

mat over the Ot o  a/2 range (weig hted by s iny ,) &~ 
are given by

= ~~ f;:~~, B~~,,a,,(c ,) , ) , (4. 37) - 

-
t-fTv~~(cosy,) for p,. 0, odd 

(4 31)A,,01(y,)- 

~ 0 for),. 0,= even .

- - - This choice Is very appropriate for expanding t h e  y ,- ~~ 38) 
__ 7

- dependent part of Eq. (4. 25) foi- a collinearly dominated - 
— -

- reaction such as H • H~ because these ,l,”~ vanish at where B’ differs front- B” by (he use , in Eq. (4. 30), - - -

y~= a/2 (where the interaction potential on the nt-stching of ~‘ instead of ~~ ‘, This approach is slightly different
surface is high and the wave function very small) and are front- the one followed previously, ’ In which the basis - - —

most effecti ve in representing the wavefunction near functions used to expand the 4’~, and ~~ were the same.
y,= O (where the potential is low). Other choices for the For honionuclear targets , this difference disappears.

may be made in analogy with those discussed for The/and f are given by
the planar problem in Paper I. ‘‘S

- We now expand Eqs. (4. 25) and (4. 28) in ternas of the -~~~
=
~~~~ 

(_ 1)1 ’0~f A~~,,,(y,)s’~’i(cosv,) 
-

~~~~~~ obtaining -
xg~~~..0 [ ,~,,(y,) )stny, t-fr, , (4. 39)

•
‘
,
‘
~~ E ~~~~~~~~~~~~~~~~~~~ , (4. 32)

Cu, ~~ (V/i
Pu i,- L.J A,,,o (y,, G,,,..0 (v~) siny,dy,

= E h,~~ ~ , ,,,,(t ,~,,) , (4, 33) 
- 

5,, 5 (4.40)
Cu,

with Eq. (4 . 36) being used to- evaluate Eq. (4 . 40). AU
“1.k,,, ,0,= El A 05(y,)’P~ ifr.isy,) expansions are made in terms of the coordinate y,to

1’~’ -s facilitate later manipulations.

x 
~ ~~~‘0,tn ,(v,)J sin y,dy, , (4, ~4) For atom plus homonuclear diatom collis ions , the

coeff icients f~:’~
’1,Q, obtained by matching on the a ,,, plane

and can be related to the h’,’,’~t-,0, of the a,,, plane matching
— - “a by noting in Eq. (4. 39) (w ith a substituted for v at-id e

Wi6 

~f A~~ ,(y,)G~~ ,”,.5,(y,) s iny , ifr, for a) that ~q 
~~~~~~~~ 

0” for j ,’

~ 

~ j 5  = odd and therefore“sip,

- 
- (4,35) that (_ 1)1’~ .~(—1)’i for the nonvantsh ing terms. For

— -
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collIsions with a homonuclear diatom, m,,= m~ so resulting expression by the ~~~~ [defined by Eq.
=$,~ [from Eq. (2.4)), and the mathematical expres- (4 .30)), and integrate it using the ort honornt-ality I~’oP- -

SionS analogous to Eqs. (4. l2)— (4 . 16) for a,, are Iden- erties of these 1/”, we obtain
tical to those equations. Therefore , front- Eqs. (4. ~~ .
and (4. 39) (transformed to a,,), we have ~~~ (,

UL• 

~~~ • h”~-~ C”” )_, 
~~~ liii l,-,J,0, is4

‘5

f ~’~’ ( 1) ’~
’°’ “ (4 . 41)= — h,,,,,0, - 

= E ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - 

-

By similar arguments for the derivative equations, Eqs. ‘4°’ 
-

(4. 3$) and (4. 4) , using EqS. (4 . 29) and (4 . 36), we find (4, 48)
An analogous equation results for (he derivatives with,

- ( flh’OI. 3~tIt. (4.42) 1,’ and J’ substituted for I, and I. The (s~,)~~’~’ are the - - -

— 
- - J.,I,ot

_

element s of an “arrangement channel transformatIon”
matrix s~ and are defined by - IC. The matching equations

— ‘IS
We now- wish to find the appropriate linear con,bina— (c ’ )“~

“t- ’ =s ” f ~~~~~~~~~~~~~~ —- ~~~~~~~~ ~~~~~~-
. 

- 

- 
tions of the ~‘s and O~/bn,,,’s of Eqs. (4. 24) and (4. 27)
in channels A and v which give smoothly matched solo- xA~~ ,(~,)siny,d>, , ( 4.4 9 )

Lions a and ba/an,, satisfying Eq. (4, 20) and its normal
w herederivative counterpart , both evaluated on a,, . Accord-

ingly, we write - 
- S~.,,~~f , ( c) c ,( f) d c  . (4 . 50)

— 
~~ ~~~~~~~ ~~~~~ C”” ) , (4. 43)- ~~~~ ~ JQ, JM~ ~~~~~~ ~~ As shown in App endix C, s~, is a real orthogonal ma-

- _ trix as long as the A~ 01( ,) of Eq. (4.30) form a corn-
- . ihere the coefficients C,, in Eq. (4. 43) are to be de- plete set of orthenormai functions which span the ,

terniined by evaluating Eq. (4. 20) and its norma.! den y- space, and the ~~,(f) and c- ,,(f) form two sets of ortho-
ative on a,,~, and analogous equations on a,,, and a,,,. normal functions which span the f space and are re-
The indices (1) I~ (1)17 0 denote different linearly m dc- lated by a real orthogonal transformation. Let us now
pendent matched solutions, with S ascuming N values write Eq. (4.48) as a matrix equation by regarding the _ -

and I = 1, 2, or 3 for a total of 3.V solutions, This is 8, f, and C appearing there as the elements of matrices ,
equal to the num ber of linearly independent scattering obtaining :-
solutions possible, as was dtseussvd sit- Pape r t~Sec. 

~~~~~ .h~ C ~~s~,(r7c~j ’ .I~ C~~’) . (4 .51 )IV B). The normal derivative of Eq. (4. 43) is
According to the arguments of the previous section, the

a ~~ -

+ ~±a’ d i)’-) (4 ~~ 
matrices h~’ and t7 have dimensions N/2xN, while the -

Sn,,, ,~~~ an JiI~ Ba are N/2xN/2 and the C’s are NX N  matrices. The
corresponding derivative equation Is obtained from Eq.

The normal derivative of Eq. (4. 20) is in general a (4.51) by substituting I,’ and I ’ for h and I. We can corn-
complicated quantity, but for the particular choice of bine function and derivative equations Into a single ma-matching surface specified by Eq. (2. 5a), we have the tr ix equation involving only X x N  matrices by def ialngimportant relation~ the augmented .%xX matrices Ii~,’, 

•f~;~, and i~, as -

= 0 , (4,45)  ~
,, / b~~

’ - —
(4 .52)I

which implies -

a
(4.46) 

i~~ . (4.53)
be’,

Let us now substitute Eq. (4 43) and its counterpart for 
~~~~ o ‘

~ (4 54)channel s into Eq. (4, 20), as well as (4. 44) and its v •. e (  , I
counterpart into (4. 46), utlltzing Eqs. (4. 24) and (4. 27) ‘~~ $~ /
(and their v counterparts) along with Eq. (4. 12), We where 0 is an X/ 2v  N/2 null mat rix. The resulting
obtain smooth matching equation on s,~ is

C”” • s”” C’ ~~~~ 4ll.
- - ,~ ,,•• lOi ,~4 S.YC J, , ,, ‘i~,(t7C~~’+i7C~2i . (4.55)

‘S
- Following the same arguments is were used In Paper I

~~ (•~
1v çlftl• 

~~~~ ~~~~~ , (S~ 
-
. IV. LI), we now combine Eq. (& 55) and its counter-P j5p 1Pf~ 10,, 1p1

1~ 
parts on a,, and a,, into a single 3Nx 3.V equation which - -

- - can then be solved for the coefficients C , which deter-with a similar equation involving ~~‘ resulting from the mine the matched solutions. The final result Ismatching of the normal derivatives, If we now substi-
lute Eqs. (4. 32) and (4. 37) into Eq. (4. 47), multiply the C~( C ) ~ . (N~)” N , ‘ . 56)
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6. C. Schat.z and A. Kuppermann: Three-dimensiona l reactive scsttering. I - -

- - where the previous section so as to complete the detormina-

) 

tlon of the coefficIent matrices C, and also the reac-- / h — *,, f , 0 tance and scattering matrices R, and S,. in Paper I 
-I I

N j  = 0 1I — if..,i ,’ (4 57) we proved that the R and S matrices (which are physi..

0 cally dimensionless) can be equivalently defined in the
scaled variables r,, H, or in the “physical’ ones 1’,. ~~,.

and Here, for simplicity, w e use the scaled coordinates in

of Sec. V.B.
~~, (c

~~ 

c~~~~ 
all definitions except that of the scattering amplitudes

‘ = c:,~ c~ ’ C~~~~~

) 

- (4.58)
3, II we use Eqs. (2.13) , (2 .18). (2.30), and (3.1) to cx-

C,., C,, C ,,, 
press the matched wavefunction lof Eqs. (4.17), (4.18) ,

0 here represents an NXN matrix of zeros, and (4.43)) in the asymptotic region of each arrange-
ment channel, we find

Equation (4 .56) can now be used in conjunction with
the asymptotic analysis of the next section to determine 44’J’ -

~
-E ~~ ~~~~~~~ o,, 0) 1’,,~~,(,,. ~ ,)

the 3Xx3.V coefficient matrices C~, which will provide “
wavefunctions which are both smooth and cont,nuous
everywhere and which also satisfy the proper scattering 

~ ~&a,(r,) 
~~~~ (R,

) , (5.1)
boundary conditions . Note that our procedure for match- r,!f,
ing simultaneously combines the primitive solutions in
channels A, v, and s to yield solutions which are smooth— where
ly continuous throughout all of coidigu ration space .
This contrasts with the analogous procedures of Wyatt I ,t,. ~~~i4 ‘

~~~ 151% ~~ ~~~ c~’~;) . (5. 2)
and co-workers” and of Light and co-workers , ~ which
seem not to Include the couplic- lj., tween channels p and
s (here represented by the a,,, mstching equation) cx- Here we have dropped the superscript (a) which denotes
plicitly when dealing with collisions originating in chan- the asymptotic region as it will be implic.t throughout
nd A , They may have included such coupling implicitly Sec. V. The sum over arrangement channels serves as
by utIlIzing the symmetry of the H, system . However , a convenient notation for expressing the asymptotic
If 4, and A, are different atoms , we betie,-e that the wavelunction in all three arrangement channels simul-

-~~ p—s coupling must be included explicitLy . taneo~a.~ and is ma.de possible by The fact That asymp-
totically there is no overlap between the separated atom

V. ASYMPTOTIC ANAL YSIS plus diatom wavefunctions in different arrangement
A. The reactance and scettering mawices channels. An equation analogous to Eq. (5.1) for the

dertvati.’e (L/ R,) (a/aR,)R, ~~~ can be obtaired by re- -
-

In this sectIon we define the reactance and scattering placing g by dg~,’~~!(IR , in Eq. 15. 2).solutions and relate these to the matched solutions of

The reactance and scattering body-f txed solutions are defined to have the asymptotic form

or s1 ”— ~~ “‘ D~05( ’ ,, g,~ 0) ~~~~~~~~~~~ ) 511(r ,) b” ER or S~ , (5.3)
— I ‘!~

‘ P~ R, ~~~

where, In the far asymptotic region (in which both potential coupling arid the centrifugal coupling of Eq. (3.4) have
become negligible 

~, we have, for the If solution.

sinI*’~,,,,I4— (J,j ,) a l8~”

~~~~~~~~~ — ( J .j , )~~a I R ”°’ (open channels) (5.4)
J~’“ftb,,,,I RI (~ v’,,,,,,,I )“‘‘

exp() R,) ~~~ — exp(— I k~,,,, IR,) R”°’ (closed channels)

and , for the S solutIon,’5

- 
- e~~~(— 4*~,,, R, — (J s),) a fl ~~~~~I

b”~ 15I~ (I v~ ,,1 )“  ~~
_ e~~ 4k~~ N, — (J .j ,) a}~~~

”0’ (open channels) (5.5)
“SI ds’,P1.0’,

(closed channels) .11’ v,li ’Oi -
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Vt,,, Is the velocity (in scaled variables) and is related that
to the wave number of Eq. (3.5) by S°, “(I * tR~)(I — IR°,)” , (5.7 ) -

(5.6) where I is the identity matrix , and that the closed chan-

The primed variables ,-~~fl in Eqs. (5.4) and (5.5) de- nd parts of R, and S, arc identical. In addition to being
fine the reagent state In the A ’ arrangement channel. symmetric , R~ is real and E is unitary. From the

— (Note our use c the abbreviation A’l E A ’l . . )  R, and s, unitarity of S~, one can prove flux conservation , and ml-
are the partial s’ave reactance and scattering matrices croscopic reversibility results from its symmetry. 4’

and, for exact solutions of the Schrödingcr equation, In an actual calct iat ion, we wish to use the Rand S
they are symmetric .” Note that — i2 rather than ~: ap- solutions of the Schr~Idinger equation at a finite R~ for
pears in the definition of It, and S,. This choice allows which the potential -~oupIing has become negligible but -

the open channel part of the scattering matrix to become the centrifugal coupling in Eq. (3. 4) has not. These
the identity matrix In the lImit of zero interaction poten- solutions can be obtained by taking the appropriate lin-
tial (as will be evident from the partial wave expression ear combinations of space-fixed Bessel funct ions as was
for the scattering amplitude in Sec. V .13). The phase done in Eq. (3,7) ro that the far asymptotic behavior in

— factors i” appearing in Eqs. (5. 4) and (5.5) are Eqs. (5. 3) and (5 .4 )  is obtained in that limit. In other
arbitrary but will prove convenient later on . The open- words, as soon as potential coupling has become neg-
channel subblocks of It, and 9, are labeled R~ and S~. ligiblc (but not the centrifugal one), the b in Eq. (5. 3)
and from Eqs. (5.4) and (5.5) , one can easily show” can be written according to Eq. (3.7) as

h ’
~ER i=( I v~,,,I)’11’ 

E 
(,““[Rl?’” . ~~~~~ L

~~~
J
~~~~~
:.

~~~4_0.,
} (5.8)iS.i~ 5” ll’ JlS~5” It’ , 

-

= (I V 5 ) ‘ I IZ 
~ (I “4” sj o”’~ — o”” (s is ‘~~~l 1 (5, 9)

.5,5 t 5” ~~‘ 
,u, i,’44,.a’, i

where, for both If and S ma rlx solutions,

(i
~)s

’
~ 6

S’P’5J~~( l)°~ ” ~~ ~~J jj , ;  fi’,, — il’,, O) C ( Jj ,1,; 13,, — ii , , o)/’~”\ . (5, 10)

SS~

For the R solution, 
- -

i,,,,,,,j RJ= k,,,I,IRS S v,,(k~ , R,’p s i r 4 (J + j ,  — l,)~s J+ j , ,(k~,,,R,) cos [ (J . J ,  — !,)~ni (open channels) 
(5. Ila) 

- 

-

2i ,,( I k~,,jR,) (closed ch annels)

— s-,,(k~,,,R,) cos((J =j,  — z,)~~i +j ,,(k~,,R,) sln ( (J +j, — l,)~ ci (open channels) 
- 

-

~,.,,,,j RJ 1k ,15 1R , 
(closed channels) , 

(5, llb)

WhJe , for the S solution,

I k ,,j R, 
ç exp[i(J ÷5, — 1,) a) h~~(’~,15R,) (open channels)

(5,12a)
2(,,(~ k~,,jR,) (closed channels)

exp{— ,~(J+ j,— ,,)~ aJ h~~(k~,,,R,) (open channels)I k~,,J If , 
~ k~~ I~,,,IR

,) (closed channels) , 
(s. i~~i~~

where

— 
— v,,*1J,, , (5, 13)

and y,,~ i.,’ t ,,,, and k ,, are the spherical Bessel funC- (A14) to s~
’elate the usual space-fixed S matrIx 3, to

tlon~ of Sec. Ill . B. I. To show that Eqs. (5.8) and the body-fixed 3,. We obtain the R,-independent uni— -

(5 .9)  do indeed reduce, respectively, to Eqs. (5.4) and tary trar .sformation
(5. 5) In the far asymptotic limit, one simply uses the
asymptotic form of these Bessel functions at large val- S, ‘d ’S,ar , (5.14)
ues of the argument Ik ~~~IR ,.”° We may use Eq. where

J. Owni . Pltys ., Vol. 65. No. I I , I Oece-i-,ber 1976  
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I’ ll ’s.
62 :,~

’
~

-(JJ,l:~
,f ,, —ii,,O)i ’1” (— 1>n, p”tft°L — I s05 .l1iniIa , (5, 23)

- - -

- (5.15) tIn the rest of this paper, lower (upper) indices , w hich -

in order to obtain It,,, we generate an If solution of refer to the initial (final) state, will be unprimed
the Schröditsger equation satisfying the asymptotic con- (primed). I The scatte ring matrix may also be related
ditions of Eqs. (5, 3) or (5. 8) by taking linear combina- to the opacity funct ion as discussed in the next section. -

tions of the mitcncd solutions ~~~~~ of Eq. (5.1):
- 

B, Scettering amplitudes and ~ oss sections

~~~ [RI = E ~‘ ‘f~ q(,’~ i . (5.16) We now define the scattered plane wave solution and 
-

h i t
relate it to the scattering solution of the previous see-

/Is In Paper I, we are free to choose Q~~~~ 
6~~~~~ and tion so as to express the scattering amplitude in terms

require the C, matrices to provide for us those linear of the open parts of the partial wave scattering ma-
combinations of the primitive solutIons sat isfying both trlces. Our analysis will be done using the helicity
the matching condition [Eq. (4 .56) 1 and the asymptotic representation” in wht rh the axis of quantization of the
conditions. If we substitute Eqs. (5. 1 )— (5.  3) and (5.8) incoming and outgoing rotational states is chosen to
Into Eq. (5.16) and express everything in matrix nota- coincide with the direct ion of the incident and final wave

- — Hon (involving matrices of dininnsion 3Xx3X ) , we get vectors respectively. The helicity formalism is very
closely related to the use of body-fixed coordinate eye-

V 41 (I R I + O ,[R I R ,)(C;)” = Ec~
(C;)-t * ; (5. 17) tems of the type described in Sec. II. B and leads to a

where R, is related to It , of Eq. (5.8) by particularly simple relation between the helicity scat- - -

tering amplitudes and body-fixed S matrices.

= (It )‘ ,“ (5.18) We define the helicity representation scattered plane‘
wave solution by

and -

= ~‘‘ 
I 6”i (5.19) ~~ ‘[P) exp( i~~,,,~~,)4J J~,) 

1
h i 5’

9
’,~~~’,~

115 F,

Note that the (g,)~~l. in r~q. (5.17) is identical to 6,,~ 
* ~~ exp(i~~j ,j~ ,.) 

~~j,t
()
~~times tlieg ’ 

~‘ of s q. (5.2). An equation analogous to ,~~Eq. (5.17) for the derivative R;’(a’0R1)R, +~‘ L  is easily
shown to be

- ~~~~~~~~~~~~~~~~~~~~~~~ 
(5. 24)

V”(l’, , I R l÷ O~I R I R ,) (C ,) t 9’,’C~( C t ~~*9 ’.,’ . (5. 20) where the sum over final states includes both open and
closed channels, For closed-c hannel solutions (whichw here prime denotes differentiation with respect to R1. we shall ignore below), c,,, is pore imaginary, ~~The quantity C~(C~)~ is given by Eq. (4.56) . Equations 
exp(i~~,,)~,) decreases exponentially. Note that the(5, 17) and (5, 20) therefore provide two simultaneous

linear matrix equations in the two unknown matrices physical coordinates H,, F, and wave numbers 
~~~~~

(C;)” and 1,. Eliminating the former from these two = n,f4,,, have been used in Eq. (5, 24:. In addition, we
have introduced the global index ito denote the quantumequations and using Eq. (4.56) , we ~at nun,bers i-pit 5. (We will relate m, to 13 and hence ito I

i, . _v ” w” {(i ’,[R I9~ — I,tRlg ’,~i(N’,)’  ~; — (I~1nIg; below.) For simplIcIty, the space—fixed z axis has
been chosen to be in the direction of the incident wave

- 

— I,[Rig’,i} {(O’,~R1g’, — O,(RIg’,) vector . It then follows (by inspection of Fig. 2) that the
space- fixed and body-fixed a aaes will point in opposite

x (N~r’N; — (O ’,IRIQ; — o,IR Ig~’t[’WV 111. (5. 21) directIons t’iltlally (i.e. • for (H,), — — “ ) .  The outgoing -

Here 
body-fixed z~ axis points In the same direction as the
outgoing wave vector , thus allowing us ‘,use

w =o ’[RII(RI — 1 ,[ RlO ,IRI (5. 22) ~~ instead of Y4..~,t6 ,,1, ~~~~~ In the suarnation appe-tring
In Eq. (5. 24).

is a Wronskian matrix which, as can be seeti by inspec-
tion of Eqs. (5. 10) and (5.11). is diagonai and constant , The differential scattering cross s~,ctIon Is defl.’w-d
i.e,. Independent of If,. The right-hand side of Eq. as the ratio of the outgoing radial flux per unit solid
(5. 21) involves real matrices which are obtained direct- angle to the incoming plane wave flux and, from Eq.

- 
- ly from the Integration and matching steps of the cal- (5. 24), is related to the sc attering amplitude Jby

culation. Therefore, R, and It, are real, as expected.
“

~~ ~~~ 
IJ”i” (5.25)

With R, and hence It, determined, we use Eq. (5 7) ,1, I
to calculate ~ 0,, which in turn can be related to the scat-
tering amplitude by the formulas of the4 next section. for AI’,f ,m5, and A ’t-(j (ni,, representing open f inal and

In addltion, the scattering matrix is related to the prob. initial channels, respectively. Here V~,1, is the physi-
abIlity of transition from initial arrangement channel t Cal velocity
and quantum state i-,j, fl, to final channel ~~

‘ and state ~ ‘, I 
~~
‘ 12(E—Ah.!~~” , (5,28)

— 
- 

l’~ j (fl ( by” - - .5” a, ‘5” ~~~~~~~ /
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In order to relate Ito the scattering matrices, It is ~~~~~~ ~~ ,- 1:11 Inj \~

“ 
(S 21). 

- desirable to first define a scatteri ng solution analogous - 
“ “, ‘,,n,/ ‘

to Eq. (5. 24) iii terms of the scaled coordinates of Eq. whIch will be useful below.
(2,1). This is easily done by removing the ‘bars” on One now expands the plane wave part of +“s[pj in
all symbols containing them in Eq. (5. 24), By compar- terms of a series of products of Legendre polynomials
ing the plane wave pa”ts, we see that the resulting P,,(cos9,) times s~A ie--m ral Bessel functions j ,,(14,,R,),
*~~i4.0J Is proportional to *“‘[P[ with a proportionality takes the asymptotic limit (If, — ‘), and converts the
constant at”. ComparIson of the outgoing wave parts re~ult to the body-fixed variables r ,y,mf,  and R,9,s/s , fol-
of S and S then yields lowing the procedure ouUsned by Pack,” obtaining

‘ .4
J

ex
~~

ik
~~

(H,),)(±
~~~~~) 

F (9 ~i ) I 
_______

‘~ r, ~~~~~~ “ “ ~~~~~~ \ ~, ~~~~~~~ 
~~~~~~~~~~ 0,, 0)

X Y,,05(y,, 4,1(2.1-. 1)/ ~‘1~’~ (exp {— s[k~,,,R, — (J +j , )~ v 1 }6,,.,,.,, — exp{s1k~,,,R, — (‘1. JJ~ ri }6.n,) . (5.28)

In analogy to Eq. (2. I I ) , the scattered plane wave solo- is independent of ó,..’ Using the properties d~~ .tU)
non “sI, ’,,[ P1 may be expanded in terms of the scatter- 6.,._ and d~.,(e) (— I )“o,,, ,~~ [derivable directly
ing solut ions $“*°4sJ as from the d ‘finition of d

~.,,($)L we get from Eq. (5. 33)

* ~~ 5 sh.—15°, ~~~~~~~~ (5, 29) e’;:i~
o) 6_. ~~~~~ ~~~~ (2J+ III 15~~1~150,

andUsing Eq. (5. 28) to exp~esa *[ r [  In ternis of body-fixed
quantities, Eqs. (5. 3) and (5. 5) for the asymptotic form
of *~ ‘[S), and equating coeff icients of the Incoming u,~ ‘(w) = 6 ,,. . — (— l)’(2J+ 1)T ”1 ‘ . -

, ~1’ ~ ~~~ I i.o ~~~ I 
‘ -

spherical wave parts , one finds
s,lmich show that fcr ;;; , ~ s;;~,, C ~~-~~~~“ vaaishca, aad fcr ,‘

- *= ~ ,(~) i ’ ii . (5,30) ~~ — ~~~~~ ~~~ s vanishes. These are rigorousis M,’0~ ~~ 2 selection rules for forward and backward scattering
related to the conservation of ,j,24 - 

-This shows that the only value of (7, ContributIng to the
right-hand side of Eq. (5, 29) is 13~ — n;~, which relates The Integral cross section Q~j~

1 is obtained by inte-
l,. ,‘,j,ns1~ and i, ,-,j,fl, for the reagent st ates , If s-c gratIni~ Eq. (5. 33) os-er 9,. and em,.. and using the crtho-
now equate Coefficients of outgoing spherical wave parts normality property of the d’ functions,” This yields
and use Eq. (5.30) to simplify the result, we get the memarkably simple expression

C h ’  
~~~~~~~ (V. 1W ’ -. (o,,)T~~~,, ~~~~~~~~~~~~ 

~~~ (2.1+ l~ (T ”1 (‘ (5.34)
1v5 , /51, ‘- 

- Ii , 2k’,,, ,.o ‘-‘s I~

(5,31) Both a~~” and ~~~ may be averaged over initial m1, and
where . summed over final rn , to give the degeneracy-averaged

quantities a~~3 i  and 
~~~~~ respectively. ‘rhe latterT, = I —S°. (5. 32) of these two can be wr itten as”

is the transition rratrix,” and n, = R,’ for the product —
- - state s so that F~ and t~ are Identical. Equation (5.311 Q’~

’111 —~
j’
~ ~~~~ (2.1+ l)Pl’i (5.35)

‘Ii,, • 
1.~!, ‘shows that the helicity amplitude and body-fixed scat-

tering matrix are related by a single sun, reminiscent where the opacity function P, Is
of the analogous result for potential scattering. Thi s
illustrateg one of the primary advantages of the use Of .P’~ ” * (2j,. 1)”E ~~ 

?‘!.~ (5,38)
hellcity .unplltudes In conjunction with body-fixed coor- 1~ Ia
dinates such as those depicted In Fig. 2. Combining and the ranges of the sums are im11I s znin(j,,J) and
Eqs. (5,3l)and (5.27), and usIng Eq. (5. 26) and its 1 m 1  s mIn(j~,J).
counterpart for the wave numbers ,,, and k~ ~,, we In an application to the 114 H, reaction, the number offind that the physIcal scatt ering amplitude j

~~,
a iS given different distinguishable atom scattering arnpiituoes -by an expression Identical to Eq. (5. 31) wIth all veloci- and cros s sections may be greatly reduced by consider-ties and wave numbers “barred. ” Substituting this Into ing the symmetries involved. This was done In Paper IEq. (5. 25), we find and the dertvattona are essentially ¶aT,changed in 3D.

First, the scattering amplitudes are invariant to a cy-
~~~~~~~~~~~ ( ~~ (2.1. ~~~~~~~~~~~~~~~~ (5.33) el ic permutation of arran gement cha n nel indices so that - .

(suppressing the i~, i ) J,’.f:.f.’, /,.=,.,=/,
i, andf~whkt, demonstrates that the differential cross section 11’,. second, ~: andf~ are related byma
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•“—:. ~5.37) (d) or th o—crt . =~,:- i~~:~~~~
’
~ 

— (— I)” 1,,,,.,
“_ s°’°’[’ ,2 l3”l’).- and the nonreactive f~ rat isfy ~;~

‘ 
~ ~~~, ~~L(2J * I )(l 6~

’ — .c~~ iii I ,
~~ I

(b,40d)
. 

. 
/~~~~~~~~~o if j—j ’ = odd. (5,38) 

~~~ i~ in~e~ ~ t in sec. III. C, part y syninictry
, 

. . These statements imply thatf~ and J~ are the only d’s- may ie u sed is, both the integration and I iatching pro-
*- 
.. - tlnct scattering amplitudes and th at niauy components of cedures for any cheniical reaction to re luce the i-nita.’—a f~ are zero. These symmetry relations also apply to of states coupled In these’ ,~tag* s of the calculation. Oae

- ~ — ~ the scattering matrix S, so t a t  the entire distinguish- nsay also define parity scattering matrices , but the -

- - 
- 

~ 
able-atoni cross section calculation can be considerably 

~~~~ wave solution Eq. (5. 24) does not save par ity
‘ ~~ , ~ strean,lined, It should be i.icn’ioned that ali.hougti the synsflset ry so that these two decoupled pai’Ity S matrices

- ,.- .-‘ cyclic permutational symmetry is built ,~ to the calcula- must be recoupled before ~wrformIng ~~ caiculat:on o.
- -

~ / lion if the integration is dore ~ only one of the thre° the scatkring amplitude In Eq. (~.3l . ThIs procedure
equivaleiit ar’.a’gensent channel regions, iqs. (~

, 37) is outlined in Appendix B.
.. ~ and (5. 38) will only hold rigorously if  s , de~incd by Eq.

- 
- - (4 ,49) is orthogonal, and th i s  w i l l  only  be the c ase if vu . DISCUSSION

. 
- 

. . the matc hing surface basis functions given by Eq. (4 . ‘10)
‘ form a sufficientl y con ip lete set . This provides a test The n,etln.d we have outlIned in Secs . ll—\i has a num-

- of conver ger.ce o the method as long as the sy mmetries her of liniitations or restrictions which we shah now

of Els, (5 , 37) and (5 , 38) are not bu ilt in to the ca icu la- analyze . First , we h ave considered the ,eact i ve cotl i—
-- - : ~ sion of an atom with a diatonslc molecule on a single

- electronically adiabatic potential cner~, surface. The
To consert these distinguishable-atom scattering extension to multisurface reactions is straigh’Jorward

..L,. ar.,plitudes into t’ .e corresponding indistinguishable and would follow the general formal previously devei-
. , 

ones when two or three of the atoms are identical, the cped for ~olli~ie~r reactions,” All t’~.ree reactive ar-
‘ standard technique of poscaiitisynsnsetrization ’° may be ringelnent ,hannels are assumer’ to be energetically

,—~
- —- used, Application to H • 112 was given i-s Paper I and is r,~cessiL,e and the diatcm in ~,ach arrangement channel

;-.- . unch anged in the three-dimensional treatment . In the Is assumed to be in a iV electronic state. A straight-
N 

notation of th is  l~aper we ObLSi f l  the following estpres- f .rward modification ~r the matching pi-ocedure which
- - sions for the ant isy n~metrizcd differential cross scc- s im p li f ie,s it appr.~priately is required for sing le re~c-
- tions: tion path systc;iis (for which one of the three arrange-

(a) para-- para (j , j ’~ 
even): nient chan’-~els is closed). This war discussed in Paper

- — I. For diatcms I~aving electronic states other than ‘l
j  

~~~~~~~~~~~~~~~~~ 
(5 39a) (s,i_~ ~ q ~ wltn ,%*O) , the rotational states

- - “ “ ‘ 0,,) nsust be modified” to L) ,’,,,(O ,.,, ~~,,, 0) and elec-

-- 
‘ (b) para — ortho (j - even, j ’ odd): tronic—vibration—rotatior, co-ipling must be considered,

- but the basic integration and matc~ . * procedure a are
.1’ i:;

~~
, ,. _,.

~
,

- -. 3 —~
— - - 

~ ,~ , (5 , 39b) unchanged. One basic restriclion of the n,ct hod is its
- - inability to treat dissocia’ive or break-up chann~~

q.
This is not a serious limitation for many Important

- 
(c) ortho—para (

~ 
- odd , ~

‘ cs -en ). 
chemical reactions at ther mal energ ies. A procedure

I ~~~
i’ =~ !~~~~~

’ 

~~~~~~ 
, (5,39c) for reat ing both dissociative and reactive collisions is

‘ j7,, currently being developed in this !abo—atory.
‘. --- 1-

(d) ortho — artist, ( j ,  ~
‘ odd): The integration procedure outlin&-d in Sec. Ill may

be applied to any reaction for which the criteria of the
e~~

’ 
~~

L ’ O? 
~i

’ i ) ’V. ~~ ~“ V) ~ 
(5. 39d) preceding paragraph apply, but the matching procedure

- 
- - 

- (and hence the choice of coordlnats system in the match-
- ‘shere Eqs. (ri. 27 ) and (5, 31) are to be used in evaluat- ing region) is strongly dependent on our choice of

- ing Eqs . (5 . 39). The expressions for the antisymnse- matching surfaces [Eq. (2.3 1 of l[. Ot ser choices will
trized integral reaction cross sections are requ re significant modifications in the details of Sec.
(a) para — p.’ra: IV, althoug h the basic concept s involved in matching

wi lt still bc applicable. The niatehing surfaces con-

Q~~

’
=

~~~~
- ~~~~~(2J , l ) [ o ~ 

_
~~°“: , s~

’-1-~’ , (t .40a) sidered in Eqs. t2 . 3) of I should be useful for many
I /51 - lit chemical reactions but may not always be ideal for 01,-

(b) para—ortho: tam ing rapldlj convergent coupled-chai. iel expansions .
In particular, Ii’ the reaction has a low barrier for ?

~
.3  ~~~

- ~~~(2J, I) Is ~~.:I’, (5 . 40b) = sf2 configurations , the expa nsion of the ‘vas-efu iction
in ternss of ns~itc hing surface basis functIons ‘~~‘ (Sec.
1%’ . B) n;sy be slowly convergent . Conversely, too

- . (c) ortho— pa ra . otrong an anisotrol)y favoring coliiiK%r reactions ever
iT

‘~~r E ( 2 . J  l ) I S~~j~’ , (b ,40c ; perpendicular ones leads lo an Ill-condit Ioned coupled-
,, ,, equation problei .. These and related restrictions on -

.1. Chins . Pl y5, Vol . 6b tIn, 11, ¶ Decembir ¶976
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. the matching surfaces were outlined in Paper I. {(_ l ) 1  ?fl ,>O . 
.

‘C I (A2sThe asymptotic analysts of Sec. V is quite general 1 ,,,,~~ 0
ai.d should be applicable to those chemical reactions
which ftt the criteria of the first paragraph of this see- where P~~i

1 is the usual associated Legendre function.
tion. The antisynimetrized results presented in Sec . V The spherical harmonic Y,_ , Is expressed in terms of 

-

are only applicable to a collision system of three identi- ‘
‘
~ l~)~ ~ -

cal spin ~ particles. Other combinations of identical ~~~~particles and spins niay be treated by post antisyn,n,e- ~~~~~ ~s) = —
,~~~~

-- w7’ (cos9). (AS)
trlzation procedures analogous to that in Appendix B of
Paper I. In the space-f ixed formalism of Arthurs and Dalgarno,” :

the full wavefunct ion is expanded in ternis of a set of
The final criterion regarding the applicability of the functions ~~~~ c’,; 0,,, 0,,) which are si m ultaneous

method is computational efficiency. The large number etgenfunc(tons of j Z
, j ,, p2,, and j~ . These ‘N~~, are

of open rotational channels present in any 3D atons—di- related to the V,,.., and Y,,an~, via - -
atom system makes the applicat io n of any coup iect -chan-
nel method a large computational project. Much cffort ‘s~f~ ,(e ,, 0,, o , ,  ~,,) = ~~ C(j ,I,J, rn,,rn ,tt)
has, however, been spent in designing the method so ,,‘ ,, - 

-
that a minimum number of such channels are needed for -‘ 

-

convergence of the results, We therefore feel that this ~ 
)‘,,—,,~~,,, ~~~~~~~~~~ ~,), (A 4)

method should provide a computationaliy feasible pro-
cedure for studying siniple chemical reactions . The where the notation of Rose” is used for the Ciebsch—
first application of this procedure (to 3D II . H2)

21 sup- Gordan coeffic ients C. The full space—fixed wavefunc-
ports this statement, lion is then written as 

I -.

~
t 
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APPENDIX A: ANGULAR MOMENTUM OPERATORS r ~~ (1 a’ I a’ 
)~~~ ze +l

~~’AND THE SCHRÔDINGER EQUATION IN SPACE- ~~~~~~~~~~~~~~~~~~~~~ —

~

—— 

I 
-

FIXED AND BODY-FIXED COORDINATE SYSTEMS I ~~~
- .

In this Appendix we will est ablish the relations be- • 1)6 2

tween the rotallonal and total angular isiornentuni opera- 
+ —

~~~~~~~~~~~ 

— E]G~~, ~ I r~ ~~~~~ = 0 , (A6)
C 

)
~ors in the space-fixed and body-fixed coo rdinate sys-
tems de fined in Sec. II. 13 and Fig. 2. We now consider t he transformation to the body-fixed

* coordinate systems oX l’ ,Z, an ’ Os:s ’4 of Sec. Ii B. -We first consIder the space-f ixed coordinate system A convenient represent.i~son of angular momentum oper- -

I .1Oxyz. In terms of the variables ,,, 8 ,,, ~~,, and 8, ators in these coordinate systems involves choosing the
(Sec. 11.13), the various components of the rotational operators J and ), as independent and e pressthg the 1’,(j ,) and orbital (I,) angular momentuns operators are of Eq. (2.9) by the expansion - -

given by the usual spherical polar ccardinate exprc’s-
$lon~ 

lf J—j ,~ ’ ,T~ + j~ — (.1.), •j , . J) . (A7)
To convert the operators J, and J , ar.d thus the Hamil- —

Ju — (Ala ) tonlan of Eq. (2.9) , to the body-fixed systems requires S.

first a change f rom the variables b,~ ,8,,,0,, to O,0,v,.,

~ ., as cleilned in Sec. ll.B, followed by successive rotations
j,,= — m (_ coso,, cote — stnO.,8-9--- ) • (A Ib) of the components of (he operaiors. These rotational 

/ -

transformations may be accompltshe.1 by using the gen- ,‘

eral expresslo~su
i, ,= _ m(_ sinI

~~,
cot9.,~~

__ 4c os o,,,~è!-_-) tA lc) J,. R o$y ”J,R(~~ y , (A8) I
and similar expressions for the components of I, with where J, refers to the kth component of any angular

~~,, 
8, Subitituted for ~,,, 9,,. Expre3stons for the momentum operator .1 In an initial system and 

Icompcnents of 1 are trivially otaained by the addition
J= l,.j,. The Sigenfunctions of the operators j~, and f 1,, R(ail)) =e”e”e~~”, (AOl
appearing in Eq. (2. 9) (and also of j , ,  and I,,) are the J,. refers to the k’th component o~ .1 in a transformed - 

,

- 

-

spherIcal harmonIcs Y,,,,, ,
(9,,,o,,

) and Y,,.,,,(9,,~ s ,). coordinate system which is obtained through rotationsFor notational convenience we shall define the modified by Euler angles a~i) from the Initial system. One ins.
associated Legendre function 6’7i by portant poInt to note in the application of Eq. (A8) to

6’7i(cose) = PrI ’ (coa8)(~
L _

~
!!!I

~~ 
2i + l ’ ”  the body-fixed coordinate systems OX,Y,Z, ts~ Ox~ v’z~ -

( j +  lm,i) t  — i)  is that the components .1, and (j,), of the operators 1
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and J, will in general operate upon one or itiore of the One very useful point to notice about j ,~~,
, j ,p ,, ~Md i,~,Eule r angles 

~~,, 
8,, and J, of the transformations, and is that their expressions in terms of 

~,, , in Table I • 
_

thug great care must be taken with the order of the op- have the Sante functional form as (he correspondingerato rs . In Tabie I we express the resulting comp o - ),. I,,, and j ,, in Eqs. (Al) This Implies that the to-
nents of the Operators .1 and J, as well as various cons - tational angular momentum eigenfunctions in the Xj’,Z,binations thereof in ierms of the variables ~~~~~~ in coordinate system will simply be the spherical har-
the three coo rdinat e syste ms Ovs-z , OX,} ,Z,, and monics )‘,,~,( ,, 

~~~ 
where, as is explained in Sec . U. B,

Oc~y ’z~. Some of the relations in that ts le have been ~~, t$ the quantu m number associ ated with
\_ given previously by Yezzett i and Rubinow , al Morse and In terms of the coordinate system OX’,)’,Z,, (he

~ 
‘ Feshbach,5’ and Curtiss, Hlrschfelder , and Adler. ’t Han,iltonlan of Eq. (2.9) niay be written as - 

-

--
-a 

----- - ---- -. - - ~~~~~~~

h T
1
1 1  ~t I a’ C

H -.
~~ —-— -

~: 
y R, + — 

~~ 
rt) ~ ~

- -
~~~~

- • 

~;:b~
— “ •i ~ ~ 2),5,J5, ( j J ~ • .j ;J ’)J 1’’(r ,, R,, v1) , (AlO) ~ - -

. I- 
where the raisi ng and lower ing op—rt tors are def ined in terms of the X, and 1’, components of J and j, in the usualway.” In order to express the Schr~5dingei equation in OX,}’,Z, coordinates, we rotate the wavefunct ion accordingto Eq. (2.13). Substituting this expression, along Wj ~ I Eq. (a’tlO) Into Eq. 12. 9), and using the normal raising andlowering properties of the rotation niatrix ,” I.e. ,

J’n~n, =h~J ( J •  1) — m i , (Ii , ; I ) J u / 2 D~,~ ,,~ . (All) 
-
‘ —(where the * components refer to the body-fixed system) , we obtain tne following coupled equations tot t~’e

r
- - L 

— 

~ (ik ~~~~ 
* 

.!_ 2~y ri) + ~-i~t-~y. • ~—~jj~- [,J (,J * 1)1,’ *J ~~ 
— 21,12, j ,5, J ‘‘(r,,R,, 3,) — EJ —

Sx ~~~~~ — ~~~~~~~ [ J(J  • I )  — IZ ,(t2 , Ill’ i ; ~~~~ v [J (.J * 1) i) ,1D, — I)r’’~ ~~~~~ C. 
- 

(*12)

Since the rotational eigenfunctions in (he O,V,1’,Z, coordinate system are the 
~~~~~~~~~ a ,) , ate rotationally coupledbody-fix ed solutions analogous to Eq. (AS) are given by - 

-

4’,5(r,, R,) E ~~~~~~ 
0,, 0) 1’

~,ri,( ,.  .,):t ,~,,r,,(r,, H,), (Al3)1,0,

w hich is a cona ’ inalaon of Eqs. (2 . 18) and (2. 13). The body-fix ed and space-fixed representations may be relatedby using the equality

D~0,(o ,, 8,,0) ~~~~~~~~~ ~~,) 
( 4 ) i I z~~ 1)11.0, C(Jj, I,; li , ~~~~~~~~~~~~~ ; 8,,,~ ,,,) . (A l4)2 J 1

S. .Equation (Al4 ) is of great utility in the asymptotic analysis of Sec . V. A .

~~~~~~~~~~~~

-____

APPENDIX B: PARITY DECOUPLING
,s. In this Appendix we consider the decoupling that oc- 

= ‘~~ 2 ~~~ ft ~ . ~~~~ 
(92)

operator ,~~ are used In the coupled-channel expansion , The bod ) - -fixed wavefunctlon we are considering is given,This operator ineerts all atoms throug~ the system ’s from Eqs . (2:~ 3), (2 .18) , (2.30) , and (3 ,1) , bycenter of mass . For the three-p article system we are -

considering, 
*15 (r,, R,) 

~~ 
O~n,( ’ ,, 0,, 0) )‘,, 01U,, 4,)

*,I,fl~+(— r,, — R,) , (RI)

curs when eigenlunctions of the parity (or Inversion)

where + is any wavetunc ion describing the system , ,
~ x 

C ,, ,,(r,)
commutes wi t h V , and Vi,. In addition , the internat r,ft, c,,. ,,,0,(R,) - (83)
configuration of the system before and after inversion 

Since .~ leaves ~, and the scalars H, and r, unchanged,IS the same and consequently the potentiai energy is not all derivations of this Appendix are independent of which -changed by the parli) operation. Wc conclude tha’ .~ r~ the four regions of each arrangement chann8l region -commute-s with the ll~niiltonian In Eq. (2.7) for any trl- we are ConCerned with , so we shall omit any explicitatomic syst em . 
reference to them, using the general form for +~~, in

If we express R, and r, In body-fIx,d variables, we Region I or U and dropping the superscript (n) or (,~~) Inf ind that the ~~‘ vibrational basis functions, Let us now apply.~

/

1 
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- 
to Eq. (s3), using the relations” ~~~~~~ • t, a — 9,, 0) ii we include initial cui.di(ioiis of the proper symmetry. — . ~ (— 1 )‘ x p~ ,,,,(e.,, 8,, 0) and ~~~~~~~ I — 4~

) = ~~~~ ~~~ to form the matrix ~ , we find that I
)
~~)C. *,). ~y changing the sign of 11, In Eq. (93) and

- remembering that its summation limits in that equation ~~~~~~~~~~~~~~~~~~~~ - (811) -~

are Invariant with respect to a sign change, we find To convert the equations of Sec. II) to the correspond- - 
~

ing expressions Involving parIty solutions, we need only .i+ ,,5(r ,. R, ) = (,.. 1 )‘ .~~~ ~~~~~~ o,, 0) y~~~~,, ~,) 
~ ~~~ Eq. (BI 1) to transform them into expressions for 

,
,,

~,,. . 
- 

1,1,0, u~
, rather than 9~, , For example, the fully couplcd

.- .. x ~~~~~~ 
Schrödinger equation IEq. (3. 14)j becomes I

~~~~~~~~~ (84) -

- 
r,R, 

~~~~~~~~~~~~~~ , (812)
-. The — 5), index of g’ in the right-hand side of this equs- dR,
I; tInti IndIcates that +~~ is not an elgentunction of the where

~/ parity operator 3 unless J 0 (sInce 11 must equal zero _ ,
as well In that case). Since.~ commutes with the Itansil- U,*J,U,j, ~ Cats) .tonian, we should be able to linearly combine the +,,,‘s - 

ii ~~ is Identical to U~, in all terms of Eq. (3 ,15) except ~ . 
1

so as to produce simultaneous cigenfunctions of .~ and those off-diagonal in 11, (i.e~ , in 
~~~~~ From Eqs. I ~~~~

~‘
- II .  Let us consider the line?r combinations (3.11) and (BLO) , we find that ;- I’:,. 

- ~~s(r~, R~) *~4 ~+ ,5 (r ,, R~) t ( —  t) ’+,~ (— r,, — R ,)} . (u~
C ):~* ~~ ‘R~ ~ 0 0 . f J ( J . 1 ) —  2fl~+j, (j , .1)1 2 — - —

CBS) _ a,,,f0,,10. f_ (J, Cl,) ~,(j,, 12C ) - - . S. By substituting Eqs. (133) and (B4) in Eq. (B5) and re- I ~ 
•
‘ -

.- 
arranging the resu lt , we rind that b.,f’o,i,n~ 

I ,(J. t ,) L(j,, n,)
~ ,. (Bl4t ~ -:

- S 
. 
4;. (r ,.R,)~~ E P~~01

(I~I,, ~~. 0) }‘,,~~,(,,, 
~ ~~~~~~ where ~ 

-
.

‘I
- ~,1,0, ‘-“~‘ I for U, I and U, — 1 - 

-

- 

(

~ (~~‘i,,,,0, .g1,,1,, ~~~~ 
12 for iz, = 0 - (015)

x
l

~~~ (g,~,,,0, g~~~~~~~~
’ (136) 0 for n~ = — I

5
/

- 

S I  
for R,>l and fl,~~— l-

- where the upper term In the large parenth si-s refers 
[2 for (3, * 1 

j
— to the plus solution and the lower to the minus solut,on. ba, *

- - 
- S.. 

From Eq. (134i, It should be apparent that for (3,=0.  - 
(816) -

S4’,5tr,,P, ,(— I)’4~,5 (r,,E,). ~3’~ An examination of the structure of ii ,’ Indicates that It
Since the basis functions ~~~~~~~~~~~ in Eq. (136) Contains no elements which couple states whose R, Is /

---~~ - are ihe same as those in Eq. (113), the equations of Positive or zero to those whose (3, is negative. Stnce -

Secs. 1l—IV may be converted to the corresponding ones only (i~ provides off-diagonal (1, Coupling In Eq. (1312), -

Involving parity solutions by simply t~twariy combining we see that Our Coupled Schr~dtnger equations have been - . .

tiieg’s according to ti~e expression in braces in Eq. separated into two uncoupled se’s—those with 13C
~~ 

0

(08). To facilitate this, we define a new function ~ via” tof parity (-. l) ’J and those with n, -0  Iparity — (— l ) ’J .
This uncoupling is preserved throughout the integration

~ / 1 in a given arrangement channel region since the only
- -~j (e ’,,,,,5, ‘ .‘~ 

‘,_,,,,
.,,
,) for C, >0 11,-dependent coupling appearing anywhere In this pro- II

cess occurs in centrifugal terms analogous to those of
- E,.,0(R,) 

~~~~~~~~~ for R I 0  Eq. (814). Thus by constructing parity e igenfunct lons,
we can separate our integration problem into two

~~ ( g ~ ,,0  .g,,,,,,41,) for fl,<0 , smaller ones leac h of which can be further separated
Into two part s for homonuclear targets (Sec. 1II .C)1.

or in the matrix notation of Sec . III.A, - Parity Is also preserved in the matching procedure
- 
‘ because , as can be seen by Inspection ci Fig. I, the.r,(R,) “1, ~~~~~~ (09) parity operatIon is invariant to which arrangement

where the orthogonal matrix 1, Is given by Chatu~51 coordinate system one is eonsi6ertng. This 
- -means that solutions of the san-c panty symmetry but

- 
/ 1 expressed Lit different arrangement channel coordinates

- -  ~~~~~~~ (?t,,,,~ * ~~~~~~ (or (3,>0 should be related to each other by a transformation -

Which does not mix in solutions of the opposite parity.
= 8c,,,,1 tot (3,, 0 To prove this, we must first transform the coefficient- 

I m*tr ices h~,, ii’J, f’,, and t’)’of Sec. IV .Bto the repre. I
untstlon involving parIty elgenfunt tlons. This requires-- 

~~~~~
(— ~~~~~~~ + ~~~~~~ for RI ~O. (010) 

~ transformation similar to Eq. (011),
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&~~ 
.I:,k~;,. (8 17) ly, One can find these soiutions by actually diagonaliz- S

ing the asymptotic Hamiltonian obtained front Eq. (1312),where .1 :~ Is an S - 2 ‘ .V/2 matrix (X * total number of or by perforniing transformations analogous to Eq. . .solutions of both parities) whose precise mathematical ( f i l l )  on I, and 0,. Both procedures lead to expres- ‘ 
~S ~ form is Identical io i, in Eq. (1310) , but whose a.~tua I sions for I~ and 0, identica l to Eq. (5. 10) except for the ,.atructure Is different because the set of Indices z- ,j, in- following t iw changes: ‘ 

S 
-yolving the match in g surface basis functions of Eq.

(4 30) wil l  assume only half the number of values that (a) the sum over 1, in that equation includes only those

/ 
the asymptotic solutions do (as discussed in Sec. IV. C). j , of the same ’ parity as is spectfied by the signs of (3, 

-
.
.Note that we still right multiply h~, by .1 , in Eq. fBI?) and fl~ appearing in that equation. (The only nonzero

beCause rIght multiplication corresponds to linearly tern~s WilL always involve (3 , and Q~ of the same signs.
combining differ ent initial conditions, and the number j,, other words, when fl,,R~ ~ 0, l, J4j R J+j ,~~2,of these is always .V . fly writing equations analogous to ,,. 

~~~~~~~ and when ~~~~~~~ f,J+j ,— 1, “‘ , IJ
Eq. (Bl~ ) for h’ . f , and t~’, substituting these into 

~~~~~ • ~ 
-

Eq. (4. 55)Iusing Eqs. (4, 52)— (4. 54) and simplifying,
we obtain (b) Equation (5. 10) Is to be multiplied by f0,0~, where .:.

. 
S 

~~~~~~ .~~ eOI ~ ~~~~~~~~~ ,1
~~~

y - }  , (1318)
(- /2 for fl,= Oor i’i,,=O -

where the circumflex symbol Implies definItions analo- , ~
5— gous to Eqs. (4. 52)— (4. 54 ) for barred (I.e. , parity) lo,o,,= ~ ~ for (3,=f),=0 (022) ‘.

quantities, and • ( 
2 for (2,x(l~ >0 -.5--.--

~~-

. 
~~~~~~~~~~~~~~ (Big) 0 for (Z,xQ~~0.

‘5 _ 
From Eq. (4. 49) we can i-cwritc ~~‘, .is ... 1-.

This form of Iu ,n, leads to block diagonal I,, and 0,,
(i:&)

~~~ : *s~~~f A~:n,(v, ) matrices , thus decoupling the reactance and scaltering
matrix analysis for solutions of different parities,

.5.. - . i(d~.,n, d&,.o,) j When these expressions for l~ and O~ are substituted
(d g,n, d~,,.o,)1 f 0 ,~~ s iny,dv ,  , (1320) into Eq. (5.21) along with the parity expressions for -S ~ xA~ u (V,) ( 1

Q~l,  QY,  and C . , the correct parity reactance matrix
where 

~~ , Lanalng ous to A~, of Eq. (5. 18) ) is obtained (where
t/~”2 for fl ,= 0 or 0 we conside r R~, to Contain the even and odd parity re-

actance matrices as separate subblocks). This may be - - 
-

1/2 for fl ,= I? . a 0 subsequently converted to 
~~, via an equation analogous

* 

I for O,xfl, >0 (021) to Eq. (5. ~~) and the rernar~ which follows it. The rows
/and columns of the p.srity scattering matrix may then be .- —

0 for fl,xf7 ,~ 0 , rearranged to form the body-fixed scattering matrix S,
via -and the upper term In the brace-s is used for U,, U, 0

and the lower term ~or U,,I3,. 0. It should be evident ~,=dS ,I , (023)
from Eq. (B2l) that i~~, does not couple terms of dif-

where the 3’i’ v 3X matrix Its obtained from the N X Nferent parity nordoes any part of Eq. (1318); this Impiies
matrices 4,, 1~, .1, [whose definitions are analogous to

- ._ ~~ - that the matching procedure can be done separately for
Eq. (1110)1, byso~utlons of eac h parity. it should also be notcd that for

a complete set of matching surface functions , the two ,, ,, o o
subblocks of 1~’, corresponding to solutions of different ( -  

~~ (1324)parity are separately orthogonal. 
~ ~ ~~. 

IA convenient procedure for extracting the asymptotic
information (ron, the matched solutions involves first a In which 0 Ia an .V ” ~.V m .itrix of zeros. Finally, the -- 
cal culation of react ance and scattering mat rices which body-fixed scattering matrix S, used to calculate the -

are defuted in term s of parity e-lgenfuiictlons. This is scattering amplitudes according to Eqs. (5, 31) and
followed by s coupling transforniatlon in which the poqI- (5, 32) is obtained I ron, S, by
tive’ and negative parity S, matrices are combined to
yield th e body-fixed S, matrix of Eq. (5. 5). From that ($, )

~~~~ = 
~~~~~~ . (025)

p31st onward the formulas of Sec . V. 0 must be used,
since the plane wave scattering solut ion Is not an cigen- It should be noted that the decoupling of the integra-
function of ~(a* seen by inspection of Eq. (5.24)1. The tion and matching procedures described above to gen-
parity scattering and reactance matrix solutions are dc- crat e t,.trtty cigenfunctions is completely general, not
fined by equations Identical in (urn, to Eqs. (5.4) and depending on ar Identicity between any of the three
(5.5), or to Eqs. (5.8) and (5.9), but the incoming and atoms A , 13, C :ornpt-lsiiig the sysli-ni . This results In
outgoing solutions I, and 0, of Eq. (5. 10) must be parity an apprec iaolc saving of Computer time a-he,, Iniple-
elgen(unctions and nence satisfy Eq. (1312) asymptotical- menibig ibis calculatlonni proc edure.
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, APPENDIX C: ORTHOGONAL NATURE OF THE (~~

;
~~
‘.‘

~~ ~~~~~ lA =,(~,
) li.~U(JRI J,. IJRJ. (C8) ~ . -

- 
. S 

ARRANGEMENT CHANNEL TRANSFORMATION
~ , MATRIX ~~~ 

Each of the two matrices represe nted by tbe factors in ~r the right-hand side of this equation is llerniitian and
~ ~ In this Appendix we show tha t the arrangement chan- therefore
~ _

: nel transformation matrix s~ defined by Eq. (4. 49) is ~ -
I ~~~~ • ~~~~~~~ 

I~ 
- - real orthogonal under certain conditions Which are 

~~~~~~~ ~ (.~*s’~,a,• 
I

F - easily satisfied.
from which we conc lude that A~, Is Hermitian and thatThe definition of d’~,,, appeariog in Eq. (4, 49) Is ex r4(i/h)~~’,,[ is unitary. Ii the ci~,( f )  and ~i~ (C) are
separately complete sets of orthonormal functions which I‘ d~~,jo. s) * ( J R I I e x p( fA~.& J ?) l J U~. >. (Cl) span the C space, their overlap matrix S” Is also uni- ~- .. tary . .;~, then is the direc t product of two unitary ma- ~where lJfl,) and 1JU ,) are sImultaneous ..rthonormal tr ices and therefore is unitary . Furtbermore, ifS * Iseigenfunctlons of Jt and J~, in coordinate system Ox Lv’t~, m addition real [as will be the case If, for example, the

having eigenvalues J, fl.~ and J, U,, respectively; they 
~~~~ and i~ ,(C) are reall, and the A7’~0, are also real,are functions of 0,, ~~~, and ~, and the integration em- =-.-. ~ •~,, as can be seen by inspection of the right-hand -

~ plied by the angular brackets is performed over these side of Eq. (4. 49). We coi~~lude that If ~~,( f ) and
~ three angles with weighing function sine,. Replacing 

~~~~~ are two complete sets of orthonormal functions [
~ 

. Eqs . (Cl), (4. 30), and (4.50) into Eq. (4.40 1 furnishes which si an the C space and are related by a real orthog-
F onal tr ansformation, and if A7~0,O~) is a complete set ~
~ N (s ,)~~~~ - (,

~ ~ ~~~~ 
(J,,12,I exp(~ ~~ 

I Jj.,U.,) , (C2) of real orthonormal functions which span the y, space,
I—
.- then t ue arrangement channel transformation matrix I- * where 5;’, is real and orthogonal. These condi t ions are satis - i

—.5. I~i.°
,,) 

~ 
A~~,~(>,) ~~~ , 

(C3) fled by the A~~0,(),) of Eq. (4. 31 ), the ,(C) vibration—
at basis (ui~ctiqns a pearing in Eqs. (4.25) and (4 .28), ~I , _ (Jj,fl, [ 

~ 
A~~0,~.,) ( J U , I • and the analogous functions ~‘ ,,(f) for arrangement

~ channel a.’. I . -

I ~ 
- I ,~)~~: (c) , (C4) 

I

~ 
If Eq. (CS) Is used to evaluate st,, the second factor $ -

~ (it I =ø~~~~~f .  In the right-hand side of Eq. (C8) can be calculated ~ /
The integration implied in (r

~ I ‘~ ) is over C, and the using the explicit expression”
- 

- other integration in Eq. (C2~ is over the Independent
- variables v,, I’,, ~~,, ~

-, with weighing function (J f z , I J,. I JI) , )  
~~ {I(.’ — RI) (J~ RI 4 1)1 i/3 60 0 i  I

sIn ~,sInA,. As long as they form a complete ortho- I

no rmal set of functionc in ~ space, the I JJ,,l) ., )  form a —R J~ ~~~~~
(J— (1, t ) 1~~~~ S O,i ’) . I

complete ortho normal se t in  ,, I’,, ~~,, , space , and 
(C9)Eq. (C2) can be writte n as

- I
= si’ € exp(~ ~~~~ (CS) 

‘lt ,-svarch *u1~1n~rtcd In 1art  t ,v the United Stat~~ Air Foece
(1(11cc of Sel,- n il f ic lt cs -arc h tG ra~~ No. Afl )Slt -73-2539). I ~- where i ~t ,,g i. perfo rmed In partIal tI,U,tlment of the requi rementa b r  1 -

I ~~~ 
j ,. Jj~f3,.) (C6) t h e Ph. 1’. in Cht-mlat r-t- si t he California Instltutc of Tech.

nol,~~ ,
- - and lC*,ntributl-~n ho, 5 50. 

I‘P. .1. thestle’r and V. McKo~, .1. (‘hem. Phys. 48, ~95I I
- - (S~~

) ( ,
~~ I ’~~) - (C7) 119(n) ,

fl. J. l)iestler, .1. (Item. ITh,n. 54 , 4547 (1971).
the S~ ,,, be ing given by Eq. (4. 50) and the ~ In Eq. (CS) ‘i:. ~t. 5t,rt ,-n.~on and h. S. P07cc, Chem. Soc. 4l.ondo,U I ‘ —“
representi ng a direct produc t of the two matrices ap- Spec . Put,!. 16 . 57 (i%.~) , J , Ch, m. Php’. 48 , 4(J~!9 (l9Gs) . - - -.
pearing in its right-hand side. The elements of ‘ 1). .7. Tri,liI.,r m d  A. buij,errn. ,nn , 2. (‘hem. PItys . 52 , 3h -4i

ex~~(i~~ )~~ ,J are equal to the Integral over ~, in the lItI7fl)~ .5..!. ~6. ,~23.! (I9~~ . 
I 

‘s’—.‘A. kuppermafin, l’roc. Conf. tk*ential l.,ergy Surf. Chem.right-hand side of Eq. (4.4 91 and are therefore real if U.~~. ~~~~ Cripa , Augus t . 1970 (1971) , p. 121 , E!ecf ,-ew u’the functions A~~11,(,,) are real. It is convenient to use ano’ .41..’,i,c t oUls,o,r ,. 1’,..ee,du,gn ni’ t~1I kJ -’E.t C (North- Ithe notation I j.,U,)~ A~ 0,~)~) and (j ,fl , A~~ ,(h), In Itolland , Amats-rdan,. 1971, , p. 3 . I
- terms of which we can write 6. C. Sebji ? , 2. flIM man, stat A. kunpermann, 2. Chem. -

Pt,y~ . 58 , 4O.~3 (1973). J . SI. Itowmasi , 6. C. $chatz , and A.- IJi.~~ Ij,RI>IJQ. kuppernunri. (Item, Ph%n . Leti . 24 , 376 ( l9743 ~ 6. C. I
- - Schat r . 2. M. V.os-man, and A. kuppt’rm.,nn, 2. (‘hem. Phys. I

63, 67-i . 6K:, (1 97:1 . - 
I(Jj,R, I = (‘1(3, Ri,i) , I . ‘C. C. ltanl.tn arsi 2. l ight , 2. (‘hem. PIn,.. 51, I7CI 11969) 1

/ 6. MIller an.l 2. C. l ight . 2. (‘hem. Phys . 54 . 1635 (1971)1/ Since on the matchi ng surface s,,, A., is a function of 
~, ~~~ &~ ~~~ (1971). , /only Ise e Eq. (4.11)1 and J,. operates on variables I’,, l~ Ii. Jtthn.s,in, Chem . Ph~s. l.nit . 13, 172 (19723. 1

~~
,, ~ -, only, Eq. (CC) can be written as F. Wu and It. I) . levine , Slot . N,~u. 22, 1191 (1971), I
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. ••F. Sht1wcy , 2. (‘hen,. Phys . 58, 232 (1973). ~~hit. E. Rose, Eh’n,esfary 2’twory ofA.igsla r Mornentsm ,
—

.
- “.7, 1’. Adam.i, N. I.. Smith , and E. F. liayes, J. Chem. (W i ley, New york , 1957) , Chap. 3. . .

~ . Ptiya. $1. 2133 (1934), ‘ liandhook of Mat5euiattca! Fwichons , edited by Pd. Abr amo—
—S. ~ i’ s! liser and.fl. 2. Kourt . Chem. Phys, I.dt. 24 , 37 (1974); w ltz and I. A. Stegu n (National Bureau of Standard s , Wash- .

SI. Baer , J . Cheni. l’hys . 60, 1Q57 tl974). A, Pcrsky and inglon, U. C. , 1964).
St . User, 2. ( hem. Pt~ s. 60, (33 (19 74); 51. lIaer , U. “N. N. Porter and SI. Narpl us , 2. Chem. Phys . 40 , 110 5
IIaIavec . and A. l’ers ky . 2. Che ni. Phys. 6t , St . ~2 t t t 474). 11964). . . -

“p. it. Mukltcton and It, E. Wy att , 2. Chen,. Phys . 56 , 2720 “ I,.1,) (w /2~ I~
’
~ J ,i,:C~I and k,tn) ‘ fr/2~)

111 
~~~~~~~ 

whore
(1972)1 E. A. McCullough and It. E. W 9att . 2. (‘hem. Phys. I, and K ,, art- the modified cylindrIcal Beasel functions de—
54, 3575 (1971); ibi.1. 54 . 3592 (1971) . scribed by Abram-suits and Stegun,” p. 374. - /

li st. Itser and 13. 2. Noun , Chem, Th~a . l.ett. 11. 239 411he ron~- indices designate the different tumbling and v ibra-
(197)1; 2. (‘hen ,, Ptiys. 56, 1758 (i 972) ; ibid. 57. 3991 (Ion rotation basis functions and the column Indices the
(1972), ‘ different linearly indepe ndent sot ut lons . ~ 

-

OK P. Ssxon and 2. C. l ight , J. Chem. Pttya . 56, 3871 ~ R, Gordon, 2. Chem. l’h3-s. 51, 14 (19691. . •(1972); 56 , ~J83S (197~~; A. Altenherger-Slczek and 2. C. U~~~050 asymptniic ,.olutloits are simply the nonlnteger order
1.Ight, 2. (‘hem. Phys . 61, 4373 (1974). spherical bessel functions which soive Eq. (3 .4 1 whenthe t,ti(s) A. B. Etk o~ itt and It. E. tt y att , J. (Item. Phys . 62, te rma are set equal to zero. Note that In the I a,~ S matrix

,

_ 
250-i (i975)~ 62, 3683 (l975)~ (hI S. A. h arm; and R. E. determInation o’Kltned in Sec. V, the coniplicaxions ar ising

.,i
, . 

‘A’ystt , 2. (item. Phss. 62, 3162 U915t; 62, 3173 (1975). from these truncat ed basis expansions are (gnored. in ac-
~ 

‘ 6. Wolten and St . karplus . 2. (hcm. l’hs-s. 60, 351 (t974 1. tual eaIculatIo.~s~~thesecf(ecis have, however , been correct-
. - li tt .. it. Miller , J. (Item. Pltys . 50, 407 (19(9). ly ~ncluded.

- - I “ A. kupis’rm.inn. 6. C’. Schat t . and St. fla cr , 2. (‘hem. Ptiys. tm1 As noted in Sec . III. C, the even and odd j~ solutions are not
; 65. 45% 419763 , firsI paper ot this ser ies. coupled For i0om plus honionuclear dtatomic arrangement
I °A . Kuppcrm.inn. (;. C. Schat z, and lii. Iacr, J. Chem. channels, We arc accordingly allowed (but not it-quleed) to

1 . t’hss. 61, 4362 ( 1974) . - act the ct~mponeni s of ~ connect ing even and odd rotsUonal
~
‘G. ( . $chat i and & kuppcrni.inn. 2. (‘hem. Thys. 65 , 4624 quant um numbers equal to zero. This results in acattering

F (19761, precedIng patte r. solutions of the correct homonuctear symmetry and allows
F ~ ~‘A. kuppermann and C.. C. Schat2 , 2. Chem. Phiye. .i?, 2502 ~ to eo~ald~rnbly decouple the problem as descrIbed in Sec .

- — ~I97S). lll .C.

5/ 
?JG. C. Schatz s,td A. Kup pcrma nn, Phys . It ew . t .ett. 35 , “ A. 51. lane and It. C. Thomas. Rev. MOd. Phys , 30, 257

S ~~~ 1266 (1975), (1958).
/  . 

?l (;, C. Schatz anil A, Kupperniann , J . Cttem. Phys . 65 , 4666 “ 1-1 . S. F. McKt and Ii. S . W . Massey. The Theory ofAtontic
(1976) . folloa ing paper. - (‘oIIj ~ ,on s (Clarendon, Oxford , 1965) , 3rd ed., Chaps. 14

“ I.. SI. Itelv es . Nuel. l’ h%a . 9. 391 (1959) ; 20 , 275 (1960). and iS.
“P. Jet-sen and 2. 0. I(lr~chfetder , Proc . bitt. Acad. Sc(. ‘The transittee ~,r-e*~,abtttty is defined us the ~atto ci the out —

45 . .4 9  1l9 ,9). going radial flux In a upecifled product channel tothe incom-
!T~ ., Sml ih , 2. Math. I’twa. 3 , 7.75 (19621 , trig radial flux in a a pecified reagent channel. Equation (5. 13)
1 A . kuppcrn.ann. them. I’hr s . I.ett . 33 , 374 ~~~~~~ 2. eas ily tol tow -a trom appl icatio n of this defInition to Eqs. (5. 3)
(‘hem. PInn. 410 4..- p.o ‘i’hcd). and (5.5).

“ A. ~,I. Arthur, .,nif A. Olgarno, Proc. It . Sw. I ondon 5cr . “SI. Jacob and 6. C. WI ck , Ann. Phys. 7. 404 (1959).
A 255. 510 11960). 1tThia lack of dct,cndence of non ~. ts a et mp tc consequence of
“2. (~. I(irschfetii, r and 1.. I’ . Wicner . Proc. Nail . Ac~d. our choice of incident quanilzatlon axis as being the dIrectIon

Sd.  21 , 113 P193 rd . o f the (flcide it vav e v ect o r , Th is rc’sutts In an initt aY’
5C, F. Curtinn . 2. 41 . Hlr..ehf,-lder , and F. 1. Adler , 2. probability density uhich is cylindr ica l ly symmetr ic about

(‘hem. j~ ,~ q • iS , 163C (1930) . (hat ax is Ifrom Eq. (5,~ 4’ i ahich imillics that the “final ’rfl, T. Pack . 2. Client. PInn. 63, 633 (1974 ’ . probabIlity density muM he symmetric an well In the abs ence
“ A 9. I1..y~.kw. Qa.m(,, rn .h f, -c9a,,,m- ,. iransl.dpd In I). (Cr i~f enternal fIelds .

- Hair )td,ilqon-Wc qIc~, Reading. MA . 1965) . (‘hip. Vi. SS L. 1. Schilf . Q,,an t ,...i .is,-caanics IMcGraw-Iltl l, New York ,
“P. MeGuire and I). J. kourl, J.Ch,.nt. 14r.-s. 60. .rls$ 119741. 196$) , 3rd ed. . pp. 384 —3 93.
3 R. B. Walker and 2. C. l ight , Client. PIn-a.- 7, 94 I i  ~i5). “ J. St. Itont-man. Ph. 1). Thesis. California Institute of Tech- 

. 
-

“It can he ~hnn.n that the 5Ic(~ulre—Nc.ur( apprnx t m.ilion IS Itotog5-, 1974.
equivalent to replacing l~ in h,,r(y.firied coortlinairs (Inv olving I?A Stesslab . Qaanta”i .tkc5a,ucs , (Noi’th-llolland . Amstcr-
(Pi e (our angles 8,, n, ~~~ .~~) lit us e..I.resst on In space— dam, 1966) , Vol. Il, 1q. .X11l.54 , p. 530, Note that
(t,ed er.ordlnale, tinvolving only the angles 9,, c1 1. ‘Th Is Messiah’s R(ofrt ) (F.q. Xl l l , 60 , p. 534) Is flav~-dov’s’3 

-/ approtimate bo,t,- .fi~ed l~ commutes a it .’l the apç.rn%imate
body-fused llamilton ian resulting Pro m i~, use. Sirrultanec-.u, ‘S O. J. Vezzett i and S . I. Ruhinow , Ann. PIrys. 35, 373
c gcnfuncttons of (hene two appro ~ ima t e c.l*-ratlsrs can be (1963).
wrlttrn as F11., (8,, ~ - + (A ,, r,,  t,. ~,) . in terms of “P. SI. Morse and H. Feshbsch . %h’fkods of Theovetlcsl

J which any r(genA,ncti n of the ’app ro ..imate Ilj miltnnian may P*~ufrn (McGraw-t((it . New %•i~~~ 1953) , Vot. It , p. 1721.
be expanded. An espans ion of th~ C In term s of (he ‘t A (acto r of .2 has been omt ited In the 

~~1 
-0 Solutton. This.,) leads to coetllcients ~ . A ,) hlch satisfy is always permitt ed becaus e the integrated solutions are on-

an equation similar to Eq. (3 . 19) wIth IhsI .11-diagonal B, determined to within an nver8ll cons tant multiplicatIve Factor.
terms mIss ing and the f-,clnr mr~IilpImt ng S /~i~Ff~ in Eq. ThI.. choic e has the advantage of making the I, def ined by Eq.
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Quantum mechanical reactive scattering for three-
dimensional atom plus diatom systems. II. Accurate cross

- 
- sections for H+H2 *

George C. Schatz ’ and Aron Kuppermann
A riAs, Ames .So;-es Labamuo~ of Chenucol ~~~~~~~ Cu1:fo~s,a In,i,Iut r of Te hnulogy. I’uwd,~na. - 

-

California 91113 — .
(Rnteoed 22 December 1975)

Accurate three-dimensionat res ciive and nonr eac it t e quanlum mechanic al ernie ectuoni for ihe Ii ~ H1
eaghange react ion on he  Porier— Karp lus polentisl energy surface are prcsenl- Tcnlt of conver gence in
the calculation, •ndu caie an accuracy of br ite r ihan Sci. kir niosi of ih~ null, in Ihc energy ringe
conudered (0.) to 0 7 ~V t ota l energy) The reJcii *c diflc rc nuial cron s teelic • are euclu.ively backsar d
peaked. w~th peak wid t hs ,n.aeas ing mono uo nicalt > From aboul 32’ ai (I . eV to 51’ ii 0-7 eV .
Nonreacp u.e inelasti c dilTe rcnli ai cross icrilo ns show hacka,rds Ic s idewards - Sting. ahile clasSic ones are
strongly forward peaked with a nCirIy mt.noionic decrease aith incre, . 5 scauenng angle. Sonic
oic.ilai,ont due in ,nlerfermce-s beiween th e lircet and enchange ampli t udes are obtained in the pars-(o
par. and ortho-to.onho antin)nimetrized ~~~~ sev)ions ib..ne t he eff ectise threshold for react ion.
Nonrcacti.e colli.jon* do not titow a Pendency io natis() Ii “j , -eonservi ng ’ seleciion rule- The reacp.se cons
tectKtn, show Ii$nlrlcant rolals mal angular momenpuni pofa ruza uton with hc m, ~ in , ~ 0 transtt ion
dominml.ng (or tow reageni rouaiional quantum number j. In co nstr ast . t he  degeneracy ateragni rotational
ditiobutions can be fitt ed to tiati s tic a l lem perat urelite raprc’.sions to a high degree of accuracy. The
miegral crina wc t ion. bane an eff eduse ihreshol d tr ,tal enerfy of about 0.55 eV , and differences beiween F
thin quantity and PIe c.’rrmppnding II) and 21) re-toIls can large l y he interp reted a.’. resu lting from bend ing
motion , in the tra n~ttwn state . In comparing t hene renu its aith (hose or previous approuimaie dynamical F
cakutattons, we find bcti coe ralt agr eemen l hc)aeen our reactOr integral and differe nt ial cross sections and F

the quas~cIass,caI ones of Kirplus, Pc. .~r . and Sharms Ii Chem Ph3. 43. 3259 (1965)J . ii energies shove
the quasicisssict.l cIIcct,ve threshold. This results in ih~ nea r equality of ihe quantum and quassclaaaicsi
thermal rate constants it 960 K. Al lowe r tenn gw ratu r rs . hos c,-r r. ihe effects of tunntl,ng become very
impoet.sni with the quantum rite contla ni ac hueni ng a naluc lurg ~r ihan t he quaaiclass,cai one by a factor
of 3-2 ii 3~~i K and it at 2t~ K~

I.  INTRODUCTION sod in the approximate catculatlon of the corresponding
‘ “The u.iderlying p’,yslcat laws necessary for the Cross sections and other dynamical quantitIes. ~~‘ A

mathematicsl theory of a large part of physics and the tong sought objective of these dynamical studies has
whole of chemistry are thus completely known, and been the accurate quantum mechanical treatment of the
the difficulty ia only that the exact application of these three-dimensional collisIon dynamics, Such an accu-
laws leads to equations much too complicated to be rate ab initfo calculation for H • H, i~ important, for

F -. soluble. “ This legcr.dary gtatentent made by Dirac In this system has served as a prime example tn the de-
1929i. has been valid for the’ 50 years of ex istence of veiopment arid testing of approximate reaction dynamic
Schrödinger’s wave mechanics, ~ at least Insofar as the theories such as quasIctassicat methods, ~~~ semi-

cla ssical rnethods,’~~’ and approximate quantum moth-dynamics of chemical reactions are Concerned. Since 
~~ ~~~~~~~~~~~ In addition. H * H, has been valuable Inthe advent of electronic digital computers s~rne 25

years ago, very large strides have been made In the  the development of transition state theory, ~ in the
accurate aS sni(i o calculation of electronic wavefunc- character i&atton of tunnettlng”~’” and of the Concept
tlons of Stom a and molecules, of electronic , vIbra- of vibrational adiabaticity, ~ and In analyzing the ef-
ttonat , and rotational energy levels and of molecular lecte of changes In the potential energy surface on the

equilibrIum geometries. However , u n t i l  very recently, reaction dynamics . • Much cl out understand!ngof the 
- 

-

the problem of accurately solving the Schr~idinger equa- Influence of tnttl~l rotational’ and vkbratton,ittt state
tton de.crlblng the dynamics of even a very simple oti Chemical dynamics cot ice from studies on thie sys-

tem as dries our knowledge concerning the influence ofchemical react ion Occurring on a given potential energy
varying impact parsmeter~.htr or total angular momen-surface remained intractable , owing to both Conceptual 
turn . ~~~~~~~~ of resonance and direct reaction mocha.and computational dlffucuitie .. Iheee difficulties have 
n i sm~, ~~~~~ anti other dynamical effects . Nonreactivenow been overcome , and the present paper describe s elastic and InelastIc H + H, Collisions have also been ofac curate results obtained for the H • H5 hydrogen atom 
theoretical interest in the analysis of rotational excita-exchange react Ion.
Hon and deactivation processes, tl ,tRU U and in exam-

This •implest of chemIcal reactions has hei.n of ining the nature of the competition *nd interference be-
F 

fundamental theore(Icst Interest In the fi~ id of Cherni- tween reacllve and nonreactive processes. ~~~~~ A tuim-
cal dynamics ever since the beginning of quantum me- ber of reactive and nonreactive experimental studlee
c lisnica. Great progress in understanding it has been of Ho H~ and Its isotopic Counterparti have been done
made both In the accurate determination of Pa ground rangin g fro m kinetic rate constant determinations” to
state etectronically adIabatIc potential energy surface,’ hot atomt’ and molecular bean” experiments. The in-
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ter*ctton of theory anti experiment has been of mutual 12, ~ mln(J,j ,), ‘ (2. 1)
benefit throughout theIr respective evolutionary develop-
inents. where J is the total angular momentum quantum num- -

bet.
In a previous paper”we presented a method for ac-

curately solving the Sc hrödinger equation for the dy- Of crucial significance in the body-fixed coordinate
namtcs of the three-dimensIonal collision of an atom system of Fig. 2 of the preceding paper is the fact”
with a dlatomtc molecule on a single elects~onIcally that the kinetic energy operator couples vibration—rota-
adiabatic potential energy surface, This method was tion states w ith different fl~ tumbling quantu m numbers
an cxtenslon of an earlier coplanar method’0 which has but the same vibratIonal and rotational ones (v~j5),
since been used extensively to stud y the 2DH + H, sys- while the potential energy coupling Is diagonal in fl~ hot - 

-

tern, 3 ~ the present paper we describe the results not in t~j,, This allows for the approximate separatIon. / of an application i- 
- this 3D procedure to H + H,. These of effects due to tumbling of the three atom plane about

results Include reactive and nonrçaCtive transition Oz,~ from those due to the interaction potential energy,
probabilities, integr al and dIfferential cross sections, and we shall examine this separation In Sec. Ill. In
and reagent and product rotational state distribut ions , addition, tt provides For the natural development of
These results are extensively compared with those 31 centrIfugal decoupling schemes, whlchwill be discussed
earlIer 3D approximate reactive and nonreactive cat - In futUre pubttcation, Once the body-fixed fully coupled ‘

culations, and with lD and 2D accurate ones. Sonic of Schi’ödinger equations are set up, they are solved In
the comparIsons between the accu rate 21) and 3D cal - ~~~ steps. The first one involves a numerical Integra-
t,ulations were considered in preliminary commur ica~ 

ti On of these Coupled equations through each arrange-
ttons, ~~ and we shall elaborate upon ther. hese by tie- merit channel region in coordinates appropriate to that
veloping simple dynamical models for relating results region. This is followed by a second step In which the
of different titmenstonality, Additional topics considered SOlutions thus generated in each of the three arrange-
Include the effects of Indistinguishability of particles , merit channel regions are smoothly matched to one
angular momentum decoupling approximations, and ~~~ther on a set of three surfaces which separate these
thermal rate constants, In the present calculations, we regions in a syrrimetrized coordinate space in which all
use the sernienipirlcal Porter—Harplus” potential stir- three arrangement channel coordinates are treated
face. This surface has been the subject of several equivalently. ” The resu l t ing solut ions , which are
earlier studies, thus enabling comparisons of those re- smooth and continuous everywhere, are then linearly
suIts and ours without ambiguity being introduced by the Combined to y ield the appropriate reactance and scatter—
use of dUferent potentials. Results for the more ac- ing partial wave matrix solutions which are then corn-
curate surface of Liii” (as parameterlzed by us) wilt be bitted to form the full scattertng ~otution s, By usIng
deferred to a later publica tion , helicity representation scattering amplitudes, we rib-

Section II provides a brief outline of the procedure a very simple relationship between these ampli-
tudes and the body-fixed partial wave scattering ma-used, and of the computational ConsIderations govern-
tr ices S,, namely If ro m Eq. (5.3 l)of the preceding 

-.

ing convergence and accuracy. The results  for the paperjPorter—Karplus potential energy surface are given in
Sec. IB, and Sec, IV includes a summary of the more
sIgnificant conclusions, I

, 
~~~~~~~~~ 

~~~~ 
I~~

a’~~i~ ~~

, .  i ‘a.J€. •t

II. THE CALCULATION -
A. Summarized description of the method ~ E a’ ..., ~~ ~~~~ ‘h — S~~~3’~.”~ .)i’s 4’

The method used to soi~e the Schr~dinger equation (2.2) 
—for three-dImensional reactive and nonreactIv e H + H, F . -

Collisions has been extensively described In the preCed- where the reagent state has = — U, and the prod-
ing paper,” The space-fixed and body-fixed coordl- uCt state has ~~~ fl ., for all J. and ~~~ repre-
nates and sy stems of reference Considered are de- sent the appropi~iate (unscaled) velocities and wave nu n-
scribed in Sec. RC and Fig, 2 of that paper. The cal- hers and
culatton i~ done in body-f ixed coordinates, Rotational
motion is described by quantum numbersj , and (2,, d’ (9,.)
where the turribllng quantum number U, is assocIate d
with the tumbling angle t~, and the compo nent of rota- te a Wigner rot-tion function (In the notation of Davy-tlon~l angular momentum along the Oz~ (body-fixed) dov)* of the sca tterIng angle 9,.,axi, whICh passe s thro,~ h atom A, and the center of
mass of the A,A, diatom. As shown previously, ” the For H+fl,, the problem can be simplified consider-
component of the orbital angular momentum about Oz~ ably because of arrangement.channel symmetry and
is zero, so 0, Ia also associated with the projection of even—odd decoupling within each arrangement channel
the loin! angular momentum along that axis. In order (as described In the preceding paper). A major con-
to simultaneously Satisfy both criteria, 0, mus t obey sequence of theee symmetry properties Is that only two
the inequalIty scattering amplitudes between a given Initial state
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gus, arid final state t,’j’,,, (where i’,,’ Is an abbreviatIon The transition probability 
~~~~~~ is given byfor ,,: .) need be constdered~ the nonreactive (or direct) I 

..—
- -

one (labeled II) and the reactive (or exchange) one ~~~~~~~~~~~ ~ 
S,~ 1_ ,•,.,,~ I’ . (2.6)(labeled R), Thus all the arrangement channel indices ‘ ‘

~ and A ’ tn Eq. (2. 2) may be dropped as long as the If we consider the effects of parity symmetry on thesymbols N or R are included as appropriate, As an ad- cross sect ions, we find U
ditlonal consequence, nonreactive transitions between
even and odd rotational states are forbidden, From the C~~~~1

.S~I~ a~ ~~~~~~~~~~~~~~ (2. 7)
- 

. reactive and nonreactive scattering amplltudesf ’ and “jS, one may then calculate differential (distinguishable with analogous expressions valid for Q and P,. Theatom) cross sections via . 
angIe 9 of Eq. (2. 2) refers to the direction of the scat..
tered H atom with respect to the reagent H atom beam,

- . (9) = —
~~~~

— if ~~~ . . (2 3) For reactive collisIøns, a more customary angle tos 1 —, •i~~’. 1’ , ‘ ‘ use is 9~, which is the angle of the product H, with re-
so that the Integral cross section Is given by 

:~~
ct to the Incident H, and is the supplement of 9 (1. 0,,

E (2J+ I) T~~~_ ,.,,,._. I’, (2, 4) F:r ll +l1~, the physically measurable cross sections 
- -

I k,,1 1.0 
must be obtained from wavefunctions which have beenwhere properly antlsymmctrized with respect to interchange

-~~ •‘~~~—• .- ,~ of any two nuclei, This can be done by the technique- 
‘,‘ . ~~~~~~~~~~~~~ (2. 5a) of postantisyn,rnetrlzatlon as was detailed In the pee -and Ceding paper, and leads to the following indistinguish-

- 
. 

(2 Sb) abie-atom differential cross sections (Labeled by the— i j ”f~~~~’ ‘ symbolA):

- Ii ~~~~~~~~~~~ ~~~~~~ I’ (j,j ’ even, para —
3 i i:,_,...,..,. ‘ (j even, j ’ odd, para—ortho)

— °
~
‘,, •‘

.—
~~~~~~

‘
~~ 

- 

(2. 8)
‘ ~~~~~~ J~ (j odd, j ’ even, ortho—para) 

.. 
-

~~~~~~~~~~~~~~~~~~~ ~~~~~~ I’) (if odd, ortho—ortho).
- - - 

For para-to-ortI’~, (ortho-to-para) transitions, the antisymmetrized cross sections arc proportional to the reactiveones, with a proport ionality constant of 3(1) , so either quantity gives equivalent information, For other transi-tIons, t here w ill be int erference between direc t and ex change amplitudes as Is Imp lied in Eq. (2. 8).

Since the rotational subtevels for a given vibration— with analogous expressions holding for the Integralrotation state are degenerate, we may define both cross sections with Q substituted for a. The factor ofintegral and differential degeneracy_averaged cross 2 In Eq. (2.12) arIses from a sum over the two equiva— -sections by (valid for R, N, or A transitions): lent reactive arrangement channels (in a distinguish-
able-atom sense). Finally, we may wish to define the

- (2. 9) cross 5CCt iOn8 a ,.,5~~,1,, in which the final atate is21 + 1 •,.-~ ~~~~~ 
1 1 restrIcted to being para (ortho). The corresponding

expression is analogous to Eq. (2. 13) w t h  the sum overm d  j’ in the ri ght-hand side restricted to even (odd) values,
1 ...L ..

~
. and a sim ilar equation defines the integral cross sec-Q,,-,,.,. 

~~~~~~~~~~ ~~~
, ~~, Q,,,.,.,.,., (2. 10) Hon Q

~,u,sceiis, , 
- -

We may also sum these cross sections over all final B. Convergence and accuracy tests and calculational
states obtaining details -

In order to estsbl i~h the reliabili ty of the results ofN V ’  Ia,,1 ~~~~~ 
C,,,.r, ~2 l1, these calcu lations, a number of convergence snd ac-

- curacy tests were performed, in~leding (a) tests of flux
, 

~~
- ConServation and microscopic reversibility, (b) tests ofa,1 2 

~.. ~ ,,...,, 
- 

(2, 12) invarIance of the results with respect to (he InclusIon
of additional vibrational or rotatIonal basis functions In

~~ e~’,.,.,. (2. 13) the Close coupling expanaio; (c) (Sets of invariance of
- the results with -espect to a change in the number of
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— 
TABLE I, NonreactIve IN) and re:ictivc (RI transition probability matrices for E-O. 6O eV, .F~ O.’

\~~ ‘ ,,

(,~Ø~\
\ (00) (01) (02) 103) (04) 105) (06)

N

: (00) 0.0538 0 0, 739 0 0,0195 0 0.396(—8)
(01) 0 0. 460 0 0.226 0 0. 215(3) 0
(02) 0.741 0 0.0690 0 O.0103 0 0.7611-8)
(03) 0 0. 226 0 0. 142 0 0. 219(—2 ) 0
(04) 0. 0196 0 0, 0304 0 0.948 0 0. 5221-I)
(OS) 0 0.222(3) 0 0. 219 1-2) 0 0. 998 0
106) 0.328(—8) 0 0.6121-8) 0 0.8671-7) 0 1.000

It

(00) 0,0249 0.042 2 0,0219 0.42~(-2) 0.251(4) 0.249(-.5) 0.334(—9)
loll 0.0415 0.0713 0,0361 0.69-l t -2) 0.4101-3) 0. 393(-5 ) 0.5581—9)
402) 0. 0220 0, 0368 0,01 83 0. 3311— 2) 0. 177(-3 ) 0. 1721—5 ) 0. 279(—9)
(03) 0. 421t -2) o.csst-2) 0 32714) 0.5371—3 ) 0. 273(—4) 0.338(4) 0.544 (—l 0)
(01) 0,257(3) 0. 4111-3 ) 0. 183 t -.3) 0. 2804-4 ) 0. 177( 5) 0. 462(4) 0.43 1(—ll )
(05) (‘.280 1-5) 0.lSl(-5) 0.202(4) 0.4061-6) 0.6011-71 0.2151—8) 0.1161—12)
(06) 0, 197(—9) 0.3181-9) 0. l-47(-9) 0. 2851-101 0.3371-il) 0. 113(-12) 0.767(—17)

Sums0 1.0005 1.0018 0.9981 0.9997 1,0000 1.0000 1.0000

‘All project ionquantum numbe rs in1 and m arc zero . Numbe rs In parentheses ind icate the power lOb) which the numberprecedlng
it should be rn.iltlplied.
‘Sum of probabilitIes from a g iven Init ial state over all possible Final states and arrangc-merl channels,

terms used to expand the potential ~see Eq. (2. 14) be- suIts of this quality, we used the vibration—rotation
low ), and (d) tests of invariance of the results with re- basis Sets specified in Table II. For J=0, Eq. (2.1)
spect to a change In the nature of the reference poten- greatly reduces the number of channels coupled, thus
(1*1 V~,(r ,,R,)~’ used to generate vibrational basis lunc- reducing computation time , allowing us to use more
tions for the integration. Two additional tests arc (e) complete basis sets. This leads to excellent results
the invariance of the resuits with respect to a change for the J=0 probabilities (with accuracies similar to
in the matching surface basis fun’~t ions, and (f) the ef- or better than those in Table I at all energies con-
fects of lack of completeness of these matching surface sidered). However, for larger J, the number of pro-
functions on the ortho to pars nonreactive transition jections 0 Increase s greatly. This leads to prohibitive-
probabilities. These latter two tests were not per- ly large computation times if basis sets analogous to
formed , but the analogous planar tests’~ Indicated (haL those for .7=0 are used, The ones actually used are
both effects were not Important In that calculation, those described In Tab le II. The above mentioned ac-
Since comparable planar and 3D vibration—rotation ba- curacy limits were obtained with them.
ala sets and matching surfac e functions were used In
the t .o sets of calculations, we have assumed that the Convergence with respect to the inclusion of addi-
matching surface basis functIons of Eq. (4. 28) of the t iona l vibrational or rotational channels is examined In
preceding paper will produce adequate (S~ or better) Table Ill. In Part A of that table, we examine several
convergence of the 3D results, important- transition probabilities at E 0.65 eV, .7 1

for three diffe rent rotational basis sets (all with four
Conservation of flux and microscopic reversibility vibrations). Upon changing from a 5., 5 to a 5. ,  = 6

may be tested by examining the probability matrices basis set, we find changes of less than 1% in all prob-
for each partial wave, an example of which Is given in 

~~ilities. In Part B we examine several 0. 65 eV, .7
Table I for total energy E =0 . 6 eV mnd J=0. Flux con- =0 probabilities with four and five vibratIons (all with

- 
- - . servation requires that (he sum of each row or Column = 7). Here we f ind 4% maximum cha nge. An cx-

of P, should equal unity, while microscopic reveraibil- aminatton of the nature of the conve rgence properties
- — 

Ity requires that P, be symmetric. In the table we SeC with respect to the inclusion of additional basis func - - - -

- 
.— that both or these properties are well satisfied (0.18% (ions was examined In greater detai~ in the planar cal-

maximum deviation from flux conservation and 3% f rom cuLation~~ where we found that typically four vIbrations
symmetry for probabilities greater than l0’~), In the and j_,,,=5 were required for 5% conve-gence. A less
results presented in this paper, we conside r the energy extensive study of the three-dimensional results m di-
range 0.3—0. 7 cY. For energies £ in the range 0.3— cate s similar convergence properties and the results
0.8 ev (includIng il l .7), we find maximum deviations of Table Ill are in agreement with this statement .
from flux conservation of 1% and f rom symmetry 10%
(for nonnegugible probabluues). Betwee.. 0.6 and 0.7 The two criteria (c) and (dl mentioned at the begin-
eV we find 4% maximum deviations from flux conse rva- ning of this section refer to changes In the representa-
tion and 15% from symmetry. In order to obtain re- (Ion of the potential V ’(r,., R,, ~,) (where V, Ia the angle
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TABLE 0. Basis set s used and associated computation times for cac h part ial wave.

Computation timne (IBM 370/Isa)’

Total No, of
No. of rotatmmal Number of Integration Total

4 vibra&io’ts j555• statea ~ channels time (mm ) timc (mm )
0 4—6 7— lI 8—1 2 32—$O 40 I I  14
1 4or S 5 o r 6 14 or 15 • 56— 90 90 42 54
2 4 5 22 85 88 37 45
3 4 4 or 5 20 or 26 995 92 36 47

C4 4 4or 5 lO or 3O 100 100 47 61

~A~*x 15 the largest value of j wIthin each rotat Ional m~.nlfo ld .

~Total number of channels Included in each arrangement channel.
‘Computation times are for double precision arithmetic and the number of channels Indicated and apply
to computations for which both ort ho—para and parity decoupling are used. The difference between the
total t i m e  m d  the Integration tIme IS the lime used in  the nutching procedure and asy m~5otic analysis,

~tefera to a basis with 26 rotatIonal States fo r v =0 , 1, and 20 for v - 2 ,3.
Refers to a basis wi th 30 rotational stal es for i = 0, I, and 20 for , ~ 2,3,

between R~ and rz (Fig. I of preceding paper)~, and in reactive probabilities ~~~~~~ (summed over final m~) .
_; the character of the reference potential l’~,,(r,,R~) used These figures indIcate that the probability Is a rapidly

— 
- 

to generate the vibrational eigenfunciions. As detailed decreasing function of .7 with a peak near .7=0 for all
In the preceding paper , the potential is expanded in a but the highest energy considered, If we define J,,~~

- series of Legendre polynomials as the lowest value of J for which P~,,., .v,. has de -
.. 

- — creased to less than 1% of its maxlflum value, then
Vk (ra, R~, ~~~ = ~~ V~(r~, R~) P,(cos)~), (2. 14) JI,AX is 4 at 0. 3 eV and increase s monotonically to about

10 at 0. 7 eV . The contributions of these transition
where, for an atom plus homonuclear dialomic mole- probabilities to the integral reaction cross sections are - -

cule system like H + H2, the sum over k inc l.ides only weighted by the factor 2.74 1 (see Eqs. (2. 4)—(2 . 6)1. - -

- - eve n terms. In an ac tual calculation, Eq. (2.14) is Figures 1(b) and 2(b) depict the product (2J + 1)

truncated after ,z terms (suc h as n=3) . This procedure
Is Justified if the resulting probabilities are not signifi-
cautly changed when an additional term is added. ‘To TAttl E III . Nonrea ctive and reactIve ~ *ne8Ion probabilities
evalua te the effects of char.ging 5, we compare in Table for £ 0.65 eV .
IV the results of calculations with it = 2, 3, 4 , and 5” for
selected transition probabilities at two different ener- - 

Basis set

~~~~~ Although the it 2 results are often significantly transition Reactive or
In erro r (by as much as 30~~), we find less than 7% (,J ’ ,” t ’) tiOitrCSctiVe atN=56) bCV ’~72~ c(N - 64)
changes in going from it = 3 to n 4 and virtuall y no A. .7 = 1 , fl, = 0
caange at all in going from n =4  to i i =5.  All  caicula- 

~~~~~~~ ~ 0.531 C.52’T 0.531
tlons of this paper other than those whose results are 01 —03 N 0. 193 0, 186 0.186
presented In Table IV used n = 3. The reference p0- 00—00 R 0. 0404 0.0408 0.0402
tentlal V~~ which Is used to numerically generate the 00—01 It 0. 0740 0.0741 0,0739
vibrational basis functions accordi ng to the procedure 01—01 R 0.134 0.135 0.134
of Ref. 29 stIll allows for some freedom of choice In d(N-32) e(N-40)
the interaction region due to nonseparability of vibra- 

- 
. . -

tional motions from translational or rotational ones. In B. J-0 , in.1 pn,”O

the coplanar calculations, two different choices of the 00” .OZ N 0.517 0.512
reference potential ( v ~ = V(r~, R~, ~ = 0) and V~~ 

01 “03 N 0.223 0.216
• V~(r~, R~)I were used. A comparison of these calcula- 00— 00 It 0.0432 0.0434

- - 
tlons Indicated that for basis sets with four  or m ore vi— 00—0 1 P. 0, 0780 0.0802

= brations, the results from the two referenc e potentIals 01—01 It 0.145 0.150

differed by less than 5%. A limited number of threS- l~ ah. si~~
dimensional calculations indicates a behavior compara- a. 4 vtbration , 14 rctatinm/vlbratlon (j,,

~~
”5)

ble to the planar case, b. 4 vIbratlon~, 18 rotat ions/vtbralion ~~~~~~~
o. 4 vibratIons, 18 rotatIons for v -0 ,l; 14 for v 3 ,4

III. RESULTS FOR THu~EE-OIMENSlONA L H + H d. 4 vibratIons , 8 rotatIons/vIbratIon (5..~~.7)
- 

2 e. 5 vtbrat iona, 5 rotatlons/vibrallon (j,~~~~7)
A. Transition probabilities — 

-
‘Tn each basis set, alt values of the pro$ectioii quantcm nutnb, rs

In this section we examine the .7 dependence of (be re- compatible with angular momentum restrictions and with
active and inelaetic transitIon probabIlities In the ener- matching res t rictions were Included (see Sac. II A sad pre.
gy range 0.3—0. 7 eV . Figures 1(a) and 2(a) present (he oedi.~ paper).
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—r— i i i I ~ I crease with increasIng J than Is exhibited by the m = 0
0.25 to) probability, Ariexamination of other transition probabil-

~‘ 
itlesat0 ,6eV indicatea thatingeneral, the m,=O 10 m ‘0 

-

• reactlonprobabilityis the dominantone foragiven m~I and
v’j’. Thiseffect becGmea less Important as either J,

mc 0.20 . J, on ’ increase , as ia illustrated in Fig. 4 for the
probability ~~~~~~~~~ but it remains a general fac t
that the in1 n4 = 0 transition probability is the largest

~ 
(‘0.4 5ev one for J<J5~~ and j~~4. This statement Is also t rue

fr,r other ene rg Ies considered. Its effect on li’.3 Inte- -

gnat cross sections will be discussed In Sec. IIIC.

Let us m~ w consIder the meaning of this rotational - .

0 0  ( ‘0.40ev
‘cS~)

E•0.35eV
- x 2xI O 0I0 , ., , , , , ,

- 
- 

o~~s 
(‘0.30ev “

~N (0)
a2xI O -

00€ 
\

0.000 I 2 
- 

.5 4 5 6 8 ~~~~~~ 
0.70eV

,
~~ 006

I I I I . I I

FIG.- I, (a) Reaction probability Pf,m-,~ (summed over final 0.4
m)  as a function of I for tot..~ en egles E =0 ,30, 0.35, 0.40 , ~~
and 0.45 eV. (hI The iame reaction prub.~hIlItlce multIplIed by ~~‘ —

2J • I. The scale factors Indicated for the b.+t three energies z
are the numbers by which the probabilltlea wore imultipl ied be— 2 0.3
fore being plotted. o

~~~0.2
mc P~,5,.,11, and we see that the partial wave which gives = ~ ..,,,, /

( ‘0.60eV
the largest contribution to Q~ .01 va ries f rom J I a t 4
0.3 eV to J 4 at 0.7 eV, To examine the contributions !~ o.i / E

p1 the diffe rent projection quantum numbers to the 
/ .

—‘“ —-. . o.sow
curves in FIgs. 1(a) and 2(a), we plot in Fig. 3 the re- “ .~~~~ a40
action probabilities 

~~ ,se-om.3 for m ‘0, ii (and their 
~ 

-

sum) at E~~0.5 cv. ltisappanent fnom the figure thatrn 0 I 2 3 4 5 6 7 0 9 10 II
a0 makes the dominant contribution to P~,~~ 01 for this
transition at aU .7 for which the transition probability ii FIG, 2, (a) Reaction probability ~f.,.., analogous to FIg. 1nonnegllgible. The m1 a 1 probability (which, from the as a functIon of I at E • 0.50, 0,55, 0.60 , 0.65, and 0,70 eV.
P, analog of Eq. (2. 7), 1* independent of the sIgn of m 1  (hI 2.7.1 times these reaction probabilities. Scale f,~ or, have
shows a peak nearl-4fol lowcdby a somewhat siowende- t he same meaning as In FIg. 1.

. 
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_ / 
, TABLE IV. Convergence of selected’ nonreactIve and reactive transItIon probsbilltiea

wIth roa~ect to nvmber of term3 Inc1ud~d in expansion of V(r~,R,, ~~~

Number of ternum ~~
Reactive
or

Energy (vj )—(v ’j ’) nonreactIve 2 3 4 5

0.55 cv oo—oa N 0, 737 0, 707 0.106 0,706
01—03 N 0. 153 0. 161 0 ,161 0.161

- . - - 00—00 R 0.720(—2) 0,48d (-.~) 0,illi.2) 0.5lli-~1 -

00—OL R 0. 0119 0.811i-2 ) 0.8381-t ) 0. 84”(- 2~
01—0 1 R 0. 0206 0.0130 0,0135 0.0135

0,625 eV 00 — 02 N 0. 605 0, 642 0.629 0,624
- -.-. ‘

.
- 01—02 N 0.206 0, 225 0.224 0.220

- - 00—00 R 0.0401) 0.0353 0, 0372 0 . 0377
00—Ol St 0.0726 0,0641 0.0655 0.0673
01—01 R 0.128 0.115 0.117 0.120

‘Only I = rn -0 tra nSItion probabilities are considered in this comparl!on. Nota- , -
lion Is an.tlogous to Table 1. Numbers In parenthe ses Indicate the piwer of 10 by
whIch tht’ numbers preceding them shml d be multiplied.
‘The expansIon Is given In Eq. (2 . 24) .

projection quantum number “quasi selection rule. ” In cally by recalling that Initially £7 = — me, so tha t en1 =0
the hellcity representation being used, the rotational imptiei (fo r noni.ero j ) that the axis of rotation is per-
wavefunction of the diatom at large distances from the pe ndmc...ar to the direction of approach, asechematically
atom is ~ (~~~ , *~

) before the collision (except for a indict ted in Fig. 5. In this situation, twice during each
phase factor) and diatom i rotation the three atoms go through collinear

4 confi~.uratIon (for zero Impact parameter collisions).
For mu 1 * 0 no collinear configurations are sampled.

after the collision. For the Porter—1~arptus potential A’~er the collision, ,n~ = (3’ so that again only for ,n =0
used,~’ linear orientations, corresponding to V~ and v~. can we have a poatcollision linear ortentatlon (regard-
equal to 0 or., greatly favor reaction over other o n-  less of the scattering angle). We should also note that
entations. ( m e  linear barrier height is 0. 396 eV , while the isolated diatom rotational period {2. 7x io’~ 4j ( j
the perpendicular one Is about 2.8 eV. ) Since those + 1)J ‘~~ Sec)1 is generally large r than the interaction
spherical harmonics have nodal lines along these clirec - time (which Is less toan 3x l0 1 Sec ’tm for the energies
tions unless the polar compo nent of the a~gular momen- considered here) so that the rotational motionS are
turn vanishc- , we conclude that the en~ = us =0 reaction generally slow c. mpared to collision times at these
probabilities ahould be larger than all others, in agree- energies and the collision orientation does not change
ment with our results. This can be ctsuatized classi’. rapIdly during the approach and departure steps. This

~1 

_ _ _ _ _ _ _ _ _ _ _  

O:0~~~~~~~~~~~ 3~~1 5 6 7S 9~~~ 0FIG. 3. ReactIon pro bab ilIty Pf,,0, ,1.,’ vs .1 for mit’, 0, • 1 at
0,60 eV total energy (F. =0 . 328 e .) .  dun e labeled sum I~ the
Sum of the probabIlIttc~ over ,,, . Scale (actor has the same FIG. 4 . Reaction probability 

~~~~~~~ 
vs I for m 0, * 1,

meaning as in l’ig. 1. 2, 3 at 0.60 ev total energy, analogous to Fig. 3.
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:~- — L Figure 6 shows the I dependence of the phases of the

- - A ~j, flecilon angle should be s,nalt for small impact pararn-

io~ sc atteri ng matr ix elements ~~~~~~~~~~~~ for u4 = 0, a 1 at
0.6 e’f (the same ti ansitlona considered in Fig. 3). It
is important to note that the phase is most slowly vary -

.
, - . ing rear J=0. Semlclassically this implies that the t’e-

.. - .~~~ ... ,_-.=.=
~r 

~ 
eter collisions. “ This implies that i small scattering
angle 0 ~;‘iIl rest.’. from these low J collislo..a, or,

~ ~ 

, 
equivalently, a reactive scattering angie 9~ near 180 ’.

- . \ 
- In Fig. 7(a) we e,tamino the nonreactive transition

S probability P,,001.,15_1, and its sum ovc r final ,n at
0. 6 eV as a func’ion of J. Here we find JIA~ 

= 30, so
that a much larger number of partial waves contribute

; to the nonreactive cross section than is the case for
I bl

--S the reactive iransitlo,..3 in Figs. 1-4. flote that the m
. 
I

_ 

= 0 transilictn probability Is dominant only for very

.‘—

~~~~~~~~~~~~~~~~~~~~~~~~~~~ small J(< 31 indicating that the linear orientation rule
,_-~

.-;- - Is probably not significant here (as might be expected

,:

‘ for a nonreactive collision where the nature of the po-
A :-~~ 

tenhial in Ihe transition state is of lessc r significance
S .~~ =

~
—?

~ . 
than it is for reactive collisions). An examination of

.-. ~ other nonreactive t . ion probabili lies indicates no
C strong tendency for ~ — met ’, ((3 = £7’ ) “j ,-conserving”

selection rule as has been assi med in rotationally in-
elasti’~ sc~ ttenIng,1’ thus indicating that the strong cou-

lic. 5. Influence of proje cti on quant u. m number ,,, ,~Ior , ‘0) pug or sudden limit does not apply to II s H~ inelastic
on the sllcmed relative orientatIo-~+ of atom IA) sith ne=pect to collismons for t~e potential used, We shall examine
diato m (BCI for zera Impact parameter ColItsI,’tu - I.,.) rn~ U this agair in a separate publication Tae transition
initIally so that the rotatIon al angular momcr2um veCtor Is probabilities of Fig. 7(a) may also be expressed in
perpen.IIcu~ar to d inect lon of ret ,ti’C nv,tion~ 1b tat , ‘0 in,t,jJ - terms of the ot -bita l angular momentum quantum number
ly so that t’~e I v ector l ies on a .~one about th~ irI..tm~ e muIt ..n 1 (as might be used in a space-f ixed analysis) by per—
vector and rtuVes an acute angle ..Lh it . In both tat ,unj (hi the forming a unitary transformation on the body-fixedrotatIon plane of the diatom Is irvI,c.ited by the sm..lh-r ellipse.

scattering matniS Isee En,s. (5.14)  and (a. IS) of Ref
29 1. FI gure 7(b) indicateS the resulting transiti.in

analysis Indicates not only that the en, = = 0 reaction probabilities for F = 0.60 eV (the sum over proje ~tions

probability should be larger than ali others , ~ poi nted
out above, but also explaIns why this rule becomes less
rigid for large J (In which case nonzero Impact parsm- ~~~ I I ‘ 

Jeter collisions can lead to linear orientations for mii i, I

enough to change th= orientation rapidly during the cot- 0 - .1 000 -“OIms ’i
Union, thus reducing the advantv’~ ot a linear orim’nta-
lior. at any one point during the collisiorl. As a second .1 - 

C 0 60ev

n,,! * 0) and for large 5 (where the diatom rotates fast 

~ 

~~~~~~~~~ a

prediction of this model, we v:ould expect tha t those
transition probabilities for which ‘n~ ‘0 or m’i~ = 0 (but —

Vnot both) ~nd t he cot-responding Integral rcact ion cross m 1 t i
sections should dominate over those for which neither - -

em, nor en are zero , We shall see In Sec . IZIC that this ‘0
.4 -prediction is conz.~ct. We emphas ize that thi s pi-o~ec- ia.(ion quantum number selection rule presuppose s (a) a .5

potential sur f ace which favors linear orientations, and
(b) that the projection quantum numbers are referenced -6 -
to the body fixed coordinate system of Fig. 2 of Ihe pre-

5
’ ceding paper. The latter condition is important be-

- . - - cause it single. out the ~n, or PeI~ =0 collislona as lead-
• Ing to a linear colltaion orientation with a grea ter prob. ,

~~
= ability than en, or en~* 0. Ily rotating the quantizatlon

L_~~ I I I ~J_ I I Iaxis to another direction (suc h as om* perpendicular to .

~~~~ 2 ~ 4 5 6 0 9 10the three-atom plane as is done fo r the coplanar reac- -

elan, or along * space-fix ed dIrection), the body -fixed
proje c tions would become mixed and we would not be FIG. 6. i’haae. of S~’... ,t5; for ,u, 0, * I as a function of I
able to unscramble the Information as eraily . at F ‘-0 .60 eV.j

~ ~~~~~ 
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/ 

-

being an invariant). Here we again see no particular LC , r i ~~~‘ 
.

selection rule governing the transition probabilities. .,--.. -
‘—- --

B. Differential cron sections

In FIgs. 8 and 9 we plot the antisymmetrized para- 
. - 

= - -

to-ortho thifereottal cross sections ~~~~ as a function 
-

of the reactive scattering angle 8,~
. From Eqs. (2. 3)

and (2 .8) it should be apparent that the se crosa sect ions X 06
are just 3 times the distinguishable atom a~ ,.,01, We (.0.45V1 -

see In both figures that the reactive cross sectio n is
strongly backward peaked at all energies considered In (.040ev 

-

the calculation. The width of the backward peak at xSO
half-maximum is 48 ’, 32’ , 33 , 41’ , and 51’ at F= 0.3, 2 °~‘ - 

- 
- —

0.4 , 0.5 , 0.6 , and 0, 7 eV , respectIvely. At the tlnresh- b (~0.35evold ene -gy of the process considered, one would nor- xextQ ’
mally expect isotropic scattering since only the J =0  

-partial wave would contribute to the cross section. At 02

0.3 eV, FIg. 1 Indicates that partial waves other than (.0.30
J = 0  still contribute significantly (J

~5~
=4) . so that the x2x10’ 

-

diffe rential cross settion Is backward peaked, but I I 

-

rather broad. The width of this peak decrease s with 0
~ u 90 - -

increasing energy above 0. 3 eV to a minimum near BR(degreea)
0.4 eV. As E Increases further, the width begins to
increase, presumably as a result of increased con- FIG. 8. DIfferentIal crons sectIons 04 .I as a function of the
trtbuttons of larger Impact parameter collisions (from reactive sc attering angle &~~= 180’ _ 6  at the same energies as --

• Figs. 1, 2) to the reaction cross section. were considered in Fig. 1. Scale fsctora have the same mean- -
Ing as In that f igure.

As was the case In the coplanar reaction, ~ the shape
of the differential cross section Is a sensitive test of
the accuracy of the calculation. SmaU inaccuracies in

I I 

/
0.3 ’

• 
~~~~~~~~~~ 

“s,, SUM ~ .0OO 02m ’, - O0~_.O, - -

\ \ [.0.60ev -

\. ,,,,o \ .

> o.~ \

\ \, 0.2 -

~; e
~

•
: (‘0.70w 

.

~~ o6

i0

• 
I 

~~~~~~
flO. 7. (a) NonreactIve body-fixed tra.naltlnn prihabllity

as a funct’on of J at 0,60 eV total emwrgv for ,~~-0, 9~(degcees)
. 1, .2 , Curie labeled s um is the sum of these fly’ prbablll—
ties. (b) Anakgous space-tItled prd~*bIIItIee for the thr e or- FIG. 9. I),fferentIal cross sect lom ~~~~ as In FIg. 8 for the
bital ai~ular momenta t ’ =1, .1 • 2 , 1 —2. The s um Is Inetriai* -am, ener5tes coneh’ered in Fig. 2. Scale factor, have the / -

- 
- 

to the m~se of body-fixed or Ipac.4ised representations. same mel.DI* as I~ Fig, I
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-

•

I I I ward O,=l80 dIrection. As I,e,~ I increase s from zero, ~ -

. 
- 

00.4 we find a Shift towards more forward scattering with the ~ - ~

cross sect ion s peaking at 
~~ 

=139 , 117’ , and 102 for
I ee, I - I , 2, 3, respectively. Much of the structure of -

04D12 the angular distributions in Fig. 10 can be understood • 
-

by examini ng Eq. (2. 2). The Wigner rotation functI0n~
2 - _ .

a000_O3m 1 ~ . d~,,. (O) is proportIonal to the associated Legendre tune- . 
- I

(.060ev SUM 
lion P ”(cosfl) and is therefore proportional to (sinO)be” t ~

0010 t imes a polynomial  in cos9. Since 9,, = e — 9, the

~~~~~~ should ha ve a (slnO 5 )~~’i
1 envelope and, for

,,I,’ # 0, vanish at O~ =0 and 180’ . Indeec, one can quali-
.; I,I~•0 tatively obtain the eez t I curve by multiplying the m~’

. - ~~ 0005 = 0 one by sin’l~5 and similar prescriptions can be used

J~ ,w, ’t 2 ,,,,, for the higher ~n curves . The vanishing of the ,n,’~ 0 - - - -

SI— .� aSO I cross sections at 9~, = 0  m d  180~ is also a conseqt~ nce0 aS
~ of angular momentum conservation. To see this, we,

~~ 
0-006 recall that  the incident plane wave solution is an eigen- )

‘-_ -

function of 1,, the operator corresponding to the pro- -‘

ject ion of the total angular momentum along the space-
__ =_ _5 0.004 “l’s, fixed z axis , with eigenvalue .11= ‘~l (since n,~, the a

*500 component of the orbital angular momentum, is initially - -

- 
. zero for the plane wave solution). Since .1, commutes

with the IIamiltonian,~’ .tt will be a good quantum num-
0002 her, I. e. , 1,4’ 1211 1,1 = .1I~ + ~~i everywhere in configura- ~ I

lion space. In particular, for O,~ =0  (180 ), the fi nal
- -- . oz:~ ~~t5” will be antiparalle t (parallel) to the tnittal Os

axis, so that conservation of J, requires that the out— 
.

- .

000(
0 

‘ 90 
I 

~~ 
goIng projection quantum number u, must equal

85(degtee~) 
— .tf(+ .11), unless the corresp ondi ng scatter ing amplitude - -

FiG. 10 . Differe nt Ial cross section ~~~~~~~ as a fu.~ct lon of sponding scattering amplitudes do not vanish, we must /
vanishes in thai direction. Therefore, if the cor re 

F

react ive scatte r Ing angle ~~ ISO’ — A  fo r m; 0, , I , , ~~, • 3 at
E=6.So CV. turie labejeil sum I~ the su m if  all st ’vt ’n cr ies 

have ill , = .t f =  — eu ’, (or ~s 
0 and m1 -= .~.f=ni’, (o~ 6~, 

/ I
section, and Is equa l to the degcn cl acv -av eraged o4.,~. Scale 180’ . A pplyIn g this reasoning to the ~~~~~~~ cross -

factors have the same meanIng as In Fig. I . sect ion, we conclude that for m S 0, J, cannot ‘be con-
served for l~5 ~ 0 or 9~ = 180 unless that cross sect ion -

vanishes in both of those directions, in agreement with
, 

S either the magnitudes or phase s of the scattering matrix the conclusIon reached above. Finally we should point ‘- -
- elements for any partial wave can result in spurious Out that the domInance of the elI; 0 comPonent of - -

osci llations In t )~t’ differential cross sections , in ad- C 5~~~ 53,,, ia Fig. 10 IS again a consequence of the fa-

~ . dition, premature truncation of the partial wave sum vored linear transitIon state geometry, discussed In -

t Eq. (2 . 2)1 can lead to a spurious forward peaki ng, In ~~~ l i lA , The e,: = 0 collisions for small Impact pa-
order to avoid suc h spurious osct llations in the crosS ranieters have a significant reaction probability only
sections, we check ed convergo nce at several value s of for linear or nearly linear configurations which leads

- . . I (by the criteria of Sec. II B) and found that equivalent to the observed dominant backw ard scattering for this , =
convergence had been attained at all J, [Recall from transition. For ~~ s O , the co llision configurations are
Table H that the nature of the vibration—rotation basis nonlinear (at least in the product arrangement channel)
set has to be changed for each J(J~= 4). j Premature and we would expect to see the sidewards scatterin~ ex-
t runcation of the partIal wave sum was avoided by re- hiblted in Fig. 10. -

quiring that the reactive probabilities at the cutoff vai-
us .1, be no larger than I(i~ t imes  those itt J O .  In In Fig. II we plot the nonreactive dIfferential cross
general, we found J~~J5~~ v 5. Both Figs. 8 and 9 show Sections ~~~~~~~~~ (m - 0 , t 2 , and summed) at E~~0.6 — 

-

essentially no IndIcation of spurious oscillations or for- eV as a function of t~. Here the predominant scatteri ng
ward peaking (typically the 8~, =0 cross section ~ 200 directton IS  approximatel y 90. alt hounn slgnilicant 

. .

. -

to 1000 times smaller than the P = 180 result). We cross sections are obt ained at all angles. The struc ’
should also note that the appearance of Figs. B and g is ture In these ourves in the forward direction (8<15’)
quite typical of all degeneracy-averaged para-to-ortho may be a spurious arilfaet introduced by small errors
and ortho-to-para cross sections. In the phases of certain large Jelements of S, (see re-

Iated discussion of Ref. 22). Our previous analysts -

To examine the m, dependence of the dif’erentlal regarding the individuai en cross sections in the 8=0’ 
-

cross sections , we plot in Fig. 10 ~~~ for e~:~~o, and ISO directions applies to Fig. II as we ll. We
a I, * 2, *3, and their sum. (The corresp~,nding prob- note, however, that the absence of a linear or near -
abllit lee were considered In Fig. 4.) We see that only linear orientation restriction in nonreactive collisions
the m = 0 projectIon gives scattering peaked In the back- leads to significant croSa sections at all m1’ and at all

5
’
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8(deqrees) FIG. 13. l)egcneracy-averagrd ~~~~~~~ 4~~
,. and e4 ,t ins-

I . FIG. I i , Diff ere,dIal nonreactive crc~xs sectIon ~~~~~~~ as a logous to Fig. II but at E~~0.60 eV tE, 0.328 eV).

/ - functim of scatterIng angle C for m ’. O, * 1 , . 2  at ~ -O . C O eV .
- Curve labeled sum Is the s um of alt fIve cro ss sections and Is - 

-

equal to the degeneracy -averaged e~~~~~, -
- - scattering angles not too close to these directions.

Since the j  • 0 to )‘ = 2 transition can occur by both non-
-: — reactive and reactive mechanisms, the more meaning—

- 0_S --  ful quantity to consider Is the antlsymmetrixed cross -

— 
section of Eq. (2. 8). In FIgs. 12, 13, and 14 we plot

- ,- —
~ r~-_ 0~ 

th i s  para-to-para cross section ~~~~ (‘ummed over -

— —.. , e n)  along with the nonreactive and re~c~ive Counter-
/ parts at F =0. 5, 0.8, and 0.1 eV. At the lowest ener-

- - 06 - / - gy, the reactive cross section Is typically 3 orders of
/ magnitude smaller than the nonreactive one, so the re-

/ - -I suiting pars-to-pars cross section is dominated by the
- 

- - 2 f direct amplitude and differs very little from its non-
/ reactive counterpart. As the energy is Increased, the

04 f (‘050ev . reactive amplitude increasex rapidly and begins to in- - 
-

• j  terfere significantly with the nonreactive 01w . This -

- j  results in the oscillati ons observed in c~~.51 In Figs.
b •-,

~~
j  l3andl4. The period of thesequantumeymmetryoscllla- -

/ tions seems to be ronghly lO’ — 15° in both Figs, 13 and 14
0.2 1 \ e0~~ 05 . for 8<90 with a gradual increase in period with in-

f \,,..-KI000 - c rea sIng 0 until the oscill*tions wash out completely
- at large e. Figures 12— 14 also indicate that the peak - -

- .,• In ~~~~ shifts gradually to forwi rd scattering angles
- - - ~~~~~~~ 

.
‘,~~~~~ (corresponding to backward reactiv, scattering angles)

______________________________________ as the energy Ia increased. The contributions ot dtfler- -
0 90 ISO ent rn to ~~~~~ at 0. 7 eV are shown In Fig. 15 (along(degrees) 

- wIth the distinguishable atom ~~~~~ for comparison).
FIG. 12. Degenerac,.-averaged differential c ros s s ectIon, We see that the oscillations in the rt~ss section are
~~~~~~ ~~~~~ 

and ,i4.,~ as a function of scatter Ing angle C *t largest for en • 0 followed by en ’ - *1 and rn’1 - *2. Thi s
E-O. 50 eV IEI’O ,228 cv). The nonreactIve and ardtsym-

— ,netrlzed curve, are esseigiallv Identical (nr C t’20~ • Note ~~~ results from the dominant role of the iw .0 reactive
see etC rather than I~ for plotting the reactive differentIal scattering amplitude (as evidenced in Fig. 10) followed

- cros s secti on . The scale factor h&, the same meaning as In in importanc e by the .n - * 1 and the rn .*2 contribu-
• - - FIg. 1. - tions, Note also that the phases of the oaclllations in

- 
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~~~~~ 
_ _ _ _  _ _ _ _

- ~~~~~~~~~~~~~~~ ~ 
I 

~~~~~~~ 
I we list in Table VI a portion of the “cross section ma-

‘ 
. 

if” ~ ~ 
trix” ~~~~~~~~ 

for j . J ’ ~ 
2 at 0.6 eV. (Note that

these cross sections are distinguishable reactive ones. )
- ‘- 5- .“ I~~ 

- The table indicates that the en~ = ,,,
~ 

= 0 cross section Is
, I I 

~! ~ typically 10—20 times larger than any other one with
: , I
, ~ .i ‘ the same ‘i and i”j’ . in addition, for given t~.j m, and

~ 
- 1~ , , Q is a decreasing function of I e,, I (and, by ml—S .,

- 

I r ~ 

“O~~— OZ ~ 
~ O?OeV decreases with I esi,i) . These observations are indi ca-

croscoplc reversibility, for given i~ and i’j ’m’,, Q

• .,v ‘ 
tive of the ve ry significant product rotational angular

— I — -
~~~--~~~ 

- momentum po larization effect that can occur when only— - . ~~~Io-
0 \ a restricted rang e of collision geometries can lead to

, ~ \ reaction. This approximate selection effect breaks

- ~ 

e~~ ,~ 
(town eventually for large enough j  or j  ‘. Let us con-

—— • -- 2 ~ 
aide r the cross sections 

~~~~~~~~~~~~~ 
for varying j ’ and

- - . 
.

~~ 
I ~ ‘~ 

pet; at 0. 6 cv. The ratio of the en 
~ 

= 0 to the en 
~ 

= * I

\ cross section Is 22. 3 for j ’  = 1 decreasing to 7. 1 for
—--

~ . • i~ \ J’ =2 ,3. l fo r j ’ =3andl . i f o rj ’ =4. Thej ’~~1 ratio

~ 05 \ c’~o— o~ - Is 10. 6, 24. 7, 24. 9, 22. 3, and l4.lat E=0. 3, 0.4 , ,
- ~ \•--- a 

~~ 
0. 5, 0. 6, and 0. 7 eV , respect ively , indi cati ng that this

- - \ selection rule is most rigorously obeyed in the range
• - I ~ of energies just below the effective threshold, We shall -

- 
ex amine  the dependence of the degeneracy-ave raged
reactive integral cross sections on j  and j ’ In Sec. 111 F,

- The nonreactive degeneracy-averaged c~~~e sections
- 

“ -.. are listed In Table V. At 0.6 eV, the
I I — —0C0 90 ‘eo

8 (deqrees)
FIG. 14 . t~ gcneracy-averaged ~~~~~ ~~~~~ and o4.,~ ann- 

~OoO—O2.5 •,logous to Fig. ii but at 0.10 eV IL, 0.42O eW.

Fig. 15(a), (b), and (c) are not particularly coherent,
02

- - - s~ that a certain amount of cancellation oc c urs in the
sum over projections shown in Fig. 14.

- 
C. Integral ~ ou sections and product polarization 01

tbl ~~ , ’ ii
A number of ~eact ive , nonreactive and antisymme-

trized integral cross sections are listed in Table V.
Some of the reactive and para-to-ortho cross sectionS ~~04

- of that table are plotted as a f unct ion of energy in Fig. ~
16. Both logarithmic and linear scales are used to cx-

A

0hibit the tunnelling and the threshold regions. U we de- 
~fine the effective thrishold energy E~ as that energy for b

- ‘ - which the cross sectIon is 0.05 bohr2, then F,. -0. 545,
0. 550, and 0.615 eV for Q~ , ~~~~~~~~~ 

and Q 0 0 3 , re-
spectively. Alternattvel~, since somewhat above the Ot

threshold region the energy dependence of the cross
. sections Is linear, we could define an effect ive thresh-

- “ old energy F. as the energy at which a line fitted to the
points in this Uiwar region extrapolates to zero cross

04 

/

/\
_t

.e
\$
\

~

\•

~~~

_

2 

- 

i _

i

’

- - _ — - section, From this definition, we f ind E .  -0. 568, 02

0.565, aud 0.605 eV for these same cross sections,
respectIvely. Either way we find that the thre shold

- ‘ energies are considerably greater than the barrier 
__________________________________

• , height (0.396 cv) , and this fact will be disc ussed in 
010

detail In Sec. m E .  At energies helow the effective Ot deq’sei

- 
- . - - threshold, the ef lecta of tunnelli ng give the cross eec- FIG. IS . l)tff erer*taI cross sections ii4.~~_ (solid lines Is-

- tion an approximately expo nential dependence on trana- beled A)  and (das hed lines labeled N/ aa a fuwttns of
~~ - latlonal energy g~, the scattering angle C for (a) s, -O , (hI .,.- . 1, and (ci

- - 
at E’o .70 eV. The dcgenerscy-averagsd recall,

To examine the nt1 dependence of the cross sections, corresponding to these curves are sho,n Is Fig. 14,
/
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- TABLE V. lategral eross sectIons at selected total energies.

Total energy leVi
Crns. rectIon

. (bohr1) 0.30 0.35 0.40 0. 45 0.50 0 5 5  0.60 0.65 0,70

- - Q.~•s, 0,385k-iS) 0.3601-8) 0.2001-Si 0. 141(3) 0.’~t2t2) 0.0400 0.234 0.571 ~ 0.905
‘—I.

Q4_—si b b 0. 4101-8) 0, 2411-i ) 0. 1661-3 ) 0. 3461-2) 0. 0295 0. 10-4 0,222

~ 
Q,i.ortho 0.,iBS(-l3) 0.3601—Si 0.2011.6) 0, 1441-3 ) 0.3901-2) 0. 0435 0.264 0,67 6 1,13

. 

•1~ Q~_oolho b 0.1161-10) 0. 1491.6) 0. 1831-4) 0.6281-3) 0. 9101-2) 0.063 2 0.209 0.423
- 
, Q.~..oflho b b b O,259(-8) 0.21 st-SI 0.478(4) 0, 1311—2) 0.0155 0.0269

: Q4 0. 156(—12) 0.4801—8) 0.252(4) 0. 1841-3) 0.50 14—2) 0. 0574 0.352 0. 933 1.52 
.

e.1 0.2321-13) 0.205(—8) 0.130(4) 0. 1061-3) 0.306(—2) 0.0372 0, 225 0. 648 1. Il

- e11 b o. 12o(-9) 0, 11161-6) 0. 234 1—4) 0. 8061_ a) 0,0120 0,094~ 0,291 0,575

Q.~ 
b B 0.313(-81 0.145(4) 0.9081—4) 0.196(4) 0,0166 0,0677 0.160

Qi
~ 

b b b 0.3711-8) 0.2891-a) 0,700(_3 ) 0, 1791-2 ) 0. 0224 0. 0484

\ Q~ _si b d 3.00 d 8 .82 d 13.0 d 13.2
. 

- ‘- -- ~ Q~ -n b 0. 5sS(— lo) 0. I 1 4( 6) 0. 14z(’~4) 0. $ 73 t _ 3 )  0. 643i-2 ) 0, 0437 0. 130 0, 220
- .~

- Q4•,2 b d 3.00 d 5. 82 d 13, 0 d 13 .5

- Q:..s 299’ d 260’ d 234’ d 217’ d 205’ —

‘All c ross sectIons have beeii degrnerac~ averaged. Those psra-to-.ortho crony sectIons whtch have been eummed over final states
are only summed over those final states of tht, correct spIn symmetry. Numbers in parentheses indicate the power of 10 by which
the numbers preceding them should be multiplied.

5TransItioit is energetIcally forbIdden.
. - ‘Obtained by the extrapolatIon piocedure of Sec . 01 D. - 

-

\ - .~ ~CalculaUon ai* don..

‘ 
have values of 3.01, 3.31, and 1.67 bohr~ for “: -0, D. Elastic and total ~ oss sections

- a 1, and a 2, respectively, which ii Indicative of the
lack of strong rotational angular momentum polarization The calculation of converged elastic cross sections

- effects such as are observed for the reactive cross requires a large number of partial waves (up to 70 at
sections. The reason, as pointed out previously, is 0.70 eV I. Since the Porter—Karplus surface has a re-
the lack of linear or near linear orientation restrictionS plilsive exponential long-range functlortaltly t’ rather
for nonreactive rotationally inelastic collisions, Table tl an the correct attractive !f~’ dependence’° a fully cou-
V also indtcates that ~~~~~ and 

~~~~~~~~ 
are equal (within pled calculation of the elastic cross sections for the

the accuracy of the calculation) except at the highest p!rpose of comparison with experiments’0 on this and
energy considered. An additional discusslonof the ener- related systems would not be worthwhile without inclu-

- gy dependence of these nonreactive cross sections Ia sion of this attractive tail to the potential. Neverthe-
given in Sec. BIG, less, an accurate calculation of the elastIc dUlerential

- 
TABLE VI. Integral reactiv, cross sectIons Q~~,v,...;ttn bohr2) at E.0 ,60 eV.’

- 
‘ \~~~i.’fsui;

- - 000 011 010 01-1 022 021 020 02—1 033
000 0,0432 0 00322 0.0717 0.00322 0. 227(3) 0.00474 0.0335 0.00474 0, 2271.3)

- OI l 0,00337 0. 549(3) 0.00596 0.835(3) 0.488t-4) 0.709(-3 ) 0.00261 0.00127 0.774(-4)
010 0.0751 0.00596 0.l2 s 0.00596 0.3801-3 ) 0,00812 0.0578 0, 00812 0.380(4)
01- . • 0,00337 0.8351.3) 0.00596 0.549(4) 0,7741—4) 0. 00127 0,00261 0.70944) 0.4891—4)
022 0,262(4) 0. 538(-4 ) 0.419( 3) 0. 8551-4) 0. lll(-4) 0.8111-4 ) 0. 209(-3 ) 0. 1341-3) 0. l46(-4)
021 0.00549 0. 783(4) 0.0089 0.00140 0,sll(-4) 0.00113- 0.00407 0.00228 0.134(4)

- - - 020 0.0391 0,00285 0,063 s 0.002$ s 0.209(4) 0.00407 0. 0286 0, 00407 0,209(4)
02—I 0.00549 0.00140 0.00897 0.783( 3) 0.134(4) 0.0022s 0.00407 0, 00113 0.ell(—4)
02-2 0. 262(4) 0. 8551-4) 0,419(4) 0.8381-4) 0.1461-4) 0. 134(3) 0. 209(4) 0. 811(-4 ) 0.lIl(-4) - 

-
- i 7- -—

‘All reactance matrlo e hay, been symmet rized see Ref. 14(a)) before the above cross secttr’ns were lcuiated, Number, Is
pareslhe.es i~dIcat. the power of 10 by which the numbers precedIng them shmil d be multIplIed.

- /

- 
- 
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E0(eV) presented in Fig . 17, where we have also plotted the
01 0? 03 _ 04 phase sh ift of the ex .ct scattering matrix elements

1.5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0’ 

~ ~~~~~~~~~~~~ The f Igure indica tes that the accurateI I’ I T I

. 

‘070 ev 

phase shths are essentially Identical to their central
field counterl)2rts for j> l0.  Indeed, betwec nJ=11 and
J ~ 39 (th e hig hest J for which a fully coupled calculation

- was done), t h e  difference between these two phase shifts
I~0 Is always less than 0.05 rad and usually less than 0.02

-
~
--- red. This is rather interesting, since at J v  11 the

. modulus of S~,,00~,o0 (equal to L~~,000.000It,1) is not even
-S -~__ close to unity, as is Il lustra te d in Fig. 17. Thta pre-
S~ ~ sumably indicates that the phases of the scattering ma-

- - .- 
~~~

. - . - 05
t r ix elements are much less se nsitive to the presence
of reactiv e and inelast ic channels than are the modull.
By using t hese elasiic central field phase shifts, we can
now extrapolate the large J behavio r of the converged .

~ 
0_c —I----— results and thus calculate accura te elast ic cross sec-

0 I 

~~~~

,,

~

,1
s.

##
:#l

ø
_ø_•__::__:e•__•e_v

~

=Sn t ions.” Typical resu lts for ~~~~~~ 
at E=0. 7 eV are —

c-s ~~~~~~~~~~~~~~~~~~~~~~ suIt from extensive caneella~ n in the ~~rtia1 wave sum

plotted in Fig. 18. The e’ c differential cross nec- -

p0-i lion sho~ s strong f or ward icing with a small osc ll la-
- a lion neai- 8 ~‘ 6 ~ and otherw decreases in a nearly

—,- to.• —v monotonic manner to 8~~18 The Indicated 9-110~
- to 180 behavior of ~~~~~~ robably not accurate10~’ since the small cross sect to n this region must re-

SEq . (2.2) ) and are easily affected by small errors in
the scatteri ng matrix elements. Also plotted on the

— - - 
0-n 

°c~o—n same graph are the central field elasti c cross section
- - 10l  c’(CF) lobtalned using l’,(r,, R) for all JI and the total

i cr oss section 0:00 (which Is the sum of the cross 5cc-
to--sos 04 c~s oe, o~ tions for all possible processes (N or R) starting from

((cv) reagents i- 
~~~ 

S 
~~~ ~ 

0] . We see that all three cross 5cc- -

FIG. 16. Integ ral cros s sectIons Q~~~, Q~~ 11. ansi 
~~~~~~~ 

t d,. _ lions are essenilally identical for 9..30~. This suggests
gcneracy averaged) as a function c.f the total encr gy 12 and that the central f ield appr oximation used to interpret

S translational ene r~~ E,. Arrows in upper abscts’. -~ indic.~Ic total differential cross sections ’t Out to scattering an-
the energies at which the rot at ional sta (~ s , 2 — 7 ((or v 01 of gl~~ which are not too large is a good one. Even for
Il~ become energetically accessible: Is) linear scsle , 1W Iog_ very large scatteri ng angles c~~ and e t (CF) agree to
arithm ic scale. within better than a factor of 2. Moreover , the tntegral

cross sections Q~ o and 4/’ (CF) are 221.0 bohr 0 and

and Integral cross sections for this Porte r—K.arp lus
surface ts still worthwhIle In order to prov ide a co rn. /
‘oarison standard for approx imate techniques usc4 In 

,_
~ .li0O.o•.,SI_

~
_i

calculating these same cross section s , such as the cen- ~~ .ojo v
tr al f ield approxim ation being invoked In the tn terpreta-
lion of molecu iar beam scattering experIn%entaldata. i

~’0 
~ 2-This requires the calculation of the scatterin g matrIx — i~i

ft ~ A

6element phases for very large J. We found a very ac-
-~curate extrapolation procedure which could be used to

PSobtain these phase shifts. For J large enough so that ,,~ ‘ ~~~~~~~~~~~ ,
.~ 

~~~~~~~~~ 04 aboth reactive and Inelastic nonreactive transition prob- ~ I.
I

abilities are negligib le , it Is often the case that the C(5~vt P4s .~U /elastic phase shUts have not yet decayed to zero . Sinc e -, - 

.5” 2
these large J coliislona currt’spu.al tu large 1r.~pact pa-
rameturs, we would expect that only the isotropic tail ______________________
of the potential Is important. In such circum stances , 0 5 ‘0 0 20 25

,1
a central fIeld , single channel model of the potenti al
should suff ice to predict these phase shifts. Using a ~~~ 17. Phase shift associated with the elastic sca tteri ng

st,ndard cent ral potential Integration routine ” with the matrix clement s f , ,,.,,, (I .e. , iargi,S,)I/2) as a function of J
for E -0 .70 cV. (‘urv e labeled converged Is the coupled.cbaa.

-
, spherically averaged potentIal V 0(r,, R) of Eq. (2.14), nd result, while the central field curve Is the result A s  si ng le

wher e ,~ Ia the equilibrium internuclear distance, we channel calculation ,iq’icrtbed In text. Also plotted is the (con.
have calculated the elastic i’ ~J ’ 0  phase shifts a.t the ,erg~’d elastIc tran si tIon pro bability Pf ,,, ., at the same en-
energies considered In Table V. TypIcal results are era- referenced to right hand oidlaale scale.
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i I I ~~~ as a function of E. Both logarithmIc and Linear scales
I0~ - are used so as to enable examInation overawideenergy

— 
- - 

- range. The figures indIcate a surprisingly similar en-
~ ergy dependence ov er several orders of magnitude of

.. . I the proba bilI ties. There are, however , two important
\- - I differences both of which provide significant insIght into

i0~ 
~ 

E ‘010ev the reactive coilision dynamics. First, an energy Shift

~ of about 0. 05 eV occurs in go ing f rom 1D to 20 and
\ agaln ingoing from 2o to 3D. In the coplanar anal-

ysis,1’~ we explained the 10 to 20 shift as arising from

~ an additional bending energy required in the coplanar
—

- 
~ •~~2 transition state over the linear one. This bending en-

_,/“ ~ ergy Is added to the symmet ric stretch energy of the
- - e~_ collinear transition state which , in turn, is primarily

~ responsible for the sh ift In the collinear effect ive
~~ th reshold energy over the barrier height energy”
b 

~ 
- . 

(0.396 cv) . in the three-dimensIona l case , the bend ing

— mode of the transition state is doubly degenera te so that
- 

- a second quantum of bending energy (approximately
cT IICCI equal to the bending zero point energy of about 0.06 cvi

---.----- 
will be required. Indeed, an examination of Fig. 19 In-

.: I - — .-— —-.-.. d icates that the 1D to 2D and 2D to 3D energy shifts for
T P5 =O.0l ale identical to within the accuracy to wh idt

0’OOO

‘ 
co~o_ooo

____________________________________ 

E0( eV)
p0-S I 4

0 90 leO o.i 02 0.3

- 8 (degrees ) i 
‘ , . I ‘ I

FiG. 16. Elastic d ifferential cross Section ~~~~~~ and total
cross section a~~ 

(both thtalnctt from the coupled-channel cal -
culatlo&, along w i t h the cent ral field elastic cress scetion 

~~~ Di
~~ 4CF) as a function of sc atteri ng angle at L~-O .Z O eV . iO.1 0

220. 8 bohr~, respectively, indicating that Levine’s con-
servation of total cross section rule” is obeyed quite io 1
accurately for this system and that the use of the cen- ~ ,a 

~~~ J ’O)
tral field approximation to interpret total cross section i °° ‘ 

-~~
experiments40 .s valid. The H ~ H, total cross section

.5 Just mentioned is considerably Larger than the recently m ~~-.

measured experimental one’° (for D . Hi), which Is about ~
151 bchr~ at 0. 15 eV. This is probably due to differ- °~
ences between the long-rang e parts of the Porter—K ar-
plus and correct potential energy s ’i rfaces . ~ 0-s P~~ I3D, j ’ 0)

If the antisymmetrtzed cross sect ion ~~~~~~ is con-
eideret’, we find that quantum symmetry effects due to ~
interference between the elastic and reactive scattering
amplitudes are much lecs significant than they were i0~~ 

-

with the Inelastic transitions in FIg. 14. Nevertheless ,
oscUlations in this cross section can result in differ- -

ences between e4 and ti~~ as big as 10% of e’ for scat-
tering angles between 30’ aM 90’ 10~

2 -

E. Comps’flon of coilinw, coplanar, and three - -

diminisonhl results
I . I . I I

In the analysis of the coplanar ies ults , ”’ It was de- 0.30 0.40 0.50 0.60
termlned that a physically meaningful comparison of the ((cv)
ID aid 2D results could be obtained by examining the FIG. 19. Ose, , two-, and three-dimeas ional total reacti on
J .O total reaction prcbabllities. We extend this corn- prebsbilttle. pfurn, p4(2D, J~~ 0) , sad P,~(3D, .‘-O) , summed
ptrtioo in Figs, l9 and 2o by plottlng toe lD,01” 2D, over all flaal state., aaa funot.icm o( the tctal etier~~ E 5nd
and 3D total reaction probabilIties P~tJ.0) (P,5 for 1DJ tr*~~la2Ioni.l .nsrgy E, -

J. Qism. Phys., Vol. 66, No. II, I t~ onntar 1976
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~ ~

(o(eV) putatlon time than the 20 calculation whIle providing 3D
Q2 a3 04 0.6 informatIon directly. We would like to point out, how-
I I I I ever, one rather remarkable comparison between 2D

- .— to ~~~~~~~~~~~~~~~~~~~ and 3D results which is obtained by examining the dli-

L2;I:I: 

ferentlal cross sections. in Fig. 21 we plot the 2D and
3D differential cross section ~~~~ (adj ustlng the re-

0.8 p 5 
~ ) 

- spective ordinate scales to bring them Into approximate

2- 
~ 

I 0 agreement at e~ ~ iso’). The 2D result at 0. SS eV is
I-. compared to the 3D one at 0.60 cv so as to include the
~~ R~~i2D, J ’OI energy shift effect due to the bending energy.
~~0.60 These two cross sections show a remarkably simi lar

~ angular dependence over the entire range of scattering

~ 
angles. A similar comparison at other energies in the

~ 
as 

P 130 J ’ OI  
range considered in this paper usually leads to corn-

~~ 

00 . parab le agreement. This indicates that the dynamical
~ processes involved are indeed quite similar. Such be-

havior Is not unexpected, for the same potential is sam.
- .- - - 

0.2 pled in both cases and the primary difference between
the two calculations is the additional centrifugal cou-
pling resulting from tumbling of the three-atom plane , ‘

00 I I .___l_ which Is present in 3D but not in 2D. The existence 01
- - - -. 

~ 
- 0.4 0.5 0.6 0.? 05 a strong rotational polarization selection effect as evi-

E(eV) denced In Table VI indlr tes that such coupling Is weak
FIG. 20. One- tw o -. and thrcc4lmcnslonai total resction In comparison to the potential coupling since it is the
probabilitIes analogous to Fig. 19 but wi th a linear rather than potential which is responsible for the linear geometry
logarIthmic ordinate scale. requirement. Thus 2D and 31) dynamtcs should be quite

similar and conversion of 2D to 3D results could prove
to be an accurate approximate technique.

the probabilities car. be Interpolated. The second dU-
ference between ID, 2D, and 3D results lies in the mag.
nttudes of the maximum pr obabf llties In Fig. 20. The
coliinear probability peaks near unity while the planar ‘ ~

—‘-— S one levels off at about 0.6, and the 3D one roughly at 052 
j  

024

0.45. The difference between the ID and 2D plateau ~~~ 7 -

values has been previously analyze&3’ in terms of the ~ 
00 01 

j  
- 

. ‘

orientation dependence of the ZD probability. Since the 
~~ ~ ~ Q.6~ vt3 D1 / o~o

potential barrier varies from 0.396 eV at ~, =0 to 2.8 (‘ 055W120) I
— - 

eV at ~, .90’, ~‘ one would expect a decreasing prob- - SD—4 -

ability of reaction with increas ing ~, (assuming that we ~ . 
- -

can consider the orientation of the atom with respect to 00~ J 0*

the diatom as fixed throughout the reaction). U we con- ~ ,,J
aider that the total reaction probability Is unity for 0 ~ 20.,,, / 1
it VA ~ 51 

and zero for ~, ~~ v~ ~ - 90~, and use symmetry ,.~~ ~ - ‘V 012
about 90’ for 90’ 5 ~,n 160° , then we f ind that P~ (2D) ~~ J —

~~

~ 25~/t and P~ (3D) ~ I — cos~,, In the 2D case, we f i nd ~ - J ~
‘

that 5, . 54’ is required to give a reaction probability ~ 7
of 0.6. This estimate of ~ is in approximate agree- oos - I ooe
meet with previous estimates of this angle from a clan.
sical analysIs.’ The same angle used In the 3D formula
yields P~ (3D) .0.41 whIch I~ not considerabay different 

~~~ -
f rom the observed value of 0,45. ThIS indicates t hat
the 2D and 3D orientation dependence is probably quite
similar with primar ily dlmensionallty considerations ~
responsible for the difference in reaction probabIlIties . 00C,,— ‘ ‘ ~~~ 

I

At least two procedures for convert ing 2D integral or 8,(degrees)

—- 
- differential cross sections into 30 ones have been pro.

- . .  ,~ 
,, FIG. 21. Two- and three-dime~~ional differential croe s se e—posed ‘ both of which use semic lassi cal arguments in tIo~ v’4~~ (2DIISA of Ref. l3tbiJ m d  e~~~,, (3D) as a functIon of

mailing the connection. We will leave for future publica. reactive scattering angle ii,. The 3D cross s ect Ion (solid -

lions a thorough analysis of these conversion procedures curve) , at 0.60eV total energy, is referenced to the tell side
as well as an evaluation of appro xi mate 3D procedures ordinate scale chile the 2D result (circl es) at 0.55 .V is r’sI-

- whIch require compar able or smaller amounts of corn. erenced to the right side ~~~~ ,
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. - 0 I 2 ~
‘ 

3 4 where ;;(F~ ) =p(E~ )/ o (F — E )  so tha i for E,. ‘0 , ii ~ 1. -

to- ~ ~ I I U Eq. (3.1) Ia sat isfi ed , then the resu lt ing curves
I I should be linear with slopes inversely proportional to

T,(E). We see from the f igure that the calculated points

~~ ~~ 

~~~~~~~~~~~~~~~~~~~~~~ 

tions. The temperature par mniete rs obtained froth

N E ,O60

~

0eV (or low j ’ do indeed tall on nearly straight lines for each
I ,  thus Indicating that the ternperaturelike distribution
is quite accurate for describing the reactive cross eec-

these low j ’ straight lines -.rc 3” , 326, 328, 318, and
376 K for ,, ‘0 , 1, 2 , 3, and 4 , 2apect ively. The first
four values are Identical to one another within the Sc-
curacy of the stra ight line fits . Actually, one can
easily show by applyi ng microsco pic revers ibility to
Eq. (3. 1) that U the rotational distribution is tempe ra-

~~ 10” 

~~~~~~~~a 

~ ~ ~~~~~~~~~~~~ temperatures should therefore all be the same U the

ture like for all 
~ 

then T,(E) must be Independent of j,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

which can be wr itt en 5lmpiy as T(E). The above listed

distributions are truly temperaturelike. Onl~ for j  ‘4

~~~~~ - 

. 
j~ 4 

or j ’ = 4 are deviations from tem peraturelike behavior
significant . U we now perform a slmtlar analysis at0
several other total energies we obtain Fig. 23 which
depIcts the i ~0 distributions between 0. 4~ and 0. 70 eV.

i0~~

I 
~ 

a 

extent at all energies considered. The temperature
Ten~peratu reli ke behav ior Is evident to a compa. able

a 
parameters obtained from the slopes of the lines in

0_00 1 io ~os I 0 0  l ois Fig. 23 vary from 228 K to 448 K as E varies from
E1s(eV ) 0.45 cv 100.70 eV In steps of roughly 40 K/0.05 eV

increase in energy.FIG. 22. Reactive degeneracy-averaged integral cross see -
lions Q~.., ., divided by (2J ’ ‘ 11 ~~tR~

) , L~ a functio n of the As pointed out by Wyatt , “ these temperniurelike pi-
product rotati onal energy E,. and rotat ional quantum ~umbcr
/ at 0.60 eV total energy for Initial rotational quantum num-
bee. ) s O — 4 .

0 I 2 ~
‘ 

3 4
____t I I

I I

F. Reagent and product rotationa l state distribution, 0 

~~~~~~~~~~~~~~~~~~~~~~~ G70tV
~ \ We now consider the rotational distributions of the

degeneracy-averaged reactive distinguishable atom
,., I cross sections (all for ,- ‘ t ’ ‘~ 0). In the coplanar H • H

~ ‘0
study, ~~ we found that a surprisingly accurate lit to this
distribution could be obtained w ith a temperature~ike C 65W

~~ 

‘0 ‘

~~

•
N~ 

. 055ev

expression (for a 20 system). This type of distribution 0-60w
— 

‘ can be derive d f rom an Infor mation theoretic formalism
through the assumption that the surprisal function” is a
linear function of the fin al stat e rotational energy. For
3D collIsions, with only one open vibrational channel, ~~,:.- o-’ -
the information theoretic expression for the degeneracy. ~
averaged cross section between rotation ’.l st ates j  and D

— -- - j • may be written as ‘
~~~ N

N~i~~ a - 

-
-

I ‘o’Q7-,. ~A,(E)p(E’ ~ )( 2j ’ + ~~~~~~~~~~ (3. 1) ~ g
0where the pre-exponentlal factors comprise the refer-\ ence or statistical distribution, and T, and A , are the

two j’-Independenl parameters of the theory. p(k~~) is so-’
the product tran slat iona l densIty of states and is a func-
tion of the tranalatlonsl energy ~~ relative to state ,‘.
£,, is the product rotational energy, so that 1~~ ~ E — F,. 

____________________

— Es, where ~~ is the .“ .5’ .0 zero point energy. The 2fl’ - I ~~~~ I o. 106

- .1 in Eq. (3.l)istheproduct rotatlonaldegeneracyfactor (,(,v) -

To see bow well our 3D cross sections obey Eq. (3.1), FIG. 23. React iv e degeneracy-averaged integral cross see-
we have Plotted in Fig. 22 the cross sections Q ’,.,, . tIOM 

~~~~~ divided by (25 ’ • I) sgi(A~ ), ~ a function of the
divided by (2j ’ + l )x ~ (E~ ) on a logarithmic scale as a product rotational energy E,., and rota~ ,naj quantum number
function of E,, for several iniUal statesj a( 0.6 eV, 5 ’ at 0.45, 0.50, 0.53, 0.60, 0.65, sod 0,70 ev lots) e.aergy.
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/ rameters should not be interpreted as being equal to the Porter—Karplus potential surface. In Fig. 24 we
— the temperature of a canonical ensemble describing a plot the quasiclassical total reactive cross sections of

thermal equilibrium between a bath and the products of Karplus, Porter . and Sharma1 (KPS) and the quantum
the reaction (which actually belong to a nonequilibrium mechanical result s of Elkowltz and Wyat t t t ( EW), whi le

mLcrocanonic~l ensemble). Under conditions leading to Fig. 25 contains the antlsymmetrlzed distort ed wave
product population inversions, Eq. (3. 1), when satisfied, Q~3-oi results of Tang and Karplust (TK) and of Choi and

- -
- furn ish es negativ e T,(E). We have expressed the pres - Tang’ (CT) and the one-vibration close-coupling results

ent reaction product rotational population results in ol Wo lken and Karp lus’ (WK).
terms of tcmp eratur elike parameters becaus e the latter It is apparent that the best agreement In either figure
turned out to be positive and a quantitative feeling for is between our Q~~(SK) and Q~ (SK) and the correspond-
the relative population of the product sta les is immedi. 

~~ quasiclasatcal quantities. On’ converged quantum
ate ly conveyed by reporting their va lues. An alterna - result and the quaslc lassical cro ss sections are Cs- -

tiv e but equivalent procedure is to express the results senttally Identical between 0. 6 and 0. 7 eV to within the
in terms of the slopes 0(E) of the linear surprisal stattsti~ai accuracy of the quasiclassical calculation.
plots.”” It Is easy to show that 8(E) is related to T(E) 

~~ reen1ent between Q~~(SK) and Q~ (KPS) is much less
by 8(E)~~(E—E”)/1kT(F)I, where E” is the vibrational quantitative but still reasonable if one considers the
energ’: of the products whose roth onal population is small cross sections Involved and the inherent stat isti-
being considered. In the present instance F” is the cal uncertaint y In the quas icias si cal result. Below the
zero-point vibrational energy oC H~ and the surprisal classical thresholds, we observe characteristic tunnel-
slope parameters 0(E) corresponding to Fig. 23 vary ing behavior In our quantum cross sections which will
from 9. 1 at E~~0.45 eV to II. I at E =0.70 e11 in a non- have an important effect in the compa ‘on of classical
linear manner. The results obtained by Wyatt ” for an
approxImate version of the Yates—L ester—L b (YLL)
potential energy surface~~iO furnish 6 • 8. 9 for F =0 . ‘10
cv and 0.80 eV. The difference between these results E0 ( eV) ~

0.30 0.40 030may be attributed in part to the difference between the 2.~ ~ . ~ ~ ~, .

- - 
~ YLL’° and PK ZI surfaces ~~~ In part to the differen ce 5 6 7 8

betw een the n... .. ods used in the scatteri ng calcu lat ions
(
~‘ee Sec .lfl G). 

• 
0c~isP9/

2.0 - 
\/
,
/In the Coplanar studyhub we pointed out that the exis.

tence of temp erature lik e rotational distributions could
be a reflection of the shape of the potent ial energy cur - 0~O (EW ) / , ,
face near the transition state and the significant restr ic- /
tion In bendIng motions which the potential induces I ~
there. Since the transition state bending motions cor- I ,

/ I
‘.5 P1’

, 
~~

relate adiabatIcally with asymptotic free rotor motior’~ _

one might exp ect that the average rotational energy of °t. I’,’
~ II, /
~ 0~0iSK)--~ ~ Ii Ithe products should be related to the averag e energy In 0

bending. This relation does not scent to by quantitative, —. ,. /0however, for the average product State rotational en- o~ ts~)/.0 -
ergy corresp onds roughly to the te mperature parameter
while the bending energy, as estimated In the previous 4~ (KPS)
section , seems to be somewhat higher (228—446 K for 

~~~~~the former and 550 K for the latter). The modei e’~- 
-

plaIns the similarity between the coplanar and thrt 1-di- /

- -— mensional temperature parameters (311 K for 2D~” vs 0.5 , -

326 K for 3D, both at 0.6 cv) only U we further assume I
that only one of the two degenerate 3D bending -wil es /
becomes product rotational motion. This assumption /

I /disagrees with the Interpreta ti on given above for the ~~~~ — . . •cenergy shifts of Figs. 19 and 20. It therefore appears o.so o.eo o.io oso
that some refinement In the model which relates product E (cv )
rotational energies to transition state bending energies flG 24. Comparison of reactive integral c ross ~ectioM as a
i~s nec essary in order to quantitatively explain the ten t - i~~ctio n ot the total energy ~ (or several calculations , The 

~~~~perature parameters obta ined f rom the distributions of ~~p~i) (or j ’O , I, sod 2 are the quasl clssel csl results of (Car-
Figs. 22 and 23. pius . Porter . and Sharma (ind icate d by dashed lines), while

O4i~ w) Ia the analogous to tal reaction c ros s section o&iLslaed
G. Comparisons with the results of other three by Elton-its and Wyatt (Indicated b) squares). The present
dimensional calculations rniulLs are connected by solid lines and labeled Q,~(SK) w Ith

j -  0, I , 2. The arrow s bclow the upper absci ss a indic*te the
In FIgs. 24 and 25 we compare our inlegra l cross energies at c he b  the gr ,und vIbratIonal state product rotation -

sections (labeled Sl() with the correspo nding ones ob- a) level s h~vtng the ) value. ~ndtcat ed become energetically
t am ed by sever* l other methods, all applied to H • Ii~ on ac’~,wsit,k.
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. - .- . ~0(eV) cou pling terms from the kinetic energy part of the
—- - 

2C °‘
~~~ 

0.30 0.40 0.50 Hamlltonian , (b) The potential was fitted to analytic ex-
. , 

t 
. 

T 
‘ r ~ 

—‘1— pression s whose form was chosen so as to omit vib ra-
S 6 ~~~~~ 7 8 lion—rotation coupling; and Ic) Only the t = 0 , l, 2 vibra-

I tional states were included In the coupled-c hannel ex-

~:~— 
P 

CT ‘ pansion and convergence with respect to the number of
0 

~ ~ 
vibrational states was not tested. In our cas e, as

1.5 I pointed out In Sec. 118, Table III , and In Ref. 13,

WK / 
usually four vibrational basis functions were required

I for conve rgence of the reaction probabilities to a few

— I I percent. —

—~~ 

c

_

~ 
‘,~~ I I The Tang and Karplus disto rted wave curve in Fig. 25

— s~( ,.P / 
has a much higher effect ive threshold energy than ours

0 r 5K / ‘Tic and consequently much smaller cross sections at ttc
I I I same energy. Part of the difficul ty could be the

I I I ‘linear” assulullion Usedi in evaluating the Integrals for
0.5 ~ / / I the transition amplitude . Whe n this assumption was

- - .— I / I removed, as was don e by Choi and Tang, ’ the cros ,

I 4 I section lncrei’.scd significantly at the one energy they

—G~~~~
/
/ ~~ / 

cons idered , We should also not e t hat Chol and Tang 5

._, _/ have also ob served an ,t,~ dependence in their
C ~~~~~~~~~~ S ~~~ I , reaction probabilities quite similar to t hai of Fig. 3.

0.50 0.60 0.70 It would be interesting to obtain disto rted wav e result s
E (cv) such as those of CT at lower energies so t hat a more

FTC. 2$. Comparison of the Integral cress sections ~~~~ as direct comparison with our results ma; be mad e. The
a (unction of E. The results labeled WN are those of WoI Len one v ibrational I,asls function results .i Wolken and
and Kar i~us, TK denot es those of Tang and Karplut . . C T the Karplus7 have an effect ive thresho ld energy much lower
one poi nt of Choi end Taog. and 5K the prcsent results . The -

. - - than ours for the same transit ion, This is probably a
Tk results in Ref. 5 have been multiplied by the necessary
factor of 3 to obtain the curve p!~tted . The ar ro*~s below the consequence of the .ie~ rely trunc at ed basis set used
upoer abscissa have the same me~.nlng as In Fig. 21. (only vibrational quantum stat e r’ • 0 and the j = 0—3 ro-

tationai states). Convergence prop e rties of such
severel y truncated basis set s were examtned in the

and quantum thermal rate constants (see Sec. Ill H). cppla nar 11+ f It study, ~~ and it s-as determined there
that errors of seve ra i orders of magnitude in cross

Agreement betw -en our result s and the corresponding sections were possible in some cases if bot h v ibrat iona l
one of Elkow itz and Wya t t ’°(EW) is not as good as one and rotationa l convergence ass not achieved.
would have expected consideri ng that both calculiuions
were done on the sam e poten ti al energy surface and The quasiclassical and quantum differential c ross ~ 

-

they both emp loyed extended vibration—rotation basIs sections o~, (at some what different energies ) are cx -
sets. Recent ly, EW have made some corrections in amlned In Fig. 26. Both angular dtstrtbutions are back-
t heir calculations ” wh ich im pro v e the ag reement be- war d peaked with very similar shapes. A verj Interest -
Iween their Q:0 curve and ours. In addit ion, over the ing comparison between classicaiandquantumdynamics
energy range 0.6— 0. 7 eV , t he corrected EW values for wou ld Inv o lve an examina t ion of the c lassical rotationa l
Q~ -~ agree with ours to wi t hin 20~ . On the other hand , polarIzation effect analogous to the one found in the

- I their ~~~~ are about 2. 5 times greater than ours , and quantum results and displayed in FIg. 10. Such a de-
as a resu lt, when we compare the cross section ratIos tailed comparison of cross sections between individual
Q:0-01/Q:,-,1 from Table V with the corresponding ones quantum states (rather than summed over several as is
fro m Fig. 1(a) of Ref. 10 or w ithEWc o rr ect edv al ues , 5’ the case in Figs. 24 and 261 would be highly desirable
we find that the difference between them is quite large. in est abl ish Ing the general val tdtty of the quastc lasstca l

\ For example, at E ~ 0. 70 eV we get 0. 24 for that ratio, procedure. Figure 27 provIdes a compar iso n of the
\\ 

w hereas the KY! value is 0.62. This Imp lies that the WE , CT , and SK n~~.~1 angular distributions at similar
dist ribution of energy among the rotational degrees of ene rgies. We find the shape of ihe dist o rted wave dif-
f reedom of the products is very t’Ufereri in bot h cal- feren tl al cross section curve of Chol and Tang to be
culations, and that the temperaturelike parameters very similar to ours , while that of the Wolken and
whi ch may result from their calcula t ions will be s ig- )Ca rp lus cross se ction differs rather substa nt iai ly from I.

nificant ly larger than the ones repo rted in the previous either. Part of the error in the WK result could be due
section. A search is presently going on for the reasons to an ambiguity in the interpolation of amplitudes and
for this difference in the cross section s , In thi , con- pha ses of Scatter ing mat rix elements for those partial
text it sP’ould be noticed that EW simplified their cal- waves they did not ex p llcttiy calculate. (Only every
culatlon In th~~e way s, iS one or more ol which could third partial wave was cndcuiated. )7 Indeed, we have
have an appreciable effect on the results , partIcularly fcund interpolation procedures to be extremely dan-
at large energies: (a) They omitted certhin Corto lts gerous (especially (or the phases), and for this reason,

J. (2wsn. Pi’ys., Vol.65. No. II, I Diewobse 1976
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FIG. 26, Comparison of the dIfferential reaction eras 5cc- ,‘DGUIO4T2eV)t ies e~ as a function of the reactive scatterIng angle e5 as oh- , sO 22
- taiiied by (a) the quaslclasslcal t raj ecto ry method of Karplus , ,, .~

Porter, and Sharn~ (the histogram labeled KPS) at E ~O.752 OC~j_ 90 ‘80eV, and (b) the prese nt coupled channel method (labeled SKI 8~(deqrees )at 0.70 eV,
- 

- FIG. 28, Comparison of the iiemiclaaatcal differential cros s

~ 
section eA.i, as 5 function of the reactive scattering angle I~,
calculated i,)~ IbI l, George, and Miller (das hed curve labeled

: ~ 
we have always comp id ed scattert ng mat rIces for every 

~~~~ ~ o. 472 eV total ener~ , with the correspondi~~ e,~ n
- .. ~ partial wave required for convergence of the cross sec- 

~ (1w present work taclid curve label.d SKI at 0,4~ eV. Tbe
~ t ton. Another comparison of angular distributions is scaling factor of 0. 22 was choses so as to make lbs displayed
I indicated in Fig. 28, where we e-.amtne the semlc las st - curves coincide at C~ ’ 180’,

I . 
C

I ~ , 
- cal c~~ oi of Doll , George, and MllIer~ (DGM) at a muc h

lower energy than has been considered in the previous
I two figures. The DGM cross section s are about 5 tImes04

. ~~~~~ 
. I larger than the present quantum ones, but the agree-

~ ment between the shapes of the cu rves In Fig. 28 is cx-
I- - cellent . in FIg. 29, the results of two methods (prlmt-

‘ . I ~ tlve semiclassical and c lassical semiclassical in the

03 CTIO712eV ) ~/ / 4~ terminology of Ref. 53) used by DOM to calcu lat e reac-

~ I tton probabilities are displayed. They are a factor 6—

~ 1/ I tam ed in the vame ene~~~ range for co lltnear H+ H,.~~

! ~~~~~~~~ 

~ 

18 greater than the present ones. Presumably a ‘unt-
a, 

- 
. form ” type of expression (Or evaluating the semtc laaat-

t~- cal react ion probab ility is required to bring those re-
~ ~ cult s into an agreement comparabte to what was ob-- . 

2 0.2 -

S , 
- II ! The results of Wo lke n and Karplus shown in the same

01 wIC(O.772iVV-..\ 

I SK(0.7OtVlI - figure are a factor of 10—30 greater than the preee i~

C I~~~

— 

did we bW ignored the possi lai tty of react t~~ collisio ns .

,

, ones. 
-I . We conc lude this sect ion w ith a comparison of our. sOS

; 
- ‘

~
‘•‘
N.__ .’~~ 

~~ I nonreactive Irtegral and differential cross sectious with
- 

- 
- those o~ Wolken , Miller , and Karplus. U The latter

calculation considered the same potential surfacet’ asS ~

—~~— — • I
~ ~ . 000 

• 
90 leO A comparison of the resulting integral cross sections

~ •R(deQr ees) Q~~.s. is give n lii Fig. 30. The two curve s agree within
the accuracy of the res pective calculations, exce~- ~ 8’IO. 2?. ComparIson of the differei4 lal cros s section c4~~ perhaps at the highest energies cons idered. This Is

~ U C funetion of the reactive scatterIng angle 8,~ as cslculsted qutte interesting, for W M1( used a one-vibratIon-basIs-
~ 

by (a) the distorted wave method of Chat and Tang (dashed function appr ox imat ion (with , however , 
~~~~~ 

a 6) in their: curve labeled CT) at £ 0.772 eV, (hI the one vibration coupled.

~ ~b.antteI method of Wolken and Karplus (dash-dotted curve is- cSlcitIS.tlon. This could indicate that the absence of

- : . ~ 
beled W1C) at E.O,772 cv, sal (0) the preseil method (solid C~~5Id vibrational channels is t~~ much less significance

— - ~ ~ trv. labeled 8K at 0,70 eV. for nonreactive collisions t han It is for reactive ones.

~ 

—

~ 
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is denoted by a solid cu~~e, and the dash~~ otted cur e denotes

‘ ~~~~ - z ~. 
~~~ KJ3 . 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _OC O ~~~~ ‘ 
~o ‘U

9(deg rees)
FIG. 31. )onreac tlve differential cross sect ion ~~~~ ‘The
dashed curve Indicates the results of Wolken, Miller, and Kar —

~ 10~~- plus (W MK) at 0, 522 cV. The present result (SKI (at 0.50 cV) -

the coplanar result (at 0. 50 cV) of Ref. 13(b) with ordinate
: t I I I t I I scale given on the right side of the grap h.
- - 0.45 0.47 0.49 03 ’ 053

~ 
( (cv)

: FIG. 29, Reaction probab tlity ~~~~ (or J= 0 as a (unction Unfo rtunately, a comparison between the WMK dtf feren-
_ of the total energy E and trannlational energy E~. ~.ne two vial cross sect ions a ,~~ and ou rs (Fig. 31) shows a

Curves labeled DGM are the semiclassical results of Doll, significant disagreement between them, with ~~ W alK
George. sad hillIer using the primitive srmlclaaslcal expres- curve being highly oscillat ory, In cont rast with our
elan I~~ahCd) and classical semicls.sstcal expression (dash-’ very snioot h one. We believe that the smoot h behavior
dotted) in the terminology ci Ref. 53 . The two crosses are is more reasonable because (a) it is consistent with apoint.~ from the work of Wolken sad Karplus (W K) , and the direct mechanism being dominant in the collision pro-preee~~ resu l ts (SKI are denote l b) circles and the solid line .

: The DGM and WK prob abit tt les have been divided by 3 as de- cess; (b) it agrees qualitatively with our coplanar re-
scribedinRef, 6 to make the comparison with our distinguish- suIt at the sante energy (also plotted in Fig. 31) whIch
able—atom probabIlities mean ingful. is obtaln~d from an entirely d ifferent calcu lati on uib .

~ and (c) it also qualitatively agrees with the correspond-
log nonreactive cross sections of Allison and Dalgarno’~

-S ~ EJeV) for the same system but a different interaction poten-
. 

0.1 0.2 0.3 0~4 t ial. Rect ‘: ‘y, Chot and Fang~
5 have used a coupled

IS, , , I I equations I ‘inique to recompute ~~~~ for the same

~~~~~~~/ i I  I 

result . Note that Fig. 31 also shows the “ cence of

~ 

10 

-‘ 

~~~~~~ ~

‘

~~~

‘° 
problem cc ,idered by WalK. They obtained a smoot h

, angular dis -‘bution in very good agreement with our

any forward peak in the planar cross s~ - . This is

~~ additional evidence for t he conclusion of Sec. III ~ that
2 the fo rward peak in the 3D result may be spurious.0

~ 

S - In this section we will raamine the behavior of the
14. Rats COn$t5flts

para-to-ortho rate constant for H + H5. The os~ho-to-

%.
~

C 

para rate constant can be eas t ty obtained from k,..o( T )
by usIng the readily avaIlable equilibrium constaul . ”

We fir st define the rate constant for the transition
0.4 05 0-6 0.7 ~Jm1’ t/j’ m’, (valid b r  It , N, or A transitions):

(( cv) k~,_ ,., .,._) = (Q.,_ ,.,.,._;V.~)

FIG. 30. NonreactIve integral cross section Q4,~~ 
s.s a func-

t1o~ of the total energy E and translational energy ~~~~ The .~fQ ,. .,.,.(V ,) V’.,P(v ,)d I v , (3, 2)
solid curve labeled WhO~ Ia the coupled-channel ronult of Woi-

. 
. ksa, 8011cr, and Ka.rplus. (The actual points calculated ire

de~cied by squares. ) The preeerI results (SKI, guven by cir- where the velocittvs V , were Introduced t n Sec. (IA
else, ar, connected by a ~aaIIed line. Arrow In abscissa In- and P(V ~,) Is t he Boltzmann dIstribution functIon. Upon
dicates the energy at which the r ‘ 0, 5 - 2  state of H~ beoonwa explicit substitution of this function into Eq. (3. 2), we

~ 
eeergetlcally acces sible. find
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TABL E VU. Para4o-ort ho thermal rate constants for II . tue.’ constant k5( T) for dlsttngutahable atom collisions is’

TUC) k,,.(SK) h~~’(si~) k ( ~ 1’s)’ k,.0ITST)’ k~( T)s 2 ~~ ”~2 ’’  i)~~’~”~ 
~~~~~~~~~~~ (3.6)Q(T) •.,.100 0.270(1) 0.34 1-4) 0. 763(-2) 0. 405(4)

200 0.688r) 0. 122(7) 0.375(6) 0 .1 61(5) where
250 0.153 (6) 0.773(8) 0. 12 7t8 ) 0. 125( 7) 

Q(T)~ Ef,(21 ~ l)e
’I,,IST (3 7)300 0. 442(9) 0. 449(9) 0, 136(9) 0. 22~,t8)

400 0. 45G( iO) 0.490(10) 0, 265( 10) 0, 83 i9)
500 0. 224(1 I) 0. 224(11) 0. 168(1 I) 0. 737(10) The factor of 2 at th u beginning c the right-hand side of
600 0.640(11) 0.640(11) 0.595(11) 0.322(11) 

~q. (3. 6) arIses front an eSplicitly performed sum over
the two equivalent product arrangement channels. In

Afl rite conarinta are in units of cun3/( molr see). Quantum the limit in which a large number of qua litum statesrate cofth tant i are believed accurate to 20L 
contribiate to the sums In Eqs. (3.4) and (3.6) , we may‘Tte.ulta of Ref. 3.
assume that a sum of rate const ant s over just odd prod-
(ICt state s (or ju nt even states) Is approximately hail the
sum over all possible Mat es, i .e.,

8)
111 1

~~~~~~~~~~~~~~~ 
t~i:~s-Tt , 

~; ~~~~~~~~~~~ 
~~ 

k~~ 5.,.(T). (3.8)
I, . addi ~~iI I’)

— ---5 - 
X J E~~~Q.,,, ,. , .~~ tr) e .s

~~
Iir dI.:;

- — (3, 3) In add Ition , for hig h enough temperatures ,. where ii ts the reduced mass co rres pon ding to the m o -
,/ t ion of the atom with respect to the d iatom and E~ Is
, 

the translatIonal energy relative to state r -j (E ~~ = ~~~~~~ ~~~ ~~ l’,(2~+ l)e ” .,”~~~3 ~~
‘ f,(2 i+1)e ~~~~~~ 341,,I

. - N4 I s Avogadro ’s numbe r , so that k has units of cm’! I1Od~ U N)  
(3.9)(mole ‘sec). Expressions for degeneracy-averaged so that

. 
. rat e constants k~,.,,,. may be obtained by using the de’

Q~~Q5 +Q, ’-4Q . (3.10)~ 
- generacy averaged o~~ ,-,. in Eq. (3. 3) rather than

-
- 

~~~~~~~~~~~ The para-to-o rtho rate cons ta nt Is then ob- 
~y reaIiz Ir~ that k,,, is given by an expression analo-

tam ed from the ~~~~~ via gous to qs . (3. 4) and (3. 5) but with the eve n and odd
I. sums Interchanged, and b~, combinIng the expressions

k,,(r) ~~E Lt~2L l ) e ’~i” 

~: ~~~~~~ ~~~~~~~ for k~_ , and &‘,~~ , using Eqs. (3.$)—i3. lO) and the rela-
., Q,(T) .., lions bet wee n antisymmetrized and distinguishable re-I, seMI Ii’ ~~~~

active rate constants imp iic 1 in the dtsc uss1on i. now-where 
ing Eq. (2.8) , we fin d

S ~ 
41, 171 ~ ~: .1,121 + 1)~~

E.j/
~T (3. 5) k 5(T) — t ’ ,..(T) ~ k._,(T) ~ (3. 11)

- : Is the para-state reagent interna l partition function and (i K,~)’
- 

- 
- 

( E,, Is t he vi bration rotation energy of sta le u-j l.E =E,, h e e  K,, is the equilibrium constant. To the same~ +E~ 2. The nuclear spin degeneracy factorf, h2s the 
onder of approxiniatlon, Eq. (3. 9) ImplIes that K,~~ 3,

\~
_ 

-

- - - - 

~ 
value 1 for 1 even and m for j oad and thus is always ~~ (3. 11) yieldsunity for k,_• . Calcu lation of th i . rate consta nt can be
made usi ng Eqs. (3. 3)— ( 3.  5) a”d the cross sections k~ (T)  — it ,..(T). (3. ~2)

- 
. ~ Some values of these integral cross sections are given (2 12) and i3. 11) or (3. 12) , we c~ n approxima tely com-

-
. ~ Q:r.~ii.~ which were defined at U ~ end 3f Sec. BA. This imp lies ihat by computi ng 2 5( r)  and .aing Eqs.

~ in Table V. Dy evaluating the integral In ~h-’ d.~ enera - pu r e r ,., r~ from distIn guIshable-a tom reactive cros s- cy-averaged counterpart of Eq. (3. 3) numerical ly, ~re oecti o ns 415 , In the third column of Table VII we listI 
have obt ained the para -to -or t ho rate cons tant s g iven in the ~~~~~~ ~~, olaatned. Equation (3. 11) (in which K,, is

- the second column of Table VU. Both linear and 
,~~~ assumed to have the value 3) w as fo ’itd to givelogarithmic Interpolation were used between the ener- 
slIg~~ly better agreement betwee n k~~ ’ and i,.. for Tgle e at which c ross sect ions were calculated and (he 
• 300 K than Eq. (3. 12) and was th erefore useJ in ca l-- results fro m the two method s agree to 20’l or better. cu lating k~~V i n the table. We see t hat for Ta 300 K,,

, (The linear results are given In rable VII . ) Qnl~ tern- L:i.~ T) and k,~•(T) are Ident ica l t o at least tw o slgntf -. 
peratures below 600 K have seen uscd in the calculation icant featur es lndicatiu~ that the approxIma t ion Is quIte

- - because of substantial errors which occur in truncating ac curate even at fa irly low tempe rature s. If ~~ use-
. 

‘5 
the integral In Eq. (3. 3) ax 0. 7 cv total energy for tern- ~~ 13. Ii) to convert the Karplus , Porter , ‘~nd Sharm a1- - perat ures above 600 K. rate constant k’(KPS) to k,.,(KPS ) , w~ ot*atn the re-

- ~ The quantum para-to-ortho rate constant may also be suItS in the fourt h column of Table Vfl. In the fift h

~ obtati’ed (approximately) from dlst~nguishable atom co lumn we have listed the analogous translt icn state

~ 
cross sections . It is desirable to do thI s tn order to theory result k,_.(TST) withou t tunneling corrections

. provIde additions) comparisons between quantum and Iwhlch is obtained from Eq. (3. 11) and the formula
, - I quas ic lass ica l rate con st ants . The total reaction rate given In Ref. 3J. Note t hat transiti on state theory
I - -

~ 
I

\ - 

1 
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TOt ) cal and quantum results Is an obv ious consequence of
‘5 500

600 400 300 20.) ~_!oo the exce llent agreement of the co rrespo ndlu~ integral
I cross sections (above the c lasstca l thresholds) in Fig.

iDe 
\ 

24 coupled w ith the excellent valIdity of Eqs. (3.11)
~ - and (3. 12). Presumably, the quantum and quas ic lassi - - •

Cal rate co nst t n ts will contin ue to be in ve ry good
- agreement at temperature s above 600 K. At lower tern-

peralures, however , tunneling effects become eatremely
‘ ‘0’ - import ant with k ,.0 (SK) a fa ctor of S. 3 larger than

‘ 
k , 5 (KPS) at 300 K and 18 tImes larger at 200 K. The . -

- significant nonlinearity In (he quantum curve in Fig. 31 ~ 
5

$8 a lso apparently related to tunneling, although we.
~~ los - hould note that previous studies on co lli near if. H1
S. have shown ut that tuni~~ ing can make signIficant con-
~~ 

Si - trtbutlons to the rate constant even at 2 000 K where the
E
,~

- . 
colllnear reaction Arrh,~nius plot Is quite linear. The

E iO~ 
- transition state theory rate Constant deviates from . -

I)

~0 k,5 (sK) even more severely than k,. ~(KPS) , with
I - k,.,(cK)/k , ,ITSI’, being 20 at 300 K and 42’l at 200 K. ‘a

‘a Part of the error In the TST result Is prob ably due to
io’ . the neglect of tunneling corrections In the expression

used’ (i. e. , a transmission coe ff icient of unity has been‘(PS
- assumed). For a scaled vers Ion ”’ of t he SSMK sur -

face ,td Trub ia r and Kupperrnann’t’ have calcuLated
I - vibrattona.ty adiabatic zero cur vat ure (VAZC ) trans-

missIon coefficients of 0. 903 at 600 K, 0. 98 at 300 K,
- and 1. 72 at 200 K, thus ind icat ing th at Inc luston of these

1ST factors Is not a~* to Improve the sItuatIon significantly.
to.’ - In additIon, the ratIo k,..(KP S) / k ,,.(TST) deviat es eob-

I I I . I J~ stanttally fr om unity In Ta& Ic VII despIte the fact t hat
I 4 7 0

(000K/ T tunneling has been omitted from both calculations.
Because of the strongly nonlinea r behavior of k, • (SK)

FIG. 32. Arrhenlus plot of the para-to-ort ho thermal rate in Fig. 32 , the at temp t to characterize that rat e con-
constant . The prese nt quantum result is denoted by SK , s-bIle stant by a si ngl e activation e~ .-rgy Is probably not too
the quaslclassical result of ~arpIus, Porter , and Sharma is nteantn~~ul. If one does , how ever , com pute such a
labeled 1(1’S and the t rsn.qliton s tate thcor~ result is labeled quantity by arbitrarily fitting a st raight line between
l’s?. the 500 K and 600 K points, one finds actIvatIon ener-

gt es of 6. 3, 7. 5, and 8. 8 kcal/rno le for k ,,.(SE) ,
ord i narily does not distinguish different possible prod- k ,.5(KPS) , and k,,.(TST) , respecti v ely. The quantum

- uct ~~ln states , so t hat in order to define k,..(TST) , wc activa ion energy Is 1. 1 kcgl/mote (0. 048 eV) above the . -

have to make the addit Iona l obvious assumption that the corresponding coplanar one (5. 2 kcal/mole) , ~~ and
: indIvi dual nuclear spins are good constants of the mo- this difference Is almost Identica to the 0.05 cv 2D to

lion. It is worthwhile noting here th at a numbe r of rate 3D shift obs erved In Figs. 19 and 2Ofor the i .saction
: constants In addition to those to Table VII may be cal - p t’obabittty ctir ves .
; - cu lated , biK most of these addi ti ona l rate con s tants

-
- 

- provide no new Information (see also Ref. 55). For cx- Since the Po rter— Kar p lus pot eitia l surface we u sed

ample, any ortho-to-para rat e constant Is simply k5,, ha~ an Inco rrect barrIer heIght (0.396 eV i’ vs 0.425 ev
.~*,../.5ç,, and any dtst~nguIshabIe-atom rate constant f0~’ the more accur ate LIu iturfaceil, a comparison
k~~ (w hich includes those ~n the last three columns of ~~~~~ experimental results of thermal rate constant mci-
Table VII) may be related to the corresponding total rate surements wt ll be deferred to a paper In which the re-
con~~ai* using Eq. (3. 11). One exception Is the quasI- ~ult~ obtained with the full noncolll near LIu surface are

— classtc al para-to -o rt ho rat e con stan t k ., which is ob- descrIb ed.
t am ed by selecting only those trajectories which fall ~~ SUMMARY
Into bins connecting even and odd states. This quantIty 

- .
-

Can not be ext ract ed f rom the resu lt . of Ref. 3, and ts ~~ U5 now summ arize the signIficant concept s de-
only app rox t rnated by k,.,(KP S)  as obtained using Eq. ve loPed tn this paper. First , tn the ana ly st s of t he
(3. (1). reacttve transtiton probabt ltt te. and cross sect ioni we

found a fairly accurate rotational proje ct Ion quantum
Arrhenlus plot s ci the quantum, quaaictassic al, and number (I. e. , polarization) selection rule (ni g s rn~ “ 0).

trcn~it Ion stat e theory rat e constants are p’e~ented In Although one can find many f actors which are at least
Fig. 32. ~t 600 K, the quas lc lass tca l t ,,.(KPS) dif fers parti ally responsIble for thIs effect , the primary rca-
from k ,.,•(SK) by only ~~~~ while the TST resul t is In son for th is spec Ificity and se lectivIty Is the restrictIon 

.

error by 79%. The close agreement of the quaatclassi- to nearly iin.ar geometries In the transition state as Is ‘
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determined by the potential energy surface. No corn- Pr~~eesor Donald C. Truhlar for usefu l co mments . • -

. parable selection effect was found for the nonreactive

~ collisions (comp are, for exam ple , Figs. 10 and 11).
At htgher energies, quantum symmetry interference ‘Itesearch supported In part by the UnltcdStates Air Force Of-

, oscillations were observ ed in the j  0 to j ’  ~ 
2 pa rs -to- fi re of scientifIc lt eseirch (Grant Nu AYOSR-73-2539).

pars differential cross sections (see Fig. 15). Such ‘ttI~’k Performed in Part IS.1 fu if ll lmeni of the re~iulremen is for
the 1%. 0. in Chemist ry at the Calliornia InstItute of Tech-

- osc illations might be capable of interpretatIon In terms 
~moiogy . Presen sddresa: Uepsrtmeni of Chemist ry , North-

- 
_S._ _, ~ of parameters which character Ize the pot ential energy wcsIer n L at v ersli y , I:vanst on , Illi nois €0201.

\ ~ 
si~rface as has been done for the related atom—diatom tConirmbutmon No. C2~1.

‘ 
.\ and motecule—niotecule eiasttc scattering situattons. “ ~mal I’ . A. SI. I)irae, Proc . It. Soc. London Ser. A 123, 714

. 5- The elast Ic cros s sections revealed a lac k of sensitivity iiS 2OJ . (hi F.. Schr&ling er , An n. 111)5. 79. 361, 189 119TSJ ~
_
; 

- 
of m e  e ‘ 30 ‘ angular dIstributions to the loss of flux ~~~‘ ~~~ 11926); hi , lOb (1926).

into Inelast ic and reactive channe ls , and der.:’rnstrated ~~ ~~‘ Londo n , ‘1. Flektrochemn . 35. 552 (1929 ) ; H. Eyr Ing and
, S~. l’oian~I, ~~ rh)s . Chem. Ii 12, 279 (193 l )C (hi S. Sato ,

-S.- ~ ~ the app roximate validity of LcvIne’s4
~ conservation of ,~ Chem l’hy~ . 23, 592 (lOSS) . (C) H. N. Porter snd K.. - total cross section ruLe and the valIdIty of the cent ral Ea rplus , J. Chem. Phys. 40 , 1105 (1964) ; (di I. Shaviti, It.

. 

. field approximation In this angular range. A compari - 
~~ . Stevens , F. I. Minn , and K. Karplus . J. Chem. Ptmya.

son of the resu lt s of 1D, 20, and 3D calculations re- 49 , 2700 (1968); (ci It. Conroy and Ii. Drumme r, J. Chem.

, 

. .
. vealed the Importance of bending mot lon9 In the iransi- Pins. 42 , 4047 (l965) C ibid. 41, 9~ l (1967) ; tO B. Liu, J.

tion state and demonst rated their co nnection with Chem. l’hys. 58, 1925 tl973)~ ~€) see also C. Edmins”*
threshold energies. In addtt ion , the or ientat io n depen - and K. i~rauss , J. Chem. l’h s. 49 . 192 (1968) and refer-

CACCS therein.denc e of the reaction probabIlities wa-s analyzed and 
~~ N I  It. N. ~~~~~ and It, 1). S~.arma, J. Chem.

found to be compatible with the observed ntatd mun i Pins . 43 , :1259 (1965 ).
- va lues ~ the tota l reaction probabilit Ies. The resu lt s Ii-,, p.Ijcha, A rk . Fyi. 30 . 427 (1965) .

of 10, 215. and 31) comparIsons afforded in this paper ~si. Karplus and I~. T. Tang , l)lscu3~. Faraday Soc . 44 , 56

should be of great use In the improvement of LD ar.d 2D 119671 • I~. T. Tanet aNt ill. karpluS , l’lmys. l(cv . A, ‘ , 154 4

models so that they can be used to make quantitative (i9~i) .
predictions about 3D results. The dcger.eracy-averaged ‘~ I). t)oll, 1. F. Ceor~e, m l  (5’. H. Miller , J. Chem. 9*ys.

58. 1343 i1973) .
rotatlonaldistributions were four.d 10 obe y Doltz rna nn- ~ wolken snd K. la ri1us , J Cliem l’h’s . 6*, 1 (l9~~ ).
like expressions with a surprising ilegree of accuracy. 

~~ ~ ~ Chol an.) K. 1. Tang, J. C iem. Phy. - 2462
A precIse understanding of why this occurs remains un- (1974)~ 0.) ~~~~

,. 61, 5141 119741 .
known at present , but an analysis of time sc attering ‘A Kuppern~ann and (C. C. Schatz , J . (‘hem. Ptm~. 82 , 2502

- wavefunction at the transition state In terms of vlbra- (1C 7 . I .
tionaily and rotationally adiabatic wavefun ,ttons may ‘ A . B. Eikoali& and It. E. W~rau , .1. Chem. Ptmys. 62, 2504 ~ -

help to clarify the relation of bending energy to product (1975) .
t i (s) It. P. Saxon and J, C. 1.tt K , J. Chem. Ptmys . 56 . 3874

state rotational energy and hence to the temperature i1972)~ shj.J. 56 , 3885 il972)~ (1,) A. Altenberger.Siceek and
par ameter , A comparison of our integral and dilferen- ,~ ~~ l ight, J. ~ hcm. I’hys. 61, 4 C ~ 3 (1934 1 ; Ic) K. P. Sax —

~ t ial cross sectio ns with those of several other approxi’ ,~
,, and .3. C. light , J. (‘hem. Ths s. 57 , 2 758 tl 972)~ (d l J.

~ mait~ ca lculations indicates best agreement with the j, T%~ IIn. it. i’ . Saaon, and J. C. l ight , J . (‘hem, l’hya. 59.
5 - quasmclasslcal results at energies for which tunneling J63 (19 73).

- effects are not Impo rtan t . ~~i the other hand, the lack I: lt fl Wal ker and It. K. WYatt . J. Chom . l’hyu . SI , 453 9

of tunne ling in the classical cross sections produce s (l9~4I.
I3 (..

~ A. i~uppcrn..Min. S. C. tjchat z , and K. user , 4. Chern.
- important dIfferences In the para-to-ortho thermai rate l’hys . 61, 4362 ( l 974J ~ (hi G. C’ , Schat z and A. Kuppermann.

- - constant at temperatures below 300 K but the agreement 
~ ~ .em. Phys . 65 , 462 4 (19.6) , two papers back.

Is good at 600 K. “La) I). C. Trublar and A. Kupperm~nn. J. Cbem. lTh)s. 56 .
- - . 2232 (1972); (hI (hid references thereIn.

The wealth of dyna mical iniormatl on presented here ~~~ ~~, I:~rIng, .i. Chem, ~~~~ 3, 107 (1935); H. Peloer and
S makes clear the great usefulneas of these calculatIons. ~. 

~ igner, a. peiys. Chem. B 15, 445 (I832)~ (hi Ii. S.
AL the same tim e, the large expenditure of computer 

~~~~~~~ ~~, ~‘8as~ Resells Rate T8eorv (Ronald, New

- 
time indicated In Table II ImplIes that analogous calcu- York , 1966) , Chap. 10.
lailons wIll be done for only a limited number of addi- “1. Shavitt , .1. them. I’tiys. 49 , 40 45 i1969I.

tional systems for which a very detailed understanding “J. 81. llo~ man, A. Kuppcrmann, 2. T. Adams , and D. C. - •

of the important dynamIcal processes Involved is highly Trahlst’. d iem. Ph~-s. l.ett. 20, 225 (1973); J. 14, Bow~naD,
Ph. I). th e~~ts , California Institut e of Technology, 1974.

desirable. This places prime emphasIs on the develop. ‘t D ~~. ~ eit1er . J. Chem, Piws . 56 . 2092 (1972).

~ ment of accurate but efficient approximate techniques, . “(a) It. D. l.evine and S. F. Wu , (‘hem. Phvs, Last, 11, 557
m d  the compari sons between acc urate result. and ap- 

~~~~~~~~ s. F. Wu and H. I). Levine, )4ol. l’hys. 22 , 881

I ~ 
proximate ones such ~~ ti~~~ considered In Sec s. lifE (l97t).
and mc and in decoupling schemes presently being “c. c. schat , ~~ A. ~~~~~~~~~~ J. c’bc m. 1%ys , 65 , 964

S usedbyuslnd.iCatethat suchtechlquesmay indeed exist. (1913).
- “C C. Schat e and A, Kupprrmann, Pimys. Rev. Left . 35, 1266

. (1575). -
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. !I(al K. T. Tang , Pbys. Rev . 181, 122 (1969i~ (b) Ii. It. Choi 3’R, C. Newton. ScaSfr r~~ Tkeor1 ni lib,-es a,vd PerficI. s (Mc -

- - and K. T. Tang. J. (hem, Phys. 63. 1783 (19751. Craw-h Ill , New York . 1966). pp. 572—575.
:‘ . 

~ E. F, Hayes , C’. A. Well s . and I). J. Koun. Phys . Rev. A ~‘I(. T. I’ack . J. Chem . Pbys . 60. 6-13 (1974)~ P. McUulrc sIW
; - : 4 . toil (1971), U. J. kouri, J, Chem. I’hys. 60. 2488 (1974).

; - “ A , A. Westen berg and N. de Ilsas . 2. Chem. l’hys. 47 , 1393 ‘ Thic csn he ve rified b~ examIning the expressloiw for .1, and
(1967). I). N. Mitchell and 9. J. LeRoy , J. Chem. Plo-s. 58 . II given in Ref . 29.

- . 3449 (1973)~ see Ref. 15(b) for earlier reicrences. “This follows (eon, (a3 the assum~~ion of Ref . 29 fw hich Is In,-- - 
~A Kuppermann and ,I. K. White. J. Chem. Phys . 44 , 4352 plic it in Eq. (2.3) 1 that the initial relative velocity vector is

- 
S (1966)~ A. Kuppermam,, in Proceedings o f M e  .%‘ob.’I S~ m- parallel to the space f Ixed z ax is, Ib) the defInition of the an-

- t°s~i’~’ 5 os Fast ReocUos.~ in Primarl Processes is Clm,’ns,ra . gle e (or 8, of Fig. 1), which Is the angle beta-ceo th e ~.8-- - Xiientcs. edited bsS. Claossion(lntersci.nce, NewYork , 1967) , goint z axis and the space-fixed z axle . and Cc) time relation
Pp. 131—t40~ Israel J. Chem. 7, 303 (1969) . O~~- 190 ..5 of Sec . ll .&,

‘ ~ ,- . 9j , Geddes. II. F. Krause. and W. I.. File, 2. Chem . J’hys. “For example, It. Gengenback, C. Hahn, and J. P. Toennisu ,
i _ 62, 3296 (1970); 1814. 56 , 3298 (1972); ibid. 59 , 566 (1973); J. Chcm l’hys. 62 , 3620 (1 975) . It. A. Fluenib . It. K. Mar —

- - C. H. Kwet , V . W, S. Lo, and K. A. F.Memacin, .1. Cht.m. t in, E. E. Munch ilte , and V. P.. ilerschbach, .1. Chem. I4myi.- .‘ 
. ; Phys. 59, 3421 (1973); S. Dstz and E. it. Taylor . 2. (‘hem. 46, 2172 (1967)~ W. C. Stwsiley, A. Niehius, and D. R.: ‘ , i’t~~~. a,, iss€ (1963). - Iierseh t*ch , J. Chem. Thtrs . 51, 2287 (1969),- — .

~
-.I ‘p6. c, Schate and A. Nuppermann, J. Chem, I’hys . 65, 4642 ‘ tm A . Suppern~snn. It. J . Gordon, and K. J. Cuggiola, J. Chem.
I 

(1976) , precedIng paper. Soc. Farsday l)lscuss. 55 , 145 (l9~3).
I- . “A. Kupperosman, G. C. Schat a and K. ltaer, J. (‘hem. Phys. ‘~it. P. ltutz , It. Feltgcn , H. Patsy. and H. V. Ve)mmeyer. Z.

--~---— 1-- €5 , 4596 (1976). three pipers back . Phya. 247 , 70 (1971).
. I - “ A. Kuppe rmann, Chcm. phys . leit. 32 , 374 ‘1975) . ‘3R. Gordon, .1. Chem. Pt~is . 51, 14 (1969).

I ~~~ S. Oavyd~~, Qvdstim .Itechasics (Addison -tV eslei- , Read - “Some ambig uity still exIsts because of the email difference
, ing, MA, 1965), (hap. 6. t• 0. 05 iad between th e single cliamel and converged phase

/-~ 
.

. “Equation (2,7) can be prov en by cons idering the effect of the s hIft s .- — Inversion operator ~ ofAppendlmi fl of Ref. 29 on t he scatte ring ‘S R. 0. Lev ine , Chem . Phys . t.ett. 4, 309 (l969)~ J. Chem.I matrix solution .v.~l~nL 151 ~f Eq. (5.3) of ltcf. 29, Itt- usIng pi,ys . 57 , 1015 (1972).
~ 

-.
-

-
—

.
. Eqs. (84 ) and (5 ,5) of that paper, one can eas Ily show that the “(a) I). J, i)lestl er , J, (‘hem. Phys. 54 , 4547 (1971); (5) .1.r—

~
—
~ incident spherical wave ~*rta ci I- I)’ *~~ ‘t’°1and ~~~~~~~~~~ 5’, l)~.j f and I), G, Trubla r , Chem. Ptiys. LetS. 23, 327

. - -. - are Identical and as a result so are the correspoatmng outgo. u913 .
; 11w partS, from which we conclude that 

~~~~~~~ 
sal ~~~~~~~ ‘Z R. B. Walker and It. E. %t)iatt , Sin). Phys. 2*. 101 (1974).

I’ - ~ 
are equal. According to Eq. (5. 30) m~ Ref. ~ 9 . w~ nuy re’- “ A. lk ’n_Shaul , It. 1). LevIne . and H. Ii. Berns te in, Chem.

.
— 

- place — D~ li, ~ ,~~ whereas 0~ may be replaced b, ,,,,,. Fro m Piw s , l ilt. IS . 160 (1972) . J. Chern. Phys. 57. 5427 (1972).. 
. . this results g1~~iI~”j 5 ~~~~~~~~~ ahich shea substituted “R. I. tt\ st t , Chem. l%ys. Lctt. 34 . 167 (1975) .. a bl_j ~ £‘—i& 

. “ A. C. Yates arid W, A. 1.eater , (‘hem. Plmya. L etS. 24, 305- ~ into Eq. (2.2Hd Ihe preseni paper)t.~ ethcrw (t hthe pr~,pcnt, - - (1974).
~

5_ .I
:
. 

~ d~ ,‘ (C) =(—1) h hd4, ._, (61 “It. F.. Waytt (private commun icalio&.
- .

5 . ,i I, I L ‘IA. B. Elkos- itz and It. F.. Wyatt . J. (‘hem. Pin-s. 63, 702
~ I ~ 

- yields the relstioc - (1975).
- 
‘ “ J K. tto~ min and A . I~uppermann, J. Chem. l’bys. 59.

- ~~. 
‘ ~~~~~~~~ . (_ ) )_ .

I,_R *’I•
~
j
~
m,~ 

- 6524 (I973)~ t(~. H. Stiller and T. F. Geor€e . 2. (‘hem.
- - 

‘ ,Av ij *_ m ,& fti
~iAflI ,, . 

Ph~ii. 67, 2458 (1972).
ti : t tA Earkas , OrMnC,4rng rw , J’era8,drotr,, end Hea,s H~-dro-

-- -
- f rom which Eq. (2.7) fo iires , ~~~ (Camh rl~~ e t ’ . P. , Cambri~~e. 1935) , p. 13.

- 
. -- -- - ‘4Die vailmi exp ansion coefficIe nts t’ of Eq. (2 . II) ‘(eec real- i t 1) 6. Th~hlar . 2. Clie nt . Phya . €5, 1008 (19761.. - oiLed ust ig a procedure outlined in Itef. 13(b) In which the s - “ A Kupimermann , J, T. Adams . and 0, 0, Truhlar, (to be

; - - term truncated expansion in Eq. (2 . 14) is required to be cx- published).
I ..otty astisf ied ii s values of ~ and the V are obtained alge- t1 For cxa rn7tes , see J. K. i’sr rar and 2, 1’. Lee, 2. CIwn,,

~ 
bralcally from this condit ion. ~~~~ 5~ 55tI~ (1972) , P. E. Siska. J. K. Parsos , T. P.

I “This number can be obtained from a t im e delay analysis of Schaefer , and Y, 1’. Lee , J Cbem. Ptmyi. 55, 5762 (19711;
~ 

the scsttcring m.itrtx , similar to the one described previ ous - .1, ~c. Farrar awl Y . T. Lee, J. Cbem. 1%~’s. 51, 5482

1
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- LARGE QUANTUM EFFECTS IN A MODEL ELECIRONICALLY NONADIAIIATIC REACTION:

. S ~ B a + N 20-. Ba0 + N 2°
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‘ C~liulat ions or react ion piob abul ,I,em have presmoush~ been pcir.~rmed fur a coll .nesr mode l of the eket ion ies lly
nonadmaba t ic reaction ha + N30 - limO IX 2 I. B~() (a ~lI) • N, . irr a t ing N2 a’. a ma,~ polni and using accur .mtc quantum
mechaniej l a, sell a~ quJ~.m-c LnsR-al tra iec t . ’ry (urf.acc.hoppmn9 icchniques. In the pre-wni paper we compare ihenc iwo wii . -

of re-wi ts and Soiwl,mde that t~rge qumniuni t ((cc t s enni .mnd Ihal the Landau—len t , iutf~cc.hopping niodel lot the dewop-
- - - 

iion of th. , sy ;icm it inadequ ate .

.. The chen iil un ,incsccnt Ba + N,O reac t mo n h a s  re- liti car iwm ,-elect ro n ic ’s tate process in order to in•

-5. centl y been the object of intensive c’tpcrirnental in. ~wst igaie the propert ies ol such a model with N,
- - ~ - . vesIigaiions I I — 9J . The observed clicmnilimrniitcsccnce ireated as a ~nass p011)1 I I I — I 3J . Intersecting mod’

has been assigncd to the A ’ ~ 
-. X 1 ~ transition of ci ground (sin g let) s t ate and excited (tri plet ) h ate

. - .5 IlaO ~ I —91 
~ 

but the press ure depend ence of ihe emis • U~PS s ut fj ccs . I’, and 
~~ • respective ly, were eho’

‘
~
- .. 

‘ sion intcniiiy 1155 lcd to the sugg cst to n dia l the a ~ II sta ic Sen aS Was an in Icf3ct ion pOiefl t i3~ surfa ce . I’~.
-
. , of HaO is the dnmina,,t Icacluon produci ani that lime V, h a s a 0.05 eV harrier locat ed in the ,iear•

radiating A 1 

~: State is populated by sub sequ ent I,on~ asymptotic regior -. ~ the prod uct chati nel and an

— - reaCiivc bimolecular collis ions ol I3~O(j 3II) wiih t h e exothermiclty of ‘ .. t V  1131 . This ~~~ made sub .
pressuriz ing gas I4 .IO~ . 

stani i~iiy lower th a.: (he experi ment al ly determined
We h ave modeled thc Ba + N30 t cactio n as a coi~ 4 eV 121 exothetmicity In order to keep the n smber

- 
of open exi t channe ls down lo a manageable amount

- -; _ 
S 

~ . - . while ~‘vremng the charac lerisi ics of the surface
-5 

. e Thi. work was wrpu,tcd in pj r( by a giant (No. Al OSR . . . .
- .. .. I 73-2339) f ro m the Ai r Eurce Ofr ~~ of Seic nh,l ic Rc,catch ~~~~~~~ r 01 the total energies considered, V~ is

- 
. 

. 
. 

to the (‘..Iifuvnu Inst itute of Technolo gy and by a pant energe(Icaily inaccesti blc except in the near S
- 

5~ 
. fin~ the Hunonof mhc Petmoicum Rc~cj, ch l und adm,n- asymptotic and asymp to i ic regions of the producl

~
. S istercd b> the Amcnt-j n (hcmkal Soc iety to the litmnoim channel. I’ has a maximum value of 0.05 eV and

~\ 
. In,i,iuic of Technulo1y. is locaiizcd alung the Seam of int emst c Iion of I’

\ 
I Fseult ) Rcsea rc h P..,I uci pjfl i at Argonne Nat,onj l Labi,’ , .

. IaIoIy. Ma y—Ju ly lQ : ‘- 
and I 

~
. The quantum calcuLations were done by an

S C Thetli Pjiii ppt o- I 
~ ~t Argonne N~i,unai Laboratory, extens ion ( I 21 of the coup led’clsannel propaptlon

- . - June—Augii,i I97~ meihod developed previous ly (14—1 6 1 . The init i~
.- t Cunt,,but,on No. ‘ .~ • te lati ve kineti c energies E~ ranged between 0.0 and

374
- 5- - - 

-

H 
‘

~~~~~

‘
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0.12 eV. in this energy interval the number of open si. E0 (eV)
bra tional states ‘~ the model BaO(X i 5)  lies betwecim ooo o os o ‘o o ‘~~

- 5 
(our and si~ an(. that for the model HaO(a 3 f() be-

- -  - -.5--- . lween one and three. A total of up to Iweni) eight 
to 

~~ ~ ~~ (0) —a

. ,haitne!s wece required in the quantum ca%cui3tmons 10 ~~~~~ ..\ ~~
° ~~

- ; 
ensure unitarity and symmctry of the scattenng matrix f \ (a)

— S (conscivation of flux to within ~~ and symmetry to ~ J €o 
‘

.. - ~
- : within 5%). The trajectoiy surface hopping method ~ ~ ° ~ /j .f~ i.- 

- 
. (in the simple Landau—Zener version) of Tully and Q. /

—5. ~ l’ ieston (17) was used to obtain the quasiclassical tea- f : OC ~ i~
- 

-.
‘ 

“5 5 jectoty results ~lS). 
_____________________________

S ~~~ 
us fig. I the results ofsome ~f these calculations 00 ‘ • - . .

‘%~ are presented. P,~, _ 
~~~~ 

is the reaction pro bability 8~ ON~ 
(0) ~~~

.. from state n, 0 of N~O to St ate C , 1? of RiO where v o s BaO i l l  . N~

I ‘ 
and o’ are vibrational qiranium numbers. n or n’ “ I (b)

I~ ~ ~ 
refer to the ground electronic states and ,“ “ 2 to the ~ EQ all

~~ 
.

- ifiplet Slate. We observe that for E~ less than 0.05 eV ~~ . j

‘5 
I ~ PIl

tO_ 10 is tht dominant reaction ptobabthty (confirm- 
(
Q 0 2 ~‘ 

~~
- ~ 

-
~ - ~ lag the repulsive nature ~ i9J of lhe model J’~ ..nd lll’t I

- - I. ~ ~ ~ 
the quantal and quaciclasaicaI results agree “in average” - .‘

1~
. . 

- for thiselcctronicaliy adiabatic transition. The qu.isi- 00 ‘ . . .
I .~ classical P~. 10 effectm~e threshold cn er~~ is appro x . B~ ‘ ON~ 101

imsiely 0.0 1 eV greater than the quantal onc, however. o ~ ~~~ 
(2)

. 
. All of the quant.sl reaction probabilttiet show pro- (C)

~ 
tiounced oscillatitlns which appear to be avcraged” ~a

. - - ~~
5. 

out its the cosrcspondin~ quatklassstal iesutts. This be- ~
; havior had been observed in a previous comparison of ~~~~~ 

~ 2 
~ ~ 

to
. 

. ‘ quantal and quasiclassiral studies of the cotiinear H + A I V1AJ
- - ~ 

H2 react ion ~ Oj. Theetiistencc ol quar’(um osciiia.
‘. ~ lions is compaiiblc s-il), an anaI~sis of the s~slcm’s d. ~~~~ ~ ~ ~  

- 
~ 

• . 
~ ~

- Broghe wavelength ~; . Using IflaSS4~3led coordInates ~~ ‘ ~~ z ~

? 121 .221,the value ofAf or the Da +N,O(u 0)- iLiO 
~~ 

B5O”tO) ‘ I

‘ ! (a 3 ff ; u “ 0) + ~~
, proceis varies from 0.56 bohr for ~ Cd)

. the reagents at t:o ~ 0.05 eV to 036 botn fot the prod. ~ ~ ;~. ucla fozmed from reagentsat L’~ “ 0.10eV, For E~ in ~
this range, the smallest distance ~.s along the reaction ~~ 

2 EQ

- ~ ~ 
coordinate olihc singki suiface over which the Iu~al

.
~ 

wa%enumber ehai~ges by ~~~ lies between 0.2 and 0.5 ~~~~~ ~1~

:‘ ‘~~ 
bohr. Therefor e, the condnion ~s ~~‘ )i for validity of ~~~~ - 

~
.• 

~ 
. 

~~~~~~~~ 

. . . 
~~~~~

~ f the W KB approximation (231 is not iat*sficd, and lange
- quantum effe cts ate possible. E0 (.V)

1~1ie comparison (If ih quantal and quasiclasaicai ~~ 
I ~~~~~~ probahIilIIC ~i - or .oIiuiwar Ha • ON,-’ BaO(v ).

- , electronically nouadmab. i xsctio n probabdity P~ ~ ~o ~~~~ 
- 

~
. ~~~~~~~~~~~~~~~~~ ind rkct:onically eacittd

of fig. Id show’s f~irIy good average agteemenl for prnduc.. iripeetowly). (a) -- (0 g.ncl,on probabiitl,et to Ionfl
E0 between 0.05 eV and 0.07 cV , but at somewhat high’ s.~o m ‘ 0.1 . and 2, re~pectm t r en ~vou nd s.orat monal
Cf energies the quasiciassmcal result differs significantly ita~c re ageni ON 3. (di Reac t ion pro babil it ies to Form 8a0
from the accurate quantai one, in contrast with the ~~ ‘ “ 0 (rum ground vmbrat,osst itate iea~€n1 Thc esact quail’

S ~ - good average agreement found for the eleclronically ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~€ I/nremtnled by

- 
: - - 37S

- . /1 - - 5  — - S .

~~ ~~~ 

jj -Ji~~~ 

~
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- adi3bati ~ pit ~ es~cs of i~~s. Ia . lb and )c . This di sagr cc’ 
~~ It-Il Otwn..uf . (‘ I. Ilsu and lI.H. PjImer. 1. (‘hem. PIi~,.

I ~ 
nIelit Sittiuld he due j i kjs i to pj rl to a sh ortc om ing of 57 ( l 97~i S(-~(i7 . 58 ( 19731 26~4.

.-
, 

..
. 

- thc Sitfl1tk bndau Zci tc r t ur facc 4um ppi iig mt iodcl usc i l~ i (‘.J. 11’~~~~1). Kiugli ~~~ II~0. Painter , J. (‘hem, phyt. 60
in these C-aIcUlaIiOJ,S. ‘The tisu ~i condiliotis k’r the t-aiiJ• 

~~ ~ S~~~It
1

J ~ N ~~~~~~ ~~~~~ ~~~~ 
60 41974)

it) (‘f t h e  Laitdj u Zener appIu~intaiioii ( 24 I .oe met ~ I 20.
~~ t he Ba + N,O iii ,tdcl ~vs~c,n. iI;,w eve r, iltc ~camii be’ 161 C R .  JI’nc%JnJ Ii P. Oioi da.J. Chem. Phys . 59 (1973 )6677;

. twc•,n the sirigk t .iiid iui p lci s urfj ccs w hi c h we use d us 60 I 1971) 43b9.
. 

located in t he pioduct chaniwl and is J icpiiccd 1i ’m l~ l lii. I CL’Itonl. S A. I d.~lstcsn ~nd S.L $cn on, 3. Chc,n.
- . . Phy~ 60 1974) 2931).time cqitiiibuuni pi i tcg mi udc j r p~niiI.~il oI B~O i~’wj r ds 

~~ ~ ~ i~S~ Ir ,.m. S A. Fd—lsteun , 1) I . il uc~Ii~. B t Priry
- gr~3tcr um it e rnu dear dt st3 ,1~es . This dmspla ~crncni and S V.. Bcie~.n. J (~lmcm. Phyl 63 ( 1975 1 3828.

Incails that the grotm t t d eicct v ,rnmc sta te of the il~O prod - ~9l I).). St rcn jnd SI. SIn’n’m~wr. 1. Chegn. Ph)-~ 63 i 1975)
Oct lililSi lt3tC abOu t (tfl C t Iitj (hiim fl ) of vibr ati o nal cn erg% 4557.
heft’ic (he scan, can he rcaJi~d classk’aIIy. Th is sh Ould I 1(11 It 5%. Ileki. (‘ It. J~ n~s and lI P. IIr,,id~. 3. (‘hem Ph~ s.

. result ii~ .i $igniti~~i;I dccsca~e of the am ount QI quJsI. ~~~ ~ l9~S) 43~~ -
- - I I I I ~~~ lk’amjn ~nJ A. kuppermann, I\th lniernat,onal

- classical s u rf ~cc.h t~ppiii g it , ctnnparlson w ith the quail. Conference on ihe l’hyi,c, of I kei ro nmc and Atomic
turn sI(uailofl S i II .C III liii? Litter case time scjni is (cli COIIbIOA’ Abstr act , of Papers . tnh€w ol Washing .
(weT a wider range of inle rnucicar dis iaiic es. Sudi anai- Ion. S j ltlc I 1975) p. 3~ 1.
ysis is coiisiitcnl with time Ij . t th.it the quantat .ini qua - . I :i I ‘t hownsan ~n~1 A. I~uppeimann. to be pub imshed.

— . si’,:Ijssical ~~ , eIIc ,.t isc lt IICSltOl dS arc approsI ’ I I 31 i t t  Ii~’am,n. Pt, I) Thcsi~. Put Ill. C.ml,r~’mnu Inst itut e
. I,) —‘ .0 . o1 1e~hno k’~s 41 9 7 4 ) .  unpubli she d .

- S match’ equal to the cmsr rcsp~iiiding values b r  t he  dec. ~ 
. 

. -
- 
. I 141 A. tsupjwrm~nn, ‘ 11th tn tcmati ~snaI Confc ience on tht

S 
truni, aii~ adiahatm~ tO -. t I. and 10 - I 2 ~sso ~~v~es 

~~y iwt ci I lcctr ~nic ~nd ,tis•niic Collmsion i. Abtir act i
‘, wlts:lt prm ~dui c mh ,ati ,t t ii j llv esc it c d gr ound c icci ronic of Papers Nottts.Iiol bnd , Ams tt tda m. 1971 I p. 1 -

. sla te products. Th is suggests a c,ir,elj ,i,tii b~’tsccn Vt . 1 1 5 1  G C. SJui,, I ‘I li~’umjn .mnd A. Kmipprrniann, S. (‘hem

~ 
brational CXCt~attut5 of Ii3(i~X ~ ~~ ) and Iorntattmtn if PIS> .. 58 I 197 3) 4023. (.1 (1974) 673 . 81(5.

- 
BaO(~~ 

NIl’ 
S 116 1 (~C. s-~~u ,nd A. ~ iippcrn i~ nn. J. (hem. Phyi . 59I . 

. (t973)96.l .

~ 
Oiic I03~ ifl Iptl~% C the stI rla ~:e4iii l~pIlIg flt(i(kI ht , ~ 71 J C’ IuU~ ~nd It K . ,csio n. 3 (‘hem Phys 55 (19711

permitling hisppmng to occur f, ’in ~ h.ind .IIIIU .~2 the 562. -
I want rall ier u tah at lime scjni i’ iuls- . l i en t l,~ t i . t lus 118 1 S C Leasuir and J %I. lllium nj n , iii Lw puht.sh.’J.
- f~rsi.ordcr pcrluihjimi ’ii uiiotJ~i niay nt,i work lt’o sell I I (‘I ~ C’- P,,i.in) I ~nJ J I.. S~ li reibs ’r . in : rh~ sic J l clwm,s.

fo r sys ien is fur  w it ,.:), t he cl~t i r i ’ ,ti , a Il, intnj diahj tic lii ) - Jfl ~J lJn~cd (real ise . Vol. 6. l~ineiic , ol ps re.
~ . . - . - - 

S aciii,iis,rdu. Ii. I ~nng. Si. Josi and I) llendeisnmm(Aca .r Iraiisllinn prtth~a hilt(ics arc lJ t fe . as in th~ prct.eIIt case. dentie pies, , Rca- Y~’,I.. 1914) ch. 9.

~ ‘ 
‘flICsL’ rcsuits iiidkatc that cj t ill t ’ ii sitituid hc cscr ct ~cd f2 ;’~ ~ St . Boam .o, .nd A. ~ upp~ct inaimn .Chem. i’h~ s. t~ itci ’m. 
in usilig thc qmmasmciasstcal siirf .m~c.1i iipjnng ,ncflui’d Ii’r I 2 I I 9 7 i I I.
pcrf.’mmniii g c-jktiiations of icac t lse dc~lsonica iI~ iiofl.i . i2 i  I I -51 I5elses , Nucl . Ph~; 9 11959 39 1.
diahati

~ 
irlilistlion prr’h;mhtliiics cscit ii ,t ss ,lcitr ~ as 1121 D . J ~

.
~ u~n~~nd JO - IIii~~hi~kicr . Pi,w . Nail. head. S,.~i.

hcavy as ilic present pile. T1i~ lj t~c c lUaiIt Ut I I t’iiccls 123 1 L I. ~~~~ Qu.mnium mechanics , 3 d  I 4 (SI~Gi.iw-iI ,li .
obseived will not ncccssaIii ) ,Jis ~ppca r in gi liti g 1mb 3 

~~~ Yor L . 1968) p. 1 7 I.
three-d;mnerisjot ij l wmsj ld (25 .26k . %24( I- I . Ntt.stn, . in ~ Chemiwhe I kmentampno;csse.ed II

- Ilat imann (Spr inçc r . lierl m . 1961) p. SI .
. 

125 1 ;.c-. Schatt and A- Ruppemiane . Phys . Re.. I.ritet i ~iS(1975) 126€ . ~References 
.261 CC’. Schjti and A. Kupperniarn, Quantum Mechanical

Rea~t,i’t Scitteiin~ 10? Threc.Dinwnswsnj l Atom Plut
. 1 ) (ii . OIiun~ei and RN. Li re . (‘beni. 1h~ ~. Lc t tcms 5 1 $970 ) Dijtum S~items, II. Acc urate (‘rots Sections los ii •

. 243. 
- 

ti~, I. (‘tern. Th~ i., sub m,itrd for publwdilon.
$2 1 (‘.1). Ji,n.ah. It N. i.irc and (‘Ii - (.tii nf cr. 1. (‘hem. I’h~-s.
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VAUDITY OF TH~ ADIABAT IC APVROXIMATION FOR VIBRATIONA L ENERGY TRANSFER
IN COWSIONS BEIWEEN DL4TOMIC MOLECULESt

John P. WY and Aron KUPPERMAJ’~N
A,thu,.4mos Noyes Labors to,y ofC*einiesl ?* E gicS * , Cshfo,nw Insthiae of Techno&,g m ,

- 
.. J~wJcnu, Ce.lifoniia 91125, USA

- - Receiwd l6Au~usi i976

Accu rate quantum mechanical trs n5iion proba bibiwi ior sibr~ uona t k, vi brzti onj l and v~braiionaI in t,anslataonal enen-
ly Banter In coilmnear Coltisoni of two hydt o~eti molecuki were ~ Iculated (or a model putenimal b~ numer ical mtqmr at ion

~ of the Scluddmgrr equa t~~r. The acc uracy of thete calcuLations aa~ checked b> co rwssati on of fl ax anJ cunvcr ven~x (CIII
~ and by verifying thai ihey isi.dieJ a ri,ozous the o rem pm(~wn by (bike and Thick. These acc urate Sn Ub, ucre ihen uied

/ to deictminc the iinge of validi ty of the amhabatic appioxj rr~ IIun of 1 luck and Ku: ii applied t o ihn na,dcl ly ltem by
(‘bike and Thick. Thmiapproaim~tion )meidcd prubabibi.cs uhich speed with the acs u ri t C one; iii 1W or beitci to t tot a l
eIIetgiCi &~ up to 6.1 (in unhti of dialom sm br ati o isu i qu anta). Ilo uewz , si E 7.9 ihcic appiosimute sesului ci..uid be oft by

5’ a faciot of 1.5 or hi~heg-

I. lntroduciion Riley and Kuppernwt n caicutationsand have found
. (hat the number of basis functions which had been

In a recent papet 11 1* (heseaftes caUed I) C1251 e and used was insu ffic ient for convergence . Using large r
S ~ ‘l’hide studied energy transfer in the col li near co lli sio n basis sets we have obtai ned converged results ~~~. of two diatomic molecules. After reducing the problem also satisf y ihe condiliuns derived in I.

. ~ I to a pseudo atom—diatom collision (usi ng a method
/ ~ developed by Zeiechowe i ii- 121), they used t u e  adia ’

~ batic approximation of Thiclc and Kal! (3j  and the 2. Theosy
first order distorted wave T and K mat r Ix method s to
calculate vibrational—vibrational (V—V) and transla- We will briefly examine the equations to be solved.
tional—vibeaiional (1- V) transition probabilities. In a A mote comp lete treatment is given ~~~

. P~lcy (5J . The
previous i~ pcr (41 (hereafter called II). Riley and diatomic molecules are assumed to be harmonic oscil.

- Kupperniann calculated the cxaci quantum transition isb n , confined to move on a space’flxed straight line
‘ 

probabilities for the Same system. Because of the spe’ while ‘he in ermolecutar potential is exponentially se•
, aal form of the mtefactjo n potential used (exponen’ pu1s~ve and dependent only on the nearesi end’atom

tisily repulsive), pail of the calculation can be done separation. The Schrodinger equation to be solved is
analytically. From this information, Clarke and Thick 

I(—a2 /a,~
2 • ~

) + ~~—a 2 /ax 2 • x2) — p l a2 ia~
2

were able to show that sow,e of the probabilities ealcu- ‘

lated in II mus t be inaccurate. We have redone the 
, e..ste..y pX) 

~~ ~
(x )’ r) S 

~~, (I)

‘S
. 

• 

t Reaeu ch tupported In past by the AU Fot~ om~ of where r describes ‘he intermolecular serwration, .r and
. Scienuflc Rcseaich. Giant Al OSK 73.25 39. Y are related to the uttrsmolecular sepsiatlons, p Is an

. ~ 
• In piiiiai fulfilment of the tequ.cmenti fog the Ph.D. de’ effec t ive mass of the system, F is the total energy . .i C

. ,:~ Us Chemistry at 11w (alifotni ln,t itu te of Technology. and ~ are measures of thL relative frequencies of the
.... 

. 
~ 

S Comitr ibu imon No- 5395. 
~~~~ and a is a length which d~w~jb~ ti~ nearS

. - - . 
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- ~ (SI end’at inn repulsion. All of these param ete rs are in n 0 . N — I , m’ 
~ 0 , At I.

~ 
teduccd units. Following I and II we Irej icd the case

;. _ I or idcui t ical hoinonuclear d iatomics, which resul t s in whcr~ N and .iI are the nwnber of eigcnstates in the
I (I = ~~~~~ = l.and ., = l.The value ofa was ta,.cn to exp onsion for cooidi naIes t’ and x,respe ci :iy. $o r

~ 
be 0.2973 as before, which is appr opr iate for describ’ the present case N M, and the irantition 

~ 
,obabtli’

5 . log a collision be ween tWO h~ dro gen ii io lcc ulcs . We t iei are consideted converged when increasing N pro.
defln~ l lmc reference hatiti lto nian ~~ by duc es in theiii an acce plably sitta il change .

I !10(x . i~l ~ ( a2 las 2 + ,.2~ , ~~ a2 ja.s2 • ~2), (2 )  
Subsiituting eq. (5) inloeq.( I) gives i.he Following

i 
. . . set ofcoupied dtflelentlal equations

— -—-- 
~ 

a- h ose eigcnutinctions aiid cigcnvalues are denoled by ~~~, , . . .

4’q(X.r )  and ~~~ rcs pect isely . t andj belIls the s ib ra. v:: ~‘~i ~ i”,’, ~‘i 
- k,~,~II:: (i). (6)

I ~ 
(tonal quantum numbers oi~ the isolated inisiecules.

. The separability of the .s and , coordinates in eq. I 21 where
. - pCIfl litS us to write

?: : 41j~X,) ) O 1~~)~j(X) (3) :N r ( r )= ~ ($5n,(x ,y~ie_*(e 1~~~~1 5,n,4X ,y)) (7)

: 14’u ~(2i+ l )+o. t(2/ + I). (4) 
~~~~ 

a b4~t.~- . Wani ) J l t
~. 

(8)
S 

_ 
) The solutions ~:~“ ~~(x, m , r) o fe q . ( i ) c a n  t.~ es-

. ~ pandcd in the 4’,1(~v, ~) basis set II, gite t he integratiotis i m p lied in eq. (7) being perform ed
- .

... 
. 

I “I
. 
- I .IV - I 

over the x and s’ coordinates. These equations are
N~ ~ ~iinl’(x, ,.,,) E �~ f ,~,,7’(r)4 ’,,n,(x ,y) ,  (5) 

solved by a  niethod described previously JS) .
— . . . n t )  m~0

_~~

i ~ 

Tahe l 
S 

~~~~ 

.

Tuns mtmn ptob ~t’ ibt irs ( i the “, V esv.t~,> iganci e, t ( I and ‘ quj nta

- - ~ Tr3nuimn 1.1) Riley and (1ji l~ and M . • 5 N . N • 6
kuppcininnn hi linde ~i

~ 
M~~N~ 3

~ 01 -. 10 4.1 0.4100 x IO~~ 0.4100 x lO~~ 0.4100 x JO~~ 0.4100 x io~~r ~ 4.5 0.2109 x I0~ 0.~094 x ltl ~ 0.2109 x l0 ’ 0.2109 x 10 1

~ 3.0 0.4316 x lO~ 0.4285 x l(1 0.4376 a I0 ’ 0.4376 a iO ’~5.5 U.6805 x 10-i 0.6545 x l0~ . 0.6808 x l0 ’ 0.6508 x IO’i
: 6.1 0.91194 x ~s -~ 0.9319 ~ I0 ’  0.9924 x I0 ’ 0.9924 x l0 ’

. t 7.0 O.11S9 0.1371 0.1483 0.1483

~ 
7.9 0.1875 0.1780 0.1957 0.1957

03 — I I 6.) 0.7821 x 10 ~ 0.7843 X 10 ’ 0.7850 x I0~~ 0.7850 x ~Q 2
7.0 0.7W9 S I0 ’ 0.3882 x lO ’i 01033 x l0’i 0.8033 x l0’i

... 
. 7.9 0.131 1 0.1480 0.1544 0.1544

.
‘.- - 02 -’ 20 6.1 0.1695 5 IO~~~ 0.1710x iO~ 0.1711 a ~~~~ 0.17 11 x lO~~7.0 0 - 1571 8 10 2 0.1703 K 10 2 0.1380 % ~~~ 0.1780 * l0~~

• 7.9 0.5l65 x lO~~ 0.6508 x l0’~ 0.7248 x lO~~ 0.7248 x l0 ’

- ., a, Total enct~y em uniii of diatom vibrational qm~ nma. .
,
. 

b) g~t~~14j ,  -
c) Rcf. I I I . usát ç the adiabatic method of ThkIC and Kati I 31 . 
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! 3. Resulis and discussion states of the iniiial molecules to the corresponding k,I
states of the ftnai ones. On the basis of ihis result they

The results for N ~ S and N 6 are presented in were able to conclude that certain of the transition
Isbies I and 2 for a vagiely of transiiions and oliotal probabilities calculated in II are incorrect. Table ~ lists
energies (in units of diatom vibrational quanta). In’ this ratio for various choices of ~/ . First note that the
ciuded are the values of Riley and Kuppermann (N results in tables I and 2 .rc neariy identical for N 5
— 3) and those of (la’ke and Thick. In I, Clarke and and N ~ 6. The largest discrepancy is I part in 2000.
Thiele present a partiiml decoupling scheme which re- In addition, table 3 shows that the ratio 

~ ) l  I I
dtices the problem to a pseudo atont—diatom collision. P~~._02 has converged to 2 to within this accuracy . in
Although they used approximate methods to calculate agreement with Clarke and Thicle’s predictions. From
iranslilon psobabilities , they showed rigorously that this and the fact that flux conservation is satisfied in

‘

~
-.:-- 

- I _ ‘I these calculations to six signilkant digits. we conclude
.:~ 

- - . p00__.• I l I ”OG-. - — ‘ that our results have not only converged but are also
- 
. 
~ . where ~~~~~ m the probability ofgoing from the 6,/ accurate. At the lowest energies (4.1 and 4.5) the

Tabic 2 - -

. 
Tiansition piobabmimticu fix the T—V energy t ransl et of I and 2 quanta .

— Transition F ) Riley and (bzk~ and M • N • 5 M ~ x ~ 6Kuppezm.mnn b) Thicle c)

- 
. M~~N 3

- tx) -• ol 4.1 0.169 x IO~~ 0.167 x l0~~ 0.1665 x 10 t 0.1665 x lu~~
4.5 0.784 x 10 0.802 x l0 0.7883 x l0 0.7884 x
5.0 0.650 x l0~~ 0.677 a io~~ o.6s os x l0~~ 0.6503 x l0 ’- - 
5.5 0.231 x 10 2 0.244 x 10 ’ 0.2325 x IO~~ 0.2315 x 10 2

~ -. . 6.1 0.64 1 x IO~~ 0.701 x IO~~ 0.6568 x IO~~ . 0.6568 x l0~~. - - - 7.0 0.l74 x 10.1 0.207 x I0~ O.l879 X 10 1 0.l$79 x IO’i
~ . 7.9 0.326 x 10’ ’ 0.439 x IO~ 0.3854 x 10-I - 0.3854 x lO’i

01 — II 6.1 . 0.195 x I0~~ 0.169 x I0~~ 0.1691 X 10 1 0.1691 5. : 
- 7.0 d.82b x 10 ’ 0.673 x io~~ 0.651 3 x io~ 0.6512 X l0 ’

: . 7.9 0.653 x l0 2 0.514 5 l0 ’ 0.4745 x l0 ’ 0.4745 x io~~

..— ,
5 

, 01 — 02 6.1 0.1 I I X l0’~ 0.324 x l0~~ 0.3238 x l0~~ 0.32 37 x I0~~- . ,‘ - - - 
7.0 0.152 x l0~~ 0.128 5 10 2 0.1 168 a lO~~ 0.1 188 X I0~~.( - 

. 

. 7.9 0.444 x io ’ 0.122 x 10~ 0.8269 x l0 2 0.8270 x I0 ’
- . 

. 
. 01 -. 20 6.1 0.360 X l0~~ 0.1 IS  x l0 ’ 0.t 2l6 x I0~~ 0.1216 x 10 ’

- - - -- . 7.0 ~ 4S5 x l0~~ 0.629 x 10 0.1l39 s io~~ 0.1139 )1 10 ’
~
. . - 7.9 0.4 I3x I0~ 0.258 x l0 2 0.1314 x l0~~ 0.1 314 x l0~~

S 
00 -. 1 I 6.1 0.150 x l0 1 0.995 x lO~~ 0.1 12$ a 1O~~ 0.1 128 x l0 ’

;. 7.0 0.224 x io 0.989 5 l0~~ 0.1262 x l0 0.1 262 x l0~5.- 7.9 0.397 x io-’ 0.l2O x l0 ’ 0.1945 x l0~~ 0.1944 x l0 ’

~ 
00— 0 2 6.1 0.350 x 10 ’ 0.494 x l0~~ 0.5638 x l0 0.5639 x to -s

‘- - 
. 7.0 - 0 .la9x 10” 0.494 x lO~~ 0.6308 x 10 1 0.6309 x lO~~.-

~
--,- — 7.9 0.181 x lO~~ 0.599 x 10 ’ 0.9720 x I0 0.9722 x l0~

, 
- a) Ts ,tal energy in unitu of diatom v ibrat iona l quanta.b)

~~ r~ 14 .51.
. c) Ref. f I i, untig the adiabat ic met hod of Thide and KatS 131 except fom the 00 — I I and 00 02 t iandil on i, Ion which the “car-

. reeled” adma bs uc ict ult , ate given.
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- .- - Table 3 transition involving the lowest internal excitation (01
Rat io ofP~ ,. ~ and P~ ~. ~

, probabibtics -a 10). As expected . the agreensent is sonscwhat worse
— —. (or hitter internal excitation transitions. For T—Vr~

) Rmleyand 
b 

M” N”4  M” N”S  M- N-6  transitions.1he agreement is good onjy fo~ the iow~~~1
u
•
p~~,

n~mnn ) 
four energies of tue  oo -. oi transition.

We conclude that the adiabatic method of Thiele
6.1 4.314 1.998 2.000 2.000 and Kaz  gives r~sulti for (hit model problem in good

. . 7.0 11.84 2.012 2,001 2.000 agreement wit h the exact quanit.m probabilities for79 21.96 2.18$ 2.000 2.000 
~~ but the highest energies considered.

5) Total eneify in uniti of diatom vibziiKtn.al qiunia..- b ) lromthe th tsof ,eiL 14 .51.
References

— .-. .- - Clarke and Thiele approximate results agree with our 
~ ~ ~ ~

, CWke and F. ThjIC. (‘hem. Phyt. 4 (I 974) 447.accurate ones to better th3Ii l’~ . In general , t he mac~ 121 A. Zt k C h O u . I). Rapp and T. Sharp. J. (‘hem. Phys . 48curacy ~s less than I 0% (or all transitions at A’ ~ 6. ~ . ( I 968) 286.
- However . at I:’ n 7 9, their result for the 01 -. 20 tran• 131 F. Thick and K. Kalz , J. (‘hem. Ph)~ 55 (197 1) 3193.- 

silion is too large by a factor of about 2. 14) kt. RikYand A. KuPii~:rann.Chem. Phrs. tenets I
~ ‘ : For V—V transitions, the results of RiIcy and t~ H. Rik~. ~~~~~~ ~~~,~~ lifornia lnmiiiuie of TechnologyKuppermann are in good ageeement with ours for the (1968).
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‘ ANGULAR MOM ENTUM DECOUPLING APPROXI MATIONS
IN ThE QUANTU M DYNAMICS OF REACTIVE SYSTEMS

I Mon KUPPERMANN . George C. SCIIATZ~~ and John P. DWYER
Arthur ,.tmo, .Vos-eg labor.ror m ofClmemwgl Ph.iucs S . Califo rn~ In;:,:i s;.~ ‘f Tethnulogy.

-.,. .- .-., Naniena,Cahfo’an91125.USA

Receised 26 August 1976

.. 
- Two method, for impIcmenIin~ an~uIa momentum decoupling approsima iio ns in quantum mechanical rea.iise sca t ,er•

—s.__ _ _ _ ing are examined. App licalio nt to both reactise and nonreactis e N • Ii~ collmuoni Indicate th at (or the momt intcnme mndisid’
vu reaclise t,aniitiuns and Cur all de~ene r~c-~ .sscra~vd ones, these decoup lum~ method s (especially t he “proper ” decoupling
method ) yield resulti in good agreement with those of luill coupled calculations. lloaevcr . for the kin inmente reaciuse tran •
1)113111 and all individual nonreactive t,a nsmiio ns. sc ry large errors can re sult from uw of theme appro siznat c r’ethodu.

- 

- 

Accurate ab initlo three .dirnensionat quantum.nte. (ions are obtained. but for the less intense ones and
chanical reactive scalteting calculations have recently for all indivi4ual non-,c~ctive transitions vet)’ large
been performed for the First time II — 5~ iloweser . the errors can result.
computation tim es required limit the fe asibil ity of Consider a tr iatomic system A0 A ,~A., in which r5
auch calculations to very simple systems. This . as well is the sector from A~ (0 A1 and R, that from the
as the pursuit o(physicai insight. makes if ser)~ tot’ centccofrnass o(A,A1 to A~. Aiw being any cyclic
~Ortant to develop approximale calculation techniques permutalion ofo~37. Consider next a system of body.
which are significantiy more efficient whtlc presets’ fixed coordinates in which t h e  Zx axis lies along R

~ .
ing an acceptable lcvel of accuracy. One 2pptoach is Expansion of the system’s wavefunction in products
to intr od u~c ang~ilar momentum dccouplmngschemc s ofW igner rotation functions 1161 and spherical har’. - 

J which parlially dccoupi7 ilte large number of chan. monics of the angular coordinates kads to a 961 of
nels involved. Several such scheme s have been recenl• Schrodingcr equations (2 ,3.61 in the wave functions
ly proposed and tested for non’ react i%e ~6— I3 ) and Wj1 ~~ (‘~

.R~ ). The indices Jj5fl~ are the quartum
for reactis e systems I 141 . In this pape r we describe nun~bcrs associaled respectively with the total, the
Iwo schemes developed for reactive systems and give A,,A~ diatom. and its Z, ‘component angular momenta.
some of the results of their applications to coll isions These equalions couple h’,~1 ~ ,, to k’j ,~ ~ ,, t I and
of II with Ill Ofl the Porter—Karp lus potentia l enerjy to all k~1~115 (j1~ > I

~
2
~ I 

).klbe fl ‘coupling terms
surface 1151. Thry show th at for the m os t intense are

‘ reactive lrans4tions quite accurate integral cross see- 
( J ~

2I’Ø~
2)f)(J + I )  _ fl~~ (fl~~ t i)I  

112
S Reicarch tupporred in part by a grant (No. 73.2539) from i/I

- . a • (he Au rorce Of(kc of Sc~ ntmI ic Keiearc h. X ~/ ~(J~ • I ) fl~~ (f2~~ 
i I )I kj~~~~~~I Work petfoemed Ut parimal (ultdnwn of the requirements 

~~~ stem entirely from the tumbling of the triafomfor the Ph.D. degree m Chemetry from the Calurorn ia In’ -
it ituie of Technology. Prewnt addreu: Depanmcnt of ~~~ around R

~ . Pseglect of these 12~’coupling te rms
Osemistry , Noithwestcrn Unisetuty Lnajuton, lliwce 11% non .react ive 5)-stem s along w tth additional approxi .
60201 . liSA. Initions on the terms which are di~~onal in fi has ledS Conuibuimun No. 538$. to reasonably accurate results L6-- 13J .

. 
- 

71

~~~~~~~~

— —.--- - — -. — —- -— 
_ -______ _.___;________ ____

; 
- 

-~~~ 

. - - 
-

~~I.___ _ - ~ - - - - -- - -—- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~-- - - -  - ~~~~~~~ - 
-



r-- - - -  - -

~~~~~~~~~

-- - . . .

~~~~~~~ 

-

Volume 45 . nunibci I Ch EMICAL Ph YSICS LLTILKS I isnua ry 1977

. For reactive systems we neglect t h e  1’Z~ ’coupling less m~~. = 
~~~~ 

(i.e. fl~
. fl, ) , because of the

terms in each of the tlsree arrang ement channels but complete IZ.dccoup ling in bot h the /~‘coupled equa .
retain without motFfkation all olhCr terms in time re lions and the matching procedure. In the PD approxi.
suiting £~~.decoupled but /~.coupled equations. ‘..Then mation this is not true . because of the f1.coupling in~ :
linearly combining the solutions of these equations to troduced ~y the matching process. This fZ’coupling
generate wavefunctions which are every-where smoothly physically iesu lts from t~te nor coilinearily of the Ce-
continuous 

~ 
I —3 1 . ~~ eit her e~ciudc [2.mixing in this agent and product z-axes.

-.-/.
_ ‘

_ 

- arrangement channel ntaiching procedure in itie “sim• For nr. = m1 = 0 reactive transitions for H + 
~~ 

• :
. ./ 

.5 pie” angular momentutn decoupling cheme (SD). or the PD appro~insation works very wcll and the SD one
.
, - .. . . do the nsatchitt~ correct ly 11 —31 in the “prope r” only moderately well. This is illustrated in figs. I and

angular momentum decoupling scheme (PD’,. Let 2. The 000 -~ 0 10 and 000 -.0 0 PD integral reaction
V7mj ~

f li
i he the vibrosation quantum numbers of the cross sections of fig. I differ from the accurate ones

, 
- isolateJdiatom in arr3ngensent channel X. in the

. .- 
. 

helicity representation 1 7 1 . In the SD approsimation • We base fl’~ m~~. but fl~ • _Ii
~AbCCIUw of the (inst Rh

- 
. 

. 
the probabilities and cross sections for the and f ir ,.l relat ive atom- -di aiom velocity vee to rm age the

- . 
)sU,sj~~

fl !. :. 
~~~ 

, process vanish identically un• inme bUt Ihow of the coirewondina initial quantities a e
5

_ - - .- IA 3. oppoilte.

. ((cv) -
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~ . 0~25 0.30 0 35 0 40 0 45 Fig. 2. Diatinguishable’ lom probabilities for the 000 ‘. 020
- - r EJev) transition as a Iunct~on of total angular momentl.m quantum

: ~ ~ number for teactise and non-reactive colliamiti 01 Il with H~- -. .4 Fig. I . Distinguwuble-atorn integral reaction aosawctiuni for on t~~ Portcr—l~azpIus I 151 p~teniuI energy iui’ace at a 
~ 

-

a ~ the 000 .. 010 and 000 -. 020 transmtioni at a (unction of tot il toergy E • 0.6 eV and iniii4 rcia tnt trandational en’
. in iii~ l relative tzznsla t iunal enc r~y Eo and iota) energy E. for ergy to • 0.328 eV. The cuivem are wtoo%h tineidrawn through

coilisioni of II with ll~ on the Po rte r—Ka rpi ut ~ IS I p~tcn~~l ~~ poinii (not lndicaied) correnpondins to icairate three’
-. - - energy wnf ace . The full curves ait the rew lln of acc urate thr ee ’ dUttenou nal quantum’wiectmar.ical cakulaiiont. ‘lbs tflangks

—5. dimensIon.! quanlum-nwchanical eaiculaiior’i The trianglet 
~~~~~~~ to the SD scheme and the iquares to the PD ichems

- . (connected by dath.do’ied ,,-urret) corre ipond to the mimp k (
~~ text ). Thc open tymbols repc.’wnt probabdit~ $Ioc iiun~—; 

- angular momentum de~ouplmg scheme a~d the iquaret 10 ~~~ vansit,onn and the fuB onei probabUlimei (of re ac t ive
— — - _

_5 
- . the (‘roper angUISI momentum &couptmnj achemc (we text). tranmitioni tatter multip~icatssi by 20). For J > 4 ihe SD non’

- The open sym boln correip ond io the 000 — 010 rc act wC t ran~ ~~~~ probabdiiies are indmsiinguishabk From the PD ones.
‘ 

. 
~(ktfi and the full oncn io the 000 020 reactine tranmition. with in pk,ttmg accuracy .
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by less than 7.5% in the 0.45 to 0.65 eV range of total fl-decoupling approximations considered give quite
energy, over which the cross sections themselves in. poor results , indicating a strong brea kdown of’j5-con-
crease by more than three ordcrs of magnitude. This se rvation” L6 — Ill for those transitions. However, it
agreement is of the same order as the accuracy of the is interesting to note that both the simple and proper
accurate calculations themselves (I .3 J !  The corre- decoupling summed and averaged crev .s sect ons are in
sponding error in the SD cross sCctions can be as high as good (~ 5%) agreement with the fully coupled calcu.
60% in the same energy range, indicating the iunpor. L tion. This seems to indicate that the nonreactive flux
tance of 52.coupling between uiffcrcnt arrangement is transferred from different m1 to m1 = 0 for the same
channels. I.

For reactive collisions in which the condition
m• = nt1 0 is .‘w: fulfilled. t h e PD and SD piobabi- We thank Ambassador College for generous use of

-— . . • - lilies can be in error by one or more orders of magni. their computational facilities.
tude. For example, for the T2-conserving 0l-- - l —Oi l
reactive process at E = 0.6 eV and J 5, the ratio of

• the SD and PD probabilities to the accurate one References
(0.13 X I O N ) are 035 and 0.47 X l0~~. respective ly.
For the non.fl-conserving 000 — 0 1 I process the SD lii A. Kuppermann and CC. Schatz . 3. (‘hem. Pltys. 62

“.. - _ results vanish identically and the analogous PD to ac- (1975) 2503.
curate (0.57 X l0~~) probability ratio is 0.041. h ow. 121 G.C. Schala and A. Kuppcrmann.Quantum Mechanical

. . . Re..ctr.e Scattering tor Three Dimensional At o m I’Iuteser . the reactive sqm, u im ,. transitions for which Diatom S~ stems: I. Theory,J. Chem. Pisys., to be pub-,,,
,. ,n1 0 are an order of magnitude or more more t fl ’ tithed.

tense than the other reactive ones 13! . Consequently the ~7) CC. Schatz and A. )~uppern Inn. Quantum Mechanical
corresponding summed (over m ’~ ) and averaged (over React ive Sesticruig To; Three Dimensional Atom Pius

R Di~to.n Systems: II. Accurate Cross Scctions to; H + H3,m1) PD Integral cross ~ectlons Q1,1....,.1. ar~ ui.l reason- 
~~. ~~~~~~ Phyt., to be pubhthed.

ably accurate for low j and, . l~J A.B. Eiko~ j tz and R.E. W yatt , 3. (‘hem. ~hyi. 62(1975)
Both the SD and ~‘D approxim:tions are very poor 2504.

for all individual ,ssn~reactive transitions, as illustrat. 151 AS.  EILo+itz and R E. Wy att , 3. (‘hem. Pb)s. 63(1973)
ed in fig. 2. The reason is related to the fact that a 702.
wider range of atom—mo lecule distances contribute to 

~ ~~~~~~~~ ~~~~~~~~~ 60(1974)
non-reactive rat her than to reactive scatlermg. increas- 2488.
ing the impurt3nce of kinematic a~sgular nu~.nefltUm 181 1)3. Kouri and P. NcCuire. (‘hem. Pb~s. Letters 29
coupling terms. (1974 )4 14.

In summary, for Il + II, collisions, the PD integral 191 P. SteCuire . 3. (‘hem. Ph~s. 62 (1975) 323.
cross sections for reactive (disiingsiishable.otum) 1101 P. McCuüe and II. Krieger.J. Client . Pb,s. 63(1975)

m~ = m1 0 transitions — which are th e dominant 111 1 p. M Gui,c,Oiem. Th)- t . 8(197 5) 231.
reactive processes in this collinearly .dor injied system 1121 RB. Wali~.,r and J.C. Lqrht ,Chem. Phys. 7 t l97S) 84.
— agree with the acCurate ones essentiali) to within the 1131 N. Tamu and N. Shapiro. (‘hem. Pitys. Lc:ters 31

- . accuracy of the latter. This successful appuoximation ~~~~ 166.
results furthermore in a very subs tntial saving in corn- $ 14 1 A S .  Ilkowitz ,nd RI. Wy att , blot. Ptsys. 31(1976)

putational tinv . It should permit extension of three- 1131 RN. Por:er and N. Karplus. 3. (‘hem. Phys. 40(1964,
- — -

~~1~
’ dimensional quant ’iun-meclianical reactive scaltcr icg 1105 .

calculations to systems involving larger numbers of 116 1 AS. D.av)dov , Quantum mechanics. transi. D. icr hlaar
channels. For the other reactive and .~ll individual (Addison-Wesley, Reading, i96~) ch. 6.

1171 N. J acob and CC. Wick . Ann. Pitys. N~ 7(1959) 404.Opn1 - 0j  rn1 nonreactive processes in II + hl~, the
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