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Introduction

¥
i
:
i
2

This paper is concerned with the problem of analytically modeling the
= acoustic fields that control the directional response of transducer array

elements mounted on the flat face of an ellipsoidally capped cylinder, such
as that depicted schematically in Figure 1. The basic objective is to
investigate the extent to which the back-to-front ratios of individual
transducer array element directivity patterns can be minimized by reducing
the diffracted fields which reach them from the rear of the body via
propagation over the curved surface.

The measurement procedure to be modeled is plane wave insonification of
the array elements with the source in the far-field of the body, as depicted
schematically in Figures la and 1b; the former with the source in the 'insonified

" zone of the array' (i.e., 0 < 6 < m/2), depicting the combined incident,

reflected, and diffracted fields normalized with respect to the incident

field; the latter, with the source in the 'shadow zone of the array' (i.e.,

m/2 < 8 < w), depicting the field diffracted around the curved surface of

the body to the array element, again normalized with respect to t = incident

field. Note that when the terms 'insonified zone' or 'shadow zone' of the

array are used here, the field at the source is regarded by reciprocity to
be produced via radiation from the array.
In order to describe the diffracted field analytically, we make use of

Kellet'sl’2

Geometrical Theory of Diffraction (GTD). This method effectively
permits ray tracing over curved impedance surfaces where the only part of a
ray tube that can propagate are tangent rays (i.e., Franz3 waves, analogous
to Stoneley waves which occur at almost grazing incidence on insonified flat

elastic surfaces immersed in liquids). Since the diffracted field sheds

rays at each point of tangency as it propagates along a curved surface, the
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energy flux diminishes in a manner phenomenologically attributable to an
exponential field dec2ay with geodesic distance from the point of insonification.
i Now the 'attenuation coefficient' of this decay is dependent on the local
radius-of-curvature of the body and on the local surface impedance, the
latter dependence being a consequence of the manner in which the impedance
affects re-radiation of the diffracted field at each point of the surface.
Thus, for example, the diffracted field on an acoustically rigid curved
surface is re~radiated at each point of the surface by a monopole source
distribution. This, in turn, is more efficient than the dipole source
distribution associated with an acoustically soft (i.e., pressure release)
surface. Consequently, the 'attenuation' per wavelength of surface rays
propagating on an acoustically soft curved surface is considerably greater
than that on an acoustically hard curved surface. Since materials which
are 'rigid' in air appear acoustically more compliant in water, we note at
this point that 'rigid' in water implies an impedance of at least an order-
of-magnitude greater than the characteristic impedance of the fluid.
The 'diffraction' and 'attenuation' coefficients of Keller's1

Theory are obtained from 'canonical problems' i.e., those that are amenable

to exact solution, such as creeping wave solutions for separable coordinate

surfaces of the Helmholtz equation, in particular surfaces of constant

F curvature ( e.g. infinite cylinders and spheres). For these basic or

t canonical surfaces the creeping wave solutions are obtained by re-expressing
the exact eigenfunction solutions (whose rate of convergence deteriorates with

~ increasing values of kpl in the form of Luneberg~Kline series whose terms

decrease as (llka)n, n=1,2, . .. Whenever kp,>> 1, it follows that

only the first few terms of these reconditioned series are required to

provide an accurate representation of the diffracted field. In the case

UNCLASSIFIED
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of a surface of variable radius-of-curvaiure the first few terms of these
canonical series can also be used to describe the diffracted field over )
- local regions of the surface where the radius-of-curvature is slowly varying, 3
although a note of caution should be added in the light of Leppington's4
analyéia. Generally speaking, however, 'diffraction' and 'attenuation'
coefficients for a variable radius-of-curvature surface can be expressed
in terms of its impedance and differential geometry as shown by Levy and
Keller.5 1
Before concluding these remarks a point of confusion between electro-
magnetic and acoustic analogues should be mentioned. This point concerns
the application of the electromagnetic impedance boundary conditions to

acoustic problems, i.e. as given by Keller1

e :
e ikzed’e & i

where ¢e is the scalar e.m. potential, and Ze is the e.m. surface
impedance relative to the characteristic impedance of the surrounding
medium. In an acoustic field, however, since the particle velocity is

given by definition as v = V¢a and for sinusoidal disturbances the

pressure is given by p = —:lpocok.d)a , the impedance relationship p = za|v|

at the surface of a body becomes,

¢ i
a -1
-ﬁ = --1.kZa ¢‘ ¥ : (1b) ]

where ¢ 1is the acoustic field potential, and Z_= z /pc is the
a a a

acoustic surface impedance relative to the characteristic impedance of

f the fluid medium. From inspection of Equations (la) and (1b) it follows

UNCLASSIFIED
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that whenever the acoustic analogue of a corresponding e.m. diffraction
problem is invoked, Ze should be replaced by Z;l yielding the relation-
ships between diffraction and attenuation coefficients summarized by Pathak

and Kouyqumjian.6

Theory

We begin by considering the axisymmetric insonification of an
ellipsoidally capped cylinder such as that depicted schematically in Figures
la and 1b by a point source in the far-field of the body. For the case of
a circular piston of diameter d mounted on the flat front-end surface,

the received field can be expressed as,
Py TRty s : 2
where PysP.s and Py denote the incident, reflected, and diffracted

fields, respectively. When the source is located in the first quadrant

(i.e., in the insonified zone of the array, 0 <6 < 7), if the length of

the body is sufficient to ensure the effective attenuation of diffracted
waves before they arrive at the receiver elements via propagation around
the body, the field received by an element from 0° to 90° will only

depend upon the incident and reflected waves. In this instance therefore,
’ m
PR Pg = 0, Rsezy - (3a)
On the other hand, when the source is in the second quadrant (i.e.,

%-< 6 < m), only diffracted waves reach the array elements, so that in the

shadow zone of the array,
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m
P = Py » g<sT . : (3b)

¥ In the third quadrant the field is again given by Equation (3b) and in the
fourth quadrant by Equation (3a).

Between the insonified zone and the deep shadow zone of the array the;e j

is a region described as the transition zone which approximately spans the

-1/3.§ e <m/2+ (kp*o/fz)-l/3 . In this region, the

sector /2 - (kp,°/2)
field is governed by incident, reflected, and diffr#cted waves. One con-
sequence of the transition zone is that the directivity pattern or directional
response of a receiver element normalized with respect to its response on

boresight, is reduced by 50Z at 6 = w/2 on uniformly hard (i.e., ;a- )

and soft baffles (i.e., Za = 0). Under these conditions, as Pathak aﬁd
Kouyoumjian6 have shown for analogous e.m. problems, the transition zone
field can be described analytically by means of Fock functions. However,
the derivation of a suitable transition zone approximation for an arbitrary
impedance baffle has yet to be resolved, and consequently the exact value

of a receiverelement's response at 6 = 7/2 remains unspecifable. For

this reason, in our subsequent numerical analysis, we compute the response

-1/3 and from w/2 + (kp*o/Z)_l/3 to ™,

from 0 to /2 - (kp,°/2)
joining the two regions graphically via matching slopes. Although this ;

procedure cannot be rigorously justified, it does not in any way detract

from our computation of the response in the deep shadow zone, which is the %
primary task of this investigation.
a Concentrating on the field in the insonified zone, Equation (3z) can

be re-expressed in the form,

p = p{l+RO)} , 0ces<T . (4)

UNCLASSIFIED
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where the reflection coefficient R(6) is defined as,

ZP(O) cos(6 - 60) -1
ZP(O) cos(f - 60) 3 2

2 R(O) (5)
ZP(O) being the angle-dependent plate impedance of the flat face,
normalized with respect to the characteristic impedance pc of the
medium in which the body is located, i.e., as summarized by Hayek and

Stuart,7
2 4
Z () = -i(k h Q" sin (6 -6 ) -1 k = . (6
o (@ (kh) (o e /oe ){Q% sin"( =1 , b “’/‘p (6)
In this notation, pp is the mass density of the plate and cp is the

phase velocity of plate waves which in turn is a function of the Young's

modulus Ep and Poisson's ratio op of the plate given by _ |

E |
IR | S
cp2 = 2 2 7) ,
1-0 ;
( » )pp
Again Q = w/wo (8)
v12 c2
where W, T is the coincidence frequency for a plate (9)

cp of thickness h .

Substituting Equation (5) in Equation (4) and multiplying by the directional
response function of a circular piston of diameter d , the resulting
directivity pattern of a receiver located at the point (ro,eo) on the flat

- face of the body can be expressed as,

UNCLASSIFIED
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D(8) = p/p,y

: { 22_(8) cos(® - 0) } {2.11[-“2-cl atnfh < 90)1} eiktocos(e -6,

1+ zp(e) cos(0 - 90) %?-ain(e £y eo)

We now consider the back response of a receiver element due to diffracted
waves which occur when the source is located in the shadow zone of the
array, w/2 <0 <m . From Levy and Keller's5 fundamental analysis, this

field can be represented via the Geometrical Theory of Diffraction as,

1/2 P
- e %oP1 g o e P IPZ oK(enyae’
Py 4R |sa, (p, + s) n 1" "n 2 s '
17 n=0
(11)

The parameters ao, al, pl, S, t, and R which appear in this equation
are shown in Figure 2a for diffracted waves traveling over an arbitrary

curved surface from the point of insonification P. to the point of departure

1
Pz . Analytical expressions for the diffraction and attenuation coefficients
Dﬁ‘ and a:x , respectively, deduced by Levy and Keller5 are compared in
Table la with similar expressions resulting from a different definition of
the Airy Function as summarized by Pathak and Kouyoumjian6 - numerical
comparisons being presented in Table 1b. A brief synopsis of the steps
inherent in the derivation of these coefficients is also included for the
benefit of the reader in Appendix A.

For the case of the axisymmetric ellipsoidally capped cylinder depicted
in Figure 2b, the variable radius-of-curvature p, of the elliptical

section is given by,
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LK 1/3 LK
. * 6 / Tneiﬂ/3£rom Equation (B2) ; ALK(-qn ) ;f%s Ai(-qn) , from Bquation(A18)1
A RELFT NG e :
3 q, » from Equation (A20); AUK( q ) 3573 Ai(-qn) , from Equation(Al9) :
Parameters | Hard Acoustic Surface, Z‘ = o | Soft Acoustic Surface, Za = (0
T, 0.8086166 &i"/3 1.8557571 &i™/3
T 2.5780962 &i™/3 3.2446076 ei™/3
" 1.46935 3.37213
(o]
qi" 4.68417 5.89584
q 1.01879 2.33811
(o]
9 3.24820 4.08795
Au(-qi“) 1.16680 0.0
A a1 -0.91273 0.0
Al'x(-qf;x) 0.0 -1.05905
‘ix"qlfx) 0.0 1.21295
A (-q) 0.53566 0.0
A, (-q)) -0.41902 0.0
' -
Aj(-q) 0.0 0.70121
LY -
A} (-q)) 0.0 0.80311

Table 1b.

Numerical Comparison of Parameters Implicit in the
Notational Forms of Table la
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* yll'
- 2 2 2 3/2
b a -b 2
- & {1 + (——b4 )(y - h) } . v (12)

Following Sachs,8 who considered the case of a source located on the
cylindrical surface of the body rather than as herein envisaged in the

far field, we let
x = asiny, y = hb +bcosVy . (13)

Equation (12) thus becomes,

3 . 2 3/2 2
g, = '%; {1 - Kz a:ln2 W} » nz = ] - hi-'. (14)

Likewise, for far-field insonification of the body, the distance t on

e
-

the ellipsoidally curved surface between an arbitrary point of incidence

E ¥

given by,

and the exit point Pz of the diffracted field at the flat face is

/]
€ = & I {1- stn? 92 ap . (15)
(o]

From Table 1 and Equation (15), the integral of the attenuation coefficients

uLK in Equation (11) over the interval t from Pl to P2 of the

n
ellipsoidal surface can be expressed as,
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o g
I a (t') dt' = J a (t') de’
3 P ® o »
1l
¥ (]
- I @ (W) d'b dy

LK
(7 (¢) dy
- e:"1“/6(k1>2/6a)1/3 J *n

(16)
od/i K sin ]
where qﬁx are the roots of the transcendental equation
Ax'x['qﬁx("’)] 2 1/3 151/6 2 2. 112 =1
=t - (ka“/6b) e (1 - ¢° sinY) z W) ,(@17)
Agl-a ~()]

this equation being deduced in Appendix A from the boundary conditions for
a finite impedance surface. In practice, however, for a finite impedance
surface it is preferable to compute the roots via the alternative 'tangent
equation' derived by Keller,1 as outlined in Appendix B.

Now the diffraction coefficients at the point of incidence DﬁK(Pl)
are given by,

o K ¢p.) ./“3/2 - S /(ab/k)1/6 '1"/12(1 > sin> 9)2/2, as)
= 3w 2@ + & a2 ()

whilst those at the exit point, DEK(PZ) are given by,

pKp ) = /"3/2 3712 173 11y 1/6 -11/12 i
" e v2 LK LK .2 LK .
Mg )+ a, Al

- If the curvature of the surface is uniform then,

- 1r3/2 2-1/2 6-1/3(ab/k)1/6( 2 1/4 -1“/12v

LK LK 1-
D "(P,) D "(P,)) =

K 1n tb)
2, LK LK ,2
k) * 9 “u‘

ik s R s

(20)
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If as in the present instance, however, the surface curvature is nonuniform :

then,

3/2 -1/2 -1/3 1/6 2 2 \1/4 -iw/12
DﬁK(Pl)Dﬁg(Pz) T (ab/k) K~ sin” ) e .

LK LK
lanml(qn 1) +q ALK(qn 1)1[3Au(< %2) + ¢ sz.m«lu 2)]

(21)

ey 2 da s s e o

where qﬁxl and qEKZ are the roots of Equation (17) at the incident and
exit points, respectively, of the curved surface in the shadow zone; ALKi -
Aiki(i = 1,2) being the corresponding Airy functions and their derivatives
evaluated at these roots, respectively.

Invoking reciprocity for an individual receiver element mounted on the

flat face at the head of the capped cylinder insonified by a point source

in the far-field, we have,

r
§=w, a =h , pllalz_lcotel i Ha® =0, R-h.b(l-h—:-sineo) :

(22)

(r° " Go) being the coordinates of the element relative to the axes through

the center of the ellipsoid. Via reciprocity,

eiks
pi = 3 s '2~< e_<-‘|'|' . (23)

S

The directivity pattern of the receiver element due to insonification in

the shadow zone, as defined by Equation (11), becomes

D(®) = py/py

1/2 r eu— :
- I:Ot 1k exp{ikhb(l - Ef sin 90) + ika I a1 - KZ sin w)llzd#,
(1 ~-sin6 )hl/2 o

h

b G”E
IK p | LK w62, 132 %@ & (24)
3 Eo T e oK e pempl oS0 600 | e | inciassiviED
o/ 1 -k" sin” y |
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the product DﬁK(Pl) DﬁK(PZ) being defined by Equations (20) and (21). It
should be noted however, that when we are dealing with an edge element the
terms in Equation (24) must be multiplied by the coefficients defined in
. Appendix C.
In order test the analytical consistency of Equation (24) we now
consider the case where the insonifying source is located on the cylindrical
surfaée of the body at a distance x from the origin of the coordinate

system along the axis. This geometry requires that

Sex , & =h , 4,5, =", =7, R=b . (25

Hence, for a uniform impedance surface, substitution of Equations (25),
1/2 61/3 e 31/3 25/6

(20), and (16) in Equation (11) with 2 gives,
, /2
w2 a1 16 (el + %+ 8 |- k2 s1a? V2 ap) - 1m/12
P =
5 d
- | 4 x 31/3 X 25/6 /hbrbxo
/2
; p explel™6 (112 /6a) 13 qu:K r’ d‘g i
X T (¢] /Er- K sin” ¢ : (26)

S

2/3 , then Equation (26) is identical

1 |%/613)= |1 | = 2iancen + 3)/4)
to that derived by Sachs.8 However, as shown in Appendix B, these roots
are applicable when the baffle is acoustically soft. For the hard baffle
condition therefore, the correct roots are given by Equation (B6), i.e.,
|q§K/61/3|E ITnl = %{3ﬂ(4n + 1)/4]2/3 , the erronious choice of roots in
Sachs'8 paper resulting, as mentioned in the Introduction, from a failure

to distinguish the electromagnetic from the acoustic boundary conditioms.

Returning to Equation (24) we now make use of Equations (10) and (21)

to compute the diffraction pattern of a centrally located transducer array

element, for a uniform impedance baffle with Zp = Za 7

varying from 2 to 20 as kpi varies from 2 to 8. From the results
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thus obtained, as depicted in Figures 3a-3c, which included five creeping
wave modes, it can be seen that an order-of-magnitude reduction in the surface
: impedance produces no reduction in the back response of the element, provided

the curved surface is still effectively rigid.

Again, for a nonuniform impedance surface with Zp = 20 and Za
varying from 0.1 to 10, we obtained the results depicted in Figures 4a-4c
for the same variation in kp*° from 2 to 8 via Equations (10), (21), and
(24). Comparing these results with those of Figure 3, it should be noted
that the diffraction patterns have lower main lobe to side lobe ratios than
the latter as a consequence of the fact that they are all normalized with
respect to the boresight response in a relatively rigid baffle (i.e.,
Zp = 20). However, the dramatically reduced back response of Figure 4c is
a direct consequence of the almost acoustically soft curved surface.

Finally, although it can be seen from Equations (16) and (17) that
the attenuation coefficients remain constant for fixed values of kp*o 5
Equations (20) - (22) show that the receiver element directivity patterns
will change via the diffraction coefficients and differential geometry of

the surface as the dimensions of the ellipsoid vary.

Conclusions

We have reviewed the basic steps required to determine the role of
diffraction on the back response of transducer array elements in uniform
and nonuniform impedance baffles via the Geometrical Theory of Diffraction.
In particular, we have considered the case of an ellipsoidally capped
cylindrical baffle, neglecting the role of the transition zone between the
insonified region of the array and the deep shadow zone, which has yet to

be deduced analytically for an arbitrary impedance surface - a task

UNCLASSIFIED
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considerably beyond the scope of this preliminary investigation. We have
also neglected to account for rapid changes in the radius-of-curvature on

the diffraction and attenuation coefficients via 'correction factors' such

as those derived by Voltmer9 for.infinitely hard and infinitely soft surfaces.
As in the case of the transition zone function, such correction factors have
yet to be derived analytically for an arbitrary impedance surface. Other

implicit limitations of the investigation also mitigated by its scope include

the assumptions that the surface of the insonified body is locally reactive

and impenetrable, i.e., the effect of flexural waves and internal sound waves
on the array element response function is neglected. Nevertheless, despite
these limitations, we believe that the approach taken in this paper is
capable of providing a reasonable approximation of an array element response
function on a nonuniform impedance, variable-radius-of-curvature surface

provided kp;?z 2 .

PON NPT Sy ST
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APPENDIX A

In order to familiarize the reader with the derivation of 'diffraction'
and 'attenuation' coefficients for the problem of the elliptically capped
cylinder considered in this paper, we now review the underlying canonical
problem of plane wave diffraction by an infinite circular cylinder of
arbitrary impedance B+ Locating an x, y coordinate system at the

center of the cylinder, a plane wave incident field propagating

along the x axis can be expressed in terms of the polar coordinates (r , ©)

exp (-1kx)

o
[
"

exp (-1ikr cos ¢)

@
$ 3 Jp(kr) exp(imp) , (Al)
m=-® ;
where the time dependence implicit in exp(jwt) is included post factum,
and Py is considered to be normalized with respect to its initial value. ]

Since the scattered field Py is composed of only outward going waves it

can be expressed as a superposition of cylindrical waves weighted by the

undetermined coefficients a, as,

p, = & 18 BP ) expind) . (A2)
m-@

Combining the incident and scattered fields, Equations (Al) and (A2)

respectively, the total acoustic field p becomes,




B——
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P o= I 1™MI (k) +a P kr)} exp(ing) . (A3)
m=-—00

-~

In this instance, the boundary condition at the surface of the cylinder

obtained from the linear constituitive equation (i.e., p = zav) assumes

the form,
za EE ‘
P +E 3 = 0 , Za = za/poco . (AG) !
r=a |
Hence, 2
i ) +23'W
s _{ e } : (a5)
185700 + 2.8 00

X=ka

Substituting Equation (A5) in Equation (A3) and applying Watson's

transformation (Al) the field p can be reexpressed via the identity

(2)

3,00 =38P 0 + 58P 0} as, ;

P = 927

1) '
ie -ivm/2 : x) + )
ik et E{(l) O A B (kr)]

® Tew m\(,z)(x) + 251\(,2)'(x) S

st s 1) e 0 (a6)

Since the Hankel function of the first kind is analytic in the complex
v-plane for large positive values of kr , it contributes nothing to the

integral. However, the second term in the integrand has simple poles

(2) 2)" ..
where ﬂlv (x) + zaﬂv x) 0 . Denoting the roots of this

X=ka
equation by vn , the residues of the integrand can be evaluated by

expanding the denominator in a Taylor series about Y such that

UNCLASSIFIED
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(2) (2)" (2) 2)'
(X) +ZH (6'9) = 4H ““(x) + Z_H )
1nv aV x=ka v av, X=ka

+ (V-v L) 5 {m(z)(x) +2 n\(’z) 0} +k; 55
x-
R

= (V=-v ) —{m(z)(x) +2 H\(,Z) 0} (A7)
X=ka

v=y
n

For ka > 1 since all values of Vo have large negative imaginary components,

e—innﬂ

1- Making this approximation, and utilizing the

L ]
Wronskian relationship H\(’l)(ka) u\fz) (ka) - u\fl) (ka) u\f”(ka) = 4/1mka ,
n n n n
Equation (A6) can be reexpressed for ka > 1 as

4 ; @ e~iVn(m/2 = ¢) | ~iv,(1/2 + ¢)
P - H (kr) '
o B (ka) (% 8P (ka)] a\‘,z’(ka)[av 2 (ka)]
n =\ =\
n n
(A8)

This solution can be further simplified by redefining the Hankel functions

and their derivatives in terms of Airy functions as follows:

(2) )’ a 2/3 ,, ~in/3
av H, (ka)l s = -8, (ka) 2(2/ka) Aj(-q) e (A9a)
n
' 48
S| Loy c-macy o
v=y
with BP0 = 20/ A (-q) I3 (A9¢)
n
and B ) 2 227k a3(-q) M3 (A9d)
n
where A1(~x) = %-J“ cos(t?3 - xt) dt , for x real . (A10)
(o]
UNCLASSIFIED
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Substituting Equations (A9a) - (A9d) in Equation (A8) thus gives

2 B\Sz) (kr) ;
/3 gm/3 n (e~ Va(M/2 = §) | -ty (n/2+¢)

1
- >(ka/2)

2 o2 2
n=1 A (-qn) + BnAi(‘qn)

Pgq

J¢

o 1kr w-llZ 2-5/6 .1/3 e-tﬂ/lz ; e-iann/Z - ¢) + e-ivn(ﬂ/Z + ¢)

(Alla

7 /r k]', ¢ n=1 Aiz (-q) + , Ai(-qn)
-ﬁr [} = \i
& e/_ 5 °n2 {e~1vn(1r/2 -¢) & e-ivn(ulz + ¢)} (AL1b) ,;
r n=1

where the 'diffraction coefficients' Dn are defined as

5 -1/2 _-5/6 ,-1/6 1/3 -im/12
DZ I 2 k a e X (A12)

n e 2
A (—qn) 4 Ai(—qn)

In addition,

v, = kn-iana ’ (A13)

where the 'attenuation coefficients' are defined as

a = % (ka/2)1/3 (17/6

n (A14)

Again, from Equations (A9c) and (A9d), since 1852)(ka) + Z‘H\(’z)'(ka) =0,
n n
- it follows that

UNCLASSIFIED |
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B$?) (ka)
2 = -i —L'.—" (Al5a) 3
n 5 1
im/6  A,(-q) A :
% oot 173 A%(-qn) ! o "
(2/ka) 179 |
Alternatively,
A(q) &157/6 40 /2y 113 51 o
Al(-qn) a

Now Equations (Al12) and (Al4) have exactly the same form as the respective'
diffraction and attenuation coefficients summarized by Pathak and
Kouyoumjian.6 On the other hand, Levy and Keller5 employed a slightly
different definition of the Airy function than that of Equation (Al0),

i.e.,

ALK(_XLK) = 1? cos(t3 - xLKt) dt ,. for X real . (A17)

Relating the terms in Equations (A10) and (Al7) it follows that

n 1/3
ALK(-XLK) = ;173 Ai(-xLKIB ) (A18)

1/3

(] w - _" L=
A g Xpg) 3273 AfCxg/37°7) (A19)

the roots qﬁx of ALK(-qEK) = (0 being related to the roots Bn of

Ai(-Bn) =0 as

q:‘ - 31/3qn . (A20)

UNCLASSIFIED
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75 i Levy and Keller's2 diffraction coefficients can thus be expressed as

E - LKZ 232 3712 (-1/3  -1/6 1/3 -in/12

% Dn = 3 (A21)

WG+ g Ay e

and their attenuation coefficients as

1 o . h;'—(m/e)” T e
F the impedance relationship being

5- LK

P (=q ) -

% e ALV R T £ . scii

LK
Ax9,)
These diffraction and attenuation coefficients can then be used locally

on a variable radius-of-curvature surface.

Pl st e s sttt e

UNCLASSIFIED




UNCLASSIFIED -34- November 17, 1977
»FHr:cjp

APPENDIX B

In order to obtain the roots of Equation (A23) we instead employ the |

more fundamental relationship Equation (Al5a) from which it was derived, i.e.,

H(z) ! (ka)

- 2 v, = ka+ (ka)

ol e
n(2) (ka) a
v

1/3
n

s (81)

where by comparison with Equations (A13), (Al4), and (A20), as deduced by

Ealler,

LK _ 61/3 tnein/3 ; (82)

I

Following Keller,l it can also be shown that for ka >> 1

5/4 im/4
(2) 2 e ™ i 3/2
(ka) -~ cos{7 - =2t )7 "} (B3)
‘vn 57 PP Tn1/4 5. 3,

3 (2)
; ;™" (X) <23/4 im/4 TR e TR
1 an e ——— = — (2T ) {s:ln — - =(271 ) }. (34)

N fuw = 1213 Tn1/4‘ n § 3"

X=ka

TR T T

Substituting Equations (B3) and (B4) in Equation (Bl) thus gives I(eller's:L

'tangent approximation' for large ka ,

l (Z'rn)]'/2 tan{ll:- -‘%(2'%)3/2} - —(ka)1,3 2;1 (35)
ﬁ - or (2111)1,2 tan{-;-(zrn):’/z_ % } (ka)1/3 z;l ;

; This equation can then be solved numerically for Tn as shown by Bremmer. s
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For the asymptotic limit of an acoustically rigid surface (i.e., za = ),

Equation (B5) becomes

i 3z = ;

.inli(ZTn) - 4] 0o . 3

Hence l(2‘1’ )3/2 - nm 3

. 3'"'n 4 :
giving T = —{31:( +,.)}2’3 - SRS R (86)

LK 61/ 3

Thus, % 3 {3n(n + 4)}2/3

from Equation (B2) for za = ,

Alternatively, for the asymptotic limit of an acoustically soft surface

(i.e., Z‘ = 0), Equation (B5) becomes

cael %(nn)’/ 2.3 .0 .

R B A !
Hence, 3(2‘rn) % (n + 2) ]

giving ; VB —{3ﬂ( + )}2/3 Jin/3 y n=0; Xy 2, « o o (B7)

1/3
Thus, q:K .s {37(n +%)}

)]

2/3 from Equation (B2) for Za =0

It should be noted that the values of T and Tl appearing in Table 1b
are exact estimates obtained by BremmerBl from the Airy function Equation (A23).
Those obtained from Equatiéns (B6) and (B7) are approximate to a few signifi-

cant figures.
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APPENDIX C

Lt et Sigs

g’ Y For the case of an edge element, or an element located 11; close proximity
to an edg_e, the singularity in Equation (24) which occurs as the angle sub-
tende& by the element at the center of the coordinate system eo approaches
s:ln.l(hb/ro) can be removed if each term in the creeping wave series is
multiplied by Levy and l(eller:'s5 correction factors Rn’

ikr r
Cwhere R = °- (2mn)/? by (1= 52 6100) 100002 (1)

/o

A A AT s o 1

S 1k, , “ix) ot /12(kp* /2)-2/3%1(_‘121()[1 M (kp*/z)'2/3e12"/3]
| & 'ei"llz(kp*/Z)’llaAm(-qnm)ll 5 (kp*/2)'2/3e12"/3]} (c2)
i with Py ™ (azlb) (1 - |<2 e.:l.n2 1[))3/2 (c3)
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