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- - Introduction 
-

-
• This paper is concerned with the problem of analytically modeling the

acoustic fields that control the directional response of transducer array

elements mounted on the flat face of an ellipsoidaUy capped cylinder, such

as that depicted schematically in Figure 1. The basic objective is to

investigate the extent to which the back—to—front ratios of individual

transducer array element directivity patterns can be minimized by reducing

the diffracted fields which reach them from the rear of the body via

propagation over the curved surface.

The measurement procedure to be modeled is plane wave insonification of

the array elements with the source in the far—field of the body, as depicted

schematically in Figures la and lb; the former with the source in the ‘insonified

zone of the array’ (i.e., 0 < 0 < ir f2) , depicting the combined inciden t ,

~ef1ected, and diffracted fields normalized with respect to the incident

field; the latter, with the source in the ‘shadow zone of the array’ (i.e.,

ff/ 2 < 0 < jr), depicting the field diffracted around the curved surface of

the body to the array element, again normalized with respect to t ‘ incident

field. Note that when the terms ‘insonified zone’ or ‘shadow zone’ of the

array are used here, the field at the source is regarded by reciprocity to

be produced via radiation from the array.

In order to describe the diffracted field analytically, we make use of

Keller’s1’2 Geometrical Theory of Diffraction (GTD). This method effectively

permits ray tracing over curved impedance surfaces where the only part of a

ray tube that can propagate are tangent rays (i.e., Fr anz3 waves, analogous

to Stoneley waves which occur at almost grazing incidence on insonified flat

- elastic surfaces immersed in liquids). Since the diffracted field sheds

rays at each point of tangency as it propagates along a curved surface, the

UNCLASSIFIED -
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energy flux diminishes in a manner phenomenologically attributable to an

exponential field decay with geodesic distance from the point of insonification.

Now the ‘attenuation coefficient’ of this decay is dependent on the local

radius—of—curvature of the body and on the local surface impedance, the

latter dependence being a consequence of the manner in which the impedance

affects re—radiation of the diffracted field at each point of the surface.

Thus, for example, the diffracted field on an acoustically rigid curved

surface is re—radiated at each point of the surface by a monopole source

distribution. This, in turn , is more efficient than the dipole enurce

distribution associated with an acoustically soft (i.e., pressure release)

surface. Consequently, the ‘attenuation’ per wavelength of surface rays

propagating on an acoustically soft curved surface is considerably greater

than that on an acoustically hard curved surface. Since mat.e~ c.lS which

are ‘rigid’ in air appear acoustically more compliant in wate’~, we note at

this po int that ‘rigid’ in water implies an impedance of at least an order—

of—magnitude greater than the characteristic impedance of the fluid .

The ‘diff raction ’ and ‘attenuation ’ coefficients of Keller ’s1

Theory are obtained from ‘canonical problems ’ i.e., those that are amenable

to exact solution, such as creeping wave solutions for separable coordinate

surfaces of the Helmholtz equation, in particular surfaces of constant

curvature ( e.g. infinite cylinders and spheres). For these basic or

canonical surfaces the creeping wave solutions are obtained by re—expressing

the exact eigenfunction solutions (whose rate of convergence deteriorates with

increasing values of kpI in the form of Luneberg—Kline series whose term~

decrease as (l/kp )~~, n 1,2, . . . Whenever kp~
>> 1 , it follows that

only the first few terms of these reconditioned series are required to

provide an accurate representation of the diffracted field. In the case

UNCLASSIFIED
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of a surface of variable radius—of—curva.ure the first few terms of these

• canonical series can also be used to describe the diffracted field over

local regions of the surface where the radius—of—curvature is slowly varying,

although a note of caution should be added in the light of Leppington’s4

analysis. Generally speaking, however, ‘diffraction’ and ‘attenuation’

coefficients for a variable radius—of—curvature surface can be expressed

in terms of its Impedance and differential geometry as shown by Levy and

Keller.5

Before concluding these remarks a point of confusion between electro-

magnetic and acoustic analogues should be mentioned. This point concerns

the application of the electromagnetic impedance boundary conditions to

acoustic problems, i.e. as given by Keller’

— ikZ~~ , (la)

where e is the scalar e.m. potential, and Z is the e.m. surface

impedance relative to the characteristic impedance of the surrounding

medium. In an acoustic field, however , since the particle velocity is

given by definition as v — and for sinusoidal disturbances the

pressure is given by p _iP
ocok$a , the impedance relationship p = Z ivi

at the surface of a body becomes ,

—1
— —ikZ • , (ib)

where is the acoustic field potential, and Za — z /pc is the

acoustic surface impedaflce relative to the characteristic impedance of

the fluid medium. From inspection of Equations (la) and (lb) it follows

UNCLASSIFIE D 
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that whenever the acoustic analogue of a corresponding e.m. diffraction
-

S 

problem is invoked, Ze should be replaced by Z 1 yielding the relation— • -
~

ships between diffraction and attenuation coefficients summarized by Pathak

and Kouyoumjian.6

Theory

We begin by considering the axisymeetric insonification of an

ellipsoidally capped cylinder such as that depicted schematically in Figures

is and lb by a point source in the far—field of the body. For the case of

a circular piston of diameter d mounted on the flat front—end surface,

the received field can be expressed as,

P — Pi + P r + P d , (2)

where p~,p, and 
~d 

denote the incident, reflected, and diffracted

fields, respectively. When the source is located in the first quadrant

• (i.e., in the insonified zone of the array, 0 < 0 < 
~~~), 

if the length of

the body is sufficient to ensure the effective attenuation of diffracted

waves before they arrive at the receiver elements via propagation around

the body, the field received by an element from 0° to 90° will only

depend upon the incident and reflected waves. In this instance therefore,

iT
0 , O < O <

~~ 
. (3a)

On the other hand, when the source is in the second quadrant (i.e.,

< 0 < ii) , only diffracted waves reach the array elements, so that in the

shadow zone of the array,

UNCLASSIFI ED
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— 

~d 
~ ~ - < 0 c i r  . - (3b)

In the third quadrant the field is again given by Equation (3b) and in the

fourth quadrant by Equation (3a). -

Between the insonified zone and the deep shadow zone of the array there

is a region described as the transition zone which approximately spans the

sector irI2 — (kp
~
°/2)

~~~
’3 < 0 < 71/2 + (kp

~
°I2Y~

”3 . in this region, the

field is governed by incident, reflected, and diffracted waves. One con-

sequence of the transition zone is that the directivity pattern or directional

response of a receiver element normalized with respect to its response on

boresight, is reduced by 50% at 9 — 11/2 on uniformly hard (i.e., Z5— 
00)

and soft baffles (i.e., Za 
— 0). Under these conditions, as Pathak and

- 

Keuyoum~ian6 have shown for analogous e.m. problems, the transition zone

field can be described analytically by means of Fock functions. However,

the derivation of a suitable transition zone approximation for an arbitrary

impedance baffle has yet to be resolved, and consequently the exact value

of a receiver element’s response at 0 — 11/2 remains unspecifable. For

this reason, in our subsequent numerir~a1 analysis, we compute the response

from 0 to ir/2 — (kp~°I 2) ”3 and from 11/2 + (kp
~
°/2)

~~
”3 to ii

joining the two regions graphically via matching slopes. Although this

procedure cannot be rigorously justified, it does not in any way detract

from our computation of the response in the deep shadow zone, which is the

primary task of this investigation.

• Concentrating on the field in the insonified zone, Equation (3i~) can

be re—expressed in the form,

p — ~~{1 + R( e)) , 0 < 0 ~~~. 
(4)

UNCLASSIFIE D
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where the reflection coefficient R(0) is defined as,

z (e) c o s ( e — e ) — 1
R(0) — 

Z~ (0) cos (0 — 0 )  + 1 ‘

Z~ (0) being the angle—dependent plate impedance of the flat face,

nor malized with respect to the characteristic impedance Pc of the

medium in which the body is located, i.e., as sumearized by Hayek and

7
Stuart,

1 (0) — —i(k h) (p c /pc ){~ 2 sin4 (9 — 9~~ ) — i} , — w/c . (6)

In this notation, p is the mass density of the plate and c~ is the

phase velocity of plate waves which in turn is a function of the Young’s

- - 
modulus E~ and Poisson’s ratio a of the plate given by

E
— 

p
2 • (7)

• p (1—a ~~)~~

Again — (8)

where — -s-— is the coincidence frequency for a plate (9)
0 c of thickness h

Substituting Equation (5) in Equation (4) and multiplying by the directional

response function of a circular piston of diameter d , the resulting

directivity pattern of a receiver located at the point (r0100) on the flat

face of the body can be expressed as,

UNCLASSIFIED
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D(0) — p/p~ -

— 
j  2z~(e) cos(0 — 0) ‘

~ f
2.J1(~~ ~~~~ — ikr cos(G — 0)

-
‘ 1~i + 1 (0) cos(9 — 0~~)J 1 sin(0 — 

e
2 o -

- O < 0 — 0 ’ ~~ (10)

We now consider the back response of a receiver element due to diffracted

waves which occur when the source is located in the shadow zone of the

array, it/2 < 0 < 11 . From Levy and Keller’s5 fundamental analysis, this

field can be represented via the Geometrical Theory of Diffraction as,

— :
~~ {sa1~~~ + }

l/2 

J0 D~~ (P1) D~~(P2)e~~~
t + S)_J~~ a~~(t’)dt’

(11)

The parameters a , a1, p1. S, t , and R which appear in this equation

are shown in Figure 2a for diffracted waves traveling over an arbitrary

curved surface from the point of insonification P1 to the point of departure

Analytical expressions for the diffraction and attenuation coefficients
-
• LK LK 5Dn and a , respectively, deduced by Levy and Keller are compared in

Table la with similar expressions resulting from a different definition of

the Airy Function as summarized by Pathak and Kouyoumjian
6 

— numerical

comparisons being presented in Table lb. A brief synopsis of the steps

inherent in the derivation of these coefficients is also included for the

benefit of the reader in Appendix A.

For the case of the axisymmetric ellipsoidally capped cylinder depicted

in Figure 2b, the variable radius—of—curvature p
~ 

of the elliptical

- section is given by,

UNCLASSIFIE D 
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q~;
K 

— 6h1
’3
.re i11P4’3fro* Equation (B2) ; A~~(—q ~~) — 

~~~~~~~ 

A~(—q~) , from Equation(A18)

— 31/3 
q~ , from Equation (A20) ; Aj~ (—q~~ ) —— 2/3 A~(—q~) , from Equation(A19)

Parameters Hard Acoustic Surface, Z — ~ Soft Acoustic Surface , Z — 0a a

t 0.8086166 i~
11

~ 3 1.8557571 e11113

r1 2.5780962 
_jiI/3 

3.2446076 eiw/3

1.46935 3.37213

4.68417 5.89584

q0 
1.01879 2.33811

3.24820 4.08795

A~~~(_qLK) 1.16680 0.0

A,~~(—q~~) —0 .91273 0.0

-

. A!~~(—q~~) 0.0 —1.05905

A~~ (—q~~) 0.0 1.21295

A~(_q
0) 0.53566 0.0

A1(—q 1) —0.4 1902 0.0

A (—q ) 0.0 0.70121

A~ (—q1) 0.0 —0.80311

Table lb.

Numerical Comparison of Parameters Implicit in the Two
Notational Forms of Table la
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- - 
(1 + 

;:,

2)312 
- 

-

— k- {i + (C~~~~’~) )(y — hb)2} . (12)

Following Sachs ,8 who considered the case of a source located on the

cylindrical surface of the body rather than as herein envisaged in the

far field , we let

x a s i n*,  y — h
b +bcos * . (13)

Equation (12) thus becomes,

P
* 

— ~~~ {l — K
2 sin2 

}

3/2 
, K

2 
— 1 — -

. (14)

Likewise, for far—field insonification of the body, the distance t on

the ellipsoidally curved sur face between an arbitrary point of incidence

and the exit point P2 of the diffracted field at the flat face is

given by,

2 1’2t a J U — K ~~j~~L *} ‘ d* . (15)
0

From Table 1 and Equation (15), the integral of the attenuation coefficients

in Equation (11) over the interval t from P1 to P2 of the

ellipsoidal surface can be expressed as ,

UNCLASSIFIED -
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t
- 

- J a~ (t ’) dt ’ — a1~ (t’) dt’

1* LX dt’
— j a (*) -~~-d*

— e~~
”6(7iri,2/6a)1”3 J (16)

1 — K  sin ‘P
LXwhere are the roots of the transcendental equation

— (ka2/6b) h/’3 ei5~ ’6(l — K
2 sin2

’P)~
”2 Z~~ (*) , (l7)

ALX[% (‘P)] a

this equation being deduced in Appendix A from the boundary conditions for

a finite impedance surface. In practice, however, for a finite impedance

surface it is preferable to compute the roots via the alternative ‘tangent

equation’ derived by Keller,’ as outlined in Appendix B.

Now the diffraction coefficients at the point of incidence D~~ (P
1)

are given by,

• 

- 

/~
3/2 2~~~

2 6 ’3(ab/k)~~
6 e~~~

’12(l - K
2 sin2 ‘P)

l/2 (18)D~ (P1) — / 2 LK LX 2 LX3A~~(q~~) + q A~~(~~~)

whilst those at the exit point, DLX(P2) are given by,

/ 3/2 —1/2 —1/3 1/6 —iir/l2LX 
— 1, i r  2 6 (ab/k) e

n 
/ 3Aj~ (q ) + q~ ~~~~~ )

- If the curvature of the surface is uniform then,

DLX(P ) DLK(P — 
if 2~~’~ 6~~~

3(ab/k)~
”6(1 — K

2 sin2 4,)1f4 e~~~~
2

n 1 n 2 3~~2(qLK) + q~~ ~~~~
LK)

(20)
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- 

- If as in the present instance, however, the surface curvature is nonuniform

then,

DLX P DLX ~3/2 2~~ ’2 6~~~
3(ab/k) L’6(l — K

2 sin2 4,)1/4 
e~~

’
~
”2

~ ~ 
(~~~ 

1
2 L K 1 + ~~~l ~~~~ ( LKl) ] [ 3~~~~ ( LK2) + ~~K2 

~~~~~~
(21)

where q~
1
~ and q~~2 are the roots of Equation (17) at the incident and

exit points, respectively, of the curved surface in the shadow zone;
i

(i — 1,2) being the corresponding Airy functions and their derivatives
— i

evaluated at these roots, respectively.

Invoking reciprocity for an individual receiver element mounted on the

flat face at the head of the capped cylinder insonified by a point source

in the far—field, we have,

S — , a — h.D , p1/a1 ~~ . I cot 01 ‘P — — 0 , R — hb (l — sin 0 )

(22)

(r , 0) being the coordinates of the element relative to the axes through

the center of the ellipsoid. Via reciprocity,

ikS
— lim ~~ , < 0 < ir • (23)

s~~

The directivity pattern of the receiver element due to insonification in -]

the shadow zone, as defined .by Equation (11), becomes

D(0) — 

~d’~i 
it •

- r Icot ol h/2 / 
exp{ikhb(1 

- sin 0) + ika J 2 (l - K
2 sin2*)

h/2
d

~ 1~~~ 2 sin0)h~~
2 °

X 

~~ 
D~~(P1)D~~(P2)exp

{_e1~l IS6(kb 2/6a) hh13j 
~~~~~~~~~~~ 

]
~ UNCLASSIFIED - 

~~~~~~~~~~~~~ - --



-‘5-—-,- . - -_ .,. ,~ - ~~~~~~~~~~~~~ -~ —--“ v”r-~ -’~- ,-— - -—--—~~~~~~ ---- ~~~~~~~~~~~~~~~~ ~~~~~~~~ •~~~~~~~~~, , ,  -

~~~~~UNCLASSIFIED —23— November 17, 1977
PUP: cj p

the product D~~(P1) D~~(P2) being defined by Equations (20) and (21) . It
- - - should be noted however, that when we are dealing with an edge element the

terms in Equation (24) must be multiplied by the coefficients defined in

- Appendix C.

In order test the analytical consistency of Equation (24) we now

consider the case where the insonifying source is located on the cylindrical

surface of the body at a distance x from the origin of the coordinate
0

system along the axis. This geometry requires that

S x  , aO~~~hb ,  a
l

rb ,  p
1 —~~~, 0 — i t , R h ,0 . (25)

0

Hence, for a uniform impedance surface, substitution of Equations (25),

(20), and (16) in Equation (11) with 21/2 
~~~ 31/3 25/6 gives,

11T/ 2

lit (ab
1 1/2 /k) l~’

t6 
eik(hb + X

0 
+ a (1 — K

2 sin
2 

~
p) 112 

d’P) — 

irr/l2J

~d — 

[ 
1/3x 3  x 2

1/3 LX~~~
’2 d’P IN exp [.e~~”6 (kb2/6a) ~~ J~ /1 — K

2 sin2 ‘P* E 
- (26)L K 2  LKn-O q

~ 
A~~(~fl

)

-

• 

- If q~~/~hu/3~~ Jr~j = +[3JT(4n + 3)/4]
2~f3 , then Equation (26) is Identical

to that derived by Sachs.
8 

However, as shown in Appendix B, these roots

are applicable when the baffle is acoustically soft. For the hard baffle

condition therefore, the correct roots are given by Equation (B6), i.e.,

1~~ X/6l/3 ) ... I T I  +[37T(4n + 1)/4)
2/3 

, the erronious choice of roots in

Sachs’8 paper resulting, as mentioned in the Introduction, from a failure

to distinguish the electromagnetic from the acoustic boundary conditions.

Returning to Equation (24) we now make use of Equations (10) and (21)

to compute the diffraction pattern of a centrally located transducer array

element, for a uniform impedance baffle with Z — Z -

p a
varying from 2 to 20 as kp~ varies from 2 to 8 . From the results
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thus obtained, as depicted in Figures 3a-3c, which included five creeping

wave modes , it can be seen that an order—of—magnitude reduction in the surface

impedance produces no reduction in the back response of the element, provided

the curved surface is still effectively rigid.

Again, for a nonuniform impedance surface with Z = 20 and Za

varying f rom 0.1 to 10, we obtained the results depicted in Figures 4a—4c

for the same variation in kP~
° from 2 to 8 via Equations (10), (21), and

(24). Comparing these results with those of Figure 3, it should be noted

that the diffraction patterns have lower main lobe to side lobe ratios than

the latter as a consequence of the fact that they are all normalized with

respect to the boresight response in a relatively rigid baffle (i.e.,

Z — 20). However, the dramatically reduced back response of Figure 4c is

a direct consequence of the almost acoustically soft curved surface.

Finally, although it can be seen from Equations (16) and (17) that

the attenuation coefficients remain constant for fixed values of kp~° ,

— Equations (20) — (22) show that the receiver element directivity patterns

will change via the diffraction coefficients and differential geometry of

the surface as the dimensions of the ellipsoid vary.

Conclusions

— We have reviewed the basic steps required to determine the role of

diffraction on the back response of transducer array elements in uniform

and nonuniform impedance baffles via the Geometrical Theory of Diffraction.

In particular, we have considered the case of an ellipsoidally capped

cylindrical baffle, neglecting the role of the transition zone between the

insonified region of the array and the deep shadow zone, which has yet to

be deduced analytically f or an arbitrary impedance surface - a task
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considerably beyond the scope of this preliminary investigation. We have

- - also neglected to account for rapid changes in the radius—of—curvature on

the diffraction and attenuation coefficients via ‘correction factors’ such

as those derived by Voltmer9 for infinitely hard and infinitely soft surfaces.

As in the case of the transition zone function, such correction factors have

yet to be derived analytically for an arbitrary impedance surface. Other

implicit limitations of the investigation also mitigated by its scope include

the assumptions that the surface of the insonif led body is locally reactive

and impenetrable, i.e., the effect of flexural waves and internal sound waves

on the array element response function is neglected. Nevertheless, despite

these limitations, we believe that the approach taken in this paper is

capable of providing a reasonable approximat ion of an array element response

function on a nonuniform impedance, variable—radius-of—curvature surface
0provided kp~ > 2
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- APPENDIX A - -

• In order to familiarize the reader with the derivation of ‘diffraction’

and ‘attenuation’ coefficients for the problem of the elliptically capped

cylinder considered in this paper, we now review the underlying canonical

problem of plane wave diffraction by an infinite circular cylinder of

arbitrary impedance Z
a 

- Locating an x, y coordinate system at the

center of the cylinder, a plane wave incident field propagating

along the x axis can be expressed in terms of the polar coordinates (r , 0)

Pj — exp(—ikx)

— exp(—ikr cos

— E i~~ Jm(kr) exp(im$) , (Al)

where the time dependence implicit in exp(jwt) is included post factum,

and is considered to be normalized with respect to its initial value.

Since the scattered field p8 is composed of only outward going waves it

can be expressed as a superposition of cylindrical waves weighted by the

undetermined coefficients am as,

pg — 1—m amHi~
2
~~

l
~~ 

exp(im$) . (A2)

Combining the incident and scattered fields , Equations (Al) and (A2)

respectively , the total acoustic field p becomes,
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p - Cm{J (kr) + a H ~
2
~ (kr) } exp(i~~ ) - (A3)

* In this instance, the boundary condition at the surface of the cylinder

obtained from the linear constituitive equation (i.e. , p — Z
aV) assumes

the form ,

z a
p + j~ j~- — 0 Za — za/Poco - (A4)

r a

Hence,

I ~‘m
W + ZJ ’(X) )

a — — 
1~ 

(2) (2) ’ 1mm Cx) + Z N  (x) x-k.a

Substituting Equation (A5) in Equation (A3) and applying Watson ’s

transformation (Al) the field p can be re-~expressed via the identity

.J
~

(x) — ‘~~(x) + H~
2
~(x)} as, /

- th 1, , ~!::: [
~<l (k~) - {1

<x> : 
~~~ H.52)(kr)J

x {(—1)~~ e~’~ + (—1)” e~~”~} dv . (A6)

Since the Hankel function of the first kind is analytic in the complex

v—plane for large positive values of kr , it contributes nothing to the

integral. However , the second term in the integrand has simple poles

where iH~
2
~ (X) + ~~~~~~~~~~~~~~ 

— 0 - Denoting the roots of this

equation by V~ , the residues of the integrand can be evaluated by

expanding the denominator in a Taylor series about v~ such that

UNCLASSI Fl ED

--• 5- - --



- 
~~

‘5 ’5’5 -.

UNCLASSIFIED —30— November 17, 1977
FHF: cj p

iH,~
2
~(x) + Z H~

2
~~(x) — iR.’~

2
~ (~ ) + 2a X—ka n a n X—ka

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -n a
v-v

- (v - v ) ~~{iH~
2
~ (x) + Z R~~~~()~)}

ii a
v-v

U

For km > 1 since all values of v~ have large negative imaginary components,

1 — ~~~~~~ - 1 - Making this approximation , and utilizing the

Wronskian relationship H~ ‘(ka) H~ ~ (ka) - H~ ~ (ka) H~ ~(ka ) — 4/iirka
a n a a

Equation (A6) can be reexpressed for ka > 1 as

4 (2) e
_i
~n

(hh/2 — $) 
+ 

iv~(ir/2 + +)

n l  ~~ 
(kr) 

~~2)’ (ka)(~j 11” v—v 
- ~~~~ (ka)[~ j  ~~~~ 

v—v

(A8)

This solution can be further simplified by redefining the Hankel functions

and their derivatives in terms of Airy functions as follows:

~~ H~~~(ka)
1 

— —H~
2
~~ (ka ) — 2(2/km ) 2”3 A~ (— q~ ) ~~~~~~ (A9a)

- ~~~A’(- q~) - - -~~ -A ~(-q~ ) (A9b )

- 
with H~

2
~ (ka) — 2(2/km )1”3 A~(—% ) ~~~~~ (A9c)

and H~
2
~

’(ka ) - -2(2/ks)213 A~ (-%) ~~~~~~ (A9d)

where A~ (—x) — cos(th — xt) dt , for x real . (AlO)
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- 

- 

~
- Substituting Equations (A9a) — (A9d) in Equation (A8) thus gives

IL
~
2
~

(kr)
— 4(kaI2)’13 i2Tr/3 

2 2 
{~

_iv
fl (Ir /2 — ~~ + e vn~~~2 ’~~

n 1  A~ (—q~ ) +

— •
—ikr iT

_li2 2~~’~ ~
l/3 e~~~~

12 e~~~n~~
/’2 — 4~ + e ’~n~~”2 + 4))

VT k~ n 1  A~ (-q~) + 
~ 

4(-q~)

— •
—ikr 

~ D~~ {e ~
( 2-$ ) 

+ e~~
vn~

n/2 + 4)) } (Allb)
~
r
~
— 
~~

where the ‘diffraction coefficients’ D are defined asn

- 
- 

2 — 1/2 —5/6 —1/6 1/3 —iir/12
D iT 2 k a e (*12)U 

Aj (-q~) + q~ A~ (-q~)

In addition ,

v — km — ia a , (*13)
S U n

where the ‘attenuation coefficients’ are defined as

— - (ka/2) 1
~

3 e~~~
6 (*14)

Again, from Equations (A9c) and (A9d), since iH~
2
~ (ka) + Z5H,~~ (ka ) — 0

• it follows that
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H,~
2
~ (ka)

Z — —i (2)’ 
- (A15a)

-

-

ilT/6 A (—q )
— 

e ± n  (AlSb)
(2/km )1’3 A~(—q~)

Alternatively, -

_______ 
— e.5iT/6 (km,2) 1/3 

~~‘ - (*16)

Now Equations (*12) and (Al4) have exactly the same form as the respective ’

diffraction and attenuation coefficients summarized by Pathak and

Kouyoumj ian .6 On the other hand, Levy and Keller5 employed a slightly

different definition of the Airy funct ion than that of Equation (*10),

i.e. ,

A~(—x~) — cos(t3 — x~t) dt , for real - (*17)

Relating the terms in Equations (AlO) and (All) it follows that -

A
~~
(—X

~~
) — 1/3 A1(—~~~/3

’
~
3) (*18) 

—

— — 2/3 A~(—x~~/3
1’3) , (*19)

the roots q~~ of A~~(—q~~) — 0 being related to the roots of

— 0 as

- 

LK 
— 31/3 - (*20)

- 
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Levy and Keller’s2 diffraction coefficients can thus be expressed as

~1~
2 ¶3/2 2_h/ 2 6~~”~ ~~~~~ al~’3 

~
_iir/l2

3A~~(-q~ ) + 
~~~

and their attenuation coefficients as

a
11 

— ~~—(ka/6)~’~ e
iIt/6 

, (*22)

the impedance relationship being

11
— e (ka/6) Z . (*23)

~~~~~K) a

These diffraction and attenuation coefficients can then be used locally

on a variable radius—of—curvature surface.

N
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APPENDIX B

In order to obtain the roots of Equation (*23) we instead employ the

more fundamental relationship Equation (Al5a) from which it was derived, i.e.,

H~
2
~~ (ka) 

-

— iZ~~ ; v — km + (ka)hI’
3 
t , (El)

H~~’(k a) a U

v

where by comparison with Equations (*13), (*14), and (*20) , as deduced by

Keller ,1 -

[ ~~K 
— 6l/3.re :LiT/31 

- (B2)

Following Keller,’ it can also be shown that for km >> 1

2 2~’~ 
111/4

a~~~(ka -
~ •ff112(km)~’~ ~~~‘4 

cos{~ — F2t
3 2~ (B3)

3H
~

2

~
(X) 2~’~ 

iit/ 4 1/2 W 3/2and ax 
~

- 
iTlIZ(km)1/3 ~~1/4

(2tn) {sin -
~~~ 

— -~(2t ) }. (B4)

Substituting Equations (B3) and (B4) in Equation (El) thus gives Keller’s1

‘tangent approxima t ion’ for large ka

(2r~)
1”2 tan(~- .-~~(2T~)

3”2} (km)113 z ’1 (35)

or (2t )U2 tan(~(2t~)
3I’2_ 

~ 
} (km)1”3 z~~ -

This equation can then be solved numerically for r~ as shown by Breimuer El
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For th. asymptotic limit of an acoustically rigid surface (i.e., Za 
—

Equation (ES) becomes
S

— — 0

Hence, F2t )312 
- - nh

giving r~ — -~{3ir(n + +)}
2
~

3 ~~~~~~~~~ 
, n — 0, 1, 2 , - . - (36)

Thus, q~
1
~ — ~~

‘ {3ir(n + 1))2/3 from Equation (B2) for Za 
— -

Alternatively, for the asymptotic limit of an acoustically soft surface

(i.e., Z — 0) ,  Equation (B5) becomes

cos( ~(2r~ ) 3i’2 — — 0 -

Hence, -~-(2 r ) 312 
— (n + ~-) ii

giving r~ — 4C3~r(n + *)}
2
~
3 —iff/3 

, a — 0, 1, 2, - . - (B7)

Thus , ~~~ — ~ {3n(n + ~)}213 from Equation (12) for z — 0

It should be noted that the values of and t
1 

appearing in Table lb

are exact estimates obtained by Bremmer~ ’ from the Airy function Equation (*23).

Those obtained from Equations (B6) and (57) are approximate to a few signifi—

• cant figures.
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APPENDIX C 
-

3

For the case of an edge element, or an element located in close proximity

to an edge, the singularity in Equation (24) which occurs as the angle sub—

tended by the element at the center of the coordinate system 00 approaches

sin
~~

(hb/rO) can be removed if each term in the creeping wave series is

multiplied by Levy and Keller ’s5 correction factors R ,

where R — ~~~~ (2 Trkhb)1’2 hb
(l_ j~~ 

sinO) I(kp~,q
11) (Cl)

w~~re I(kp~ , q~~) - {e~~ 
/l2(kp~/2)

_2/3~~~(_qLK)(l - (~~*/2) 2/3e.211/3]

+ eiT 2(kp~ /2) _1/3A.(_q~~) [l + (l~ *
/2)

_2I3
e.21113]} (C2)

with — (a2/b) (1 — K
2 
sin2 ~)

312 (C3)
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