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FOREWORD

The Educational Concepts and Evaluation Work Unit Area of the Army
Research Institute for the Behavioral and Social Sciences (ARt ) performs
research and development in areas of educational technology with appli-
cability to military training. Of special interest is research in the
area of computer—based training systems. Development and implementation

0 of such systems is seen as a solution to such current Army problems as a
shortage of qualified in8tructor personnel, a student population of

• widely varying abilities, and increased training costs. Computer—based
training systems also provide the potential to increase training effec-
tiveness and efficiency by increasing the extent to which the training
process can be made to adapt to the characteristics and performance
of the individual student .

This Technical Report describes the second phase of a research
effort to develop a technique for individualizing training through the
use of “artificial intelligence” techniques. The results of the first

0 phase are documented in an earlier report (May , Crooks , Purcell , Lucaccini,
Freedy , and Weitman , 1974). In order to accomplish this research, ARt ’s
resources were augmented by contract with Perceptronics, Inc., an
organization selected as having unique capabilities for research and
development in this area.

The entire research work unit area is responsive to the requirements
of RDT&E Project 2Q762717A764 , “Educational and Training Technology,” of

0 
the 1975 ARI Work Program, and to special requirements of the Product

0 Manager , Computerized Training Systems.
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APPLICATION OP ADAPTIVE DECISION AIDING SYSTEMS TO COMPUTER-ASSISTED
0 

INSTRUCTION : EXPERIMENTAL STUDIES

BRIEF

Requirement :

To continue the developme~t and evaluation of a computer—based 
0

system which uses adaptive techniques to train electronic troubleshooting
procedures. During the training process, the student troubleshoots a 0

simulated electronic circuit by making test measurements and replacing
the malfunctioning part. The key component of the system is an adaptive
program, based on an Expected Utility (EU) decision model, which
“learns” the student’s utilities f or troubleshooting decisions. These
utilities can then be compared with those of an expert, and instructional
feedback can be provided to reduce the discrepancies between the two sets
of utilities. Specific objectives were: (a) to refine the student/
computer interface and computer algorithms; (b) to develop measures of
student performance and incorporate them into a student performance
summary report; (c) to determine the adequacy of the EU model used to 0

describe student and expert troubleshooting behavior; (d) to evaluate
the effects of training with the system on student performance; and
(e) to develop a method for providing adaptive instructional feedback to
the student.

Procedure :

The student/computer interf ace was modified to simplify the
0 interaction for the students. Measures of student performance, some of

which are “traditional” measures, and others of which are unique to this
• system, were included as part of a routine student diagnostic report.

The utility estimation algorithms were also simplified.

The adequacy of the EU decision model, which is used to describe
both student and expert behavior, was evaluated in several ways, first
using an electronics expert who diagnosed the circuit using a fixed
strategy , then using a “simulated” student, and finally using a group of
electronics students.

An experiment was conducted using as subjects eight electronics
students who were given 4 1/2 hours training on the system, divided
into three sessions. During the second session they were provided with
the expert model’s probabilities of action outcomes. These probabilities
were not available during the first and third sessions .

A method for providing adaptive instructional feedback to the
students was developed . The method uses the utilities for “key”

0 - - ~~~~~-- - _ _~~ _ _0 ~~~_000~~~~~ .__ .•~~~~ •0 0 _ _• •_ 0 
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measurements , that is those measurements identified by an expert as
being of critical importance in the troubleshooting process. The
specific feedback provided to the student is based on the relative
values of the key utilities. A preliminary evaluation of the training
effectiveness of the feedback was conducted .

Findings :

Records of all student responses can be recorded for later
analysis. A diagnostic report summarizing student performance is
printed at the completion of each problem.

The adaptive EU model rank orders the utilities of an expert
technician accurately . After practice, it predicts all choices of the
simulated student correctly. Approximately 75% of the choices of “real”
students are predicted correctly.

The presentation of probabilities of action outcomes improves
both student performance and the predictive success of the EU model.

Student performance on the system improves with practice even in
the absence of any utility—based feedback.

The presence of utility—based feedback does not consistently
modify student performance in the desired fashion.

Utilization of Findings:

These findings provide sufficient evidence to justify continued
development and evaluation of the system. The goal of this process is
the cost and training effectiveness evaluation of a prototype version

0 
within an ongoing course of instruction at an Army school. These
findings will be used by ARt, the U.S. Army Training and Doctrine
C immand Training Support Center , and the U.S. Army Signal School to
determine resource requirements for the evaluation and possible future
implementation .

_  _ _ _ _ _ _ _ _ _ _ _ _  

.4
—---- — 0• ~~~~~~~~~~~~~~~~~~~ -~~ ~~— —~ 

—



-—~
•0- 

~~~~~~~~~~~~~~~~~~~~~~~~ ••- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~•~~- •

~~~~~~~~~~~~~~

TABLE OF CONTENTS
PAGE

1. SUMMARY 1—1

1.1 Accomplishments 1—3
0 1.2 System Optimization 1-3

1.3 Research Approach 1-3
1.3.1 First Year Program 1-3
1.3.2 Second Year Program 1-4

2. ADAPTIVE TECHNIQUES IN COMPUTER ASSISTED DECISION TRAINING 2-1

2.1 Background 2-1
2.2 Adaptive Computer Aiding 2-1

2.2.1 Computer Aiding 2-1
2.2.2 Aid ing by Means of Decision Analysis 2-2

0 
2.3 Methods of Quantitative Utility Assessment 2-4

3. THE CDT SYSTEM 3-1

3.1 Overview 3-1
3.2 Training Procedure 3-2

3.2.1 Troubleshooting Operations 3-3
3.3 Task SImulator 3-8
3.4 Expert Model 3-10

3.4.1 InformatIon Gain 3-12
0 

3.4.2 Simulated Student 3-14
3.4.3 Requests for Help 3-15

• 3.5 Student Model and Dynamic Utility Assessment 3-16
3.6 InstructIonal Logic 3-19
3.7 Diagnostic Report of Student Performance 3-22
3.8 System Software 3-24
3.9 Instructor/Computer InteractIons 3-26

4. SYSTEM PERFORMANCE EVALUATION 4-1

4.1 EngIneering Evaluation and Analysis 4-1
O 4.1.1 TraIning Algorithm Validation 4-1

4.1.2 Estimated Values and Expert Technician Ranking 4-3
O 4.1.3 Comparison of Student Performance with Model

0 Performance 4-6
4.2 Student Performance Evaluation 4-8
4.3 Evaluation of Instructions 4-14
4.4 DIscussion 4-22

5. REFERENCES 5-1

1



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
o~~~ 0~~ •O 0~

O 0 O O ” ~~~~~~~~~~~~~~~ -~~~~~

LIST OF FIGURES

Figures Page

3—1 Student’s Display of a Troubleshooting Problem 3-4

3-2 Student’s Display of a Partially—Completed Problem 3—6

3-3 Schemati c Representation of Dynamic Val ue Estimato r 3-18

4-1 Estimated Val ues for Target Measurement Outcomes 4-2

4-2 Predictive Success of Decision Model during Simulated 4-4
Student Performance

4-3 Relative Utility for Key Measurements as a Function 4-5
of Faul t Problems (Expert Techn ician)

4— 4 Student and Student-Model Cost Expendi tures for 4—7
Problem Solution

4—5 Estimated Utilities as a Function of Troubleshooting 4...9
Decis ions (Student A)

4—6 Estimated Utilities as a Function of Troubleshooting 4—10
Decisions (Student C)

4—7 Student Decision Time as a Function of Training 4— 12

4—8 Student Decision Efficiency as a Function of Training 4—13

4-9 PredictIve Success of Decision Model During Student 4—15
Tra ining

4-10 Relati ve Utility for Key Measurements as a Function 4—19
of Faul t Problems (Student ~JK)

4-11 Relative Utility for Key Measurements as a Function 4-21
O of Fault Problems (Student BW)

• 4-12 0 Student Cost Efficiency as a Function of Training 4-22

Ii 



—~~—~ -~~~~~~~ ~~~-~~~~—- ~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ..

• 

0

LIST OF TABLES

•0 Tables Page

3—1 Performance Sunmiary Indi ces 3-25 I

4—1 Utility Training Instructions and Selection Criteria 4-16

F

’ 

‘ 1

I

1
;

Ill 
•

0

______  ________  

0 

0 ~~~~~~~~~~ 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —
~~~~~

- - — - -- - --- -~~~~ 0 ~~~~



r 
.~~~~~... . . . ... • 

_0~ • 0• •_~ O O00_
~0$O~~~~

GLOSSARY OF SYMBOLS
0~ a. . Information ga in function assoc iated with X . . -1,3 1,3

B Lower stopping boundary (Bad)

Set membership 0
0

EU Expected Utility

EV Expected Value

0 f. Faults associated with X. . divided by the number of faults still
• possible. 1~ 3

6 Upper stopping boundary (Good)

Value training constant

I An index over outcomes.

j  An index over measurements

k An index over faults

A Likelihood ratio

• 
L1~~ Set of faults corresponding to X1~~.

Set of faults still possible given R~.

P1~~ Same as P(X1~~)

P(khPk Probability of fault K.

P(M
~
) Failure probability of module &.

P(x. .) Probability of obtaining X11,3
V. . Value or utility for outcome X.1,3 1,3

Measurement history.

. Outcome i of measurement j.

Measurement j .

1) IntersectIon

iv

0 0 0  ~~~~~~~~~~~~~ ~
- •- -  

~~~~~~~~~ 

00 0 0 _ _ _ _



- 0~ • ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ . - r.r ,~~~ - - 
~~~~~~~~~~

• 
~~ 

- - . - - -
~~~~~~- -  ~~~fl.. • • •~~~—r-~~~ -----—

0 

1. SUMMARY

This report describes the results of the second year’s effort in the
development of a new systt.n for Computerized Decision Training (CDT).1 The

0~~ CDT system combines the princi ples of artific~~l intelligence, decision
theory, and adaptive computer-assisted instruction . Training focuses on

• higher order cognitive skills in judgmental decision-making. Realistic
simulation of training problems pennits student application of decision-
making skills in real-life contexts, increasing the potential for transfer
of training to field situations.

The CDT concept incorporates an adaptive computer program which

• l earns the student’s diagnostic and decision value structure , compares this
structure to that of an expert, and adapts the instructional sequence to

• eliminate discrepancies. An expected utility (EU) model of decision making
is the basis of the student and instructor models which , in conjunction with
the decision task simulator , form the core of the CDT system. The ~~ dent
model is dynamically adjusted using a trainable network technique of pattern

0 classification . Heuristic algorithms generate the training instructions
and adjust the problem presentation sequence. The instructor model also

• generates suggested actions in response to student requests for assistance.

The present training system focuses on electronic troubleshooting.
- The student’s task is to troubleshoot a complex circuit by making various

test measurements, replacing the malfunction ing part, and making final
verification measurements. The student utilities of interest are those for

information ga ined through the measurements, and for replacement of circuit
modules. Troubleshooting provides an excellent application for the CDT

methodology because it is heavily dependent on judgment and probabilistic

inference. In addition , troubleshooting as such is of great practical

0 

- importance in numerous Army systems, and it lends itself to economical

• 
impl ementation for training purposes.

1Special recognition is given to Denis Purcel l and Mi chael Kuppin for their
efforts in developing the instruction-selection and experimenter/computer

• in teraction programs . 
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Work to date has produced an operational system whi ch demonstrates
the feasibility of applying artificial intelligence techniques to computer
assisted instruction in a minicomputer envi ronment. Experimental evaluations
of the CDT system have demonstrated that the adaptive decision model
accurately learns the utiliti es of an expert technician and that students can
effectively use the simulated troubleshooting task. Additional software

• evaluations and developments have optimized the decision model training
algorithm, provided a smooth student/computer sequence of interactions, and
created a report routine for diagnosing and sunmiarlzing student performance.

Research findings include the following:

(1) The adaptive EU model with information gain accurately learns
and rank orders the utilities of an expert technician or student
as they Interact with the simulated decision tasks.

(2) Presentation of probabilities of decision alternatives
represents a valuable form of decision aid which increases
decision consistency, increases troubleshooting speed, and
reduces repair cost. Students with littl e or no prior
experience with probability are quickly able to learn to use
the action probabilities.

(3) Performance improves with experience on the system.

(4) The EU-based model of the student performs better than the
student himself when the student’s utilities are used in a
consistent simulated decision sequence.

1—2
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0 1.1 Accomplishments

Research and development activities during 1975 centered on the
following objectives : (1) system optimization; (2) engineering analysis

0~ 
- 

and evaluation; (3) development of diagnostic reporting routines for student
and model assessment; (4) experimental evaluation of student performance; and
(5) development of instructional feedback algorIthms.

The following paragraphs provide a suninary of the current work tasks
and accomplishments.

1.2 System Optimization

The first year of program activities produced a prototype decision
training system that incl udes (1) a circuit simulation with capabilities for
CR1 display of circuit measurement results, (2) an adaptive decision model of
the student, (3) a decision model of an expert technician, and (4) a student/

• computer interaction sequence that incorporates various instructional
activities. System optimization during the current year took two forms;
(1) changes in the CDT system which improved the external system character-
istics (i.e., the student/computer interaction), and (2) improvements in the
system Internal functions (i.e., adaptive algorithm parameters).

0 1.3 Research Approach

• 1.3.1 First Year Program. The first year’s work involved selection of
decision task, simulation of the essential decision features of the task,
Implementation of the adaptive decision model, and development of a
student/computer Interaction sequence. The result of the year’s efforts
was an operational prototype simulation trainer.

1-3
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• 1.3.2 Second Year Program. The second year’s efforts were directed toward
Cl ) optimization of the computer algorithms and student/computer interactions,
(2) operational analysis of the adaptive decision model in comparison to 

0

consistent decision making by a simulated student and by-an expert technician,
(3) ‘xperlmenta l evaluations of student’s performance with the simulated

• electronIc circuit and the associated decision aids, and (4) development of
adaptive instructional feedback based on the estimated values in the decision
model of the student.

The results of the analyses during the second year have demonstrated
that the adaptive decision model tracks the decision performance of a
consistent expert technician, and the estimated values accurately reflect the
relative ranking of the critical decision alternatives identified by the
technician. The analyses have also shown that student technicians use the
simulated troubleshooting task and can Improve their decision-making efficiency
after extended practice with the CDT system.

1-4
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2. ADAPTIVE TECHNIQUES IN COMPUTER ASSISTED DECISION TRAINING

2.1 Background

A central theme in the field of educational technology is the
creation of methods which allow the individualization of instruction. Much

• work has been done toward this end in the field of Computer Assisted
• Instruction (CAl). This CAl background relevant to the development of the

CDT system is reviewed in our first annual report (May, Crooks, Purcell,
Lucacc ini, Freedy, and Weltman; 1974). The present report focuses on
the background work in computer decis ion aiding and utility* assessment
upon which the CDT system also Is based.

2.2 Adaptive Computer Aiding

Computer aiding systems have recently evolved from inflexible
routines to adaptive programs capable of high-level interaction and
initiative. Adaptive (or intelligent) components are taking over many of

0 what were once cons idered uniquely human funct ions, such as learning,
• pattern recognition, problem solving, and inferential decision making.

Employing such functions, an Intelli gent aiding system can analyze alterna-

• tive actions, reconinend responses, and even perform various tasks
autonomously.

• 2.2.1 Computer Aiding. Computer aiding systems are devices that
simplify or otherwise facilitate the performance of some specific task.

• ApplicatIons cover such diverse situations as continuous dynamic control of
remotely piloted vehicles, intelligence gathering, Information flow in
command and control operations and CAl. The emphasis in these advanced

*In keeping with the literature on decision making , the term “utility” is
used to denote “subjective value”.

2-1
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systems is on the aiding of decision making processes, including such
contributions as data organization and display, establishment of procedures
to select courses of action, mathematical optimization (linear programing,
optimal control and the like), and decision analysis (Brown, Hobl itzell ,
Peterson and Ulvila , 1974; Howard, 1968; Nickerson and Feehrer, 1974;
Weisbrod, Davis and Freedy, 1975).

2.2.2 Aidinqjy Means of Decision Analysis. Applying decision analysis to
decision aiding involves seven basic steps. These steps cover the relevant
aspects of defining decision choices and parameters required to establish a
measurable criterion of optimal choice (Payne, Miller, Ronney, 1974):

(1) Identification of pertinent information.
(2) Definition of alternatives.
(3) DefinitIon of structure for related data parameters, events

and alternatives.
(4) Characterization of uncertainty of continuous parameters.

0 
(5) Estimation of event probabilities.
(6) Transformation of multi-attribute measures into a single

utility for each possible outcome.
(7) Selection of the best alternative through normative evaluation

criteria.

The basic components of the criteria are probabilities and utilities.
It is necessary to determine the probabilities of alternative decision
outcomes and assess the utilities that the decision maker has for these
outcomes. Probabilities can normally be estiamted by objective measurement 0

or from prior probabilities elicited from experts. Then the prior proba-
bilities can be aggregated, usinq Bayesian or probabilistic information
processing (Edwards, 1962; Kelly and Peterson, 1971), to obtain posterior
probability estimates. These techniques also provide a mechanism for up-
dating the probabilities as new data becomes available.

2—2
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For the most part, experimental studies of computer-based decision
aids have shown that operators are able to function effectively with machine

• support. Hanes and Gebhard (1966), in a realistic simulation of anti-
a ircraft warfare, found that Naval commanders freely accepted computer advice
In a tactIcal command action. Similarly, Mi ller, Kaplan and Edwards (1967)
demonstrated the efficiency of combining human value judgment and machine
policy selection to perform aircraft dispatching In a tactical air command
system. The interaction was found to be superior in performance to unaided
human dispatching. A good demonstration of a computer-based Information
system is found in the U.S. Army’s Simulated Tact ical Operations System
(SIMTOS). SIMTOS is an interactive information system for command and control
operations designed to comp lement the man’s information processing and decision
making capabilities . The system has been used to test the effects of a number
of procedural and information control factors on system performance (Baker,
1970, 1974).

On the other hand , some of the early work in computer aidi ng
engendered a competitive situation between man and machine, since the machine
acted as a “surrogate” or replacement of the operator (Vaughn and Mayor, 1972).
The trend toward adaptive, interactive systems has amel iorated some of the
problems of conflict by emphasizing the man-with-a-computer concept rather
than the man-versus-computer form. The more interactive “staff” functions
are characterized as providing requested information , suggesting alternatives,
alerting the operator to important data, and performing other decision subtasks
in an advisory manner (Vaughn and Mayor, 1972; Halpin , Thornberry and Streufert,

• 1973).

Previous work (Davis , We i sbrod, Freedy, and Weltnian, 1975) using an
adaptive aiding system called ADDAM concluded the following:

• (1) The ADDAM program adaptively estimates operator utilities in

realistic decision-making situations.

2-3
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(2) UtilIty estimation is consistent over subsets of the total
outcome set.

(3) UtilIty estimation rapidly stabilizes for consistent operator
decision behavior.

(4) DecIsion recommendations based on adaptive utility estimates
are well accepted by experienced operators.

(5) Availability of Individualized recouinendatlons markedly
improves decision-making performance by (a) allowing the
Individual operator to maintain near-maximum expected utility;
and (b) reducing variability among different operators.

Of particular Importance for practical use of adaptive aiding Is
conclusion (2), which indicates that a large set of utilities can be trained
in trials involving only a smal l number of utilities at a time, and
conclusion (3) which indicates that utiliti es may be estimated in a time

• period which is quite reasonable for many simulated and operational decision-
making tasks.

The CDT system concept grew out of computer aiding. Some aspects of
aiding are used directly in the CDT system such as presentation of action
probabilities, presenting measurement results in a semi-Interpreted form, and
the HELP function.whlch provides suggested next actions and a list of remaining
alternatives. The ability of the CDT system to track the student, diagnose
deficiencies, and give instructional feedback is closely related to similar

• aiding functions.

2.3 Methods of Quantitative Utility Assessment

Reliable methods for quantitative assessment of utilities are a major

• area of difficulty. A nisnber of techniques have been suggested and used, both
in the research literature (Kneppreth, Gustafson, Leifer, and Johnson, 1974),

2-4
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• and in the emerging discipl ine of applied decision analysis (Brown,

Hobl itzell, Peterson and Ulvila, 1974). The problem of assessing utilities
has become especially acute in recent years because of the growing interest
in quantitative decision analysis.

A large number of techniques for utility assessment have been suggested.
These may be classified according to the measurement and computational processes

• used to estimate them. Comprehensive reviews of utility assessment techniques
• have been prepared (e.g., Kneppreth, Gustafson, Leifer, and Johnson, 1974;
• Fls hburn, 1967). Three major classes of utility assessment techniques are

briefly reviewed here:

(1) El icitation of utilities through direct judgment. An analyst asks
the DM directly to give his value for each decision outcome. These
values are normally measured as point values for a particular

0 

outcome. These values can be obtained directly using a wholistic
• approach (Beach, 1973). However, since outcomes usually have

several attributes they are often decomposed into single attribute
outcomes. The single attribute utilities thus elicited are then
combined linearly, to yield the DM’s utili ties for the more compl ex
outcomes.

• (2) Inference from behavior in simpl e gambles and other decision games.
This technique requires the DM to respond to a series of simple
gambles or decision games which usually involve financial reward. 

0

The DM’s choices form a data base from which his utilities are
inferred, usually by indifference techniques. These techniques
have been used by a number of investigators (e.g., Tversk,y, 1967),
but are mainly constrained to laboratory/research settings.

(3) Dynamic estimation through decision observation. This approach 0

• calls for direct observation of decision behavior In real-world or

simulated real-world contexts. A primary example of this approach 0

is the ADDAM System (Freedy , Welsbrod, Davis, May, and Weltman,
1974) and the CDT system described herein. Other attempts
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to use this approach are more concerned with modeling the
decision maker ’s gross behavior while determini ng his utilities.
One good example is the bootstrapping technique of Dawes (1970)
which uses a brute force linear model .

The advantages of the Dynamic Observation technique are as follows :
(1) Utilities are estimated non—verbally, without the need for a skilled
analyst highly trained In utility estimation techniques. Indeed, the DM need
not be aware that his utilities are being assessed. Utilities can be
estimated rapidly and the technique is not limi ted by the number of possible
decision outcomes. (2) The utilities are measured on a common scale and
are combinatory. (3) The utility assessment technique responds adaptively to
changes in values and the utilities are automatically val idated by direct 

0

comparison with the DM’ s real-world behavior. These advantages have important
impl ications for adaptive decision training.

The adaptive technique assumes an expected utility maximizati on
paradigm for model ing decision behavior, and uses a pattern recognition

• algori thm to successively adjust the model to fit observed decision behavior.
The underlying expected utility (EU) model assumes that the operator chooses
that action whose expected (probability weighted) utility of outcome is
highest (Krantz , Luce, Suppes and Tversky, 1971). EU models , of course ,
are not a panacea for structuring decision models. Lichtenstein and Slovic
(1971)argue that descriptive models must take cognitive factors Into account, 0

0

Luce and Suppes (1965) question the use of deterministically maximized

choices rather than stoc hastic choices , and Wendt (1970) and Coombs and
Pruitt (1960) contend that the EU model should be modified to account for

preferences In variance of outcome. In general , though, the usefulness of
EU model is conceded In situations where the number of choices is low and

the decision maker can relate to all attributes in terms of probabilities

(Goodman, Saltzman, Edwards, and Krantz, 1971). Al so, the EU models have
the advantage of modeling both descriptive and normative (optimal) behavior,

unl ike most of the heuristic-based models (Wend t, 1973).
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Because the utility estimator is being continuously adjusted it is
useful to examine the behavior of the utilities under various conditions.
If the probability patterns are linearly separable into categories (decisions),
the utility estimator will learn to classify them perfectly after a finite

• number of steps. Since adjustment takes place only when there are classification
• errors, each utility will converge to a single value. If the operator’s values

change, the utility estimator will begin making errors again, adjustment will
take place, and the utilities will converge to a new set of values.

If the patterns are not linearly separable, a different situation
- arises since the utility estimation can never learn to classify perfectly.

In a conventional pattern classifier, linear inseparability is reflected in

F the error rate. In a system which is continuously being adjusted, this error
rate keeps the utilities from converging to a single value. However, the
util ities may approach a steady state value within a range of variance.

The accuracy it prediction of behavior and the degree to which the
util ity estimates converge can be used as measures of the va li dity of the
utility estimates. Perfect predictive validity would result in the convergence
of the utiliti es to a single set of values. However, given the l imitations of
human memory and Information processing, and the incons istencies in human

• behavior, it would be unreasonable to expect the EU model to be perfectly
predictive. If the operator’s behavior is consistent with the model “most of
the time”, the steady state variability of the utili ties will be smal l .
Likewise, if his behavior is “erratic” it will be large.

The validity of the utility estimating approach has been substantiated
both In preliminary experiments in this program and by experiments in two
completely separate simulations: (1) An intelligence gathering task in a
simulated dynamic environment (Weisbrod, Dav is, Freedy, and Wel tman, 1974); and
(2) An automated control allocation experiment (Steeb, Artof, Crooks, Freedy,
and Wel tman, 1976). In the first simulation the validity of the utility

0 estimatIon technique was tested by comparison of predicted operator decision

1 
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behavior with actual behavior and by comparison wi th directly expressed
preferences. A small sample of three subjects showed that a deri ved utility
maximi zing model predicted more than 95% of the deployments of Intelligence
sensors actually made by the subjects performing an intelligence-gathering
task. Similarly, in a subsequent sample of nine subjects , a high
correlation (r”.82, pc .Ol) was found between estimated and operator-expressed
sensor preferences.
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3. THE CDT SYSTEM

• 3.1 Overview

In essence , the CDT system is a computer program with the ability
to simulate or model three main elements in the diagnostic decision training
Situation. These elements are:

(1) Decision Making Task. The program simulates the particular task
environment with which the student interacts in the performance
of the task. Numerous examples of real life problems can be
simulated using the CDT approach.

(2) An Expert. Part of the program acts like an “expert” who serves
as both a source of help to the student, and as a standard
against which the student is judged.

(3) The Student. A separate part of the program constantly monitors
the student’s decision making behavior, and constructs a model
of the student simi lar in form to the simulated expert.

The CDT system uses an Expected Utility (EU) model of the student and
of the Instructor. In the student model, the EU principle is used as a basis
for dynamically estimating the student’s utilities for action outcomes. In
the instructor model, the EU principle is used to generate suggested actions
in response to student requests for assistance. The student’s utilities for
outcomes, in comparison with the expert’s utilities for the outcomes, provide
the framework for generating remedial instructions. The utility of an outcome
provides a measure of its worth or relative real world desirability.

The EU model is used to define instructor and student choice behavior
in selecting courses of action in a diagnosis and decision task. The
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probabilities of outcomes make up a measure of diagnosis while the utilities
provide a measure of the relative real world desirability or worth of an
outcome. In the troubleshooting context, probabilities are associated with
the likelihood of occurrence of measurement outcomes and circuit module
faults as inferred from observed symptoms. The symptoms define the Information
ava i lable about the equipment at a given time. The util ities are assoc iated
with the worth of knowledge about certain action outcomes, and the contrIbution
of this knowledge to determining technical circuit problems. In essence, the
expected utility model defines the relative desirability 0f performing a certain
measurement or part replacement under a given set of circuit symptoms. The
model is expressed in terms of probabilities of obtaining an outcome -- such
as a certain measurement result -- and the relative value for the information
about this measurement. The instructor utilities are calculated using the
adaptive utility estimation technique and then stored in a utility matrix.
These instructor utilities are thus available during the training task to serve
as a standard against which the estimated student values are compared. The
aggregated probabilities of the instructor model are displayed to the student.
Rather than using a static set of utilities , as in the instructor model, the
student utilities are dynamically adjusted throughout training using the
adaptive, on-line utility adjustment subprogram.

V 3.2 Traininif Procedure

Training In the CDT system Is provided by three procedures designed
to introduce the student to the system, provide practice in decision making,
supply instructions to direct the decision making, and assist the student
when difficulties are encountered.

Briefing. The student’s first encounter with the decision training
System involves a description of the system and training objectives and a
screening process. During the introductory briefing the student is told what
will be expected of him and how his performance will be assessed. Description
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of the system at this point stresses the overall nature of the trouble-
shooting task and the general procedures of locating faults and replac ing
malfunctioning circuit parts. Specific details of the circuit diagram and
actions associated with the display terminal are reserved for an introductory
session on the terminal . During this latter session, instructions displayed
on the terminal describe the operations required at the terminal.

Since a basic knowledge of electronics is a prerequisite for learning
0 to make decisions about troubleshooting, a screening test is given to

evaluate the trainee’s entering skill level. Screening can also be established
on the basis of performance in prior electronics courses.

3.2.1 Troubleshooting Operations. To illustrate the student’s interaction
wi th the CDT system, the follow ing sequence shows the steps that a student
uses. To begin, the tra inee sits in front of a graphics display terminal and
operates a keyboard. A written message on the terminal tells him that a
complex electronic circuit is not working right. The trainee is asked to be
the troubleshooter, that is, to find out what is wrong and to fix it by
replacing the faulty module.

The terminal then shows a diagram of the circuit, accompanied by a
message which gives the trainee various choices on how to proceed. Figure 3-1
illustrates the diagram and message . At this point the student can choose
to check a symptom, take a circuit measurement, replace a modul e in the power
supply, declare the circuit to be “O.K. ”, or ask for help.

Symptom Check. The symptom checks (points p, q, r, and s on the
circuit diagram) give an overall indication of the circuit malfunctions by
measuring the current or voltage output of the power supply. The output
voltage can be measured with the voltage control on the power supply set to
the high state (symptom p) or to the low state (symptom q). Similarly, the
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output current can be measured with the current control set to the high
- 

state (symptom r) or to the low state (symptom s).

Measurement Check. The student can take a circuit measurement to
gain information about the internal behavior of the circuit. Thus, he can
isolate malfunctions to specific modules by measuring the inputs and outputs
of those modules. 

-
•

Replace Module. After the student has gathered information about
the circuit behav ior, he will decide that a particular circuit module must be
faulty. The student can replace the module by requesting this category.

Power Supply O.K. The student must use this category to indicate
to the system that he is satisfied that the fault has been located and the
proper module has been replaced. The system then checks the circuit model
to confirm whether the fualt has been located.

Help. This routine suggests actions based on the expert model. The
student can request help at any point in the interaction with the CDT system.

If the student chooses to check a symptom, make a measurement, or
- 

. replace a module, he is then asked to list the symptoms, measurements, or
modules that he considers to be most likely to help him find and repair the
fault. Thus, the student is given practice in explicitly listing the
alternatives which are availabl e and relevant to the current decision.

As illustrated in Figure 3—2, the CDT system responds to the student’s
list of alternatives with the probability of obtaining the various outcomes
for the listed alternatives. These probabilities are based upon the estimates

• - of the probabilities, given what is already known about the problem. Thus
• the probabiliti es are revised as more symptom and measurement checks are made.
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The student chooses a particular action from among the alternatives
listed in the table of probabil i ties . After a measurement is chosen, the

• result of taking the measurement Is shown in the legend. The results of
checking symptom q and taking measurement 6 are illustrated in Figure 3-2.

• The legend thus serves as a “scratch pad” with a record of previous actions
for the current problem.

Rather than make actual circuit measurements, the student simply
chooses the action by typing on the keyboard and the task model simulator
provides the result of the symptom check or circuit measurement.

In deciding on his course of action, the trainee has to weigh the
cost involved in each of the choices, and the probability that a particular
choice will help him find and repair the actual fault. Since costs and
payoffs are the basic currency of decision making, and decisions must
usually be made in the face of uncertainty, the trainee is imediately
confronted with the main elements of the decision problem.

Help Routines. The “help” option is provided as an additional
method of instruction. These routines provide suggested actions to direct
the student toward appropriate actions. These routines are based on the

• expert model. The help which can be given is listed in three categories.
First, the training system will list the circuit modules which are most
likely to be faulty. Second, the system can suggest the action that the

• expert would choose. Third, the help routine will suggest which action
the expert would choose from among the alternatives that the student Is
considering.

The CDT system can be divided into four functional parts: (1) Task
Simulator; (2) Expert Model; (3) Student Model; and (4) Instructional Logic.
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3.3 Task Simulator

• The present task involves troubleshooting an electronic power supply;
• however, the following discussion could apply to a wide variety of diagnostic

decision tasks (e.g., medical diagnosis, automotive repair, troubleshooting
microelectronics, etc.). The task is based on a block diagram of the power -J
supply circuit. The behavior of the power supply Is simulated with a table
of faults symptoms, and measurement outcomes. This method does not depend on
circuit theory and thus could be generalized to subject areas for which

- functional equations do not exist (e.g. , medical diagnosis). The task
simulator generates circuit faults and simulates the results of checking
symptoms, taking measurements , and replacing modules. Measurement results

• are presented in a semi-interpreted form (high, normal, low)(similar to the
approach of Bond and Rigney, 1966), rather than as absolute readings so that
the student need not refer to a table of normal circuit levels. These
simpl-i flcations do not affect the Inherent judgmental nature of the trouble-
shooting task.

• The fault model is a subset of the task simulator that is used to
provide updated module failure and measurement outcome probabilities. This
fault model Is based on a state space approach of calculating the conditional
probabilities. For the purposes of the fault model, the normal condition is
considered to be a fault. Two conditional probabilities are calculated:

P(X1~ tX) (3.1)

and P (M
~lY) (3.2)

where
X 1j is a measurement outcome to be obtained

X is the vector of all measurement outcomes obtained
(measurement hi story)

is module, L, containing a fault.
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The conditional probability shown in equation 3.1, the probability
of getting result X1~, given the measurement history, is calculated as
follows: Let K be an index over faults. P(K) is the probability of fault
K. For each fault, K, each measurement, X

3
, must have a unique outcome,

• X
1J~ 

Then let L
~j 

be the set of faults associated with measurement outcome
xij .

Then
• 

• 

~ P(K) = 1 (3.3)
k

and the initial measurement probabilities (before any other measurements have
been taken) are calculated as -

P(X i.) = ~ P(K) (3.4)
• [ksL1~)

Also, let L
~ 
be the set of faults still possible, given the measurement

history ~. Then

1, = VL IX 1~cX (3.5)

and the conditional measurement probability is calculated as

~ 
P (K)

Kc (L1.flt. )
pI~~ I~~\ — 13 X

• ‘ ‘3’ ‘ 
— 

~ P(K) (3.6)
keL

~

After a measurement result, X1~, is obtained, the faul t probabilities,
P(K) , are adjusted to P(K iX 1~) as follows :
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P(KIX 1~) = 0 (3.7)

for all  K 
~ 

11j and

P K X  ~ 
— P(K)

~~~~ 
— 

~~PTKJ
[KcL1~] (3.8)

The probability of the module failure is then calculated

P(M
~

) = ~ P(K) (3.9)
KeL

~

The condit ional probabilities, P(X1~ J~) and P(Mt l~
), are used by the

expert model in calculating the expected value for each measurement or module
replacement. These probabilities are also displayed to the student during his
process of considering subsets of measurements or modules.

The simulated task may be altered by specifying a new set of task
problems and the associated probabilities . The simulation also requires that

• the set of possible task actions be specified and permits a set of costs for
these actions to be included. This state representation technique contrasts
with a task simulation based on a set of defining equations. The former

technique permits simulation of a wide range of tasks , Including those for
which functional equations do not exist. However, the latter technique is
powerful in terms of the dynamic range of simulated task characteristics . -

3.4 Expert Model

The Expert Model Is a fixed parameter model with the following 
-

capabilities :
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(a) It can select the decisions with the hi ghest expected
• utility.

- 

(b) It can be used to suggest an action from among those being
considered.

•1

(c) Its utilities can be used as a standard to which the student’ s
utilities can be compared.

An expected utility (EU) decision model is used to represent the
expert. The EU is a prescriptive model which makes use of a criterion for
optimum choice among alternatives , assuming “rational behavior” (Edwards,
1962; Fishburn , 1964). The choice criterion employed is the maximization of - •

individual expected relative utilities as obtained by a weighted sum of
individual utilities of consequences and their probability of occurrence.

The max imum EU principle has become a w idely acceptable normative
decision model for risky decision making (Luce and Raiffa, 1957; Krantz

• et al , 1971). The work of Tversky (1967); Goodman et al (1967): and
others has indicated that the expert maximization principle provides a
good first approximation for decision nviking under risk.

More specifically, the expected utility of an action is

EU~ = ~ P~~U1~ (3.10)

= probability that the 1th consequence in a set of n
consequences will occur if action Aj is selected by the

• decision maker.

• relative utility of the 1th consequence of the ~th action.
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• • The EU model is used here as a basis for defining optimum strategies
and as a structure for adaptively estimating the student’ s utilities as
inferred from his decision behavior. Using an on-line adjustment of the
specific student utility structure , an adaptive learning network searches for
the student utilities which can explain his action by the criterion of
maximization of EU. Thus, the model continuously tracks the student’s
decision strategy as it changes during the course of training. In the

• instructor model, a fixed EU model is used In real time as a criterion for
reconinendirig actions to the student in response to the student’s requests for
assistance. Off-line, an adaptive EU model is used to estimate the Instructor’s
values.

3.4.1 Information Gain. The expected value model itself is insufficient
to model dynamic decis ion behavior where the primary goal of the task is more
information gain. Such is the case with tasks of diagnosis, fault detection,
intelligence gathering, troubleshooting, etc. In these instances, the
expected value of an action is also a function of the information to be gained
if the action is selected. Shannon and Weaver’s (1949) measure of information,

- I -~~ P(K) Log2 P(K) (3.11)

• is a comonly used measure of information.

We need to find an information gain function, which assoc iates
an information gain with a measurement outcome, X1~. This function is
incorporated into the EV equation as follows:

EV = 
~ 

CE
IJ
P
U

VIJ P.,j(u~j ii~~) (3.12)

Since we are modeling a subjective decision process, there are several

possibl e forms of the information gain function, aU. Some of these are
discussed below :
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(1) = 
~ 
[P(KIX~~) Log2 P(KIX~~

) -P(K) Log2 P(K)] (3.13)

With this calculation of ci~~, the value for an outcome is
weighted by the information to be gained about remaining faults
if the outcome Is obtained.

(2) A similar function to 3.13 Is calculated by substituting
P(ML) for P(K). In this instance , the value for the outcome is

• weighted by information to be gained about faulty modules.

(3) A direct substitution of Shannon and Weaver’s measure of
entropy gives

= -~~ P1~ Log2 P~ (3.14)

However, the expected value of an action becomes

EV~ = ~ P1~ 
(_P

1~ Log2 P )

= ~ ~
‘ij

2 tog 
~~ 

- (3.15)

which multiplies the weighting of the function by the outcome
probabilities. Hence a better formula for the information gain
is

= - Log~ P1~ (3.16)

and EV~ = ~ P1~(— &og2 P1~
) V~ (3.17)

Note that equation 3.16 has the same value for all outcomes, 1,
• of measurement, j. In this case knowledge of how outcomes

affect fault probabilities are not needed.

3-13



(4) = 1 (3.18)

- is valid where the specific task does not involve Information
acquisition. It sometimes represents the behavior of beginning
troubleshooters who tend to prefer to verify existi ng knowledge.

(5) Another approach is taken by the troubleshooter who tries to
eliminate the largest nunter of possible faults (regardless of
probability or module in which the fault occurs) wi th each
measurement. The following a models such a troubleshooter:

= — f .~ 1092 f1 (3.19)

where, considering previous measurements

= 
Faults associated with I (3 20)I All possi ble faults

In the initial trials with the system, the information gain function
represented by equation (5) was used. The other information gain functions
are also-ava ilable at the experimenter’s option.

• 3.4.2 ~imu1ated Student. The expert model can be used to simulate a
• student by substituting student values for expert values and using an option

in the program which automatically goes through the troubleshooting process
as a student would. The simulated student is used for the following purposes:

(1) As a debugging aid.

(2) To sliiiilate proposed experimental sequences.

(3) To compare actual student behavior with model behavior

to test model validity. -
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Any set of values (e.g., values estimated from a human subject’s performance,
or theoretically ideal values) can be used to form the basis of the decision

• behavior which the program generates. This subprogram is an excel lent aid
for debugging software, and for quickly find ing possibl e problems with a

• proposed experimental sequence before real subjects are used. The simulated
student subprogram is also a useful analysis tool since it can be used to
generate cons istent behav ior so that system parameters can be fine tuned or
to serve as an optimized consistent standard to which student performance can
be compared. It has the future potential of demonstrating a particular type
of decision behav ior to the student.

3.3.4 Requests for Help. A “help” routine is ava i lable which uses the ideal
response characteristics of the instructor EU model. The algorithms interpret
a student’s request for assistance, and responds to student inquiries by
performing the following functions:

• (1) Listing potentially faulty modules.

(2) Suggesting an optimum action, irrespective of whether the
student has considered it.

(3) Suggesting an optimum action from the set of actions the
student is already considering.

Function 1 involves checking the current action—outcome probabilities
to deduce which modules have a significant probability of being faulty at

• the present state in the debug cycle. An optimum action is chosen in
Function 2 by selecting that action with the maximum expected utility . The
expected utilities of all actions are calculated from the expert’s utilities
and the probabilities for action outcomes. Function 3 is similar to function

- 
2; however, the action with the maximum expected utility is selected from

the subset of actions that the student has selected for consideration.
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- 3.5 Student Model and Dynamic Utility Assessment I

The student model has the same mathematical form as the expert model
except that the values, are adaptively determined by the methods of
dynamic utility assessment. The EV equation is used to predict the student’s
action.

The student model is designed to model subjective aspects 0f the
student’s dec is ion behav ior by continuously “tracking” changes in the student’s
values in real time. These estimated values provide the basis for Instructing
the student about appropriate evaluation of action outcomes. During the
process of converging upon stable estimates of the student’s values , the
adaptive student model can also provide early estimates of widely inappropriate
values . Ininediate instructions regarding these values can direct the student
toward more consistent decision-making while he becomes accustomed to the
tra ining problems.

Since the student must also learn to focus on the odds of action
outcomes, the training system displays the probabilities to the student.
The student model uses the same set of probabilities as used in the expert
model.

The dynamic value estimation technique, devel oped by Perceptronics in the
context of a decision aiding task (Freedy, Weisbrod, Davis, May, and Weltman,
1974), is based on the principle of a trainable multi-category pattern classifier.
The value estimator observes the operator’s choices among R possible decision
options available to him, viewing his decision making as a process of classi-
fying patterns by means of an expected value evaluation , or discriminant,
function. These classifications are compared with the operator’s decisions and

• an adaptive error-correction training algorithm is used to adjust pattern weights ,

which correspond to values, whenever the classif ications are incorrect. Thus, the
value estimator “tracks” the operator ’s decision making and “learns” his values.

• A multi-category pattern classifier (NiIsson , 1965) receives patterns
of data and responds with a decision to classify each of the patterns in one
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of R categories. The classifi cation Is made on the basi s of R l inear
discriminan t (or evaluation) functions, each of which corresponds to one
of the R categories. The discriminant functions are of the form

= . X for I = 1, 2, ..., R (3.21)

where ~ is the pattern vector and i~ is a weight vector. The pattern
classIfier computes the value of each discriminant function and selects
the category, 1, such that

g
~ 
(X~) ~ g~ (X) (3.22)

for all j  = 1, 2, •.., R; I ~ j .

The adaptive error—correction training algorithm is very straight-
forward. Whenever the category selected by the pattern classifier , i , is
different from the actual classi fication, k the weights W1 are adjusted
to reduce (punish) the value of g1(~) and the weights Wk are adjusted to
increase (reward) the value of 

~~~~~~~~~ 
Thus ,

= + i • (Reward) (3.23)

• 

• = Wk - (Punish) (3.24)

where Y Is the correction increment.

The dynamic value estimator, schematically represented in Figure 3-3
classifies pattern vectors

• 
. IT = 

[~1,1~ ~‘l ,2~ ~~~~~~ (3.25)
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whose components, p.~ , are the aggregated probabilities of the result, 1,
of action j. The djscrimlnant functions are the expected values

EV~ ~ Vj,j a~ (3.26)

of the actions. The value estimator computes the EV of each action and
selects that action for which the EV Is maximum.

A fixed increment training rule is used to adjust the values.
Whenever the action, d, -selected by the value estimator differs from the
action, c, selected by the student, the values associated with the estimator
action are punished and those associated with the student are rewarded:

= V~d - (~~ 
• P~d)u1~ (Punish) (3.27)

V~~
1 = V~c + (y P~C)a1~ (Reward) (3.28)

The values at time t+l are computed for all action results, j. The correction
Increment , y, Is a constant which can be adjusted to give optimum convergence
of the estimated values.

3.6 Instructional Logic

Comparison of parameters in the student model with those in the
expert model leads to the Instructions and feedback given to the student.
The -instructional logic compares the utilities of the expert and the student
models to generate instructional feedback In the form of generating fault
problems and offering instructional “help” to the student. Help is offered
by monitoring the student’s decisions and using the instructor model to
give prompts to the trainee.
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The extraction of prescripti ve information from the student’ s
utiliti es is the central focus In the CDT system concept. In part icular,
the analysis of utilities provides a direct measure of student’s decision-
making consistency, an indication of whether he approaches the correct
utilities, and a measure of the rates at which he approaches the correct
utilities. Utility discrepancies between that of the student arid the
instructor model provide direct diagnostic information regarding student
decision strategies and areas where special instruction are required.

An analysis of the expert technician ’s performance identif ied the
cr itical measurements for efficient diagnosis and fault isolation. The
estimated utilities for the normal outcomes of these cr iti cal measurements
are characterized by a rapid divergence from the initial starting values.
Additionally, the measurement utilities show early movement toward final
relative ranking. Thus, the derivative of the estimated utilities , , can
be used as an effective index for selecting instructions. During the initial
selection and evaluation of instructions, statements printed on index cards
were presented to the student. The experimenter selected the cards on the
basis of stated rules and calculations from the printed values .

The new CDT system will contain software mechanisms for evaluating
• student behavior and giving the student corrective feedback. Behavior is

monitored by evalua ting “key” utilities in the student model for relative
rank after a small number of problems . Spec if ic differences between the
student’s rank and “optimum” rank are associated with specific instructions
designed to “correct” the relative utiliti es the student places on the
measurements involved.

The procedure of having the student perform some problems and
subsequently evaluating h-is utilities and providing feedback for him is
repeated for as many instructional phases as the operator wishes to specify.
The key measurements, Instructions available , and Instructional criteria is
phase specific and may be set by the operator.
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A criterion for selecting an instruction is specif ied as a Boolean
- 

expression whose truth value is determined on the basis of most recent student
• 

• 
• behavior. If the truth value of the expression is FALSE, the corresponding

- s 
instruction is not given. If the value is TRUE this instruction is given .

• As an example of the instruction-selection procedure, consider the
following situation: suppose that a particular instruction is to be given if
and only if the utility for measurement 4 is higher than the utilities for
measurements 6 or 7 and the utility for measurement 3 is NOT less than the
utility for measurement 6. The corresponding Boolean expression is ((4P7)

• V (4P6)) A (—(6P3)). Assume that 4 is indeed greater than 7, 4 i s greater
than 7, and that 6 is greater than 3. In this example, the instruction would
not be given since the operation -(6P3) was evaluated as FALSE.

Currently the elements of the Boolean expression are precedence
relations for measurement utilities. The Boolean interpreter will , however,

• evaluate additional elements with minor additions to the system so that
• additional instructional criteria, based on utilities and/or on other parameters,

may be developed as a basis for more sophisticated instructional feedback.

Currently, the derivative of the estimated student utilities is not
• being used as a basis for instructional feedback, this may be added later.

The ranking of util ities, after a few problems are performed by the student,
provides more information than the direction of change of utilities and is
currently used instead. Under certaIn circumstances (such as when a pre-
determined series of problems is given to the student), val id directional
information from utilities may precede valid rank information and utility
derivative criteria would be justified on the basis of more rapid responsive-

ness to student behavior. If so, such criteria and associated instructions will
be added to the system.
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The Interpreter currently processes 4 Boolean operators and one
relation. These are:

Operators Relations

V - OR P - precedes (ranked higher)
A - A N D
X - EXCLUSIVE or
- - Not

Other relations and operators may be added easily to the system~.

• 3.7 Diagnostic Report of Student Performance

To fully evaluate student and model performance it was necessary to
develop a data collection package, a set of performance measures, and a
student diagnostic report. The data collection package was designed to
provide a general purpose tool for collecting experimental data in a form
which is amenable to printing, storing on disk , or using for computer
analysis. The program uses the concept of inserting data collection points
in the flow of control of an experimental system. At each data collection
point the values of specified variables are collected. Each data collection
point may have associated with It a heading which is printed above the
data for the corresponding data collection point. Also, each variable has an
optional 16 character label associated with it which is printed in the left
most part of the page.

In addition to the sunmiary of activities provided by the data
collection routine, several performance Indices were developed to character- 

—

ize the student’s performance during the interaction with the CDT system.

These perfomrance measures are printed at the conclusion of each problem

along with the problem suninary data. All measures are calculated as mean

values across each fault problem.
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• (1) Relative Competence -- A measure comparing the expected utilities
of the student and expert for the chosen action. Competency is
given by the following equation:

COMPETENCE = 
EU e (student choice) X 100

EUe (model choice)

where EVe is an expected utility calculated -from the utilities
of the expert model .

(2) Relative Consistency -- A measure of the expected utility of
the student ’s choice expressed as a percentage of the expected
utility of the model prediction. This compares the student’s
own performance with the performance of his adaptive model.

CONSISTENCY = 
EUS (student choice) X 100

EUS (model choice)

Consistency is a measure of the stability of the decision
maker ’s behavioral patterns. Untrained DM’s often alter their

• • tactics using inappropriate criteria. Often they modify their
behavior on the basis of inadequate number of preceding trials
(Sidorsky & Simoneau, 1970). Thus, decision consistency is an
important measure which defines whether the ON has reached a
stable tactical decision strategy.

The adaptive decision modeling system Inherently provides a
measure of decision consistency. If the DM’s behavior is
inconsistent, the model-derived estimates of his utilities
will not converge, whereas stable behavior will lead to
convergence. Thus, the degree to which the utilities converge
also provides a direct measure of decision consistency.
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(3) Relative Information Gain -- Indicates the amount of information
the subject obtained compared to the maximum ~nformatlon - •

- • available.

ALPHA Information Gain of Student ’s Choice 
~ 100• Information Gain of Choice with

Maximum Information

(4) Relative Information Gain of Considered Alternatives -- Ind icates
the amount of Information In the several actions that the student
considers before each decision, as compared with the infonnaiton
potentially available form the set of actions with the maximum
expected values.

E(Information Gain of Considered Actions)
ALPHA (CONS) = 

E(Informatlon Gain of Maximum EU Actions) X 100

Table 3-1 gIves a list of additional performance sunmary ind ices
that are printed by the data collection routines. These Indices are printed
at the compl etion of each problem.

3.8 System Software

The CDT system software Is written in assembly language and contains
a number of modules. The software Is briefly described in the first annual
report and Is fully documented in a programaer’s reference manual.

Information Structures. The state of the instructional sequence at
any given time is maintained In information structures containing the
following information:
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TABLE 3-1. PERFORMANCE SUMMARY INDICES

1. FIRST LINE: Information typed by experimenter at beginning of
experiment (e.g., Name, Date, Sess ion, etc.).

2. PROBLEM: Problem number.

3. FAULT: Fault number.

4. BAD MODULE: Faulted module.

5. PROBLEM COST: Cost to complete problem.

• 6. TOTAL COST: Cost to complete all problems so far.

7. DECISIONS: Number of decisions taken to complete problem.

8. ADJUSTMENTS: Number of times student model -failed to predict during
current problem.

9. COMPEl.: Competency of student’s decisions.

10. CONSIS.: Consistency of student’ s decisions.

11. ALPHA: Effective information gain of student’s measurement choices.

12. ALPHA (CONS): Information gain of student’s considerations.
• 13. TIME (MIN): Time (in minutes) to complete current problem.

14. NO. TIMES NONE USED: Number of times student used “NONE” in current
problem.

15. NO. TIMES HELP USED: 1, 2, 3: Number of times each of the three hel p
options were used in this problem.
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. The actual circuit fault.

. The measurement results obtained to this point.
• Action phase (taking a measurement, replacing a module , help.

declare operational, checking a symptom).
• Total expended cost.
• Actions currently being considered, if any.

Actions currently chosen, -If any.
Student ’s current values for measurement results and module
replacements, as represented in the student model .

Fundamental to the system concept Is the fact that the state of the
instructional sequence can be represented by variables taking on discrete
values. For this reason the state can be very compactly represented (a
fact that would be very useful in a multi-student environment). The
measurement resul ts so far obtained, the act ions considered, and the actions
chosen are each represented by binary vectors.

3.9 Instructor/Computer Interactions

The Instructor interacts with the CAl system primarily through the
teletype. UsI,~g an interactive control program the Instructor may easily
modi fy the nature and complexity of the task environment, the decision model
performance characteristics, and the structure of the student/computer inter-
face. Additionally, he may save the student environment in the middle of a
testing session and restore It at a later time to resume testing.

The instructor controls the task environment by modifying the character-
Istics of the measurements and the circuit faults. The experimenter can modify
the fault behavior of the circuit by changing the probability values . He can
add new faults and measurements by making additional entries in the tables
which define the information structures.
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The performance characteristics of the decision ~~~ can be
controlled by modifyIng (1) the initial value level s used by the adaptive
EU model, (2) the learning rate of the utility estimator , and (3) the EU
evaluation function used by both the model and the utility estima tor. The
easiest to modify are the initial settings of the value matrix, which are
input by the instructor during program initialization. These initial values
affect the behavior of the adapti ve EU model and the utility estima tor, at
least during the early stages of a run. The learning rate of the utility
estimator is controlled by a correction increment. This parameter affects
the rate of convergence of the utility estimator and determines its
sensitivity to changes In the operator’s decision behavior. The size of the
correction increment also affects the amount of variance which will result
from inconsistent operator behavior. A more difficult method of controlling
the decision model is modification of the expected value function. This
function, also used as a discrimlnant function by the utility estimator, is
programed into the system. Such modification of the EU function might be
done, for example, if new types of task actions were required in the training
System.

The interactive control program al lows the experimenter to alter or
select a large number of system parameters• This program is designed to
allow additional comands to be added easily when required. Basically, three
types of function are supported: (1) setting, resetting, changing , or
displaying current CDT system parameters; (2) saving the current problem
environment; and (3) recording the student’s behavioral history or rerunning
a previously saved history to exactly reproduce a student’s behavior. In the
first category, some of the implemented options are: (1) suppressing the use
of “NONE” and “HELP” by the student; (2) assigning of a cost to “NONE° and
“HELP”; (3) changIng of the cost of symptoms, measurements, or modules;
(4) choosing an Information gain function; (5) selecting the order In which
faults are chosen (if not random); (6) setting the number of measurements the
student may consider at one time; (7) running a “simulated student”; (8) re-
setting the student’s or the expert’s values; and (9) suppressIng probability
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presentation. All parameters can also be displayed, punched on paper tape
(or to a disc file), or read from paper tape, as wel l as being changed at
any time, or cause it to be invoked after a certain number of problems have
been completed.
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4. SYSTEM PERFORMANCE EVALUATION

4.1 Engineering Evaluation and Analysis

Engineering evaluations and analyses were performed throughout the
year. The tools of these evaluations were the automatic student program as used
to simulate an experimental run, the data collec tion and report routines , and
the temporary alteration of software for the purpose of analysis. The
objectives of these engineering tests were to (1) validate the operation of
the training algorithm used in value estimation and (2) establish correspondence
between the estimated values and an expert technic ian ’s ranking of the
importance of the circui t measurements.

4.1.1 Training Algorithm Validation. Validation tests were conducted with
local tests of selec ted pa irs of ac tion alternatives . An arbitrary set of
utilities was chosen for the two measurements under consideration. A fault-
isolation problem was initiated and ar~ engi neer used a hand calcu lator and
his chosen utilities to calculate the t~xpected utilities of the two target
measurements. He chose the measurement with the greater expected value.
This process was repeated through several problems to give training over a
wide range of measurement outcome probabilities.

Figure 4—1 Illustrates the progression of change In utilities for the
two outcomes of two selected measurements. The imposed utilities are indicated
as being arbitrarily 1 and 2. Th is figure, typical of the several tested
measurement pairs, shows the rapid convergence and the rank ordering
consistent with the imposed utilities . These tests indicated that the
utility training algorithm was operating correctly for isolated values. A

global test was designed to analyze the algorithm function In the complete

measurement set.
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The global tests were made us ing a cons istent overall dec ision
strategy in which most of the availabl e measurements were used. Following
14 fault problems involving 70 measurement-sel ection decisions , the utilities
that had been adjusted were converged at level s which corresponded to the
relative ranking in the imposed decision strategy. These trained utilities
were also inserted in the simulated student algori thm to provide an
independent test of the adjustment algorithm with known utilit ies for the
decision maker. The resulting estimated utilities were In a similar rank

- order to the s imulated student’s utilities ; however, the absolute values were
not equivalent.

A similar test with the simulated student was conducted to iest the
predictive capability of the adaptive student model. In this case, the
values inserted in the simulated student were calculated to be inversely
proportional to the cost of the actions. As shown in Figure 4-2, the simulated
student reached 100% predictive success in 45 problems (210 decisions) with
rapid convergence occurring during the first 80 decisions. These tests
indicated that the adaptive value-estimation algorithm performed accurately
under conditions of strict decision consistency. It remained to test the
algorithm with human decision makers who do not follow a prescripted strategy.

• 4.1.2 Estimated Values and Expert Technician Ranking . An expert electronics

- 

- 

technician was given extended practice with the CDT system during which time
the util ities of the adaptive model adjusted to reflect his behavior. Following
the extended problem solving sessions, the technician was interviewed to
determine his stated reasons for selecting specific measurements and his
estimates of the Importance of these actions. Those measurements which he
indicated had critical importance in fault-isolation were identified as the
key utilities. Figure 4-3 illustrates the adjustments and convergence of
utilities of the expert technician for normal measurement outcomes for key - -

measures. These key actions were identified during the post-training interview
with the expert.
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A pilot experiment was also performed using six subjects . The
primary objective was an engineering evaluation of the system and adjustment
of the system constraints and capabilities to be used in successive experi-
ments. The first two subjects relied heavily on the “HELP” routines which
reduced the infl uence of the students ’ own strategies . Therefore, a cost
was applied to the use of HELP, as had previously been implemented for the
Measurement and Module Replacement actions. The second two subjects were
allowed to find their own strategy, and the last two were indoctrInated
Into a troubleshooting strategy. The last two subjects showed rapid utility
convergence. Changes to the system were made on the basis of the experience

obtained duri ng this engineering experiment. These changes i ncluded:
(1) the number of measurement points included on the task display ;
(2) the cost values associated with specific measurements, module replacements,
and help requests; and (3) the number of alternative probabilities considered.

4.1.3 Comparison of Student Performance with Model Performance. A standard
of performance for the student technicians was examined by comparing the cost

— expended by the students to the cost expended by the students’ own models of
troubleshooting. In the second experiment of the current project a group of
eight experienced technicians were given three work sessions on the CDT system.
The students ’ utilities for the measurement outcomes were adaptively estimated
during the workIng sess ions. The utilities for each student were then used in
the “simulated student” which automatically selected measurements to trouble-
shoot the circuit. The simulated student with the student’s own values thus
provided sample decision behavior with consistent, non—redundant choices.

Figure 4—4 illustrates the results of the comparison between the
student and his decision model. For seven of the eight students the model -
driven simulated student isolated circuit faults at lower costs than the

student himself. Subject 8 was an inexperienced technician and his large
cost/problem expenditure resulted from his selection of more measurements
than necessary for problem solution. For points of reference, uniform
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utilities for all measurement outcomes and utilities which are inversely
= proportional to the measurement costs were used in the “simulated student”

program.

4.2 Student Performance Evaluation

Experimental analysis of student behavior with the CDT system was
conducted in two studies with different student populations. The first study
included four college students who scored low on a written test of electronics
knowledge. The objectives of this experiment were to (1) provide an evaluation
of the adaptive decision model and (2) demonstrate the range of student
performance to be expected with the current system. Each student was given an

• Introductory briefing about the training system. The student then worked with
the system for 6 hours, divided Into 2-hour sessions. During the training
sessions the student was allowed to use the full capabilities of the CDT
system, including the HELP routine and the presentation of probabilities of
obtaining measurement outcomes. However, the students used a restricted set
of measurements in locating faults.

The results of this experiment indicated that the parameters of the
adaptive expected utility model converged to stable values. This was
particularly true for those students who quickly settled into consistent
decision strategies. The students also demonstrated wide variation in rate
of decision-making. For example, one of the four students was able to solve
as many troubleshooting problems In one 2—hour session as another student
solved in six hours.

Figures 4-5 and 4-6 illustrate the performance of the adaptive
decision model for the two students described above. Utilities for several
selected circuit measurements are plotted as a function of the nuther of
student decisions. The values were set at an Initial level of 100 and were
adaptively adjusted to track the student’s choices. For reference, values
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calculated to be proportional to cost alone are shown at the right of the
figures. These figures also illustrate the differences in decision making
speeds among students since both figures represent the total six hours of
training.

The experiment also demonstrated that the students rely heavily on
the presentation of action probabilities. The student would consider a

-
- number of alternative actions before deciding upon a specific action. A

fifth student was restricted to observing the outcome probabilities of only
two alternatives before he took each troubleshooting action . His trouble-
shooting performance was severely degraded since he chose to make many more
measurements than those students who were not as restricted in their observa-

• tion of the outcome probabilities.

The second experimental study was undertaken to examine the performance
of more experienced electronic technicians under a variety of conditions of
availabl e Information. Eight subjects who scored high on the written electronics
knowledge test were given 4-1/2 hours of experience on the CDT system. The
written test included additional questions regarding logical troubleshooting
procedures. The students used the full set of available circuit measurements
to locate and replace faulty circuit modules. During the second of three
sessions , the students used the expert’s estimates of action outcome proba-
bilities as additional information to supplement action selection. During the
first and third session the outcome probabilities were unavailable.

The data indicate that the students continued to improve their

decision making speed throughout the three training sessions. The mean and

range of decision time performance for five of the eight scheduled subjects
are shown in Figure 4-7. As shown in Figure 4-8, when the outcome proba-

bilities are withdrawn in session 3 the students ’ decision efficiency decreases.

- 4-11
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This second study also provided an opportunity to assess the
predicti ve capability of the adaptive student model for student decision
makers . Figure 4-9 illustrates the mean predictive successes of the student
model for the eight students. During the second session, when outcome
probabilities were presented, the decision model accurately predicted 75% of
the student’s choices. This can be compared with the predictive success with
the simulated student shown previous1y in Figure 4-2.

4.3 Evaluation of Instructions

An initial set of instructions for improving a student’s decisions -•

were developed and evaluated. These instructions were des igned to teach the
student to adopt utilities for the key circuit measurements which are simi lar
to the expert’s utilities.

Based on the key measurements identified by the technician and his
utilities for these measurements (illustrated in Figure 4—3), a set of six
instructions were developed. These instructions, shown in Table 4-1,
identify the range of outcome probabilit ies under whi ch the measurements
should be selected. The instructions also provide a description of the
circuit conditions under which those outcome probabilities should occur.

Instructions k and B are intended to identify for the student that measurements 2,
4, 5, 6, 13, and 21 are key ac tions to be used when troubles hooting the power
supply. In addition , instructions 1 through 6 indicate that measurements 2,
13, and 21 should be highly valued since they are inexpensive to use wh i le
measurements 4, 5, and 6 are expensive so they should be used only 

•

in situations of moderate or high probability of obtaining a normal measurement

outcome.

Table 4-1 also shows the criteria for selecting the instructions.
These criteria are shown as Boolean expressions, us ing the operators and
relations described in Section 3.6. An additional operator was added to

~ 
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TABLE 4-1. UTILITY TRAINING INSTRUCTIONS

AND SELECTION CRITERIA

SELECTION
INSTRUCTION CRITERION

A. Good troubleshooting begins with a Following Problem 15
cons istent approach to every
circuitry problem. For each new
problem you are faced with the same
fact; lack of information. Therefore,
you should approach each problem in
the same manner to gain information.
Once you have gained a certain amount
of information you can focus on the
considerations relevant to the
particular problem. This consistency
of troubleshooting behavior allows the
computer to learn your decision patterns
more rapidly.

B. Certain measurements are considered to Following Problem 15
be key measurements for gaining initial
information about any given problem.
These measurements are 2, 4, 5, 6, 13
and 21. Note the location of the
measurements on the circuit and at the
legend on the right. Please consider
them as often as possible.

1. A good troubleshooting technique is to (2) P(4 v 5 v 6 v ‘100’)
isolate the input modules from the
current and vol tage feedback loops.
Measurements 2, 3, 4, 5, and 21 can be
used to isolate the input modules.
Since measurement 5 is expensive, use
measurement 2 to gain as much cheap
information as possible. Use measure-
ment 2 when It has a low probability of
a normal outcome to confirm the state of
the transformer.

4-16
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TABLE 4-1. (CONTINUED)

SELECTION
INSTRUCTION 

— — 
CRITERION

2. A good first step in checking the (13) P (4 v 5 v 6 v ‘100’)
operation of the current and voltage
feedback loops is to check the output
of the series regulator. This should
be done with the circuit operating at
full output s ince this fully exerc ises
the circuit functions. Therefore,
measurement 11 or 13 should be used
even if there is a low probability of
a normal outcome. Use measurement 13

• since it is much cheaper than 11.

3. Measurement 21 serves well to isolate (21) p (4 v 5 v 6 v ‘100’)
the operation of the transformer and
reference DC source. Since this
measurement is relatively inexpensive,
use it even when the probability of
the normal outcome is low.

4. Measurement 4 is required to isolate (2 v 13 v 21) P (4) A
• the transformer from the reference (‘100’) P (4)

DC source. However, measurement 4 is
relatively expensive so it should be
used only after a non-normal outcome
from measurement 21 has been found.

-
. In this case the table will show a

probability of about 50% for the

- 

- normal outcome of measurement 4.

5. Although Measurement 5 is located at a (2 v 13 v 21 v ‘80’) P (5)
- good point to isolate the power input

modules, it is expensive. Use this
medsurement after you have eliminated
most other possibilities. Measurement 5
should be used when the probability of a
normal outcome is rather high but not
certain (a range of 60% to 80%).

6. Measurement 6 should be used to determine (2 v 13 v 21 v ‘80’) P (6)
- the status of the current feedback loops.

However, It is expensive so use It only
after find ing that Measurements 13, 19,
or 20 are not normal. In this case, the
probability of a normal outcome for
measurement 6 will be about 60% to 80%.
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enote an absolute utility value, e.g. , ‘100’ , in addition to an adaptively-
- 

estimated utility for a specific measurement.

Two students who scored high on the written test of electronics
knowledge participated in this initial evaluation of the Instructions. During
the first session, which lasted about two hours, each student read the
written introduction to the system and then practiced with five troubleshooting
problems on the CRT display terminal . The written IntroductIon (1) described
how to operate the CDT system, (2) discussed the operation of the power supply
circuit and its functional modules, and (3) gave a brief introduction to the
notion of probabilistic outcomes to altfrnatives. However, no instructions
about possible decision strategies or- alternatives in troubleshooting the

• power supply were given in this introduction.

During the second training session, each student completed 15
troubleshooting problems at the display terminal. No instructions were given
during this session; however, the adaptive model of the student generated the
estimates of the student ’s util ities for measurement outcomes. At the beginning
of the third training session (preceding problem 16), selected instructions
from the instructions shown in Table 4.1 were given to the student. Each
instruction was typed on an index card to which he could refer at any time
during the training session. The two general instructions (A and B) were given
plus any Instructions for which the associated criterion was TRUE. This third
session continued until the student had completed problems 16 through 25. A
fourth training session included problems 26 through 35. At the beginning of
this final session, all Instructions were given for which the associated
criteria were TRUE.

The results of this evaluation indicate that the effects of the
instructions are not the same for different students. As illustrated in
Figure 4—10, the instructions given to student JK following problem 15 had
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- 
- a dramatic effect on the adaptively estimated utilities. In particular,

instruction B which Identified the key measurements caused this student to
consider and use these measurements more frequently than he had previously
done. Moreover, this student used four of these six key measurements in
the manner specified by the instructions.

For student BW, the Instructions apparently had no effect on his use
of the key measurements. As illustrated in Figure 4-11, the major adjustments
In the estimated utilities occurred during the ‘15 problems preceding the
first instructions. Little change occurred in this student ’s utilities after
the instructions were presented. In addition, the range of variation among
all measurement utilities for this latter student was small in comparison wi th
the expert technician or the other student. Such a small range of adjustment
in the adaptively estimated utilities occurs when the decision maker places
high emphasis on the probability of an action outcome, with a resulting
lower emphasis on the cost or subjective value of obtaining the outcome.

In the CDT system, the instructions are intended to improve the
student’s decision making by teaching him to selectively emphasize the utility
of important alternatives. Improved decision performance is Illustrated in
Figure 4-12. Significantly better decision cost effectiveness (t - 2.69,
p < .01) Is demonstrated for the student (JK) whose utilities respond to
instructions. Decision cost expenditure remains high and Improves only after
extended practice for the student (BW) who is less responsive to the
Instructions.

These data suggest that improved decision making can be taught by
directing a student to attend to the subjective value of a decision alterna-
tive as well as the probabilIty of the occurrence of the outcome. In the
troubleshooti ng task, the subjective value of a measurement includes the cost
of making the measurement (expressed in terms of time and money), the
effectiveness of the measurement in Isolating a malfunction, the functional
or. topological locati on of the measurement poi nt in the circuit, etc .
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However , the utility of a decision alternative must be sufficiently salient
to the decision maker to have a significant effect on his decisions. In the
present CDT system, the student’s utilities are a function of the stated costs
and his knowledge of the effectiveness of the various measurements. The
performance data from student BW suggest that additional reinforcement is
required to emphasize the utility of each decision alternative.

4.4 Discussion

The current year ’s efforts have demonstrated that the adaptive
expected utility model tracks the performance of consistent decision makers.
In addition , comparison of an expert ’s stated ranking of measurement impor-
tance with his adaptively-estimated utilities has shown that the adaptive model
ranks his preferences accurately. Thus, the ability of the model to reproduce

— human behavior wi thin the context of the troubleshooting task has been demonstrated.

Exoerimental sessions with experienced and inexperienced student
technicians have also demonstrated that the simulated circuit model provides
an accurate representation of circuit troubleshooting and that students
demonstrate improved decision making performance with extended practice.

The demonstration of the validit y of the adaptive model and of the
- accuracy of the circuit simulation provides a firm background for developing

the instructional feedback to train the students in evaluating their decision
alternatives. An initial set of instructions were developed which focus
a student’s attention on the proper utilization of the key circuit measurements.
A l imited evaluation has demonstrated that these instructions are effective
with a student who has demonstrated a sensitivity to utilities for alternatives.
This limi ted study suggests that explicit reinforcement and lninediate knowledge
of results will be required to effectively alter all students’ performance.

Further development of the training capabilities of the CDT system should

incorporate such explicit reinforcement and additional feedback algorithms

designed to strengthen particular deficiencies identified In students’

decision making.

— 
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