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Abstract

A heating scheme for nuclear fusion is proposed based on the
availability of a high flux, low energy neutron source. The
heat is derived in the reaction Li6(n,'I')He4 resulting from the
incidence of a low energy neutron beam on a sample of Li6D.

The energy release per reaction, Q = 4.6 MeV, is converted
through electron Coulomb collisions thereby quickly dissociating
the solid sample to the plasma state. For==10"3 eV neutfoﬁs

it is estimated that this dissociation occurs in =7 msec for an
-1

incident flux of = 10* @ * see The possibility of further

driving the heated fuel to fusion is also discussed.
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1. Introduction

Recent world wide efforts have been initiated to obtain neutron
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fluxes of the order of 10 neutrons/cmz-sec, employing high energy

pulsed proton bombardment of heavy atoms. Present day thermal

15 neutrons/cmz-sec are generated by

neutron fluxes of about 10
nuclear reactors at Brookhaven, Grenoble and Oak Ridge [1,2].

In this paper we propose a scheme for fusion heating which is
based on the availability of high neutron fluxes of low energy. 1In
the envisaged scheme a beam of low energy neutrons is incident on a
sample of LisD. The low energy neutrons are readily éaptured by

the Li6 nuclei and release an a particle and a triton through the

reaction

(1) Li%n,T)He"

The Q value of this reaction is 4.6 MeV. The T particle emerges with

2.63 MeV and the a particle with 1.97 MeV. This energy goes into
heating the sample and ionization. In bringing the sample to
fusion temperature, it is necessary first to exhaust the crystal
energy, thereby effecting a fusion plasma comprised of ionized Li,

D, He and T elements.

2. Collision Loss

The emitted particles in reaction (1) lose energy primarily
to electron collisions and ionization [3]. The collision loss per

unit length is given by the Bethe-Bloch formula [4]
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(2)

4e/ZI, &€ = m/M
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I 11.5 eV

where z is the charge number of the incident particle. The

ionization loss is given by

(3) SRl Bt g

With electron density n, = 2.37 x 1023 cm—3 and atomic number Z = 3,

we obtain for the triton loss,

dE,,
E§9 = 2%9 In 21 E (MeV/cm)
(4)
dE
1,
F, et (MeV/cm)

Let us assume a mean triton energy of 1.32 MeV relevant to its

~slowing down trajectory. Then (4) gives, for the triton

C
a—x—- = 428 MeV/cm
(s)
dE dE
Y C
&I ° UL HE

With an assumed mean energy of 0.985 MeV for the.a particle we

obtain




dE e
C . 397 1, 16 E = 2540 MeV/cm

oK e
(6)
dE dE
1 . c
& - 0-18 33

Radiation loss may be neglected compared to collisional
loss [5] providing E/Mc << 1. This inequality is obeyed
for the case at hand. This observation together with (5)
and (6) indicate that we may assume the primary loss mechanism

to be heatlng of the lattice through ion- electron collisions.
3. Lattice Deformation Time

The lattice enebgy of LiD is [63'

218.8 Kcal/mole
18

(7) E

5.71 x 10 MeV/mole

The completion of this energy leaves the fuel saméle in a state of
isolated Li' and D™ ions. With this energy consumed collisional
decrement is still the primary means of energy loss, which now may
be assumed to go into heating the sample.

If the original sample thickness is much less than the neutron
mean free path in reaction (1), we may assume that the incident
neutron flux is roughly maintained through the sample. In this case

the neutron reaction rate is
(8) R = JAfno = JnoV(sec™ 1)

where n is Li number density and V is the volume of the LiD crystal
which has cross secional area A and thickness &. The cross section

for reaction (1) is o. The energy released per interaction is




4,6 MeV, which with (8) gives the yield

y = 4.6 Jno MeV/cm3vsec

The molar volume of LiD is 10.1 cm3/mole [6] and the last equation

gives the molar yield

9) : Y = 46 Jno MeV/mole-sec

Comparison with (8) indicates that the lattice energy is supplied
in the time
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(10) e S O

L Jno (sec)

Under the somewhat severe assumption that a means of confinement

can be applied to roughly maintain the fuel size, then n = 6 x 1022

cm“3 and the last equation becomes

o <6
(11) t, = g—§alg—— (sec)

From low energy neutron data [7] relevant to reaction (1) one may

construct the expression

-0,45

a2) o =135 x E (E in eV, ¢ in barns)

For incident neutron energy -.10'3 eV this latter formula gives

3

g 3 x 10°b which with (11) gives the lattice deformation time

€33 ' w30

L J

It follows that for J = 107

y ty 7 msec. Once the lattice heats,
the relative n-Li kinetic‘energy increases thereby decreasing o

and increasing ty-

4, Fusion Time

In the completely ionized state, each LiD molecule contributes




six particles to the plasma. Thus one mole of original fuel sample

is converted to 3.6 x 102“

particles in the completely ionized
state. The T-d fusion reaction has its peak cross section [8] at 4
0.1 MeV. At thermal equilibrium this corresponds to the fusion

molar energy

E, = 8.6 % 1023 MeV/mole = 6.3 x 10 E,

With (9), we then obtain the fusion time

E
By ans
(1) LR
At E = 10”2 eV, this gives the time
19

(15) tp = 23230 (gec)

so that t. = 1 sec for J = 1049, This magnitude is somewhat beyond
the borderline of present day neutron flux values. Once again we note

that this time estimate is low due to the increase in the relative n-=Li

kinetic energy at elevated temperature.

5. Sample Thickness and Conclusion
The neutron mean free path for the reaction (1) is

-23
16 e o & 2 %10

At E = 1078 eV (corresponding to velocity of 400 m/sec) the

reaction mean free path is

Lnﬁ 60 um

As stated previously this is the approximate width of the original

fuel sample, which must be large compared to the thermalization

length




:

(17) PR

X

From (5) and (6) we see that the triton has the longer thermalization

lengtn. At triton energy of 1.3 MeV we obtain

zth = 30 um

which is approximately half the width of the sample. At larger
neutron energy, this inequality becomes more favorable, however both
tl (11) and te (14) also increase with larger neutron energy
rendering the process still more unfeasible.

In summary, our rough estimates have led to the following
conclusion. Namely, that a beam of 10"3 eV cryogenic neutrons

incident on a thin sample of L16

D of thickness=~60 um will act as
a catalyst for nuclear reactions which will in turn heat the sample.
At these values, thermonuclear temperatures may be reached in = 1

second, provided a neutron pulse with flux in excess of 1019 cm-2

sec = and means of confinement are available. In the absence of this
confining mechanism, it may still prove feasible to employ the
initial heating scheme in conjunction with more pedestrain plasma
confinement-compression devices [9,10].

A mesure of the feasibility of this approach is offered by the
Lawson criterion [11]. This criterion stipulates that the product
nt of particle density n and confinement time t for the D-T reaction

must be in excess of 1014 s

-em™3 for positive energy gain. Present
day fusion devices have not attained this value. In the heating
process of the present scheme we ask that the fuel element, at

y 1023 20. This

, be maintained for -~ 10—3 sec, which gives nt = 10
large magnitude expresses the difficulties inherent to the proposed

scheme.
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