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ABSTRACT

In two dimensional flows, stagnation points may appear away from

sol id boundaries . Numerical , analytical and experimental evidence is
— 

provided to support the existence of such ‘~crltlcal
’t points . The stream-

line pattern in the neighborhood of critical points is investigated . An

intimate relationship between stagnation and separation points is discovered .
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1. INTRODUCTION

The present paper is not a report on the solution of a specific prob-

lem, nor does it represent a certain amount of effort normally distri buted

in the last year or two . It is rather a collection of ideas that we have

been fl irting with for the last eight years, supported by evi dence that we

were able to collect in this period of time. The topic must be interesting

to instruc~ors of fluid mechanics and may appear intriguing to investigators

of lami nar or turbulent wakes , turbulent boundary layers , etc. It should be

made clear to the reader that the present publication does not herald a break-

through in solving a specific mathematical problem . However, some elementary

mathematical justifications are provided and numerical evidence from recent

publications of various authors as wel l as of our group are cited . Some

experimental evidence is also supplied , includ ing the results of the i niti al

stage of our present experimental project.

It is felt that some of the ideas presented here may appear quite contro-

vers ial , and we have struggl ed to refrain from ungrounded specul ation . At

some points though , we considered it an insult to our physical intuition , if

we were to exclude some “prophetic ’ coments .

The first two sections that follow are quite straightforward . It is

felt that they will not arouse any negative reaction . In these sections we

have collected most of the concrete evidence from our numerical results. We

also included a straightforward asymptotic analysis which is a modification

of the classical slow flow solution about a cyl inder, as wel l as some m i-

tial experimental evidence derived via flow visualization . The subsequent

sections represent an attempt to generalize the basic ideas involved . We

feel that this material Is quite innovative . It is definitely a different

point of view on a classical problem in mechanics.

1
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We are not sure whether this material will have any effect in the

• future development of fluid mechanics . In the quite long period that

these ideas were kept in rough notes, we did not have time to carry the

theory much further nor was any of our other work strongly influenced by

them. At the end of the paper the reader will find some ideas and sugges-

tions on what we feel should be done next. We hope that others may find

a better way of making use of the present material , in interpreting or solving

problems In fluid mechanics.

2 



F -

~~~~~~ ~~~~

- - - -- -

~~

-

~~~~

- - -

~~~

- -

II. STOKES FLOW ABOUT A ROTATING CYLINDER

One of the most coninon and appropriate examples for demonstrating that

Lapl ace’s equation does not have a unique solution , if inviscid boundary

conditi ons are imposed, is the flow about a circular cyl inder. In this

case a very simple solution of the l i near equation is

2
q = U ~(r— ~~~)s in o  (1)

where I~J is the stream function, U,,, is the free stream velocity , r and 0

are polar coordinates and a Is the radius of the cyl i nder . The function

-(r/2ir)~nr where r is an arbitrary constant may be added to the classical

solution wi thout violating the boundary conditions of no-penetration on

the wall and no disturbance at infinity . It is wel l known that this solu-

tion corresponds to a vortex of arbitrary strength and the constant r,

which is the circulation about the cylinder , remains unspecified. The

streaml ine pattern of the potential flow , so well known from classical

textbooks of fluid mechanics , is shown in Fig. 1. The only realistic way

of generating a rotational field about a ci rcular cyl inder is to set the

cylinder itself in rotation . The constant r then depends upon the angular

velocity , w , of the rotation of the cyl inder . The importance of this par-

ticular problem is diminished by the fact that the pattern of Fig. 1 is

completely violated, if the flow separates from the cyl inder . We shouid

therefore assume that the Reynolds number is very small so that no separated

bubbles or wakes appear. The solution will be rendered unique , only if

consideration is given~to viscous effects. T1v~ presence of the terms

will allow us to match the potential flow and the moving walls of

the cylinder and thus arrive at a unique solution .

3 
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. The most interesting feature of the complete flow pattern that we can

see imediately is that no streaml ine may attach on the cyl inder . The

streaml i ne configuration depicted in Fig. la is unrealistic to the same

extent it is unrealistic to assume that the flow slips on the boundary of

the cyl inder. There will be no stagnation point on the cylinder since the

skin of the cyl i nder has a transverse velocity v0 = aw where a is the radius

of the cylinder. Instead , there should be a stagnation point away from the

wall and wi thin the flow . Arguments based on physical grounds to support

the above statement can be found in Section IV. Here we will quickly out-

line an asymptotic analysis that proves our point. The analysis that fol-

lows does not contain many innovative points . In fact it represents a

mod ification of a classical probl em, the Stokes flow about a cyl inder .

The reader w ill reca ll that the work of Proudman and Pearson (1957) and

Kapl un (1957) on the topic is now considered a classic. For the sake of

comp leteness we w il l repeat here a few steps of the analys is. Deta i ls can

be found in the papers cited as well as most of the modern textbooks on Per-

turbation Theory or V iscous Flows .

Let us as sume that the Reynolds number based on the diameter of the

cylinder, R = U a/v, is a very small number . The inner and outer radial

coordinates then are def ined as follows

, p r R  (2)

where r is the physical distance (see Fig. 2). The dimensionless stream-

function , *(r,o) in the Inner-Stokes l ayer satisfies the equation

1v4’ = L.~ .L (v 2*) + 1~~L (v 2*) (3)R r” r~~e~~r r r~~r~~o r

4 
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where = a2/3r2 + r~ a/er + r 2 a/ ao . If the Reynolds number Is absorbed

in the streamfunction, then the outer-Oseen layer streamfunction ‘V (p, 8)

satisfies the equation

= ~~~~~ (v~v) + I .~!~fr (v v) = 0 (4)

• where = ~
2,’~p2 

+ p 1
~ /ap + p 2a/ao. The appropriate boundary conditions

on the wall of the rotating cylinder require that

q,(l,o) = 0 and a4,(l ,o)/ar = u~ (5)

where u~ is the dimensionless velocity of the wall. Far away from the

cyl inder the solution should tend to the undisturbed free stream

w (co ,e ) ÷ p sin e (6)

The Stokes and Oseen solutions should match as fol lows:

v(p,e) “k. R4,(r ,o) (7)

p ÷ O  r+ -n’

Solutions to the inner and outer expansions are sought now in the form of

asymptotic expansions,

j,(r,o;R) = f0(R)*0(r,e) + f1(R)*1(r,e) + ... (8)

‘v(p,e;R) F0(R)~0(p,0) + F1(R)’v 1(p,e) + ... (9)

where fi+1 (R)/fi(R) and F1÷1 (R)/F1(R) tend to zero as R -
~ 0, for i =

1 ,2,... The unknown functions i~~0
, ‘ ‘ ‘v i, ... satisfy the following dif-

ferential equations

= 0 (10)

5 
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= 0 (11)

= 
1 0 ~~ (v2’v 1) - 

l O a  (v 2v 1) (12)

The matching process given by Eq. (7), will provide some of the necessary

boundary conditions for j c~
, 

~~~~
, ... and v0, ~ 

At the cyl inder wall

and at inf inity the appropriate boundary conditions are

~~
(1,o) = ~~(l ,o) = ... = 0 (13)

ap 0 (l ,o) 
— 

Uw a~ (l ,~
) 

— ~~2(1 10) 
— ÷ (14)

f 0 (R) ‘ ar - ar

‘V 0
(co ,8) ÷ p sIn B , ‘~1(~

o,o) = v 2
(co ,o) = ... ÷ 0 (15)

The solution to Eq. (11) that meets the boundary condition (15) is

= p sin 0 (16)

and F0 (R) is chosen equal to 1. The solution to Eq. (10) that meets the

boundary conditions (13) is

= g1 (r)s in 0 + 
n~2 ~ 

sin no + 
f (~) in r (17)

where

g1(r) = C 1(r
3 

- 2r + ~-) + ~- E1(2r in r - r + .
~

) (18)

gn(r) = C~[r~ - nr2
~~ + (n-1)r~~] + En[r’~

2 
- (n+l)r 2

~~ + nr ”~] (19)

and the C.~’
s and E1

1 s for I = 1,2,... are constants . Matching at this

stage according to Van-Dyke’s (1964) principle requires that 1-term outer

expansion (1-term Stokes) “.. i-term inner expansion (1-term Oseen).

If we express *0 (r ,e) In terms of p, expand for small R and retaii

6
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the first term of the expansion we get

E 2
*0 (r ,o) + ~~ (~ j~

2- in R)sin e (20)

and matching according to Eq. (7) allows us to choose

f0 (R) = 
ln

1
R , E1 = —1 (21 )

Notice that the constants C,~ and E~ for n = 2,3,... have to vanish since

there is no sin no in the outer solution to match with . Moreover at this

stage the quantity uwin r does not appear for r ÷ since it is overpowered

by quantities like r in r, r, etc .

Back to the Oseen expans ion now , after some al gebra we can bring

Eq. (12) in the wel l known form

-

- , 2  a 2 —

~v - .~--)v ’v 1 — 0  22

where ~ = xR and both x and ~ are coordinates in the stream direction: x

= x/a, ~ = xU/v; wi th x the physical coordinate . Equation (22) is sati s-

fied by

2
v = e~”2 ~ D~K~(~/2)sin no (23 )

nal

where .Kn is the Bessel function of the second kind so that the boundary

conditions of Eq. (14) are met. Matching now can be achieved at the level :

i-term inner expansion (2-term Oseen) ~ 2-term outer expansion (1-term Stokes )

In the present development we are only interested in the Stokes solution,

and we are sat isfied to see that matching the V2 of the solutinns gives

v~ (1—term Stokes) = v~(f 0*0) - 
~~ l n R  (24)

(2—term Oseen) v2(’r 0 + F 1,1) — F 1v~’v 1 (25)

7
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Hence the term uw in r of Eq. (17) is not involved in the matching at this

level . To this approximation therefore the Stokes solution reads

1 1
= 

2 in R (2r in r - r + —)sin e + u~ in r (26)

The above analys i s holds in the limi t R ~~ 0. Let us now define for

convenience the small positive quantity c = -1/2 in R. The velocity corn-

ponents then are

u0~~~ c(2 in r + l  _ -‘2 - ) s i n e_ u l r (27)

ur = E(2 l n r _ l  +1
~)cos o (28 )

Let us further assume that for small wall veloc ities , the disturbance

due to rotation is small. In particular we will search for a point within

the flow , where both the velocity components U
r l u0 vanish. Let the polar

coordinates of this point, which Is a stagnation point, be r5 , O~ . For small

It is reasonable to assume that the stagnation point should be very

close to the wai l, that is r5 = 1 + z where t << 1. The component U~,

vanishes at o = 900 and 270° . For these values of e , if one requires that

U
0 

also vanishes , one can arri ve , in the limi t L ÷ 0, at the approxima te

expression

i ~ ~.c iu~ 
for 0 = 90° or 270°, respecti vely (29)

If 0 = 900 then for u
~ 

< 0(c), = 0 (c )  or > 0(c), ~ would be large negative,

negative or positive of order 1, respectively. However , this quanti ty cannot

be negative, nor can It be of order 1 since this would violate our assumption .

If e = 2700 and uw = 0(c2) or smaller, Eq. (29) represents an acceptable

solution and ~ = 0(c). We therefore arrived at the conclusion that if

8 
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the angular velocity of the cylinder is small there exis ts a stagnat ion

point away from the wall , at the point

r5 = 1 + = 270° (30)

It is wel l known that the simplest streaml ine configuration of a stag-

nation point for viscous or inviscid flow is that of a saddle point. Wi th

the above information we can make a rough sketch of the streamline pattern .

Two of the streamlines that emanate from the stagnation point will extend

all the way to infinity. One arrives f rom -
~~~ and the other leaves our

stagnation point and goes to +o (see Fig. 3). To complete the saddle point

configuration we need two more critical streaml ines that emanate from the

saddle point . The simpl est topography that would not contradict the sense

of rotation of the cylinder, is the one shown in Fig. 3. Notice that these

two streaml ines will have to meet at the top of the cylinder and thus con-

fine a certain amount of fluid in a ring that surrounds the cylinder. This

amount of fluid will stay forever with the cyl inder and rotate wi th it. The

streamline pattern depicted in Fig. 3 is not new. As far as the topography

of the streamlines are concerned, it is identical with the pattern of Fig.

lb. The pattern of Fig. lb though represents a solution to the Euler equa-

tions and holds for a large enough angular velocity that would give to the

field a circulation larger than 4,W a. The pattern of Fig. 3 represents

the Stokes flow about a cyl inder rotating with infinitesimally small angular

velocity.

At this point we can make some interesting observations . For zero

angular velocity and for any value of the Reynolds number there are two

stagnation points, both on the skin of the cylinder , at Os 
= 0 and 180°.

For slow flow and for any angular velocity, no matter how small , there i s

9
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only one stagnation point at r5 = 1 + L and o~ = 270 °. It is obvious that

there is no continuity in the phenomenon. The stagnation point we have

discovered at o~ = 270° does not tend to e = 0° or 1800 as w ÷ 0. One would

be tempted not to call this point a stagnation point , at least not in the

usual sense , even though at this point the velocity vanishes . Nevertheless

our stagnation point is distinct by one more significant feature, charac-

teristic of stagnation points . The streaml ine that separates the on-coming

stream into two parts , the one that flows above and the one that flows below

the body , bypasses the skin of the body and stagnates into our point . A

s imi lar stagnating streaml ine emanates from thi s point and plays the same

role In the right half of the flow field (see Fig. 3). We should refer

to such streaml ines as stagnation or critical streaml ines. One would be

tempted to call such streamlines separation streamlines. The term would

not be totally unjust ified as we w ill see in the sections that follow .

10 
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III. SEPARATION OVER MOVING WALLS

The gist of the present material and the cornerblock of the development

that follows is not ours . The whole effort was inspired by the Moore-Rott-

Sears conjecture on the streaml ine pattern near separation over a moving near

wall. Moore (1958 ,1959) , Rott (1956 , 1964 ) and Sears (19% ) have pointed out

in the fi fties ,that the vanishing of the skin friction is not an appropriate

criterion for separation over moving walls. Instead they conjectured that the

streaml ine pattern in the neighborhood of separation ,

configuration as shown in Figs. 4, 5 and 6 for fixed walls , walls moving down-

stream and upstream respectively. Physical arguments to support such conjectures

are s imple and quite convincing . If we assume that for large enough Reynolds

numbers the motion of the skin does not affect the outer flow, then the

separating pattern, consisting of regions I and II (see Fig. 4), should retain

their character as shown in Figs . 5 and 6 . It should be recal led that the

flow In the recirculating bubbles or the wake is essentially stress-free and

therefore viscosity is important only in thin wall layers or free shear layers.

Within the boundary layer though the flow should remain attached to the skin

and therefore a portion of the oncoming flow of Fig. 5 should stay with the

wall and the flow bi furcates at separation . Based on the same physical

considerations may argue that the flow approaching the point of separation

from within the wake should bi furcate as well. A stagnation point wi thin the

flow then appears and a set of four stagnation streamlines separate the flow

field into four distrinct regions: the regions I, II, III and IV. Such

streamlines will be referred to in the sequel as critical streamlines.

Similar arguments may be provided in support of the configuration of Fig. 6.

Moore, Rott and Sears suggested that the proper criterion for separation
in these cases is

11
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at u = O  (31 )

where u is the velocity component parallel to the wall and y is the coordi nate

perpendicular to the wall .  This cri ter ion ,often referred to in literature as

the MRS criterion, is tacitly based on the assumption that the critical stream-

lines at the stagnation point are perpendicular and parallel to the wall

respectively. Such an assumption appears reasonable for the case of downstream

moving walls, if the Reynolds number , R, is very large, since then all viscous

effects, including the streaml ine patterns of Figs . 5 and 6, will be confined

to a very thin layer next to the wall .  The thickness of the viscous layer ,

inc l uding the neighborhood of separation , tends to zero as the Reynolds number

tends to infinity , with some power of R (Stewartson, 1972). WI th three of the

cr iti ca l streaml ines di rected downstream, it is reasonable to assume that the

critical streaml ines are parallel and perpendicular to the wall respectively,

at least for the case of a downstream moving wall , as depicted schematically

in Fig . 7. These arguments do not seem to be plaus ib le for the case of an

upstream moving wall and indeed its validity has been recently questioned

(Fansler and Danberg, 1975, 1976; Tsahalis , 1976; W i llIams , 1977).

The first experimenta l evidence in support of the above statements were

provided first by Ludwig (1964) and his colleagues (Brady et. al. 1 965; Brady

et. al., 1967). Experiments were performed in a wind tunnel and velocity

prof1l~~. about a rotating cyl inder were measured using hot wire anemometers.

The results provided substantial evidence that the criterion given in Eq. (31 )

i s correct, at least for the case of a downstream moving wall. Ludwi g et. al.

have constructed streaml ine patterns , on the measured velocity fields and

12



r w  -

veri fied the flow patterns of Figs . 5 and 6 up to the point of separation .

However their Reynolds numbers were high and the wake region fully turbulent.

As a result the saddle point configuration was not completely recovered from

the side of the wake.

Numerical ev idence for the ex i stence of a stagnation point wi thin the flow

was furnished or igi nally by Thoman and Szewc zyk (1966,1969) who integrated

numerically the full Navier Stokes equations. Their work seems to indicate

the existence of one saddle point for very low Reynolds number which shifts

slowly towards o = 0 as the speed of rotation Increases .

A few years la ter Telionis & Werle (1973) and Tsahalls and Telionis (1973)

integrated numerically the boundary l ayer equations . The reader is cautioned

here to the fact that the boundary layer equations are not an appropriate model

of the flow in the neighborhood of separation , since the boundary layer hypothesis

is violated a few boundary-layer thicknesses upstream of separation . It is

wel l known though, that if one continues the Integration of the boundary layer

equations , disregarding the fact that they do not represent the actual flow,

one eventually encounters a singularity at the station of zero skin friction .

The mathematical features of the separa tion s ingularity have been extens ively

studied in the past few decades (Brown & Stewartson , 1969). It is a wel l

known experimental fact that at separation the streamlines turn sharply into

the flow and the wall shear vanishes . The boundary layer equations therefore

simula te quite accurately the j~enomenon for steady flows over fixed walls.

Telionis and Werle (1973) have shown numerically that for the case of down-

stream moving walls , integration can be carried beyond the point of vanishing

wall shear and up to a station where the u—component of the velocity and the

velocity gradient vanish away from the wall , that is the criterion of Eq. (31)

13



Is met. At the same station a separation singulari ty appears . The regions

I and III of the flow pattern of Fig. 5 were therefore numerically reproduced .

The boundary layer equations proved again to be a valuable model , although

there is a slight discrepancy, because the normal component of the velocity

remained positive across the boundary layer and therefore the point u = au/ay = 0

is not truly a stagnation point. The only encouraging feature of the boundary-

layer sol ution is that the normal component remains quite small below the point

U: 0 but grows violently above it. This supports the earl ier claim (Sears

& Telionis 1971) that in this case the singulari ty is centered away from the

wall. Moreover this numerical investigation has indicated that the Goldstein

singulari ty is not a feature that always accompanies the point of zero skin

friction . The numerical i ntegration passes through the point au/ay = 0 at

y = 0 wi th no evidence of singular behavior . The familiar properties of the

singular behavior appear at the MRS station . The fact that the point of zero

skin friction is not a proper criterion for separation has left us unable to

predict the location of separation by integrating the lami nar or turbulent

boundary layer equations . The above evidence though indicates that the

boundary layer equations have the capability to signal the location of separa-

tion which also marks the extent of their validity .

Most recently Fa nsler and Danberg (1975) recons idered the prob lem and

indicated that the MRS criterion is i ncompatible wi th the boundary layer

equations for an upstream moving wall. Their arguments do not preclude the

MRS pattern for the actual flow. Tsahalis (1976) has also performed calcula-

tions using the time dependent boundary-layer equations in order to verify that

the cri terion of Eq. (31 ) Is approximately valid for flows over upstream

moving walls. More detailed arguments for flows over moving walls the reader

14 
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will find in Sears and Tel ionis (1971 ,1975).

We recently undertook to design an experimental system in order to

investigate qualitatively the neighborhood of unsteady separation. Our

flow visualization method is based on surface observation of particles . Among

— the first few test cases, we have investigated the steady flow over a rotating

cyl inder for Reynolds numbers of the order of 100 to 300. Fig. 8 shows the

two recirculating bubbles for a fixed cyl inder. In Fig. 9 we have blown up

a detail of the flow field in the neighborhood of separation over a downstream

moving wall. The four regions I, II, III and IV as defined in Fig. S are

clearl y disti nguishable. In Fig. 10 we have captured the stagnation region

and the neighborhood of separation over the upstream moving wall. This is

the first clear evidence of the existence of saddle points at separation .

More information on the experimental results the reader will fi nd in the

sister paper of the present report (Telionis & Koromilas 1977).

15
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IV CRITICAL POINTS AND CRITICAL STREA MLINES

The family of curves

dx
~~ -a 1x + b 1y 32

= a2x + b2y (33)

has a critical point at the origin , which is a saddle , a center or a nodal

point if the quantity

J = a1b~ - a2b1 (34 )

is negative zero or positive respectively (Kaplan, 1958). Saddle point

confi gurations of streaml ines have been studied before, both for viscous and

inviscid flows. Solutions of the Euler equations that describe the flow

in the neighborhood of a stagnation point for example are classical . The

viscous recirculating bubbles shown in Fig. 8, for low Reynolds numbers and

the stagnation point C have been wel l known for long and investigated

experimentally (Schlichting , 1968). Kovasznay (1952) has studied a periodic

viscous flow where saddle points of the kind of point C (Fiq. 8) where

captured . Proudman and Johnson (1962) considered the impulsive start of a

bl unt cylinder and showed how a saddle point is generated in the neighborhood

of the rear stagnation point. The Moore-Rott-Sears point of separation is

also a saddle point recently captured numerically and experimentally as

described in the previous section. To our knowl edge no nodal-p oint configura-

tions of streaml ines are possibl e unless one would consider the degenerate

case of a dipole or multipole.

Based on the information we have gathered up to now we can proceed

wi th a sequence of simpl e statements and conclusions . In the material that

16
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follows in the present section ,the reader w ill not fi nd any rigorous proofs.

He will rather find a new interpretation of some more or less known ideas

and a few propositions that are based on comon sense and the evidence that

we collected in the earlier sections .

Let us fi rst synthesize the fragmented information we have about the

rotating cyli nder . Once agai n assum i ng that the frequency of rotation does

not el imi nate the two recirculating bubbl es altogether , we arrived at the

conclus ion that the two points of separation become saddle points , of the

kind depicted schematically in Figs . 5 and 6 and experimentally captured in

Figs. 9 and 10. Let us now turn our attention to the “stagnation streamline ” .

As such we will define the streamline that separates the oncoming flow i nto

two flow regimes ; The one that eventually flows above the cylinder and the

one the flows underneath the cyl inder . For no rotation this streamline attaches

at the cylinder at 0 = 0. If the skin of the cylinder is in moti on , this

is obviously not possible. There will be no stagnation on the skin of the

cyl i nder. If the stagnation streamli ne were to pass beneath the bottom saddle

point , point E, then we are forced to admi t that a portion of the fluid above

this line turns around and eventually passes above the cyl i nder as shown in

Fig. 11 . This would imply the existence of a fourth saddle point, the point

F. The critical streamlines that emanate from E then are not compatible

with the streaml i nes from F, because the fluid between the streaml i ne a and

the streaml ine b should be directed towards E. This could not be possible,

unl ess there existed yet another saddle point between a and b. One will soon

find out that a compatibl e configuration would require an i nfinite number of

saddle points . As always in such frustrating cases, we are tempted to over-

simpl ify things by introducing an axiom . Let it be here the “ax iom of leas t

17 
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number of saddle points”. In the spirit of this axiom we can argue that

the stagnation streaml ine dives i nto the critical point E. In a similar way

we concl ude that the critical streamline b dives into the saddle point D

(see Figs. 8 and 11) and before long one arr i ves at the pattern depicted

in Fig. 12. Flow visualization of this pattern is shown in Fig. 13. The

above arguments by no means provide a proof of the pattern of Fig. 12.

The reader will find it i nteresting though to try to construct different

streaml ine patterns , compati ble wi th the saddle point configurations of

separation, which I consider wel l established . He will soon find that the

pattern proposed in Fig. 12 is the only acceptabl e to the intuition of a

fluid niechanicist. Experimental evidence in support of the pattern of

Fig. 12 was provided only recently, as described in the accompanyi ng paper.

A certain amount of fl uid, as shown in Fig. 12 , is trapped wi th the cyl inder

and stays forever wi th it. This Is true for a rotating cyl inder even if there

are no separated bubbles (see Fig. 3). One may argue in a similar way for

the pattern of this Figure . Ludwi g (1964) has reported i ndeed that in his

smoke v isual i za tion ex per iments, he observed a thin layer of smoke that

persisted around the cyl inder.

Some straiahtforward concl usi ons now can be drawn . No matter how small

the frequency of rotation is, the classical stagnation points “jump” from

8 = 0 and 1800 (see Fig. 2 for notation) to the separation points , that is

the points D and E (Fig. 12). In fact we should probably consider the classical

configuration of Fig. 8 as a degenerate case that one can achieve only for

the very special case of • s~ 
= 0 and not even for w ~ 0. How far the point of

stagnation will jump and which points will be displaced more, so that points

A and E, ~nd B and D of Fig. 8 will coalesce respectively is an open question .

18
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— An attempt to answer these questions is found in the accompanying paper .

Evidence that such a phenomenon occurs is given in Fig. 13. In this

figure the narrow region of reversing flow that has been formed between

the point e = 1800 and the point of separation is clearly shown . Considering

the relationship between steady separation over moving walls and unsteady

separation over fixed walls (Sears & Telionis 1971 ,1975, Williams 1977), the

reader should appreciate the importance of this statement, which is further

reinforced by the fact that in real life one encounters complex situations ,

that often involve moving boundar ies and strong unsteady effects.

The reader should further note that with a clockwise rotation, the

forward stagnation point moves to the bottom saddle point, that is , in a

direction opposite to the motion of the skin. This is true for both cases

of Figs . 3 and 12. In general therefore a streamline pattern will contain

a certain number of saddle poi nts . If there is no separation , there will be

one saddle point as shown In Fig. 3. If there is separation there will be

at least three critical points as shown in Fig. 12. One final coment :

For the general case we are consider ing, that is for w not identically equal

to zero, a point of stagnation and a point of separation cannot be disti nguished .

They both appear as saddle points and one saddle point may often play the

role of both . That is , it receives the stagnation line and gives rise to a

separation line .

The next question we can pose to oursel ves is what happens for the next

larger range of Reynolds numbers. It is wel l known that for 250 < R 1000

the wake of a cyl inder , or in general a bluff body forms a von K~rm~n vortex

Street which In an i nertial frame appears to consist of an infinite array of

vortices as shown in Fig. 14. In our terminology the pattern of Fig. 14

19 
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consists of an infinite array of critical points of the “center ” type .

Let us now attempt to construc t the streaml ine pattern that an observer ridi ng

the cyl inder would see. Let us assume that for the viscous vortices

generated by the cyl inder, the velocity profile at a vertical cross section

attains values larger than the speed of the cylinder , U .  That is, in Fig.

l5a , let us assume that the speeds of the points A and B are equal to the

s peed of the cylinder, uA = uB = U .  Superposing the constant veloc ity

vector that will allow us to ride wi th the cylinder, the points A and B will

become critical points and in particular point B will be a saddle point and

point A will be a center as shown in Fig. l5b. It is an elementary exercise

to assume a vel ocity field, compatible with the streaml ine pattern of Fig.

14 that satisfies the above assumption and transform it by a constant vector

U.  We then arrive at a pattern similar to that of Fig. l5b , which can be

used to synthesize the pattern of Fig. 16. Thoman and Szewczyk (1966) and

From and Harlow (1963), solving numerically the full Navier Stokes equations

and later Davies (1975) using a conditional averaging technique , generated

flow patterns identical to those of Fig. 16, although the saddle points

were not identif led as such (see Fig. 17). It is very interesting to note

that in the flow pattern of Fig. 16 we can identify three distinct areas .

Area A is the outer flow that is directed downstream and tends to the uniform

undisturbed flow as we move away from the wake. Area C is made up of vortices

trapped in closed loops that are stationary and do not participate in the

downstream motion . Disregarding the effect of dissipation momentarily, we

discover that placing a bl unt body In a free stream generates an infinite

wake,littered with vortices that are fixed wi th respect to the inertial frame.

Most interesting also is the area B which represents a portion of the flow

that travels consecutively above and below the vortices C.

20 
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In fact flow A never comes in contact with flow C and flow B Is the only

agent availabl e to transfer vorticity to the vortices C.

The von K~rnian vortex Street is a typical example of a steady-state

wake field. The process in which this wake Is generated is clearly

unsteady. Vortices grow in the lee-side of the cyl inder and are shed down-

stream in an alternati ng fashion . The next question we woul d like to pose

to ourselves then is the following . What would be the streamline pattern for

a wake bubble that grows with time? Consider the flow pattern of 18a and

assume that the dead fluid in the bubble is dyed blue, whereas the free and

al ive stream supplies us with red fluid. In order for one of the bubbl es to

grow, clearly there must be some exchange of mass. Red fluid must enter

into the bubble , “die ” and become bl ue . The mass exchanae coul d occur as show n
in Fig. l8b. The situation is simi lar to the one of a free vortex (see

Figs . l9a and b). In both cases the character of the saddle point of separa-

tion remains unchanged but the critical point at the center of the bubble[ change from a “center ” to a “focus ”. Noti ce also that at each Instant there
exist two streamlines that originate at -~~ and staana te at the sadd le point.
One reaches the stagnation point directly and the other only after surrounding

completely the recirculati ng bubble. The above discussion is definitely

reminiscent of turbulent flows, turbulent boundary layers etc. After all

turbulence is made up of a large number of eddies that are convected wi th

the mean flow, continually changing their size and vorticity. The patterns

of Figs . 18 and 19 could be considered as a simpl ified picture of turbulent

flow .

To complete our account of separation over walls with nonvanishing

boundary conditions, let us consider the case of blowing and suction. A
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numerical investigation of the problem, within the framework of the boundary

layer equations , has proved that a Goldstein singularity is again present

at the M.R.S. point (Tsahalis & Telionis , 1973). Consider first the case

of suction. Fluid will be sucked across the surface from the free flow and

the wake. There exists therefore a streamline that separates the two

regions as shown in Fig. 20. Another critical streaml ine separates the free

stream into two regions: the region I that eventually flows above the wake

and the region II that is sucked by the wall. Arguing in a s imilar way we

conclude that the streamline pattern in the neighborhood of separation should

be that of a saddl e point as shown in Fig. 20. For the case of very low

Reynolds number and assumin g that the flow is steady the flow field about a

cyl inder wi th uniform suction should be as shown in Fig. 21. The fluid that

is sucked by the porous walls is red f1uid~since the size of the bubbles and

therefore the amount of the blue fluid is conserved . Again two critical

streaml i nes comi ng from -~, arrive at critical poi nts thus defining three

distinct regions: the region II of the fluid that is sucked in before

separation, the region I that coincides with region IV and- corresponds to the

fluid that will be sucked in after separation and the region V of the red

flu id that is free to move about the cyl inder and its wake and flow further

downstream. Notice that the sl ightest suction is enough to remove the bubbl e

wi th the contami nated blue fluid from i ts contact with the skin of the

cyl inder . The streaml ine pattern for the case of blowi ng and always for very

low Reynolds numbers is shown in Fig. 22. Notice further that the separated

bubb les are fully submerged in the flow that emanates from the cylinder .

Identification of a critical point numerically woul d require identifica-

tion of zeros in the veloc ity fiel d and calculation of the Jacobian given in

22
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Eq. (34). If the origin of the coordinates is the critical point under

cons ideration, then in the neighborhood of the origin we can expand as

follows

= u =x4)~ +y~~ + ... (35)

~f = v = x .~f +y~~ + ... (36)

and the Jacobian is approximately given by the formula

~~... au av au av (37)a x a y ay ax

F 
Consider now the Navier Stokes equations for incompressible two dimensional

flow

(38)

(39)

Taking the x and y derivative of Eqs . (38) and (39) respectively, using the

continuity equation and evaluating at the origin we arrive at

___  - ~~i~Y— + i~.!Y~= ILP. + ~~ v2u (40)axat ax ay ax 
~~
‘ 

— ax

~~~~~~~~~~~~~~~~~~~ 
~~2 (41 )

The Jacobian can now be readily calculated

J = 
1 
~~ - v

2
u + -~~~~ - v2

v) (42)

Batchelor (1956 a ,b) has Investigated the uniqueness of solutions to

the Euler equations viewed as a limit of the Navier Stokes equations for v 0.
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Batchelor ’s work permi ts us to make the follow ing statement: Any streaml i ne

pattern deri ved by solving the Navier Stokes equations is topographically an

acceptable pattern for a solution of the Euler equations . Or equivalently:

the topography of critical lines and critical points is the same for the

solution of the Navier Stokes equations and its sister solution of the Euler

equations . Assumi ng then that v -
~~ 0,the Jacobian at a critical point of an

Euler f ield becomes

J :i- v2p. (43)

For a stagnation point u y and v x; hence J is negative and the critical

point is a saddle point, as is wel l known.
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V. CONCLUSIONS AND RECOMMENDATIONS

Recapitulating we put here together a few simpl e conclusions expressed in

an unusual terminology that will emphasize the spirit of the present investiga-

tion.

a. Two or more streamlines may cross each other at a point , provided at

this point they reverse their direction. Such streaml ines we call critical

streaml ines and their cross sections critical points .

b. For steady flow about a rigid body in a simply connected region with

zero suction, one critical streamline goes to - ~ and one to + ~~. All other

critical streamlines start and terminate on critical points, on or off the

walls of the body .

c. The critical points could be saddle points or centers for steady flow .

For unsteady flow a focus is also possible.

It is felt that these ideas may contribute in understanding the phenomena

of turbulent flows, wakes, duct flows and boundary layers. It is wel l known

that the response of relatively large eddies is almost Inviscid. The present

work may lead to simple models that would simulate correctly the mechanisms

of mass exchange between eddies of different sizes and their dynamic inter-

action . It is believed that the turbulent field would then be represented by

a system of isolated free vortices that would interact wi th each other while

simul taneously being convected downstream.
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Fig. 1 SchematIc sketch of potential flow about a cyl i nder.a . with
circula tion r < 4nU a;b. with circulation r > 4~U~a.
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Fig. 2 System of coordInates and notation used in the asymptotic expansion. 
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Fig. 3 Streamline pattern of viscous flow about a slowly rotating cyl i nder ,

with very small Reynolds number.
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Fig. 4 Streaml ine pattern for separation

over a fi xed wall.

Fig. 5 Streamline pattern for separation

over a downstream moving wall.

Fig. 6 Streaml ine pattern for separation
over an upstream moving wall.
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Fig. 7 Streamline pattern for separation over a wall moving downstream with
infini tecimal velocity . 
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Fig. 8 Schematic sketch and experimental visuali zation of the streaml i ne
pattern of the flow about a circular cyl i nder (R 100)
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STREAMLINE

Fig. 11 Schematic sketch of unacceptabl e streaml ine patterns for flow over
a rotating cyl inder .
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STREAMLINE

Fig. 12 Schematic sketch of streamline pattern for viscous flow over a
rotating cyl inder and R = 100 — 500.
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Fig. 14 The Von Karm~n Vortex Street for a body moving from left to right
as viewed by an observer fixed on the Inertial frame .

- - - . —

~

-—-- -- -

~

- - -

~

-—-

~

-----



- - - - — - - --— —-~~~~~~~~ ---_— - -—- -~~~ ~~~~_~~~~~~— -~~-~~ ---~~~~~~~ --— 

~~

— --

~~~

- 

~1

z

0
S.W

— 

~~~~~~~~~~~~_1--_ _ 
~~~~~~~~~~~~ ‘~~~~— N..~ \ \ \

IT >~~-.- ‘ 
~~~~~ ~~ ~ V ‘ E 0)

— 
, —I- -‘ ‘ V t ,  I 0)I /  • ~c ~~~~~~ -... ~ \ \ \ ‘t •  ~ .c w w

I F  I ~~~ • ~~ ‘ ‘. \ % ‘~ ‘i~ I I U —
I! li •‘~~~~~~~~~~~~~~~

... ~~~~ \ ‘t ~ % T I Ir V V ’ % I  \ \< \ 
~ ~ % lu—t.— t -(—— - —— +- ——+ -4-- 4——4 — — - — •

\ O ’ A A  A u  I

\ N. ‘— ‘W~ 11 11/I Il - 
---

~~~~~~~~~ ~~~~

.

~

J__#_ 
/ / I U- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



______________ -

Fig. 16 The Von Karm~n Vortex Street as viewed by an observer rid ing the
body.
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FIg. 17 The Von K~rmdn Vortex Street of Fig. 16 visual ized by Davies (1975). 
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a b

Fi g. 18 Streamline pattern of recirculating bubbles. a. Containing a fixed
amount of fluid, b. Exchanging mass with free stream.

b

Fig. 19 Streaml ine pattern of an isolated vortex , a. Containing a fixed
amount of Fluid, b. Exchanging mass with free stream.



Fig. 20 Streamline pattern for separation over a wall with uniform suction .
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Fig. 21 Streamline pattern for low Reynolds number flow about a circular -

cyl inder with uniform suction .
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Fig. 22 Streamline pattern for low-Reynolds number flow about a circular
cyl inder with uniform blowing .
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