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ABSTRACT

In two dimensional flows, stagnation points may appear away from
solid boundaries. Numerical, analytical and experimental evidence is
provided to support the existence of such "critical” points. The stream-
line pattern in the neighborhood of critical points is investigated. An

intimate relationship between stagnation and separation points is discovered.
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1. INTRODUCTION

The present paper is not a report on the solution of a specific prob-
lem, nor does it represent a certain amount of effort normally distributed
in the last year or two. It is rather a collection of ideas that we have
been flirting with for the last eight years, supported by evidence that we
were able to collect in this period of time. The topic must be interesting
to instruc.ors of fluid mechanics and may appear intriguing to investigators
of laminar or turbulent wakes, turbulent boundary layers, etc. It should be
made clear to the reader that the present publication does not herald a break-
through in solving a specific mathematical problem. However, some elementary
mathematical justifications are provided and numerical evidence from recent
publications of various authors as well as of our group are cited. Some
experimental evidence is also supplied, including the results of the initial
stage of our present experimental project.

It is felt that some of the ideas presented here may appear quite contro-
versial, and we have struggled to refrain from ungrounded speculation. At
some points though, we considered it an insult to our physical intuition, if
we were to exclude some "prophetic" comments.

The first two sections that follow are quite straightforward. It is
felt that they will not arouse any negative reaction. In these sections we
have collected most of the concrete evidence from our numerical results. We
also included a straightforward asymptotic analysis which is a modification
of the classical slow flow solution about a cylinder, as well as some ini-
tial experimental evidence derived via flow visualization. The subsequent
sections represent an attempt to generalize the basic ideas involved. We
feel that this material is quite innovative. It is definitely a different

point of view on a classical problem in mechanics.
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We are not sure whether this material will have any effect in the

future development of fluid mechanics. In the quite long period that
these ideas were kept in rough notes, we did not have time to carry the
theory much further nor was any of our other work strongly influenced by
them. At the end of the paper the reader will find some ideas and sugges-
tions on what we feel should be done next. We hope that others may find

a better way of making use of the present material, in interpreting or solving

problems in fluid mechanics.




IT. STOKES FLOW ABOUT A ROTATING CYLINDER

One of the most common and appropriate examples for demonstrating that
Laplace's equation does not have a unique solution, if inviscid boundary
conditions are imposed, is the flow about a circular cylinder. In this

case a very simple solution of the linear equation is

v =U_(r - %-) sin o (1)

where y is the stream function, U_ is the free stream velocity, r and 6
are polar coordinates and a is the radius of the cylinder. The function
-(r/2n)enr where T is an arbitrary constant may be added to the classical
solution without violating the boundary conditions of no-penetration on
the wall and no disturbance at infinity. It is well known that this solu-
tion corresponds to a vortex of arbitrary strength and the constant T,
which is the circulation about the cylinder, remains unspecified. The
streamline pattern of the potential flow, so well known from classical
textbooks of fluid mechanics, is shown in Fig. 1. The only realistic way
of generating a rotational field about a circular cylinder is to set the
cylinder itself in rotation. The constant I then depends upon the angular
velocity, w, of the rotation of the cylinder. The importance of this par-
ticular problem is diminished by the fact that the pattern of Fig. 1 is

completely violated, if the flow separates from the cylinder. We shouid

therefore assume that the Reynolds number is very small so that no separated

bubbles or wakes appear. The solution will be rendered unique, only if
consideration is given to viscous effects. The presence of the terms

will allow us to match the potential flow and the moving walls of

the cylinder and thus arrive at a unique solution.




The most interesting feature of the complete flow pattern that we can
see immediately is that no streamline may attach on the cylinder. The
streamline configuration depicted in Fig. la is unrealistic to the same

extent it is unrealistic to assume that the flow slips on the boundary of

the cylinder. There will be no stagnation point on the cylinder since the
skin of the cylinder has a transverse velocity Vo = aw where a is the radius
; of the cylinder. Instead, there should be a stagnation point away from the
wall and within the flow. Arguments based on physical grounds to support
the above statement can be found in Section IV. Here we will quickly out-
line an asymptotic analysis that proves our point. The analysis that fol-
lows does not contain many innovative points. In fact it represents a
modification of a classical problem, the Stokes flow about a cylinder.
The reader will recall that the work of Proudman and Pearson (1957) and
Kaplun (1957) on the topic is now considered a classic. For the sake of
completeness we will repeat here a few steps of the analysis. Details can
be found in the papers cited as well as most of the modern textbooks on Per-
turbation Theory or Viscous Flows.

Let us assume that the Reynolds number based on the diameter of the
cylinder, R = U a/v, is a very small number. The inner and outer radial

coordinates then are defined as follows

ik =
PRI e (2)

where r is the physical distance (see Fig. 2). The dimensionless stream-

function, y(r,8) in the inner-Stokes layer satisfies the equation
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2 . az/ar + r" 3/or + r'z 3/36. If the Reynolds number is absorbed

where ye=
in the streamfunction, then the outer-Oseen layer streamfunction ¥(p,6)

satisfies the equation

3_ (v2y) = 0 (4)

where Vs = 32/3p2 * p'1a/ap + p'za/ae. The appropriate boundary conditions

on the wall of the rotating cylinder require that

p(1,8) =0 and ay(1,8)/0r = (5)

Uw
where Uy is the dimersionless velocity of the wall. Far away from the

cylinder the solution should tend to the undisturbed free stream

¥(w,8) » p sin @ (6)

The Stokes and Oseen solutions should match as follows:

¥(p,8) ~ Ry(r,s) (7)
p >0 r > o

Solutions to the inner and outer expansions are sought now in the form of

asymptotic expansions,
b(r,0:R) = £ (R)y,(r,0) + £ (R)y (r,0) + ... (8)
¥(0,05R) = F (R)¥ (p,0) + F (R)¥, (p,0) + ... (9)

where fi*](R)/fi(R) and F1+](R)/F1(R) tend to zero as R + 0, for i =
1,2,... The unknown functions Vor ¥or ¥po coo satisfy the following dif-

ferential equations

4 _
V¥ = 0 (10)
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VDW 0 (11)

3y
2 ey din, . 3
(v vl) S (val) (12)

The matching process given by Eq. (7), will provide some of the necessary

boundary conditions for ¢4, ¥,5 ... and Tos 1 At the cylinder wall

1’ e
and at infinity the appropriate boundary conditions are

v,(1,8) =¥, (1,8) = ... =0 (13)
ay(1,8) u su(1,6 av,(1,0)

= Ty 2 L. =50 (14)

¥o(=,8) > p sin 6 , ¥ (»,0) = ¥,(=,0) = ... >0 (15)

The solution to Eq. (11) that meets the boundary condition (15) is

¥o = o sin g (16)

and Fo(R) is chosen equal to 1. The solution to Eq. (10) that meets the

boundary conditions (13) is

® u
¥y = g,(r)sine + } g_sinne * ¥ inr (17)
0 1 e n ?O‘R,
where
(r) =¢C (r3 2r + l) ‘] E.(2r Inr + ]) (18)
i Ak 2l A R TEAE

gn(r) = Cn[r" - el (n-1)r""] + En[lr‘"+2 - (n+'l)r'2'n + M (19)

and the Ci's and Ei's for i = 1,2,... are constants. Matching at this
stage according to Van-Dyke's (1964) principle requires that 1-term outer
expansion (1-term Stokes) ~ 1-term inner expansion (1-term Oseen).

If we express y,y(r,e) in terms of p, expand for small R and retain




the first term of the expansion we get

E
by(rs8) > 5+ (- 22 1n R)sin o
and matching according to Eq. (7) allows us to choose

- p
fD(R) =g o, E, @ -] (21)

Notice that the constants Cn and En for n = 2,3,... have to vanish since
there is no sin ne in the outer solution to match with. Moreover at this
stage the quantity uwln r does not appear for r + « since it is overpowered
by quantities 1like r 1n r, r, etc.

Back to the Oseen expansion now, after some algebra we can bring

Eq. (12) in the well known form

2

(v< - gzovzwl =0 (22)

where £ = xR and both x and £ are coordinates in the stream direction: x
= x/a, £ = §U/v; with x the physical coordinate. Equation (22) is satis-
fied by

2 «
= ¢&/2

vy =e nZ1 D K (p/2)sin ne (23)

wher‘elKn is the Bessel function of the second kind so that the boundary

conditions of Eq. (14) are met. Matching now can be achieved at the level:

1-term inner expansion (2-term Oseen) ~ 2-term outer expansion (1-term Stokes)

In the present development we are only interested in the Stokes solution,

and we are satisfied to see that matching the v2 of the solutinns gives
2 2 = . 2sin e
v, (1-term Stokes) = v/ (fobe) = - T7 (24)
2 2 2
v, (2-term Oseen) = vo(yo + Fiyy) = Fiuy, (25)
7
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Hence the term u, In r of Eq. (17) is not involved in the matching at this

level. To this approximation therefore the Stokes solution reads

v(r,e) = - -Z—Jm (2r Inr-r+ ]F)sin o +u, Inr (26)

The above analysis holds in the 1imit R ~ 0. Let us now define for
convenience the small positive quantity ¢ = -1/2 1Tn R. The velocity com-

ponents then are

ug = (2 Inr+1 - %zdsin o - uw/r (27)
., e(2Inr -1+ %z)cos ) (28)

Let us further assume that for small wall velocities, U, the disturbance

due to rotation is small. In particular we will search for a point within

T

- the flow, where both the velocity components Ups Uy vanish. Let the polar

coordinates of this point, which is a stagnation point, be rgs Og- For small

Uy it is reasonable to assume that the stagnation point should be very

close to the wall, that is 5 ® 1 + 2 where 2 << 1. The component u.

vanishes at & = 90° and 270°. For these values of 6, if one requires that

Uy also vanishes, one can arrive, in the limit ¢ + 0, at the approximate

expression

Lhe s

g = T—¥—%E7U;' for 6 = 90° or 270° respectively (29)

If 6 = 90° then for u, < 0(e), = 0(e) or > O(e) 2 would be large negative,
negative or positive of order 1, respectively. However, this quantity cannot
be negative, nor can it be of order 1 since this would violate our assumption.
If 6 = 270° and 0, O(ez) or smaller, Eq. (29) represents an acceptable

solution and ¢ = 0(¢). We therefore arrived at the conclusion that if

——




the angular velocity of the cylinder is small there exists a stagnation
point away from the wall, at the point

uw
rg=1+ o e 270 (30)

It is well known that the simplest streamline configuration of a stag-

nation point for viscous or inviscid flow is that of a saddle point. With
the above information we can make a rough sketch of the streamline pattern.
Two of the streamlines that emanate from the stagnation point will extend

all the way to infinity. One arrives from -~ and the other leaves our

stagnation point and goes to +~ (see Fig. 3). To complete the saddle point
1 configuration we need two more critical streamlines that emanate from the
saddle point. The simplest topography that would not contradict the sense
of rotation of the cylinder, is the one shown in Fig. 3. Notice that these
two streamlines will have to meet at the top of the cylinder and thus con-
fine a certain amount of fluid in a ring that surrounds the cylinder. This
amount of fluid will stay forever with the cylinder and rotate with it. The
streamline pattern depicted in Fig. 3 is not new. As far as the topography
of the streamlines are concerned, it is identical with the pattern of Fig.
1b. The pattern of Fig. 1b though represents a solution to the Euler equa-
tions and holds for a large enough angular velocity that would give to the
field a circulation larger than 4xU a. The pattern of Fig. 3 represents

the Stokes flow about a cylinder rotating with infinitesimally small angular
velocity.

At this point we can make some interesting observations. For zero

angular velocity and for any value of the Reynolds number there are two
stagnation points, both on the skin of the cylinder, at o, * 0 and 180°.

For slow flow and for any angular velocity, no matter how small, there is




only one stagnation point at e ™ 1 + 2 and 0, ™ 270°. It is obvious that
there is no continuity in the phenomenon. The stagnation point we have

discovered at A 270° does not tend to & = 0° or 180° as w > 0. One would
be tempted not to call this point a stagnation point, at least not in the
usual sense, even though at this point the velocity vanishes. Nevertheless
our stagnation point is distinct by one more significant feature, charac-
teristic of stagnation points. The streamline that separates the on-coming
stream into two parts, the one that flows above and the one that flows below
the body, bypasses the skin of the body and stagnates into our point. A
similar stagnating streamline emanates from this point and plays the same
role in the right half of the flow field (see Fig. 3). We should refer

to such streamlines as stagnation or critical streamlines. One would be
tempted to call such streamlines separation streamlines. The term would

not be totally unjustified as we will see in the sections that follow.

R e b
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III. SEPARATION OVER MOVING WALLS J
The gist of the present material and the cornerblock of the development

that follows is not ours. The whole effort was inspired by the Moore-Rott-

Sears conjecture on the streamline pattern near separation over a moving near I:

wall. Moore (1958,1959), Rott (1956, 1964) and Sears (195% ) have pointed out

in the fifties,that the vanishing of the skin friction is not an appropriate
criterion for separation over moving walls. Instead they conjectured that the
streamline pattern in the neighborhood of separation,

configuration as shown in Figs. 4, 5 and 6 for fixed walls, walls moving down-
stream and upstream respectively. Physical arguments to support such conjectures
are simple and quite convincing. If we assume that for large enough Reynolds
numbers the motion of the skin does not affect the outer flow, then the
separating pattern, consisting of regions I and Il (see Fig. 4), should retain
their character as shown in Figs. 5 and6. It should be recalled that the
flow in the recirculating bubbles or the wake is essentially stress-free and
therefore viscosity is important only in thin wall layers or free shear layers.
Within the boundary layer though the flow should remain attached to the skin
and therefore a portion of the oncoming flow of Fig. 5 should stay with the
wall and the flow bifurcates at separation. Based on the same physical
considerations may argue that the flow approaching the point of separation
from within the wake should bifurcate as well. A stagnation point within the
flow then appears and a set of four stagnation streamlines separate the flow
field into four distrinct regions: the regions I, II, III and IV. Such
streamlines will be referred to in the sequel as critical streamlines.

Similar arguments may be provided in support of the configuration of Fig. 6.

Moore, Rott and Sears suggested that the proper criterion for separation

in these cases is

1




%=o at  usd (31)
where u is the velocity component parallel to the wall and y is the coordinate
perpendicular to the wall. This criterion,often referred to in literature as
the MRS criterion, is tacitly based on the assumption that the critical stream-
lines at the stagnation point are perpendicular and parallel to the wall
respectively. Such an assumption appears reasonable for the case of downstream
moving walls, if the Reynolds number, R, is very large, since then all viscous
effects, including the streamline patterns of Figs. 5 and 6, will be confined
to a very thin layer next to the wall. The thickness of the viscous layer,
including the neighborhood of separation, tends to zero as the Reynolds number
tends to infinity, with some power of R (Stewartson, 1972). With three of the
critical streamlines directed downstream, it is reasonable to assume that the
critical streamlines are parallel and perpendicular to the wall respectively,
at least for the case of a downstream moving wall, as depicted schematically

in Fig. 7. These arguments do not seem to be plausible for the case of an
upstream moving wall and indeed its validity has been recently questioned
(Fansler and Danberg, 1975, 1976; Tsahalis, 1976; Williams, 1977).

The first experimental evidence in support of the above statements were
provided first by Ludwig (1964) and his colleagues (Brady et. al. 1965; Brady
et. al., 1967). Experiments were performed in a wind tunnel and velocity
profiles. about a rotating cylinder were measured using hot wire anemometers.
The results provided substantial evidence that the criterion given in Eq. (31)
is correct, at least for the case of a downstream moving wall. Ludwig et. al.

have constructed streamline patterns, on the measured velocity fields and

12




verified the flow patterns of Figs. 5 and 6 up to the point of separation.
However their Reynolds numbers were high and the wake region fully turbulent.
As a result the saddle point configuration was not completely recovered from
the side of the wake.
g ‘ Numerical evidence for the existence of a stagnation point within the flow
was furnished originally by Thoman and Szewczyk (1966,1969) who integrated
numerically the full Navier Stokes equations. Their work seems to indicate
the existence of one saddle point for very low Reynolds number which shifts
slowly towards 6 = 0 as the speed of rotation increases.

A few years later Telionis & Werle (1973) and Tsahalis and Telionis (1973)
integrated numerically the boundary layer equations. The reader is cautioned
here to the fact that the boundary layer equations are not an appropriate model
of the flow in the neighborhood of separation, since the boundary layer hypothesis
is violated a few boundary-layer thicknesses upstream of separation. It is
; well known though, that if one continues the integration of the boundary layer
equations, disregarding the fact that they do not represent the actual flow,
one eventually encounters a singularity at the station of zero skin friction.
The mathematical features of the separation singularity have been extensively
studied in the past few decades (Brown & Stewartson, 1969). It is a well
known experimental fact that at separation the streamlines turn sharply into
the flow and the wall shear vanishes. The boundary layer equations therefore
simulate quite accurately the phenomenon for steady flows over fixed walls.
Telionis and Werle (1973) have shown numerically that for the case of down-
stream moving walls, integration can be carried beyond the point of vanishing
wall shear and up to a station where the u-component of the velocity and the

velocity gradient vanish away from the wall, that is the criterion of Eq. (31)

13




is met. At the same station a separation singularity appears. The regions

I and III of the flow pattern of Fig. 5 were therefore numerically reproduced.
The boundary layer equations proved again to be a valuable model, although
there is a slight discrepancy, because the normal component of the velocity
remained positive across the boundary layer and therefore the pointu = su/3y =0
is not truly a stagnation point. The only encouraging feature of the boundary-
layer solution is that the normal component remains quite small below the point
u= 0 but grows violently above it. This supports the earlier claim (Sears

& Telionis 1971) that in this case the singularity is centered away from the
wall. Moreover this numerical investigation has indicated that the Goldstein

4 singularity is not a feature that always accompanies the point of zero skin
friction. The numerical integration passes through the point au/3y = 0 at

y = 0 with no evidence of singular behavior. The familiar properties of the

? singular behavior appear at the MRS station. The fact that the point of zero

skin friction is not a proper criterion for separation has left us unable to

predict the location of separation by integrating the laminar or turbulent

boundary layer equations. The above evidence though indicates that the
boundary layer equations have the capability to signal the location of separa-
tion which also marks the extent of their validity.

Most recently Fansler and Danberg (1975) reconsidered the problem and
indicated that the MRS criterion is incompatible with the boundary layer
equations for an upstream moving wall. Their arguments do not preclude the
MRS pattern for the actual flow. Tsahalis (1976) has also performed calcula-
tions using the time dependent boundary-layer equations in order to verify that
the criterion of Eq. (31) is approximately valid for flows over upstream

moving walls. More detailed arguments for flows over moving walls the reader

14




SRR

will find in Sears and Telionis (1971,1975).

We recently undertook to design an experimental system in order to
investigate qualitatively the neighborhood of unsteady separation. Our
flow visualization method is based on surface observation of particles. Among
the first few test cases, we have investigated the steady flow over a rotating
cylinder for Reynolds numbers of the order of 100 to 300. Fig. 8 shows the
two recirculating bubbles for a fixed cylinder. In Fig. 9 we have blown up
a detail of the flow field in the neighborhood of separation over a downstream
moving wall. The four regions I, II, III and IV as defined in Fig. 5 are
clearly distinguishable. In Fig. 10 we have captured the stagnation region
and the neighborhood of separation over the upstream moving wall. This is
the first clear evidence of the existence of saddle points at separation.
More information on the experimental results the reader will find in the

sister paper of the present report (Telionis & Koromilas 1977).




IV CRITICAL POINTS AND CRITICAL STREAMLINES
The family of curves

dx

%¥-= ax + b,y (33)

has a critical point at the origin, which is a saddle, a center or a nodal
point if the quantity
J = a;b, - ayby (34)

is negative zero or positive respectively (Kaplan, 1958). Saddle point
configurations of streamlines have been studied before, both for viscous and
inviscid flows. Solutions of the Euler equations that describe the flow
in the neighborhood of a stagnation point for example are classical. The
viscous recirculating bubbles shown in Fig. 8, for low Reynolds numbers and
the stagnation point C have been well known for long and investigated
experimentally (Schlichting, 1968). Kovasznay (1952) has studied a periodic
viscous flow where saddle points of the kind of point C (Fig. 8) where
captured. Proudman and Johnson (1962) considered the impulsive start of a
blunt cylinder and showed how a saddle point is generated in the neighborhood
of the rear stagnation point. The Moore-Rott-Sears point of separation is
also a saddle point recently captured numerically and experimentally as
described in the previous section. To our knowledge no nodal-point configura-
tions of streamlines are possible unless one would consider the degenerate
case of a dipole or multipole.

Based on the information we have gathered up to now we can proceed

with a sequence of simple statements and conclusions. In the material that

16




follows in the present section,the reader will not find any rigorous proofs.
He will rather find a new interpretation of some more or less known ideas
and a few propositions that are based on common sense and the evidence that
we collected in the earlier sections.

Let us first synthesize the fragmented information we have about the
rotating cylinder. Once again assuming that the frequency of rotation does
not eliminate the two recirculating bubbles altogether, we arrived at the
conclusion that the two points of separation become saddle points, of the
kind depicted schematically in Figs. 5 and 6 and experimentally captured in
Figs. 9and 10. Let us now turn our attention to the "stagnation streamline".
As such we will define the streamline that separates the oncoming flow into
two flow regimes: The one that eventually flows above the cylinder and the
one the flows underneath the cylinder. For no rotation this streamline attaches
at the cylinder at 8 = 0. If the skin of the cylinder is in motion, this
is obviously not possible. There will be no stagnation on the skin of the
cylinder. If the stagnation streamline were to pass beneath the bottom saddle
point, point E, then we are forced to admit that a portion of the fluid above
this 1ine turns around and eventually passes above the cylinder as shown in
Fig. 11. This would imply the existence of a fourth saddle point, the point
F. The critical streamlines that emanate from E then are not compatible
with the streamlines from F, because the fluid between the streamline a and :
the streamline b should be directed towards E. This could not be possible,
unless there existed yet another saddle point between a and b. One will soon
find out that a compatible configuration would require an infinite number of
saddle points. As always in such frustrating cases, we are tempted to over-

simplify things by introducing an axiom. Let it be here the "axiom of least
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number of saddle points". In the spirit of this axiom we can argue that
the stagnation streamline dives into the critical point E. In a similar way
we conclude that the critical streamline b dives into the saddle point D
(see Figs. 8 and 11) and before long one arrives at the pattern depicted
in Fig. 12. Flow visualization of this pattern is shown in Fig. 13. The
above arguments by no means provide a proof of the pattern of Fig. 12.
The reader will find it interesting though to try to construct different
streamline patterns, compatible with the saddle point configurations of
separation, which I consider well established. He will soon find that the
pattern proposed in Fig. 12 is the only acceptable to the intuition of a
fluid mechanicist. Experimental evidence in support of the pattern of
Fig. 12 was provided only recently, as described in the accompanying paper.
A certain amount of fluid, as shown in Fig. 12, is trapped with the cylinder
and stays forever with it. This is true for a }otating cylinder even if there
are no separated bubbles (see Fig. 3). One may argue in a similar way for
the pattern of this Figure. Ludwig (1964) has reported indeed that in his
smoke visualization experiments, he observed a thin layer of smoke that
persisted around the cylinder.

Some straiahtforward conclusions now can be drawn. No matter how small
the frequency of rotation is, the classical stagnation points "jump" from
o = 0 and 180° (see Fig. 2 for notation) to the separation points, that is
the points D and E (Fig. 12). In fact we should probably consider the classical
configuration of Fig. 8 as a degenerate case that one can achieve only for
the very special case of w = 0 and not even for w -~ 0. How far the point of
stagnation will jump and which points will be displaced more, so that points

A and E and B and D of Fig. 8 will coalesce respectively is an open question.
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An attempt to answer these questions is found in the accompanying paper.
Evidence that such a phenomenon occurs is given in Fig. 13. In this

figure the narrow region of reversing flow that has been formed between

the point 8 = 180° and the point of separation is clearly shown. Considering
the relationship between steady separation over moving walls and unsteady
separation over fixed walls (Sears & Telionis 1971,1975, Williams 1977), the
reader should appreciate the importance of this statement, which is further
reinforced by the fact that in real life one encounters complex situations,
that often involve moving boundaries and strong unsteady effects.

The reader should further note that with a clockwise rotation, the
forward stagnation point moves to the bottom saddle point, that is, in a
direction opposite to the motion of the skin. This is true for both cases
of Figs. 3 and 12. In general therefore a streamline pattern will contain
a certain number of saddle points. If there is no separation, there will be
one saddle point as shown in Fig. 3. If there is separation there will be
at least three critical points as shown in Fig. 12. One final comment:

For the general case we are considering, that is for w not identically equal

to zero, a point of stagnation and a point of separation cannot be distinguished.
They both appear as saddle points and one saddle point may often play the

role of both. That is, it receives the stagnation line and gives rise to a
separation line.

The next question we can pose to ourselves is what happens for the next
larger range of Reynolds numbers. It is well known that for 250 < R < 1000
the wake of a cylinder, or in general a bluff body forms a von Karman vortex
street which in an inertial frame appears to consist of an infinite array of

vortices as shown in Fig. 14. 1In our terminology the pattern of Fig. 14
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consists of an infinite array of critical points of the "center" type.

Let us now attempt to construct the streamline pattern that an observer riding
the cylinder would see. Let us assume that for the viscous vortices

generated by the cylinder, the velocity profile at a vertical cross section
attains values larger than the speed of the cylinder, U_. That is, in Fig.
15a, let us assume that the speeds of the points A and B are equal to the
speed of the cylinder, up = upg = U . Superposing the constant velocity
vector that will allow us to ride with the cylinder, the points A and B will
become critical points and in particular point B will be a saddle point and
point A will be a center as shown in Fig. 15b. It is an elementary exercise
to assume a velocity field, compatible with the streamline pattern of Fig.

14 that satisfies the above assumption and transform it by a constant vector
U_. We then arrive at a pattern similar to that of Fig. 15b, which can be
used to synthesize the pattern of Fig. 16. Thoman and Szewczyk (1966) and
Fromm and Harlow (1963), solving numerically the full Navier Stokes equations
and later Davies (1975) using a conditional averaging technique, generated
flow patterns identical to those of Fig. 16, although the saddle points

were not identified as such (see Fig. 17). It is very interesting to note
that in the flow pattern of Fig. 16 we can identify three distinct areas.

Area A is the outer flow that is directed downstream and tends to the uniform
undisturbed flow as we move away from the wake. Area C is made up of vortices
trapped in closed loops that are stationary and do not participate in the
downstream motion. Disregarding the effect of dissipation momentarily, we
discover that placing a blunt body in a free stream generates an infinite
wake, littered with vortices that are fixed with respect to the inertial frame.
Most interesting also is the area B which represents a portion of the flow

that travels consecutively above and below the vortices C.
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In fact flow A never comes in contact with flow C and flow B is the only
agent available to transfer vorticity to the vortices C.

The von Karman vortex street is a typical example of a steady-state
wake field. The process in which this wake is generated is clearly
unsteady. Vortices grow in the lee-side of the cylinder and are shed down-
stream in an alternating fashion. The next question we would like to pose
to ourselves then is the following. What would be the streamline pattern for
a wake bubble that grows with time? Consider the flow pattern of 18a and
assume that the dead fluid in the bubble is dyed blue, whereas the free and
alive stream supplies us with red fluid. In order for one of the bubbles to
grow, clearly there must be some exchange of mass. Red fluid must enter
into the bubble, "die" and become blue. The mass exchanae could occur as shown
in Fig. 18b. The situation is similar to the one of a free vortex (see
Figs. 19a and b). In both cases the character of the saddle point of separa-

tion remains unchanged but the critical point at the center of the bubble

change from a "center" to a "focus". Notice also that at each instant there

exist two streamlines that originate at -» and staanate at the saddle point.

One reaches the stagnation point directly and the other only after surrounding
completely the recirculating bubble. The above discussion is definitely
reminiscent of turbulent flows, turbulent boundary layers etc. After all
turbulence is made up of a large number of eddies that are convected with
the mean flow, continually changing their size and vorticity. The patterns
of Figs. 18 and 19 could be considered as a simplified picture of turbulent
flow.

To complete our account of separation over walls with nonvanishing

boundary conditions, let us consider the case of blowing and suction. A
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numerical investigation of the problem, within the framework of the boundary
layer equations, has proved that a Goldstein singularity is again present
at the M.R.S. point (Tsahalis & Telionis, 1973). Consider first the case
of suction. Fluid will be sucked across the surface from the free flow and
the wake. There exists therefore a streamline that separates the two
regions as shown in Fig. 20. Another critical streamline separates the free
stream into two regions: the region I that eventually flows above the wake
and the region II that is sucked by the wall. Arguing in a similar way we
conclude that the streamline pattern in the neighborhood of separation should
be that of a saddle point as shown in Fig. 20. For the case of very low
Reynolds number and assuming that the flow is steady the flow field about a
cylinder with uniform suction should be as shown in Fig. 21. The fluid that
is sucked by the porous walls is red fluidssince the size of the bubbles and
therefore the amount of the blue fluid is conserved. Again two critical
streamlines coming from -», arrive at critical points thus defining three
distinct regions: the region II of the fluid that is sucked in before
separation, the region I that coincides with region IV and corresponds to the
fluid that will be sucked in after separation and the region V of the red
fluid that is free to move about the cylinder and its wake and flow further
downstream. Notice that the slightest suction is enough to remove the bubble
with the contaminated blue fluid from its contact with the skin of the
cylinder. The streamline pattern for the case of blowing and always for very
low Reynolds numbers is shown in Fig. 22. Notice further that the separated
bubbles are fully submerged in the flow that emanates from the cylinder.
Identification of a critical point numerically would require identifica-

tion of zeros in the velocity field and calculation of the Jacobian given in




Eq. (34). If the origin of the coordinates is the critical point under
consideration, then in the neighborhood of the origin we can expand as

follows

dx _ , -x3u 4 3u
el s +yay +7 . 0 (35)

dy . | L@V 4,0V
F=v o e o (36)

and the Jacobian is approximately given by the formula

= 9U 3V _ 3u 3V
J = 3x 3y  ay ox (37)

Consider now the Navier Stokes equations for incompressible two dimensional

flow

du ., U, 8u_ _13p

st T Yax t Vay s o 9 (38)
a el owe . T oot

T Al Vay > 3y + VW Vv (39)

Taking the x and y derivative of Eqs. (38) and (39) respectively, using the

continuity equation and evaluating at the origin we arrive at

2 2
% _ouav, ovou, 19%p, » .2 |
xat ~axay T axay " p 2 ax ' (40)

2 2 2 }
% ouav _auav . 1%, |
3yat | 3y ax " ax ay S Rls (41) |

The Jacobian can now be readily calculated

12 3 2 3 o2
b B “(5? VutgeV v) (42)

Batchelor (1956 a,b) has investigated the uniqueness of solutions to

the Euler equations viewed as a 1imit of the Navier Stokes equations for v + 0.
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Batchelor's work permits us to make the following statement: Any streamline
pattern derived by solving the Navier Stokes equations is topographically an
acceptable pattern for a solution of the Euler equations. Or equivalently:
the topography of critical lines and critical points is the same for the
solution of the Navier Stokes equations and its sister solution of the Euler
equations. Assuming then that v - 0, the Jacobian at a critical point of an

Euler field becomes

3 = l- v2p. (43)

For a stagnation point u = y and v = x; hence J is negative and the critical

point is a saddle point, as is well known.
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V. CONCLUSIONS AND RECOMMENDATIONS

Recapitulating we put here together a few simple conclusions expressed in
an unusual terminology that will emphasize the spirit of the present investiga-
tion.

a. Two or more streamlines may cross each other at a point, provided at
this point they reverse their direction. Such streamlines we call critical
streamlines and their cross sections critical points.

b. For steady flow about a rigid body in a simply connected region with
zero suction, one critical streamline goes to - = and one to + =. All other
critical streamlines start and terminate on critical points, on or off the
walls of the body.

c. The critical points could be saddle points or centers for steady flow.
For unsteady flow a focus is also possible.

It is felt that these ideas may contribute in understanding the phenomena

of turbulent flows, wakes, duct flows and boundary layers. It is well known

that the response of relatively large eddies is almost inviscid. The present
work may lead to simple models that would simulate correctly the mechanisms
of mass exchange between eddies of different sizes and their dynamic inter-
action. It is believed that the turbulent field would then be represented by
a system of isolated free vortices that would interact with each other while

simul taneously being convected downstream.
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Fig. 1
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Schematic sketch of potential flow about a cylinder a, with
circulation T < 4rU_a;b. with circulation r > 4xU_a.
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System of coordinates and notation used in the asymptotic expansion.




Fig. 3 Streamline pattern of viscous flow about a slowly rotating cylinder,
with very small Reynolds number.




Fig. 4

Streamline pattern for separation
over a fixed wall.

Streamline pattern for separation
over a downstream moving wall.

Streamline pattern for separation
over an upstream moving wall.
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Fig. 7 Streamline pattern for separation over a wall moving downstream with
infinitecimal velocity.




Fig. 8 Schematic sketch and experimental visualization of the streamline
pattern of the flow about a circular cylinder (R = 100)
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STAGNATION
STREAMLINE

Fig. 11 Schematic sketch of unacceptable streamline patterns for flow over
a rotating cylinder.

STAGNATION
STREAMLINE

Fig. 12 Schematic sketch of streamline pattern for viscous flow over a
rotating cylinder and R = 100 - 500.
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Fig.
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The Von Kdrmdn Vortex Street for a body moving from left to right
as viewed by an observer fixed on the inertial frame.
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Fig. 16 The Von Kdrmdn Vortex Street as viewed by an observer riding the
body.
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Fig. 17
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The Von Kdrman Vortex Street of Fig. 16 visualized by Davies (1975).
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Fig. 18  Streamline pattern of recirculating bubbles. a. Containing a fixed
amount of fluid, b. Exchanging mass with free stream.

] Fig. 19 Streamline pattern of an isolated vortex. a. Containing a fixed
amount of Fluid, b. Exchanging mass with free stream.
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; Fig. 20  Streamline pattern for separation over a wall with uniform suction.

Fig. 21  Streamline pattern for low Reynolds number flow about a circular
cylinder with uniform suction.




Fig. 22

Streamline pattern for low-Reynolds number flow about a circular
cylinder with uniform blowing.
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