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CHAPTER I
INTRODUCTION

A. Purpose of Investigation

Light propagating through the atmosphere undergoes bending due
to variations in the index of refraction. When this bending is
uniform one witnesses phenomena such as mirages [1] and the apparent
flattening of the sun as it approaches the horizon. If the index of
reflection is fluctuating randomly the phase and amplitude of the
light are perturbed in a random manner. Phase fluctuations give rise
to an uncertainty in the location of a radiating body [2]. This
behavior is exemplified by the "dancing" or "quivering" of the image
of a star as Seen through a telescope. Intensity fluctuations, or
scintillations [3] as they are commonly called, are typified by the
twinkling of stars or distant headlights.

By examining the temporal power spectrum of the scintillations
one can discern important properties of the medium through which the
light has propagated. With the ready availability of the laser it
is therefore natural that we be interested in the temporal scintil-
lation spectrum of a laser beam.

A realizable laser beam may not always have the perfect prop-
erties which analytical studies assume. The need therefore arises
to determine the effect upon its scintillation spectrum of a laser
beam containing a certain amount of deterministic degradation,
e.g., a beam partially blocked by dirt specks. We are concerned
herein with the temporal scintillation spectrum of just such a
"dirty" beam.

Within this work a contemporary technique currently appearing
in the literature is employed in deriving a very general but compact
mathematical expression for the scintillation spectrum. This ex-
pression, which is restricted to the weak turbulence regime, is
then applied to the analysis of several situations of great interest.

Specifically the analysis is directed toward description of the

effects of such phenomena as localized turbulence, off-axis de-
tectors, and the use of a laser beam which is blemished in a
deterministic sense. Spectra obtained under these conditions will
be shown to provide additional information about the propagation
medium.




This study was motivated by a desire to provide theoretical
support for experimentally obtained scintillation spectra. As
illustrated in Figure 1, these spectra were digitally calculated
from data obtained by propagating a laser beam over an approximately
one kilometer path between two aircraft flying abreast. The spectra
thus generated displayed a number of pecularities and in the course
of the effort to put this behavior on a firm theoretical basis a
number of heretofor unexplored phenomena were encountered.

— | Km -

Figure 1--Sketch of experimental situation.

The principal contribution of this effort 1ies in the develop-
ment of a simplified formula for the temporal scintillation spectrum
and its application to several important configurations which are
commonly encountered in practical situations. The problem attacked
in this dissertation is therefore a theoretical description of the
temporal scintillation spectrum of a "dirty" laser beam.

The general formalism presented here is also applicable to
arbitrary transmitter and receiver shapes such as the beam transmitted
from an unstable resonator or a Cassegrain telescope receiver or
transmitter.
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B. Perspective

Whenever an electromagnetic wave is propagated through the at-
mosphere it is perturbed in a random mauner. For radio frequency
waves this corruption is due to index of refraction variations caused
by humidity fluctuations within the atmosphere. At optical fre-
quencies the index of refraction variations are due primarily to
temperature fluctuations. Both humidity and temperature fluctu-
ations are caused directly or indirectly by radiant heating of the
earth and convective heating of the atmosphere in conjunction with
wind shears. The research effort described herein in aimed primarily
at predicting the effects of turbulent index fluctuations at optical
frequencies but may be generalized to longer wavelengths.

The refractive index field is composed of randomly:arrayed
eddies of various sizes and indices of refraction. These eddies
have sizes 2 such that %o < & < Lo where 2 and Lo are respectively
the inner and outer scales of turbulence. Mechanical energy is in-
jected by wind shears into the large scale sizes which then break
into smaller and smaller eddies through the phenomena of vortex
stretching[89]. The energy thus cascades into smaller and smaller
scale sizes until it is dissipated in the form of heat at scale sizes
on the order of the inner scale, %g.

If one assumes that the turbulent eddies are blown en masse
through the wave transverse to the propagation path, then what will
be observed at the receiver plane is simply the moving diffraction
patterns of eddies of various sizes and locations.

For short propagation paths (L < EE/A where A is the free-space
wavelength) the incident wave undergoes perturbations to its phase
only. As the path length is increased, amplitude fluctuations are
also introduced. When viewed by a square-law detector (e.g., the
eye or a photomultiplier) the resultant power (irradiance) fluctu-
ations are commonly referred to as scintillation.

.By using a detector (photomultiplier) to measure the variance
of the irradiance of a perturbed wavefront it is noticed that to
a point, as the path length or turbulance level increases, so does
the -irradiance variance. However for very strong turbulence and/or
long path lengths the variance is seen to peak or saturate [4],[5]
and to even decrease slightly [6]. This effect has attracted much
attention partly because people intuitively expected the variance
to increase without limit.

Within the weak turbulence regime (or for moderate propagation

lengths) the effects of index inhomogeneities can be closely apRroxi-
mated by the linear superposition of the interactions of the coherent

(unperturbed) wave with turbulent eddies of all sizes at all locations

- e 4 0t




between transmitter and receiver. This is a single scattering model.
Strong turbulence gives rise to multiple scatterings which manifest
themselves as the aforementioned saturation phenomenon. We shall be
concerned herein principaily with the weak turbulence model. However
where appropriate modifications will be pointed out which enable
generalization to the strong turbulence domain.

The temporal spectrum of the irradiance fluctuations could easily

have been measured instead of the variance of irradiance. It is just
this power spectrum in which we are interested.

C. Discussion of Previous Work

Since primordial man first turned his gaze toward the night-time
sky he has been intrigued by the phenomenon of scintillation. (Recall
the nursery rhyme which goes "Twinkle, twinkle, little star ....") It
seems natural then, that scintillation be a topic of research from
earliest times. Further, it is reasonable that the study of scintil-
lation have its roots in one of the oldest sciences, astronomy [7]. 1In
more recent times scintillation has been an important device for_passive
remote sensing, for example determining the velocity of the inter-
planetary solar wind [8,9], the ionospheric drift [10,11] or terrestrial
wind [12]. With the advent of the laser, scintillation has become
important within the realms of optical communication [13,14] and active
remote sensing [15,16,17,18,19].

One of the classical mathematical tools with which scintillation
is predicted, is known as the Method of Smooth Perturbations [20].
This technique, popularized by Tatarski [20], hypothesizes an iterative
solution (for weak turbulence) to the scalar wave equation for the
natural logarithm of the field. A great many authors have employed
this method in the study of (among other phenomena) scintillation.

The simplest problem related to scintillation which has been
attacked with the Method of Smooth Perturbations is the calculation of
the log-amplitude variance. This problem has been solved for plane
wave sources [21], spherical wave sources [22,23], and the more complex
finite beam (viz. gaussian beam) sources [24,25].

Another topic routinely of interest is the spatial spectrum (or its
inverse Fourier transform, the covariance) of the log-amplitude for
plane [26], spherical [22], and finite beam wave sources [24].

The next step in complexity is the calculation of temporal spectra
of, for example, angle of arrival [27,28,29], phase [30,31,32]. phase
difference [31,33,34] or irradiance [35,36,37,38,39]. The tervoral
scintillation spectrum for plane waves was examined by Tatarski[36].

An interesting feature of his development was that it accounted for a
finite receiver aperture. However, since the true plane wave is merely




T

a mathematical abstraction, his analysis is applicable to only a small
class of problems [40].

An extension of Tatarski's method to the calculation of the spheri-
cal wave temporal scintillation spectrum was provided by Clifford [35].
In his evaluation he developed expressions for the asymptotic behavior
of both plane and spherical waves. Solution of the spherical wave
problem represented a significant advance in the theory because the
spherical wave could be closely approximated in practice, thus allowing
experimental verification.

The calculation of the temporal scintillation spectrum of a
practically realizable source (the laser) was provided by Ishimaru [39]
and later by Mironov, et al [37]. Both authors presented numerically
calculated spectra for a variety of laser beam configurations.

The Method of Smooth Perturbations, as it has been used in the

past is» however, extremely cumbersome when applied to an extended source.

Its use in the analysis of each of the aforementioned problems necessi-
tated solving the wave equation for a particular source field (plane,
spherical, gaussian, etc.).

A more modern approach is to not solve the wave equation for the
field directly, but rather for the Green's function for the particular
propagation path configuration. The receiver plane field is obtained
merely by convolving the Green's function with the incident field.

This extension of the Green's function technique to propagation within
an inhomogeneous medium is commonly referred to as the Extended Huygens-
Fresnel Principle [41]. It is perhaps paradoxical that the Green's
function technique (for propagation within a homogeneous medium) pre-
dates the Method of Smooth Perturbations [42].

The study with which we are concerned employs elements of both
the classical (Method of Smooth Perturbations) and the modern (Extended
Huygens-Fresnel Principle) techniques. Virtues of each method are
exploited to obtain an expression for the temporal scintillation spec-
trum of an arbitrary source field. This formula is much simpler yet
more’ general than those developed by Tatarski, Clifford, or Ishimaru.
In fact their results are special cases of our formula. This study
extends the results of Ishimaru and Mironov in that it accounts for an
arbitrary extended source and an arbitrarily located extended receiver
aperture.

A portion of our analysis deals with the effects of extended
receiver apertures and the ensuing "aperture averaging". This topic
has also been treated theoretically by Fried, et al 43] and experi-
mentally by Homstad, et al [44] and Dumphy and Kerr [45].

The evaluation of the temporal scintillation spectrum for a
gaussian beam with an off-axis detector represents a significant
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contribution to the body of knowledge. Previous authors have always
dealt with axial detectors.

Finally, use of our formula in the modeling of a dirty laser beam
and the, subsequent evaluation of the scintillation spectrum provides
an important description of a situation which is universally encounter-
ed experimentally, but rarely treated even qualitatively. The techni-
ques applied to the modeling of a dirty laser beam could also be
applied to the prediction of the scintillation spectrum of a laser
with cassegrain optics.

D. Qutline of Effort

Chapter II provides the bulk of the background plus the mathe-
matical foundation for the remainder of the research effort. The
development relies upon the extension of the familiar Huygens-Fresnel
diffraction integral to the problem of propagation within an inhomo-
geneous medium. Use of the Extended Huygens-Fresnel Integral results
in an expression for the temporal scintillation spectrum for an arbi-
trary source field in terms of the generalized spatio-temporal second
order statistical moments of a spherical wave. These moments which
are functions of separations within the transmitter plane, the receiver
plane, and time are then derived. With some easily justified approxi-
mations the expression for the spectrum undergoes tremendous simplifi-
cation. The final expression, which is very compact, has some very
interesting interpretations. A description of the final expression in
the context of a phase grating model of the atmosphere completes this
chapter.

The formula for the scintillation spectrum derived in Chapter II
is applied in Chapter III to the case of a clean gaussian beam source.
Results of the analysis are in terms of analytic formulae for the
asymptotes of the spectrum under a variety of conditions. Such con-
ditions include the case in which the detector is off-axis to the laser
beam, as illustrated in Figure 2, and the case in which the turbulence
is localized. In addition to asymptotic results, numerically calcu-
lated spectra are presented for typical instances.

In Chapter IV the "dirty" laser beam is studied. The dirty beam
is modeled as arising from the propagation of an initially unperturbed
laser beam through a window containing an imperfection and thence into
the atmosphere. This situation js illustrated in Figure 3. The window
imperfection is modeled as an axially located spot which slightly ‘
shifts the phase of the incident beam. It is demonstrated that this 1
specific arrangement displays characteristics of a much more general
situation. Within the development the phase object is approximated
by a truncated series of functions involving Gaussian-Hermite polyno-
mials. These functions are of particular importance because they
closely approximate the modes of a laser and because they are exact
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(within the paraxial approximation) eigenfunctions of the free space
wave operator. Because the polynomial series is truncated, a procedure
is demonstrated which optimizes the approximation.

The expression resulting from the modeling of a dirty laser beam
is then numerically evaluated for a variety of situations. As a result
of the analysis, the scintillation spectrum is shown to exhibit very
interesting and informative low frequency behavior.

The summary and conclusions are contained in Chapter V. Sug-

gestions are provided for future analytical as well as experimental
efforts.
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CHAPTER II
DERIVATION OF FUNDAMENTAL FORMULA

A. Introduction

This chapter is devoted to the derivation of an expression for
E the temporal scintillation spectrum of an arbitrary incident field.
3 The final formula obtained is the foundation on which the remainder
of the analysis rests.

Within the derivation use is made of the Extended Huygens-Fresnel
principle and the weak turbulence approximation. The final result is
a very simple and physically interpretable formula for the temporal
scintillation spectrum of an arbitrary source field. This formula,
which requires knowledge of the free-space receiver-plane field of
an unspecified extended source, also accounts for an extended receiver.

In Section B we employ the Extended Huygens-Fresnel Integral to
develop an expression for the scintillation spectrum in terms of the
second order spatio-temporal statistical moments of spherical waves.
These moments, (log-amplitude covariances, phase-1og-amplitude cross
_ covariances, and wave structure functions) which are functions of
- separation in the transmitter plane, separation in the receiver plane,
: and separation in time, are derived in Section C by use of the method
of smooth perturbations.

The results of the two previous sections are combined in Section D.
Use is then made (and justified) of the weak turbulence approximation.
By rearranging terms of the resulting formula we obtain a series of
diffraction integrals which are then performed symbolically to yield
the desired expression for the scintillation spectrum.

In Section E the various components of the final formula are
interpreted in the context of a phase screen model of the atmospheric
turbulence.

R T W N Lo PR R TN T LIS NS 1.

Finally Section F consists of a discussion and summary of the
chapter.
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B. Derivation of General Expression

for Scintillation Spectrum

This section is devoted to developing an expression for the tem-
poral scintillation spectrum in terms of the second order statistical
moments of a spherica? wave. The derivation is based upon use of the
Extended Huygens-Fresnel integral and employs standard mathematical
procedures currently employed in the literature.

We are interested in the situation in which an arbitrary unper-
turbed source field is incident (at z=0) upon a region (z>0) contain-
ing randomly varying index of refraction inhomogeneities. The field
then propagates through the inhomogeneous medium a distance L to a
receiver plane in which is located an arbitrary detector. To deter-
mine the receiver plane fields we propose to solve the scalar wave
equation

[v% + k%n?(R)IE(R) = 0 (1)

where the index of refraction n is a random function of space and k
is the free-space wavenumber (k = 2n/1). By defining a generalized
Green's function such that

[v2 + k2n2(R) J6(R,R") = - 4ns(|R-R|) (2)

it is easily shown (see Appendix A)[41] that the receiver plane field
may be expressed approximately as

e®) = & [ e(mR)EMT (3)

where the surface integration is carried out over the plane z=0 and
L is the distance between transmitter and receiver planes. In
Equation (3) we have denoted the three-dimensional vector by an upper
case letter and the two dimensional vector by a lower case letter.

We shall attempt to retain this convention throughout the remainder
of this work. Using the explicit expression for the generalized:
Gr$en's function (also discussed in Appendix A) Equation (3) may be
written

ikL(r 57 ririst
£(7}.t) = 5K [ aF e i i e (4)

N
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where L is the geometrical (free space) distance between the point r
in the transmitter plane and the point r' in the receiver plane and
p is a complex phase perturbation to the field of a spherical wave.
The variables of interest are illustrated in Figure 4.

.ﬁ\—\ ’A
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Figure 4--Variables appearing in Huygens-Fresnel
formula.

The preceding discussion aimed at solution of the wave equation
within an inhomogeneous medium encompasses the method commonly referred
to as the Extended Huygens-Fresnel technique. This topic is discussed
more fully in Appendix A.

Using Equation (4) we express the irradiance at r' as

i & 2 . _ . _ ik[L(ry,7])-L(rp,ry)]
I(rysty) = |E(r,';t-,)|2 = (f%f) Jdr, jdrz e ! o

riirist *(rpsryst
ev(n riity) + v*(rasrysty) E(F 4 ()

(5)

X

and the total received power as

12




P(ty) = [ drj w(FI(sty) (6)
where w is the receiver pupil function defined as

1; IF}I < D/2

w(ry) = o
0; |r3| >D/2

(7)

and D is the diameter of the receiver aperture. We have assumed the
right hand side of Equation (6) to be divided by unity impedance so
that the power, P, does indeed have the units of watts. Now under
the assumption of temporal (wide sense) stationarity, the temporal
scintillation spectrum is given by

Spla) = [ e G (m)ertor (8)

where C is the power covariance,

Colr) = <[P(ty) - <P(ty)>1[P(t,) - <P(tp)>]> (9)

i -l Gt

= t] - t5, and the angular brackets denote the ensemble average.

Equations (6), (8), and (9) yield

Splo) = |

where C; is the covariance of irradiance defined as

T dr elor Id?iw(?i) IdFéw(Fé) Cp(ry -r3st) (10)

CI(F}-FE;r) = <[I(F];t]) - <I(?ﬂ;t])>][I(F};t2) - <I(F};t2)>]>
(11-a)

or more simply

Cr{ri-rgsc) = <I(Fjst))1(Fsty)> - <I(rjity)><I(rhsty)>
(11-b)

13




Note that we have indicated the covariance of irradiance_to be simul-
taneously homogeneous in the receiver plane separation, ry-r5, and
stationary in time, t. This assumption will be justified later in
this chapter.

Use will now be made of Equation (5) to calculate the irradiance cor-
relation and mean irradiance as required in Equation (11-b).

The mean irradiance from Equation (2) is simply
2 ik[L(ry,r7) = L(rpsri)]
=y N 1°°1 235
ShTyaty)> = (z—L) fd‘ﬁ fd"z g

x E(F))E*(T,) <e%> (12)

where we have defined
g = w(rysr]sty) + v*(rasristy) . (13-a)

If we define y = x + iS, where S is the phase and X is commonly called
the log-amplitude then ¢ is given by

z = x(rysrsty) + 3S(rysrysty) + x(rpsrysty) - iS(r,srysty) ik

The notation in the derivation to follow is greatly simplified by ]
adopting the convention 3

z = (X7 + Xo17) + (S99 - So19) (13-c)

where the subscripts refer to respectively a point, ry or rp, in the .
transmitter plane, a point, ri or rb, in the receiver plane, and a
time, t; or t2.

Under the assumption that the complex phase perturbation is normally
distributed [46] we have [47]

%Ug +

<e%s ¢ 4 (14)
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where o and up are respectively the variance and mean of ¢z. The
mean is
p; = 2<X> s (]5-&)

It is easily demonstrated by conservation of energy arguments [48]
that the mean must be the negative of the variance;

u, = 2<X> = -2CX(0;O;0) - (15-b)

For an infinite plane wave, relation (15-b) is identically true be-
cause the average irradiance at a point in the receiver plane must be
independent of turbulence strength (energy must be conserved). For

a spherical wave propagating through weak turbulence, energy is not
actually diffracted out of the beam but merely instantaneously redis-
tributed. Therefore, for weak turbulence, the mean irradiance of a
spherical wave should also be independent of turbulence strength.

The variance of z is given by

2

o
4

<Ly = 90 * xp17 = <x*) + (8197 - Sp17)1%

2 CX(O;O;O) + 2 cx(?}-Fégo;o) (16-a)

18<<(S979 = Sa11)> + 12<0qpq *+ %17 (S99 - S2ny)>
- Dg(ry-r,30;0) Lo,

where DS is the phase structure function defined as

Dg(o3p'5t) = 2[Cg(03050) - Cglpsp'st)] (16-c)

and we have assumed simultaneous homogeneity in both the transmitter
plane separation, p, and receiver plane separation, o', and station-
arity in the time separation, r. This assumption of simultaneous
homogeneity will be justified in a later section.

: The imaginary terms on the right hand side of Equation (16-b) are
1dent1ca11y zero. This can be verified by 1nterchanging the po1nts r
and rp in the transmitter plane thus introducing a sign change in these :
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terms. However by isotropy, this interchange should produce no sign
change. Therefore the imaginary terms are zero and Equations (14),
(15-b) and (16-b) yield

-%Ds(ry-r7;0;0) - r1-r2;0;
<eb> = ¢ S(r] r2 ) liox(f'] r2i0:0) (17-a)

or
° ~%Dy(r1-ry30;0)
e

<e°’> =

(17-b)
where Dy is the "wave" structure function [48] defined simply as the
sum of the phase and log-amplitude structure functions.

The mean irradiance term in Equation (11-b) is then finally
<I(Fstqy)><I(Tost)> = --k—4 dry |dry [dry |dF,
1Y 2it2 al ry Jdrz |dr3 |drg

 E(F )ER(PE(R)Er(Fa) eik[L(r],r-i)-L(rz,r]')+L(r3,ré)-L(F4.Fé)]

e-’s[D,q(F]-Fz;O;O) + Dy(ry-rg:0;0)]

X (18)

Similarly the correlation of irradiance in Equation (11-b) is
given by

<I(Fy3t))1(Fst,)> = (2§'~.)4 de] Isz [dF3 Idﬂ

T a T o el e i M e

x <eb> (19-a)
where

E = "(?] ;Fi St] )"’W*(Fz ,F-" ;t] )"‘W(Fa;Fé:tz)*"’*(F‘sFé;tz) (19-b)




By the previously adopted notation we have

£ = (X117 + X211 + X322 + Xg22) + 1(Sy17 - S217 + S322 - S422) -

(20)
Reapplication of Equation (14) to calculate the mean of exp(g)-
requires the calculation of the mean, ug, and the variance, of, of &.

Again, conservation of energy [48] requires that the mean be equal to
the negative of the variance;

b = 4<X> = -4 C,(0;050) (21)

The variance is

i‘ ZEfytfytfytty el |
i‘ where ;
j_ f] = <(X]]] - <x> + xZ-” - <x> + X322 - <x> + X422 - <x>)2> ”
(22-b)
: fa = -18 «><(S111 - Sany + S322 - Sgp2)> ) |
A
; f3 = 92 <% xo11 * x322 * x422)(S117 - Sa11 *+ S322 - Saz2)>
g (22-d)
f |
and |
fg = - <(S77 - Sp11 + S3z2 - Sg22)% (22-e) 1

The term f] is easily shown to be

17




fy = 4 C,(050;0) + 2 Cy(ry-rp;050) + 2 C,(r3-74;030)
+2 cx(F"I'F3;F1'Fé;~t'I't2) L - CX(F]-F4;F1-Fé;t] -tp)
+ 2 €, (Fpmrgsvi-Thity-ty) + 2 C,(vp-rgivi-risty-ty) . (23)

Term f, is identically zero because of stationarity and term f3 with
isotropy arguments similar to those employed previously is given by

f3 = 12[<(S322 - S422) (X111 + X211)>
+ <(S1171 - S211) (X322 + X422)>]
(24-a)
f3 = i4[cxs(F-l'F3;F-i"Fé;t]'tz) i st(Fz‘F43F'i'Fé;t]‘t2)] s (24 b)

where st is the cross-covariance between phase and log-amplitude.

Use of the identity
(a-b+c-d)2 = (a-b)2 + (c-d)? + (a-d)?
+ (b-c)2 - (a-c)2 - (b-d)? (25)

gives for the remaining term in Equation (22-a)

f4 = <[<(S117 - Sz + <(S3z2 - Saz2)®> * <(s111 - Saz0)®>

+ <(Sp17 - S322)%> - <(S111 - S322)%> - <(S11 - S422)%>]
(26-a)

or

18
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fy = -[Dg(ry-r»3050) + Dg(ry-r,3030) + Dg(ry-rysry-rast;-t,)

+ D5 (1ry-rairy-raosty=t,y) = Dg(ry-rasr)-rasty-t,)
- Ds(?é-?a;?}-FE;t]-tz)] (26-b)
Finally, combining Equations (19) through (26) gives
<e®> = exp {; %{Dw(F}-Fé;o;o) + Dy(r3-1430;0)

Dw(F=rasri-rasty=ty) - Dylrp-rgiri-raity-ty)]

*

Z[CX(F] -F3 ;Fi -Fé ity -tp) + Cx (Fz-?q_;?‘l -Fé;t] -t2)

+

i st(F]-F3;-Y‘-1-Fé;t'|-t2) -1 st(Fz-F4;F'|-Fé;t]-t2)]} .
(27)

The optical distance term in Equations (18) and (19-a) is

ikL

Tk[L(ryarq) = L(rp,1q) + L(ry,Tp) - L(rgsr3)] - (28-a)
Referring to Figure 5 it is seen that

ikL = ik[(L2+|7y-F12)% - (L2+|7p-7|2)%
+ (24|75 2% - (L2+|7pmp 28 (28-b)

Invoking the paraxial ray approximation (lF}-F}I << | A~i,j) we obtain

ik ik PR o i . gt
ikl =20 [Im-ri| - |rp-rj| + |rg-r3| - |rg-r3l ]

ooy
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Figure 5--Statistical moment vector arguments.

We now obtain by combining Equations (10), (11), (18), (19-a),

(27), and (28-c) the basic expression for the temporal irradiance
spectrum;

4
Sple) = (2%:) [. dr e-iuT IdF]'H(F]') IdFéU(Fé)
X IdF] Isz IdF3 Idﬂ E(ry JE*(rp)E(r3)E* ()
2 LInrj12 - Iy

X H(F] oF2.F3pF4;Fi .Fé;'l’) (29") y

where
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H = exp {} %{Du(?}-?é;O;O) + Dy(ry-ry30;0)
+ Dy(Fy=rgsry-riic) + Dy(rp-rairi-rjic)
- Dy(ry=r3srj-rasc) = Dy(ro-rgsri-risc)]
+ 2[Cx(Fi-F§;F}-F};r) + Cx(Fé-F;;F}-F};r)
+ 1 G (Fy-TyiF} Thit) = 1 cxs(rz-a;ri-?é;f)]}

- exp {'%[DH(F]‘FZ;O;O) + W(F3'F4;0;0)]} . (Zg'b)

At this point it may appear that the spectrum is not real as it
should be. This fear may be removed by manipulating the dummy vari- _
ables in Eqs. (29). Specifically by interchanging ry and rq, rp and r3;
ry and rp; and setting t=-t the right hand side of Eq. (29) appears to
h;ve been conjugated. However since the left hand side is unchanged,
the spectrum S is equal to its complex conjugate, i.e., it is real.

Equations (29) are the final result of this section. The particu-
lar form of the transfer function H is important because at least one
group of workers [49] has found that for very strong turbulence, the
behavior of the H function is dominated by that of the structure
functions. That is, the covariances in Equation (29-b) may be neglected.
Further, under certain circumstances (on-axis point detector), approxi-
mate closed-form expressions for the wave structure functions may be
found. For this instance it would be possible to calculate the temporal
scintillation spectrum under saturation conditions. This topic seems a
fertile area for further research.

. 'We have in this section derived an expression, in terms .of the
second order moments of a spherical wave, for the temporal scintilla-
tion spectrum of an arbitrary field source. Use was made of the Extended
Huygens-Fresnel integral which expresses the receiver plane field as
the convolution of the trandmitter plane field with a Green's function
which has been generalized to propagation within an inhomogeneous med-
jum. With standard mathematical procedures and assumptions treated
extensively in the literature we arrive at the desired formula expressed
in Equations (29).
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Finally, approximations were discussed which may enable the use
of the final expression to calculate the scintillation spectrum within
the saturation regime.

The next section is devoted to a derivation of the statistical
moments required by Equation (29).

C. Derivation of Statistical Moments

We now face the task of deriving expressions for the statistical
functions required by Equation (29-b§ of the previous section. Use
will be made of the method of smooth perturbations [2] which is some-
times referred to as the Rytov method [50,51]. Since this method is
well known, only the salient features of the derivations are presented
within this section. The expressions for the statistical moments
which are developed within this section represent generalizations of
expressions currently available in the literature.

The method of smooth perturbations relies upon the expression of
the field as [2]

£'=¢e M0 (30-a)

where

- ﬁnm - <n(R)>1%

is the R.M.S. variation in the index of refraction.

Typically y is on the order of 1076 [41]. By inserting E from Equation
(30-a) in the scalar wave equation and equating like powers of y one
arrives at an infinite series of linear constant coefficient (Recall
that the wave_eguation within an inhomogeneous medium has the variable
coefficient n2(R).) differential equations which are easily solved by
the Green's function technique. The solutions of these differential
equations are commonly denoted as y, and are given by

& W
Yo = e, : (31)

Obviously this results in the field being given by
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T
E=en=0 " : (32)

Now if we define

3 E = AelS = tnAiS (33)
and denote
. LnA, + iS, (34)
we see that
ln(A/Ao)H'(S-SO) nZ] ¥n
e = e (35)
The log-amplitude and phase perturbations which are denoted
respectively as
x = 2n(A/A;) (36-a)
and
Sy = S-S, (36-b)
are then to first order smallness of vy;
: x = Relyy) (37-a)
F and
S = Im{yp} : (37-b)

Tatarski [52] gives for the first perturbation to the complex phase

2 (KRR gR)
'ﬁ| =k e ER — %
v (R') = 5= I———'ﬁ.i.l £ nq (R)dR (38-a)
23
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where |
n(R) = n(R) - <n(R)> (38-b)

and the integration is carried out over the scattering volume denoted
by ¥. Fiqure 6 illustrates the variables used in Equation (38-a).

Ml 2

R'= LZ+F =(x),y,.L)

fi = (xi l")

R =(x,y,2)

Figure 6--Green's function variables.

-v For the spherical wave fields

ik|R-ry | ik|R' -7 |
oe Sl Ee :
E(R) = °———— and E(R") = L (39)
IW-P'II IR'-I"-i'

Equation (38-a) becomes
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D = et = k2 = =
¥ (R'5t) = yy(rst) = 5 I dR nq(R;t)
v

—, ik[|R'-R|+|R-r;|-|R"-r;]|]
R, | KR RIS IR |- [R5y
x — — — —
IR'ril IR"RI
where we have indicated explicitly the time dependent behavior of ny.
This time dependence arises because we assume the wind to be blowing -
the index inhomogeneities across the propagation path.

(40)

Utilization of the paraxial approximations

i (x-x;)2+(y-y;)? . j

i
3 (Xi-xi)2+(yi-yi)2

IR*-ryl = L 2

(x}-x)2+(y{-y)?
(-2) + gty @)

[R*-R]

allows Equation (40) to be written

v (ryst) = %;-J:dz (%)(I%;) Iiﬂdxfjmdy n(xsy,2;5t)

(x§02y30?  (xex)2oly-y)? (x§x) 4 (vxy)
x expyik 2(L-2) + 57 - iR .

(42) :

In Equation (42) the magnification terms have been approximated by the
first term of their Taylor's series expansions:
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To examine Equation (42) in the spatial spectral domain we make
use of the Fourier-Stieltjes expansions [53]

(43)

T i(kix+cly)
ny(x,y,25t) = ” e T dv(xi,xé,z;t) (44-a)

-0

VA @ i(K. '+K' l)
nst) = [[ e TV ot sepalit) (44-b)

so that

I} ei(Kixi+xéyi) do (3 axpslit) = %; J:dz (%éf)fjmdx It“dy
I"I" ei(nix+|<éy)

X dv(xi,xé,z;t)

R (xi-X)2+(yi-y)2 1 (X-xi)2+(y-yi)2 : (xi-xi)‘z«‘(yi-yi)2 1 .
2(L-2) 22 2L J
(45)

In Appendix B it is demonstrated that inversion of Equation (45)
y{eIdshfor the spatial spectrum of the first perturbation to the com-
plex phase;
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de(kq,%,,L5t) = ik " (L L st
'lﬂ(zs ’ » odZdV z K]. Z KZ’z’

X exp{i [L;z FiK - Loz _IZ._KZ] , (46)

where v is the spatial spectrum of the index of refraction fluctuations.
Since the expansion of Equation (44-b) takes place in the receiver
plane, the variables kj and xp correspond to spatial scales within the
receiver plane.

Because, by definition, the log-amplitude, X, is real, it is
easily demonstrated [54] that (to the first order smallness in y)

)
X - <x> > E{dO(K],K ,Lit) + dO*(-K].PKZoL;t)]

= da(kq,kp,L5t) X (47)

2

where F indicates the two dimensional spatial Fourier-Stieltjes trans-
form.

Using the_fact that the index of refraction field is real (thus
requiring dv(-k,z;t) = dv*(k,z;t)), Equations (46) and (47) give

L Uez) 7.5
s¢) = k| dzdv(t e, L z-t)e Eaie,
da(K1’K2,L,t) A ” Z v z K]Q Z KZ’ 9
sin [L Loz Kz]. (48)

Similarly, to the first approximation, the phase fluctuation is
given by

F
S ++-%T [do(xyskp,L5t)-do* (=ky ,=kp,L5t)]

E dQ("]aKZ’L;t) (49)
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which is easily shown to give

L r.-K
¢ & L L 5 4 1
d¢(K],K23L9t) i kjo dzdv (‘z' K]’ E Kz,zst)e

cos[th;z KZJ. (50)

As indicated in Equations (47) and (49) we have made use of the
Fourier-Stieltjes expansions of the log-amplitude and phase;

ST, ® (ke X3+K,yq)
x(ri;ri;t) -<x> = JJ e1 E1 N dai(n],xz,L;t) (51a)

and

T Ass L i(K xl+Ky')
S](ri;ri;t) = JJ g 21

d¢i(K],K2,L;t) (51b)

where the subscript i on the spectra denotes the source point ?}.

Now the time delayed log-amplitude and phase are given by

vio i(kx3+k,y)5)
X(F5irpstie) - <o = IJ s o s b el

and

® (kX +K,Y )

5](?5;F};t+t) = JJ

Introduction of Taylor's frozen-turbulence hypothesis [55] which says
eddies do not change shape in the time it takes them to blow through
the propagation path,

n](F.z;t+t) = n](?lV}.z;t). (53)

where v = (x,y) and v is the component of the wind velocity transverse -

to the propagation path, results in the spectrum of Equation (52a)
being given by

28
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L
daj(K]usaL;t+T) = kJo dzdv (!Z: K]: %KZDZ;t) (54)

X e e

HL-2)< o L = =
ET S & AL AT
# sin[L L-z Kz].

z J
Y4

The expression for the phase spectrum is identical except the sin
function is replaced by a cos function.

Since subsequent derivations for the desired statistical quanti-
ties are all similar, we will treat explicitly only the log-amplitude
covariance and state without proof expressions for the phase and
phase-log-amplitude covariances and the wave structure functions.

The log-amplitude covariance defined as
Cx(ri-rj;ri-rz;r) = (55)
<Ix(rysrysty) - <ellx(ryirgsty) -<c>

is, from Equations (51a) and (52a),

Cy(ry-ryiry-rai) = (56)

Koy -i?"-ré
II 3 e II E e <dai(K],KZ,L;t)dag(K],KZ,L;t+r)> 2

With Equations (48) and (54) the covariance is

|
i
!




St

2 L L L(L'Z]) 2 L(L'Zz) 2
x k J dz]J d22 $in | ppz— < |sin | 513 K (57)
o 0 1 2
X exp 2 Piio S r.-x' + it =— «'.v
1 2 2

x<d\){——- K

L L
s273t )d Kq KoaZost]? s
& ] 235 :) ¥ ( z, e Zp 2702 )

The assumption of wide-sense stationarity of the turbulence
provides the (stat1stica1) orthogonality of the index spectra ex-
pressed as [56

B {ghs i
‘d‘("‘ 2’21’t)°‘" (g s 557 KpsZps )

2n 2
- L L [} 1 L e L ] L L ]
i (z] (zé) dK1dK2dK1dK26(z! 1, K])a(;] 2" z, Ké) (58)

L L
i Fn(il“ il ’21'22')’

where F, is the two-dimensional power spectrum of the index of
refraction field.

Combining Equations (57) and (58), making the changes of
variables

| Cll
uy = 2 K} and u, = Ko (59)

and performing the integrations over uj and up results in

O b A e Al A v o s
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oy = k[ @[ a, (60)

= 0 0

2kL

S TN o WRRRE St -2 . Rez.)
o Tv+(L—]ri°L_2r')+[ o SR

where we have dropped the primes on the spatial frequencies.

zy(L-24) (L-2,)
X Fn('(] 9"2’|Z]"22|) sin [_—]—Zl_(l._l K‘z] sin [—2'——-2—- Kz]

Recall that in Equation (46) the spatial frequencies correspond
to scale sizas at the receiver. However the changes of variables in
Equations (59) produce in Equation (60), spatial frequencies k cor-
responding to spatial inhomogenieties within the medium. This is an

Zmpgrtant distinction for the subsequent manipulation of Equation
60).

We shall now proceed to simplify the expression for the log-
amplitude covariance. The method will make use of a sum and dif-

ference change of (path integration) variables and several order-
of-magnitude arguments.

The kappa integrand of Equation (60) is of the form

L L
dz J 42, Blx,24i2,), (61)
Jo 1 o 2 1772
which upon changing to sum and difference coordinates

2 4
o
o SRS ST

z +0p/2

(62)

D=Z-|-22 E) 22=Z"p/2

yields
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L L L/2 22
I dz]J dz, G(t,z],zz) = I dzJ do G(x,z+p/2,2-p/2)
o o o -2z
(63a)
L 2(L-2)
+ J dz I do G(x,z+p/2, z-p/2),
L/2 -2(L-2)
where the G function is given by
6(x,240/2,2-0/2) = F, (<150, 100 )i ™"
(63b)

3 sin[(zwéiz(L-z-oIZ) Kz]sin[gz-pézm.-zwz) Kz]

X exp{ii_-.E . [(z+p/2)?q-(z-p/2)?5+(L-z-p/2)?}-(L-z+p/2)?3{}

Using the trigonometric identity for the product of two cosines and
factoring the exponents gives for the G function

6(x,240/2,2-0/2) = Fy (x:%p,l0])

xexp[i"[ GEANL -f)(?i-FjHrVJ} (64)
el ] o s 2 )

év i '2_ [(r]+r2) (r.l'"' )]

X

For an isotropic field, fluctuations separated a distance p
are correlated only by index of refraction inhomogenieties of size
£ such that [57]

px2 (65)

Since the dimension % corresponds to a spatial frequency
L = 2n/x,
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B the two dimensional index of refraction spectrum Fn is markedly
- different from zero only for

p X 2m/x (66a)

or

<

Kp & 2w, (66b)

Within the region of significance of Fn’ the argument of the
first cos function in Equation (64) is

o 46222) 2 5 1 y(1-2z/1)c < w2 (67)
. ] - 0

where %5 is the inner scale of turbulence (typically £ ~10'3-10'2m).
Because the wavelength at optical frequencies (A¥10-6m) is much smaller
than the inner scale, we may let

cos [o %"(TZZ)- Kz]% : 8 (68)

Also within the aforementioned region

o LET-GpTl < T IEF)-Gerpl. i

If we restrict our attention to lateral distances from the propa-
gation axis much smaller than the range - the paraxial approximation
has already required this - we can allow

e%% % [r )= (Fy+rs)] i) bt
With the preceding approximations we now obtain for the in-
tegrand of Equation (63a),
G(x,z+0/2, 2-0/2) = Fn(r],Kz,loI)sin2 [f L-z) 2 _ 15%%3]
X exp{ir - [f (rj-Tp) + (1 - {-) (Fy-) + rﬂ} : (n)
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Finally, the log-amplitude covariance in Equation (60) is given

by
- 1/2 22
-r;sri-ra;t) = 2k°L d d dp G (k,2+pL/2,2-pL/2
Cx(ri ryjsri-ra 1) II K {IO z I b f x(x z+pl/ olL/2)
1 2(1-2)
+ J dz J dp Gx(x,z*pL/Z.Z-pLIZ) "
172 )0
(72-a)
where
2
Gy = Fp(xq »Kspl) sin? [z ;'-(z L 2. %Eﬂ)—]
x exp{ik ° [z(?}-?}) + (l-z)(F}-FS) + ]}, (72-b)

and we have replaced the z variable of integration by z/L.
It is easily demonstrated, using arguments identical to the pre-

ceding, that the phase covariance and phase-log-amplitude cross-
covariance are given respectively by

o S ee  EIHE o
Cs(FyTysTj-Tpin) = 2L [ Io dz Io do Gg(k,z+oL/2,2-pL/2)

-00

1 2(1-2)
+ J dz Jo dp GS(K,Z'!'pL/Z,Z-pL/Z)} s

1/2
(73-a)
where
| g 2
6 = F(kqaxpepl) cos? [Z Lk 2. Ligﬁl—]
x exp{ix * [z(r{-r}) + (l-z)(Fﬁ-Fj) + 1v]} . (73-b)
and
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el S g i 29 £
st(ri-rj;ri-ré;r) = k'L II dk

/2 2z
{j dz Io do 6,5 (x,z+pL/2,2-pL/2)
1
+ J]

’ lz ’

where

Gys = Fn(‘l'”stL)Sin [EilillL_KZ . L‘KEIZJ

x exp{ix ° [z(?ﬂ-?}) + (l-z)(F}-F&) + 1v]} . (74-b)

The wave structure function defined as

Dy(ey3p2st) = 2[C,(0;0;0) + C5(050;0)

- C,(0y30,31) = Cgpyippst)] (75)

is from Equations (72) and (73),

Dy (rj-rysri-riit) = 4k2L2ﬁ dx | i

-C0

X dz dp ks2+pl/2,z-pL/2
0 0 Gw

1 2(1-2)
+ I dz I dp GN(K,Z+pL/2.Z-pL/2)}» 3 (76-a)
1/2 0 5

where
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Gy = Fplkyax2,0L)

g {] : ei?- [z(?,'-Fé)'r(l'z)(Fi'Fj)*“T-'} (76-b)

Equations (72) through (76) constitute the desired results of
this section. In deriving these expressions, we have made no assump-
tions involving the size of the outer scale of turbulence, L,. The
literature abounds with expressions for the log-amplitude ang phase
covariances and the phase-log-amplitude cross-covariance for zero time
lag (v=0) [58,59] and/or axial receiver plape points (r{=r2=0) [60?
or transmitter plane points (ri=r =0) [25].?615,562]. Howevers al
of these derivations make use of {he assumption (usually implicit)
that the outer scale is much shorter than the range. We shall demon-
strate that, for our purposes, no such assumption is necessary.

D. Reduction of Expression for Spectrum

In this section the results of the two preceding sections are
combined. Some simplifying assumptions and observations are then
made which tremendously reduce the complexity of the expression for
the scintillation spectrum.

Our procedure is to first make the weak turbulence approximation
(which we quantify) to simplify the expression for the H function of !
Equation (29-b). Then by employing the expressions derived in the
previous section for the required statistical moments and symbolic-

ally performing a number of diffraction integrals we arrive at the
final expression.

The H function of Equation (29b) is given by
T pasa ™ u (77-a)
where

@ = J [0, (Fy-3050) +D,(F3-F43050)] (77-b) |

and




B = - 7 [O(FyTyiFi{-Fyit) + Oy (Fp-FiFy-Tpiv)

-D"(F.' —F3 ;F]' -Fé T) - D, (7"2-?4 ;Fi -Fz' ;1))
+ Z[Cx (F«' -Fs ;F]' -Fé 3T) + Cx (FZ-F4 ;F.i -Fé 1)
+ iCxS(Fﬁ-Fé;?ﬂ-F};r) - iCyg(ra-Ty3r]-r3;51)] . (77-c)
Under the weak turbulence approximation we assume that
lal, [8] << (78)

so that we need only keep the first two terms of the Taylor's series
expansions of exp(-a) and exp(8);

H% 1-(a-8) - (1-a) = 8. . (79)

In Appendix C we delineate the conditions under which we are justified
in making this approximation. For a von K{rmdn index of refraction
spectrum these conditions are

5/3
o < 546 2 KeL(og5"% + 030°) << 1
and
8 < .496 ¢2 k7/611/6 1

where

From the results of the previous section (Equations (72)
:hrough (76)) we see that H (Equation (29)) is given approximately
Y




H= 2k2L2ﬂ° de {J;/Zdz ﬁde + I:/Zdz Iz(]-Z)dp} Fn(K].KstL)

ik-[2(ry-r3)+(1-2) (r;-r4 )41
3 {.] o, [2(r]-r5)+(1-2) (r}-14)+1v]

ik [2(F]-73)+61-2) (Fp-r3)+1V]
e

i ei?-[z(F]'-Fé)f(l-Z)(F]-F3)+Tﬂ

s ei?-[z(Fi-Fé)+(1-z)(F_,_-F4)+rV]

+ 2sin(y) eiz}[z(F}'F})+(]'z)(FH'F5)+TVJ

123[2(F}-F})+(1—z)(Fé-?h)+17]
+ e

+ isin(2y) [ei;‘[Z(Fi -r3)+(1-z) (ry -F:3)+T;]

i [2(v -Fé)+(1-z)(?2-F4)+1ﬂ:|}

2
-2)L 2 _ L(xp)
e - (aesh)

and we have adopted an operator notation for the p and z integrals.
By employing the Euler idertities for the trigonometric functions it
can easily be shown that

i ¥ ]/2 2z 1 2(-'_2) c
-2 ([
=22 [[ b {Io dz Io do + I]/Zdz [0 dp] F leyegathl
L g [""1)?'(F1-F4> H-2)REpry)

e + e

-0
X e

(81)

i (]-Z);‘ (F‘l -F3)-12‘Y 1(]"2 );‘ (Fz-F4)+1 ZYJ
e “ie .




This expression can be factored to yield

= 222 [T d?{[llzdz fzzdo + f:/zdz fz(]-z)dp} Fp(kyskpa0L)

L]

=
}

ice[z (F']-F'Z)HVJ
e

X (e -8

-i(1-2)k-ry+i
. [e i(1-z)kerg+iy (s2)

-i(1-z)?-F3-iy]

With Equation (82) plus the expression for the spectrum in terms
of the H function (Equation (29-a)) we have

Splu) = 2kPL2 E v e luT JdF]'w(F]') JdFéW(Fé)

1/2 2z 1 2(1-2)
J dz J + l dz [ dp Fn(K],Kz,pL)
0 0 1/2 0

T
b
ey
— 8
(=8
A

: ik [z(r}-rs)+v]
E 5 A y S Ay

. 2 2
i ik r1m =
( dFl I drp E(ry)E*(rp) e?T“"l ril -lrp-ril ]

[1 -z)x-r] iy 1’(1-z)?-?-'2+1‘y] }
-e

15| 2-)7y-r5|2
> ( 2L, d"s r dry E(v3)E*(ry) e2L [|73-3]2-]74-7512)

[ i(]'Z)K'r‘4+IY 'i(]'Z)E'F3-iyJ}
= ¢

(83)
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If we look only at the ry,rp integrals we observe that they can

be written in the form
ik o= . |= L(1-2) —
PR Rl e ’I{"?'“l ["1' ‘LE“)'K]}
71';[‘ e dY‘]E(Y‘]) e
dr E*(T,) e 2L

21K 5.2 o= =,
: I (r2 2r2 r])

<dk ] 2 - [_. L(1-z _]}
ro=2r,° |rq + K
x [drjEx(7y) e—ﬂ-{ Rk LY ; (84)

Now recall the formula for the Fresnel diffraction integral;

(R ol =g
PRGESRE. | R (r-2r_-r+r€)

E(F) = pk e’k IdrsE(rs) e e s (85)
Comparing Equations (84) and (85) we observe that the r{ and T,
integrations can be performed symbolically to give

2

—'ikIF._ L(]'Z) T<' 3

L P 1 e E(;]. _L(-z ;)]
k
[ ik 2
r X
x [ M E*(ry )-1

¥ by 2

=ik .2 1 T ik lF.+L1-z =

e e 2L g [et

x E*(Fi s 1022 :)] . (86)
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where it is to be understood that the fields are the free-space
receiver plane fields. It may easily be verified that the r3 and

l',w’,,.v-,,“ -

ra integrations yield the conjugate of this expression with the vari-
able r{ replaced by rj. With these simplifications Equation (83)

becomes
12 22 1 2(1-2) T
5p(u) = 2412 I dz J o J dz I P dex
o Jo 172 Jo )
x Fp(ksx0s0L) I_w dt e'IT(m-K'V)
aad — -, -i(1-2)2L«?
S s iZK'ri -'i‘y"'i(]'Z)K-r-i 7K
X 'Idriw(ri)e e e
x g7 - '-'-“—kz)-E) E*(T})
: 2,.2
— 1-z)“Lk
iy+i(1-z)kry Hiz) b & - Y
-e S E(rj)E* (ri + LL%ZEL g) l
(87)
or

., [z, 1 2(1-2)
5p(0) = 2K4L J dz J gy # I dz I do
0 0 172 o

X ”d: Fn(K-l,KZ,pL) [276(w-k*V)]

X lH(Z.p,-K-,") = H*(Z,p,-;,”)lz ’ (88'3)
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e

H(Z 0 ,;,w) =

-i(1-z-02/8)Li? )

e 2k Jd?h(?)eiK'r E(F - Lilﬁiﬂg) E*(r)

(88-b)

In Appendix D we demonstrate that due to the scintillation spec-
trum's extreme insensitivity to low spatial frequency index of refrac-
tion inhomogeneities, very little error is incurred by dropping the
p dependence of the H function and extending the limits on the o
integration in Equation (88-a) to infinity to yield

] o
Sp(w) = 4n2K2L Jodz ”d; 0 (k1,6 2,0)8(w-k"V)

x [H(z,5.w) - H*(z,-cow) |2, (89-a)
where
H(Z,:,w) =
-i(1-z)L? foiE 5
g IdFN(F)e'K'r E(F-H‘%)ﬁ) E*(F) ,  (89-b)

and we have made use of the relationship between the two and three
dimensional index of refraction spectra,

00

J-mdp Fn(K],KZ,OL) = % <I>n(|<-|,|<2,0) ‘ (90)

Finally without loss of generality we can assume the wind to be
blowing in the x direction,

Vexv , (91)

so that performing the «j integration in Equation (89) yields
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P el o
Sp(w) = (41y4k2L/V) JOdZ J-de 5 (3— ,K,O)

X 'H( :K ,W) = H*(Zs‘K ,W)I L) (92)

where

o = (%K) :

and we have dropped the subscript on the remaining spatial frequency
variable of integration.

Equation (92) is the expressed objective of this chapter. The
utility of this formula lies in the fact that it expresses the temporal
scintillation spectrum for an arbitrary field and that the expression
for the source field enters the formula only in terms of the free-
space receiver plane fields. This latter fact plays an important role
in the chapters to follow.

In addition to the mathematical simplicity of Equation (92),
its various components are easily interpretable in terms of a physical ,
model of the turbulent atmosphere. The H function in particular dis- |
plays some very interesting behavior which offers insight into the i
propagation problem. Equation (92) is explored and discussed more |
fully in the rniext section. :

E. Physical Model

b

Now we wish to interpret our expression for the temporal scin- j

tillation spectrum in the context of a physical model of the atmo- |

spheric turbulence. In this model the index of refraction inhomo- 1

geneities are envisioned as a series of phase gratings [63] of |

various orientations and spatial frequencies. The components of ‘

Equation (92) will then be shown to describe the behavior of the |
fields in terms of the properties of these phase gratings.

{

|

|

!

We wish to interpret Equation (92) of the previous section:

L
Sp(w) = (41r2k2/v) Jodz I dko ("‘ 0)
x |H(z,x"',w) - H*(z,-?',w)]2 (93) i
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where

H(z,c',W) =

-i(L-2)k'2 o 5

e K Jd?N(F)e’K"r E(F - 1&:%)5:) E*(F)

P "

and we have changed the z variable of integration to the product L-z.

As preliminary background to this discussion we introduce the
concept of a phase grating as sketched in Figure 7. Illustrated in
this figure is an arbitrary wavefront impinging on a phase grating.
The phase grating is merely a diffraction grating whose transmission
function is periodic in phase rather than amplitude. To the right of
this phase grating (which can be thought of as a periodic variation
in index of refraction along a plane perpendicular to the direction
of propagation) we have depicted only the zeroth order and plus and
minus one order diffracted wavefronts. It is easily shown [64] that
the angles of the axes of the two diffracted wavefronts with respect
to the axis of the undiffracted wavefront are given by

a A (95)

where X is the wavelength of the field and % is the period of the
grating.

Now consider the situation shown in Figure 8. Here we have a
phase grating of pericd

2n/x (96)
and crientation

/|«
located in the plane z.
An axial ray striking this phase grating from the left will produce

zeroth and plqs and minus one order diffracted rays to the right
From the previous discussion the diffraction angles are seen %o be

A
4+ A=
% £

N>
E N P

LB (97)




Figure 7--First order diffraction angles of a
simple phase grating.

-(L-2)x

2 K

Figure 8--Lateral field displacements due to a
phase grating.




and in the plane z=L the displacements from the propagation axis are

+ L-z)k : (98)
But this is merely the displacement of the field in the expression
for the H function.

The foregoing argument was an heuristic derivation of the field
translations observed in the H function. In Appendix D it is shown
much more rigorously that the total diffracted field of a weak
sinusoidal phase grating is given by

1

Ey = eik(L-Z) Z ] cn En (99-a)
n=-
where
S -1n2 L-z g
£ = olBCT o E(F - pkz :) i (99-b)
o alnl )
Cn - (1 f) ’ (99-C

and ¢ is a small number proportional to the "strength" (maximum phase
change) of the phase grating. In the above equations, n represents
the diffracted order and E(r) is the incident field.

The total irradiance is given by

. R
LoifEfe= ¥ 7 coxEpe (100)
T T ans) ies) n“m “nm

and the total receiver power is

pr = I dr W(F) I

1 1
: nZ-] m§-1 CnCh J dr W(r) EqEn g (101)
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We retain only the terms in €° and ¢' (because ¢ is small) so that
Equation (101) gives

P = I dr W(r) E(F) 2
-i(L-z) .2
m : 2kz . % -ieer (=, (L-z) = .
+ c_]C0 e I dr W(r) e Elr + n ;) E*(r)

i(L-z) 2 i
K —— — i ® — - — —_—
+C*C e ° I dr W(r) P - LLEEl x) E(r)

-1°0
i(lL-z) 2 e !
K il =ire e = =y
+CoCt e 2k J dr W(r) e " E*(f - iLgll x) E(r)
-i(L-z[ KZ &
+C3C, e 2k [ dr W(F) eI E(? - Lkill-é) E*(r) .

(102)

Each of these integrals (with the exception of the first) is merely
the H function or its complex conjugate. The H function is therefore
seen to represent the interference between the zeroth order field and
the plus or minus one order field.

With the utility of the phase grating model of the turbulence
field thus demonstrated, we shall now demonstrate that the general
scintillation spectrum formula (Equation (93)) can be derived using
this model plus a few previously adopted definitions.

Essentially what we have implied in the preceding development is
that the index of refraction field can be expanded in an orthogonal
set of (moving) phase screens, the transmission functions of which
are given by exp(ie cosker). The problem however, is that the set of
cosine functions in itself is not complete [65]. Since the functions
sine plus cosine do compose a complete orthogonal set [66], we now
wish to apply the preceding technique to the situation in which the
"phase" grating transmission function is given by

exp (15 e""F) 4 (103)
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where ¢ is a small (generally complex) number. From Appendix E, the
resulting receiver plane field is seen to be

-iné(L-z)«?
] o L)
ET(Z.Z,t) o eik(L‘Z) inker

nZO C, © e
E(— % L‘l'-_"(z.)_ ;) S (104-a)
where
=1 oy (104-b)
Cy = ie(z,k,t) : (104-c)

and we have indicated explicitly the dependence of the field upon the
path variable, z, the spatial frequency, k, and the time, t. In the
strength function, ¢, the z dependence denotes the location of the
phase grating, the « dependence indicates the strength to be a function
of spatial frequency, and the time dependence reflects the fact that
thehphase grating is being blown by the wind across the propagation
path.

Following arguments and definitions employed earlier in this
section, Equations (94), (102), and (104) give for the receiver plane
power

Pr(zok,t) = Ppc = e*(z,k, t)H*(2,k ) + ie(z.x, t)H(2,k,W) "(105-a)

where
Poc = |c0|2.[ dr W(r)|E(F)|2 (105-b)

As in Section B of this chapter, we define the scintillation spectrum
as the Fourier transform of the power covariance

,(0) = J:d-r o (106)




where the power covariance is given by
L L T &
Colx) = Jodz] jodzz fdx [dx" <LPp(z1.5.8)-Ppc]
x [Pr{zp.x'st+t)-Ppcl™> . (107)

In this equation we have "summed" the power (density) of Equation
(105) over all spatial frequencies and over all phase grating
locations between zero and L.

With Equations (105) and (107) the power covariance becomes
(e) L L S
C. (1) = J dz J dz de de'
p 0 1 0 2
X [<€(Z‘| ’:. t)e*(lz .;. ’t"'T)>H(Z'| .:,W)H*(Zz g:. QW)
- <e(zy.x,t) (22.2".t+r)>H(z],E}w)H(zz.i“,w)
- <€*(Z‘| ’:’t)e*(ZZ’;' ’tﬁ)**(Z‘l ,:,W)H*(Zz ’:' ,W)

+ <e*(z],E}t)e(zz.z“.t+r)>ﬂ*(z].;}N)H(ZZ.E“,W)] - (108)

We now claim that the correlation function of the phase grating
strength is given by [67] (see Equation (58))

<e(zysk,t)e*(2p,k" s t1)> = k2 eh-':"v 8(|x-x'])
X Fn(lc] .K2,|Z]'221) N (]09)

where F_ is the two dimensional spatial spectrum of the index of
refraction field. 1In this equation the exponential phase term
reflects the frozen turbulence approximation and the statistical
orthogonality (with respect to spatial frequency) is indicated by
the delta function. This orthogonality states that, on the average,
only phase grating pairs with equal spatial frequencies and identical
orientations contribute to the fluctuations in the received power.
Finally, the square of the wavenumber, k, yields the correct units.
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We also claim that, for the term in Equation (108) in which neither
of the strength functions is conjugated, the correlation function is
given by [683
<e(27skt)e(zp k" s tr1)> = k2 1TV (e |)
X Fn(K] ,KZ,IZ]-Zzl) . (]]0)

Combining Equations (108), (109), and (110) and performing the «'
integrations yields for the power covariance

L L o
Cp(t) = k2 Iodz] Iod.zz IdK Fn(K].KZ,‘Z]-ZZH
X {ei T-K-.V [H(Z] ,:,W)H*(Zz,E,W)‘H(Z] ,:,W)H(ZZ,;,W)]

- e TV [Hn (2, Ko ¥ (25T )HE (27 H 2w 1
(1)

Assuming isotropic turbulence and making use of the change of
variable

K < -k
gives
2 - . or jreev
Cp(r) = k Iodz] IodZZ Idz Fn(K].xz,lz]-zzl)e
X [H(z] ,;,W)H*(ZZ,E,W)-H(Z] ’?sW)H(ZZ"?;W)
= H*(zq, -x,WIH* (2, -k, W) HI* (27, -k, WIH (25, -k, W) ] < F3VE}

Switching to sum and difference coordinates on the range variables
z = (z9425)/2 p = 21-2p

(which correspond respectively to the mean position and separation

of the phase grating pairs) and using the argument that the index

of refraction spectrum, F,, is very small for

kp ~ 2m
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(see the discussion in Appendix D) we obtain finally
2 L — jtkev
cp('r) = 21[k Jodz JdK e ¢n(l<-'.ic2,0)
X [H(Zox.W)-H*(z W) |2 . (113)

The scintillation spectrum is then given by

Sp(a) = (4n2K2/Y) [:dz [ o a0 (& 0

x [H(zZox" yw)-H*(z,-x" W) |2 ; (118)

where

k' = (N/VsK) s

and we have assumed the wind to be blowing in the x-direction.
Comparison of Equations (93) and (114) shows them to be identical.
It is indeed satisfying that with a few reasonable assumptions we
have duplicated the results of the much more rigorous development
of the preceding sections.

The purpose of this section has been to give a more physical
picture of the mechanisms giving rise to temporal scintillation.
Salient features of the development contained herein were the expan-
sion of the index of refraction field in a complete orthogonal set
of phase screens and the symbolic performance of the diffraction
integral to obtain the fields diffracted by the phase screens. By
using previously adopted definitions for irradiance, power, and the
temporal scintillation spectrum, and making some physically justi-
fiable assumptions, the results of the preceding sections were
duplicated. The H function in particular was seen to have an inter-
esting interpretation in the context of a phase grating model of
the atmosphere. It represents the power associated with the inter-
action between the zeroth and plus or minus one order diffracted
fields of the phase grating.

This concludes the discussion of the formula for the temporal
scintillation spectrum.
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F. Summary

In this chapter we have performed the bulk of the mathematical
development which is to be applied in subsequent chapters. The
objective was to derive a general expression for the temporal scin-
tillation spectrum of an arbitrary source field and an extended
receiver. This was accomplished in several stages. Use was made of
the Extended Huygens-Fresnel integral to derive a formula for the
spectrum in terms of the second order statistical moments of spheri-
cal waves. Expressions for these statistical moments (within the
weak turbulence regime) were derived by the method of smooth pertur-
bations and applied to this formula. Various simplifications and
manipulations finally resulted in an extremely compact yet versatile
expression which was then interpreted using a phase grating model of
the turbulent atmosphere.

Section B of this chapter was devoted to developing a general
expression for the temporal scintillation spectrum of an arbitrary
field source. An extension of the familiar Huygens-Fresnel diffrac-
tion integral was employed to express the receiver plane field of an
arbitrary source in terms of the complex phase perturbations to a
spherical wave. The power received at the detector w-" defined as the
surface integral of the irradiance (square modulus) or .ais field, and
the temporal scintillation spectrum as the Fourier transform of the
covariance of this power. The resulting formula required knowledge of
the covariance of irradiance of spherical waves. Under the assumption
that the spherical wave complex phase perturbations were normally dis-
tributed, this fourth moment of the field was expressed as a series of
second order statistical moments. One interesting aspect of the
general result of this section was that the expression for the spectrum
retained terms proportional to the cross-covariance of phase and log-
amplitude.

Expressions for the required log-amplitude covariance, phase-log-
amplitude cross-covariances, and wave structure functions were derived
in Section C via the method of smooth perturbations. These derivations
relied upon the assumption of local homogeneity of the index of
refraction statistics, and the paraxial ray approximation. Temporal
behavior of the statistical moments was deduced by making use of the
frozen turbulence hypothesis. The results, of this section showed
the desired statistical moments to be simultaneously homogeneous in
temporal separations and spatial separations within both the trans-
mitter and receiver planes. _

The results of Sections B and C were combined in Section D. By
using the weak turbulence approximation and making some simple alge-
braic manipulations, the resulting formula was expressed in terms of
a series of diffraction integrals which were performed symbolically
to yield the final expression for the spectrum. This formula for the
temporal scintillation spectrum of an arbitrary source, was in terms
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of integrations over the receiver plane fields, a single spatial fre-
quency variable, and a propagation path variable.

In Section E a model of the atmospheric turbulence was developed
in terms of weak phase gratings. Using diffraction theory and some
physically justifiable assumptions the results of the much more
rigorous development of the preceding sections were duplicated, and
the component parts of the formula for the scintillation spectrum
were given physical interpretations.

The following chapters are concerned with the application of the
results of this chapter to problems of contemporary interest.
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CHAFTER III
ANALYSIS OF A CLEAN GAUSSIAN BEAM

A. Introduction

This chapter is concerned with application of the results of
Chapter II to calculation of the temporal spectrum of a gaussian
beam with an off-axis point detector. The choice of this particular
source description is appropriate because the output of most lasers
is closely approximated by a gaussian beam. Further, the assumption
of an off-axis detector is reasonable if for instance the laser beam
is being steered by a servo system. Nominally a tracker would steer
the laser beam so that it is centered upon the detector. Since how-
ever this may not always be the case [69], the development herein
is of obvious importance.

Within this chapter an evaluation of the temporal scintillation
spectrum of a gaussian beam in the presence of weak turbulence and
with an off-axis detector is presented. Analytic expressions are
developed for the asymptotes of the spectrum with axial as well as
off-axis point detectors. The orientation of the off-axis detector
with respect to wind direction is shown to have important effects
within the low frequency portion of the spectrum. For a typical
laser beam, computer analyses of the spectrum are provided. Plots
are presented of the differential path contributions as well as the
spectra for various detector locations. Finally we discuss the ex-
tension of the theory presented herein to the treatment of finite
receiver apertures and a finite inner scale.

As a result of the analysis it is shown that for an off-axis
detector, the low-frequency behavior of the gaussian beam spectrum
departs markedly from that of plane and spherical waves. In ad-
dition, the differential path contribution for an off-axis detector
is peaked toward the transmitter (as it is for a plane wave) even
though the receiver plane is well within the far field of the laser
beam.

In section B of this chapter use is made of the general formula,
derived in Chapter II, in developing an expression for the temporal
scintillation spectrum of a gaussian beam with an arbitrarily placed
point detector.

An asymptotic evaluation of the gaussian beam scintillation
spectrum is given in section C. Analytic expressions for the
asymptotic high and low frequency behavior are provided.
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Section D contains numerically calculated spectra for several
typical beam-detector orientations. In this section we also
. present plots of the computer-calculated differential path con-
3 tributions for some typical cases.

1 Two additional topics, the effect of finite receiver apertures
and non-zero inner scales, are discussed in section E.

Section F summarizes the chapter.

B. Development of Expression for Gaussian Beam Spectrum

We now wish to apply the results of Chapter II to derive an
expression for the scintillation spectrum of a gaussian beam.

Throughout this section and the remainder of this work we
shall assume that a laser beam field is typified by a spherical
phase front and a gaussian field amplitude profile [39]

{}ij2+y2) » (xztyz)}
E(x,y,2) = E (2) e ZHER) wl(z) ),

where R(z) and w(z) are real functions describing respectively the
radius of curvature and the e-1 amplitude (or spotsize) of the beam.
To simplify notation however we will write the field in terms of a
complex radius of curvature

oy
E(x,y,2) = Ej(2) e T2

Specifically we assume that the gaussian beam field within the

receiver plane is 2
( ) -kN/2L r
o ikL(1+z /L) [in7or 1+iN(1+z_/L)
E(r) = e ¥ 15?62%+z T © o : (115a)
(0}
where the beam waist is located at z=-z, and N is a Fresnel number
defined as
N=2Ls o, (115b)
™y

55

i
{
i
|
!




where wy is the beam waist spotsize. For this field <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>