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FOREWORD

The requirement for this effort was generated by Warner Robins
Air Logis:ic Center/Service Engineering (WR-ALC/MME) and the effort
was implemented through the Targets Branch of the Air Force Armament
Laboratory (AFATL). Mr. C. Craig, AFATL (DLMQ) was project monitor.

This report was prepared By the Flight Vehicle Branch of the
Aeromechanics Division, Air Force Flight Dynamics Laboratory (AFFDL/FXS),
under in-house support effort 429L5001. Mr. John D. Seaberg was program
manager. Mr. J.P. Boone was project engineer. The theoretical
analysis and performance predictions were performed by Lt. Michael
Probasco, formerly of this office. As a supplement to this report,
reference can be made to AFFDL Technical Memorandum 76-15-FXR by
Lt. Probasco, Reference 1. Capt. Leonard Suwalski was responsible
for data reduction. Russell Osborn, along with Capt. Raymond Blohm,
analyzed and presented the data. Mr. Robert Gill contributed to the
flight test phase.

The project extended from December 1974 to June 1976. Flight
tests were conducted jointly with the Air Defense Weapons Center,
Tyndall AFB, Florida, under a Host-Tenant Agreement and ADC/ADWC/

AFFDL Test Plan 75-07. Recognition is given to members of ADWC/TEJ

for their full participation in the flight test phase, but especially

to: Capt. Daniel Dunlap as overall test director; to Capt. Robert
Ghormley for detailed instrumentation design work; and to Harold

Dickey for vehicle modification work. Appreciation is also expressed
for the professional efforts of Norbert Gobin of the Math Lab, Armament
Development and Test Center (ADTC), Eglin AFB, for reduction of the prime

flight data.
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SECTION I

INTRODUCTION

1. PURPOSE OF REPORT ]
The purpose of this report is to present and document results

of an in-house effort, "BQM-34A Flight Performance Project.'" The 3

primary objective of the project was to generate performance data

to be incorporated in the Flight Controller Manual (T.0. 21M-BQM- ;

34A-1). This report also documents the technical approach to the

effort, the data acquisition methods and the data processing steps. 3

The historical lack of performance data on wing-tip mounted

i

pods and the difficulty in predicting the performance were major

considerations in establishing the approach to this project. Ref-

erence 1, "Performance Predictions of a BQM-34A Target Drone with
Eleven Inch Diameter Pods Installed on the Wing Tips," documents

analytical work performed as an adjunct to the project.

The report is organized to present: an overview (Section I);
the required tasks and flight summary.(Section II); aerodynamic con-
siderations and a presentation of results (Section III). Section
IV describes the flight test instrumentation, data acquisition and
) data reduction. Section V is a brief summary of results. The

Appendices contain the flight summary (Appendix A), details of the measurement

circuitri (Appendix B), the pitot-static calibration (Appendix C), a list

Rt i i ke

of available data (Appendix D), and performance charts for the radar

: augmentation pod configuration (Appendix E).
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2. PROGRAM

Because of the significant change to the BQM-34A baseline con-
figuration effected by the additidh of the eleven inch infrared pods,
new performance charts were required to supplement T.O0. 21M-BQM-
34A-1. The performance data is required for use by the Remote Con-
trol Operator for planning a mission and as reference material to
be used in conduct of the flight. The Air Force Flight Dynamics
Laboratory (AFFDL) accepted from the Air Force Armament Laboratory
(AFATL) the responsibility for developing and verifying these flight

< performance charts for the new configuration. In addition, 12-inch

radar pods and combination radar/infrared pods were flight tested
as part of a development program to provide new collocated scoring
and augmentation systems. New perforﬁance charts for the radar pod
configuration were compiled for the T.0. in the event these pods
become operational. A drag polar (CL vs CD) for the combination
radar/infrared pod was also generated from the flight test data.
The drag polar was judged sufficient by Warner-Robins Air Logistic Center/
Service Engineering (WR-ALC/MME) since the combination pod had not been
accepted into the inventory as of the end of the flight testing. If accepted,
the performance data could be generated using this drag polar in a method
similar to that used for the other two pods.

The AFFDL approach to the task was to predict the expected
performance by means of theoretical aerodynamic analysis and then
to validate the analysis by a limited flight test program.

The Air Defense Weapons Center, Tyndall AFB, Florida, provided

the instrumentation and flight test support for this project. Sup-

port included instrumentation maintenance and calibration, vehicle
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modification and maintenance, all flight test operations, and lim-
ited real time data acquisition.

The Armament Development and Test Center (ADTC) provided sup-
port for data acquisition and reduction. Space position information
was acquired by the AN/FPS-16 radar and combined with meteorological
data to provide typical positioning and atmospheric parameters. The
prime telemetry (TM) data was acquired at the same location as the
AN/FPS-16 radar -- the D-3 station at Cape San Blas on the Eglin AFB
range. Radar and TM data were reduced by the Math Lab at Eglin.

The Staff Meteorology Office at Eglin (ADTC/WE) also provided
special rawinsonde releases (to obtain meteorological data -- wind,
temperature, pressure profiles) near the test site for those flights
when flight time was not close to the normal sounding time.

5 PROGRAM PHILOSOPHY

The Flight Controller Manual contains performance data and
operating envelopes that supposedly represent the entire fleet of
vehicles. It is generally accepted by operational personnel that
there is some variance in the inventory and differences are de-
scribed in terms such as: '"this is a slow bird,'" or "this is a
dog," or "this is a good climber." It was recognized, then, that
a limited flight test, using only two vehicles to represent the
fleet, would have some shortcomings and would not be a sound stat-

istical experiment. In particular, the performance measured would
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certainly be a function of the specific airframe, the specific en~-
gine, and the specific flight control system used. Attempts to con-
trol these variables were made during the course of the project.

It was further recognized that the original tech order data
was generated with basically derived data (Reference 2) and that
minimal flight test validation was used.

Wind tunnel force and moment tests on the BQM-34A with wing-
tip stores are unknown to the authors. For reasons detailed in the
Aerodynamics and Results section, flight testing was selected over
the approximations involved in generating data with flexible and/or
jet flow wind tunnel models or rigid to free flight correctioms.

A point which presented somewhat of a quandary was the data to
be used in the analysis. If one is acquiring data for use by the
controller, should the source of the data or reference be the same
as that actually used by the controller? That is, should the oper-
ational system -- the airborne instruments and the data link to the
controller's site -- be used, or should an independent, more accur-
ate system be used. Stated another way, should the Tech Order de-
scribe the way the vehicle flies, or should the Tech Order describe
the way the controller's instruments say it is flying? Recognizing
the very limited accuracy available through the operational system,
and the need to supplement the available measurements, the former
option was taken.

One final aspect of this program which influenced the approach

taken was the limited time and budget available. Wind tunnel test-

b S s i e it
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ing to obtain experimental drag levels would have offered the con-
trolled environment and controlled conditions, as well as quality
measurements for this engineering study. Time and budget did not
permit this. Also, some compromises were made in the instrumentation
because of the cost factor. A Pulse Amplitude Modulation (PAM) system was
selected (Pulse Code Modulation ground equipment was not available),
and many of the existing airborne sensors were used. However, com-
prehensive calibration procedures were employed to ensure accurate
measurements. In addition, special means were taken to obtain qual-
ity pitot-static values.

4, TEST VEHICLE

The BQM-34A "Firebee" is a remotely controlled aerial target
manufactured by Teledyne Ryan Aeronautical (see Figure 1). The ve-
hicles are launched from a short rail with rocket assist and are
powered by a singie Continental J69-T~29 Turbojet Engine. Recovery
is by parachute with impact speeds of about 18 feet per second.

The general operating envelope is sea level to 50,000 feet altitude,
with true airspgeds to 500 knots. A flight time of about 45 minutes
is normal.

The 45-degree swept-back, comstant chord wing incorporates
leading edge droop to reduce drag-due~to-lift at high altitudes.
Detachable wing tips are connected to the wing by shear-plates to
reduce excessive loads on the wing in the event of a hard impact
recovery. Wing span is 12.9 feet and overall length of the BQM-34A

is 23 feet. Design gross weight is 2500 pounds.

s i
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A two-axis autopilot controls the vehicle during flight through
aileron and elevator inputs. However, a rudder trim feature is
available for limited directional control. The Lear Siegler A/A37G-8
Automatic Flight Control System (AFCS) was installed in the test vehi-

cles used on this program.

A nose boom was installed on the test vehicles to obtain more
accurate pitot-static pressure measurements, and also to obtain quality
angle of attack and angle of sideslip measurements. Body mounted
flow sensors and a temperature sensor were also installed. No other

external modifications were made to the test vehicles.

The wing-tip pods are described in Reference 1 and are shown in
Figures 2 through 4. Figure 2 provides a sketch of the three pod config-
urations tested. Figure 3 depicts the wing/pod attachment of the 1ll-inch
continuous infrared (CIR) pod and the combination TWT radar/6-inch IR pod.
It is noted that in actual test and use, the same pod configuration is in-
stalled on each wing tip (nct mixed as shown) in the figure. In Figure 4
an overlay is attempted of the three pod configurations showing the wing/

pod junction.

The standard 1971 model BQM-34A from the Air Force inventory
was used for testing. Two prime vehicles were used for the flight
test: Tail Number 795 which had no previous flight history and Tail
Number 548 which had experienced only one flight and a total of 1.1
hours on the engine. Tail Number 520 was a backup test vehicle and

was used on three test flights near the end of the project.
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length = 82.7" ) O

11-inch Diameter CIR Augmentation Pod

length = 49.4"

TWT Augmentation Pod

Combination TWT/6-inch CIR Pod

Figure 2. Pod Configurations




N ——

suostaedwo) pod YITM VHE-WOL ‘€

*£ssy pod 1epey/y1

Combination
IR/Radar Pod

POd ¥ID ‘ur 1 Lu

11-inch CIR Pod




AFFDL-TR-77-82

sdT] SufM uo UOTIBTIERISUI PO4

4& 410 11

*y 2an31g

ul"T8

aod IML T

/

—1r

R
J0d ¥1 werg your-9

ul9

d11l ONIM V¥E-V0E

[

1

o

st

10




AFFDL-TR-77-82

5. DATA SYSTEM

The control and flight operation of the BQM-34A makes use of

an FM/FM telemetry system which transmits vehicle flight status to
the ground control site. Parameters transmitted include: airspeed
and altitude measured at the vertical tail probe; roll, pitch, ele-
vator, and aileron position from the Flight Control Box (FCB); ver-
tical acceleration, RPM, and fuel flow rate. A separate telemetry
system (called the "instrumentation system" in this report) was in-
stalled to acquire the required data to compute flight performance.
A PAM/FM system is used to transmit the same information as the
"vehicle" telemetry, but also parameters such as: angle of attack
and sideslip, differential and static pressure from a nose boom;
three-axis accelerations and attitude rates; exhaust gas temper-
ature; and outside air temperature. The instrumentation system
handles 35 data channels and 5 synch channels at a rate of 25 sam-
ples per second per channel. This system is described in more de-

tail in Section IV and in Appendix B.

11
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SECTION II

REQUIRED TASKS AND FLIGHT SUMMARY

1. REQUIREMENTS LIST

Table 1 is a list of the graphs which were required as the data

products of the project. Graphs were generated for the eleven inch

diameter CIR pod, and for the twelve inch high TWT radar pod. A
drag polar (CL vs CD) and the lift curve (CL vs a) rather than the
full performance data were provided for the combination radar/in-
frared pod as explained in the Introduction. The method of gener-
ating these graphs and validating them through flight test is de-
scribed under Section III.

All performance calculations were made using lift and drag
curves generated from flight test data. Engine/controller oper-
ating limits prevented the acquisition of flight test data above a
lift coefficient level of 0.45. Therefore, both the lift/drag and
lift curves were extrapolated through the high lift range.

No glide flight tests were conducted during the test program.

Glide performance data was generated using the drag polar and lift

curves and the revised glide schedule as shown later in Figure 34 and

Appendix E, Figure E-27.
2.  FLIGHT PLANNING

Initially it was planned to test a configuration sequence of
clean, continuous infrared (CIR) pod, Traveling Wave Tube (TWT)

radar pod, and finally the combination pod for each of the test ve-

12
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TABLE 1

REQUIREMENTS LIST

Page Number of

Frre—

13

Graphs T.0. 21M-BQM34A-1
Time to Climb to Altitude vs Weight p. A-22
Horizontal Distance Covered During Climb
vs Weight p. A-23
Fuel Used to Climb to Altitude vs Weight p. A-31
Air Speed vs Altitude Envelope - R/C,
Zero FPM p. A-34
Thrust Limited Load Factor vs True Air
Speed (with structural limit) Sea Level,
10K', 20K', 30K', 40K', 50K’ pPp. A-47
thru A-52
Turn Radius vs True Air Speed
Sea Level, 10K', 20K', 30K', 40'K, 50K' pp. A-65
thru A-70
Maximum Level Flight Bank Angle vs True
Air Speed
i Approx. Weight: 1800#, 2100#, 2350#,
1 2600# pp. A-78
f thru A-80
; Altitude vs Distance Traveled During
. Dive p. A-89
4 Altitude vs Fuel Used During Dive p. A-90
Glide Performance p. A-91
RPM vs KTAS (0-55,000 ft, 1800-2600 1b) pp. A-125
thru A-136
3
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hicles. The purpose here was to minimize effects of changes in the
airframe/engine as the testing progressed, and therefore not have
these changes show up as performance increments. However, changing
configuration with each flight was not practical and the actual
flight summary is seen in Appendix A. The parameters shown in
Table A-1 of this Appendix are self explanatory. The values listed
are nominal values listed for summary purposes; exact values must
be found in the data sources. Table A-2 offers notes applicable to
a particular flight number.

The flight performance data was collected at preselected com-
binations of altitude, drone weight, bank angle, and throttle set-
ting that are representative of the operational use of the drone.
Altitude levels of 40, 30, 20, 10, and 5 thousand feet were flown.
Drone weights were a function of configuration and fuel remaining
at the test point, 2ad were generally in the 2400 to 1800 1lb range.
Bank angles up to 75.5° were tested. Throttle settings were between
84% and 100%. Settings below 847% were not possible due to the fuel
control unit limitation.

Basic data for the aerodynamic analysis was acquired in the
straight and level flight control mode with altitude hold. Stabil-
ized airspeed was obtained at pre-selected altitudes, RPM settings,
and gross weights.

Level turns (constant altitude) were flown at pre-selected bank

angles in the Improved Maneuverability Kit (IMK) mode (60 degrees

to 78.4 degrees) and programmed bank angles in the standard mode
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(30 degrees at 15,000 feet or below, 45 degrees from 15,000 feet to
32,000 feet, and following a fixed schedule above 32,000 feet).
RPM settings were at 100% with few exceptions.

Climb performance was run at 100Z RPM. Dives were conducted
over a range of RPM values and generally at low gross weights.

An engine run was made prior to each flight to measure both
static thrust and exhaust gas temperature versus RPM. Measurements
were made in increments of 5% from 75% to 100% RPM. Ambient pres-

sure, temperature, relative humidity, and dew point were recorded at

the time of each run.
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SECTION III

AERODYNAMICS AND RESULTS

1. APPROACH

Two fundamental data acquisition approaches were investigated.
The first involved wind tunnel testing of basic (clean) and podded
.configurations. This approach offered the advantages of controlled
conditions, repeatability, quick change of stores, and assured data
acquisition. Balanced against these advantages are: difficulties
in physically modeling the pods; aeroelastic wing/pod effects; trans-
onic shock/tunnel wall interferences; and power-on jet engine flow
simulation (due to exhaust/underbody interference if the total ve-
hicle drag rather than pod drag increments are to be determined).
Pod modeling difficulties include simulating or calculating the drag
of infrared pod air inlets, afterbody (base) configurations, and
surface irregularities due to fasteners and production breaks (plus
those of the aircraft). The larger pods may cause deflection of the
wing structure and change the dynamic behavior and flutter character-
istics. To accurately model these effects, certain mass distribution,
bending, and torsional stiffness parameters must be designed into
the model. These effects must also be modeled because of their re-
sultant contribution to total drag levels. An altcrnate, but approx-~
imate, method is a rigid model with rigid body to flexible body cor-
rections generated by analytical methods such as FLEXSTAB. Shocks

arising from lifting surfaces must be considered in the transonic

16
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regime due to possible impingement on the wind tunnel walls. Jet
flow simulation presents difficulties for several reasons. First,
although the jet engine itself has a subsonic velocity, a supersonic
cold air stream will be needed to obtain the proper thrust. This is
due to the need to match mass flows, coupled with the fact that the
jet exhaust remains subsonic only because of its high temperature.
Second, errors may be produced with fhis added air stream because
air that is normally ducted through the nacelle is now forced arcund
it.

The second approach involved flight testing of the desired con-
figurations. Obvious disadvantages included the low priority of
target testing when requesting range time, relatively uncontrolled
flight conditions, data acquisition complexities, and the many un-
anticipated problems that always surface when conducting actual
flight tests. The main advantage of flight testing results from the
fact that (data and computational errors aside) the actual hardware
has been tested under real conditions and a high confidence level
in the results is obtained.

After weighing the simplicity of the wind tunnel approach
against the relatively high confidence level of the data from the
flight test approach, the latter approach was chosen.

2.  BACKGROUND AERODYNAMIC DATA

Detailed, systematic aerodynamic data is scarce on the BQM-34A.

The wind tunnel study of Reference 2 and the flight tests of Ref-

erences 3 and 4 are the only known large-scale tests. Reference 5,

17
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the BQM-34A stability and control report, is based soley on Reference

SREERETES. 0, SRRCELVE. S N K v= S0 W PNRSUE TN S

2. A combination of References 2, 3, and 4 with the engine performance

1 reports of References 6 and 7 result in the BQM-34A substantiating data
report (Reference 8). This latter report is the basis for the performance
charts of the "BQM-34A Flight Controller's Manual", (Reference 9). No
pods being proposed or currently used by the USAF are included in these ;
references. No wind tunnel or flight test data has been obtained for these
pods which include the full pod/wing interactions. References 10 and 11

% are aero-dynamic predictions for a currently used flat plate radar pod and
proposed combination radar/infrared pod, respectively. Reference 1 is a

similar analysis for the cylindrical infrared pod currently used by the USAF. ;

3.  ASSUMPTIONS
Engine performance data was used as published in References

6 and 7. This data in turn was derived from uninstalled data sup-

SLLRE R P

plied by the engine manufacturer which was modified in the above

references to account for installation losses due to inlet total
i pressure recovery, external drag increment coefficients, cooling air

drag loss, and power extraction loss. The first two losses were

e

E calculated from wind tunnel test data on a quarter scale model of

the inlet and static ground tests. Cooling air drag losses were

estimated from NACA data. Power extraction losses of 10 horsepower

PR et

were accounted for in the use of the aircraft generator (Reference

6). This data was assumed correct and used because of the limited

|




T P gy
’ ¥ T

R ™ Eatate

e —

AFFDL-TR-77-82

nature of the performance tests.
The test vehicles were assumed to be representative of BQM-34A

performance characteristics. Three vehicles cannot be truly repre-

sentative in determining "average' performance but test limitations
restricted the number of vehicles available.
The pitot-static position error correction was used as supplied

by the manufacturer. Pacer flights were flown for calibration and

are included in Appendix C.

The upper ends of the L/D and 1lift curve slope curves (above
a lift coefficient of 0.45) are based on extrapolations from the
flight test data. A mechanical throttle limiter establishes an en-
gine minimum RPM limit of 847 and makes it extremely difficult to
obtain low speed (high angle of attack) data. The maximum angle of
attack was obtained at the maximum altitude of the vehicle. For per-

formance calculations, a maximum lift coefficient of 0.80 was assumed

as per Reference 8.
4.,  TEST DATA-TO-DRAG POLAR REDUCTION

The flighc‘test data was reduced using standard flight test
data reduction procedures as detailed in the Reference 12,“flight
Test Engineering Handbook sAFTR No. 6273, May 1951 (Jan 1966 Re-

vision). All data points were collected in level, unaccelerated

flight. A brief review of the technique follows.

For level, unaccelerated flight with telemetered data, there

is no pressure lag in the nose boom pressure sensors. The nose boom

static pressure is used in the coefficient form of the 1962 U.S.

19
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Standard Atmosphere equations to produce an "instrument corrected"
altitude. This altitude is then corrected for the nose boom static
position error as supplied by Rosemount. The resultant calibrated
pressure altitude is then used in the Standard Atmosphere equations
to find the pressure ratio, 8§, used below with test weight, W, to
form a weight-pressure parameter, W/$.

Similarly, the nose boom differential pressure is used to gen-
erate an "instrument corrected" airspeed which is then corrected for
position error with the Rosemount correction to obtain the calibrated
airspeed. Calibrated Mach ﬂumber is then derived from standard re-
duction equations. Using the above Mach number, the "instrument
corrected" air temperature, and the temperature probe recovery fac-
tor as derived in Section IV, the true test air temperature is de-
rived and converted into true test temperature ratio, 8. This ratio
is then combined with engine RPM(N) to form the RPM parameter, N/Ve.

The test weight was computed using a fuel flow integration
method. During each mission pre-flight, a fuel sample was tested
for its specific weight at the aﬁbient temperature. Throughout the
mission, the fuel temperature was measured in the fuel line at the
fuel flow sensor. The test point specific fuel weight was then cal-
culated as a function of the initial specific weight and initial and
test point temperatures. Using this specific fuel weight and the
fuel flow, the weight of fuel used was calculated throughout the
mission at approximately one minute intervals. With this method,

an accurate vehicle weight is known at all data points.

20
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The "Speed-Power'" method of Section 4.8 of Reference 12 was
used for data reduction. With this method, data is accumulated at
constant altitudes by varying RPM and allowing airspeed to stabilize.
Plots are then made of N/Vg'versus Mach number at each altitude.

For each altitude, the values of the W/&'s of each point were aver-
aged. Therefore, a series of Nh/g vs M curves were created for con-
stant W/§'s.

At a constant Mach number and W/§, a value of NNV® is extracted
from the above plot and combined with the engine data of References
6 and 7 to yield an engine thrust-pressure parameter, Fnlé. This
yields engine thrust at that altitude. In level unaccelerated flight,
lift (wing lift plus vertical thrust component) equals weight and
thrust (horizontal component) equals drag. With a known angle of
attack from the flight test data, the lift and drag coefficients are

calculated using the standard equations as follows:
Summing forces normal to the flight path,

L
T

Flight

Path 1 K _ e

L+Tsin (a +15°) - W = M &, - 0

L = W-Tsin (o + 15°)

21
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W, T and o are known from flight test results. Therefore,

C -

L
L 2

1/2 o VT S

Summing forces along flight path,
T cos (o + 15°) - D =
T and o are known from flight test results. Therefore,

C -

D
D 2

1/2 o VT S

The above method was used for all configurations tested. Flight
test data showed that the 1ift curve slope was the same for all con-

figurations in the 1lift range tested and is shown in Figure 5. The

actual CL vs a curve used in the calculations was extrapolated out

to the maximum 1lift value. The lift/drag curves (CL vs CD) for the

basic (clean) vehicle, and for the podded configurations (CIR pods,
TWT radar pods, and combination IR/radar pods) are shown in Figures
6, 7, 8, and 9 respectively. For comparison purposes the drag polar
for a clean vehicle taken from the BQM-34A Tech Order is presented in

Figure 10.

5. PERFORMANCE CALCULATIONS

From analysis of the aerodynamic data, it is quite evident that
the drag polars obtained from the flight test data reflect higher
air vehicle drag levels than existing BQM-34A data indicate. Much

of this effect is due to compressibility; drag rise occurs initially

P A e A T N SO
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L\ at M = 0.65 rather than the M = 0.85 as stated in Reference 8. With this
in mind, it is not surprising that the performance levels shown in this
report, even for the clean vehicle, are significantly lower than the BQM-34A
Technical Order presents. Refer to the drag polars, Figure 6 versus Figure
10. As a result, the AFFDL CIR pod performance prediction (Reference 1) was
also low in drag levels as it was extrapolated from the clean vehicle drag

polar, Figure 10.

The performance computations which follow were made using the
previously mentioned flight test data and engine information repor-
ted in References 6 and 7. Flight test data from straight and level,
unaccelerated flight is used in the computations.

Thrust Required and Available

The Thrust-Required curves were computed using the following

equations:
: D= CD qsS
: ¥ D= Treq cos (a + A)
E where A = thrust inclination angle (15°). Therefore,
3 2
" 3 D Eoe CD fo} VT S i3
‘ req cos (a + 15°) 2 cos (o + 15°)

wing reference area, S = 36 ft2.

An iterative solution is required because the total drag co-
efficient is a function of Mach number and 1ift coefficient, and

1lift coefficient is a function of Mach number, angle of attack,

29
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weight, and load factor.

° =
L + Treq sin (a + 15°) = nW

Assuming n = 1,

W-T sin (o + 15°)
req
2

1/20VT S

)

CL =

The drag polar, Figure 7 (for the CIR pod configuration), and the
CL versus a curve, Figure 5, were used in an iterative computation
to obtain the appropriate thrust-required result. Thrust available
data were taken directly from Reference 6. Computation of the air-
speed versus altitude curve, Figure 11, was made using Equation 2

rearranged as follows:

, Treq sin (a + 15°)
\'/ = nW - (3)
min 1/2 0 S CI i

It was assumed that the addition of CIR pods did not affect CI .

Maximum Load Factor

The determination of maximum load factor as a function of true
airspeed was accomplished by solving Equations 4 and 5 with an iter-

ative procedure.

(-]
Tre cos (a + 15°)
Cp = - 3 (4)
1/2 p VT S

2 °
1/2 o VT CLS + Treq781n (o + 15°)

nmax 3 w )

Net thrust for this computation was determined for 100% engine RPM.

30
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PR
S SE1 EEEES EEER FERSS
ALTITUDE VPE
A (FEET) (KNOTS)
000 13.5
10,000 11.8
20,000 10.1
30,000 8.3
40,000 6.6
50,000 , 4.8
60,000 3.2

Figure 11. Airspeed Schedules (1l-inch CIR Pods Installed)
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Structural limits were not included on the load factor charts.

Maximum Bank Angle

Maximum bank angle was calculated using the following equa-

tion:

1

(=

max

)

= cos
¢max

The calculations were made assuming no loss in airspeed or altitude
while maintaining bank angle. This is implied, since noox Was de-
termined for excess energy equal to zero.

Percent RPM vs. KTAS

The Percent RPM versus KTAS plots were calculated in the same
manner as airspeed versus altitude with the exception that the thrust
available at a given percent RPM was used instead of 1007 RPM (max-
imum power).

Climb Performance

Climb performance of the modified BQM was calculated in the

standard way.

(T-D)V _dh , V4V
W Cactgae )
dh (T-D)V
¢h ()
dt vV dV
w(l +E dh)
Integrating yields time-to-climb from altitude h1 to h2.
b h2 o h2 - h1 e (dh/dt)1 &
| w/a = | @w7an | - @an, | @rEn,
h
1
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(See Reference 13 for equation development.) Fuel used during the

climb from hl to h2 was computed as follows:

Assume wf is a Linear Function of h between hl and hz

h
Wy
V- wfz
4 Then W, =W_ - (h - h))
Y U T 1
: tz t wfl - sz tz
[ wae=f w. - [ & -npac =
t £y hy -hy 7 =
3 1 1 1
! (“fl : "’fz) Bi. ks “fl s wfz) ty
v, M E M J at- 2L [ nae
1 2 1 t1 2 1 ty

Introduce the change of variable

k.
PR _dh
dh/dt R/C

Assume that R/C is also a Linear Function of h between h1 and h2,
F thus
R/C1 - R/C2
R/C = R/C, = ———— (h = hy)
1 h2 - hl 17
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Thus
f‘z (“fl = “fz) *
N e W ek kit
£, £ £ hy - by
.~ R . ;
LT 2 (h, - b)) * b dh p
h, —h,  *h R/C, - b, - R/C, « By + AQR/C, - R/C))
(wfl § wfz) o (wf1 =
W - A+t S
1 y > By s = By
h
£ ' 3 - . - .
o 5 l2 (h, - b)) (R/C; + b, - R/C, * b))
3 e | -
et L Bl ®/C, - R/C))

R/Cz:] :
e 1ln =W
R/C1 f1

o el o ¥s,)
* At + 7———:—— (he e ha) dic——=rer
R/Cy R/C2 2 1l h, hl

We, = ¥g

R/C2 *h 1 2

[h i R/C1 . h2 -
1 R/C; -

1]
e At =W e At + = (h « h )
R/c2 £, R/C; - R/C, ~2 1

(wfl & wfz) &

t
2

wo=f wde=w
"

+ (wfl 2 wfz) [R’ Gyt = )

We =W
g | fz)
£, <At -3 ¢, - ®IC, R/C; * At = (hy = h)) 9

' - = « At =W, o At +3——=0 (b, - b))
k h2 hl R/Cl R/('.'2 ] fl R/Cl R/C2 2 1
g gwfl £ wfz) ;

E 3 - — . R/C, * At

R/Cl R/C2 1

4 Therefore:
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Where R/C = dh/dt. The horizontal distance gained during the climb

was obtained from:

th
2 '/ cosy1 - Vzcosy2

s A s (@/dty, - (dn/dv),

AS = f Veosydt = V

th1

dh
[E]_At - (h2 - hl)]

Dive Performance

Dive performance was calculated using the above equations (8,
9 and 10), the thrust required and thrust available curves. For the
dive calculations %% < 0.
Glide Performance

Glide performance was computed assuming net thrust equal to
zero. Equations 7, 8, and 10 were used in the calculation procedure.
Turn Radius

The calculation of turn radius was made using:

v2

i g tan ¢

(11)

This equation assumes that the velocity and bank angle are constant
throughout the turn. This requirement is consistent with the max
bank angle computation.

A new climb and dive speed schedule is required to make ve-
hicle performance more optimum for the high drag configurations en-
countered. When the current climb schedule was used in calculations

with the CIR pod configuration, the higher drag (compared with clean)
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forced the vehicle to level and then dive slightly to stay on the
schedule. The vehicle took appreciably longer than optimum to reach
high altitudes. This new schedule (Figure 11) definitely impacts
the autopilot design and will require circuit modifications to the
autopilot.

Figure 12 is a rate of climb versus altitude chart for the test

vehicle with 11 inch CIR pods mounted. This chart was not on the

s

program requirements list. It is included here because it appears §
in the BQM-34A T.O0. and is needed to compute fuel used and climb
distance.

The new performance charts for the BQM-34A with the 11 inch
CIR wingtip pods are given in Figures 13 through 44. The new per-
formance charts for the BQM-34A with the TWT radar pods mounted on

the wing tips are given in Appendix E. These figures were derived

from the flight test data using the same procedures applied to the

St sl

CIR pod configuration.
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Figure 12. Rate of Climb versus Altitude (CIR Pods Installed)
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