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ABSTRACT

~~~This paper develops three distinct models for studying perishable

inventory systems. The perishable items have a deterministic usable life

after which they must be outdated. For each of the models, analytical

expressions are found for steady—state distributions which characterize

the inventory systems. Knowledge of this steady—state behavior may be

used for evaluation of system performance, and for consideration of

alternatives for Improving system performance. —
~~

~~ The first model considered assumes that both the demand process

and the inventory replenishment process are stochastic processes that

may be modelled as Poisson processes. The second and third model assume

that inventory is replenished by a constant production process. The

second model, assuming contii~.uous inventory units, has Poisson demand

requests with the size of each request distributed as an exponential

random variable. The third model has Poisson demand requests with all

demands being for a single unit . ‘~~
-.-—--- --. 
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l. INTRODUCTION

This paper is concerned with the development of models for studying

inventory systems in which the item is perishable. In particular, the

item is assumed to have a lifetime of in periods, after which it is said

to be outdated and cannot be issued to service demand. Examples of such

• items might be blood itt a blood—banking system, packaged food items or

chemical supplies. This paper considers three distinct models of perish-

able inventory systems. For each of these mode1i~, a steady—state distri—

bution of the in~entory status is found. Knowledge of this steady—state

behavior may be i..sed for evaluating a system’s performance, and for

considering alternative r~eans for improving the system.

Much of the literature studying perishable Inventory systems has

dealt with finding optimal periodic ordering policies. Typical

of this work is the work by Nahmias [10], [11), [12], Fries [ 4], and

Cohen [5]. Implicit in this work is the assumption that an order can

always be filled by the supplier. The analysis necessary for finding

optimal policies requires an rn—dimension state space where in periods

is the lifetime of the item. Consequently this work has dealt with

determining and evaluating approximate policies. The most common policy

considered is an order—up—to policy: each period an order is placed so

to bring the total inventory up to a preset level. Related to this work is

that of JennIngs [7] who used a simulation model to study a binod banking system.

With the simulation, he ~-ias able to evaluate various ordering policies,

and was able to consider the effects of centralized control on a regional

multi—hospital blood banking system.

The models developed in this paper are distinct from the work on

periodic ordering policies, in that here specific replenishment policies

are assumed. The replenishment or ordering policy is not a decision

• ~ -.-_- _- —__~~~~~~~~~~~~~~~~~~~~~~~~~~~ ._~~~~•- --__ - ~~~~~~~~~~~~~~~ •
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variable; rather, given a replenishment policy, the models are descriptive

of the stochastic system behavior. In this sense, this paper is related

to the descriptive Markov models for perishable inventory systems presented

by Pegels and Je].niert [13], Brodheiin, Berman and Prastacos [1], and Chazan

and Gal [21.

Pegels and Jelmert [13] model a blood—bank inventory by a Markov chain.

This work has been criticized by Kolesar [8]. Brodheim, et al. study

an inventory system assuming a constant replenishment policy; that is,

each period n units of new inventory are supplied. They model the system

as a Markov chain in discrete time, but are unable to solve th- steady—

state equations. They do establish upper and lower bounds on various

measures of interest, such as -expected outdates and expected shortages,

provided that n, the supply quantity, is less than the expected demand

rate. Chazan and Gal consider an iuventory system operating under

an order—up—to replenishment policy. They use a Markov model to find

bounds on the expected outdates assuming a general demand process. For

Poisson demand, they are able to find the steady—state behavior for the

system for the Markov chain in continuous time. That is, whenever a

unit is requested or a unit becomes outdated , it is assumed that a new

unit is instantly acquired to replace the old unit to maintain a constant

inventory level; note that for such a system there can r~ever be any

shortages. UsiL g the results from the continuous case, tiglit bounds

are developed for the Markov chain in discrete time.

The remainder of the paper is organized as follows: the next section

considers an inventory system for which the replenIshmen~- process is

stochastic and may be modeled as a Poisson process. Sections 3 and 4

consider models in which there is constant replenishment. The problem

in these sections is similar to that considered in [1]; however, here

we are able to present analytical results. Section 3 considers a continuous

-

~

— - .
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- - — - -
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model in which the size of demand requests is exponential. Section 4

assumes that demand requests are all for single units. In all models it

is assumed that requests arrive as a Poisson process. The final

section gives a summary and discussion of the results of the paper. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~~~~—— - -~~~~~~~~ •-.- -- -—-- - • --
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2. STOCHASTIC REPLENISHMENT

Consider the inventory system assuming that both the demand process

and the replenishment process is Poisson. Demand requests occur at

rate p, and a request is always for one unit. The inventory is replenished

at rate A with unit replenishments. This type of replenishment process

may be appropriate whenever there is uncertainty in the supply procedure.

For instance, in the case of blood inventory, to a certain extent supplies

depend on volunteer donors who may be thought of as b~’having as a random

process. Alternatively, in a production environment, the production

process may be very sensitive to human or random elements, and consequently

the time to produce a successful unit is variable. An example of this

might be a repair depot where the time to diagnose the failure or problem

is random, and consumes most of the repair time. In addition to stochastic

demand and replenishment, assume that the item has a lifetime of in periods,

the issuing policy is to issue the oldest usable item, and that demand

requests that cannot be filled from inventory are turned away or handled

exogenous to the system.

This system can be modeled as a Markov chain in continuous time.

One characterization of the state space is by a complete account of the

inventory. That is, the state variable wouid be {N(t), A1
(t), ...AN(t)

(t)}

where N(t) is the number of units in inventory at time t, and A1
(t) is

the age of the jth unit in inventory where the units are ranked by age,

for i=1,2,...,U(t). In this form, however, the analysis of the process

is difficult, if not impossible, due to the varying dimensions of the state

space.

As an alternative, consider the process A(t) where A(t) is the age

of the oldest unit in inventory. Given the Poisson assumptions for demand
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and supply, and assuming we have no other information about the inventory

status, then this process is Markov and will provide a sufficient charac-

terization of the system for our purposes. The process A(t) can take on

any value a for 0 < a < m. The state space for A(t) must also include

the state when there is no inventory in the system; this will be denoted

by A(t) = E. Note that A(t) = E is distinct from A(t) = 0.

The transitions for A(t) can be characterized by examining the

interval (t, t+~) for the following three cases, where ~ > 0 is small.

Case 1 — Suppose that A(t) a for 0 < a < m—~. Then at t+~, we have

that either a demand request occurred (with probability p~) or

it did not rwith probability (l—jth)]. If no demand occurs,

then A(t+ti) = a-4-L~. If a demand occurs, then the oldest unit

(age = a) is issued, and A(t) Lecomes the age of the next oldest

unit in inventory or A(t) = E if the issued unit was the only

unit in inventory. Define t to be a random variable for inter—

arrival time of units into inventory; T is an exponential

random variable with mean 1/A . If T < a+L~, then there is

a second unit in inventory and A(t+~) = a+L~—T. If T >

this implies that the oldest unit was the only unit in inventory,

and the system is now empty , A(t+L~) = E. Note that for this

case a replenishment epoch has no effect on the process.

Case 2 — Suppose that A(t) a for m—~ < a<m. Then at t+~ the o1~est

unit will have been issued or outdated. Thus, using similar

reasoning as in Case 1, A(t+A) = m—T for T < in, A(t-I-~) = E

for t > in.

Case 3 — Suppose that A(t) = E. In (t, t+A), the system will either

remain empty [with probability (l—Xi~), A(t+i~)—E] or a new
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replenishment will arrive [with probability Alt, A (t+lt)0].

Given the exponential interarrival times for replenishments,

the probability of a replenishment in (t , t+ti) is independent

of the time of the last previous replenishment. Note also that

this case is unaffected by demand requests, since they are not

*backordered.

Considering the above three cases, the process {A(t)} is clearly

Markov since the transition laws for the interval (t , t+lt) depend only

on the state A(t) at time t.

Define p(x,t) to be the probability density for ACt) = x, 0 < x < in ,

and let ir (t ) be the probability that A (t) = E. The equations of motion

can be shown to be

(]•) ~p(x , t) + ap(x , t)

= —Tlp(x ,t) + 
~ ~~~~~~~~~~ 

p( y, t) Ae~~ 
Y
~~
)dy ÷ p(m , t )Ae

_ i n _
~~~,

0 < x < m ,

and

(2) 7r(t) = —Air(t) + ~ f
.m p( y, t)e~~~ dy + p ( m ,t)e

_Ain
.

In addition to this , the total probability mass must be 1:

(3) Ir(t) + 
~~~~ 

p(x ,t )dx = 1.

By differentiating both sides of (3) wi th respect to t , and substituting

(1) and (2), we find a boundary condition for the process:

* The current model is easily extended to allow backorders provided
that A >

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~1LT_~~~ ~~~~~~~~~~~~~~~~~~~~
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(4) p(0 ,t) = Air(t).

The steady—state equations are found by letting t ~~, p(x , t) -
~~ p (x) ,

and ‘rr(t) + it. Equations (1) , (3) , and (4) are now rewritten as

(5) f p (x) = —p p (x) + ~ ~~~~ ~~~~~~~~~~~~~~~~~ +

O < x < m ,

(6) ~T + f
in p (x)dx = 1,

and

(7) p(O) = Air.

The solution to (5), (6), and (7) is fo~:nd to be

• (8) p (x) = ~~~~~~~ for 0 < x < in

(9) ii = K/A

(10) K = A(X_p)/[Ae )in_p]

provided that A ~ p. For the special case when A = p, the solution is

(8), (9), and

(11) K = X/(mA + 1).

From (8) — (10) we can now express analytically four measures of

system performance where an outdate occurs when a unit reaches age tn and

cannot be issued, and a shortage occurs when a demand request is turned

away because there is no inventory.

a) the expected number of outdates per time unit (0).

b) the expected number of shortages per time unit (s).

~~~~~
• • - • - • ~~~- • • - - - ~-— — • • •• • •~~- • • ••
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c) the expected age of an issued unit (A) .

d) the expected number of units in inventory (I).

Using simple probabilistic arguments, we have

(12) 5 = p (m)

(13) pit

• (14) A = ~=0f~ 
xp (x)dx/

~~o
f
m 

p(x)dx

(15) 1 = jlU p(x)(1+Ax)dx

The expressions (12) — (15) can be used to evaluate a system, given

the system parameters A , p, and m. These expressions can also be used

to examine the sensitivity of the measures to the system parameters.

For instance, taking A = 1.0, p 1.0, in = 20, as a base case

Figures 1, 2, and 3 show the effect of varying the replenishment rate,

the demand rate, and the unit lifetime, respectively.

The present model assumes that demand requests arrive as a Poisson

process, and are for single units. The model can be easily extended

to the case where the size of the demand request is distributed as a

geometric random variable d. That Is, for d being the number of units

• demanded ,

(16) pr(d n) = (1~~)n—1~ for n 1 ,2,...

(17) E(d) i/p

The analysis of this problem is similar to the previous case except ~~r

differences in the transition laws when I~emand requests occur. Define

to be the sum of d replenishment irtterarrival times, where sac)’ inter-

arrival time is an independent exponential random variable with mean 1./A.
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Since d is a geometric random variable, r~ is a compound geometric distri-

bution of exponential random variables. It can be shown that

Is an exponential random variable with mean 1/pA. Now for A(t) — a in —

if a demand request occurs du:ing (t , t+lt), then A(t+lt) = a + lt —
• if ir < a + lt, or A(t+lt) = E if > a + It. Note that it

5 
corresponds

to the removal of d units from invs~ntory. However, if rn—It < A(t) <

then the oldest unit is outdated during (t, t+tt) with probability 1 — pIt

(i.e. no demand). In this instance, letting it be a single replenishment

interarrival time, we have A(t+It) = m—T for it < in and A(t+A) = E for

1 > 51.

Using the same reasoning as in the previous case, the steady—state

equations for this system are

(18) dp (x) 
= —pp(x) + p ~,.xfm p(y) ~e~~~~~ ’~~dy + p (ni )

0 < x in ,

and equations (6) and (7), where A = pA. The solution to the three

equations (6), (7), and (18) Is

(19) p(x) = K Ie~~~ 
+ (

~
) eAx e i n 1

~~~~

(20) ri — 

~ 
~i + (

~
) e_~~~~W’~~ j

(21) K — + e~~~~~
in 

~~ 
+

Equations (12), (14), and (15) may be used to determine expected

outdates, expected age*, and expected inventory level. The expected

shortages per time unit, however, now consist of shortages which occur

when there is no inventory, and shortages which occur when a particular

* Here, the expected age needs to be -einterpreted to be the expected
age of the oldest unit issued to fill a demand request.

_ _ _ _ _ _ _ _  _____—

~~~~~~~~~

- •

~~~~

-

~~~~~

--—

~~~

- - - - -  - - - - -— • —.~~~ -
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demand request depletes the inventory present . The component of shortages

which occur when the system is empty is p’rr/p, since the expected size of

a request if i/p and the expected number of requests per unit time when

the inventory is zero is pit. To determine the expected shortages caused

by demand requests in excess of present (non—zero) inventory, suppose

A(t) = x and a demand request oc .urs. Letting I be the total inventory

level at time t, then given A(t) = x we have

• n—i -Ax
(22) pr [I=nIA(t)=x] = 

(1X)
(n~~)! for n 1 ,2,...

Combining (22) with the distribution for the size of a demand request

(16), the expected shortages conditioned on A(t) = x and the occurance

of a demand request, denoted as ~ (x) , is

(23) ~(x) = 
~~ 
(m—n) pr1I=n~A(t)=x)

.pr (d=m)
n 1  m n

—Axp —Ax
— 

(l—p)e (l—p)e
P P

Hence, for this system, the expected shortages per tIme unit may be

wri t t en as

(24) — pu / p  + p f
hl~ p (x)~~(x)dx

pu/~ + K[l 
— e in

~~~~
_

](l_ p)/p.

where the first component is shortages when the syster.t is empty, and the

second component is shortages from partially—filled orders. 

~~~~~~~~~ 

4
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3. CONSTANT REPLENISHMENT WITH E)~~0NENT IAL DEMAN D REQUESTS

Consider an inventory system for which the replenishment process

is constant; that is, inventory is continuously produced at a constant

rate of c units/time unit. This type of replenishment is found in any

continuous production facility, such as a chemical plant or a refinery,

• 
• where it is very costly to shutdown or interrupt the process. For this

system, it is assumed that demand requests arrive as a Poisson process

at rate p with the request size distributed as an exponential random

variable with mean l/y . Implicit in this model is the assumption that

inventory may be treated as a continuous entity. In addition, it is

again assumed that inventory is issued oldest first, inventory expires

*• at age in , and inventory shortages are not backordered. The time unit

for the system Is defined such that the production rate c = 1.

Similar to the previous system, this inventory system may be charac-

terized as a Markov process with state variable A(t) corresponding to

the age of the oldest unit in inventory. Note, however, that A(t) now

also represents the amount of inventory present. The process {A(t)}

ranges over the interval [o ,m]. The transitions for the process are

described by considering the following two cases:

Case 1 — Suppose A(t) = a, 0 < a < in--A . Then A(t+It) = a-I-It if no demand

requests occur in (t, t+It). If a demand occurs, then

A(t+lt) = (a+lt_T)+, where it is the exponential random variable

for the size of the demand request .

Case 2 — Suppose A(t)  — a, m-A < a < in. At t+It , if a demand has occured ,

* The backorder case is a simple extension of the current model provided
that p < y.
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then A(t+It) (m_it) +. Otherwise , A(t+It) in. Note that in

the latter ease , inventory is being continuously outdated.

Define p(x ,t) to be the probability density for A(t) — x, 0 < x < in ,

• and ir(t) to be the probability mass that A (t) = in. The equations of

motion for this system are

(25a) }- p(x ,t) + 
~

-j . p(x ,t)

= —pp (x ,t) + plr(t) [ye y(m ) j + ~~~~~~ pp (y, t)ye~~~~~”~~dy,

for 0 < x < in ,

and

(25b) 
~~~~~ 

ir( t )  = —pur ( t ) + p(in,t).

In addition , we have the following boundary conditions:

(26) p(O ,t) = 0
f 51 pp( y, t)e 1

~dy + p1r(t)e~~
111
.

By letting t ~~, p(x ,t) + p (x) , and ir(t) + it , the steady—state

equilibrium equations are found to be

(27) p (x) — —pp (x) + prye~~~~~~~ + ~~~I
m pp (y)ye~~~~~~~ dy,

f o r 0 < x < m,

(28) 0 — —pit + p (in) , and

(29) p(O) — f
in pp (y)e~~

’dy + pire~~
”.

The solution to (27) — (29) , using the fact that total probability

mass is one, is
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(30) p(x) ~~~~~~~~~~ o < x < a,

(31) ii — p(m) . where

(32) K —

p —

provided p ~ y. For p y, the solution is (30), (31), and

(33) K — p/ (l4rnp) .

By probabilistic reasoning, we can state analytic expressions for - •

the expected outdates per time unit (5) , the expected shortages per time

unit (~) ,  the expected age of the oldest unit supplied for a demand

request (A) , and the expected inventory level (I) :

(34) 5 = it

(35) = p (O)

(36) A 
x&

in xp(x) dx + mit

(37) I — 1rn 
xp(x)dx + mit

Inventory units are being continuously outdated at the unit rate of

production (c— i) whenever A(t)  = in which occurs with probability mass It .

To find the expected shortages, if a demand request is larger than available

inventory, then due to exponential demand sizes the expected number of

unfilled requests is l/y ; p(O) reflects the frequency of occurance of

demand requests which completely deplete the inventory . Note also that

the expected age of the oldest unit issued equals the expected inventory

level ; this is true since the age of the oldest unit equals the inventory

level, and since demands occur at random epochs. Given the expressions

(34) — (37) as functions of the system parameters p, y, and in , the model

may be easily used for system evaluation and trade—off studies.
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4. CONSTANT REPLENISHMENT WITH UNIT DEMAND REQUESTS

The system studied in this section is identical to that studied

in the previous section except that all demand requests are for one unit

of inventory. Again the system may be characterized by the process

{A(t) } for A(t) being the age of the oldest unit in inventory at time t.

To analyze this system, we will not study the equilibrium flow equations

for the system, but rather will draw upon results from queuelng theory.

It is useful to think of the system as a single—server queue, where the

production process is the server, the inventory is a positive backlog in

the queue, and a demand request Is a customer arriving at the queue

requiring one unit of service. In this framework , the system may

be modeled as a capacitated M I D I 1  queue, where the process {m—A(t)}

corresponds to the virtual waiting t ime for the M JD J 1 queue. When

A(t) = in, the server is idle and the queue emp ty ; for A(t) -~~~ < in , the

server is busy with total queue length Q equal to the smallest integer

greater than m—A (t ) ,  an d with a virtual waiting time of in—A (t). Since

A(t)  is defined ~o be non—negative, this implies that the queueing system

has capacity m; queue arrivals which would put the virtual waiting time

in excess of in are truncated so that the virtual waiting time equals in.

Hence , the determination of the distribution for {A(t) } Is equivalent

to finding the distribution of the virtual waiting time for a bounded

M I D I 1  system. Unfortunately, to this author ’s knowledge , this problem

is unsolved (see Gavish and Schweitzer [5] who considered a closely—related

problem). However, results exist for finding the distribution for a discrete

approximation of {A(t)}. The approximation is analogous to using queue

length as a surrogate for the virtual waiting time.* Here , A(t)  = a

corresponds to an empty queue, in—i ‘( A( t) < in corresponds to a queue length

*
This is appropriate here since each customer requires one unit of service.

~ 

~~—*-~~~~~
_ -- ~~~- --~~--- -• •~~~~~~~~~~— - •—_ - • •_ - -— - --•——~~~~~~~~~~~
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of one, and so on. Defining 
~n to be the probability that n < A( t) < n+l

for n=0,l,...,m—l and p~ to be the probability that A(t) = in, then the

results of Keilson [8] for the finite—capacity MI GI1 system can be extended

to the current problem for p < 1:

(38) p0 = 1 —

= ~~~~~~~ 

_

m
(40) K — [e + p( 

~ 
ei) ]

0

where e1 is the steady—state probability of queue length i for the MIDI1

queue with infinite capacity. That is (see [6])

(41) e = 1 — p

(42) e
1 (l—p)(e~—1)

(43) e — 1— 
1—1 ( l) kpkeP(i_k) (i k) k 

— 

1—2 ( l ) kpkeP(i_k_1)(i k l ) kJ
k=0 k=0 J

for i 2 ,3,...

Keilson [8] also presents a solution for p > 1; however this result

is in terms of a Green’s function and will not be discussed here.

Now (38) — (40) can be used to find the four evaluative measures of

system performance :

—

(45) — pp 0

51

(46) A — E ip
11—0

in

(47) 1 — E ip 1i—a



— . ----— - ------‘ - • 
~
,- ---- -

~ 
-,~~

_w _ --- --‘--- -~~~ • • - -- .— • -~~~~~----
_
~~~~

_ _ _
~~~~~

_ --
~~~~~~~~~
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These expressions are analogous in their derivation to (34) — (37).

However, the above measures are approximate since they correspond to a

discrete representation of the process for the oldest unit in inventory.

The system considered in this section is identical to that considered

by Brodheim , at al. [1]; however the results are quite different. In [1]

the system is modeled as a Markov chain in discrete time on discrete

state space; given this representation, the paper establishes lover and

upper bounds on various measures of interest provided the demand rate

(p) exceeds the production rate (c=j). The model presented in this

section models the system in continuous time on a continuous state space;

using results from queueing theory, analytical results are found for

the evaluative measures provided the demand rate is less than the

production rate (p < 1).



—,----~_-,--- -
~~

_- •—
~-—~~~~

•..
~~~

,_-., .‘—.•- - -
~~~~

----- - • - — -_ -  -
~
-_—

~
--_ . _ — •— - --.

~
—,

~
.-

~~
—----——._—-

~~
-

—20—

5. DISCUSSION

This paper has considered three distinct models for studying inven-

tory systems for perishable items. The key similarity across the three

models is that for each model assumptions were made so that the system

could be characterized by a one—dimension stochastic process. For each

of the models, analytical expressions have been found for four performance

measures: expected outdates, expected shortages, average age of an Issued

unit , and expected inventory level. It is felt that these expressions

can be used for system evaluation and design decisions for systems for

which the assumptions of the respective model are reasonable.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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