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specimens loaded into the region of general yielding are compared with the re—

‘ 

The moire crack tip strain measurements made on double—edge—notched (DEN)

suits calculated by finite element method. It is found that the bulk of the

strain measurements agree veil with the results of the plane stress calcula-

tions except in the small area cloae to the crack tip. The crack tip region is

stiffened against plastic deformation by the triaxial state of stress. The re—

gion affected by the crack tip stiffening extends to a distance from the crack

- .. tip equal to the specimen thickness. This crack tip stiffened zone is em-

bedded in the characteristic plane stress zone if the ratio of specimen thick-

ness and the total net cross—sectional width is equal to or more than ten.

The stress and strain distributions in the plastically deformed region

under the condition of plane stress are investigated. The results indicate that

~~ the size of the plastic zone along the crack line, can be used as a scaling

factor for the stress and strain field around the crack tip. This is true in

both of the small scale yielding case and general yielding case. The size of

the plastic zone in the general yielding case is obtained by extrapolation.

Therefore, a link between linear elastic fracture mechanics and ductile frac-

ture criterion for the case of general yielding could be established by the near

L tip stress or strain correlation. A closed form solution relating near tip

• stess or strain with equivalent stress intensity factor in general yielding is

- obtained.

In a region beyond the initial point of general yielding, the near tip

stress and strain are linearly proportional to the applied stress and overall

elongation respectively. As a consequence, a simple relation between the

equivalent stress intensity factor and the far field parameters is established 

-.~~~~
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- - - _. - - - - ‘ .,. ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ ~~~~~~~~~~~~ ~~

- 
Crack opening displacaments (COD) are also studied and compared with em—

- pirical measurements. The interi-relationships between COD, J—integrai and near

- 
• tip stress and strain are examined.

I
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CHAPTER I INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

Linear elastic fracture mechanics has been very successful in analyzing

1 2 3fracture problems of high strength but low toughness materials. ‘ ‘ One of the

4 requirements for the validity of the linear elastic fracture mechanics is small

scale yielding.4 Therefore, the application of linear elastic fracture mechan—

• ics to ductile and tough materials is ruled out.

Prior to fracture, extensive plastic deformation takes place in a small

testpiece made of a tough and ductile material. But a large structural member

made of the same material containing a large enough crack may fracture in a

• “brittle” manner, i.e. the bulk of the structure remains elastic with plastic

deformation limited to the region in the immediate vicinity of the crack tip.

The lack of information on the plastic deformation near a crack tip prevents the

correlation between the ductile and brittle fracture behavior.

During the past few years, the crack tip plastic deformation has been

studied both theoretically5’6’7’8’9 and experimentally.10’11’12”3 Some pre-

liminary comparisons were made .12 ’14 The general qualitative trends of the cal-

culations and measurements agree well with each other. The purpose of this

study is to provide a link between the ductile fracture of a small testpiece

and the brittle fracture of a large structural member through the study of the

stress and strain distribution near a crack tip for both small scale yielding

and general yielding cases.

1.2 LINEAR ELASTIC FRACTURE MECHANICS

tnglis15 has determined the stresses around an elliptical hole in a plate

16of elastic materials. This pioneer mathematical work was employed by Griffith

in his classic paper on the theory of brittle fracture. Griffith’s theory

evolved from a consideration of minimizing the potential energy which takes

into account both the elastic energy and the energy of formation of the crack

— 1 —
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surface.

Almost all metallic materials manifest some plastic deformation in the

region at the crack tip before catatrophic crack propagation. Irwin17 and

Orowan18 reexamined Griffith’s energy concept and proposed that his theory can

• be modified and applied to metals by considering the energy balance between the

elastic strain energy release rate and the plastic strain work rate required

for crack extension.

The character of the local stress distribution at the base of a crack was

studied by Williams,’9 Westergaard2° and Irwin.21 It is found that the elastic

stresses varies as the inverse square root of the radial distance from the crack —

tip. Their results can be summarized in the following Eqs., for a mode—I ten—

sue crack -

a — f (0)ii ~ ii
and 1—1

K
— 

I
j /~~~~~i

where K1 is the stress intensity fac-

tor under tensile mode. These relations

are good approximations in the region

very close to the crack tip of an iso—

tropic, homogeneous and linear elastic

• solid. Let r be the linear size of thee

region within which Eqs. 1—1 are accep— CliCk ~ ___________

table approximations, and is a func—
Fig. 1—1 Schematic representation

tion of 8 as shown in Fig. 1—1.
of r and r near a crack tip.e p

In a cracked metallic specimen

under load, a small plastic zone,

— 2 —
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exists. In the case of small scale yielding, r~ < re. If r is small enough,

the plastic deformation within r~ does not disturb the stresses in the outer

• region of re. Therefore, the stresses on the boundary of re are essentially

those given by Eqs. 1—1.

- 
• - Consider two cracked specimens of the same thickness and made of the same

material. If the condition of small scale yielding is satisfied by both of

• these two specimens, and if the values of K1 of these two specimens are the

same, then the stresses and strains even within r are the same. This can bep

seen easily if one co~isid~rs the two identical re regions of these two speci-

mens as free bodies with identical boundary stresses. At a given I(1—value,

- • with identical crack tip stresses and strains, if one of the specimens is

broken, it is expected that the other will also be broken. Therefore, one can

— conclude that in the case of small scale yielding, the fracture toughness is

constant.

This conclusion is valid only for specimens of same thickness. The speci-

men thickness affects the constraint to plate thickness contraction and the

stress and strain components a , a , a , C , C and C near a crack tip.zz xz yz zz xz yz

At the same K1— value, in the case of small scale yielding, if the specimens

are of the same thickness, in spite of the difference in specimen geometry in

the other two dimensions, the crack tip stress, strain and displacement fields

of every one of the specimens are the same. If the specimen is thick enough

so that the condition of plane strain prevails at a crack tip, the requirement

• • that the specimens be of the same thickness can be relaxed.

There exists a set of values of crack tip stresses and strains, even with-

in ~~ which corresponds to a given value of The mere existence of the cor-

respondence between and a~~, C~~ and Uj enables us to establish the linear

elastic fracture mechanics. It is not necessary to know the detailed relations

between K1 and aij~ 
C
jy 

and u~. On the other hand, if the relations are known

— 3 —  — 
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either by theoretical calculation or empirical measurements, both crack opening

displacement, (COD).or near tip strain,(NTS),at a single point P(r, 0) can be

-
‘ 

used to determine This concept of characterizing crack tip stresses and

strains by COD and NTS was generalized to the case of general yielding by Wells
22

23,24and Ke and Liu.

1.3 PLASTIC DEFORMATION NEAR CRACK TIP

For a non—linear elastic body Rice25 defined a path independent integral,

Jby

J~~ [Wdy—T~~~ ds] 1—2 4ax

F

• - where the curve r is tranversed in the counterclockwise direction, s is arc
length and T au TLj is the traction vector on r with an outward unit normal
vector flj~ and W and i~ are strain energy density function and displacement vec—
tor respectively. It is also demonstrated26 that the 3—integral is equivalent t
to the change in potential energy, U, when the notch is extended by an amount

da, 3 — dU/da For a sharp crack, since the path may be chosen very close to

the crack tip, the integral may be made to depend only on the crack tip sing-

ularity in the deformation field. With this understanding Hutchinson27 has shown

that the crack tip stresses, strains and displacements can be expressed as

• ai~
(r
~
O) — ~~—N/(l+N)~~~(0)

- A
_i/N 

KltN r
~~~~~~~

Ei~
(0) 1-3

u
~
(r
~
0) — A~~

/N xi~
’N r

~~~~~~~~
(8)
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for a material obeying the power law strain hardening, i.e. a/ar — A(c
~ /cY)

M
.

Where N is strain hardening exponent, and K is defined by Hutchinson as the am-

• 
plitude of ~he singularity. K and 3 are directly related to each other.

• a~~(O) , ~~~(0) and Ui(O) are functions of 0 only for a given material. Eqs.

1—3 indicate that a single parameter K or 3, as in the elastic case, completely

prescribes the stresses, strains and displacements near a crack tip, and also

that if anyone of ~~~~ c~~ , u~ at a point P(r,0), is known, Eqs. 1—3 can be used

to calculate K or 3 and all of the other stress, strain, and displacement com—

ponents. In other words, the value of any one of the components of ~~ ~~
u1 at a single point can be used to completely characterize crack tip stresses,

• strains and displacements. This result affords the strongest analytical sup—

port for the general concept of crack tip stress and strain characterization.

1,4 FINITE ELEMENT METHOD

In recent years, finite element methods are widely used to study the stress

28,29,30and strain distribution around notch or crack. Most of the calculations

are confined primarily to the limiting two—dimensional conditions of plane stress

or plane strain. Owing to the vastly increased computing effort, a very limited

number of three—dimensional elasto—plastic calculations have been made.3’

Lacking such three—dimensional analyses, the present understanding of fracture

mechanics is based largely on the limiting states of plane stress and plane

strain. In the following sections, a model based on kineinatically coupled

plane stress and plane strain layers for the elements is employed in the calcu—

lation to simulate the three—dimensional effect of crack tip. Plane stress cal—

culation in both general yielding case and small scale yielding case are made to

study the stress and strain correlation in the near tip region.

— 5 —
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-‘ CHAPTER II CONSTITUTIONAL RELATIONS FOR NO-DIMENSIONAL PLASTICITY

In this chapter, we shall derive the governing equations for incremental

• elastic—plastic behaviors The explicit relations between stress and strain in—

crements for both plane stress and plane strain cases are obtained. The con—

tinuum is taken to be isotropic and homogeneous. The thermal effects and body

forces are excluded in the derivation. General tensor notation is employed.

Repeated indices in subscripts imply summation over 1, 2, 3.

The total incremental strains are assumed to be separable into elastic and

plastic components whose dependence upon stress is independently defined.

. .e .p
C
j j  

— c
11 
+ c~1 ~ 2—1

where are the components of the total incremental strains, and re-

spectively the elastic and plastic parts of the components of incremental

strains.

• The linear elastic behavior - of a continuum in Lagrangian variables are

described by

e l + v  v
• 

c
ii 

— 
E 

a
11 

— 

~ 
a~ ~~~ 

, 2—2

where is the stress tensor, is the Kronecker delta, v and E are the

• Poisson’s ratio and Young’s modulus respectively. Writing Eq. 2—2 in the m ere—

mental form, we have

.e l + V .  V .
— 

E ~~ 
— a. 6

ii 
2—3

The components of plastic strain increment are assumed to follow the
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2—4

• 4 . where S
11 

— a~1 
— a 6

~~
/3 are the deviatoric stresses and A is the compli-

ance increment given by

3~~P ~~ 2-5
• a oH

In Eq. 2—5, the effective stress, , and the incremental effective plastic
strain, ~ are defined as follows :

(
~ S11 5 ) U2 P 

~~ 
.P ) l/2 , 2-6

where are the components of incremental plastic strains and H — a/ cr’ is the

slope of the effective stress versus effective plastic strain, E? , curve. Sub-

stituting Eq. 2—5 into Eq. 2—4, we have

~~ ‘.‘~~~~— S  ‘ 2—7
~ 2 — ~ iia

The derivative of effective stress is simply

~~. 3 j 4 .
2—8

• 0

Substitute Eq. 2—8 into Eq. 2—7, the incremental plastic strains are then cx—

pressed in terms of the incremental stresses and the current stress state

~
p _ 1

5k1 5k1 5 2—9ij 4— 2 iia H

Combining Eqs. 2—1, 2—3 and 2—9 , we now formulate the basic constitutive

— 10—
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relations in the incremental form

- 
1 + V 

- ~~~ + 
~~ 
;~ ~ 

, 2-10

which has been derived earlier by Swedlow1.

In the finite element calculation, it is desirable to express the incre-

mental stresses in terms of incremental strains explicitly. From the defini—

tions of stress deviator and bulk modulus, we have

c S + b 0 and - E 
. 211

• 
13 13 3 aa 13 au 1 — 2v aa

Substituting Eqs. 2—11 into Eq. 2—10 , it becomes

— 
1 + V + 

4 ~c&ci 
6ij + * 

Ski . 2—12

Multiply 
~~ 

through Eq. 2—12 and summing up, we have

~~~~ 

- 
1 + V s~1 ~~~~~~ 

+ 
4 

ê s~ 0m~ 
+ 9 

Skl 5ki s~1

Make use of the identities S~1 
‘~~~~ 0 and S 5 = ~ ~2 Eq. 2— 13 can be fur—

ther simplified to
(

~ij Cjj  ~~~~~Sjj ~~ 
+-~~sii ~ii

or

• 
~ij ~ij H + 30 

5
i3 ~ii ‘ 

—

where C — E/2(l + v) is the shear modulus. Substitute Eq. 2—14 back into Eq.

2—12 and rearrange it,

—11 —
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~ii 
— 2G(

~i.~ 
— 

4 ~~ 
6
i3 
+ ~ ~kl ~~ 

S
i1) 

, 2—15

where Q — 9G/(2~
2(H+3C)]. Using the previous relations in Eq. 2—il, we have

s — a  — — &  o — 
E .

ii ij 3 ~a ij ij 3(1 — 2V) aa iJ

• - or

_~~~~ 2G (l4 . V ) . 
6 2—16ij ij 3 l — 2 V  C 1~ -

.

Inserting Eq. 2—16 into Eq. 2—15, the final form is

— 2G(~~ + 1 — 2v C + Q 5k1 £kl. S~~) . 2—17

We now have completed the formulation of the incremental relationships between

the stresses and strains of elastic—plastic solids. A similar derivation has

been reported by Yamada, Yoshimura and Sakurai2.

• The general constitutive equations are then reduced below for the analyses

of the elastic—plastic flow under the conditions of both plane strain and plane

stress cases. Both cases require that the transverse shears vanish and that

all dependent variables are functions of the planar coordinates only. It is

convenient to develop the equations in matrix form for the finite element cal-

culation. The notation employed is similar to that utilized by Swedlow1 with

• indicies 1 — 1, 2, 3 interpreted as subscripts x, y, z respectively.

2.1 PLANE STRAIN

In the case of plane strain, we assume that ~ — — — 0 which givezz xz yz

- — + — 0. Under these conditions, Eqs. 2—17 can be expressed in matrixxz yz

form as

[a] — (D
’
] [

~
] 2—18
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~
- where the matrix vectors consisting of the planar components of the incremen—

-: tal stresses and Incremental strains are defined as

0

[~] — and [~
] — respectively.

+
•• xy xy

Note that the engineering shear strain is used here in order to keep [Di
]

• 
ey~wietrical and hence the later operation in finite element calculation is sim—

• -• plified; whereas tensor notation Cxy is used previously for mathematical con—

• venience. The symmetrical coefficient matrix in plane strain condition is

~~:~~~~÷ Q S~~, l - 2 v ~~~~~
5xx 8yy Q S,~~

t
xy

- 

E D ] —  
1 — V  + Q S 2 Q S  t 2—191- 2 v  yy yy xy

1 2sym . •
~
•+ Q T xy

The incremental stress in thickness direction, is obtained from the rela-

tion of volume dilatation, Eq. 2—11,

— 
E a +~~~~ ) — à  — a  . 2—20zz l — 2 v  xx yy xx yy

2.2 PLANE STRESS

- We define this case by a — — — 0 which give ~~ ~yz 
—

Substitute these conditions into Eq. 2—17, we can express the pianal stress in-

crements & , & and ~ in terms of four strain increments, i.e. ~ ,
xx yy zy xx yy

~
‘xy and 1 . However, can be expressed explicityly in terms of the other

three pianal components of strain increments by

— 13 -
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+ QS

ZZ
2
)
~~ZZ 

+ 

~1—2v + QS
ZZ

Sxx)Cxx + 
~].•‘••2v + ~~~~~~~~~~~~~~~~~~~~~~~ —

A

— 0. The final results relate the three planal stress increments and the

three planal strain increment by

[~ 1 — E D
0
] x [

~
] , 2—21

where E D0) is the coefficient matrix for the plane stress condition

1—P (Su+VSyy) 2 
~~~ (S +vS ) (s

~
+Vs
~~
) (v—i) P (Su+VSyy ) txy

I D
0

] — 

i~~
2 l_P(Syy+VSu) (v_ l)P(Syy+VSxx) r xy 

2— 22

1—v 2 2Sym. -j— — (1—u) Pr xy

• and ! s2 + 2v S S + S2 + 2(i—V)r2 + 2(l V)H ~2 The incremental
P xx xx yy yy xy 9G

strain in thickness direction , , can also be calculated from Eq. 2—li

+ a  ) — ~~ 
..
~~ . 2—23zz E xx yy xx yy
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CHAPTER III FINITE ELEMENT METHOD

The finite element method is essentially a generalization of standard

structural analysis which permits the calculation of forces and deflections of

• ordinary framed structures. The method was developed originally in the air—

craft industry. Recently, the application of this method is extended into the

field of fracture mechanics1’2.

The basic concept of the finite element method is that a continuum is con—

-
~ sidered to be an assemblage of elements which are interconnected at a finite

number of joints or nodal points. Within each element the displacement compo—

nents are assumed to vary in such a way that the displacement of any point with-

in the element is determined by the displacements of the nodal points on the

boundary of that element. Although the governing matrix equations have been

presented elsewhere3’4, for the sake of completeness, a brief outline of the

formulation will be given.

In this analysis, we adopt the simplest first—order

triangular elements in which the displacements are taken

as linear f unctions of the spatial coordinates. Figure

3—1 shows a typical triangular element with nodal points

i, 3, in numbered in counterclockwise order. The nodal (-
~~I Y )m

point I has coordinates X~, Y~, etc. The incremental
Fig. 3—1

displacement components ia and ~r , in the x— and y— directions

• respectively, are assumed to display a linear variation over

the element, and they are given by

i i — a1 +a2x + a 3y

3—1

— a
4 

+ a
5
x + a

6
y

— 15—
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The elemental strain increments are then given by

ii a
2

[
~

] — a6 3—2

• il +~~ Y a + a,y ~x 3 5

- 

- 

A comma In the subscript denotes partial differentiation. The six constants in

Eq. 3—1, a1
’s, may be solved in terms of the nodal coordinates and nodal dis—

placement increments. From Eq. 3—2 the strain increments can then be expressed

by the matrix relationship

[~ 1 = [B] x [i~]/m 3—3

where t~ represent3 the area of the element, [B] is identified by

Yj~
Ym 0 

~~~~ 
0 y

1-y3 
0

[B] - 0 x —x 0 x —x x —x 3—4m j  u r n  j i

x x
3 

Y3
—Y~ xi—x Y~~~1 

X
3

X
1 y fy 1

and

~1~

[ii] —

1
;

in

is the displacement increment vector. It is noted that the matrix [B] is inde-

pendent of the position within the element, and hence the strains are constant

throughout the element. The general incremental form of the stress—strain

— 16 — 
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~1

relation is

[&]  — [Di x [
~~

] 3—6

as it is discussed in the previous chapter. [D] is replaced by (D
C] or ED0

]

under the conditions of plane strain or plane stress respectively.

The surface tractions on each element are replaced by statically equiva-

lent nodal forces. The condition of equilibrium at nodal points is satisfied

by minimizing the total potential energy of the system. A linear relation be—

tween the changes in nodal forces and the nodal displacement increments is

followed, having the form

[
~~

] = [k] x [ii] 3—7

where [~~
] 18 a column matrix containing the x and y components of the nodal

force increments at nodes i, 3, and m,

I

i

[f] — 3—8

F
m

• m

where the superscript x and y denotes the directions of the forces. In Eq.

3—7, (k] is a six—by—six symmetric matrix and is commonly referred to as the

elemental stiffness matrix which can be calculated from the relation

[kJ [B]T x [D] x [B] . t/4A 3—9

— 17 —
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where the superscript T denotes the matrix transpose and t is the thickness of

the element. In the elastic—plastic range, it is clear that (ki, being a func—

tion of (DI, depends on the instantaneous stress state in the element as well

- • as on the elastic constants and element geometry.

When the equilibrium of all elements in the assemblage is considered, the

overall stiffness matrix , [K], of the structure can be generated from individual

elemental stiffness matrices. The f inal equilibrium of the structure becomes

. [x] x [U] = [F] 3—10

where

• il
l

[F) — . and

N

“N

represent the applied force increments at all nodes and the incremental dis-

placement field of the structure respectively, and N is the total number of

nodes. The overall stiffness

. 
[ii] — z [kJ 3—li

is a square (2N x 2N) , symmetric and usually banded matrix.

The incremental displacement field [U] resulting from an applied force

system [t ] may be obtained by solving Eq. 3—10. The elemental strain and stress

increments are then calculated from Eq. 3—3 and 3—6 respectively.

— 18 — 
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- • 3.1 DISPLACEMENT BOUNDARY CONDITIONS

In this analysis, displacement boundary conditions are used almost ex-

clusively for two reasons: (1) it is readily available in the case of small

scale yielding , and (2) we may use the displacement increments on the boundary

as a guide to estimate the incremental strain in each element for a particular

loading step. We shall discuss both of these aspects In a later section.

For these specified displacements, the stiffness matrix and the force

vector have to be modified in the following manner, The detail of this pro-

cedure is explained in Ref. 3.

Let us assume that we have a set of 2N equations,

I- 

- 

-

Ku U
3 

— F1 I — 1,2 2N 3—12

and that we have a displacement component U(q) specified to be equal to a.

We then precede to modify the force vector such that

~~~j~~Kj(q)0 1 = 1 ,2, .... 2N an d i # q

3—13and
— a(q)

where F’ is the modified force vector. Then the corresponding row and column

of the stiffness matrix is made zero and the diagonal term is made unity. In

the special but common case of a = 0, it is only necessary to modify the matrix

as described above, leaving the force vector unchanged except for F~q) 
— 0.

3.2 GEOMETRICAL LAYOUT NEAR TUE CRACK TIP

In this analysis, the stresses and strains are assumed to be constant

throughout each element. Therefore, it is a usual practice to avoid a drastic

change of stresses or strains between the neighboring elements. The geometri-

cal layout for the finite element calculation near a crack tip is shown in

Fig. 3—2. This particular assembly is chosen such that the ratio of the dis—

tance from crack tip to two adjacent nodal points along any radial line is

—19 — 
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always kept constant except in the immediate neighborhood of the crack tip. As

a consequence , the ratio of the stresses or strains of two neighboring elements

is nearly a constant. In addition to that , it is also convenient to study the

stress or strain distributions around a crack tip as a function of 0 , the angle

away from the crack line.

Fig. 4—2 The finite element layout near a crack tip.

3 3 CALCULATION SCHEME

The material characteristic in the plastic region is approximated by the

power law

— —N 3—14
a— k c

where N is the strain hardening exponent, k is a constant equal to EN.c4 
N and

is the yield stress of the material. c is the effective strain defined as

3—15

In the case of uniaxial tensile loading, a and ~ are replaced by the true stress

and true strain respectively. In the finite element calculation, the infinites—

imal deformation theory is employed in each individual loading steps. The

— 20 — 
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• geometry is updated after each increment . This procedure is coneistent with the

manner in which the true stresses and true strains are obtained.

In the finite element calculation, we approximate the nonlinear behavior

-
* 

- of plasticity as piecewise linear within each small loading step. Therefore,

• the slope of the curve versus fr’, deonoted by H in Eq. 2—5, is replaced by
- 

- the slope of a secant connecting two material points on the curve which repre—

- sent respectively the state of stress before and after the loading step.

Since the state of stress af ter the current loading step is not known , an

estimation has to be made.

Assume the effective strain, , of each element bears a linear relation—

• ship with the applied displacement boundary condition, i.e.

A

or

U - U  ~~~
‘ -

~~~~+ 0 + 0 3—16

where U~ , U and U are respectively the boundary displacements at one step

- ahead, current step and one step behind. ‘ and c are the projected,

current and passed effective strains of an element. is further modified

by the mis—estimate in the effective strain of last loading step,

• 
-(1) 

- - (
-(i-i) 

~~
) 3-17

the quantity in the parathesis is the difference between the estimated

f effective strain and the effective strain actually calculated after the last

loading step. is the estimated effective strain used to evaluate the

secant modulus, H, for the current loading step. The estimated eifective plas—

tic strain can be calculated from

- —21 —
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~(i)

— ~(i) — 
+ 3—18+ + E

i
• where a~ ~ is obtained from the relation a~

i
~ — kc’1’ . The secant modulus is+ + +

then

—
o 3—19

• 
C~ - C ~

The current stress and H so obtained for each element are used to evaluate

[Dc] or ED0 ] according to Eq. 2—19 and 2—22. Consequently the elemental stiff—

ness matrices [k] are obtained and the structural stiffness matrix, [K] is

fol].owed. After the insertion of boundary condition and solving for the linear

system, Eq. 3—10, the incremental displacement field Eu ] corresponding to an

I incremental force vector [F] are obtained . The strain and stress incremental

for each element are then calculated from Eq. 3—3 and 3—6 respectively. The

incremental effective plastic strain is calculated from incremental strain

components through Eq. 2—6 and the total effective plastic strain C1’ is simply

the sum of ~~~ The sum of stress increments gives the state of stresses of

each element. The effective stress of the element is calculated from the stress

as it is defined in Eq. 2—6.

It should be noted that the derivative of a as expressed in Eq. 2—8

— : ~~~ 3—20

is not equal to the effective stress increment âa defined by

— [
~ 
(s~ + ~~ 3

)(S~3 
+ ~S13

))1~
I2 

— 3—21

Rearrange Eq. 3—21 and multiply it by itself,

—22 —
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+ 2 ~ A~ + (A )2 - 
~ 

S~~ S~~ + 3 ~~ 
A5ij + ~ ~~ij ~~ij 

3—22

-

• 
Note that ~2 — ~ s~~, Aa can then be expressed by

3$
Aa — -

-
_!!J~ 

~~~~~~ 
+ ~~

— [
~ AS

1 
AS
i 

— (A ’)2] 3~~ 3
2a ~ 2a ~

Comparing Eq. 3—20 and Eq. 3—23, it is clear that the difference between a

and A~ are of the second order of AS~~. Hence, using Eq. 3—21 in the finite

element ‘ormulation I. justified by keeping loading step small such that As
13

is small in comparison with a.
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CH APTER IV COMPARISON OF FEM CALCULATION AND EXPERIMENTAL MEASUREMENTS

4.1 PLANE STRESS CALCULATION

Plane stress calculations are made for two batches of aluminum alloy. The

Young’s modulus, E, and the Poisson’s ratio, v, are llx 1O
3 
kai and 0.34 re-

spectively. The uniaxial tensile stress—strain curves of these two batches of

• ahasinum alloys are shown in Fig. 4—1. The yield stress, is 7.26 ksi,

and the strain hardening exponent, N, is 0.315 for batch C aluminum alloy.

Whereas for batch B aluminum alloy the yield stress and the strain hardening

exponent are 10 ksi and 0.22 respectively. In the finite element calculation,

the stress—strain relations are approximated by

a — Ec for a < 4—la

and

ci — kcN for ci ~ 4—lb

where k — EN 0 1—N These relations represent a good material characterization

— I I I I I I I  I I I T i l l  I l l

• 2024-0 Q. •

I
— _ _ _ _ _  _ _ _ _ _ _ _

• 
- . B~T~H B  a~-10 K~ , N-Q22

• B~FcH C ~~~726FEI, N=Q315

1 I I I I I I I  I I I I 1 1 . 1 1  I I I I I I ~~~~~~

iT4 io~ iT2 IT’
TRt..E STRAIN

Fig. 4—1 Uniaxial tensile stress—strain curves for 2024—0
aluminum alloys, batch B and C.
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as shown in Fig. 4—1 . 2

The results of the calculations are

compared with the moire strain measurements

made by Gavigan, Ke and Liu1. The measure-

ments were made on four and eight inches /

wide, double—edge—notched (DEN) specimens _________ _________ 

—

• of 0.125, 0.25 and 0.5 inches thick. It ______

should be noted here that the measurements

were made for three batches of aluminum 4

________ 
—— I________

alloys, where the values of and N of 
______

- 

- batch A and batch C aluminum are very close

to each other. Hence, the calculated re— ____________________________ - -

suits of batch C aluminum are compared with
Fig . 4—2 The finite element repre—

the measurements from both batch A and sentation of first quadrant of the
DEN specimen. The details of ele—

batch C aluminum specimens. ments near crack tip is inserted.

Fig. 4—2 shows a finite element repre-

sentation of the first quadrant of the double—edge—notched plate. The mesh is

composed of 265 nodes and 468 linear displacement triangular elements. The

dimension of the element closest to the crack tip is 0.0035 inches. All the

results presented in this study are relatively far away from the crack tip in

comparison with the smallest element size. A calculation with a finer mesh was

also made. The results are the same. At the far end of the sample, a uniform

• - displacement is applied as the excitation parameter.

Figs. 4—3 show the comparison of calculated and measured y—direction

strain, c , distributions along the crack line at different loading levels.
yy

The loading level is indicated by the parameter A/Wc~~ where W is the specimen

width, c~ is the yield strain and A is the elongation measurement made over a

gage length of seven inches. The vertical dimension of the finite element repre—

sentation of the sample used for this calculation , as seen in Fig. 4—2 is three

-25 -
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N 
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-

- L I I I ’ ’  OflOl I l i i i !  I l i i ,

0.1 0.1
r — L~STANI F~1%1 OR~O< TIP (IN.) r — £1S1~NI FF~i4 cR~IcX TIP (IN.)

C c )  (d)

Fig . 4—3 Comparison of calculated c~~ versus the experimental
- measurements for DEN , 2024—0 aluminum alloys .

inches, which corresponds to a gage length of six inches. Therefore, the

average strain of the top most elements were added to make up the total calcu-

lated elongation. The corresponding material and specimen thickness are noted

• on each individual plots. The two sets of experimental points for the two

cracks of the same DEN specimen at the same overall elongation of the specimen

are shown in Fig. 4—3d. The difference of these two sets of measurements is

possibly caused by the internal cracking and by a slight bending. All the

comparisons are made in the region of general yielding.

The agreement between the measured and calculated strains in the region

— 26 —
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more than about one thickness ahead of the crack tip, i.e. r > t is very good .

Whereas in the near tip region the measured strains are less than the calculated

ones which reflects the thickness effect introduced by the presence of the

crack. It is reasonable to assume that the strains are uniform throughout the

thickness of the specimen only in the region where r > t. In this region, the

defo rmation is characterized by plane stress analysis. The slope of the loga-

rithmic plot in the region are 0.75 and 0.70 for batch B and C aluminum alloy

respectively, which are close to the values given by the analytical calcula—

tions of Rice and Rosengren2 and Hutchinson,3 i.e. 0.82 and 0.76 respectively.

This comparison suggests that plane stress finite element calculation can be

used to characterize the deformation field in the region one thickness away

from the crack tip for a DEN specimen in general yielding.

4.2 THREE DIMENSIONAL CHARACTERISTICS OF CRACK TIP DEFORMATION

The plane stress analysis is only an idealized model. The stresses and

strains near the crack tip of a plate are in reality much more complicated.

The region closer to a crack tip has higher strains and tends to contract more

in the thickness direction. But the crack tip region is constrained from thick—

ness contraction by the region of lower strains further away from the crack tip.

This constraint induces the tensile stress in the direction of plate thickness,

0zz~ 
Along the crack front and in the interior of a very thick plate, the —

thickness contrac tion is negligibly small , and the state of deforma tion there

approaches that of plane strain. On the plate surface, the traction is zero;

• therefore, the conditions of plane stress prevail. For a cracked thick pla te,

the state of stresses and strains changes gradually, from that of plane stress

on the specimen surface to that of plane strain in the interior. This is true

if the plastic zone size is small enough in comparison to the plate thickness.

I t  is also clear tha t the rate of transition from the state of plane stress

on the surface to the state af plane strain in the interior depends upon the
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strain gradient induced from geometrical irregularities. I~ the gradient is

high, the transition is fast; conversely , if the gradient is low, the transi—

tion is slow. If there is no strain gradient in the plane of a plate , there

is no constraint from the deformation in the plate thickness direction to in—

• 

• 
duce a regardless of how thick the plate is. Close to a crack tip, the

strain gradient is steep , and the rate of transition is fast. As the distance

from crack tip increases , the strain gradient decreases , and the thickness of

• the transition layer increases. Far away from the crack tip, the state of

stresses and strains throughout the plate thickness is essentially that of

plane stress.

CRACK

Fig . 4—4 Schematic diagram showing half of the plastic zone.
The plane strain plastic zone is imbedded .

A schematic picture of the plastic zone in a thick plate near a crack tip

is shown in Fig . 4—4. The size and shape of the plastic zones are approxi-

mated by the use of the crack tip stress equation for an elastic medium under

either plane stress or plane strain conditions. The zone is taken as the

— 28— 
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locus of points at which the von Mises’ yield criterion would be exceeded if

the elastic stress distribution were unaffected by yielding. Poisson’s ratio

equal to 0.34 is used in this approximation. If a plate is thick enough, the

size of the plane strain zone starts from zero on the plate surface and grows
• to the fully developed size in the interior. There is a transition region

between the plane stress region on the plate surface and the plane strain re-

gion in the interior of a thick plate. The difference between the plane stress

(on the surface) and plane strain (in the interior) zones indicate the signif i-

cant effect of lateral constraint on the plastic flow at the crack tip. In

the interior of a thick plate, the plane strain plastic zone, r , coincides

with r~. Close to the plate surface, r becomes bigger , but r becomes smaller.

The length of the fully developed plane strain region , 2~ , relative to the size

of the transition region , depends upon the size of the plastic zone relative

to the plate thickness. For a thicker pla te and for a smaller ~~ r~ is longer.

Within the transition region and the plane strain plastic region, the hydro-

static tensile stress, i.e. (a + a + a )/3, increases and the effectivexx yy zz

stress decreases, thereby reducing the overall plastic deformation. It can be

said that the crack tip region is “stiffened” against plastic defo rmation.

In the case of small scale yielding, the size of the plane strain zone de-

pends upon the quantity (K/a~) 2/t .  For a valid K1 test, the value of the

quantity must be less than 0.4, i.e. at this value, an effective plane strain

zone exists for the fracture test. At a higher value of this quantity, the

• ‘ stiffening effect is less. In the region of general yielding, the stiffening
I,

effect is greatly reduced.

It can be concluded that the crack tip region is stiffened by the triaxial

state of st ress in the interior of the plate. The stiffened region in the

interior restrains the plastic deformation on the surface. Even though the

state of stress on the surface is that of plane stress, the measure strains
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in this region are much less than those strain values calculated under the

plane stress condition.

• 
- Ke4 had made strain measurements on specimens made of other materials at

va rious thicknesses. All their results clearly show the changes of the slope

in a log—log plot of strain in loading direction against the distance from the

crack tip at two points along the crack line. One takes place at t/2, the

other at t , where t is the specimen thickness. The measurements seems to sug— 
$

gest that the stiffened zone ex-

tends from the crack tip to a dis—
t TUICUI$S

tance equal to the half of the

specimen thickness and the effect

of stiffening on the surface

strain stretches to the region one cuc~
thickness away from the crack tip. 2

Fig . 4— 5 The region of modification
4.3 COMPOSiTE CALCULATION within which the stiffness matrix of

each element is modified .With the discussion given in - -

the foregoing section, we proceed

to modify the stiffness matrices of the elements close to the crack tip. Fig.

4—5 shows the modification zone within which the stiffness matrix of each ele-

ment is modified to. reflect the stiffening effect of the plane strain plastic

zone. The modification zone in both x— and y— directions extends to the half

of the specimen thickness. It is assumed that the degree of stiffening is

equivalent to a certain size of the “plane strain zone” in the crack tip re-

gion. For the sake of simplicity and because of the lack of information, it

is further assumed that the shape and the size of this modification zone re-

mains the same throughout the loading process.

For each of the elements within the modification zone, a linear combina—

tion of ED
0

) and [D
El replaces ED0]. This composite matrix ED] is assumed as

— 30— 
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[Dl — (2[D ] + (1 — cz)[D
a] , 4—2

where [D
’
] and [D0) are defined 

respectively in Eq. 2—19 and 2—22 and (~ is the

mixing parameter whose value changes linearly with the distance from the crack

tip. Outside of the modification zone ED) is equal to [D0]. ED] is thus used

to construct the ei~inental stiffness matrix. For each element inside the modi

f ication zone, the strain increment in z—direction is reduced to

l — 2 v . .
£ — ( l — c 2 ) [ (0 +a ) — c  — c  ] 4—3zz E xx yy xx yy

For each element in this zone there are two sets of stress increments, one for

plane stress and one for plane strain. These two sets of stress increments

could be obtained from the strain increments following Eq. 3—6. The resulting

stresses are then used to generate separately the [D0
] and [D

r
] for the next

loading step.

Calculations with composite matrix are made for batch C aluminum alloy at

two different thicknesses. The values of ~ are determined by trial and error

so as to make the calculated strains , c , match with the measurements. Foryy

the 0.25 inch thick plate, the value of (~ changes from 0.04 at the crack tip to

zero at the boundary of the modification zone. The value of ~ for the 0.5 inch

thick plate is 0.08 at the crack tip. Figs. 4—6 show the results of the com-

posite mode calculation as denoted by the solid lines, whereas the dashed lines

represent the plane stress calculation. It is to our surprise that a very small

plane strain state could make such a significant change in c~~. It should be

recognized that the composite mode calculation Is not intended as an exact three

dimensional calculation for the c-”ack tip stresses and strains. The degree of

the crack tip stiffening is adjusted by trial and error to fit the experimental

data. The purpose of the calculation is to qualitatively show the extent of
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Fig. 4—6 Near tip strain measurements and calculations, 2024—0
aluminum alloy , batch C.
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the three dimensional effect.

One of the important results of the calculation is to reveal that the ex-

tent of the plane strain plastic zone is very limited for a specimen loaded

considerably into the region of general yielding. For example, for the 0.25

inch thick specimen, in the composite finite element calculation, the value of

~ is only 0.04. This can be interpreted as meaning that the equivalent plane

- - 
- strain plastic zone at the crack tip Is only four percent of the plate thick—

ness. However, this is not to say that the actual length of the plane strain

zone is four percent of the crack front. Rather, it means that the build up

of the triaxial state of stresses and the restraining of plastic deformation

• at the crack tip are equivalent to a four percent plane strain zone. Hence,

It is doubtful that In the 0.25 inch thick plate at these load levels, the true

plane strain condition exists at the crack tip. This observation casts a

serious doubt on the premise that a small specimen can be used to measure plane

strain fracture toughness for a very ductile and tough material.

In Fig. 4—6b, the measurements and the calculated strains of a 0.5 inch

thick plate are shown. In the crack tip stiffened region, the calculated

strains agree well with the measurements. The intermediate region between the

stiffened region and the plane stress region extends to r approximately equals

to 0.5 inch, where r denotes the distance from the crack tip. The total liga-

ment, (W—2a), of the specimen is only 2.4 inches. As a consequence, the plane

stress region is not large enough to show the characteristic slope of the

• 
- strain curve as it is in the case of 0.25 inch thick specimen. The results in

Figs. 4—6 lead us to conclude that in order to assure a plane stress region

in an experiment, the total ligament of a DEN specimen should be ten times or

more than the specimen thickness. If a bending load exists such as in the

case of a wedge opening load (WOL) type specimen, the ligament should be even

wider. It is also clear, that in the case of small scale yielding, in order

to observe the characteristic slope of a plane stress plastic zone , the size
—
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with the experiment data. 
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of the plastic zone should also be five times or more than the thickness.

If the ligament is wide enough , the crack tip stiffen ing zone is imbedded

in the characteristic plane stress zone. The maximum tensile stress in the

stiffening zone is increased above that of the plane stress calculation and the

deformation, on the other hand , is reduced. The stiffening effect is strongly

controlled by the plate thickness. Therefore, the results of the measurements

and the calculations suggest that for the specimens of the same thickness with

the same stress and strain f ields in the characteristic plane stress zones,

the stresses and strains in the stiffened zones must be the same, even though

the values of these stresses and strains in the stiffened zone are unknown.

-

• 
Fig. 4—7 compares the load—elongation curves of both pure plane stress

calculation and the composite mode calculation for both 0.25 and 0.5 inch

thick specimens with the experimental data of batch C alluminum alloy. The

good agreement of these curves with the measurements indicates that the major

part of the specimen is under the condition of plane stress. The experimental

load4elongation curve of the 0.5 inch thick specimen is only ten percent
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higher than the calculated plane stress curve . Although the near tip stress

- - and strain distribution is affected considerably by the crack tip stiffening,

but the overall compliances of the specimen have not changed much. The compari-

son also suggests that the extent of the plane strain zone is very limited.
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- CHAPTER V CHARACTERIZATION OF CRACK TIP STRESSES AND STRAINS

From the point of view of continuum mechanics, the stress and strain distri—

• butions ahead of a crack could be divided into four regions as illustrated in

Fig. 5—1. Region I extends from the crack tip to a distance approximately equal

to the half of the specimen thickness. In this region, the plane strain stiffen-

ing effect exists and the three dimensional behaviour is prominent. In Region

II , the plane stress condition is generally applied. The dominant singulari-

ties of both stresses and strains as the variation of the distance from the

crack tip, r, approaches to the analytic-works by Hutchinson,~ Rice and Rosen—

gren.
2 

Region III lies further away from the crack tip where the material de-

forms elastically and the stresses and strains change inversely with the square

root of the distance from the crack tip. Still further away is region IV where

the effects of specimen geometry and the type of loading dominate the deformation

5TFF8~JPG
1—i

PLASTIC
I-’

1—--\ N 0$
ELASTIC

SENOIN

I 
_ _ _  _ _ _  _ _ _

LOG(r )

Fig. 5—1 Schematic plot of stress and strain distributions ahead
a crack in logarithmic scale.
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characteristics. It should be noted that in general not all of this four re-

gions are present. For example, the region III diminishes with increasing load

and finally disappears when the load is beyond the general yielding. For a

very thick single—edge—cracked specimen, only region I and region IV may exist.

The nature of the plane strain stiffening effect has been discussed in the

previous chapter. This chapter will focus our interest in the stress and strain

• distribution in region II and region III. As it has been shown earlier, the

remarkable agreement between the measurement and calculation in region II sug—

gests that the major portion of the specimen is under plane stress condition.

The characteristic singularities in this region are close to those predicted

by the deformation theory of plasticity.

5.1 SMALL SCALE YIELDING

En order to investigate the characteristics of both region II and region

III , plane stress f inite element calculations are made in the case of small

scale yielding. The materials treated are 2024—0 aluminum alloy, batch B and

batch C. In order to avoid redundance only the results from batch C alloy are

given. However, the essential results deduced from the calculation of batch

B alloy will be provided at the appropriate point. The calculations are made

on a semicircular region with displacement boundary conditions. The element

layout is shown in Figure 5—2 and the displacement boundary conditions are

specified by the elastic solution

u Cos [1 — v + (1 + v) Sin2

v _ ~~1i~
i sin~~~ [ l _ v _ ( l +~~O Cos2 F

This particular mesh geometry was discussed in more detail by Tracey,
3 Larsson

and Carlsson.4 The imposed stress intensity factor , K.1 in Eq. 5—1 ranges from
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• Fig. 5—3 Calculated ~ and c~~ for batch C aluminum along the
crack line in small scale yielding case.
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0.25 to 4.00 ksi/i~~ Sixteen loading steps are calculated .

-

- The calculated effective stress, a and strain in loading direction,

for batch C aluminum along the crack line are shown in Fig . 5—3 . All the other

pertinent components; such as o~ , 
~~~~~~~~

‘ ~~~ and ~Y, follow a similar pattern.

The first load is purely elastic which can be readily identified by the charac—

teristic — 1/2 slopes in the figure. The number of plastically deformed ele—

ment along the crack line increases with the load. The slopes in the plastic-

ally deformed region (region II) is 0.26 for the plot of effective stress and

0.76 for the plot of cyy . The plastic zone size along the crack line, r~. can

be obtained by extrapolating the plastic portion of the effective stress curve

to the point where the effective stress is equal to the yield stress. The de-

tailed crack line stress and strain distributions for this material are shown

in the dimensionless plots in Fig. 5—4. The stresses and strains are normalized

by the yield stress and yield strain respectively. The distance from the crack

tip is normalized by the plastic zone size along the crack line at each indi-

vidual loading step. Only the last nine loading steps are shown where the

value of K
1 
ranges from 1.125 to 4 ksiv’i~. Each symbol denotes one loading

level. In this figure, the characteristic plane stress plastic region (region

II) and the characteristic elastic region (region III) are clearly shown.

To the lef t of r /r  1, the y—direction strain and stress can be expressed

as

• 

— C
~~(r_r~)

(
r~
) and a

yy 
ayy(r r~ ) (

ç
) 5—2

where e and a are the values of € and a at r r , and
y y ( r r )  yy yy p

a and in ’ are constant equal to 0.76 and 0.26 respectively . It is interesting

to note that in + in’ 1 as it is indicated by Eq. 1—3-. In the case of small

scale yielding, r is related to stress intensity factor by

r — (K1)2 5.3
p
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— In addition

c,~,
£yy(r_r ) — r and a

~ ,(ru.r ) 
— 
8’ 5—4

where and a~ are yield strain and yield stress of the material respectively.

C Combining Eqs. 5—2 , 5—3 and 5—4 , one has the following relations

K K
- - 

— —
~~ ~ and a — —

~~~ , 5—5a~~ rm yy

where

c K a , L.
K — (.1) 0.m(I) 2m 

~ and K — (
Y
) 
a (....L) ~~ 5—5b

and K~ can be considered as the strengths of the crack tip strain and

stress singularities. Similar relations can also be obtained for a , c , a
yy xx

and ~~~~. The values of 8, 8’ and cs can be obtained from the small scale yield—

ing calculation. For batch C aluminum, these values are respectively 1.405,

0.983 and 0.243; whereas for batch B aluminum, the values are 1.353 , 0.923 and

0.281.

It is interesting to note that in the case of small scale yielding, the

values could also be obtained from the stress and strain distribution of the

elastically deformed region (region III) by the following relations

5—6- I  7)’

} K — I r a  5-7I xx —

- _ _ _  
5-8

K ,~~~E v7i~~~c 5-9I 1 — v  xx

The percent of the deviation of the K1 values obtained this way f rom the imposed

- - 
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values are 4.20 , 0.88 , 5.85 and — 1.11% for Eqs . 5—6 , 5—7 , 5—8 and 5—9

respectively.

5.2 GENERAL YIELDING

Fig. 5—5 shows the results of the plane stress calculation of double—edge—

notched (DEN) specimen made of batch C aluminum in general yielding. In addi—

• tion to the crack line results, the y—direction stress and strain distributions

along radial lines 450
k 600 

and 900 away from the crack line are shown. The

results are plotted in the same manner as Fig . 5—4 and the corresponding plots

for small scale yielding are also presented for comparison. The values of r~

for these plots are obtained by the linear extrapolation of effective stress,
• 

a, to yield stress in a logarithmic plot of a vs. r. The calculated a and

effective plastic strain , c~ , are also shown and compared in Fig . 5—6.

Plane stress calculation is also made for single—edge—notched (SEN) specimen

made of the same material loaded into the region of general yielding . The re-

sults are shown inFig.5—7. The plane stress characteristic region (region II)

is clearly shown.

The excellent correlation in the characteristic plane stress region between -
•

the both general yielding cases (DEN and SEN) and the case of small scale yield—

ing indicates that a single parameter like r~ is sufficient to characterize the

crack tip stresses and strains . Furthermore , the near tip stress or strain in

a small sample in general yielding can be used to obtain the equivalent K1
• value of a large specimen where the condition of small scale yielding is satis-

fied. Consider two specimens of same thickness, one large and one small. Both

are loaded to the level such that at certain distance from crack tip, r, the

y—direction stress or strain is the same in both specimens. The large specimen

is wide enough such that the condition of small scale yielding is retained.

Hence, the crack tip stresses and strains are characterized by the value of

stress intensity factor which is given by the elastic solution. Whereas the

second specimen is so ~small that the state of deformation is general yielding.

• — 4 2 —
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Pig . 5—5 Correlations of near tip stresses and strains in the
loading direction between the small scale yielding
and double—edge—notched specimen loaded into the
region of general yielding .
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strain between the small scale yielding and double—
edge—notched specimen loaded into the region of general
yielding.
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Since the crack tip strain and stress distributions are the same in both speci-

mens, it is fair to say that the K1 value of the small specimen in general

• yielding is the same as the K1 
value of the large specimen . In this connection ,

Eq. 5—5 is applicable even in the case of general yielding as long as the cor-.-

responding pair of e and r, or and r are taken from the characteristic

plane stress region. By this approach , one is able to use a small sample to

evaluate a very high fracture toughness. The equivalent K1 values for the em-

pirical data in Fig . 4-.-6a are 38.5 , 29.8 and 23.3 ksiv’in , while the tensile
yield stress of this material is 7.26 ksi.

Ke and Liu5 used near tip strain as the correlation parameter between the :1

plastically deformed region in small scale yielding and plane strain stiffened

region in general yielding. Based on their limited empirical data, the charac-

teristic strain distribution along the crack line in the plastically deformed

region in small scale yielding Is incorrectly taken as the extension of the in—

versed square root law of elastic behavior. The — 0.5 slope observed in the

plastic region in their experiment is probably caused by the crack tip stiffen—

ing as well. Their approach yields a high estimate of equivalent stress in-

tensity factor and fracture toughness.

5.3 NEAR TIP STRAIN AND STRESS AND THE FAR FIELD PARAMETERS

In Fig. 5—8 the normalized crack line strain , E / C , of DEN specimen cal-

culated at various distances from the crack tip , r , is plotted against A/We7

where A is the elongation of the DEN specimen over a gage length of seven inches

and W is the specimen width. The results of the plane stress calculation which

are represented by the solid lines agree well with the limited number of measure-

ments, i.e. the triangular points in the figure . It is further demonstrated in

this figure that in the region of general yielding beyond the arrow on the load-

elongation curve in Fig. 4—7, the relation between c and A appears linear. A

similar relation between the crack line stress, a at various distances, r, and

th applied stress is shown in Pig. 5—9. These linear relationships suggest

.1
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• that the assumption of proportional loading is justified for properly designed

specimen loaded into the region of general yielding. In the linear regions ,

we have

Ae — , and a = ~ a 5—10yy W yY

-

• 

- where y and y’ are functions of n W .  Substituting Eqs . 5-10 into Eqs. 5.5,

we have

m m AK c  r — y r  — 5—11
£ yy W

For a given A, K is constant, therefore r E y rm must be a constant . Combining

Eqs. 5—5 and 5—11, we have

~~m [( m
,B)

_2m
] = ~(~) . 5-12

In a like manner, the following relation can be derived

K~
m

[O~ U
m
/sI)O;

2m ] = r’ a 5—13

r
where F’ y ’ rm 

. For DEN specimen made of batch C aluminum, r — 0.490 and

F’ = 1.315; whereas for batch B aluminum the values of r and r’ are 0.647 and

1.276 respectively. Multiplying Eqs. 5—12 and 5—13 and recall the relation

m + ~~ 1, the final approximated form becomes

• a A
14/E — [~B’rr ’/a] —a-- 5—14

It is recognized that K~/E is J in the case of plane stress. The quantity in

the square bracket , 88 ’Fr’/ a ,is a constant for a given geometry and a given

material . For the DEN specimen treated
I

4/E — 3.37 
~~~~~~

— — 16.1 (~) (~ç
)
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for batch C aluminum alloy and

K
1
2
/E = 3.67 •~~~ — 34.5 (~~) (~~~)

for batch B aluminum alloy . Eq. 5—14 relates the equivalent stress intensity

factor to the overall elongation and the applied stress for a small sample

loaded far into the region of general yielding.

Fig. 5—10 plots the product of a / a r and c / c t as a function of the pro-

duct of its associated far  field parameters , a,,,/a~ and A/Wc~ . It is interest—

ing to note that the deviation from linearity in Fig . 5—10 is not as severe

as in the Figs. 5—8 and 5—9 where stresses and strains are plotted separately.

The stresses and strains tend to compensate each other .

The stress intensity factor , K1, are plotted at various loading levels in

Fig. 5—11. The elastic solutions are also included in the plots for comparison.

In the region of general yielding where the linear relationship between the

near tip and far field parameters hold ,the curves are approximated by the dashed

lines represent Eqs. 5—14 . When the linearity breaks down , the equivalent K1

values can still be obtained by the correlation of the characteristic near tip

stresses and strains as given by Eqs. 5—5 .

5.4 NEAR TIP STRAIN FRACTURE CRITERION

ICe and Liu5 made near tip strains measurements at the onset of surface

crack growth in three tough and ductile materials: HY-80 steel, and two batches

of a fully annealed aluminum alloys (batch B and batch C), Fatigue pre—cracked

specimens were tested under tensile load . Three types of specimens were tested:

WOL, SEN and DEN. All the specimens of each material were of the same thick-

ness. Their widths ranged from 2 to 8 inches.

At the first sign of surface crack growth, the near tip strains were

measured with the moire method. The results are shown in Fig. 5—12. The cross
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in the second figure for batch C 2024—0 aluminum alloy was measured with a small

strain gage, which agrees well with the moire strain measurements.

The strain measurements for each of these three materials fall within a

narrow band in spite of the differences in specimen geometry and size. This

indicates that at the first appearance of crack growth on the specimen surface,

near tip strain is not affected by specimen geometry and the type of loading as

long as the specimens are of the same thickness.

A careful study of the data presented in Fig. 5—12 reveals that the three

dimensional stiffening effects are shown in all the three types of specimen at

the imediate vicinity of the crack tip. For the VOL and SEN specimens, the

bending effect is so dominate that there is no plane stress deformed region can

be detected as it is reflected from the strain measurements. A longer ligament

width should be considered for this observation. For the DEN type specimen,

the characteristic plane stress deformed region is noticable at approximately

one thickness away from the crack tip. The K value of this particular mater—

tal (Batch B aluminum alloy) is estimated to be 69.1 ksi/i~ according to Eq. 5—5.
K 2The value of (~a~)i8 close to 50 inches. According to the requirement of the

IT

linear elastic fracture mechanics, a ligament size of 10 feet is necessary to

conduct a valid Iracture toughness measurement.
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CHAPTER VI CRACK OPENING DISPLACEMENTS AND J-INTEGRALS

6,1 CRACK OPENING DISPLACEMENTS

Crack opening displacements (COD) were studied for both batches of aluminum

alloys (batch B and C). The calculated crack tip profiles at various loading

levels were compared with the earlier measurements by Gavigan’ in Fig. 6—1. A

close agreement was noticed.

Figs. 6—2 and 6—3 show the correlations of COD between the small scale

yielding and double—edge—notched specimen in general yielding for batch C alumi—

num alloy. The distinct deformation characteristics in the elastic and plastic

portions of the specimen are clearly shown, In the plastically deformed region,

one has

-m”COD r
— (—) 6—1

p

where —in” is the slope in Figs. 6—2 and 6—3 in the near tip region and

CRACK TIP PROFILES UNDER WAD A/W€ y
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Fig. 6—1 Measured and calculated crack tip profiles, batch B
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COD* is the crack opening displacement at r — r~. Define

• Q _ COD* 
. 6—2

Substitute Eqs. 5—3, 6—2 into Eq. 6—1 and rearrange

aya
_h/2Ql/2in”

_2
rn”~

’2in”_2 coD1/2~~~
” 6—3
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where a was defined in the previous chapter, For batch C aluminum m” — 0.298

and Q — 0.0036. Therefore, in addition to crack tip opening displacements

(CTOD) , proposed by Wells,2 COD in the near tip region can be used to evaluate

fracture toughness as well.

6.2 COD AND CRACK MOUTH OPENING

Consider the extreme case while r is equal to the notch depth or crack

length, a. In this particular situation, COD is replaced by its corresponding

f an field parameter, crack mouth opening (cMO). Eq. 6—3 now becomes

1/2—2m”
K1 

— ~ /7 [CMO~ 6—4

It should be pointed out that although COD and CMO are identical when r — a in

spite of small scale yielding or general yielding, Eq. 6—4 is valid provided

that the condition of Eq. 6—1 is satisfied. In other words, the application of

Eq. 6—4 is restricted to the range of go’~~ral yielding.

Fig. 6—4 plots the calculated COD as a function of ~MO at various distances

from the crack tip. The linearity breaks down for small r in low loading levels.

The correlation of COD between SEN specimen in general yielding and small

scale yielding is shown in Fig. 6-5. The equivalent K values in the figure

are calculated from near tip correlation approach following Eqs. 5—5. It ap-

pears in Pig. 6—4 that the deviation from the small scale yielding results in-

creases with K. The match is not as good as it is in the case of DEN specimen.

• 
- 

It is believed that the excessive amount of COD being attributed to the rotation

due to the bending. Some cognition of stress and strain field ahead of crack

tip are required in order to estimate the amount of rotation.

6.3 COD AND NEAR TIP STRAIN

In the ismediate vicinity of the crack tip where the three—dimensional

effects prevail, specimen thickness plays an important rule in the deformation

profile. This is illustrated in Figs. 6—6 and 6—7 where COD and strain in
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Fig. 6—8 c versus COD at various r.yy

loading direction are plotted at various loading levels for a DEN specimen

loaded into the region of general yielding. As the thickness increases, the

strain decreases; whereas COD increases at a given loading level.

A linear relation was found between the COD and the strain in loading

direction by both empirical measurements and F~4 calculations. Pig. 6—8 shows

the measured and calculated near tip strain, c~~, and near tip COD both at

different values of r. The empirical data shown are outside the crack tip

stiffening zone. This linear relationship could be derived as well from Eqs.

1—3. Eqs. 1—3 also suggests that the product of the slopes of each line in

t
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Fig. 6—8 and its corresponding value of r should yield a constant. It is indeed

! 
so and equal to 0.02 from the calculated results.

6.4 J—INTEGRAL

- Rice’s3 contour integral J are evaluated from the field values obtained by

- the finite element analysis. Rectangular path is chose for the prograsming

• 
- - convenience. The detail procedures of calculation were reported by Hayes.4

- 

- The number of paths evaluated at each loading level are 18 for small scale

yielding and 10 for general yielding. The paths are shown in Fig. 6—9. Path

dependency are less than 3% in all the cases studied.

In the case of small scale yielding and under the plane stress conditions,

-
- the stress intensity factor K is related to J by

2
- 

~~~~
— F 6—5

From the previous discussion, the equivalent stress intensity factor can be

evaluated from the stress or strain field ahead of a crack tip as well as COD

behind the tip. Therefore, Eq. 6—5 is used to obtain the equivalent S values

in the region of general yielding.

The results are plotted in Fig. 6—10. Solid line indicates the values

of J calculated from contour integral. The curves represent the K2/E ob-

tained from near tip stress or strain (Eq. 5—5) and from far field parameters

(Eq. 5—14) are denoted by dashed line and dash—dotted line respectively. Re—

suits from COD calculation following Eq. 6—3 is plotted in dotted line. The

disticntion between the curves from near tip stress and strain cannot be
- 

recognized in this scale of plot. In general, they agree reasonably well with

the value obtained from contour integral; whereas, the curve calculated from —

COD tends to deviate from the curve obtained from contour integral at high

loading level. As it is pointed out in the foregoing chapter, the results
-

~ from f an field parameter are higher than the others in the low loading range.

Overall speaking, the difference between the various calculations are within 20%.
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* CHAPTER VII CONCLUDING REMARKS

1. The ismediate vicinity of crack tip region is stiffened against plas—

• tic deformation. The region affected by the crack tip stiffening extends from

the crack tip to a distance approximately equal to the thickness of the specimen.

A qualitative study on the effect of triaxial state of stress in the region has

been made. The influence of the specimen thickness on the crack tip stiffening

effect baa been explored.

2. The crack tip stiffened zone is imbedded in the characteristic plane

stress zone if the ratio of the total net cross—sectional width and the speci—

• men thickness is larger than ten. This size requirement provides a guideline

for laboratory specimen design.

3. For the specimens of the same thickness with the same stress and strain

- fields in the characteristic plane stress zone, the stresses and strains in the
-

- 

stiffened zones of all the specimens must be the same.

4. A link between linear elastic fracture mechanics and ductile fracture

criterion can be established by the stress and strain distributions near a crack

tip in the characteristic plane stress region. In this region, the stress or

strain at the same value of r/r is the same regardless of the size of rp p

- This is true both in t~’e case of small scale yielding and general yielding.

With this knowledge, the eçuivalent K1 value or fracture toughness of a small

testpiece loaded considerably into general yielding can be obtained by the con—

- relation of stress or strain in the characteristic plane stress region.

5. A linear relationship has been found respectively between the near tip

stress and strain and the applied load and the overall elongation of a specimen

loaded far into the general yielding. The sufficient conditions for the validity

of this relationship have been discussed. As a consequence, the equivalent stress

intensity factor can be related directly to the boundary load or elongation.
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6. Crack tip stress and strain for a specimen loaded into the region of

- general yielding can be characterized by J—integral , COD, or any of the near

tip stresses or strains. Therefore, any one of these physical parameters can

- be used as a ductile fracture criterion if the crack tip stress or strain en-

vironment concept is employed. The inter—relations between these quantities

are examined.
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