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The moire crack tip strain measurements made on double-edge-notched (DEN)
specimens loaded into the region of general yielding are compared with the re-
sults calculated by finite element method. It is found that the bulk of the
strain measurements agree well with the results of the plane stress calcula-
tions except in the small area close to the crack tip. The crack tip region is
stiffened against plastic deformation by the triaxial state of stress. The re-
glon affected by the crack tip stiffening extends to a distance from the crack
tip equal to the specimen thickness. This crack tip stiffened zone is em-
bedded in the characteristic plane stress zone if the ratio of specimen thick-
ness and the total net cross-sectional width is equal to or more than ten.

The stress and strain distributions in the plastically deformed region
under the condition of plane stress are investigated. The results indicate that
rp, the size of the plastic zone along the crack line, can be used as a scaling
factor for the stress and strain field around the crack tip. This is true in
both of the small scale yielding case and general yielding case. The size of
the plastic zone in the general yielding case is obtained by extrapolation.
Therefore, a link between linear elastic fracture mechanics and ductile frac-
.ture criterion for the case of general yielding could be established by the near
tip stress or strain correlation. A closed form solution relating near tip
stess or strain with equivalent stress intensity factor in general yielding is
" obtained.

In a region beyond the initial point of general yielding, the near tip
stress and strain are linearly proportional to the applied stress and overall
elongation respectively. As a consequence, a simple relation between the

equivalent stress intensity factor and the far field parameters is established
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Crack opening displacements (COD) are also studied and compared with em-
pirical measurements. The inter-relationships between COD, J-integral and near

tip stress and strain are examined.
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CHAPTER I INTRODUCTION

1.1 STATEMENT OF THE PROBLEM
Linear elastic fracture mechanics has been very successful in analyzing

1,2,3 One of the

fracture problems of high strength but low toughness materials.
requirements for the validity of the linear elastic fracture mechanics is small
scale yield:l.ng.4 Therefore, the applicatidn of linear elastic fracture mechan-
ics to ductile and tough materials is ruled out.

Prior to fracture, extensive plastic deformation takes place in a small
testpiece made of a tough and ductile material. But a large structural member
made of the same material containing a large enough crack may fracture in a
"brittle" manner, i.e. the bulk of the struéture remains elastic with plastic
deformation limited to the region in the immediate vicinity of the crack tip.
The lack of information on the plastic deformation near a crack tip prevents the
correlation between the ductile and brittle fracture behavior.

During the past few years, the crack tip plastic deformation has been

5,6,7,8,9 10,11,12,13

studied both theoretically and experimentally. Some pre-

L The general qualitative trends of the cal-

liminary comparisons were made.
culations and measurements agree well with each other. The purpose of this
study is to provide a link between the ductile fracture of a small testpiece
and the brittle fracture of a large structural member through the study of the
stress and strain distribution near a crack tip for both small scale yielding
and general yielding cases.

1.2 LINEAR ELASTIC FRACTURE MECHANICS

Inglisl5 has determined the stresses around an elliptical hole in a plate

16

of elastic materials. This pioneer mathematical work was employed by Griffith
in his classic paper on the theory of brittle fracture. Griffith's theory
evolved from a consideration of minimizing the potential energy which takes

into account both the elastic energy and the energy of formation of the crack

-le-
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surface.

Almost all metallic materials manifest some plastic deformation in the
region at the crack tip before catatrophic crack propagation. Irwin17 and
Orowan18 reexamined Griffith's energy concept and proposed that his theory can

be modified and applied to metals by considering the energy balance between the

elastic strain energy release rate and the plastic strain work rate required

for crack extension.

The character of the local stress distribution at the base of a crack was

19 Westergaard20 and Irwin.21 It is found that the elastic

studied by Williams,

stresses varies as the inverse square root of the radial distance from the crack

1

tip. Their results can be summarized in the following Eqs., for a mode-I ten-

sile crack

94y = = 1y ©
and =i
K
€ (8)

- g
13 V2mr 1]

where KI is the stress intensity fac-
tor under tensile mode. These relations
are good approximations in the region

very close to the crack tip of an iso-

tropic, homogeneous and linear elastic

solid. Let re be the linear size of the

region within which Eqs. 1-1 are accep-

table approximations, and r, is a func-

Fig. 1-1 Schematic representation
tion of 0 as shown in Fig. 1-1.
of r, and rp near a crack tip. E

In a cracked metallic specimen

under load, a small plastic zone, rp,
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exists. In the case of small scale yielding, rp < re If rp is small enough,
the plastic deformation within rp does not disturb the stresses in the outer
region of Ty Therefore, the stresses on the boundary of r, are essentially
those given by Eqs. 1-1.

Consider two cracked specimens of the same thickness and made of the same
material. If the condition of small scale yielding is satisfied by both of
these two specimens, and if the values of KI of these two specimens are the
same, then the stresses and strains even within rp are the same. This can be
seen easily if one considers the two identical r, regions of these two speci-
mens as free bodies with identical boundary stresses. At a given KI-value,
with identical crack tip stresses and strains, if one of the specimens is
broken, it is expected that the other will also be broken. Therefore, one can
conclude that in the case of small scale yielding, the fracture toughness is
constant.

This conclusion is valid only for specimens of same thickness. The speci~
men thickness affects the constraint to plate thickness contraction and the
stress and strain components ozz, oxz’ Qi e exz and eyz near a crack tip.

yz’ “zz

At the same KI- value, in the case of small scale yielding, if the specimens
are of the same thickness, in spite of the difference in specimen geometry in
the other two dimensions, the crack tip stress, strain and displacement fields
of every one of the specimens are the same. If the specimen is thick enough
so that the condition of plane strain prevails at a crack tip, the requirement
that the specimens be of the same thickness can be relaxed.

There exists a set of values of crack tip stresses and strains, even with-

in rp, which corresponds to a given value of K The mere existence of the cor-

I
respondence between KI and oij’ eij and uy enables us to establish the linear
elastic fracture mechanics. It is not necessary to know the detailed relations

between KI and Gij’ eij’ and ug. On the other hand, if the relations are known

-3 e
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either by theoretical calculation or empirical measurements, both crack opening
displacement, (COD) ,or near tip strain, (NTS),at a single point P(r, 6) can be

used to determine KI' This concept of characterizing crack tip stresses and

22
strains by COD and NTS was generalized to the case of general yielding by Wells

and Ke and Liu.za’24

1.3 PLASTIC DEFORMATION NEAR CRACK TIP

For a non-linear elastic body Rice25 defined a path independent integral, E

J by

a - du "
J = | [Wdy - T o ds] 1-2

where the curve I' is tranversed in the counterclockwise direction, s is arc

4 length and T = Gij nj is the traction vector on I' with an outward unit normal
vector nj, and W and u are strain energy density function and displacement vec-
tor respectively. It is also demonstrated26 that the J-integral is equivalent

to the change in potential energy, U, when the notch is extended by an amount

da, J = - dU/da. For a sharp crack, since the path may be chosen very close to

oo i b A SRS i

the crack tip, the integral may be made to depend only on the crack tip sing-
}, 12 ularity in the deformation field. With this understanding Hutchinson27 has shown

that the crack tip stresses, strains and displacements can be expressed as

(r’e) - Kr"N/ (1+N) Ei

-1/N K1/N r-l/(l+N)- P

ezj(r,e) = A sij(e) 1-3

o (£,0) = A—l/N K1/N rN/ (1+N)‘-‘1 (6
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for a material obeying the power law strain hardening, i.e. o/oY = A(eP/eY)N.
Where N is strain hardening exponent, and K is defined by Hutchinson as the am-
plitude of the singularity. K and J are directly related to each other.
Eij(e), Eij(e) and Ei(e) are functions of 0 only for a given material. Egs.
1-3 indicate that a single parameter K or J, as in the elastic case, completely
prescribes the stresses, strains and displacements near a crack tip, and also

that if anyone of Uij’ € at a point P(r,0), is known, Eqs. 1-3 can be used

P

1j° Y
to calculate K or J and all of the other stress, strain, and displacement com-
ponents. In other words, the value of any one of the components of oij’ ezj,

u, at a single point can be used to completely characterize crack tip stresses,

i
strains and displacements. This result affords the strongest analytical sup-
port for the general concept of crack tip stress and strain characterization.

1.4 FINITE ELEMENT METHOD

In recent years, finite element methods are widely used to study the stress

829530 yeont of tha calenlations

and strain distribution around notch or crack.
are confined primarily to the limiting two-dimensional conditions of plane stress
or plane strain. Owing to the vastly increased computing effort, a very limited
number of three-dimensional elasto-plastic calculations have been made.31
Lacking such three-dimensional analyses, the present understanding of fracture
mechanics is based largely on the limiting states of plane stress and plane
strain. In the following sections, a model based on kinematically coupled
plane stress and plane strain layers for the elements is employed in the calcu-
lation to simulate the three-dimensional effect of crack tip. Plane stress cal-

culation in both general yielding case and small scale ylelding case are made to

study the stress and strain correlation in the near tip region;
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CHAPTER II CONSTITUTIONAL RELATIONS FOR TWO-DIMENSIONAL PLASTICITY

In this chapter, we shall derive the governing equations for incremental
elastic-plastic behavior, The explicit relations between stress and strain in-
crements for both plane stress and plane strain cases are obtained. The con-
tinuum is taken to be isotropic and homogeneous. The thermal effects and body
forces are excluded in the derivation. General tensor notation is employed.
Repeated indices in subscripts imply summation over 1, 2, 3.

The total incremental strains are assumed to be separable into elastic and

plastic components whose dependence upon stress is independently defined.

AR .P 5
eij eij + eij A 2-1
where éij are the components of the total incremental strains, é:j and ézj re-

spectively the elastic and plastic parts of the components of incremental
strains.
The linear elastic behavior of a continuum in Lagrangian variables are

described by

\Y
1j E %14 " E %aa %13 ’ 2=2

where o,, is the stress tensor, is the Kronecker delta, v and E are the

13 %14
Poisson's ratio and Young's modulus respectively. Writing Eq. 2-2 in the incre-

mental form, we have

l1+v.

2_
E 1) 3

.e .v— .
€13 £ %aa %1 .
The components of plastic strain increment are assumed to follow the

Prandtl-Reuss flow role
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where §S,, =o0,, - o /3 are the deviatoric stresses and A is the compli-

ij ij aa Gij
ance increment given by

>
[ ]
Njw
Ql Iml-
©

3
2 2-5

%l lQl-

In Eq. 2-5, the effective stress, 3, and the incremental effective plastic

strain, Ep, are defined as follows:

. 1/2 2p_ 2.0 42 2
R sij Sij) 5 e =3 €4 etj) > 2-6
where ézj are the components of incremental plastic strains and H = E/Ep is the

slope of the effective stress versus effective plastic strain, Ep, curve. Sub-

stituting Eq. 2-5 into Eq. 2-4, we have

S . 2-7

Substitute Eq. 2-8 into Eq. 2-7, the incremental plastic strains are then ex-

pressed in terms of the incremental stresses and the current stress state

Combining Eqs. 2-1, 2-3 and 2-9, we now formulate the basic constitutive

- 10 -
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relations in the incremental form

S ’ 2“10

which has been derived earlier by Swedlowl.
In the finite element calculation, it is desirable to express the incre-
mental stresses in terms of incremental strains explicitly. From the defini-

tions of stress deviator and bulk modulus, we have

» - L _1- . . = E . potd
aij = sij + 3 Oaa Gij and g F T € 2-11
Substituting Eqs. 2-11 into Eq. 2-10, it becomes
S S
. 1+ v: A 9 k1l k1 ; 5
WO w i ama T em G i
Multiply sij through Eq. 2-12 and summing up, we have
8 & g ggdke g g 15 e e S
ij 13 E 1j 1ij 3 aa 1 1j 4 ;2 H ij “13°
= =232 N 5
Make use of the identities Sij Gij = 0 and sij sij =30 Eq. 2-13 can be fur

ther simplified to

g 1 Ay R
S49 ®15 = 26 543 S13 * 28 51 Syy

or

b : -
"5 %13 W90 1y g

where G = E/2(1 + v) is the shear modulus. Substitute Eq. 2-14 back into Eq.

2-12 and rearrange it,

-1l -
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€aa 819 * @ Sy g Syy) ,

-2
where Q = -9G/[20°(H+3G)]. Using the previous relations in Eq. 2-11, we have

b . 3 . E .
= - — ) B e ——

S ™ T 9% YT T T - 2 Sy
or

s s _26 1+v 5

50" %0 Ty G0 fe g i
Inserting Eq. 2-16 into Eq. 2-15, the final form is

; 5 v . .

I 2G(eij i o T 51j +Q S, €9 sij) 2-17

We now have completed the formulation of the incremental relationships between
the stresses and strains of elastic-plastic solids. A similar derivation has
been reported by Yamada, Yoshimura and Sakuraiz.

The general constitutive equations are then reduced below for the analyses
of the elastic-plastic flow under the conditions of both plane strain and plane
stress cases. Both cases require that the transverse shears vanish and that
all dependent variables are functions of the planar coordinates only. It is
convenient to develop the equations in matrix form for the finite element cal-
culetion. The notation employed is similar to that utilized by SVedlow1 with
indicies 1 = 1, 2, 3 interpreted as subscripts x, y, z respectively.

2.1 PLANE STRAIN
In the case of plane strain, we assume that ¢ = ¢ = éyz = 0 which give

zz Xz

{iz = *yz = 0. Under these conditions, Eqs. 2-17 can be expressed in matrix

form as

[6] = [De] x [&] 2-18

- 12 -
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where the matrix vectors consisting of the planar components of the incremen-

tal stresses and incremental strains are defined as

r 9 [ 9
o £
XX xx
[o] = &yy and (e] = éyy respectively.
{; o
Xy nyj
\ 4 b

Note that the engineering shear strain A is used here in order to keep [De]
symmetrical and hence the later operation in finite element calculation is sim-
plified; whereas tensor notation exy is used previously for mathematical con-

venience. The symmetrical coefficient matrix in plane strain condition is

( 1=V 2 v )
1-2v 8 Sxx 1-2v bl Sxx Syy Q sxx Txy
1-v 2
[p ] 1-2v ' Sy Sy "y i
1 2
h P

The incremental stress in thickness direction, 622. is obtained from the rela-

tion of volume dilatation, Eq. 2-11,

d wodes s b y=b b : 2-20

2.2 PLANE STRESS

We define this case by T ” rxz = ryz = 0 which give . - eyz = 0.

Substitute these conditions into Eq. 2-17, we can express the planal stress in-

crements 6xx’ 6yy and ixy in terms of four strain increments, i.e. éxx' éyy'

?xy and ézz . However, ézz can be expressed explicityly in terms of the other

three planal components of strain increments by
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S

l-v 2 .
(—1_2\,) +Qs, e, + (

\’ . \) . i
1-2v . Qszzsxx)exx * (1-2v ¥ Qszzsyy)eyyﬁqszzrxyyxy

355 = 0. The final results relate the three planal stress increments and the

three planal strain increment by

[6] = (p ] x (€] . 2.2}

where [Da] is the coefficient matrix for the plane stress condition

[ 5

2
1-P(S + + S +vS
(5, vSyy) V-P(5 vsyy)( o = (v-1)1>(sxx+vsyy)rxy
(D] = E 1-P(S__+vS )2 (v=-1)P(S_+vS )T 2-22
(4] l_vz yy XX yy XX~ Xy
1-v 2 2
Sym. 2 (1-v) PTxy
1,42 2 —v)t2 4 2(-WH 22 rthe incremental
and P sxx + 2v Sxx Syy + syy + 2(1 v)-rxy + %G o o e incrementa
strain in thickness direction, ézz » can also be calculated from Eq. 2~-11
& - 1 e 2\’ . . TR ok 3
€,z B (axx + oyy) exx eyy . 2-23
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CHAPTER III FINITE ELEMENT METHOD

The finite element method is essentially a generalization of standard
structural analysis which permits the calculation of forces and deflections of
ordinary framed structures. The method was developed originally in the air-
craft industry. Recently, the application of this method is extended into the
field of fracture mechanical’z.

The basic concept of the finite element method is that a continuum is con-
sidered to be an assemblage of elements which are interconnected at a finite
number of joints or nodal points. Within each element the displacement compo-
nents are assumed to vary in such a way that the displacement of any point with-
in the element is determined by the displacements of the nodal points on the
boundary of that element. Although the governing matrix equations have been

presented elsewhere3’4

, for the sake of completeness, a brief outline of the
formulation will be given.

In this analysis, we adopt the simplest first-order
triangular elements in which the displacements are taken iXi,%i)
as linear functions of the spatial coordinates. Figure §03)
3-1 shows a typical triangular element with nodal points

i, j, m numbered in counterclockwise order. The nodal

m (Xen,Ym !

point i has coordinates Xi, Yi’ etc. The incremental
g : Fig. 3-1
displacement components u and v, in the x- and y- directions
respectively, are assumed to display a linear variation over
the element, and they are given by
u-al+azx+a3x
3-1

- 15 =
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A comma in the subscript denotes partial differentiation. The six constants in
Eq. 3-1, ai's, may be solved in terms of thé nodal coordinates and nodal dis-
placement increments. From Eq. 3-2 the strain increments can then be expressed

by the matrix relationship

Le] = [B] x [ul/2a 3-3

where A represents the area of the element, [B] is identified by

Yy Y 0 Yo ¥ 0 Y47Ys 0
;
’ [B] = 0 xm-xj 0 XX (4] xj_xi 3-4
f - 7 MN% e T T e
p b -
and
i [ 4, ]
i b’
u
ey h|
[a] . 3-5
h |
¥ ‘i
E i Lvm )
i

L : is the displacement increment vector. It is noted that the matrix [B] is inde-
{ pendent of the position within the element, and hence the strains are constant

throughout the element. The general incremental form of the stress-strain b

- 16 =
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relation is
[&] = [DJ b4 [é] 3-6

as it is discussed in the previous chapter. [D] is replaced by [De] or [Do]
under the conditions of plane strain or plane stress respectively.

The surface tractions on each element are replaced by statically equiva-
lent nodal forces. The condition of equilibrium at nodal points is satisfied
by minimizing the total potential energy of the system. A linear relation be-
tween the changes in nodal forces and the nodal displacement increments is

followed, having the form
[£] = [k] x [a] 3-7

where [f] is a column matrix containing the x and y components of the nodal

force increments at nodes i, j, and m,

% ]

he

el R Wl R

Hhe
B X

r4
L

-

where the superscript x and y denotes the directions of the forces. In Eq.
3-7, (k] is a six-by-six symmetric matrix and is commonly referred to as the

elemental stiffness matrix which can be calculated from the relation

(k] = [B]T x [D] x [B] - t/4A 3-9

«“l? -
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where the superscript T denotes the matrix transpose and t is the thickness of
the element. In the elastic-plastic range, it is clear that [k], being a func-
tion of [D], depends on the instantaneous stress state in the element as well
as on the elastic constants and element geometry.

When the equilibrium of all elements in the assemblage is considered, the
overall stiffness matrix, [K], of the structure can be generated from individual

elemental stiffness matrices. The final equilibrium of the structure becomes

. (K] x [0] = (F] 3-10
where
ﬁ{ vy
[F] = | . and BT = )
# i
.y .
| v ) "N |

represent the applied force increments at all nodes and the incremental dis-
placement field of the structure respectively, and N is the total number of

nodes. The overall stiffness

[K] = £ [k] 3-11

is a square (2N x 2N), symmetric and usually banded matrix.
The incremental displacement field [ﬁ] resulting from an applied force
system [F] may be obtained by solving Eq. 3-10. The elemental strain and stress

increments are then calculated from Eq. 3-3 and 3-6 respectively.
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3.1 DISPLACEMENT BOUNDARY CONDITIONS

In this analysis, displacement boundary conditions are used almost ex-
clusively for two reasons: (1) it is readily available in the case of small
scale yielding, and (2) we may use the displacement increments on the boundary
as a guide to estimate the incremental strain in each element for a particular
loading step. We shall discuss both of these aspects in a later section.

For these specified displacements, the stiffness matrix and the force
vector have to be modified in the following manner, The detail of this pro-
cedure is explained in Ref. 3.

Let us assume that we have a set of 2N equations,

Ky by =Py e e 3-12

and that we have a displacement component U specified to be equal to a.

(@)

We then precede to modify the force vector such that

i=1,2, .... 2N and 1 ¥ q

B Sae®
and s
where F' is the modified force vector. Then the corresponding row and column
of the stiffness matrix is made zero and the diagonal term is made unity. In
the special but common case of a = 0, it is only necessary to modify the matrix
as described above, leaving the force vector unchanged except for ﬁ;q) = (.

3.2 GEOMETRICAL LAYOUT NEAR THE CRACK TIP

In this analysis, the stresses and strains are assumed to be constant
throughout each element. Therefore, it is a usual practice to avoid a drastic
change of stresses or strains between the neighboring elements. The geometri-
cal layout for the finite element calculation near a crack tip is shown in
Fig. 3-2. This particular assembly is chosen such that the ratio of the dis-

tance from crack tip to two adjacent nodal points along any radial line is
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always kept constant except in the immediate neighborhood of the crack tip. As
a consequence, the ratio of the stresses or strains of two neighboring elements
is nearly a constant. In addition to that, it is also convenient to study the
stress or strain distributions around a crack tip as a function of 6, the angle

away from the crack line.

Fig. 4-2 The finite element layout near a crack tip.

3.3 CALCULATION SCHEME

The material characteristic in the plastic region is approximated by the

power law

5 s

N 1-N
where N is the strain hardening exponent, k is a constant equal to E Oy and

Oy is the yield stress of the material. € is the effective strain defined as

- g, -p G
€ =3 + € 3-15

In the case of uniaxial tensile loading, o and € are replaced by the true stress
and true strain respectively. In the finite element calculation, the infinites-

imal deformation theory is employed in each individual loading steps. The
- 20 -
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geometry 1s updated after each increment. This procedure is consistent with the
manner in which the truve stresses and true strains are obtained.

In the finite element calculation, we approximate the nonlinear behavior

g of plasticity as piecewise linear within each small loading step. Therefore,

é the slope of the curve o versus Ié , deonoted by H in Eq. 2-5, is replaced by

% the slope of a secant connecting two material points on the curve which repre-
g sent respectively the state of stress before and after the loading step.

% Since the state of stress after the current loading step is not known, an

é estimation has to be made.

Assume the effective strain, E, of each element bears a linear relation-

g ship with the applied displacement boundary condition, i.e.

8U ~ Se

or

= 3-16 i
€ € |

where U+, U° and U_ are respectively the boundary displacements at one step
'

ahead, current step and one step behind. €

+ Eo and E_ are the projected,

)
current and passed effective strains of an element. €, is further modified

by the mis-estimate in the effective strain of last loading step,

E' ;. . Eii) - E; = (Eii‘l)- Eo) 3-17 {

the quantity in the parathesis is the difference between the estimated

effective strain and the effective strain actually calculated after the last
F ; loading step. Eii) is the estimated effective strain used to evaluate the

secant modulus, H, for the current loading step. The estimated eifective plas-~

tic strain Ep

+ can be calculated from
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€. " €, E 3-18

N
where cii) is obtained from the relation oii) = kei}) . The secant modulus is
then
s -5
H = 2 3-19
- SR
+ o

The current stress and H so obtained for each element are used to evaluate
[De] or [Da] according to Eq. 2-19 and 2-22. Consequently the elemental stiff-
ness matrices [k] are obtained and the structural stiffness matrix, [K] is
followed. After the insertion of boundary condition and solving for the linear
system, Eq. 3-10, the incremental displacement field [ﬁ] corresponding to an
incremental force vector [F] are obtained. The strain and stress incremental
for each element are then calculated from Eq. 3-3 and 3-6 respectively. The

P is calculated from incremental strain

P

incremental effective plastic strain Ac

components through Eq. 2-6 and the total effective plastic strain €

the sum of AeF. The sum of stress increments gives the state of stresses of

is simply

each element. The effective stress of the element is calculated from the stress
as it is defined in Eq. 2-6.

It should be noted that the derivative of o as expressed in Eq. 2-8

o u il g 3-20

is not equal to the effective stress increment Ao defined by

- 3 1/2 =
AG = [-2- (si:| + Asij)(sij + AS“)] -0 3-21

Rearrange Eq. 3-21 and multiply it by itself,

- 22 -
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g + 20 ° Ao + (Ao = =S S + = -
(40) 2 513 54y 3 si.1 Asi.1 + > Asi‘1 AsL1 3-22

-2 3 -
Note that o e sij sij’ Ao can then be expressed by

= 3s
. - Pl * 13 - (852
1 Ao > A,y + s (5 AS,y 8544 (80)°] 3-23

Comparing Eq. 3-20 and Eq. 3-23, it is clear that the difference between é

and AG are of the second order of AS1 Hence, using Eq. 3-21 in the finite

J.
element formulation is justified by keeping loading step small such that Asij

is small in comparison with o.
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CHAPTER IV COMPARISON OF FEM CALCULATION AND EXPERIMENTAL MEASUREMENTS

4.1 PLANE STRESS CALCULATION

Plane stress calculations are made for two batches of aluminum alloy. The
Young's modulus, E, and the Poisson's ratio, v, are 1llx 103 ksi and 0.34 re-
spectively. The uniaxial tensile stress-strain curves of these two batches of

aluminum alloys are shown in Fig. 4-1. The yield stress, o, is 7.26 ksi,

Y
and the strain hardening exponent, N, is 0.315 for batch C aluminum alloy.
Whereas for batch B aluminum alloy the yield stress and the strain hardening
exponent are 10 ksi and 0.22 respectively. In the finite element calculation,

the stress-strain relations are approximated by

o = Ee for o < oy 4-la
= ’
and
o = ke for 0> a 4-1b
where k = EN oYl-N . These relations represent a good material characterization
[ 2024-0 AL 1
<
10 J
- i
)- —
E e BAICHB oy=10 K3, N=022 -
= BAICHC oy=726K3, N=035 ]

s e
10 103 10?2 LA
TRUE STRAN

Fig. 4-1 Uniaxial tensile stress-strain curves for 2024-0
aluminum alloys, batch B and C.

T

M S




Ty O TR

as shown in Fig. 4-1.

The results of the calculations are

compared with the moire strain measurements

made by Gavigan, Ke and Liul. The measure-
ments were made on four and eight inches
wide, double-edge-notched (DEN) specimens
of 0.125, 0.25 and 0.5 inches thick. It
should be noted here that the measurements

were made for three batches of aluminum

alloys, where the values of Oy and N of

batch A and batch C aluminum are very close

to each other. Hence, the calculated re- CRACK

sults of batch C aluminum are compared with
Fig. 4-2 The finite element repre-

the measurements from both batch A and sentation of first quadrant of the
DEN specimen. The details of ele-
batch C aluminum specimens. ments near crack tip is inserted.

Fig. 4-2 shows a finite element repre-
sentation of the first quadrant of the double-edge-notched plate. The mesh is
composed of 265 nodes and 468 linear displacement triangular elements. The
dimension of the element closest to the crack tip is 0.0035 inches. All the
results presented in this study are relatively far away from the crack tip in
comparison with the smallest element size. A calculation with a finer mesh was
also made. The results are the same. At the far end of the sample, a uniform
displacement is applied as the excitation parameter.

Figs. 4-3 show the comparison of calculated and measured y-direction
strain, eyy’ distributions along the crack line at different loading levels.
The loading level is indicated by the parameter A/WeY, where W is the specimen
width, CY is the yield strain and A is the elongation measurement made over a
gage length of seven inches. The vertical dimension of the finite element repre-

sentation of the sample used for this calculation, as seen in Fig. 4-2 is three

- 25 -
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Fig. 4-3 Comparison of calculated eyy versus the experimental

measurements for DEN, 2024-0 aluminum alloys.

inches, which corresponds to a gage length of six inches. Therefore, the
average strain of the top most elements were added to make up the total calcu-
lated elongation. The corresponding material and specimen thickness are noted
on each individual plots. The two sets of experimental points for the two
cracks of the same DEN specimen at the same overall elongation of the specimen
are shown in Fig. 4-3d. The difference of these two sets of measurements is
possibly caused by the internal cracking and by a slight bending. All the
comparisons are made in the region of general yielding.

The agreement between the measured and calculated strains in the region

- 26 -
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more than about one thickness ahead of the crack tip, i.e. r > t is very good.
Whereas in the near tip region the measured strains are less than the calculated
ones which reflects the thickness effect introduced by the presence of the
crack. It is reasonable to assume that the strains are uniform throughout the
thickness of the specimen only in the region where r > t. In this region, the
deformation is characterized by plane stress analysis. The slope of the loga-
rithmic plot in the region are 0.75 and 0.70 for batch B and C aluminum alloy
respectively, which are close to the values given by the analytical calcula-
tions of Rice and Rosengren2 and Hutchinson,3 i.e. 0.82 and 0.76 respectively.
This comparison suggests that plane stress finite element calculation can be
used to characterize the deformation field in the region one thickness away
from the crack tip for a DEN specimen in general yielding.

4.2 THREE DIMENSIONAL CHARACTERISTICS OF CRACK TIP DEFORMATION

The plane stress analysis is only an idealized model. The stresses and
strains near the crack tip of a plate are in reality much more complicated.
The region closer to a crack tip has higher strains and tends to contract more
in the thickness direction. But the crack tip region is constrained from thick-
ness contraction by the region of lower strains further away from the crack tip.
This constraint induces the tensile stress in the direction of plate thickness,
Yok’ Along the crack front and in the interior of a very thick plate, the
thickness contraction is negligibly small, and the state of deformation there
approaches that of plane strain. On the plate surface, the traction is zero;
therefore, the conditions of plane stress prevail. For a cracked thick plate,
the state of stresses and strains changes gradually, from that of plane stress
on the specimen surface to that of plane strain in the interior. This is true
if the plastic zone size is small enough in comparison to the plate thickness.

It 18 also clear that the rate of transition from the state of plane stress

on the surface to the state af plane strain in the interior depends upon the

= 2] -
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strain gradient induced from geometrical irregularities., If the gradient is
high, the transition is fast; conversely, if the gradient is low, the transi-
tion is slow. If there is no strain gradient in the plane of a plate, there
is no constraint from the deformation in the plate thickness direction to in-
duce o regardless of how thick the plate is. Close to a crack tip, the
strain gradient is steep, and the rate of transition is fast. As the distance
from crack tip increases, the strain gradient decreases, and the thickness of
the transition layer increases. Far away from the crack tip, the state of

stresses and strains throughout the plate thickness is essentially that of

plane stress.

>
A0
5
[
(1T

v
)
{/
)

\

Fig. 4-4 Schematic diagram showing half of the plastic zone.
The plane strain plastic zone is imbedded.

A schematic picture of the plastic zone in a thick plate near a crack tip
is shown in Fig. 4-4. The size and shape of the plastic zones are approxi-
mated by the use of the crack tip stress equation for an elastic medium under

either plane stress or plane strain conditions. The zone is taken as the
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locus of points at which the von Mises' yield criterion would be exceeded if
the elastic stress distribution were unaffected by yielding. Poisson's ratio
equal to 0.34 is used in this approximation. If a plate is thick enough, the
size of the plane strain zone starts from zero on the plate surface and grows
to the fully developed size in the interior. There is a transition region
between the plane stress region on the plate surface and the plane strain re-
gion in the interior of a thick plate. The difference between the plane stress
(on the surface) and plane strain (in the interior) zones indicate the signifi-

cant effect of lateral constraint on the plastic flow at the crack tip. In

the interior of a thick plate, the plane strain plastic zone, rpe’ coincides
with rp. Close to the plate surface, rp becomes bigger, but rpe becomes smaller.
! The length of the fully developed plane strain region, 2n, relative to the size
of the transition region, depends upon the size of the plastic zone relative

to the plate thickness. For a thicker plate and for a smaller rp, n is longer.
Within the transition region and the plane strain plastic region, the hydro-
static tensile stress, i.e. (oxx + oyy + ozz)/3, increases and the effective
stress decreases, thereby reducing the overall plastic deformation. It can be

said that the crack tip region is "stiffened" against plastic deformation.

In the case of small scale yielding, the size of the plane strain zone de-

pends upon the quantity (K/oY)z/t. For a valid KIc test, the value of the
| » quantity must be less than 0.4, i.e. at this value, an effective plane strain
zone exists for the fracture test. At a higher value of this quantity, the
stiffening effect is less. In the region of general yielding, the stiffening
f . effect i1s greatly reduced.

It can be concluded that the crack tip region is stiffened by the triaxial
gtate of stress in the interior of the plate. The stiffened region in the

interior restrains the plastic deformation on the surface. Even though the ‘

state of stress on the surface is that of plane stress, the measure strains
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in this region are much less than those strain values calculated under the
plane stress condition.

Kea had made strain measurements on specimens made of other materials at
various thicknesses. All their results clearly show the changes of the slope
in a log-log plot of strain in loading direction against the distance from the
crack tip at two points along the crack line. One takes place at t/2, the
other at t, where t is the specimen thickness. The measurements seems to sug-
gest that the stiffened zone ex- Y
tends from the crack tip to a dis- /?
tance equal to the half of the /%
specimen thickness and the effect ;

-

of stiffening on the surface

strain stretches to the region one CRACK

= o
2

thickness away from the crack tip.

Fig. 4-5 The region of modification
within which the stiffness matrix of
each element is modified.

4.3 COMPOSITE CALCULATION

With the discussion given in
the foregoing section, we proceed
to modify the stiffness matrices of the elements close to the crack tip. Fig.
4-5 shows the modification zone within which the stiffness matrix of each ele-
ment is modified to. reflect the stiffening effect of the plane strain plastic
zone. The modification zone in both x- and y- directions extends to the half
of the specimen thickness. It is assumed that the degree of stiffening is
equivalent to a certain size of the "plane strain zone" in the crack tip re-
gion. For the sake of simplicity and because of the lack of information, it
is further assumed that the shape and the size of this modification zone re-
mains the same throughout the loading process.

For each of the elements within the modification zone, a linear combina-

tion of [Dc] and [De] replaces [Dc]' This composite matrix [D] is assumed as
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where [De] and [Do] are defined respectively in Eq. 2-19 and 2-22 and Q is the
mixing parameter whose value changes linearly with the distance from the crack
tip. Outside of the modification zone [D] is equal to [Do]' [D] is thus used
to construct the elzmental stiffness matrix. For each element inside the modi-
fication zone, the strain increment in z-direction is reduced to

- l1-2v,. . . .
LR R et oyy) Eigass eyy] 4-3
For each element in this zone there are two sets of stress increments, one for
plane stress and one for plane strain. These two sets of stress increments

could be obtained from the strain increments following Eq. 3-6. The resulting

stresses are then used to generate separately the [Do] and [De] for the next

loading step.
Calculations with composite matrix are made for batch C aluminum alloy at

two different thicknesses. The values of @ are determined by trial and error g

so as to make the calculated strains, eyy’ match with the measurements. For

the 0.25 inch thick plate, the value of Q changes from 0.04 at the crack tip to

i
?
zero at the boundary of the modification zone. The value of Q for the 0.5 inch 3
thick plate is 0.08 at the crack tip. Figs. 4-6 show the results of the com- g

|

E posite mode calculation as denoted by the solid lines, whereas the dashed lines
represent the plane stress calculation. It is to our surprise that a very small
plane strain state could make such a significant change in eyy' It should be
recognized that the composite mode calculation is not intended as an exact three
dimensional calculation for the c»ack tip stresses and strains. The degree of
the crack tip stiffening is adjusted by trial and error to fit the experimental

data. The purpose of the calculation is to qualitatively show the extent of
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Fig. 4-6 Near tip strain measurements and calculations, 2024-0 1
aluminum alloy, batch C.
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the three dimensional effect.

One of the important results of the calculation is to reveal that the ex-
tent of the plane strain plastic zone is very limited for a specimen loaded
considerably into the region of general yilelding. For example, for the 0.25
inch thick specimen, in the composite finite element calculation, the value of
Q is only 0.04. This can be interpreted as meaning that the equivalent plane
strain plastic zone at the crack tip is only four percent of the plate thick-
ness. However, this is not to say that the actual length of the plane strain
zone is four percent of the crack front. Rather, it means that the build up
of the triaxial state of stresses and the restraining of plastic deformation
at the crack tip are equivalent to a four percent plane strain zone. Hence,
it is doubtful that in the 0.25 inch thick plate at these load levels, the true
plane strain condition exists at the crack tip. This observation casts a
serious doubt on the premise that a small specimen can be used to measure plane
strain fracture toughness for a very ductile and tough material.

In Fig. 4-6b, the measurements and the calculated strains of a 0.5 inch
thick plate are shown. In the crack tip stiffened region, the calculated
strains agree well with the measurements. The intermediate region between the
stiffened region and the plane stress region extends to r approximately equals
to 0.5 inch, where r denotes the distance from the crack tip. The total liga-
ment, (W-2a), of the specimen is only 2.4 inches. As a consequence, the plane
stress region is not large enough to show the characteristic slope of the
strain curve as it is in the case of 0.25 inch thick specimen. The results in
Figs. 4-6 lead us to conclude that in order to assure a plane stress region
in an experiment, the total ligament of a DEN specimen should be ten times or
more than the specimen thickness. If a bending load exists such as in the
case of a wedge opening load (WOL) type specimen, the ligament should be even
wider. It is also clear, that in the case of small scale yielding, in order

to observe the characteristic slope of a plane stress plastic zone, the size
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Fig. 4-7 The load-elongation curves of both the pure plane stress
calculation and the composite calculations as compared
with the experiment data.

of the plastic zone should also be five times or more than the thickness.

If the ligament is wide enough, the crack tip stiffening zone is imbedded
in the characteristic plane stress zone. The maximum tensile stress in the
stiffening zone is increased above that of the plane stress calculation and the
deformation, on the other hand, is reduced. The stiffening effect is strongly
controlled by the plate thickness. Therefore, the results of the measurements
and the calculations suggest that for the specimens of the same thickness with
the same stress and strain fields in the characteristic plane stress zones,
the stresses and strains in the stiffened zones must be the same, even though
the values of these stresses and strains in the stiffened zone are unknown.

Fig. 4-7 compares the load-elongation curves of both pure plane stress
calculation and the composite mode calculation for both 0.25 and 0.5 inch
thick specimens with the experimental data of batch C alluminum alloy. The
good agreement of these curves with the measurements indicates that the major
part of the specimen is under the condition of plane stress. The experimental

load<elongation curve of the 0.5 inch thick specimen is only ten percent
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higher than the calculated plane stress curve. Although the near tip stress

and strain distribution is affected considerably by the crack tip stiffening,

but the overall compliances of the specimen have not changed much. The compari-

son also suggests that the extent of the plane strain zone is very limited.
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CHAPTER V CHARACTERIZATION OF CRACK TIP STRESSES AND STRAINS

From the point of view of continuum mechanics, the stress and strain distri-
butions ahead of a crack could be divided into four regions as illustrated in
Fig. 5-1. Region I extends from the crack tip to a distance approximately equal
to the half of the specimen thickness. 1In this region, the plane strain stiffen-
ing effect exists and the three dimensional behaviour is prominent. In Region
II, the plane stress condition is generally applied. The dominant singulari-
ties of both stresses and strains as the variation of the distance from the
crack tip, r, approaches to the analytic works by Hutchinson,1 Rice and Rosen-
gren.2 Region III lies further away from the crack tip where the material de-
forms elastically and the stresses and strains change inversely with the square
root of the distance from the crack tip. Still further away is region IV where

the effects of specimen geometry and the type of loading dominate the deformation

LOG(o R &)

I I | N
LOG(r)

Fig. 5-1 Schematic plot of stress and strain distributions ahead
a crack in logarithmic scale.
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characteristics. It should be noted that in general not all of this four re-
gions are present. For example, the region III diminishes with increasing load
and finally disappears when the load is beyond the general yielding. For a
very thick single-edge-cracked specimen, only region I and region IV may exist.
The nature of the plane strain stiffening effect has been discussed in the
previous chapter. This chapter will focus our interest in the stress and strain
distribution in region II and region III. As it has been shown earlier, the
remarkable agreement between the measurement and calculation in region II sug-
gests that the major portion of the specimen is under plane stress condition.
The characteristic singularities in this region are close to those predicted

by the deformation theory of plasticity.

bl aon e 0 o duE ol o)

5.1 SMALL SCALE YIELDING

In order to investigate the characteristics of both region II and region
III, plane stress finite element calculations are made in the case of small
scale yielding. The materials treated are 2024-0 aluminum alloy, batch B and
batch C. In order to avoid redundance only the results from batch C alloy are
given. However, the essential results deduced from the calculation of batch
B alloy will be provided at the appropriate point. The calculations are made
on a semicircular region with displacement boundary conditions. The element
layout is shown in Figure 5-2 and the displacement boundary conditions are

specified by the elastic solution

; K

. : 1 Jar Sy 28

3 u=g ¢ Cos5 [1-v+ (1+v) Sin 5]

o1

2

K
v --EI-V 25-81n~% [1-v=-@Q+vV) 0052 7

This particular mesh geometry was discussed in more detail by Tracey,3 Larsson

and Carlsson.4 The imposed stress intensity factor, KI in Eq. 5-1 ranges from
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Fig. 5-2 Element layout for smali scale yielding calculations.
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Fig. 5-3 Calculated ¢ and ey for batch C aluminum along the
crack line in small scale yielding case.
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0.25 to 4.00 ksivin. Sixteen loading steps are calculated.

The calculated effective stress, 0 and strain in loading direction, eyy’
for batch C aluminum along the crack line are shown in Fig. 5-3. All the other
pertinent components; such as oyy’ exx’ oxx and Ep, follow a similar pattern.
The first load is purely elastic which can be readily identified by the charac-
teristic - 1/2 slopes in the figure. The number of plastically deformed ele-
ment along the crack line increases with the load. The slopes in the plastic-
ally deformed region (region II) is 0.26 for the plot of effective stress and
0.76 for the plot of eyy' The plastic zone size along the crack line, rp. can
be obtained by extrapolating the plastic portion of the effective stress curve
to the point where the effective stress is equal to the yleld stress. The de-
tailed crack line stress and strain distributions for this material are shown
in the dimensionless plots in Fig. 5-4. The stresses and strains are normalized
by the yield stress and yield strain respectively. The distance from the crack
tip is normalized by the plastic zone size along the crack line at each indi-
vidual loading step. Only the last nine loading steps are shown where the
value of KI ranges from 1.125 to 4 ksi/in. Each symbol denotes one loading
level. In this figure, the characteristic plane stress plastic region (region
II) and the characteristic elastic region (region III) are clearly shown.

To the left of r/rp = 1, the y~-direction strain and stress can be expressed

as
g ooTe v -’
€. _® ¢ = » and c_ =0 (==)
r= r = 5=2
yy  yy( rp) » yy yy(r rp) T,
vhere ¢ and o are the values of ¢ and o _atr =r_, and
y'y(r=rp) yy(r=rp) yy Yy P

m and m' are constant equal to 0.76 and 0.26 respectively. It is interesting
to note that m + m' = 1 as it is indicated by Eq. 1-3. In the case of small

scale yielding, rp is related to stress intensity factor by

o

2
r_ = o) 5=3
-39 -
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Fig. 5-4 Normalized plots of crack line stresses and strains.
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In addition
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“yy(emr ) x nd “yy(rer) "B 5-4

where €y and oy are yield strain and yield stress of the material respectively.

Combining Eqs. 5-2, 5-3 and 5-4, one has the following relations

Ke Ko
eyy = :; 3 and oyy = :;. 5-5a
where
& m KI 2m %Y o' KI 2m'
Ke (B )a (OY) : and K0 (B,)a (OY) 5-5b

Ks and Ky can be considered as the strengths of the crack tip strain and
stress singularities. Similar relations can also be obtained for oyy’ exx’
and €. The values of B, B' and a can be obtained from the small scale yield-
ing calculation. For batch C aluminum, these values are respectively 1.405,
0.983 and 0.243; whereas for batch B aluminum, the values are 1.353, 0.923 and
0.281.

It is interesting to note that in the case of small scale yielding, the KI

values could also be obtained from the stress and strain distribution of the

elastically deformed region (region III) by the following relations

KI = ¥Y21r © 5-6
yy
K, = V21r o 5~7
I XX
K; =73 E_ Joux yy 5-8
-V
K, = E V27r € 5-9
1 l-v xx

The percent of the deviation of the KI values obtained this way from the imposed
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KI values are 4.20, 0.88, 5.85 and - 1.11% for Eqs. 5-6, 5-7, 5-8 and 5-9
respectively.

5.2 GENERAL YIELDING

Fig. 5-5 shows the results of the plane stress calculation of double-edge-
notched (DEN) specimen made of batch C aluminum in general yielding. In addi-
tion to the crack line results, the y-direction stress and strain distributions
along radial lines 450, 60° and 90° away from the crack line are shown. The
results are plotted in the same manner as Fig. 5~4 and the corresponding plots
for small scale yielding are also presented for comparison. The values of rp
for these plots are obtained by the linear extrapolation of effective stress,
g, to yleld stress Oy in a logarithmic plot of o vs. r. The calculated o and
effective plastic strain, Ep, are also shown and compared in Fig. 5-6.

Plane stress calculation is also made for single-edge-notched (SEN) specimen
made of the same material loaded into the region of general yielding. The re-

sults are shown in Fig.5-7. The plane stress characteristic region (region II)

is clearly shown.

The excellent correlation in the characteristic plane stress region between
the both general yielding cases (DEN and SEN) and the case of small scale yield-
ing indicates that a single parameter like rp is sufficient to characterize the
crack tip stresses and strains. Furthermore, the near tip stress or strain in
a small sample in general yielding can be used to obtain the equivalent KI
value of a large specimen where the condition of small scale yielding is satis-
fied. Consider two specimens of same thickness, one large and one small. Both
are loaded to the level such that at certain distance from crack tip, r, the
y-direction stress or strain is the same in both specimens. The large specimen
is wide enough such that the condition of small scale yielding is retained.
Hence, the crack tip stresses and strains are characterized by the value of
stress intensity factor which is given by the elastic solution. Whereas the
second specimen is so:small that the state of deformation is general yielding.
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Fig. 5-5 Correlations of near tip stresses and strains in the
loading direction between the small scale yielding
and double-edge-notched specimen loaded into the
region of general yielding.

———




o St SRR 9 = = 1

B'O° E - 6'0“ {0

"‘"-Ev_ E SOLID LINES DENOTE SMALL]
NG 3 | D\TCALE YELONG CALCLLATIN
il ™, ]
4 ‘w&" 9 £ it 11
'&‘_ J: 3
‘n ¥ : -“,, :

[ e e
o

k|

o

10F
:
-

1k 8 .
E S . ™ :
[ s My §
F : o, ]
A ‘N“n., <

Ry o
0-1 B 34 g aah L1 11y ) LJ_EI:_
T A e sy m s s o

-

S
>
£ =
D
[
g
oo gty

01

3 Z‘.;!“‘Gq“ E L
E ¥ ‘“‘ 3 £
£ oy g ]
3 ‘“‘ 1
i - n. i s
- K FROMFZSTOI;DKSHN e WS - ) 4

102 2 3 wsereeygt T s WserengP 2 3 wserengt 2 o RIS g2t 3eserengl 2 3 wserenyd 2 3 wSere gt

4 g

Fig. 5-6 Correlations of effective stress and effective plastic
strain between the small scale yielding and double-
edge-notched specimen loaded into the region of generail
yielding.

ohl =




SRRy Ry,

e T

S el i

T ik i T LR R R § T | AR e el 6 | PR T T Trrrrr — T Y "v TTTTTT

', GENERAL YELDNG, SEN [ :

10:—‘%, _ |

SOLID LINES DENOTE SMALL
SCALE YIELDING CALCULATION

T TTTTT

10

* sl

D
W
S
Gy

10

LA T1rrTnn
,._ghq

| G i

1E
E 9=60
L
L
- T
E .
x &
» - g o
op— & 2
= -4 ’
3 ¥ 5 « =
3
L b 4 o
L ., - .
b g -
3 ? A e 4
W :
i W~ & 1 1
a— TR
ey o o N
+ -
1E : E 11
E 9'900 /e X E
s X s E
L - 4 p
L Al ¢ -
bbb bbbl ebddbddd P - dontnbiadakalatid AL i .

102 2 3 usereoggl 2 3 uBETYP 2 3 4uSEIROfrZ 2 5 u SE709y 01 1z Y userso P 2 3 useren g
7/ 7

Fig. 5-7 Correlations of oyy’ eyy’ ¢ and eP between the small
scale yielding and single-edge-notched specimen loaded

into the region of general yielding.

- 45 -




AR e A A i

Since the crack tip strain and stress distributions are the same in both speci-
mens, it is fair to say that the KI value of the small specimen in general

yielding is the same as the K_ value of the large specimen. In this connection,

1
Eq. 5-5 is applicable even in the case of general yielding as long as the cor~
responding pair of eyy and r, or oyy and r are taken from the characteristic
Plane stress region. By this approach, one is able to use a small sample to
evaluate a very high fracture toughness. The equivalent KI values for the em-
pirical data in Fig. 4~6aare 38.5, 29.8 and 23,3 ksivin , while the tensile
yield stress of this material is 7.26 ksi.

Ke and Liu5 used near tip strain as the correlation parameter between the
plastically deformed region in small scale yielding and plane strain stiffened
region in general yielding. Based on their limited empirical data, the charac-
teristic strain distribution along the crack line in the plastically deformed
region in small scale yielding is incorrectly taken as the extension of the in-
versed square root law of elastic behavior. The - 0.5 slope observed in the
plastic region in their experiment is probably caused by the crack tip stiffen-
ing as well. Their approach yields a high estimate of equivalent stress in-

tensity factor and fracture toughness.

5.3 NEAR TIP STRAIN AND STRESS AND THE FAR FIELD PARAMETERS

In Fig. 5-8 the normalized crack line strain, eyy/eY, of DEN specimen cal-
culated at various distances from the crack tip, r, is plotted against A/WsY
where A is the elongation of the DEN specimen over a gage length of seven inches
and W is the specimen width. The results of the plane stress calculation which
are represented by the solid lines agree well with the limited number of measure-
ments, i.e. the triangular points in the figure. It is further demonstrated in
this figure that in the region of general yielding beyond the arrow on the load-
elongation curve in Fig. 4-7, the relation between eyy and A appears linear. A
similar relation between the crack line stress, oyy at various distances, r, and

th applied stress 0, 1s shown in Fig. 5-9. These linear relationships suggest
- 46 =
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that the assumption of proportional loading is justified for properly designed
specimen loaded into the region of general yielding. In the linear regions,

we have

and o =Y'"'g 5-10

[
ek
=|>

€
yy

where vy and y' are functions of r/W., Substituting Eqs. 5«10 into Eqs. 5«5,

we have

A
K SN SanE SHES W 5-11

For a given A, Ke is constant, therefore I' = ¥y r" must be a constant. Combining

Eqs. 5-5 and 5-11, we have

&I [(eY o /B)o e r(%) > 5-12

In a like manner, the following relation can be derived

2m' m', ' -Zm' - ] =
K] [oY o /B Yoy ]=T"ao 5-13

where T' = y' rm'. For DEN specimen made of batch C aluminum, T = 0,490 and
I'' = 1.315; whereas for batch B aluminum the values of T and T'' are 0.647 and
1.276 respectively. Multiplying Eqs. 5-12 and 5-13 and recall the relation
m+m' = 1, the final approximated form becomes
o A

K] 2/E = [88'TT"/a] — 5-14
It is recognized that K%/E is J in the case of plane stress., The quantity in
the square bracket , BB'IT'/a,is a constant for a given geometry and a given
material. For the DEN specimen treated
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for batch C aluminum alloy and

K */E = 3.67 % = 34.5 (Z—”—)(ﬁg—
Y Y
for batch B aluminum alloy. Eq. 5~14 relates the equivalent stress intensity
factor to the overall elongation and the applied stress for a small sample
loaded far into the region of general yielding.

Fig. 5-10 plots the product of oyy/oY and eyy/eY as a function of the pro-
duct of its associated far field parameters, om/cY and A/WeY. It is interest-
ing to note that the deviation from linearity in Fig. 5-10 is not as severe
as in the Figs. 5-8 and 5-9 where stresses and strains are plotced separately.
The stresses and strains tend to compensate each other.

The stress intensity factor, K_, are plotted at various loading levels in

I
Fig. 5-11. The elastic solutions are also included in the plots for comparison.
In the region of general yielding where the linear relationship between the

near tip and far field parameters hold,the curves are approximated by the dashed
lines represent Eqs. 5-14, When the linearity breaks down, the equivalent KI

values can still be obtained by the correlation of the characteristic near tip

stresses and strains as given by Eqs. 5-5.

5.4 NEAR TIP STRAIN FRACTURE CRITERION

Ke and Liu5 made near tip strains measurements at the onset of surface
crack growth in three tough and ductile materials: HY-80 steel, and two batches
of a fully annealed aluminum alloys (batch B and batch C), Fatigue pre-cracked
specimens were tested under tensile load. Three types of specimens were tested:
WOL, SEN and DEN. All the specimens of each material were of the same thick-
ness. Their widths ranged from 2 to 8 inches.

At the first sign of surface crack growth, the near tip strains were

measured with the moire method. The results are shown in Fig. 5-12. The cross
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Fig. 5-11 Calculated stress intensity factor at various
loading levels.
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in the second figure for batch C 2024-0 aluminum alloy was measured with a small
strain gage, which agrees well with the moire strain measurements.

The strain measurements for each of these three materials fall within a
narrov band in spite of the differences in specimen geometry and size. This
indicates that at the first appearance of crack growth on the specimen surface,
near tip strain is not affected by specimen geometry and the type of loading as
long as the specimens are of the same thickness.

A careful study of the data presented in Fig. 5-12 reveals that the three
dimensional stiffening effects are shown in all the three types of specimen at
the immediate vicinity of the crack tip. For the WOL and SEN specimens, the
bending effect is so dominate that there is no plane stress deformed region can
be detected as it is reflected from the strain measurements. A longer ligament
width should be considered for this observation. For the DEN type specimen,
the characteristic plane stress deformed region is noticable at approximately

one thickness away from the crack tip. The Kc value of this particular mater-

ial (Batch B aluminum alloy) is estimated to be 69.1 ksivin according to Eq. 5-5.

The value of é%?ﬁzis close to 50 inches. According to the requirement of the
linear elastic fracture mechanics, a ligament size of 10 feet is necessary to
conduct a valid fracture toughness measurement.
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CHAPTER VI CRACK OPENING DISPLACEMENTS AND J-INTEGRALS ' E

6.1 CRACK OPENING DISPLACEMENTS |

Crack opening displacements (COD) were studied for both batches of aluminum
alloys (batch B and C). The calculated crack tip profiles at various loading
levels were compared with the earlier measurements by Gavigan1 in Fig. 6-1. A
close agreement was noticed.

Figs. 6-2 and 6-3 show the correlations of COD between the small scale
yielding and double-edge-notched specimen in general yielding for batch C alumi-
num alloy. The distinct deformation characteristics in the elastic and plastic

portions of the specimen are clearly shown, In the plastically deformed regionm,

one has
”
CoD o™
COD* (-r;) 6-1

where -m" is the slope in Figs, 6-2 and 6-3 in the near tip region and

] LJ
L CRACK TIP PROFILES UNDER LOAD ! A/Wey
ao10]—202¢-0. BarcH &, AL DEN EXPERIMENT —— AS INDICATED |
L FEM CALCULATION © 2.198
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DISTANCE FROM CRACK TIP,(IN.)

Fig. 6=1 Measured and calculated crack tip profiles, batch B
aluminum alloy.
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] yielding and double-edge-notched specimen in
general yielding.

COD* i{s the crack opening displacement at r = rp. Define

r
P

o Q

e Pl et
.

e

Substitute Eqs. 5-3, 6-2 into Eq. 6-1 and rearrange

{
|

-1/2.1/2m"-2_m"/2m"-2 1/2«2m" 6-3

: KI = oy0 Q r CcoD




Fig. 6-4 Cacculated COD as a function of Crack Mouth Opening
at various distances from the crack tip.
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Fig. 6-5 The correlations of COD between the small scale
yielding and single-edge-notched specimen in
general yielding.




where o was defined in the previous chapter, For batch C aluminum m" = 0,298
and Q = 0.0036. Therefore, in addition to crack tip opening displacements
(CTOD), proposed by Wells,2 COD in the near tip region can be used to evaluate
fracture toughness as well.
6.2 COD AND CRACK MOUTH OPENING

Consider the extreme case while r is equal to the notch depth or crack
length, a. In this particular situation, COD is replaced by its corresponding

far field parameter, crack mouth opening (CMO). Eq. 6-3 now becomes

o'
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It should be pointed out that although COD and CMO are identical when r = a in
spite of small scale yielding or general yielding, Eq. 6=4 is valid provided
that the condition of Eq. 6-1 is satisfied. 1In other words, the application of
Eq. 6-4 is restricted to the range of gereral yielding.

Fig. 6-4 plots the calculated COD as a function of CMO at various distances
from the crack tip. The linearity breaks down for small r in low loading levels.

The correlation of COD between SEN specimen in general yielding and small
scale yielding is shown in Fig. 6-~5. The equivalent K values in the figure
are calculated from near tip correlation approach following Eqs. 5-5. It ap-
pears in Fig. 6-4 that the deviation from the small scale yielding results in-
creases with K. The match 18 not as good as it is in the case of DEN specimen.
It is believed that the excessive amount of COD being attributed to the rotation
due to the bending. Some cognition of stress and strain field ahead of crack
tip are required in order to estimate the amount of rotation.
6.3 COD AND NEAR TIP STRAIN

In the immediate vicinity of the crack tip where the three-dimensional
effects prevail, specimen thickness plays an important rule in the deformation

profile. This is illustrated in Figs. 6-6 and 6~7 where COD and strain in
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Fig. 6-6 The effect of crack tip stiffening on COD in general
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Fig., 6-7 The effect of crack tip stiffening on near tip
strain in general yielding.
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loading direction are plotted at various loading levels for a DEN specimen
loaded into the region of general yielding. As the thickness increases, the
strain decreases; whereas COD increases at a given loading level.

A linear relation was found between the COD and the strain in loading
direction by both empirical measurements and FEM calculations. Fig. 6-8 shows
the measured and calculated near tip strain, Eyy' and near tip COD both at
different values of r. The empirical data shown are outside the crack tip
stiffening zone. This linear relationship could be derived as well from Egs.

1-3. Eqs. 1-3 also suggests that the product of the slopes of each line in
- 58 -
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Fig. 6~8 and its corresponding value of r should yield a constant. It is indeed
8o and equal to 0.02 from the calculated results.
6.4 J~INTEGRAL

Rice'83 contour integral J are evaluated from the field values obtained by
the finite element analysis. Rectangular path is chose for the programming
convenience. The detail procedures of calculation were reported by Hayes.4
The number of paths evaluated at each loading level are 18 for small scale
yielding and 10 for general yilelding. The paths are shown in Fig, 6-9. Path
dependency are less than 3% in all the cases studied.

In the case of small scale yielding and under the plane stress conditions,

the stress intensity factor K is related to J by

J . 6-5

From the previous discussion, the equivalent stress intensity factor can be
evaluated from the stress or strain field ahead of a crack tip as well as COD
behind the tip. Therefore, Eq. 6-5 is used to obtain the equivalent J values
in the region of general yielding.

The results are plotted in Fig. 6-10. Solid line indicates the values
of J calculated from contour integral. The curves represent the KZIE ob-
tained from near tip stress or strain (Eq. 5-5) and from far field parameters
(Eq. 5-14) are denoted by dashed line and dash-dotted line respectively. Re-
sults from COD calculation following Eq. 6-3 is plotted in dotted line. The
disticntion between the curves from near tip stress and strain cannot be
recognized in this scale of plot. In general, they agree reasonably well with
the value obtained from contour integral; whereas, the curve calculated from
COD tends to deviate from the curve obtained from contour integral at high
loading level. As it is pointed out in the foregoing chapter, the results

from far field parameter are higher than the others in the low loading range.

Overall speaking, the difference between the various calculations are within 202.




YA

:
§
%
H
}‘ t
H
¥
£
4
=
¥

e bbb . n
M=10 FOR SMALL SCALE VIELDNG
¢ M=10 FOR GENERAL YELDING
5 Fig. 6~9 Integral paths of J. ’
7‘ ¢ » ;
m T T 1 Ll
e | e

; 2024-0, BAICH C, AL. /.;’/'
: i DEN SPECIMEN ¥
f,- g l R
! & e FROM CALCULATED COO, EQ.6-3 74
2 N ————FROM NEAR TIP &y OR Oyy, EQ.5% 74 3
¢ SZNL‘ —-—-— FROM F&R FIELD A AND 0w, EQ.5- 4
ST L ——— CONTOUR INTEGRAL CALCULATION 7 4

‘g L 4

g | ]
: v o
) - g
- 1
i Rt —
: ol 1 L | ) L A d J
} 08 10 7 4 %
f Y4,
b
i Fig. 6-10 Calculated J -- a comparison of different appreaches.




v

6.5 REFERENCES

1.

2.

3.

6.

Gavigan, W. J., "Crack Tip Deformation in Metallic Plates Beyond
General Yielding with Applications to Ductile Fracture," Ph,D.
Dissertation, Syracuse University (1970).

Wells, A. A., "Application of Fracture Mechanics at and Beyond
General Yielding," British Welding J., p. 563, Nov. (1963).

Rice, J. R., "A Path Independent Integral and the Approximate Analysis
of Strain Concentration by Notches and Cracks," Journal of Applied
Mechanics, Transaction of ASME, pp. 379-386, June (1968).

Hayes, D. J., "Some Applications of Elastic-Plastic Analysis of Frac-
ture Mechanics," Ph.D. Dissertation, Imperial College, University of
London, (1970).

Bk e/ e xidbdoagbid it o




S aReh A L

i i g s ~a naia

CHAPTER VII CONCLUDING REMARKS

1. The immediate vicinity of crack tip region is stiffened against plas-
tic deformation. The region affected by the crack tip stiffening extends from
the crack tip to a distance approximately equal to the thickness of the specimen.
A qualitative study on the effect of triaxial state of stress in the region has
been made. The influence of the specimen thickness on the crack tip stiffening
effect has been explored.

2. The crack tip stiffened zone is imbedded in the characteristic plane
stress zone if the ratio of the total net cross-sectional width and the speci-
men thickness is larger than ten. This size requirement provides a guideline
for laboratory specimen design.

3. For the specimens of the same thickness with the same stress and strain
fields in the characteristic plane stress zone, the stresses and strains in the
stiffened zones of all the specimens must be the same.

4. A link between linear elastic fracture mechanics and ductile fracture
criterion can be established by the stress and strain distributions near a crack
tip in the characteristic plane stress region. In this region, the stress or
strain at the same value of r/rp is the same regardless of the size of rp.

This is true both in the case of small scale yielding and general yielding.
With this knowledge, the equivalent KI value or fracture toughness of a small
testpiece loaded considerably into general yielding can be obtained by the cor-
relation of stress or strain in the characteristic plane stress region.

5. A linear relationship has been found respectively between the near tip
stress and strain and the applied load and the overall elongation of a specimen

loaded far into the general yielding. The sufficient conditions for the validity

of this relationship have been discussed. As a consequence, the equivalent stress

intensity factor can be related directly to the boundary load or elongation.
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6. Crack tip stress and strain for a specimen loaded into the region of

general yielding can be characterized by J-integral, COD, or any of the near

tip stresses or strains. Therefore, any one of these physical parameters can

be used as a ductile fracture criterion if the crack tip stress or strain en-
vironment concept is employed. The inter-relations between these quantities

are examined.
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