
/ *D—AO5O 810 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF OCEAN E CTC F/a 13/13
RECENT PROGRESS IN TIE DYNAMIC PLASTIC BEHAVIOR CF STRUCTURES. (U~
JAN 78 N JONES N000IM 7fr’C 0195

UNCLASSIFIED OE—78—1
I~~~I II •

~&DBlO

~~~~~~~~ END
DA T E

— FILIE

_____ -





r~ w

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ~~ —

DEPARTMENT OF OCEA N ENGINEERING

CAMURIDGE. MASS. 02t39

~~CENT )ROGRES~ IN THE D~~iPJ(IC ~L~~TIC / ~~~~

~EHAVIOR OP STRUCTURES. I
~~~~ ior~~~~ onee

Report Nuaber 78-1 / ~~

MAR 7 1918

Distribution Llnliaited

This report will be published in The Shock and Vibration Digest.

This research was carried out under the Structural
Mechanics Prograa of the Office of Naval Research , VArlington, Virginia. Contract Nuaber 1100014-76-C- /,

0195, Task NRO64-510. M.I.T., O.S.P. 83344

iT~
1’ ~. r . ’ r



Index

page

Abstract j

1. Introduction .. .. .. .. .•  .. .. .. .. .. .. 1

2. Ideal Fibre—reinforced Beams .. .. .. .. .. .. 3

3. Higher Modal Response of Beams .. .. • .  .. .. 6

4. Influence of Transverse Shear and Rotatory
Inertia .. .. .. .. .. .. .. .. .. .. • .  S .  9

5. Approximate Methods of Analysis .. .. .. .. .. 13

6. Rapidly Heated Structures .. .. .. .. .. .. .. 20

7. Fluid—structure Interaction .. .. .. .. .. .. 23
8. Dynaaic Plastic Buckling .. .• •• .e ~~. •~~ .. 27
9. Numerical Studies • .  .. .. .. .. .. .. .. .. .. 32

10. Miscellaneous Comments •. .. .• •. .• .. .. .. 3?

10(a) Introduction .. .. .. .. .. .. .. .. .. 37
10(b) Experimental Studies •. .. .. .. .. .. 37
10(c) Theoretical and Numerical Studies .. .. 38
10(d) Collision Protection of Vehicles •. •. 40

11. Concluding Remarks .. .. .. .. .. .. .. .. .. 41
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 43

References • e  • •  • • .. • •  • •  S .  • •  • •  •~~ • ,  .. • 5  44

Library Card

*urn~o Nt

ITI$ t~~o k~ ISI

~~~~ ~~~~~~~ r
C-. . 

.

I 
•

~ 

.. . .
__



• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Abstract

This article attempts to review the literature on the dynamic

plastic response of structures published during the last three years,

since the last survey by the author was published in the Shock and Vibra-

tion Digest (1). The review focuses largely on the behavior of simple

structural components such as beams, plates end shelle subjected to

dynamic loads which produce extensive plastic flow of the material.

In .particular, recent work on the behavior of ideal fibre—reinforced

beams, higher modal response of beams, the influence of transverse shear

and rotatory inertia, approximate methods of analysis, rapidly heated

structures, fluid-structure interaction and dynamic plastic buckling

are discussed in detail. These topics are followed by a discussion of

a few recent numerical studies on the dynamic plastic response of struc-

tures, and a brief survey of some recent experimental and theoretical

i~vestigatione into the collision protection of vehicles.



1. Introduction

It is the object of this article to survey the recent liter ature

published on the inelastic response of structural members (beams , plates

and shells) subjected to dynamic loads or suddenly applied displace-

ments, which are responsible for permanent displacements or damage of

structures. The results of studies in this particular area may be used

for a wide variety of applications in a number of different fields.

For example, the conclusions of such studies axe guiding the development

of rational design procedures to avoid the destructive action of earth-

quakes on buildings, being employed to improve occupant safety during

collisions of aircraft, autolobiles, buses and trains , designing the

collision protection of ships and marine vehicles containing hazardous

cargoes , estimating slamming and bow wave damage of ships and marine

vehicles, designing nuclear reactor tubes to withstand violent transient

pressure pulses, designing buildings to withstand internal gaseous

explosions, and designing energy absorbing systems for various,applica—

tions. In order to avoid unnecessary repetition, a reader who requires

additional background for this general field may consult section 1 of

Reference (1), which is the last review of this subject to be published

in the Shock and Vibration Digest.

Krajcinovic (2) surveyed the exact theoretical solutions available

on the dynamic inelastic behavior of various rigid perfectly plastic etruc—

tures which undergo infinitesimal displacements. The review in

‘The last review at the time of writing this article. Reference ~28)has since been publiehed.
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Reference (1) was made purposely complementary to Reference (2) in the

sense that it focussed largely on the non—linear effects of finite—

displacements, or geometry changes, and material strain rate sensi-

tivity, both of which are important in many practical situatious. In

addition to these two articles, Baker (3) published a survey in the

Shock and Vibration Digest on approximate techniques for estimating the

plastic deformation of structures acted on by impulsive loads.

Furthermore, Rawlinge (4) reviewed the work contained in over 120

references on a wide range of metal structures subjected to dynamic over-

loads and discussed many applications, particularly concerning auto-

mobile safety.

It emerges clearly from the previous comments that the literature

published on the dynamic plastic response of structures has been ade-

quately reviewed up to 1974, when References (1, 3, 4) were prepared.

The task of this article is therefore to attempt a survey of the liter .-

ture published during the last three years. , various individual

topics which have received attention during this period are now reviewed.

• ________________ ~~~~~~~~~~~~ .—~~~, -.. ~~~~~~~~~~ ,—• ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Ideal Fibre-reinforced Beams

An ideal fibre-reinforced material is first defined and then some

recent theoretical results obtained when using this model are discussed.

A beam with straight fibres embedded in a matrix and aligned along

the axis is considered transversely isotropic when the plane transverse

to the fibres is a plane of isotropy. This beam is strongly aniso-

tropic if Young’s modulus associated with axial extension of the fibres

is much larger than the values of Young’s modulus in the transverse plane

and the shear moduli of the matrix. In this circumstance the fibres may

be idealised as inextensible with little sacrifice in accuracy. The

composite is known as an ideal fibre - reinforced beam when, in addition,

the material is assumed incompressible. This material idealisetion is

a continuuc one, in which no distinction is made between the behavior of

the uibre8 and the response of the matrix. The static elastic behavior

of various ideal fibre-reinforced problems is discussed by Spencer (5)

and simple theoretical solutions have been found in many cases.

Spencer (6) recently developed a theoretical procedure for studying

the dynamic plastic structural behavior of ideal fibre—reinforced

(strongly anisotropic) beams. Spencer employed the same general assump-

tions which are customarily made to obtain the response of rigid—plastic

beams made from an isotropic material (e.g. infinitesimal displacements,

neglect of material elasticity and transverse wev.~ propagation) and which

under certain circumstances can lead to reasonable agreement with tests

on experimental models (1). Spencer (6) examined the response of a beam

of finite length initially traveling with a velocity Vo which was

- _ 
_ _ _
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eventually brought to rest a ftsr suddenly striking a rigid stop. The

solution of this particular problem can be transformed to give the

behavior of a beam which is subjected, at the midpoint, to a constant

velocity V01 maintained for an infinite duration. This problem is in

turn equivalent to the case of a beam of finite length which is struck

by an infinite mass M traveling with a velocity V0.

Theoretical solutions were developed in Reference (7) for the dynamic

plastic structural response of various ideal fibre-reinforced (strongly

anisotropic) beams with boundary conditions and external dynamic load-

ings which can be reproduced easily and reliably in a laboratory. The

theoretical behavior of these beams was also compared to the correspond-

ing dynamic response of beams which were made from a rigid perfectly plas-

tic isotropic material. Generally speaking, it appears that the perma-

nent transverse defleotions and response durations of ideal fibre-

reinforced beams loaded dynamically are less than the corresponding

values for similar rigid perfectly plastic isotropic beams.

The theoretical predicions in References (6) and (7) were developed

for a rigid linear strain-hardening ideal fibre—reinforced material.

Spencer (8) re-examined the particular beam problem he studied in

Reference (6) and presented a theoretical procedure which could be used

for a wider class of strain-hardening materials. The theoretical pre-

dictions reported in Reference (9) for an ideal fibre-reinforced rigid

plastic beam supported across a span of finite length and loaded

impulsively, indicated that material strain hardening exercised an impor-

tant influence on the magnitude of the permanent displacements and on the

shap. of the final deforme d profile . Shaw and Spencer (10) have 

~~~~~~~~~~~~~~~~~~ ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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examined the behavior of various beams struck by masses but simple

theoretical results for some cases were only possible for a linear strain-

hardening ideal fibre-reinforced material. No theoretical investiga-

tions appear to have been published on the dynamic plastic behavior of

ideal fibre-reinforced plates and shells.

It is evident from the theoretical studies reported in References

(7) and (9) that the response duration and permanent transverse dis—

placements of ideal fibre—reinforced beams are significantly less than

the corresponding quantities in “equivalent” rigid perfectly plastic

isotropic beams. Thus, it appears that a potential for considerable

weight savings may exist for energy absorbing systems made from materials
Ii

characterised as ideal fibre-reinforced rigid—plastic. However, experi-

mental investigations are required to establish if the ideal fibre-

reinforced material model is valid for strongly anisotropic beams leaded

dynamically. The particular cases examined in References (7) and (9)

would offer attractive test arrangements for experimental work since

similar rigid-plastic isotropic beams have been investigated by several

authors.

a 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..•,•~~~.- - - .- •.• •~~~~~ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. Higher Modal Response of Beams

The previous interest in the modal response of plastic structures

was associated with the development of approximate solution methods,

and some recent work in this area is discussed in section 5 of this

review. However, with the exception of a two-mass discrete model (11 ,

12), only primary or fundamental response modes have been examined. It

is evident that an infinity of plastic modes is possible in a continuous

structure, as in the elastic case. A knowledge of these mode shapes

and associated accelerations can contribute to an increased understanding

of the basic properties of rigid-plastic structures which deform in the

plastic range as a result of dynamic loading. Moreover, the excitation

of higher modal plastic deformations may find practical applications in

the development of efficient energy absorbing devices.

Exact theoretical solutions for the first, second and third modal

responses of fully clamped beams subjected to impulsive velocities hay-

ing first, second or third modal shapes were presented in Reference (13).

• These theoretical predictions were compared to some permanently deformed

profiles measured after a series of higher modal experimental tests on

aluminum 6061 P6 511 beams, and it was concluded that geometry changes,

or finite-deflections, exercised an important influence on the dynamic

response, which agreed with previous studies on uniformly loaded beams (1).

The simple theoretical procedure developed in Reference (14) was used to

examine a first modal response of a beam, and confirmed that geometry

changes were largely responsible for the discrepancy between the experi—

mental results and the theoretical predictions developed using an infini—

_
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tesimal theory.

The infinitesimal and finite—deflection analyses presented in

Reference (13) were further generalised in Reference (15) to predict any

symmetrical or antiaymmetrical modal response of impulsively loaded,

fully clamped , rigid perfectly plastic beams . The numerical elastic-

plastic behavior of fully clamped beams subjected to impulsive “modal”

velocity fields was also examined in Reference (15), using the spatial

finite—element JET 3C computer program of Wu and Witmer (16, 17). It

is evident, from Figures 4 to 6 in Reference (15), that the simple theo-

retical rigid—plastic procedure of Reference (14), which includes the

influence of geometry changes, gives fairly good agreement with the

numerical elastic—plastic finite-element results. This further confirms

the accuracy and reliability of the generalised theoretical method, which

was also compared to some experimental results on beams and rectangular

plates in References (1) and (18) etc.

The magnitudes of the dimensionless transverse shear forces (QJQ0)

(where Qo = 6~ ir/ ,./Y’~ 
(
~ is uniaxia]. yield stress and H is beam thick-

ness) were estimated from the bending moment distributions predicted by

the JET 3C numerical elastic-plastic program, and are listed, f or the

first three modes, in Table 1 of Reference (15). It is evident from these

numerical results that the ratio QJQ~ increases with increase in mode

number, despite the fact that the dimensionless permanent transverse dis-

placements are smaller for the higher modes. The largest numerical

value of QJQ0 = 0.35 is associated with a third modal response. The

excitation of higher modes in structures may generate even larger trans-

verse shear forces. For example, integration of equation 8 in
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Reference (15) and use of equations 9 and 17 gives

Q(o) = ~ 3M0 {l + (n — 1) /L for the value of the transverse shear

force at the supports of a beam undergoing a symmetrical modal response

with infinitesimal displacements, where 2n - 1 is the mode number and

= ~0H
2
/k. Thus, the transverse shear force can become large for

high modes, as expected, regardless of the value of the transverse dis-

placements. These observations would appear to justify further investi-

gations in order to establish the importance of transverse shear forces

on plastic yielding and to seek the influence of shear deformations on

the higher modal response of beams and other structures.

Although the excitation of pure modal responses is unlikely for

most practical problems, unless deliberately activated as in a specially

designed energy absorbing system, it is nevertheless apparent that the

behavior of complex structures loaded dynamically may involve complica-

ted deformation fields having some of the features of higher modal

responses.

A
.•~~~ • —- ..— -— - .•— -.-——~~•-— .— —~ .- --— -—•-..~-. -
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4. Influence of Transverse Shear and Rotatory Inertia

Transverse shear forces can exercise a more important influence on

the response of rigid-plastic beams loaded dynamically than in similar

beams loaded statically (e.g. (19) and see section 5c of Reference (1)).

Indeed , it has been demonstrated experimentally (20) and shown theo-

retically (18) that shear failures can develop at the supports of uni-

form isotropic beams loaded impulsively. The numerical results in

Table 1 of Reference (15), which are discussed in section 3 of this

review, also indicate that transverse shear forces may reach signifi-

cant values in beams which undergo higher modal dynamic responses.

Transverse shear forces also dominate the dynamic response of strongly

anisotropic beams (6 - 10), which are discussed in section 2 here.

The foregoing recent studies all involve beams loaded dynamically into

the plastic range, but transverse shear effects would also play an

important role in the dynamic plastic response of plates and shells.

It appears that there is considerable uncertainty in the literature

on many aspects of the precise role of transverse shear forces, even for

the yielding of rigid perfectly plastic beams loaded statically.

Indeed it has been demonstrated that interaction curves relating bend-

ing moment 04) and transverse shear force (Q) are not proper yield

curves and as further support to this view interaction curves for

I-beams have been constructed which are not convex (21).

The role of transverse shear forces on the plastic yielding of

beams was examined in a recent note (22 ) ,  in which some justification

was given for using convex yield curves for I-beams within the setting

of engineering or classical beam theory. A suitable compromise from
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an engineering viewpoint between the simple local (stress resultant)

and more rigorous non-local (plane stress, plane strain) theories may

be achieved for I-beams when using a local theory (e.g. Hodge (23)) with

a madmum transverse shear force based only on the web area. It is

evident from Figure 5 in Reference ( 22)  that Hodge’s (23) revised theo-

retical results now provide an inscribing lower bound curve in the

M/M0 - QJQ0 plane which , because of its simplicity, might be acceptable

for many theoretical studies on beams. Furthermore , the theoretical

predictions of Heymen and Dutton (21) and of Ranshi, Chitkara and

Johnson (24) and others are reasonably veil approximated by a square

yield curve which has been used for solving various problems in dynamic

plasticity (e.g. 19). In fact, Hodge’s (23) revised results and a

square yield curve provide two simple methods for essentially bounding

the actual yield curve for an I-beam, as shown in Figure 5 of Reference

(22).

It was also pointed out in Reference (22) that Heyman’s (21) objection

to the existence of convex yield curves on the grounds that Q = dM/dx is

incorrect.

It is evident from Figure 6 in Reference (22) tha t a number of

local and non-local theories give similar curves in the M/M0 -

plane for beams with rectangular cross-sections, so that one may select

whichever theory is the most convenient.

Symonda (19) has examined the influence of transverse shear forces

on the dynamic plastic response of an infinitely long beam struck by a

mass travelling with an initial velocity V0. Symonds simplified his

theoretical work with the aid of a square curve which relates the

~~~~~~~ — 

.
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values of bending moment (M) and transverse shear force (ç~) required

for plastic yielding. More recently, Nonaka (23) used a similar tbeo—

retical procedure for a beam simply supported across a span of finite

length. The beam was subjected to a blast type loading (with a peak

value at t = 0 and decreasing monotonically with time t) distributed

uniformly across the entire span, and detailed theoretical results were

presented for the particular cases of impulsive loading, rectangular pulse

loading and exponentially decaying loading. Generally speaking, Nonaka’s

observations lena further support to those of Symonde in that transverse

shear effects can be important for beams with non-compact cross-sections

regardless of the type of dynamic loading, while they are important for

compact beams when subjected to dynamic pressures which are much larger

than the corresponding static plastic collapse pressure (e.g. impulsive

loading).

No restrictions were placed on the amount of shear sliding at the

stationary plastic “hinges” which developed in the ~heoretica1 analyses

presented in References (19) and (25) . However , it is clear that com-

plete severance has occurred when the amount of shear sliding equals the

beam thickness, as remarked in Ref•rence (18). Thue, it is necessary to

ensure that this mode of failure does not intervene and control the res-

ponse of a particular beam rather than the theoretical results presented

in References (19) and (25).

It appears that the influence of rotatory inertia has been neglected

in all. analytical investigations on the dynamic plastic response of struc-

tures. This situation prevailed despite the many studies which have ex~ )red

the role of rotatory inertia in various dynamic elastic problems. Thus,

an exact theoretical procedure , which retained the influence of rotatory
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inertia and transverse shear forces on the dynamic plastic beha vior of

beams, was developed in Reference (26). The behavior of a long beam

impacted by a mass and the impulsively loaded simply supported beam prob-

lem of Nonaka (25), were examined using a square yield criterion.

The theoretical predictions for the particular parameters considered

in Reference (26) indicated that rotatory inertia barely influenced the

dynamic plastic response of a long wide-flanged I—beam impacted by a mass,

while a more noticeable effect was observed for a simply supported wide—

flanged I—beam loaded impulsively. As expected, rotatory inertie exer-

cised the greatest influence on beams with rectangular cross-sections.

The largest reduction observed in the maximum dimensionless transverse

displacements was approximately 11% for the particular calculations repor-

ted in Reference (26). It appeared from this study that the effect of

rotatory inertia on the dynamic plastic response of beamB is sensitive

to the kind of boundary conditions and type of loading.

The influence of transverse shear forces and rotatory inertia on the

dynamic plastic response of beams with non-linear yield curves is examined

with the aid of a numerical procedure in Reference (2?).
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5. Approximate Methods of Analyeis

The last review on the dynamic plastic response of structures in the

Shock and Vibration Digest (1) focussed largely on the influence of finite

deflectiona, or geometry changes, and material strain rate sensitivity.

More recently, Symonds and Chon have examined these non—linear topics

from a different viewpoint in References (28) to (32).

In Reference (28), Symonds observed that the inhomogeneous nature of

the strain rate sensitive conetitutive equations complicates the theo-

retical mode type solutions and bounding methods. Thus, Symonds explored

the possibility of replacing the inhomogeneous relations by simpler homo-

geneous viscous expre8sions. It turned out that replacing a rigid visco-

plastic constitutive equation with a homogeneous viscou, representation

did simplify the theoretical analyses, and the best agreement was found

when matching the initial stresses and initial slopes of the dimension-

less stress-strain rate inhomogeneous exact and homogeneous viecous curves.

The homogeneous matched viscous conatitutive relations constructed in this

way were used in the theoretical work presented in References (29) to (32).

Symonds and Chon (29 , 30) developed an upper bound theorem to estimate

the permanent displacements of strain rate sensitive structures loaded

impulsively. They used the theorem of minimum potential energy as a

starting point and utilised the extremal path concepts introduced by

Ponter (33) in order to obtain well defined functions of specific strain

energy and specific complementary strain energy , when the influence of

The last review at the time of writing this article. Reference
(l2~) has since been published.
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finite—deflection. was retained in the basic equations. It turned out

that the extremal paths for homogeneous viscous relations between stress

and strain rate were extremely simple (see equation 6 of Reference (29)).

The theorem was developed by comparing the response of the dynamic

problem with the behavior of the same structure subjected to a static

loading which produces stresses and strains following an extremal path.

If the static loading is taken as a concentrated force , then an upper

bound on the displacement at the same location for the dynamic problem

can be found (equation l5b of (29 ) ) ,  when the total strain energy of

the static problem equals the initial kinetic energy for the dynamic prob-

lem (equation l5e of (29)). Unfortuna tely, this theorem requires

knowledge of the response duration, for which no rigorous bounds exist ,

when finite—deflections and material, strain rate effects are retained in

the basic •,quationa. However , the authors observed that the theoretical

predictions were not very sensitive to the actual value of the response

duration, so that either Martin’s time bound (34) or the approximation

developed in section 5 of Reference (29) could be used.

Symonds and Chon (29, 30) used their theorem to examine simple, one

degree of freedom and two degrees of freedom structural models and

obtained upper displacement bounds which, in the case of the one degree of

freedom model, were quite close to the exact maximum displacements. The

upper bound theorem was also used to study an impulsively loaded fully

constrained beam with a sandwich cross—section, and the theoretical pre-

dictions for the maximum permanent transverse displacements were corn-

pared to the corresponding experimental results (33 ) in Figure 8 of

Reference (29) . The upper bound predictions are quite accurate at the

_ _ _ _ _ _ _ _ _ _ _ _ _  J
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lower impulse levels but lie significantly abov, the experimental result.

for large impulses, which are responsible for maximum permanent trans-

verse displacements greater than about five beam thicknesses.

Unfortunately, the prediction. of the theorem were not presented for a

rigid ~arfectly plastic material, so that it is not known whether

approximations associated with geometry changes or the strain rate sensi-

tive relations, or both , require refinement to improve the estimates at

the larger impulse levels.

Symonds and Chon (31, 32) have also examined mode ~pproximation

techniques for strain rate sensitive structures, when the influence of

finjte-deflectior1a, or geometry changes, were retained in the basic equa-

tion.. The modal responses considered in section 3 of this article were

associated with structural problems, in which the external loading was

responsible for an exact structural response with a velocity profile

having a time-independent nhape (i.e. modal response). However, the

mode approximations in References (31) and (32) follow the spirit of

Reference (36) in that the behavior of any dynamic problem may be approxi-

mated with a modal response. If the same modal form remains valid

throughout the entire structural response, then it is called a “permanent”

mode form solution. On the other hand, a sequence of mode form solu-

tions may be required in certain classes of problems (e.g. when geometry

changes are retained in the basic equations). It is clear that the

initial velocity field in a theoretical solution using a mode approxima-

‘In some earlier work these were called stationary mode forms.

- ~~~~~~~~~~--- - —-- ,• ~~~~~~~• - -—-- --- ~~ ~~~~
—--
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tion is not the same as the initial velocity distribution of the corres-

F ponding impulsive loading problem , except in exceptional circumstances

(as in section 3 here). However , Martin and Symonds (36) developed a

criterion for judiciously selecting the magnitude of the modal velocity

field in order to minimise the error due to the different initial con-

ditions. More recently, Chon and Martin (11) have examined the mode

approximation method for a simple two degrees of freedom viscoplastic

beam. This theoretical work was developed for structures which undergo

infinitesimal displacements and no extension has yet been made to incor-.

porate the influence of finite—displacements.

Symonds and Chon (30) studied a two degrees of freedom beam problem,

which consisted of two masses connected by massless links, and obtained a

stationary mode solution when the end supports were fref to move

inwards. However, if the supports were restrained axially, then it

became necessary to use an iterative method to obtain a sequence of mode

eolutions.

The mode approximation procedure is used in Reference (31) to exa-

mine a strain rate sensitive fully clamped circular plate which undergoes

large transverse deflections. The plate was asaume4 to have a sandwich

cross-section which was made from a homogeneous viscous material. An

iterative solution procedure was developed which required about 5 to 10

cycles in order to achieve no more than a 5 per cent difference between

two successive iterations of the mid-point velocity at a given time.

This numerical procedure was repeated at about 13 different time steps

to generate the theoretical estimates for the final permanent transverse

displacements which are presented in Figures 3 and 4 of Reference (31).

-.—~~~~~~~~~~~~~~~~~~ --~~~~~ --—--~~~~~ -~~~~~
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The various approximations in the theor.tical procedure are all con-

servative in the sense that they should lead to overestimates of the

transverse displacements. However, the theoretical predictions lie

below the corresponding experimental results of References (37) to (39) ,

although they do provide reasonable estimates. It i. not clear why this

situation prevails, but some suggestions are given in Reference (31).

The mode approximation technique was also employed in Reference (32)

to study the dynamic behavior of circular plates subjected to axisymaetric

pressure pulses when geometry changes were disregarded (i.e. infinitesi-

ma]. displacements). It was found that stationary mode solutions only

existed for impulsive loadings, or when the shape of the external pres-

sure distribution was the same as the modal shape of the transverse di.-

placement field.

Bodner and Syinonds (40, 41) have recently presented some experi-

mental results which were obtained from a test program conducted on

strain rate sensitive frames and fully clamped circular plates subjec—

ted to impulsive velocities which produce large permanent displacements.

These experimental results are compared in References (42) and (43) with

the theoretical predictions of the displacement bound and mode approxi-

mation methods which are discussed in Reference (30).

As expected , the upper bound theorem in References (29) and (30) and

the mode approximation technique in References (31) and (32) are con-

siderably more difficult to use than simple rigid perfectly plastic

methods and even more difficult than the comparatively simple procedure

to cater for the influence of finite—displacements which was developed in

Reference (3.4) and discussed in Reference (1). However, the methods in

References (29) to (32) do provide some information about certain feature.

j
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of the structural response which would be much more expensive to obtain

when using a wholly numerical procedure. Perhaps, more importantly,

they do provide insight into some characteristics of plastic structural

dynamics.

It should be remarked that Ploch and Wierzbicki (41~) have con-

structed an alternative theorem for obtaining upper bounds on the perma-

nent displacements of impulsively loaded rigid perfectly plastic struc-

tures with large displacements. P].och and Wierzbicki used this theorem

to predict reasonably good values for the maximum permanent transverse

displacements of a fully clamped beam subjected to a uniformly distribu-

ted impulsive velocity field.

The fundamental characteristics of dynamic plastic mode solutions for

structures which undergo infinitesimal displacements have been examined

from a variational viewpoint in References (45) to (47). Erkhov (45 )

studied the dynamic plastic behavior of a simply supported rigid perfectly

plastic shallow cap subjected to a uniformly distributed pressure with a

rectangular pressure-time history. It turns out that Erkhov’s theoretical

results for the permanent displacement profile (equation 3.9) for inter-

mediate pressures is identical to the theoretical solution in Reference

(48) (equation 18), except for a difference in the static collapse

pressures which is related to the use of different yield cHteria. The

authors of References (46) ~nd (47) respectively used a two degrees of

freedom system and a simply supported circular plate to illustrate their

theoretical work.

Wierzbicki (49) developed a simplified strain rate sensitive c!on~

stitutive relation and used it to demonstrate that an eigenfunction 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~ --~~~~ ~~~-
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expansion method could then be employed to examine the dynamic behavior

of plastic continua when the displacements remained infinitesimal.

Maier and Corradi (50) have derived an upper bound theorem for the

dynamic infinitesimal displacements of elastic—plastic continua using

the principle of virtual work and Drucker’s stability postulate. The

final form of this theorem contains only quantities which are either

known when motion commences or are related to a solution of the same dyna—

mic problem when considered wholly elastic.
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6. Rapidly Heated Structures

It is evident that larg. neutron pulses may cause a temperature

gradient to develop through the thickness of a structure made from a fie-

sue material. This temperature gradient may give rise to curvature

changes of beam , plate and shell structural members in addition to various

other effects. The structural response is governed by the equations of

dyn?mics when these curvature changes develop in a sufficiently short

time. Thus, the dynamic structural response may be estimated with the

aid of rigid—plastic methods of analysis when the temperature accelera-

tions are sufficiently large.

Parkes (51) examined the dynamic infinitesimal displacement response

of a free rigid-plastic beam subjected to a time-dependent and spatially—

independent thermal curvature 
~~~~~ 

Parkes observed that various types

of behavior were obtained which depended on the rapidity of heating (or )(T).

It was found that a free beam remained rigid’ for sufficiently small

values of )~ p, while for larger values a discrete plastic hinge developed

and became an expanding and contracting plastic hinge (zone) at still

larger values of X r.

It turns out that the behavior of a free beam with a temperature-

independent plastic moment and subjected toXp with a sinusoidal”

temporal form (equation 22 of Reference (51)) is quite complicated, as

‘The beam deforms due to the thermal curvature XT but the associa—
ted maximum bending moment is less than the fully plastic bending
moment.

“This particular form is characteristic of neutron heating in a
pulsed reactor.
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indicated in Figure 3 of Reference (51). For example, the dynamic

response associated with a large value of X ~r commences with a rigid
phase which is followed by another phase with a positive central plas-

tic hinge. An expanding positive plastic hinge (zone) then develops

and is followed by three further phases, which are characterised by a

positive central plastic hinge, a contracting plastic hinge, and a

negative central plastic hinge before returning to a rigid phase. The

sequence of events depends on the magnitude of )~~ ~ 
as indicated in

Figure 3 of Reference (51) and is undoubtedly alao a function of the form

of which has not yet been explored.

In a more recent publication , Parkes (52) used the general theoretical

work in Reference (51) to examine the dynamic rigid-plastic behavior of

a rapidly heated cantilever beam subjected to the same form of )~1 T con-

sidered in Reference (51). Again the exact theoretical solution is com-

plicated , even though the displacements remain infinitesimal and the

plastic moment is temperature -independent . However , Parkes (52) observed

that the approximate theoretical analysis of a so-called strong beam, with

all the deformation restricted in a hinge at the root of a cantilever,

was much simpler and predicted surprisingly accurate values for the final

displacements after the relief of the thermal curvature.

Wisniewaki (53) examined the dynamic structural behavior of an

aluminum 6061 T6 rectangular plate subjected to an X-ray deposition.

The surface of the plate exposed to the X-ray deposition is heated almost

simultaneously to high temperatures, which causes some of the material

to melt and blow-off. This blow-off causes an impulsive load, which

creates a stress wave that propagates through the plate thickness towards

L _ _  _ _ _ _ _ _ _ _  -
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the rear surface . Simultaneously, the material below the exposed sur-

face is heated and a compressive stress wave is induced which is reflec-

ted as a rarefaction tensile wave from the rear surface. It is evident

that the possibility of spalling for sufficiently large .tresFes must

therefore be considered in a study.

Wisniewaki (53) simplified the posed problem and then used an

available computer program to predict the material behavior during the

first few microseconds of the response. The numerical predictions were

then used to generate the input for an elastic-plastic finite-difference

scheme (51i) to predict the 8tructural response, which involves response

durations of the order of milliseconds, as discussed in Reference (1).

—- —~~~~~~~~~ ~~~~~~~~~~~ - -—- ~~~~~-~~~ -—- —-~~~~~~ —~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ -- - - —~~~~~~~~~~ - ---— -- 



~ 
~~~~~~~

- - - --‘~-~~
---

~~ 
— —-- —-—---

— 23—

7. Fluid-structure Interaction

In a recent review published in the Shock and Vibration Digest (55),

Krajcinovic distinguished between the steady-state and transient

behavior of structures interacting with a fluid, and then proceeded to

discuss the general features of transient interaction problems with

constant and variable wetted surfaces. The theoretical behavior of a

transient interaction problem is simplified considerably when the struc-

tural material is idealised as rigid-plastic. The theoretical pre-

dictions of such analyses are particularly useful when the ultimate per-

formance of a structure is of primary concern, provided the usual

restrictions associated with this type of an approxin~ation are satis-

fied (1 - 4, 55).

Krajcinovic (56) examined the dynamic response of a simply supported

rigid—plastic beam, which rested on a semi-infinite pool of incompressible ,

• irrotationa]. and inviacid fluid. The governing equations were formula—

ted for a beam subjected to a time—dependent external pressure which

caused infinitesimal transverse displacements. The greater part of

Reference (56 ) focussed on the difficult task of evaluating the fluid

back pressure and the virtual mass associated with a simple triangular

deformation mode for the beam without any travelling hinges. Krajcinovic

then examined a simply supported beam subjected to a uniformly distribu-

ted pressure and found that a single mode transverse deformation profile

remained valid provided the magnitude of the external dynamic pressure

was less than about three times the corresponding static collapse pres—

sure (see equation 1+7 of Reference (56)) .  As expected, the perma—

- -~~~~~~~~~~~~~ - -——~~~~~~~~~~~ . - - -- - - - - --—-~~~~m-—-—-~~~~~~~~~~~~~~
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nent transverse displacements are less than those which would be obtained

in vacuo.

Krajcinovic (57) also examined the dynamic behavior of a simply

supported circular rigid perfectly plastic plate resting on a potential

fluid. The response due to a uniformly distributed external pressure

with a rectangular shaped pressure time history was obtained for a coni-

cal transverse displacement profile. It turned out that a conical dis-

placement profile could be used for external pressure pulses with magni-

tudes up to somewhat larger than twice’ the corresponding static col-

lapse pressure. The theoretical predictions for the impulsive velocity

loading case were also presented in Reference (57). However, these

results must remain in doubt until it is established that a statically

admissible genera].ised stress field can be associated with a conical

displacement profile. This is likely to be a fruitless enterprise

because it is known that travelling plastic hinges develop during the

• response of the same problem in vacuo.

• It is evident from the foregoiiig comments that equations 47 and 60

in References (56) and (57), respectively, restrict the external dynamic

pressures to low magnitudes which are only a f.w times larger than the

corresponding static collapse pressures. Larger external pressures

would probably give rise to travelling plastic hinges, which would com-

plicate the calculation of the fluid back pressure and virtual mass.

The non-linear influence of finite transverse displacements, or

geometry changes, would exercise an important effect  on the response when

‘Equation 60 gives a ratio of 2 when in vacuo and 2.346 for a steel
plate with a radius to thickness ratio of 25 resting on water.
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the maximum permanent transverse displacements exceeded the correspond-

ing structural thickness, as discussed in Referencea (1) and (14) for

beams and plates in vacuo and exposed to dynamic loads on one surface.

The theoretical results in Figure 4 of Reference (58) illustrate the

important strengthening influence of membrane forces which were developed

in a simply supported circular plate subjected to a static pressure dis-

tributed over the entire surface on one side of a plate, and another

static pressure distributed within a circular region on the opposite aur-

face.

The theoretical solutions in References (56) and (57) were simpli-

fied by neglecting the generation of waves on the surface of the fluid.

However, in a practical beam or plate problem with a single mode trans-

verse deformation profile, it is inevitable that waves would be genera-

ted on the fluid surface outside the supports when the fluid is assumed

incompressible. Nevertheless, it is possible to retain the incoapressi-

• bility assumption without the generation of surface waves by using more
-

• complex transverse displacement fields (e.g. a modification of the third

modal velocity fields examined in References (13) and (15) and discussed

in section 3 here).

Duffey (59) examined the transient response of viscoplastic spheri-

cal shells submerged in a fluid. The inner surface of a shell was sub-

jected to a spherically symmetric impulsive velocity which produced a

spherically symmetric structural response. Duffey considered the inviscid

fluid to be compressible and used the classical wave equation to evaluate

the fluid pressure. Furthermore , the wall, thickness of the shell was

assumed to be sufficiently thin so that the material throughout the entire

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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shell could pass simultaneously from a-n elastic state to a plastic state.

With these simplification., Duf fey was able to s~aaine the influence of

material elasticity (including unloading) , material strain hardening, and

material strain rate senBitivity. One interesting feature of the results

presented in Figure 5 of Reference (59) is the significant error aasocis-

ted with the ].inearisation of the strain rate sensitive relations.

The theoretical solutions in References (56), (57) and (59) were

developed for structures with one side loaded by a dynamic load, while

the other side was in contact with a fluid (e.g. an internal explosion

in the hull of a ship). Sometimes, structures are subjected to a dis-

• tur bance which travels through a fluid from a distant source (e.g. an

external explosion acting on the hull of a ship (60)). Other types of

practical problems may involve the impact of a structure on a fluid

(e.g. slamming of ships and marine vehicles), or the impact of a fluid on

a structure (e.g. water wave impact on a barrier or offshore platform).

• Simple rigid—plastic methods were developed in References (61) to (63)

to estimate the damage sustained by ships and marine vehicles from severe

slamming and bow impacts. These theoretical methods gave surprisingly

good agreement with the corresponding experimental results and could be

further developed to examine various other problems.

L.. 
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8. Dynamic Plastic Buckling

The work described in the previous sections focuses on the inelastic

behavior of structures which have a “stable” response when subjected to

dynamic loads. However, dynamic plastic buckling or unstable behavior,

which La characterised by wrinkling as in static buckling, can occur

when certain structures are acted on by large external loads.

A brief literature review on the dynamic plastic buckling of rods,

fla t plates , cylindrical shells and spherical shells was presented in

section 5. of Reference (1). It appears that the dynamic plastic insta-

bility of all the structural problems so far investigated stems from the

growth of small imperfections in the otherwise uniform initial displace-

ment and velocity fields. Unlike classical static buckling analyses,

a distinct value of the dynamic load which causes structural instability

is not predicted by these theoretical analyses. Rather, an expression

is obtained which indicates how the displacement profile of a structure

grows with time for different levels of dynamic load. Buckling is said

to occur when the dynamic load reaches a threshold or critical value

which is associated with the minimum unacceptable or maximum acceptable

deformation, the magnitude of which i. defined arbitrarily.

The dynamic plastic buckling of a cylindrical shell made from a

rigid linear strain-hardening material and subjected to a uniformly di.-

tribut.d, almost axisymmetr ic external impulsiv, velocity field , wan

examined in Reference (64). A particularly simple solution was found

for an infinitely long cylindrical shell which offered the advantag , that

various characteristics of the response could be examined analytically. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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For example, the dynamic plastic buckling of a long cylindrical shell turns

out to be more sensitive to initial imperfections in the profile than to

imperfections in the initial velocity field. This i. fortuitous because

it i. usually easier to control imperfections in the initial shape than

any imperfections in the initial velocity field. Moreover, equations

20 and 21 in Reference (64) indicate that the greatest amount of scatter

might be expected to occur in the experimental critical mode numbers of

long cylindrical shells with large radius to thickness ratios and/or small

values of the material parameter 
~~ 

(ratio of tangent modulus to average

flow stress). Furthermore, equation 27 in Reference (64) indicates that

local elastic unloading is more likely to occur for shells with the

larger radius to thickness ratios and/or smaller values of the material

parameter

The theoretical predictions for the dominant behavior , critical

mode numbers , and threshold impulses from all known previous studies on

the dynamic plastic buckling of cylindrical shells and rings subjected to

external impulsive velocities are summarised in section 3 of Reference (64).

In addition , experimental results are also presented from a test program

on hot rolled mild steel and aluminum 606]. T6 rings, which were subjected

to axisymmetric external impulsive velocity fields. These experimental

values are compared , in Figures 5 to 14, in Reference (64), with all

known experimental results and theoretical pr.dictione for the dynamic

plastic buckling of rings and cylindrical shells. It is evident from

these Figures that the various theoretical predictions are widely diver-

gent , some giving good agreement with the corresponding experimental

values, while others are unsuitable.

-~~~~~~~~~~——~~~~~~~~~~~~~ ---
- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—29 -

Generally speaking, the simple theoretical predictions for the

permanent radial displacements of rigid perfectly plastic rings subjec-

ted to an axisymmetric velocity field (equations 28 and 33 of Reference

(64)) agree reasonably well with the permanent average radial displace-

ments recorded in the experimental tests, provided any material strain

rate sensitivity is catered for , as suggested by Perrone (65) and

demonstrated for shells in Reference (66).

The critical mode numbers observed during the current tests are

compared in Figures 9 and 10 of Reference (64) with the results of a-il

previous relevant experimental investigations known. The results are

reasonably consistent, notwithstanding the differences in yield stresses

of the materials, experimental techniques, and despite the fact that the

buckled profiles of cylindrical shells and rings are irregular. Generally

speaking, the experiments), critical mode numbers increase with increase

in the length to radius ratio and with increase in the radius to thick-

ness ratio.

The experimental results in Figure 11 of Reference (64) indicate

that respect of the threshold impulses estimated by Florence and Vaughan

(67) (equation 49 of Reference (64)) ensures tha t the permanent wrinkles

in the deformed profiles of the rings remain small. However, the

experiments], results in Figure 12 (64) demonstrate that the ratio of

wrinkle (buckle) amplitude to average permanent radial displacement

decreases with increase in the impulse magnitude.

The manner in which initial geometric imperfection. of the rings

influences the wrinkle amplitude i~ explored in Figure 14 of Reference

(64 ) .
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The general features and characteristics of iso—dama ge curves in a

dimensionless peak load-impulse space were discussed by Abrahamson and

Lindberg (68), who found them a convenient representation for theoreti-

cal predictions and experimental results on the dynamic response of

various structures subjected to pulse loads as distinct from oscillatory

loads. Moreover, Abrahamson and Lindberg observed that an iso—damage

curve for the dynamic buckling of a simply supported cylindrical shell

under uniform lateral pulse loada is not very sensitive to the amplifica-

tion factor (factor by which the initial imperfections grow during the

response) or the pulse shape. Iso-damage curves are also plotted in

Reference (68) for the dynamic plastic response of beams and circular

plates subjected to transverse dynamic loads which are responsible for

stable behavior and infinitesimal displacements. It might also be

remarked that iso—damage curves have been presented in Figure 5 of

~eference (62) for rectangular plates which retain the important

influence of finite transverse displacements, or geometry changes.

Florence and Abrahason (69) observed that the stability of cylindri-

cal shells and rings subjected to large external impulsive velocities

improved during deformation when the increase in wall thickness was

taken into account. This led florence and Abrahamson to define a cz’iti-

cal impulsive velocity which is associated with a specified acceptable

amplification factor. Thus, impulsive velocities larger than the

critical value produce acceptable departures from circularity of a

cylindrical shell, while impulsive velocities smaller than the critical

value are responsible for unacceptable damage. It is interesting to

observe , from the genera]. trend of the experimental results reported in



-- 
_ _ _ _ _ _ _ _ _ _

.

-31 -

Figure 12 of Reference (64) , that the ratio of the wrinkle (buckle)

amplitude to the average permanent radial displacement of a ring decreases

with increase in impulse.

Florence and Abrahamson (69) formulated the governing equations for

a ring which was made from a rigid linear viscoplastic material, and

studied the particular case when the impulsive velocity remained con-

stant during the collapse of a cylindrical shell onto its longitudinal

axis. The governing equations were solved numerically and various

features of the response are presented in Figures 4 to 11 of Reference

(69). These results indicate that the presence of linear viscoplasticity

drastically reduces the amplification factors and the preferred mode

numbers, and thereby contributes to the enhanced stability of a cylindri-

cal shell.

Lee explored the bifurcation and uniqueness of elastic-plastic

continua loaded dynamically from a general viewpoint in Reference (70),

because random initial imperfections, or perturbed motion, may be

insufficient to describe the dynamic plastic buckling of some structures.

Lee further examined this subject in Reference (71) and developed a quasi—

bifurcation criterion for the stability of elastic-plastic continua loaded

dynamically. A quasi—bifurcation of motion develops at a certain time

tcr when a nontrivial perturbed motion exists , which makes the functional

defined by equation 51 in Reference (71) an extremum. No applications

of this theorem have yet been published, but Lee claims to have used it

with success to describe the dynamic plastic buckling of rods subjected

to axial loads. Lee showed that his dynamic quasi-bifurcation criterioL

reduces to Hill ’s bifurcatiQn theory for quasi-static loads .
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9. Numerical Studies

A number of computer programs are available for studying the dyna-

mic plastic behavior of various structures. A brief review of some of

these finite—difference and more recent finite-element numerical schemes

is given in section 5f of Reference (1).

The Aeroelastic and Structures Research Laboratory at the Massachu-

setts Institute of Technology has continued its active development of both

finite—difference and finite-element numerical procedures for the dynamic

behavior of a broad class of structural problems. In Reference (72),

Leech, Witmer and Morino used the finite-difference computer code 1’ETROS 3

to study the dynamic response of a variable—thickness , double-layer ,

clamped—ended , elastic—plastic conical shell subjected to a frontal cosine

external pressure pulse. This computer program hes now been expanded

in References (73) and (74) to include various new features which are

largely related to thicker shells, thin non-Kirchhoff soft-bonded , and/or

- 

- 
honeycomb shells. The impressive range of capabilities of the PETROS 4

finite—difference computer program is listed in Table 1. of Reference (74).

Wu and Witmer have continued to develop their finite-element numeri-

cal scheme for the dynamic response of various structures. Wu (75)-

demonstrated that his numerical predictions for the deformed profile of a

fully clamped impulsively loaded rectangular plate dgreed quite well with

the corresponding experimental results reported in Reference (76). Wu

— and Witmer (77) further developed the spatial finite-element and temporal

finite-difference scheme in order to study a broader class of structural

problems. They found somewhat better agreement with experimental results

recorded during the dynamic elastic-plastic response of a cylindrical
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shell panel than had been reported previously for a computer code using

a finite-difference procedure. The numerical predictions for the non-

linear transient responses of geometrically stiffened cylindrical panels

and rings also compare favourably with the corresponding experimental

results reported in References (78) and (79), respectively. This work

demon8trates that a finite-element scheme provides efficient and accurate

predictions for the transient behavior of structural problems which involve

large deflectione and elastic—plastic material behavior.

The numerical schemes of Wu and Witmer were used in Reference (15) to

examine the dynamic response of strain rate insensitive elastic perfectly

plastic fully clamped beams subjected to impulsive velocity fields dis-

tributed with first, second and third modal forms. The maximum perma-

nent transverse displacements for the three modal forms were similar to

the corresponding theoretical predictions of a simple rigid perfectly

plastic theory which included the influence of finite transverse dis-

placements (14). A number o.~ assumptions which are customarily made in

theoretical etudies in this general area were explored in Reference (15)

with the aid ol the computer program. Generally speaking, the in-plane

displacements turn out to be one order of magnitude smaller than the

associated lateral or transverse displacements, while it was shown that

the usual procedure for estimating energy ratios (80) is conservative, at

least for the problems considered.

In order to circumvent the considerable expense usually associated

with numerics], finite-element studies, especially for dynamic non—linear

problems, Kawai has developed an alternative numerical scheme, in which a

structure is replaced by an “equivalent” system of small rigid bodies 
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I Iconnected to “springs” distributed over the contact areas between neighbour

ing bodies. This numerical scheme has been used to predict the dynamic

elastic-plastic response of a beam and a square plate in References (81)

and (82), respectively. However, the important influences of finite -

transverse displacements , or geometry changes, and material strain rate -

sensitivity (1) ware not retained in these calculations, so that further

work is required in order to demonstrate the accuracy and appraise the 
-

-

cost of the proposed method for more complex problems.

Many other computer programs have been written in order to examine

the dynamic plastic response of either particular structural components -

or more general structural geometries. A few of these papers which -

have reached the writer ’s attention over the last few years will now be

briefly mentioned.

The authors of References (50) and (83) to (85) have developed some

quite general theoretical principles and formulated various numerical

procedures for predicting the dynamic plastic behavior of structures.

Viscoplastic and large displacement effects are considered in Reference

(83), while material elasticity, material work hardening, and geometry 
-

changes are retained in the basic equations used in Reference (84). The -

studies in References (50) and (85) are restricted to infinitesimal dis-

placements, but Reference (50) retains elastic effects, while the influence

of material strain hardening and strain rate effects may be taken into

account in Reference (85). Some beam and frame impact problems are

examined in Re ference (85).

Erkhov (45) has formulated the dynamic infinitesimal response of

rigid perfectly plastic structures as a linear programming problem which -

L 
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may then be solved using the simplex method. Erkhov used his procedure

to investigate the dynamic plastic behavior of circular and square

simply supported plates subjected to uniformly distributed pressure pulses

with a rectangular pressure-time history.

Ni and Lee (86) used a numerical scheme based on their minimum

principle for dynamically loaded elastic-plastic continua with finite—

deformations to predict excellent agreement with the numerical and experi-

mental results of Leech et al. (87) on cylindrical shell panels , the

experimental results in Reference (76) for rectangular plates, and the

theoretical predictions in I~eference (88) for cylindrical shells.

Bieniek , Fu~ia ro and baron (89) have sought ways in which to simplify - 
-

numerical studies on the dynamic large displacement response of elastic-

p1~etic stiffened shells with arbitrary geometry. In Reference (90),

Bieniek also discussed various numerical difficulties associated with

investigations into the dynamic buckling behavior of elastic—plastic struc—

tiaras.

Cue of the difficulties associated with all theoretical and numerical

studies on the dynamic inelastic behavior of structures is the paucity

of information on the constitutive equations for materials , especially in

the dynami c regime . The influence of material elasticity, material

strain hardening and strain rate sensitivity were discussed briefly in

sections 5a, 5d and 5f of Reference (1), respectively. It was remarked

in References (1) , (62) ,  (66) and (80) that the multi-dimensional con-

stitutive equations are invariably constructed using the properties

observed during uniaxial tests. Moreover , the form of the multi-

dimensional constitutive equations for elastic-plastic materials is still

P
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not clear, even for static problems (91). This shortcoming is compounded

for dynamic problems because scarcely any experimental information exists

for strain rate history effects, or combined loadings (92).

Bodner and Partom (93 - 95) have developed a constitutive equation

which is not based on the usual concept of a yield surface. The incre-

mental conatitutive equations are functions of state variables and the

current geometry which can cater for all history and memory effects.

Bodner and Partom used the concepts of dislocation dynamics to provide a

physical basis for their constitutive equations which they claim are

ideally suited for numerical schemes because no special conditions are

required to distinguish between loading and unloading paths. Recently,

Sperling and Partom (96) have developed a numerical finite—difference

procedure based on the Bodner-Partom constitutive equations and examined

the dynamic elastic—viecoplastic large deflection behavior of a beam. 
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10. Miscellaneous Comments

10(a) Introduction

An attempt was made in the previous sections of this review to sur-

vey the literature published on individual topics during the last three

years. It was not possible to do this completely satisfactorily in

section 9 because numerical methods really require a separate article to

give adequate justice to the large amount of activity in this particular

area. There are many other theoretical studies and practical dynamic

problems which involve material inelasticity. Some of this work, which

crossed the writer’s desk during the last three years, is now mentioned

briefly. This section, then, is to be regarded as a sampling of the

many current activities on the dyn amic plastic response of structures and

is not intended to be comprehensive.

10(b) Experimental Studies

Porresta]. and Weaenberg (97, 98) performed some dynamic experimental

tests on simply supported beams which were made either from aluminum

6061 T6 or from mild steel. The beams were subjected to a short dura-

tion magnetic pressure pulse with a half-sine wave shape~ using an experi-

mental arrangement similar to that used previously for rings (99).

Forrestal and Weeenberg (97, 98) also developed simple approximate

elastic-perfectly plastic and elastic-viecoplastic theoretical procedures

for predicting peak transverse displacements which are in excellent

agreement with the corresponding experimental values.

Experimental studies on the dynamic plastic behavior of various

other beams have been reported in References (13, 96) and (100). 
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Bodner and Symonds (ho) conducted an experimental investigation on

simple plane metal frames loaded dynamically. Experiments on the dyna-

mic plastic behavior of fully clamped circular plates were reported in

References (38) and (41). Witmer et al. also examined the dynamic

plastic response of a freely suspended cylindrical shell in Reference

(38). An experimental investigation into the dynamic plastic buckling

of circular rings was reported in Reference (64). This article also

reviews the literature containing experimental work on the dynamic plas-

tic buckling of rings and cylindrical shells.

An experimental investigation into the structural characteristics

of high explosive containment in cylindrical vessels was conducted in

References (101) and (102). Simple rigid-plastic theoretical procedures

were also developed by tbtise authors, who found that they provided

reasonable estimates for the permanent radial deformations of the walls

of cylindrical vessels, either with or without end caps.

10(c) Theoretical and Numerical Studies

Many theoretical and numerical studies were discussed in the previous

sections. A few additional articles are now briefly mentioned.

I~rajcinovic (103) derived a theoretical rigid perfectly plastic

solution for the dynamic infinitesimal displacement response of a simply

supported beam subjected to a uniformly distributed dynamic load with

an arbitrary pressure-time history.

Toungdabl ( 104) examined the dynamic plastic behavior of a rigid

perfectly plastic hexagonal frame subjected to an internal pressure

pulse with an arbitrary shape. The important influence of finite die-

- 
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placements, or geometry changes, was retained in the governing equa-

tions.

The behavior of a multi-layered spherical vessel subjected to a

spherically symmetric intermittent internal pressure pulse was examined

in Reference (105). The vessel consisted of N concentric unsupported

spherical shells made from an elastic-linear work hardening material and

separated by evacuated gaps. The pressure pulse caused the inner layer

to move outwards and strike the second layer. These two layer. moved

outwards together until they separated due to wave interactions. The

second layer then struck the third layer and the process was repeated.

Lepik and Mroz (106) used a mode approximation procedure to obtain

— the optima l design of rigid-plastic structures subjected to dynamic loads.

The objective was to seek the design which gave the minimum permanent

displacements of a structure with a given constant volume of material.

The particular case of a stepwise constant thickness beam subjected to a

- 
- 

uniformly distributed pressure-pulse with a rectangular pressure-time

history was examined in some detail. It was found that the maximum

permanent deflection of an optima]. two-step (per half span) beam was one-

half the corresponding permanent deflection of a uniform beam having the

same volume. The impulsive loading of beams and circular plates was

also examined in Reference (106).

Menkes and Opat have continued their work, discussed in section 1 of

Reference (1) and in Reference (18), on the dynamic fracture of struc-

tures subjected to very high pressures for very short times. Menkes and

Opet presented in Reference (107) the theoretical foundations of a

finite-element numerical procedure for simple structures which undergo

large deformations and localised ruptures.

- - _ _ _
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10(d) Collision Protection of Vehicles

Many articles have been written on the collision protection of

various air, land and water vehicles, and some of this literature is

reviewed in References (4), (63), (80), (108) and (109). A few of the

recent theoretical and experimental studies on the dynamic inelastic

response of various components of interest for vehicle crashworthiness

are discussed briefly in this section.

The dynamic axial collapse behavior of thin—walled steel box sec-

tions was- examined in References (110) and (ill), while the response of

circular tubes , corrugated tubular sections and beam—columns subjected

to dynamic axis]. loads was investigated in References (112) to (114),

respectively. The review article by Thornton and Dharan (115) also con-

tains some comments on the dynamic axial buckling of structures.

Shieh (116) developed a general purpose computer program for the

large displacement dynamic response of elastic—viscoplastic plane

frames. The numerical predictions of this computer program agreed

reasonably well with the experimental behavior of a steel plane frame

dropped onto a narrow rigid pole obstacle. Mclvor and Anderson (117)

have also reported a numerical and experimental investigation into the

inelastic response of a frame striking a pole. Mclvor et al. (118, 119)

studied the large deformations of frames loaded statically to provide

insight into the behavior of structural members in vehicles.

Garnet and Armen (120) used a finite-element procedure to examine

the mechanics of impact and rebound of an elastic-linear work hardening

rod subjected to axial forces, which are applied end removed periodi—

cally, and which hits a rigid wall at right angles. Lush and Witmer (121) 

—-~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



—------ --,-,-—-,-—---— -—---—-—--..-———,——-——.---.-- - —

-41-

conducted some experimental tests to study the impact characteristics

of rodlike missiles striking either a flat rigid barrier or the mid-

span of a fully clamped beam. The missiles had a crushable forebody

made from a semi—rigid polyurethane foam and a comparatively rigid alumi-

num afterbody.

The theoretical and experimental behavior of inversion tubes and

rolling torus load limiters under static and dynamic axial loads was

examined in References (122) to (124).

Tong and Rossettos (125) used a modular concept and developed a

numerical procedure to estimate the structural deformations sustained by

vehicles during collisions.

11. Concluding Remarks

It was remarked in sections 1 and 10(a) that material inelasticity

plays an important role in many dynamic structural problems which arise

in a number of diverse areas. The studies reported in References (104)

and (126) were motivated by the nuclear engineering industry, References

( 6]. - 63, 109 and 127) are related to ship and marine vehicle design,

- 

- and the References quoted in section 10(d) are concerned with the col-

lision protection of automobiles. References (7, 13, 15 and 122 - 1.2k)

describe various energy absorbing systems, References (20, 53, 60 , 107

and 128) are related to defense purposes, and Reference (129) is concerned

with the earthquake resistance of buildings. Simple rigid-plastic

analyses could also be used for some of the design problems for buildings

subjected to severe dynamic loads which were discussed in Reference (130).

This field is a rapidly expanding one, and many of the individual

topics mentioned briefly herein warrant an entire review article to convey

L 
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adequately the current status. Nev.- ~e1ees, it is- hoped that this

survey article, together with the earlier one published in this journal (1),

provides an entree into the literature extant, and gives some insight

into the advantages and disadvantages of various experimental, numerical

and theoretical approaches to the solution of dynamic structural problems

which involve materiel inelasticity.
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