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ABSTRACT

Density functional formalism of Hohenberg and Kohn (11K) is generalized

for the case of a multicomponent plasma. Using the self—consistent

K hn-Sham (KS) equations for electrons and holes and local

density approximation for exchange-correlation ootential,

we investigate the surface characteristics n~ electron-

hole liquid (EHL) in six configurations of Ge and SI. We denote t~Iese

configurations by X(v
C;vh),where X is either Ce or Si, and V e 

and V
h 
are the

number of occupied electron and hole bands,respectively . In normal Ce, ie.,

Ce(4;2), the value of surface tension, a, is found to be 3.7 x lO~
4erg/cm

2
.

When Ge is subject to a uniform stress of about 3.5kg/mm
2 
along <111> direc-

tion, i.e., in Ge(l;2), a is calculated to be 1.0 x lO
4erg/cm2. Under a

very large <111> uniaxial stress on Ge, i.e., Ge(l;l), a is found to be a fac-

tor of twenty smaller than in Ge(4;2).

Charge on electron—hole drop (Elm) is also studied in the above mentioned

systems. In accordance with the experiment of Pokrovsky and Svistunova, we

find that EHD is negative in Ge(4;2) and positive in Ge(l;2). It is predicted

that the drop will sustain a negative charge in Ge(l;1).

Calculations for surface tension and charge on Elm are also reported in

three configurations of silicon. The value of a in unstressed Si, denoted by

Si(6;2), is obtained to be 87.4 x l0 4erg/cm2. Application of an intermedi-

ate stress along <100> direction leads to the configuration Si(2;2). The

—4 2
value of a in Si(2;2) is found to be 32.8 x 10 erg/cm . In the presence of

a large <100> stress, i.e., in Si(2;l), surface tension is a factor of eight

smaller than in Si(6;2). Calculation of charge reveals that the Elm is nega-

tive in both Si(6;2) and Si(2;l). Within the limits of accuracy of our calcu—

lation we find the drop is almost neutral in Si(2;2).
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INTRODUCTION

In indirect band gap semiconductors (e.g., Ge or Si) excitons are formed

under weak external excitation. When the density of excitons becomes high,

their individuality is lost. Further, in the luminescence spectra a new line

appears on the low energy side of the exciton line. Detailed experimental in-

vestigations have consistently pointed out that the new luminescence line ori-

ginates from a recombination of electrons and holes condensed in high density

(1—16)
droplets . Such a condensed state is now known as electron—hole liquid

(EIIL). Experimental investigation of its properties is facilitated by the

fact that the life time of particles is quite long (~ 1o
6 sec) and therefore

the condensed phase is, to a very good approximation, in a state of thermo-

dynamic equilibrium. It was Keldysh who first conceived that the EHL is lik-

ened to a plasma of electrons and holes stabilized by Coulomb interaction of

the constituents~
17
~. His conception of ERL was subsequently confirmed by

(1—16) (18—26)an abundance of experimental and theoretical observations.

Theoretical appeal in electron—hole liquid is mainly due to the absence

of complications which can arise from the lattice effects. In view of the
S 0

fact that the excitonic Bohr radius in Ce (- 177 A) or Si( i49 A) is large

compared to the lattice constant , and that the fraction of electrons excited

in~.o conduction band is small, the interaction between electrons and holes is

bare Coulomb screened by static dielectric constant of the material~
27
~ . Thus,

E11L can be regarded as a collection of electrons and holes, characterized by

proper band masses and interacting via statically screened Coulomb interaction.

The fact that the system at hand can be accurately described as a quantum plas-

ma of electrons and holes makes it an ideal candidate for testing different

many—body approximations. Theoretical efforts to date have been successful in

—2-
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(20—26)explaining the ground state properties of EHL • Calculations of bind-

ing energy and equilibrium density in Ge and Si agree very well with experi—

ment~
26
~. Detailed investigations have also been made of thermodynamic quan—

titles like, gas—liquid transition temperature, the compressibility, the

temperature dependence of density and of chemical potential, etc.
l]6

~
26
~

2 8 3 3)
.

Theoretical results for these quantities are also in good agreement with ex-

periments, thereby establishing the validity of plasma model~
26
~.

Surface structure of EHL has not hitherto been examined as thoroughly as

its bulk properties. The reasons for insufficient knowledge of EHL surface

are essentially two fold. First, the lack of translational invariance makes

any surface problem more difficult than the bulk. Second, proper understand-

ing of the bulk properties, which must precede that of the surface, has come

about only recently. Now that the bulk properties of EHL are well understood ,

there is a basis for a proper investigation of its surface properties.

In this paper we shall examine the surface characteristics, such as sur—

face tension, dipole layer and charge on electron—hole droplet (END) in ger-

manium and silicon under uniform, uniaxial stress along <111> and <100> direc-

tions, respectively. For the sake of convenience we shall designate these

systems by x(Ve;vh)~~~~ 
where X is either Ge or Si, and v~ and V

h 
are,respec—

tively, the number of conduction and valence bands. In germanium under zero

stress, i.e., Ge(4;2), there are four equivalent conduction bands along <111>

direction and two hole bands degenerate at the I’ point. Away from the center

of Brillouin zone, the hole bands branch out into a light and heavy hole bands.

The structure of valence bands is the same in unstrained silicon and germanium.

The difference arises in the number and location of conduction valleys. There

are six conduction bands along <100, direction in Si. Thus, the notation f or

-3—
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unstrained silicon is Si(6;2)~
35
~.

In the presence of a <111> stress on Ge,one of the conduction minima moves

toward the valence bands while the remaining conduction bands move away from

it. At a stress of about 3.5kg/n~
2 all the electrons of the condensed phase re-

side in the lowest conduction valley, because the Fermi energy of electrons co-

incides with the absolute minima of the other three conduction bands. Except

for a slight decoupling at the r point, the structure of valence bands remain

as in Ge(4 ;2). Such a configuration is called Ge(l;2). When silicon is subject

to a uniform stress along <100> direction, two of the six conduction valleys

move toward the valence bands while the remaining four move away from it. ~ t

a stress of about 10.5 kg/mm2 , only the two lowest conduction bands

are populated. The changes that occur in the structure of valence bands are

similar to those in Ge(l;2). Following our notation we denote this configu-

ration by Si(2;2).

Application of a large <ill> uniaxial stress in Ge and <100> in Si not

only removes the valence band degeneracy at the r point, but also modifies the
(36 )

structure of valence bands. In both systems, the holes occupy a single, highly

anisotropic band. In Ge under a large <ill> uniaxial stress the electrons re—

side in a single conduction band, whereas in Si under a large <100> stress they

occupy two conduction bands. We designate these systems by Ge(l;l) and Si(2;l).

The band masses, dielectric constant, and the values of excitonic rydberg used

in the present work are listed in Tables I and II.

Owing to different masses and/or number of bands, electrons and holes in

EEL possess different  chemical potentials. Now, the bulk chemical potential for

any component consists of kinetic, exchange and correlation contributions. Ex-

plicit calculations for the ground state energy reveal that electrons and holes

-4- j 
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contribute almost equally to exchange—correlation energy~
2
~~

26’. In that event,

the difference in bulk chemical potentials of electrons and holes arises mainly

from (~~ — ~~
), where and are, respectively, the Fermi energies of elec-

trons and holes. For a system with Ve conduction bands, and a light and heavy

hole bands, and are given by

~ 21(2 i~
2K2 3/2 1 -2/3

—T o —T o th

~~
2’

~ 
~~
Uh 2  l +( ~~—)

d e e  (1)and
2 1/3

— (3ir n0)

where n
~ 
is the equilibrium density of e—h pairs, mdc the density of stat es

mass for an electron, and mLh and mhh are, respectively, the light and heavy

hole masses.

Using the band masses, given in Table I, for Ce(4;2) we find that i~/~
l
~
62/V

e 
2/3 

— 0.64, which implies that the holes in EEL are less tightly bound

than the electrons. Consequently, at a low but finite temperature the holes

will have excess thermionic emission and,therefore, the EHD will sustain a

negative charge. The holes will continue to evaporate until, at equilibrium,

the work functions for electrons and holes, and therefore their rates of emis-

sion become equal~
37
~. Similarly, in Si(6;2) the ratio ~~~~~ — 0.55, imply-

ing that the END will be negatively charged.

Application of these arguments leads to interesting consequences in

strained Ge and Si. It is easy to infer that in Ge(l;2) and Si(2;2) the elec—

trons will tend to evaporate more than the holes (the ratio ‘~/~~ 1.62 in

Ge(l;2) and 1.14 in Si(2;2)) and therefore the droplet will acquire a net posi-

tive charge. In the case of Ge(l;l) and Si(2;l) the ratio ~~/p~ — mdh /md
v .

— 5— 
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With the band masses given in Table II , ~~~~~ — 0.40 in Ge(l;l) and 0.46 in

Si(2 ;l), which implies that the electrons will evaporate less readily than the

holes. In other words, the Elm will be negatively charged in Ge(l;I) and Si(2;1).

Measurements of Pokrovaky and Svistunova have confirmed that the charge on END

is indeed negative in Ge(4;2) and positive in Ge(l;2)~
38
~. To date, no experi-

mental measurement of droplet charge has been reported in Ge(l;l), Si(6;2) ,

Si(2;2) and Si(2;l).

Coming to the question of surface tension, experimental studies of coexist-

ence curve have revealed that the exciton gas becomes supersaturated before the

END begins to nucleate~
39
~. This is a signature of existence of surface tension.

Measurements of EEL surface tension, a, have been carried out only in Ge(4 2).

Westervelt et al. have reported a value of 2.9*lO
4
erg/cm

2 (39)
• Bagaev and co-

workers have estimated a to be 1.6*lO
4erg/cm

2 (40)
• Recent experiment of Eti—

enne et al. reveals a value of 3 * lO
4erg/cm2(

~~~whi1e Staehll’e estimate is

3.8 * lO
4erg/cm2 (42) To our knowledge, there does not exist any experimental

measurement of surface tension in Ge(l;2), Ge(l;1), Si(6;2), Si(2; 2) , and Si(2;l).

Without conclusive experiments on surface tension and binding energy it is in-

conceivable that any progress can be made in understanding the coexistence curve

or the kinetics of END formation.

In view of the fact that EEL is free from “parasitic” effec ts of ions, theo-

retical investigation of its surface properties can be appropriately handled by

means of density functional formalism of Rohenberg—Kohn—Sham (RKS)’43
45’. With-

in this formalism there are essentially two ways of approaching the surface prob-

lem. The easier of these two is widely known as variational procedure. The basic

philosophy of variational method is to approximate the ground state energy and

use exponential density profiles for electrons and holes. Each density is char-

acterized by a variational parameter. In this way the approximate ground state

-6-
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energy becomes a function of variational paramecers. After minimizing total

energy with respect to these parameters one obtains the minimized total en-

ergy. Subtracting the bulk contribution from the total, one gets the surface

energy. Most authors have retained local density contributions from kinetic

and exchange—correlation energies, and first gradient correction to kinetic

(37 ,46-49)energy • The value of surface tension that they obtain in Ge(4;2)

is around l*lO 4
erg/cm

2. On including the first gradient correction to ex-

change—correlation eretgy Vashishta, Kalia and Singwi find that the value of

(50 ,51)surface tension changes significantly . Their estimate of a in Ge(4;2)

is 3.5*lO
4
erg/cm

2
. Evidently, it is in reasonable agreement with tha meas-

urement of Westervelt et al.~
39
~, Etienne et al.~

41
~~, and of Staeh1i’42~. An

important outcome of their variational calculation as well as that of Reinecke

et ~~~~~~~~ is that the END surface tension in Ge(4;2) is an order of magni-

tude (a factor of sixteen) larger than in Ge(l;l).
(50)

Variational calculations that include effects of valence band coupling ’48~

on gradient correction to kinetic energy of holes, as well as exchange—corre-

lation gradient correction~
50
~, yield a positive charge on END in Ge(4;2) and

negative charge in Ge(l;2). These results are in disagreement with the above

mentioned thermodynamic arguments and the experimental results of Pokrovsky

and Svistunova~
38
~. Further, contrary to what one expects from energetic con-

siderations, the variational procedure yields a positive charge on END in

Ce(l;l)~
50
~. Such an unsatisfactory feature of variational method arises

from the approximate treatment of kinetic energy and the absence of Friedel

oscillations.

Considerable improvement can be made over variational procedurem, provided

one resorts to the self—consistent scheme of Kohn and Sham~
44 ’45

~ ; the work

involved in it is stupendous. The merit of self—consistent procedure lies

— 7—
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in the exact treatment of kinetic energy which also brings In part of the ef-

fect of Priedel oscillations. We shall describe in this paper a self—consist-

ent calculation for the surface properties of EEL in the aforementioned sys-

tems. In accordance with the observation of Pokrovsky and Sviatunova~
38
~ , the

self—cone~stent calculation yields a negative charge on END in Ge(4;2), and a

positive charge in G~ (l;2) ’52~. On the basis of our calculation we predict

that the EHD will be negatively charged in Ge(l;l), Si(6;2) , and Si(2;l). This

is in agreement with the aforementioned thermodynamic considerations. Within the

limit of accuracy of the calculation, the END is found neutral in Si(2~2).

As regards surface tension, we obtain a value of 3.7 * lO
4erg/cm

2 
in

Ge(4;2) which Is In reasonable accord with the experimental estimates of West—

ervelt et ~~~~~~~ Etienne et ~~~~~~~ and Staehli~
42
~. Surface tension in

Ge(IU) is found to be a factor of twenty smaller than in Ge(4;2). The pre-

sent calculation yields a value of 87.4 * l&
4
erg/cm

2 for surface tension in

Si(6;2). As in the case of Ge under stress, we find that the a in Si(2;l) is

much smaller (
~ 1/8) than in Si(6;2). In Ge(l;2) and Si(2;2) the values

of a are calculated to be 1.0 * lO~~ and 32.8 * l&
4
erg/cm

2
, respectively.

In Section I we give a multicomponent generalization of HR theory and de-

rive rigorous expressions for the chemical potential of electrons and holes.

It is followed by a description of self—consistent Kohn—Sham equations in

Section II. Section III deals with the surface tension of END in the six sys-

tems and Section IV is devoted to a discussion of END charge. Finally, we

mention in the conclusion shat improvements can be made on the present calcu-

lation.

I. MU LTICO?~ ONENT GENERALIZATION OF HK THEORY

Consider an M—component system in the presence of external potentials

each of which couples with only a particular component. The Hamil—

-8- 
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tonian of such an H component system can be expressed as

M ( + ?~
2 2 N ( + j

H —~E~ J dx ~ 
~~i 

V ) ?~ (r) + ~~ J dr Y
1

(r) V (r) ~V1(r)

(2)

+ 1/2 
~~~ ~ J d~ J d~ ’ F~(!) ~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ E ’)  
~~(&~

where ‘V 1(r) is a field operator for the jt h component , ~~ (r) its Hermitian

conjugate , and v . (r)  is the statically screened Coulomb potential

energy . The expectation value of H taken with respect to the ground state

wavefunction J I >  yields the ground state energy , E:

M I iE _ T + V + j~i e~~ j j d r Ve(r) nj (r) , (3)

where 
~~ 

— + 1 for holes and —l for electrons. In Eq. (3) , T and V are the

kinetic and potential energies , respectively, and n1(r) is the density of the

j th component.

Following the proof given by HR for a single componen t system~,
43

~ we shall

show by reductio ad absurdum that the ground state energy of a multicomponent

system is a unique f unctional of the density of each component. Let us assume

that there exists two sets of external potentials, (V~~ (r ) }  and {V 1
8

(r) }, and

that correspond ing to them there are two wavefunctions ty > and ~ ‘> whir h yield

the same set of densities (n 1(r)}. We shall further assume that the ground

state is nondegenerate and that the ground state energy is minimum with respect

to variations in wavefunction . In that case ,

(*1111*) < (*‘IHI* ’) - (* ‘l If l *’) + (*‘tH - N ’~~ ’) (4 )

or 

E < E ’ + e 
~~ J dr n~ (r) [V~~(r) - V~8(r) ] (5)

Interchanging the primed and unprimed quantities and adding the resulting

-9- 
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equation to Eq. (5), we obtain

E + E ’ < E + E ’ , (6)

which is absurd . Therefore , j ’F> and ‘V’ > cannot be d i f fe ren t  and yet yield

the same set of densities {n 1(r)) .  In other words, the external potentials

(V~ (r) } and , therefore, the ground state energy are uniquely determined by

If the number of particles is fixed , E must be stationary with respect

to variations in any n1(r) . A change in n
~

(r) from its correct value shall

correspond to a change in the wavefunction from the ground state function

and according to variational principle such a state is of higher energy.

Insofar as the potential energy has a long range Coulomb part , it is

hardly convenient to express the ground state energy as in Eq. (3), i.e.,

a sum of contributions arising from external perturbation, potential and

interacting kinetic energies. Instead , it is much more appropriate to sep-

arate the classical Coulomb energy and write the ground state energy of a

multicomponent plasma as

e2 N N 
___________E ( (n 1}J — •

~~; ~.h ~h ~~~ f dr ’ J dr ” 
~~~~~

, 
—

(7)

+ e i~l F 1 J dx ’ V~ (r ’) n1(r ’) + 
i~l 

T
~

(n
i
) + E [{n 1

}]

where the summations are taken over different components of EEL . The f i rs t

term in Eq. (7) constitutes the classical Coulomb energy , the third term is

the sum of noninteracting kinetic energies of each component and the last

term is the exchange—correlation contribution. A distinct advantage of writ-

ing the ground state energy in a form such as Eq. (7) lies in the ease with

-10-



which different terms in the equation can be expressed in terms of quantities

related to the homogeneous system.

Let 6n~ denote an arbitrary variation in the density of ith component.

Owing to the stationary property of E ,

6
~
EUnj}] — 0 . (8)

Since, the number of particles of each component is conserved ,

J dr 6n~(r) — 0 (9)

Conditions expressed in Eqs. (8) and (9) are basic to density functional

formalism. Combining them by means of an undetermined Lagrange multiplier ,

we obtain

— E ii~ J dr n
~ (r)) 0 (10)

Using Eq. (7) in Eq. (10) we obtain the following expression for

M I fl
j

(.! ’) 6T’ I n~ J ~
5Exc [(fl i)l

e 
~~
V (r) + 

~ ~ J dr ’ IL — !.‘ I + ön
~

(r) + 6n
~

(r) (11)

Henceforth , we shall suppress the external potential.

Let 
~~

$(r) represent the electrostatic energy of ith component . With

~~
L) given by

2 N ____

~~
L) — 

~~

— 

~ ~ J dr ’ , (12)

the expression for reads,

6TL [nLJ 6E [(n~}]
— ~~+ (r) + + . (13)

In view of the fact that the radius of END (� 5 x lO
4cm) is much larger

than interparticle distance in the system, it is reasonable to assume that

— 1 1 —
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Elil.. is a semi—infinite system, occupying half the space z < 0. The space z > 0

is treated as vacuum. Under these conditions, densities of EEL components vary

only in the z direction, thus making + a function only of z. Transforming Eq. (12)

into a Poisson equation, we obtain

d 2
~ (z) 

— 
4ve 2 

~~ ~
j n~(z) . (14)

- 
- The appropriate boundary conditions for •(z) are taken to be,

..,. + 
— constant (iSa)

and
d$(z) 

— 0 (15b )dz

Then, the solution of Poisson equation reads,

• ( z )  — +(u’) + ~~~~~ 

~ 
f”dz’ (z — z’)nj(z’) (16)

Following the conventional definition of dipole layer, namely

— $(“) — •(— •) , (17)

and making use of the fact that the total system is charge neutral, we

obtain 2
— ~:e j~l ~

j Ids’ a’ nj(s) (18)

Writing Eq. (18) in terms of electron and hole densities, ne(s) and ~h(~)’ 
W~

get 2
— — 

we f’dz’ a’ (
~~
(
~
‘) — nh(z’)] (19)

It is consequential to the discussion of charge to express the chemical

potential in terms of dipole layer. For this purpose, ‘m~~ aver age Eq. (13)

over the volume of the drop and obtain

6E
u — 

~ $ (—.) + + 
XC 

, (20)£ £ 6
~t
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where is the density of ith component in the bulk. The Last two terms in

Eq. (20) are, respectively, the kinetic and exchange—correlation contributions

to bulk chemical potential of ~th component. The expression for kinetic con-

tribution ta simply the Fermi energy for that component. The exchange—corre-

lation par t of chemical potential is obtained from the ground state energy

calculation fox a uniform system~
23’26

~.

From now onwards we shall take •(c” ) — 0 as our reference level of energy.

• In that case, Eq. (20) becomes

6T’i
~~

] 6E [{n~ )]
— 

a 
+ 

xc 
— ~1

A , (2 1)

The discussion of charge that we presented in the introd.iction can now be

made completely general provided one compares the chemical potential, 
~e’ 

of

electrons with that of holes , Mh. Since the bulk chemical potential is ob-

tained from the ground state energy of a uniform EEL, the quantity of main

interest in a surface calculation is the dipole layer. The dipole layer

depends sensitively on the density profiles for electrons and holes, (Eq. (19)]

and unless these densities are accurately known , it is inconceivable that we

shall obtain the correct sign of charge on END,

Prom Eq. (21) we can write down for the difference 
~~h 

— ue
);

Mh Ue Uh Me
2
~~ 

(22)

The sign and magnitude of charge is completely determined by the difference

— U e • Since twice the dipole layer is not expected to remove the differ-

ence 
h 

- 
~~~ the aforementioned conclusions about charge will remain un-

changed.

II. SELF—CONSISTENT CALCULATION

There are essentially two reasons f or doing a self—consistent calculation

— 1 3—
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for the surface properties of EEL. In view of the reasonable agreement between

the variational calculation of Vashishta et al.~
50
~ and the experimental meas—

(39 ,41,42)
urement of surface tension in Ge(4 ;2) , one would like to know what ef-

fect the higher kinetic and exchange—correlation gradient corrections have. The

other motivation f or doing the self—consistent calculation stems from the fail-

ure of all the variational calculations~~
8 5

~~ in providing a satisfactory answer

to the question of charge. Let us remind our reader that these variational cal-

culations yield a positive charge on END in Ge(4;2)148 SO) and a negative charge

in Ge(l;2)~
50
~. These features are in complete contradiction with the findings

of Pokrovsky and Svistunova~
38
~ ; they measure a negative droplet charge in Ge(4;

2)

and a positive charge in Ge(l;2). Further , on the basis of energetic constdera—

tions we showed that the END charge would be negative in Ge(1;l), whereas the

variational calculation~
50
~ yields a positive charge on the EHD~ The failure of

variational calculations is due to the fact that the dipole layer is overesti-

mated. Considering how sensitive dipole layer is to the density profiles of

electrons and holes, the way to improve upon the variational calculations is to

obtain these densities more accurately. Another serious shortcoming in varia-

tional calculations arises because of truncation of gradient expansion, as a re-

sult of which one misses out the effect of Friedel oscillations~.

All these shortcomings can be remedied by the elegant self—consistent scheme

of Kohn and Sham~
44
~. It allows an exact treatment of noninteracting kinetic

energy, and consequently one does not miss out the effect of Friedel oscilla-

tions arising from kinetic energy. The limitation of the self—consistent pro—

cedure lies in how well one can include exchange and correlation effects. The

Ko~n—Sham formalism is based on the following three equations:

72 + v~~it n ~~i ; LI) ~~ L) — 
~~ *~~L) (23)
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which resembles the Schrodinger equation. The first term on the l.h.s. of

Eq. (23) arises from the noninteracting kinetic energy of ~~ component of ERL.

The second term on the l.h.s. is the effective potential felt by a particle of

ith component. It depends on the densities of all components, {n
i
}, and can be

written as

6E ((n~ }]
V
~

({nj}: !J — 
~~

$(L) + 6
~~

(L) (24)

where F t+(r) is the electrostatic potential of ith component, given by Eq. (12),

and 6E
~~

/6n
~
(r) is the contribution arising from the exchange and correlation

energy of EEL.

The third equation constitutes an expression for the density of ith corn—

ponent in terms of eigensolutions,$~ (r), of Eq. (23), and it reads

a 2
— z *~

(L)I (25)

where a denotes the lowest occupied eigenstates. Equations (23)—(25) c~,nsti—

tute a set of self—consistent equations f or the £th component. Their solu-

tion yields the densities (n~ (r) )~ which are the basic quantities in density

functional formalism. It is apparent from Eqs. (23)—(25) that these are a cou-

pled set of equations — the potential of ith component depends not only on the

density of £t~ component but also on the densities of all other components.

This is the primary source of difficulty in solving Eqs. (23)—(25) for each

component of EEL.

It is evident from Eqs. (23)—(25) that the central quantity in the self—

consistent method is the exchange—correlation potential, tSE
~~

[(nj}J/6ni(r).

Assuming that the densities vary slowly in space, we may approximate 
~~~ 

by

the local density term, whereby

J dr~~~~((n
1
}) (26)

—~ 5—
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The quantity, cUn i}). 
is the total exchange—correlation energy density. It

is obtained from the ground stat s energy calculation for a system of uniform den-

sities (E~), and then each i. replaced by a varying density n
i
(r). Eq. (26)

is co only known as local density approximation (LDA). The appropriateness

of LDA for the determination of ground state energy was first discussed by Kahn

and Sham~
44
~. Tong and Sham~

53
~ showed that in LDA the density n(r) for atoms

agree. well with the Hartree—Fock calculations. Using an exact sum rule, Vannj-

menus and 3udd’54~ have argued strongly for the correctness of n(!) obtained by

Lang and Kohu in LDA~
55
~. Thus, it seems that the local density approximation

is indeed a good approximation for the determination of density.

Functional differentiation of Eq. (26) leads to the following expression

for exchange and correlation potential, p~~ ({n
1
}):

xc _________Ui ~~~~~~ 
— an~(r) 

(27)

Since the particles belonging to tt~ component may reside in an anisotropic

ellip tic band, the kinetic energy term in Eq. (23) may have the form

2 2 2 2
= 

~~~~~~~~~ ~ 
2 2 2m

~ 1; ~~2 ‘ 1 -

where m
~ 

and m are, respectively, the tranverse and longitudinal masses of
, 

-

a particle belonging to the ith component. Under the volume conserving trans-

formation
1 1 1

y — y ~~~~y ; z— y 3 z (29)

where
— tn

~~~
/m
~~~
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Equation (28) takes up the form

2
— .

~~~~
. (30)

L
i 

L
~~L

where the kinetic energy operator, !2, is given by

2 a 2 a2 a
~ 2~~~~~2~~~~~2 ‘ (31)

a t  ay ~~

and ~~~~~ , the density of states mass for a particle of ith component, is de—

fined by
1

- 2
— (m

t~~ 
m
t~~

) (32)

Hencefor th, we shall drop the tilde from the kinetic energy operator ,

and omit the bar over the density of states mass, ins.

Assuming that the EEL surface is perpendicular to the z—axis, the expres-

sion for q,~(r) deep inside the liquid is

ein(kz — y (k) ) et~~x~t + k~y) (33)

where k , k , k are the three components of wave vector k and y (k) is the

phase shift. Substituting Eq. (33) in Eq. (23), we get

— 

~~~ 

(k~ + k~ + k2) + V
~

[(8j} ; — 0.] 34)

Using Eq. (24) in Eq. (34) we obtain

2 2 2 6E ( (E
~~~ ) I

— 

~~~ 

(Icr + ky 
+ k ) + ~~$ (— c’

~ 
+ (35)

Substituting Eq. (27) in Eq. (35), we find

— 

~~~ 

(k~ + + k
2
) + ~~~~~ 

.‘) + 1 C~~ 8~ }) (36)

-17--
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where is the exchange-correlation contribution to the bulk chemical poten-

tial of ith component. Eq. (36) holds only when the wave function is given by

Eq. (33). In general, *~ (r) has the form

— •t(k,Z) e
i
~~x

x + k~y) . (37)

Substituting Eqs. (36) and (37) in Eq. (23) and expressing length in excitonic

3ohr radius, the energy in excitonic aydberg (1 Rydberg _ t
2 2 ) we f ind ,

~~ 
d~~ 

+ V~~~[(n
1
} ; z]) *t

(k ,z) — —~~~ (k2 — 

~~~ 
4I
~

(k ,z) (38)

where — 3w 2
~~~ /~

h t , and m
r 
is the reduced mass. For the effective potential

of the ~~~ component, Vr~, 
we obtain the expression,

v7~~~({nj } ; z] — 8w 
~~ J dz ’ (a — a’) (fle

(Z’)

(39)

— xc
— u~

((
~j

}) + Ut

where n (z) and %(z) are , respectively , the electron and hole densities, and

is the bulk chemical potential of ith component. The exchange-correlation

potential, u~~, is given by Eq. (27).

From the ground state energy calculations f or a homogeneous EEL, we know

that to a very good approximation the electrons and holes contribute equally

to exchange-correlation ~~~~~~~~~~~ Therefore, it is reasonable to divide

exchange and correlation contribution in the bulk equally among electrons and

hole.. In that case , Eq. (39) simplifies to

Z ]  .8w F
~L f :

dZ
~ 

(z — a ’) (n (Z ’) — % (z’)] 
~~~~~~~~~~~~~~~~~~

(40)
+

-1 8-
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The exchange—correlation potential is given by

U
~~

(n
~
) — 

d ( C Xc ( ) )  (41) Fl

where CXC
(n) is the exchange-correlation energy per particle. Defining a

local value of r5 by 
-

nt
(z) — 3/41 r 3

~(z) 
(42)

the expression for that we have used, reads

_ _ _ _ _ _ _  
b(i)—2

r t(a) — 
i&l c( i) r

.~~ 
r9,t

(z) < ~~

—

O.5*B
+ C + r5 t (z) . r5~~(z) > ~~

In Eq. (43) a is related to the coefficient of exchange energy, the c(i) are

the coefficients of polynomial fit to correlation energy , and B0 and C0 are

the coefficients of Wigner fit to correlation energy. The coefficients of

polynomial and Wigner fits to correlation energy are obtained from fully self—

consistent calculation of Vashishta et al.’26~. Their calculation includes

the effects of anisotropy of conduction bands as well as multiple scattering

of e — e, e — h and h — h. The binding energy, equilibrium density, the cri—

ical temperature, obtained by Vashishta et al., agree very well with experi-

mental results. Values of a, c( i), and C0 are given in Tables III and IV.

Performing the sum over bands and the lowest states in Eq. (25) (see Ap—

pendix I) we obtain,

v~ 
tFt _2 2 2

n
~
(Z) — —j J dk(k~~ 

— k ) (4.t (k ,Z)]  . (44)

The EEL in Ge(4 ;2) , Ce(l ;2), Si(6;2) and Si(2;2) consists of three di.—

-19-
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tiact components — electrons , light holes and heavy holes. Corresponding to

each component we have a set of equations like Eqs. (38), (40) and (44).  It

is well known that density of states mass of light holes is much smaller than

that of heavy holes with the consequence that the light hole contribution to

equilibrium density is much smaller than that of heavy holes. Therefore, it

is reasonable to solve only the set of equations for electrons and heavy holes.

In the set of equations for holes we include the kinetic contribution of light

holes by def ining an effective hole mass, m~:

m 3/2

“H — mhh~~ + (~~~) ]2/3 (4i)

where and “
~nh are, respectively , the light and heavy hole masses in Ge

and Si. The use of in Eq. (38), f or example, insures an exact treatment of

kinetic energy of holes in a homogeneous EEL. In Ge(l;l) and Si(2;l), there

is only one hole band , with the consequence that there are only two sets of

coupled equations to be solved.

We start with exponential trial density profiles for electrons and holes,

and construct their effective potentials from Eq. (40). Having obtained the

effective potentials, we solve Eq. (38) for 4,t(k,z) of each component and then

use them in Eq. (44) to construct new densities {nt
(z)}. This procedure i.

continued until (n
~
(a)) converge satisfactorily. The degree of convergence

that we attain for each density profile is better than 0.5% of the mean density.

A further check on convergence is provided by the one—dimensional analog of

Friedel sum rule~
56
~ (see Appendix I] which is very well satisfied in our cal—

culations [for details of our numerical procedure, see Appendix II].

The self—consistent density profiles in Ge(4;2), Ge(1;2), Ge(l; l) , Si(6; 2),

Si(2;2), and Si(2;l) are shown in Figures (1) — (6). Tables V and VI contain
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normalized values of n (z ) and n
h
(z) in the six systems. It is evident from

Figures (1), (3), (4) and (6) that the hole density spills out more than the

electron density in Ge(4;2), Ge(1; l) ,  Si(6;2) ,  and Si(2 ;l). The excess spill-

ing of holes is due to the fact that in these four systems the b inding energy

of holes is less than that of electrons. It further indicates that in Ge(4 ;2 ) ,

Ge(l;l) , Si(6;2) and Si(2;1) one would expect the EHD to carry a negative

charge. In Ge(l;2) and Si(2;2), there is an excess leakage of electrons than

holes , indicating that the holes have a greater binding energy than electrons.

Consequently , the EUD is expected to sustain a positive charge in Ge(l;2) and

Si(2; 2).

It is apparent from Figs. (l)—(6) that the larger the binding energy of a

component, the bigger the amplitude of the first peak in Friedel oscillations.

(55)
This trend is in line with the results of Lang and Kohn for a metal surface

We would like to mention here that the Friedel oscillations in effective poten-

tial are not as pronounced as in electrostatic potential .

III. SURFACE ENERGY

The surface tension of EEL consists of three contributions ; kinetic (a ),

electrostatic 
~°es~ ’ 

and exchange and correlation

0~~~~0 + 0  + 0  (46)
S CS XC

Each of these terms is further made up of contributions arising from elect’ons

and holes . Using the superscript t to denote a component of EEL, we shall give

below the expressions for a~ , 0
L and

The expression for 1. obtained in the same way Lang and Kahn did~~ 5~~.

In terms of phase shifts and effective potential, kinetic contribution of i
th

—21—



componen t to surface tension is

a~~
(n

~
] - 

2v
~m 

f

kFt dk k(~~~
_k 2 ) (

~ 
- y( k) }

w m
~ 

a

-f dz(V
~~~

[{n
i
};z]_V

~~~
[{
~ i

);
~~

) ]  )n
t

(z) (47)

In evaluating it is extremely important that the Friedel sum ru1e~
56
~ [see

Appendix I ] be well satisfied. Violation of Friedel sum rule can lead to

serious errors in the kinetic contribution to surface energy.

The exchange and correlation contribution of z
th component is given by

— dz n
i

(z) [ C ( n ) c ~~~~~~] , (48)

where c
~~

(n
~
) is obtained from Eq. (43).

The electrostatic contribution to surface tension can be written as

— +1 dz

where 
— 

(49)

— 8it

Using the self—consistent density profiles, effective potentials and phase

shifts we evaluate the electrostatic, kinetic,and exchange—correlation contri-

butions to surface tension. Table VII contains values of surface tenstion, a,

for EEL in Ge(4;2), Ce(l;2), Ga(l;l), Si(6;2), Si(2;2) and Si(2;l). We find

that a — 3.7 x l0~~ erg/cm2 in Ge(4;2). It agrees favorably with the measure-

ments of Westervelt et al.’~
39
~,Etienne et al.~~

1)and Staeh1i~
’2
~. Note, the

self—consistent value of a in Ge(4;2) differs appreciably (almost a factor of

4) from the values obtained by Rice~
37
~ , Sander et al~

46
~ , and Reinecke and

Ying~
48
~ . It substantiates similar claims made by Lang and Kohn in the context

-22-

— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _* ——~~~~~~~ -~—— - — — —~~~ -~~~~~~~~~~~~~ - —- — -— —  ~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -- - - - -_ — - - - - -_ - - - -



- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

of a metal surface~
55
~. However, when one includes in the variational calcu-

lation the gradient correction to exchange and correlation energy
(:sO

~
s
~~ , the

value of a in Ge(4;2) is found to be 3.5 x l0~~ erg/cm2. Such an agreement

between self—consistent and the variational calculations is rather fortuitous.

Within the framework of density functional formalism, Rose and Shore have car-

ried out a partial self—consistent calculation for EEL surface in Ge(4;2);

the authors report a value of 2.6 x l0~~ erg/cm
2 for EEL surface tension~

57
~ .

We find that the value of a in Ge(l;l) is a factor of twenty smaller than in

Ge(4;2).

In Si (6;2), the surface tension of EEL is calculated to be 87.4 x lO~~

erg/cm2 (58)
• It is again a factor of three larger than the variational re-

sult of Reinecke and yj~g
(3])

• The self—consistent result for a in Si(2;l)

is a factor of eight smaller than in Si(6;2). Considering the important role

played by surface tension in the determination of coexistence curve, kinetics

of END formation, and in establishing the validity of density functional form-

alism, there is a dire need for conclusive experiments on EEL surface in the

various configurations of Ce and Si.

IV. CHARGE ON ELECTRON-HOLE DROP

Calculations for the ground state energy of a homogeneous EEL lead us to

believe that the constituents of EEL, namely, electrons and holes, have differ-

ent binding energies~
20 26

~. In the presence of a surface the difference in

binding energies results in dissimilar density profiles for electrons and holes,

and consequently in a dipole layer. The sign of dipole layer is dictated by

the energetic. of electrons and holes, since the purpose of dipole layer is to

reduce the difference in their binding energies~
37
~ .

-23-

______



~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
-‘

~
-

~
-- - - - - - --- —-- - -

Following the conventional def inition of dipole layer , we write

~$ 
—-8w Idz z(n~ (z) — n

h
(z) )]  Ry . (50)

It is implicit in Eq. (50) that the total number of electrons is equal to the

total number of holes. Using the self—consistent electron and hole densities,

we calculate from Eq. (50) the values of dipole layer in the six configurations

of Ce and Si. These values are given in Table VII. Evidently, holes have less-

er binding energy than electrons in Ge(4;2) and Si(6;2). In order that the dif-

ference between the binding energies of holes and electrons be reduced by the

presence of EEL surface the sign of dipole layer should be positive in Ge(4 ;2)

and Si(6 2) , which is indeed the case. Similar considerations lead us to con-

clude that 
~
$ should be negative in Ge(l;2) and Si(2;2) and positive in Ge(l;l)

and Si(2;l).

Charge on END is determined by the difference in the chemical potentials

of electrons and holes. In terms of bulk chemical potentials and dipole layer,

this difference is given by (see Eq. (22)),

~~~~~~~~~~~~~~~~~~~~~ 
(51)

It is apparent from Table VII that the difference Mh 
— is positive in Ge(4:2)

and Si(6 2), which means that the holes are less tightly bound than electrons.

At a finite temperature (T < T
cI the transition temperature for EEL) there will

be an excess thermionic emission of holes, and as a result the electron—hole

droplet will acquire a negative charge whose magnitude will be determined by

the condition that at equilibrium the work functions for electrons and holes be-

come equal~
52 ’58

~. A similar situation occurs in Ge(1 1) and Si(2 1), wherein

the END develops a negative charge. In Ge(l;2), however, we find that the dif-

ference U
h 

— Me 
is negative, implying that the EHD sustains a positive charge~

52
~ ,

-2k-
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whereas in Si(2;2)  we find that the difference U h 
— Me 

is extremely small.

Within the limits of accuracy of our calculations, we obtain a neutral EHD in

Si(2;2). Insofar as the sign of charge is concerned , our results in Ge(4;2)

and Ge(1;2) agree with the experiment of Pokrovsky and Svtstunova~
38
~. Recent

measurements of Nakamura has also shown that END is negative in Ce(4;2)’59~ . No

measurement of charge has yet been reported in Ge(l;l) or any of the configu-

rations in Si.

There are two idealized situations in which one can determine the magnitude

of charge on EHD. First, under pulsed excitation, i.e., when the medium outside

of LED is regarded as vacuum, the magnitude of charge, Q, is caicula:ed fr-n2 the

(37)
equation

Q — 4 (/2 + RJ U h — 

u, — l1~ 
(52)

where all the quantities are measured in reduced units . For a typical drop of

radius R — 284 a ( -  5 x 10 4cm) , we find that the EHD carries a charge of — 27Ie~
in Ge(4 2)~

52
~ . Variational calculations of Rice~

37
~ , and Reinecke and yj~g (48)

yield — 181e1 and + 6Je J , respectively. Calculation of Rose and Shore also

yields a negative charge on END in Ge(4; 2)~
57
~. The authorB, however , do not

quote the magnitude of charge.

The second situation occurs when the LED becomes surrounded by ionized

carriers. The problem is now much more complicated because of screening by

free carriers. Assuming that the screening length is much less than the radi-

us of END and treating ionized carriers as a classical gas , Rice obtains the

following expression for the droplet charge~
3
~~:

— P
Q — r

1 R
2 sinh( 2kBT 

e (53)
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where Debye—Huckel screening length is given by

k
B
T ½

r
D 

— (~~
— )  . (54)

All the quantities in Eqs. (53) and (54) are measured in reduced units. Under

conditions of thermodynamic equilibrium at 4.2 K, the density of free carr iers ,

— 2 x l0~~
2cm 3. Using this value of nj we obtain a droplet charge of — 70 01e 1

in Ge(4;2)~
52’. Measurement of Pokrovsky and Svistunova

yields a value of - lOOIeI~~~~ , while Nakamura obtains

a value of -L e OO I e I  at ~~~~~~~~~ The apparent discrepancy be-

tween theory and experiment is mainly due to the fact that theoretic~al estimates

of charge~
37’52

~ are made under the simplifying assumption that the screening

length is much less than the radius of the drop. Also, the real experimental con-

dition may not conform well to the above mentioned assumption. It should also

be borne in mind that in the experimental determination of charge, there are am—

(59)
biguities arising from the assumption of collision time

It i. evident from Eqs. (52) and (53) that in order to obtain the magnitude

of charge one needs to know the radius of END. Experimental measurements of

droplet radius have not yet been made in Ge(l;2), Ge(l;l), Si(2 ;2) and Si(2 ;l),

which prevents us from estimating the charge on END in these systems.
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CONCLUSION

We have shown that in order to resolve the question of LED charge it is im-

portant to treat the kinetic energy of electrons and holes properly . Since the

variational method provides a poor approximation for kinetic energy
(37 48

~
5
~~ ,

it fails to account for the experimental observation that the END sustains a

negative charge in Ce(4;2) and a positive charge in Ge(l;2)~
38
~. By solving a

set of coupled Kohn—Sham equations for the constituents of END, we indeed find

that the LED is negatively charged in Ce(4;2) and positive in Ge(l;2). Although

the Kohn—Sham procedure involves much more numerical work than the variational

method , the former has the advantage that it treats kinetic energy exacti:’ ~~~

also includes the effect of Friedel oscillations. On the basis of self—consist-

ent calculation we predict that the END carries a negative charge in Ge(l;l).

Similar features are also expected to occur in silicon under a uniform stress

along <100> direction. In Si(6;2) and Si(2;l) our calculations show that the LED

sustains a negative charge. However, in Si(2;2) we find that the electron—hole

drop is almost neutral.

A. regards surface tension of END, the value in Ce(4;2) agrees favorably with

the experimental estimates of Westervelt et ~~~~~~ Etienne et ~~~~~~~ and of

Staehli~~
2)
rhe self—consistent estimate of a in Ge(1;l) is found to be a factor

of twenty s-aaller than in Ge(4;2). The surface tension in Si(6;2) is calculated

—4 2to be 87.’e x 10 erg/cm , a factor of eight larger than in Si(2;l). The values

of a in Ge(l;2) and Si(2;2) are found to be 1.0 x l0~~ and 32.8 x 1O
4erg/cm2

, re-

spectively.

One of the approximations in this work amounts to dividing equally between

electrons and holes the exchange and correlation energy per e — h pair in the

bulk of electron—hOle liquid. This is a reasonable approximation , since we
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know from the ground state energy calculations for a uniform EEL that the elec-

trons and holes contribute almost equally to the exchange—correlation energy~
26’37

~.

One would expect it to be the case, because exchange and correlation effects a—

rise from Pauli principle and Coulomb interaction. To avoid confusion, we would

like to emphasize that this approximation does not imply that the exchange and

correlation potentials for electrons and holes are equal in the surface region of

EEL.

The major approximation in our calculation is that we have retained only the

local density contribution to exchange—correlation potentials of electrons and

holes. It may seem feasible to improve the local density approxinaUon by includ—
ing the exchange—correlation gradient corrections. The first gradient correction

to exchange—correlation energy is typically of the form J dr
It can be easily seen that the potential, obtained by taking the derivative with

respect to n(r), behaves pathologically in the tail region of density. For this

reason , it is not possible to include in the self—consistent calculation the fizst

gradient correction to exchange—correlation potential. One should note, however,

that such a difficulty does not occur in variational calculations that include

the first gradient correction to exchange—correlation energy, which is well be-

haved everywhere. Kohn and Sham have suggested including in the LDA not only

the first gradient correction, but also the higher terms in the gradient expan—

sion~
44
~. Such a calculation will involve enormous numerical work. Many calcu—

lations have demonstrated the appropriateness of local density approximation (LDA).

Cunnarson et al. have used LDA in calculating the binding energy of hydrogen

atom~
60
~. Their result for the binding energy differs from the exact value by -:

less than two per cent. Tong and Sham have shown that the density of

atom., obtained in the local density approximation, agrees well with the Hartree—

Pock calculations~
53> . The classic work of Lang and Kohn also shows that the

-28—
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LDA is a good approximation in the study of metal surfaces~
5”. Recently, Ando

has used it in the calculation of intersubband separation in Si inversion Layer(6U .

His results are in excellent agreement with experiment.

In view of the fact that the LED surface is a genuine inhomogeneous plasma of

electrons and holes, it is an ideal system for testing the validity of density

functional formalism; in particular , of local density approximation in the Koha—

Sham procedure. Thus there is a dire need of doing careful measurements of sur-

face tension and charge on END in the aforementioned systems.
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APPENDIX I

Let us assume that the EEL has dimensions (L , Ly~ 
2L )  along the x ,y and z

directions. Further, we suppose that L , L >‘ 2L
~ 

and that the geometrical aur—

face of EHt lies a t z— O .  -

The Schr~dinger—like equation for the i
th component is given by

2 2 2 2
~~ 2 + V

1[
-(n~) ; zfl *10c,

z) — 

~m
’
~ 

*t
(k,z) (A—l)

£ a z  £

For the present discussion it is not necessary to specify the form of potential

Vt.

Multiplying Eq. (A—l) with *~
(k’,z), interchanging prime and unprimed quan—

titles in the last equation and then subtracting the resulting equation we ob-

tain,

a a*t(1,2) 
________

~~
— [*.(k’ ,z) ~ 

— *.(k,z) ~ IoZ ~ Z

— (k’2— k
2
)*~

(k’ ,z)
~P~

(k,z)

Integrating Eq. (A—2) from z to and taking the limit k ’ .’ k, we find

2 1 a*~
(k,z) a*~

(k,z) a2*~
(k,z)

J dz’ (*~ (k , z’)] — — — 4,1
(k ,z) azak

Deep inside the liquid, the wave function takes the form,

*t
(k,z) — A

1(k) sin(kz 
— y(k)) 1

where (A—4)

mir y(lç)
— L , m—eve n integer

z z
and 0 ~ ‘r(k) ~

Taking the limit z — — L in Eq. (A—3) and making use of Eq. (A—4) we get

2 
{A
t
(k) )2 

1J dz’ (*t
(k,z’)J — 2k ~ 

k(L
2 

+ y ’ (k) ) + 2
~~

I
~ ’

z (A—5)
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where y’(k) dy(k)/dk.

Making use of the fact that the wave function is either symmetric or anti—

symmetric about a — — L , i.e.,

L
LZ 

dz [
~~

(k,z)J 2 — Ida (*t(k,z)] 2 - 2LxLy 
(A—6)

we obtain from Eq. (A—5) the expression for the normalization constant

{ A~ (k) }2 (1 + y
’(k)

1 — , (A—7)
z d

where fl — 2L L L I. the volume of the electron—hole liquid.d x y z
The expression for the density of ith component (Eq . (2 5) J  reads

n (~) — 2w £ £ E 4’ (.!~,L) 
2 
, (A—8)t t m m m  £

x y

where the factor of two arises from spin summation and comes from the sum over

the bands acoxnmodatir~ the particles of £eh component. The lowest filled states

are characterized by m, m and m , such thatx y

2irm 2ira
‘k k k ’ ’  X 

_ _  ~~~~~~~~~ A-9‘x’ y’ ‘~~~~~L 
‘ L ‘2 L  Lx y z z

Now, the states in wave number space lie on sheets normal to k— axis and are

spread according to Eq. (A—9) . Since L , L
7 

>> 2L
~
, the states on any sheet

are much more densely packed than the spacing between the sheets. It is clear

from Eq. (A—9) that on a given sheet there are (LxLy
/41r2) states per unit area.

We take the occupied states to lie within a hemisphere of radius 
~~~ 

in the

k > 0 half space. The hemisphere cuts the k— axis between Rth and (R + 1)th

sheets such that

~ 
k
i 

kR + 1 (A—b )

— 3 1 —
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The radius of the circular sheet, which accommodates particles of mth state, is

given by

(k~ — (.!!. xS.~~~~
2

1
½ 

. (A—il)

Therefore, the express ion for n
t
(Z) be~omes,

n
~

(z) — v
~
(
~~~

”) E lA t
(k)I

2I *t(k,a)J 2(k
~~

_ k2) (A—12)

Changing the sum over a in Eq. (A—12) into an integration over k and using

Eq. (A—?) we obtain

— 

~~ 
dk (k~~ — k2)I*t

(k,z)12 (A—13)

where

~ L~~~
’°
~ 

— 
~r(k)) (A—l4)

Now, total number of particles of 1th component is given by

Ni 
— 2v~ ~ E 1 (A—-15)

x y

Carrying out the summations in Eq. (A—l5) we find

N
i 

- ~~~~ El - J dk kf~~- y(k))j (A-16)
3n k~~L2 0

However,
N
t _ LFL A—il)
d 3w

Comparing Eqs. (A—16) and (A—li) , we obtain

- k
~~

(l + _ 
dk k{~ - y(k)}] + O(±) (A-18)

In the limit z -.‘ — L
5, 

we obtain from Eq. (A—13)
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v k3
) — + 0( 1

2 ) (A—19)
3w La

Owing to the fact that no free charges can exist deep inside the EEL, we de-

mand 3

— — L — — Vti~Fi (A—20)

and therefore from the last two equations we find

kip 
— k~1 + O(l/L~) (A—21)

In order that Eq. (A—fl.) be consistent with Eq. (A—18), we must demand that

for each component t,

dk ky(k) — (A—22)

and thus 
—

— _4. cvt dk — k2) E*~~
,z)I2 (A—23)

Equation (A—22) is the one-dimensional analog of Friedel sum rule’56~. It

provides a check on the phase shift obtained from the wave functions. Further,

by satisfying this sum rule one insures that both the electron and hole densi—

ties are equal to the mean density deep inside the liquid.
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APPENDIX II

We shall deal here vjth the numerical procedure used In solving a set of cou-

pled Kohn—Sham equations for the case of EEL surface. Our procedure is a gen-

eralization of that developed by Lang and I(ohn for a metal surface~
55
~.

We start with trial density profiles for electrons and holes. These pro-

files decay exponentially outside the surface and approach the mean bulk density

well inside the surface. Further, the parameters in the initial profiles are so

chosen that we obtain overall charge neutrality:

fda n (z) — nh(z) (E—l)

Using the trial profiles in Eq. (40) we calculate the effective potentials

for electrons and holes. Substituting the effective potential in Eq. (38), we

solve it for 4’~
(k,z) in the range 0 to 

~~~~~~~ 
Imposing the condition that the

wavefunction should approach a sine wave deep inside the electron—hole liquid ,

i.e.,

~ 
.,“ At (k) sin(kz — y(k)) (B—2)

we obtain y(k) from Eq. (B—2) and check if the phase shifts satisfy the phase

rule~~
6
~ (Eq. (A—22)],

dk ky(k) — (B—3)

for every component. If the phase rule is not satisfied to a few percent, we

discard the initial trial profiles, choose a new set of parameters in the ini-

tial profiles and follow the aforementioned procedure until Eq. (B—3) is almost

.atisf led. Note , imposition of phase rule is another way of insuring that the

densities approach the correct bulk values deep inside the EEL. The asymptotic

form for vavefunctions (Eq. (B—2)] is ideally achieved only if z + — 
~~. How

- 
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ever , in practice it is not feasible to go to an arbitrarily long distance inside

the liquid. Therefore, one has to introduce correction terms to Eq. (B—2). In

order to deal effectively with the asymptotic region we observe that the den-

sity of jth c’~mponent assumes the following asymptotic form:

3 con 2(i
~~

z —
n1(z) 

,
-.‘ ,,i~1fl + — 2 ~ 

+ 0(—3--) (B—4)
(2k

~~
z) z

With this form for the densities, the asymptotic value of potential of 1th com-

ponent becomes

z]~ ~~~~~~~ 
— + 

~~~, 
~~~~ cos 2(~~11z— Y(k ~11) ) Iz

2 
+ O(l/z 3

)

(B—5)

The coefficients P1,~ 
are determined by fitting the effective potentials

to Eq. (B 5).using this asymptotic form for effective potential we find l/z
2

correction term to the asymptotic value of wavefunction 4s1
(k,z), namely,

Eq. (B—2). Now the wavefunction is fitted to a form given in Eq. (B—2) plus

2
the liz correction term. From such a fit we extract the value of normaliza—

tion constant Az(k).

The expression for density involves 4’1
(k,z), which must attain-a sinusoid-

al form deep inside the liquid. I~ order that the density 
of a given component

attains its correct bulk value, the amplitude of the sine wave must be unity.

Thus , the knowledge of A1(k) enables one to construct 4’~
(k ,z) such that

*t (k
~

z)
~ 

sin(kz — y (k) ) (B—6 )

We substitute these $s~
(k ,z) in Eq. (44) to obtain the density nt(z). When

the new {n
~
(z)} are close to the 1~ itial density profiles, we resort to a u n —

ear response procedure to bring about self—consistency. Let us denote by

— 3 5 -
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and (n~~~} the trial densities and the densities obtained after first iteration.

Then, the set of Eqs. (38), (40), and (44) (with {nt
} replaced by {n~} in Eqs.

(38) and (40) and (~~1)
} In Eq. (44)] may be taken to define the following func-

tional relationship:

((1)) — FUn~} ; a] (B—?)

Using the set of densities {n~~~}, we obtain from Eqs. (38), (40), and (44)

another set of densities

In the spirit of Eq. (B—i) we write

{n~
2) } — F({n~~~) ; a] (B 8)

In order that {n
1
} be the true solutions we must have

— F({n
t
} ; a] (B—9)

Let us assume that the addition of {6n~~~} to {n~~~} brings about self—con—

sistency. Then we obtain from Eq (B—9):

~
(l) 

+ ~~~~~ F
~

((n
~~ 

+ 6
(l)
} ; z] (B—lO)

Since {n~~~) are close to the true solutions, the quantities{6n~~ J must be

small compared to {n~
1
~ ). Making a Taylor series expansion of the r.h.s. of

Eq. (B—b ), we find

(1)
+ — ~~2) 

+ 
~~~ f6i4~

kz ’) t
(~ ) dZ’ (B—il)

We choose for 6n~
1
~ a linear combination of derivatives of harmonic oscill-

ator functions:

— — 

~~~ 
a1

(i) Q~(z) , (B—l2)

where Qi
(z) are derivatives of harmonic oscillator functions, NH the number of

such functions, and at(i) are the coefficients whose determination shall

-36-
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enable us to obtain the self—consistent density profiles. In order that 1Q1
(z) }

form a basis set, NH must be infinite. However, in practice, one needs a reason-

ably large but finite number (-20) of Q1(z) to achieve convergence. Substituting

Eq. (B—l2) in (B-li) and using the definition of a functional derivative, we ob-

tain

M N H a ( j)
i (F(n1,ni-AQ ~——]—F(n1~

nj~
——]+X SitQj) (B—l3)

i—l j—l

where A is a small parameter. Multiplying Eq. (B—l3) with harmonic oscillator

functions, P~.(z)3 and integrating over a we obtain

‘4 Nll a (j)f dz[n~~~(z)_142)(z)]P
j.(z) 

— dz Pj~
(z)(F

~
[n
i~
nj_AQj.

—_ ]

— F[n1~ni.
—_ ]+A6j1Qj) (B—14)

To make this procedure effective one has to choose carefully the position

and width of harmonic oscillator functions. It is our experience that these

functions should always be centered near the surface and their width should be

— on the order of surface thickness.

From equations such as (B—l4) we obtain the coefficients ai(j) and subse-

quently use them in Eq. (B—l2) to obtain Straightforward addition of

to yields the self—consistent values of density of 1
th 

component.
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Table 1 - List of band masses, dielectric constant and the value of excitonic

rydberg in Ge (4;2) and Si (6;2)• a~1 
and are, respectively, the longi-

tudinal and transverse masses for an electron, m . and m the optical andoe de

density of states masses for an electron , and 171&h and ‘5hh are the light

and heavy hole masses. These masses are given in units of bare electron mass.

~ is the dielectric constant of the system and E
~ 

is the value of excitonic

rydberg. The values of band masses, ~ and E
~ 

in Ge (1:2) and Si (2;2) are

the same as in Ge (4 ;2) and Si (6;2), respectively.

SYSTEM m a a a m K E (meV)
el et oe de th x

Ge (4 ;2) 1.58 0.082 0.120 0.22 0.042 0.3 147 15.36 2.65

Si (6 ; 2) 0.9163 0.1905 0.2588 0.32 0.154 0.523 11.4 12.85
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Table II - Values of constants in Ge (1;].) and Si (2;b). The masses are

measured in units of bare electron mass. m
d 

and mdh are the density of

states masses for an electron and hole; m~~ and m
Ob 

are their optical

masses. and “he 
are the longitudinal. and transverse masses for a hole.

is the value of excitonic rydberg in Ge (1;1) and Si (2;l).

SYSTEM m 1 
m
et 

m
d 

m mhl m
h~ 

mdh m
h 

E
~

(meV)

Ge(j,1) 1.580 0.082 0.2198 0.120 0.040 0.130 0.088 0.075 2.65

Si(2;l) 0.9163 0.1905 0.3216 0.2588 0.1988 0.2561 0.2354 0.2336 12.85
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Table III - Coefficients of exchange and correlation energy per par t icle in unstressed

Ge and Ge under uniform, umiaxial stress along <111> direction. The coeff i-

cient of exchange energy, a , is measured in excitonic rydberg . For r5(Z) < r~
4w -1/3

correlation energy is fitted to a polynomial. in r5(Z), where r5(Z) {-rn(Z)}

Coefficients of the polynomial fit are given by c(i) 0.5 j e A(i)/b(i) where

b(i) = j + 0.25. Correlation energy is taken to be of the Wigner form

for r (Z) ‘ r . B and C are the coefficients of the Wigner fit. A (i) and B
S 0 0 0 0

are expressed in excitonic rydberg; C0 
and r

0 
are dimensionless.

COEFFICIENTS Ge(4;2) Ge(l;2) Ge(l;1)

a —0.5681 —0.7090 —0.8297

A(1) 0.7212729 0.4125300 0.4683857

A(2) 4.1265679 4.0192903 1.8475582

A(3) —9.6488301 —9.4066370 -1.5382064

13.9998052 13.2843140 0.9232383

A(5) —10.3165219 —9.2912027 -0.2690568

A(6) 3.5668684 3.0446329 0.0282182

A(7) -0.4567422 —0.3725362 0.0

B -3.10247 -3.27550 -‘4.21484
0

C 1.45138 2.18922 3.91350
0

r 2 2 3
0

-144- 

-— ~~~~~~~~~ --~~-~~~~~- -~~~—- -— -~~~



Table IV - Values of coefficients of exchange and correlation energy per par-

ticle in Si(6;2), Si(2;2), and Si(2;l). The coefficients of polynomial fit to

correlation energy are given by c(i) 0.5*A(t)/b(i), where b(i) = i+ 0.25.

Values of a , A ( i ) , B , C0, and r are tabulated below . Note, a, AU), and

are measured in units of exciton.Lc rydberg. C
0 

and r0 are dimensionless.

COEFFICIENTS Si(6;2) Si(2;2) Si(2;1)

a —0.5832 —0.6891 —0.8026

A(l) 0.7105611 0.4000295 0.4362952

A(2) 3.5159968 4.8634251 2.3587707

A(3) —6.5141196 —13.0590236 —3.1982320

A(4) 8.0945300 20.4316281 3.4135213

A(5) —5.4580137 —15.6070080 -1.9050812

A(6) 1.7901528 5.5015154 0.4931726

A(7) —0.2217641 —0.7125849 —0.0469333

B — 3.32745 —3.16211 —4.21917
o

C 1.76294 1.95952 3.93928
o

2 2 3
0
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Table V. Self-consistent density profiles of electrons and holes in

Ge(1 ;2), Ge(l;2), and Ge(l;l). The origin, z 0,is taken to

be the position of geometrical surface of EHL. The distance,

z, is measured in units of excitonic Bohr radius, a
~

and the densities in units of a
3. In this table the densities have

been normalized to the mean e-h pair density. Although we calculate

the density profiles at points separated by a distance of 0.15 a~
, we

quote the values of ne
(z)  and flh

(Z) only at every other point .

Ge(4;2) Ge(1;2) Ge(l;l)

z n~(z) n
h
(z) ne(z) ~~~~

—5.85 1.000 1.001 0.997 0.996 0.996 0.998

—5.55 1.007 1.004 0.997 0.996 0.985 0.991

—5.25 1.002 1.003 1.001 1.002 0.983 0.990

—4.95 1.001 1.000 1.005 1.006 0.994 0.995

—‘e.65 0.993 0.994 1.000 1.000 1.004 1.002

—4.35 1.002 1.003 0.995 0.99’S 1.017 1.009

—‘4.05 1.009 1.008 0.996 0.995 1.020 1.002

—3.75 1.005 0.999 1.005 1.007 1.015 1.008

—3.45 0.989 0.989 1.006 1.007 0.994 0.998

—3.15 0.985 0.991 0.997 0.996 0.976 0.985

—2.85 0.994 0.996 0.990 0.987 0.963 0.981

—2.55 1.015 1.011 0.999 0.999 0.97’s 0.986

—2.25 1.017 1.013 1.012 1.015 0.996 1.004

—1.95 0.989 0.990 1.006 1.008 1.033 1.019

—1.65 0.974 0.980 0.985 0.982 1.055 1.017

—1.35 0.997 1.001 0.981 0.976 1.043 0.988

-1.05 1.030 1.022 1.003 1.006 0.975 0.908 
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Table V (Cont ’d)

Ge(4;2) Ge(l;2) Ge(l;l)

z 
~~~~ ~~~~ 

ne
(z) nh(z) n

~
(z)

—0.75 1.010 0.992 0.979 0.999 0.852 0.797

—0.45 0.871 0.859 0.840 0.8614 0.682 0.649

—0.15 0.602 0.610 o.sg’s 0.606 0.507 0.500

0.15 0.315 0.336 0.344 0.336 0.344 0.366

0.45 0.135 0.139 0.166 0.150 0.208 0.248

0.75 0.046 0.049 0.069 0.053 0.122 0.166

1.05 0.014 0.017 0.026 0.017 0.066 0.106

1.35 0.002 0.003 0.008 0.004 0.027 0.059

1.65 0.000 0.001 0.002 0.001 0.011 0.031

1.95 0.000 0.000 0.001 0.000 0.006 0.019

2.25 0.000 0.000 0.000 0.000 0.003 0.014

2.55 0.000 0.000 0.000 0.000 0.001 0.010

2.85 0.000 0.000 0.000 0.000 0.000 0.007
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Table VI Self-consistent electron and hole densities in Si(6;2), Si(2;2) and

Si(2;l). z is measured in units of excitonic Bohr radius, 
~~~~~~~~

and the densities in a;
3. The origin is taken to be the position of

the geometrical surface of ER!... In this table the densities have

been normalized to the mean e - h pair density.

Si(6;2) Si(2;2) Si(2;l)

z 
_________________________________________________________________________________

ne(s) %(z) ne
( z) %(z) fle

(Z )

—5.85 0.996 0.995 1.006 1.002 1.011 1.004

—5 .55 0.992 0.994 1.000 0.996 1.017 1.003

-5.25 0.987 0.987 0.994 0.994 1.014 1.001

— ‘4.95 0.994 0.997 0.992 0.997 1.010 1.000

-4.65 1.004 1.007 0.992 1.000 1.002 0.999

-4.35 1.012 1.011 1.000 1.004 0.990 0.998

-‘4.05 1.013 1.011 1.008 1.004 0.979 0.996

—3.75 1.016 1.011 1.013 1.003 0.97te 0.993

—3 .45 1.002 1.002 1.012 1.003 0.977 0.992

—3.15 0.990 - 0.995 1.001 1.001 0.986 0.994

—2.85 0.977 0.981 0.987 0.998 1.006 1.001

—2 .55 0.981 0.982 0.978 0.991 1.031 1.008

—2.25 1.003 1.009 0.982 0.988 1.052 1.022

—1.95 1.030 1.032 1.002 0.993 1.058 1.022

—1 .65 1.048 1.035 1.025 1.008 1.037 0.997

—1.35 1.034 1.013 1.029 1.017 0.982 0.953

—1 .05 0.971 0.949 0.986 0.988 0.893 0.869

—0.75 0.852 0.841 0.880 0.901 0.772 0.757

-0.45 0.684 0.700 0.721 0.7’s6 0.631 0.631

-0.15 0.496 0.523 0.536 0.553 0.487 0.499

0.15 0.332 0.339 0.357 0.367 0.356 0.370

0.45 0.197 0.204 0.218 0.211 0.24~5 0.268
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Table VI (Cont.)

Si(6;2) Si(2;2) Si(2;1)

z

%
(z)  n

e~~~

0.75 0.103 0.106 0.122 0.109 0.158 0.181

1.05 0.053 0.055 0.063 0.050 0.095 0.122

1.35 0.026 0.028 0.031 0.021 0.057 0.073

1.65 0.008 0.010 0.015 0.008 0.036 0.048

1.95 0.002 0.003 0.006 0.003 0.019 0.030

2.25 0.001 0.001 0.002 0.001 0.008 0.016

2.55 0.000 0.000 0.001 0.000 0.003 0.008

2.85 0.000 0.000 0.000 0.000 0.001 0.004
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Table VII - Results from self-consistent calculation for the surface properties

of EHD in Ge(4;2) , Ge(l;2), Ge(l;l), Si(6;2), Si(2;2), and Si(2;l). a is the

surface tension of END. 
~e 

and are the bulk chemical potentials of elec-

trons and holes. These are obtained from the fully self-consistent calculation

of Vashishta et. al~
26
~ 8~ denotes the dipole layer.

SYSTEM a(erg/cm2) 
~e

(me
~
1) Ph

(mev) Uh
_
~
i
e 

2~~ (meV) SIGN OF CHARGE

— Ge(’3;2) 3.7x10’’s —3.62 —2.21 1.41 0.77 NEGATIVE

Ge(l;2) l.OxlO ”4 -1.75 -2.76 -1.01 -0.98 POSITIVE

Ge(l;l) 0.2x10 ’s -2.17 —0.93 1.2’s 1.20 NEGATIVE

Si( 6;2) 87.13x10 ’s —14.01 —7.84 6.17 3.3’s NEGATIVE

-4 *
Si(2;2) 32.8x10 —8.87 —9.89 —1.02 -1.02 NEUTRAL

Si(2;l) ll.4xlO ”4 -9.77 -‘4.88 4.89 3.86 NEGATIVE

*In Si(2;2), we find that the difference in the chemical potentials of holes
and electrons ~= s,.~ - - 26$) is a very sm all negative quantity, which im-
plies that the drop is positively charged. However, considering the limit
of accuracy of the calculation we can only conclude that the END is neutral
in Si(2;2).
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FIGURE CAPTIONS

Fig. 1:

Self-consistent density profiles of electrons and holes in Ge(’4;2).

Solid curve-electron density , n (z ) ;  dashed curve-hole density , 
~~~~~ 

The

distance z is measured in units of excitonic Bohr radius, a
~
( ~.77 ~ in Ge),

and the densities are in units of a
~
3. In Fig. (1), ne

(z )  and nh (z )  are

normalized to the mean particle density ( 3/4,rr~ where r5 is the average

interparticle separation) in homogeneous EHL. Note, the hole density spills

out more than the electron density, because the binding energy of holes is

less than that of electrons (u
h 

- 

~e 
= 1.41 meV). This is why the END sus-

tains a negative charge in Ge(’4;2).

Fig. 2:

Normalized self-consistent electron and hole densities as a function of

z in Ge(l;2). Solid curve-electron density ; dashed curve-hole density. In

Ge(l ; 2) ,  the binding energy of electrons is smaller than that of holes (uh
_

-1.01 mneV), causing the electron density to spill out more than the hole

density.

Fig. 3:

Normalized self-consistent electron and hole density profiles in Ge(l;l).

Solid curve-electron density ; dashed curve-hole density. Note, the hole den-

sity tail is longer than that of electrons. It is a consequence of the fact

that the binding energy of electrons is larger than that of holes - 

~e 
=

1.24 asV).

Fig. 4:

Self-consistent electron and hole densities as a function of z in Si(6;2).

Unit of distance is excitonic Bohr radius, a
~ 

(
~ 49 ~ in Si), and the unit of

-51-

—  ~~~~~~~ --__~~
_-

~~~~ __~ ~~~~~~~~~~~~~~~~~~~~~~~~~



-- -,- - •• ---__~
-_w- —-.-

~~~~~~~~~~~— —-- - -
~~~ 

-
~
---

~~~~
-.

~ 
-i--— -

~~~~~~~
-----

~~
—-- -~~~~~~

--,..—— ~~— 
--— --~~~~~~

- --~~ --

density is a 3 
. The electron and hole densities are normalized to the mean

particle density in the homogeneous EHL. Since the binding energy of electrons

is larger than that of holes 
~~h 

- 

~e 
= 6.17 meV) ,  the electron density spills

out less than the hole density in Si(6;2).

Fig. 5:

Normalized self-consistent density profiles for electrons and holes in

Si(2;2). Solid curve-electrons; dashed curve-holes. Itt Si(2;2)-, the binding

energy of electrons is smaller than that of holes, which should lead to a posi-

tive charge on the drop. But the small difference in the chemical potentials

of electrons and holes 
~‘~ h 

- 

~e ’ 
= 1.02 meV, compared to 6.17 meV in Si(6;2)

and 14.89 meV in Si(2;l), see Table VII) is almost compensated by twice the di-

pole layer. Thus, within the limits of accuracy of the calculation, our con-

clusion is that the drop is almost neutral.

Fig. 6:

Normalized self-consistent electron (solid curve) and hole (dashed curve)

densities as a function of z in Si(2;l). It is evident from the smaller elec-

tron density tail that the electrons are more tightly bound than the holes,

- 

~e 
= ‘s.89 meV), thereby giving rise to a negative charge on the END.
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