AD-A050 797	EARTHW JAN 78	ORK CON	PRINGS	ION IN	Y) PORT SUPPORT	HUENEM OF A M	E CALIF	MPHIBIC	OUS FOR	F/G 13/ CEET	2 C(U)	
OF 2 AD60 797	totimitel etcline				Alter A Provide Antiparticle A	A						
				Benurssener Billingsbille Bill			A many and the second s		100 - C			
	Hard Contraction						Married Married					
			4.		Ale .						*T	
		- serienti						Battoness A. K. 1 and A. K. 1	TELEVISION OF T			
											dracht dracht dracht	Second Se
	i - salati In- salati Andreas - Ang	 E-4			Representation of the second						400	

date: January 1978

Sponsor: Marine Corps

program nos: YF53.536.091.01.003

1

CIVIL ENGINEERING LABORATORY

1978

7

MAR

NAVAL CONSTRUCTION BATTALION CENTER Port Hueneme, California 93043

Approved for public release; distribution unlimited.

REPORT DOCUMEN		READ INSTRUCTIONS BEFORE COMPLETING F
LTN-1514	2. GOVT ACCE DN2441	
EARTHWORK CONSTRUCT		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER
P. S./Springston		(16)F53536]
9. PERFORMING ORGANIZATION NAME AND CIVIL ENGINEERING LABO	DADDRESS	10. PROGRAM ELEMENT, PROJECT
Naval Construction Battalion C Port Hueneme, California 930		62760N; (17) YF53,536,091 01.003
1. CONTROLLING OFFICE NAME AND ADD	RESS	12. REPORT DATE
Plans and Studies Division Ma Corps Development and Educa Quantico, Virginia		143 (12) 149
14. MONITORING AGENCY NAME & ADDRES	S(if different from Controllin	
		15. DECLASSIFICATION DOWNGR
		SCHEDULE
Approved for public release; di	istribution unlimited	
17. DISTRIBUTION STATEMENT (of the about	istribution unlimited	
Approved for public release; di 7. DISTRIBUTION STATEMENT (of the about 18. SUPPLEMENTARY NOTES	istribution unlimited	Hillerent from Report)
Approved for public release; di 17. DISTRIBUTION STATEMENT (of the about 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if r Construction scheduling, const	istribution unlimited ract entered in Block 20, 11 necessary and identify by bl	Hillerent from Report)
Approved for public release; di 17. DISTRIBUTION STATEMENT (of the abati 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if r Construction scheduling, const battalions, amphibious assault amphibious earthmoving. 10. ABST ACT (Continue on reverse side if r A Marine Amphibious Fo will generate multiple, large-sca	ecessary and identify by blo recessary and identify by blo rruction equipment, support, resources a ecessary and identify by blo orce (MAF) level Ma ale horizontal constr	Hillerent trom Report) Sock number) construction forces, construction flocation, amphibious construction, ck number) rine Air/Ground Task Force (MAGT uction projects totaling thousands o
Approved for public release; di T2. DISTRIBUTION STATEMENT (of the about T3. SUPPLEMENTARY NOTES T4. SUPPLEMENTARY NOTES T4. SUPPLEMENTARY NOTES T5. SUPPLEMENTARY NOTES T5. ACT (Continue on reverse side if a A Marine Amphibious For will generate multiple, large-sca cubic yards of earthwork. Eve force commander may be conf that would exceed the engineer	eccessory and identify by blo processory and identify by blo recessory and identify by blo processory and identify by blo corce (MAF) level Ma ale horizontal constr n with Naval Constr ronted with simultat ring capability of the	Hillerent from Report) Sock number) construction forces, construction flocation, amphibious construction, ck number) rine Air/Ground Task Force (MAG

-

391 111 JOB

Unclassified

20. Continued
assumptions, facility construction activity estimates are calculated and arrow networks a drafted. The Critical Path Method (CPM) is utilized to predict project earliest finish dat and resource allocation. The presented data (networks, resource requirements, project durations, etc.) will be of use to researchers and planners in the area of amphibious logis support. Specific Initial Operating Capability dates for facilities will vary with operatio requirements; thus, a general discussion of the projections was substituted in lieu of specific conclusions of whether facility construction was in pace with tactical and opera- tional requirements.
Library Card
Civil Engineering Laboratory
EARTHWORK CONSTRUCTION IN SUPPORT OF A MARIN AMPHIBIOUS FORCE – A CASE STUDY (Final), by
P. S. Springston TN-1514 143 pp illus January 1978 Unclassified
1. Horizontal construction 2. Resource allocation I. YF53.536.091.01.003
A Marine Amphibious Force (MAF) level Marine Air/Ground Task Force (MAGTF) will generate multiple, large-scale horizontal construction projects totaling thousands of cubic yards of earthwork. Even with Naval Construction Force (NCF) support, a landing force commander may be confronted with simultaneous critical earthwork requirements that would exceed the engineering capability of the MAF. A hypothetical earthwork construction case is defined by a set of limiting assumptions. Within the boundaries set by these assumptions, facility construction activity estimates are calculated and arrow networks are drafted. The Critical Path Method (CPM) is utilized to predict project earliest finish dates and resource allocation.
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CONTENTS

	rage
INTRODUCTION	. 1
PROCEDURE	. 2
GENERAL ASSUMPTIONS	. 2
BASE LAYOUT	. 4
SCHEDULING ANALYSIS	. 5
Expeditionary Airfield (EAF)	. 6
Ammunition Supply Point (ASP)	. 7
Main Supply Routes (MST)	. 7
Bulk Fuel Farms	. 8
Logistic Support Area (LSA)	. 8
Cantonments	
EQUIPMENT ALLOCATION	
Crawler Tractor Allocation	. 9
Road Grader Allocation	. 9
Self-Propelled Vibratory Roller Allocation	
Scraper Allocation	
	10
DISCUSSION	. 11
REFERENCES	14

APPENDIXES

A - Priorities and Definitions for Horizontal Construction Projects	41
B - Project Activity Estimation	53
C - NCF and MARCORPS Construction Equipment	66
D - Tables of Network Files, Descriptions, and Solutions	11 Buil Lection

v

S SIGNTION AVAILABILITY CREES

ATAIL and/or steelal

GLOSSARY OF TERMS

à

AAFS	Amphibious Assault Fuel System
ABFC	Advanced Base Functional Component
ALSA	Amphibious Logistic Support Ashore
AMSS	Advanced Multi-purpose Surfacing System
AOA	Amphibious Objective Area
ASP	Ammunition Supply Point
BSA	Beach Support Area
CESE	Civil Engineer Support Equipment
CESO	Civil Engineer Support Office
СРМ	Critical Path Method
EAF	Expeditionary Airfield
FACSO	Facilities Support Office
FEBA	Forward Edge of Battle Area
FLOLS	Fresnel Lens Operated Landing System
FOMAT	Foam Core Fiberglass Reinforced Structural Surfacing Material
FSSG	Force Service Support Group
LRU	Low Rate Unit of the AMSS
LSA	Logistic Support Area
MAF	Marine Amphibious Force
MAGTF	Marine Air/Ground Task Force
MARCORPS	U.S. Marine Corps
MARDIV	Marine Division

vi

Glossary of Terms (continued)

MAW	Marine Air Wing
MHE	Material Handling Equipment
MOGAS	Motor Gas
MOMAT	Mobile Matting (Surfacing)
MSR	Main Supply Route
NAVFAC	Naval Facilities Engineering Command
NCF	Naval Construction Force
NCFSU	Naval Construction Force Support Unit
NCR	Naval Construction Regiment
NMC B	Naval Mobile Construction Battalion
NRL	No Resource Leveling
PEMS	Project/Equipment Management System (concept)
POL	Petroleum, Oils and Lubricants (usually fuel)
RL	Resource Leveling
SATS	Short Airfield for Tactical Support
SIXCON	Modular Fuel System
ST	Short Ton
TAFDS	Tactical Air Fuel Dispensing System
V/STOL	Vertical/Short Take-off and Landing
WSG	Wing Support Group

vii

INTRODUCTION

The Amphibious Logistic Support Ashore (ALSA) System presents the structure for systematically analyzing the capability of a Marine Air/ Ground Task Force (MAGTF) to provide consistent and efficient flow of material, equipment, services, and supplies for combat troops. The ALSA System, which encompasses the engineering, construction, maintenance, transportation, and service functions of the MAGTF, is functionally divided into six component subsystems. The Horizontal Construction Subsystem of ALSA consists of all procedures, materials, technology, and hardware required by MAGTF engineer units to furnish the earthwork structures and prepared surfaces used in Marine Corps amphibious shore-side operations [1].

Preceding Page BLank - FILME

Future amphibious landing operations will include containerized cargo, container transporters, and materials-handling equipment as well as conventional and V/STOL aircraft. The earthwork and prepared surfaces provided by the MAGTF engineers must be able to support these heavy wheel loads over beach exit routes, Logistic Support Areas (LSAs), Main Supply Routes (MSRs), and Expeditionary Airfields (EAFs), and within ammunition and fuel dumps. A Marine Amphibious Force (MAF) level MAGTF could generate multiple, large-scale horizontal construction projects totaling thousands of cubic yards of earthwork. Time will be severely constrained for the landing force commander, who may be confronted with simultaneous earthwork requirements for airfield, roadway, and LSA construction; and for grading, ditching, and drainage support for other facilities in the objective area.

The scope of the construction effort will necessitate the assignment of Naval Construction Force (NCF) units to augment the construction capability of the Division and Force Engineer Battalions of the MAF. Even with NCF support, it is debatable whether the engineering capability of a MAF will be sufficient to enable concurrent starting of all equal priority earthwork projects and timely completion of the projects.

The efficiency of horizontal construction projects influences the effectiveness of MAGTF combat elements. This report presents a critical point study of the ALSA Horizontal Construction Subsystem and, thereby, the earthwork construction capability of a MAF level MAGTF. Within limiting assumptions, construction estimates and schedules are formulated, and project starting and completion dates and equipment

requirements are analyzed. The extent to which the landing force commander would be constrained by horizontal construction is ascertained for this hypothetical case.

PROCEDURE

Major horizontal construction projects that would be generated by a MAF are listed and defined in Appendix A. General assumptions concerning the tactical situation, weather, work hours, etc. were equally applied to all project estimations. Specific assumptions concerning project scope, design, and terrain were established for each project (Appendix B) to facilitate construction activity estimates. Equipment specifications and performance characteristics for selected items of MARCORPS and NCF earthmoving equipment were compiled (Appendix C) for inclusion in equipment production formulas. The projects were subdivided into their component construction activities, and, using the production formulas, estimates were completed for activity durations and assigned resources (equipment). Individual project durations were estimated through employment of Critical Path Method (CPM) techniques to isolate the critical path and expected duration for each project.

Overall project scheduling was accomplished with a bar graph that depicts project start/end dates and the assigned military construction unit. Projects were scheduled in accordance with the priority guidelines established in Table 1 [2]. Lower priority projects were not scheduled until all first priority projects were under construction and sufficient resources were available.

Finally, the scheduling and various aspects of each project are discussed. Shortcomings within the Horizontal Construction Subsystem of ALSA are identified and explained in detail.

GENERAL ASSUMPTIONS

Since, by definition, a MAF is a highly mobile force capable of assaulting a hostile shore, there is an infinite array of possible combinations of climate, topography, weather, and enemy action that might be encountered. To impart consistency to the estimation of the numerous construction activities included within this report, it was necessary to formulate limiting assumptions that would serve as a datum for estimates. The assumptions were intended to present reasonable constraints; therefore, extremely adverse or beneficial conditions of topography, haul distances, etc. were avoided.

Table 1. Priority Ratings for Horizontal Construction Project

Project Description	Priority
Landing Beach Preparation (ramps, surface prepara- tion/stabilization, beach roads, exits, etc.)	1
POL Storage (AAFS/TAFDS)	1
Expeditionary Airfield(s)	1
MSR Construction	1a
Emergency Rehabilitation of Access Roads and Bridges	1
Open Storage (LSAs)	1b
Anmunition Storage	2
Construction Force Augmentation (rock crushing, asphalt plant, etc.)	2
Housing (begin construction for priority personnel and continue to completion)	2c
Aircraft Maintenance Facilities (earthwork)	3
Hospitals (supporting earthwork)	3
Drainage Control and Dustproofing	3
Road and Bridge Construction (other than MSR and emergency rehabilitation)	4
Base Maintenance	4

^aNot included in Reference 2. ^bUpgraded from Reference 2.

^CDowngraded from Reference 2.

The general limiting assumptions were as follows:

• Approximately 14 hrs of daylight are available. Earthwork and surfacing (except where noted) are limited to 12 hrs/day. Night earthwork operations are not feasible as a result of enemy threat and inefficiency of equipment. Labor/time estimates are not to be adjusted for detrimental effects of enemy action, weather, or equipment breakdown.

• Site topography is assumed to be gently sloping to level ground covered by medium overgrowth consisting of brush and small trees less than 4 in. in diameter. Topsoil and some undesirable organic matter generally occur in the upper 12 in. of the soil strata and overlie fairly competent soils. Suitable areas are available for borrow pits and quarries. No ripping or blasting of rock are required for horizontal construction projects. • There is no threat to the landing force from either NBC warfare or aerial attack.

• The MAF has landed in a predominantly undeveloped area with marginal, or no, logistic facilities (roads, airfields, etc.).

• Three NMCBs are assigned to the MAF. Each NMCB is accompanied by its organic equipment allowance and several items of augment equipment (Appendix C).

BASE LAYOUT

A naval advanced base may be needed to support unified area defense and/or launching and support of unified military operations [2]. Seizure and establishment of an advanced base could be a primary mission of a MAF landing. Through the process of providing logistic support to the combat elements of the MAF, an advanced base will inevitably be established in the rear area. The extent of this base development will depend upon the mission of the MAF, whereas the configuration of the base will be influenced by tactical considerations, topography, and economics.

The advanced base supporting the MAF ashore will be designed to provide efficient logistic and tactical support to MAF combat elements. Minimum prerequisites for the base include:

- 1. Dependable main supply routes linking beach support areas (BSAs), logistic supply areas, ammunition storage points (ASPs), and combat troops.
- Logistic supply areas for the storage, breakout, and retrograding of containers and the storage of breakbulk supply items.
- 3. Ammunition supply points with protective earth revetments for the storage of sufficient quantities of ordnance to supply three Marine Air Groups and one Marine Division.
- 4. POL storage (AAFS), distributing, and issuing systems (TAFDS, SIXCON).
- 5. Berthing, messing, administrative and work areas, and facilities to support 8,800 combat service support personnel assigned to the MAF Force Troops and 15,000 personnel assigned to the Marine Air Wing (MAW) [3].
- 6. Expedient airfields to support the MAW. (Without benefit of existing facilities, at least three expeditionary airfields and several V/STOL and VTOL pads would have to be constructed to move the MAW ashore. A multitude of support facilities associated with these airfields must be

available for the airfields to achieve a sustained operational capability.)

A conceptual layout of an advanced base (Figure 1) was necessary to define the scope of the horizontal construction projects. Effort was not directed either toward formulating a theoretical topographical model of the AOA, or at designing a hypothetical base to fit within any specific topographic restraints. The major support facilities illustrated in Figure 1 were sited with reference only to functional utility and safety.

SCHEDULING ANALYSIS

Activity durations and associated resources were estimated and then plotted in an arrow network (CPM) for each project. The CPM network enabled the interrelationships of the various work activities of a project to be clearly evident. Each work element (activity) was represented by an arrow with the tail of the arrow representing the start of the activity and the head of the arrow, the completion of the activity. With the association of time estimates with the activities, the longest path through the network represented the project duration. Every activity on the longest path was duration critical, i.e., any delay in completion of the activities were not duration critical, since there was more time available in which to complete them than was required. The critical path method is explained in more detail in References 4 and 5.

Earliest and latest start and finish dates for each activity were calculated to determine which critical activities had some float (slack) in their starting dates. A computer program, REAL^{***}, was used extensively to determine the critical paths of the project networks and to analyze resource (construction equipment) allocation [6]. REAL*** provided earliest activity start dates and activity durations. The program also listed the quantity of slack available to each activity and the resources assigned to the activity.

The program provided two critical path solutions, i.e., for critical path considering activity durations and for the critical path considering the twin restraints of activity durations and activity resources. In the latter case, a resource leveling routine was called which endeavored to maintain resource usage within specified limits. The resource leveling routine will be more fully explained in the expeditionary airfield (EAF) scheduling discussion.

The estimates for the various project activities were formulated as described in Appendix B. Estimates were derived considering the equipment performance characteristics given in Appendix C.

Expeditionary Airfield (EAF)

Figure 2 presents the arrow network for construction of a short airfield for tactical support (SATS) and the immediate conversion of the SATS to an EAF with a TAFDS area. Two hypothetical cases of EAF construction were considered - Case 1, construction by NMCB organic equipment; and Case 2, construction by NMCB augment equipment. Organic equipment was assigned to EAF 2 and augment equipment to EAFs 1 and 3. The critical path for Case 1, not considering resource leveling (NRL), consisted primarily of the hauling and filling activities with the MRS scrapers (Figure 2). The critical path for Case 2 (NRL) consisted of the finish grading and compacting activities and a mat laying activity (Figure 2). The different critical path of Case 2 was a result of the larger load capacity and shorter cycle time of the CAT 637 scrapers (augment) compared to the MRS II10, S110 scrapers (organic).

The resource allocation routine attempted to maintain resource usage at a specified level, while not exceeding predetermined resource critical limits and specified activity durations. Neither activity durations nor activity resource assignments were changed by the program. Where several parallel activities exhibited varying amounts of float time, their start dates were adjusted to limit the resource usage to the desired quantity as far as practicable. For example, in the EAF network (Figure 2), clearing of Areas 1 through 5 are parallel activities that require crawler tractors. These activities could be started simultaneously; however, this would necessitate an initial heavy outlay of crawler tractor resources followed by relatively low usage until the next set of parallel activities was encountered. It is more economical, and possibly crucial to timely project completion, to maintain a steady resource level throughout the project by optimizing resource usage.

Table D-1 includes a list of EAF network activity descriptions, and Table D-2 presents a list of resource assignments and activity durations for Case 1, EAF construction. Tables D-3 through D-6 contain data from the solution of the Case 1 network with (Tables D-5 and D-6) and without (Tables D-3 and D-4) employment of resource leveling. The effects of the resource leveling routine are readily apparent upon comparison of resource usage in Tables D-3 and D-5.

Comparison of critical activities listed in Tables D-4 and D-6 also yields interesting information. Without consideration of resource leveling, there was a single critical path (activities with zero float) through the network; however, with resource leveling, activities that were previously noncritical became critical and the critical path developed several branches. The critical path was extended when

activities lost their slack as a result of scheduling demands. Thus, where resource allocation exceeds or equals supply, resource critical activities are added to the critical path, and the project is vulnerable to delay from loss of equipment.

Tables D-7 through D-11 contain the solution data for the Case 2 network. Again, application of the resource leveling routine causes a diversification of the critical path.

Ammunition Supply Point (ASP)

The CPM arrow network for a 5,000-ST ASP is given in Figure 3, and the network activity descriptions, durations, and resource assignments can be found in Table D-12. Roadway stripping activities and one roadway shaping activity were on the critical path for the NRL network solution (Tables D-13 and D-14). Where resource leveling was applied (Tables D-15 and D-16), many activities that were not duration critical were found to be resource critical, e.g., roadway clearing, revetment clearing, and revetment construction activities. These activities were added to the critical list as a result of heavy requirements for crawler tractors and scrapers.

An ASP would probably be located in hilly terrain to benefit from the natural protection of the hillsides. If this were the case, then the difficulty of roadway construction would be increased beyond that represented by this analysis. Negotiable road grades would have to be maintained and gullies bridged with earth and culverts. In this situation, a beneficial tradeoff can be obtained by extending the duration of the revetment construction activities through construction of additional berms (revetments) to barricade the front of the stock piles. Barricading would permit shorter intermagazine distances and, thus, would reduce the extent of the ASP road system.

Main Supply Routes (MSR)

The CPM arrow network for the MSR system is given in Figure 4, and the network activity descriptions, durations, and resource assignments are listed in Table D-17. Stripping activities involving MRS scrapers, clearing of MSR 2, and shaping of MSR 4 (Tables D-18 and D-19) were on the critical path (NRL), which was 21 days in duration. With resource leveling, clearing of MSR 3 was added to the duration critical activities (Tables D-20 and D-21) because the allocation of TD20 crawler tractors with semi "U" dozers was at the critical limit. However, one TD20 crawler tractor with an angle dozer was available during this period; therefore, clearing of MSR 3 cannot be considered critical, although the overall crawler tractor demand was at a near critical level during most of the project.

Bulk Fuel Farms

Table D-22 provides a listing of the activity durations and activity resource assignments that were employed in the solution of the arrow network (Figure 5) for the construction of 12 AAFS (60 tank farms) for bulk fuel storage. The berm construction activities for AAFS 1, 2, 3; AAFS 4, 5, 6; and AAFS 7, 8 comprised the critical path (Table D-23) for both the NRL and RL cases. The critical path was not changed by application of resource leveling; however, the critical path did become resource critical as well as duration critical.

Logistic Support Area (LSA)

The critical path of the arrow network (Figure 6) for construction of the LSA was calculated to be 12 days. The critical path, without resource leveling, consisted of (1) clearing and stripping activities for Area 1, (2) hauling and filling activities for Areas 1 and 2 and the Truck Loading Area, and (3) the AMSS surfacing activity of Area 2.

Application of the resource leveling routine revealed that the remaining hauling and filling activities and the AMSS surfacing activities were resource critical. Several clearing and stripping activities (1-3, 3-6, 1-4, and 4-11) were identified as critical, because the starts of resource critical filling activities were dependent upon completion of these activities.

Tables D-24 through D-28 contain the resource usage and critical path data for the resource/time and time solutions of the LSA network.

Cantonments

Specific cantonment layouts were not available (Appendix B); thus, activity scheduling was performed with a bar chart rather than a CPM arrow network. The bar chart (Figure 7) depicts the time phasing of the basic construction activities and lists the construction equipment associated with each activity.

Cantonment construction was assigned to the FSSG Engineer Battalion and was scheduled for starting upon completion of the other high priority MARCORPS projects (Figure 8). Cantonment construction involves a significant clearing requirement to facilitate siting of troop shelters. There were insufficient crawler tractor resources to permit concurrent scheduling. For this reason, crawler tractors were considered to be resource critical.

EQUIPMENT ALLOCATION

Projects were assigned to the NMCBs and the FSSG Engineer Battalion according to their construction capabilities. After analysis of the critical path solutions and the resource allocation tables, the projects were scheduled on a bar graph (Figure 8) that depicts project start/end dates and the responsible military unit. With known project time frames and project resource allocation versus time, it was possible to summarize equipment requirements for the various projects.

Equipment allocation was calculated for crawler tractors, scrapers, road graders, compactors, and the AMSS LRUs, and was plotted over a 50-day time frame (Figures 9 through 19). Whereas resource allocation at the individual project level was presented in the resource allocation tables, resource allocation information for the overall horizontal construction effort was summarized by Figures 9 through 19.

The landing force commander cannot rely on having all of his construction resources available for commitment. A percentage of his equipment resources will be required for use in contingencies and for replacing deadlined equipment. Mechanical failure, maintenance servicing, and enemy action may deplete an equipment allowance by 10% or more.

This report does not consider construction of all vital horizontal projects during the first 50 days of a MAF amphibious landing. Only the <u>major</u> horizontal construction projects were analyzed. Smaller, though equally critical projects, such as VTOL and V/STOL pads, fortifications, road maintenance, clearing and earthwork for critical facilities, and drainage projects, were omitted. To budget for these excluded projects, it is recommended that at least 10% of the equipment resources be kept in reserve. Therefore, it is concluded that the landing force commander (of this study) should not plan to allocate more than 80% of his equipment allowance The remaining 20% would, thus, be available to counterbalance unforeseen enemy action, equipment deadlining, and unscheduled projects.

Crawler Tractor Allocation

Clearing operations precede all other earthwork; thus, crawler tractor allocation, shown in Figures 9 through 12, was heaviest during the first 30 days of the amphibious landing. In each figure, the crawler tractor allocation exceeds the recommended 80% planned commitment level. In Figures 10, 11, and 12, there are zero reserves, and allocation equals the total allowance of crawler tractors.

Road Grader Allocation

The NMCB grader allocation for the construction assignments did not exceed 61% of the total allowance of 18 road graders (Figure 13). Road grader allocation on projects assigned to the Engineer Battalion of the FSSG depleted the recommended reserves and equaled the available supply during the period of D+10 to D+11 (Figure 14). However, the NMCB reserves were sufficient during this period to alleviate the temporary MARCORPS deficiency.

Self-Propelled Vibratory Roller Allocation

The NMCBs had sufficient vibratory roller resources to meet compaction equipment requirements. The only compaction equipment listed in the Engineer Battalion Tables of Equipment that was suitable for earth compaction was a towed sheepsfoot roller (TAM No. B1800). This roller is relatively slow and inefficient compared to the self-propelled compaction equipment (ECC 4634/21) of the NCF, and is suitable only for compaction of cohesive materials. The Engineer Battalion's requirements for compaction equipment were combined with those of the NMCBs to obtain the graph plotted in Figure 15. From Figure 15, it can be observed that the compaction equipment allocation exceeds the supply available from the NMCB allowances during the period of D+9 to D+11; furthermore, the recommended 80% allocation level is exceeded from D+9 to D+11.

Scraper Allocation

Within both NCF and MARCORPS units, the scraper allocation equaled and/or exceeded the allowance levels within the first 30 days after D day. Scraper allocation by the FSSG Engineer Battalion slackened after D+15; thus, these scrapers were available after D+15 to alleviate shortages within the NMCBs. The three NMCBs and, particularly, the FSSG Engineer Battalion have significant 5-ton dump truck resources (36 and 74, respectively) to augment scrapers in hauling operations; however, extensive dump truck hauling would increase loader and grader allocation to critical levels.

From D+7 to D+15 the scraper requirements of the LSA and bulk fuel farm projects exceeded the FSSG Engineer Battalion scraper allowance. This would necessitate (1) hauling fill in dump trucks and stripping with dozers, (2) delaying start of a project, e.g., the ASPs, or (3) reducing the quality of construction of a project, e.g., eliminate stripping roads in ASP 1 or stripping of the LSA. The landing force commander would be faced with a difficult decision. Employing dump truck and crawler tractor resources would certainly be detrimental to smaller projects which required these resources. Elimination of overburden stripping would cause premature roadway or surfacing failures, thus necessitating costly rework.

DISCUSSION

A MAF could experience difficulty in providing and allocating the construction equipment assets that would be necessary to complete critical horizontal construction projects within the first 50 days subsequent to D-day. Transient equipment deficiencies, which are capable of delaying projects, could develop with respect to crawler tractors, scrapers, and compactors. Depending upon the requirements of the operational plan and tactical situation, the IOC of critical facilities may arrive past acceptable deadlines. The bar graph of Figure 8 was used to prepare Figure 20, which depicts the state of rear support area development on D+6, D+16, D+30, and D+45. It should be noted that POL facilities are completed by D+12 even though all three expeditionary airfields are not operational until D+45. Thus, V/STOL aircraft would be the sole users of aviation fuel until the tactical fighter fuel demand grew from D+25 (EAF 1) through D+38 (EAF 2) and D+45 (EAF 3). It is stressed that the types of insufficient equipment and the magnitude of equipment or facility IOC shortcomings in an actual situation would be dependent on the similarity of the situation to the limiting assumptions of this report.

Numerous factors could influence the engineering support within the AOA. The size, type, and functional utility of captured facilities would have a pronounced effect on the magnitude of the programmed construction effort. Likewise, the quality of construction would influence the project durations and, thus, facility operational dates. MARCORPS efforts would be focused toward construction of an "initial" quality. Calculations in this report for airfield earthwork and container transporter trafficable surfaces include estimates for stripping of deleterious materials and grading to form a slope or crown for drainage purposes. These activities could be omitted to expedite construction and conserve resources in the short term. Omission of these activities significantly increases the probability of paying a stiff penalty at a later date - possibly still during the assault phase. Unstripped areas would be prone to shear failure and pumping under repeated loadings. Subgrade failure would necessitate costly maintenance (resource and time) of an extensive road system; also flight operations would be curtailed (resource, time, and tactical penalties) to remove airfield matting and rework apron or runway subgrades. Higher quality, "temporary" construction of critical facilities, in particular roads and airfields, may prove to be extremely costeffective in the long term with respect to the landing force mission.

Another factor that could significantly affect the horizontal construction magnitude is the siting of major facilities and installations. Tactical considerations arising from a nuclear, aerial, or artillery threat could increase spacing between facilities, thereby adding to the road system and horizontal support requirement. Terrain conditions impact on horizontal construction in a similar manner. Rugged topography would require cutting and filling to maintain roadway alignment and grades that are negotiable by container transports. Difficult soil conditions, e.g., rock, marsh, high water table, etc., would also impede horizontal construction.

Equipment shortfalls could be diminished by (1) improving equipment production efficiency, (2) incorporating a project/equipment management method to manage horizontal construction projects, (3) adding new equipment to allowances, e.g., self-propelled vibratory rollers to the FSSG Engineer Battalion allowance, and (4) reinforcing engineering units with additional equipment to meet the specific situation. The latter alternative has a significant disadvantage - shipboard space would be severely restricted, and any addition of construction equipment would exclude other priority tactical equipment.

A project/equipment management system (PEMS) would be an invaluable asset to the landing force commander. In the proposed PEMS concept, all project/equipment planning and scheduling would be performed under the supervision of a single individual, e.g., the MAF engineer, who would supervise project estimates and the formulation of CPM networks for large projects. After project priorities were established, the various CPM networks could be solved with the aid of a computer and projects scheduled to achieve an optimum allocation of construction equipment.

The PEMS, which would consist of a software system, would require a compatible command/administrative structuring of the construction units. Independent and joint project tasking would be prerequisites; moreover, the MAF engineer would have to be continuously aware of the real time and projected equipment status for the construction units. Examples of requisite project tasking are:

Independent tasking:	EAF No. 1 to NMCB ONE
Joint tasking:	LSA to FSSG Engineer Battalion with grading support from NMCB TWO
Joint tasking:	EAF No. 3 to NMCB THREE with equipment and manpower support from NMCBs ONE and TWO

The PEMS is envisioned as a possible subroutine of the AOA Real Estate Management project presently under study by CEL.

Several areas require further study and definition before equipment, project, and real estate management in an amphibious environment can be effective. These areas include: Facility Design There are no MARCORPS designs for a containercapable LSA or for an ASP capable of handling and storing containerized ammunition. The Army is currently funding two studies - Container Port Construction Study and Containerized Ammunition Study that address problems associated with these two facilities [7,8]. The Army studies should be investigated for relevancy to an amphibious environment, and designs should be prepared for an LSA and an ASP that would satisfy the MARCORPS amphibious criteria. The most serious MAR-CORPS shortcoming is judged to be in the area of storing and handling containerized munitions.

<u>Containerized Storage of Munitions</u> Army studies of containerized munitions have been directed towards (1) developing interior restraint systems for ammunition-stuffed Milvans, (2) investigating the effects of containerized storage (up to 2 yr) on ammunition quality, and (3) developing methods of buffering high explosive (Class 7) munitions with less active (Class 5) munitions within the holds of containerships. The Milvan Temperature and Humidity Tests [9] concluded that the ammunition test items (2.75-in. rockets, HE M374A1 81MM mortar rounds with fuzes) stored for 2 yr in various types of containers and in various climates did not produce any adverse effects. These tests demonstrate that containerized storage of munitions in an AOA is feasible with respect to munition quality.

Data from the Milvan Container Stowage Tests [10] are available and could be useful in determining safe separation distances for earthbuffered container magazines. Nineteen tests (detonations) were conducted at the Tooele Army Depot in Tooele, Utah. Holes were excavated and sized to the proper dimensions to simulate the below water portion of a containership hold. In the tests, MILVAN shipping containers stuffed with typical types of Class 7 and Class 5 ammunition items were placed below ground level in the simulated holds in the same configuration as would exist in the hold of a cargo ship. The purpose of the tests was to determine the percent of containers that would contribute damaging blast overpressures should any one of the massdetonating munitions-stuffed containers be initiated. The tests indicate that two Milvan containers (stuffed with munitions of Class 5 or less) positioned side by side between Milvan containers stuffed with Class 7 or above munitions would be an effective shield for reducing or controlling propagation.

It should be emphasized that the Army studies of containerized ammunition have not solved the MARCORPS shortcoming in this area particularly with respect to containerized munitions handling and storage within an ASP. The Army has, however, compiled extensive data that could serve as a baseline for further exploratory work. Specifically, MARCORPS needs are for:

- 1. Revetted storage of containerized ammunition to minimize intermagazine quantity and distance requirements and, thus, ASP size, perimeter, and extent of road system.
- 2. Tailoring of specific ASP and magazine/revetment designs to the categories and quantities of ammunition and explosives expected to be expended in an amphibious landing.

These needs have not been addressed by Army studies.

Quantity and distance criteria have been established for the open storage (without revetments) of ammunition in an advance base situation [11]. Such storage, however, increases the probability of loss of life, equipment, and ammunition, and should be used for as brief a term as possible.

Equipment Characteristics and Efficiency Factors Production formulas for calculating equipment production have received widespread use within industry; however, applying these formulas to military construction is difficult because they require knowledge of equipment performance characteristics and operator efficiency. There is no single reference for specifications and performance characteristics of NCF and MARCORPS construction equipment, and operator efficiency factors are often obtained in a subjective manner. Reference 12 contains some information on military construction equipment performance characteristics and operator efficiency; however, this information is incomplete and is not totally adaptable to MARCORPS needs. A detailed study of MARCORPS and NCF equipment performance characteristics and operator efficiencies would provide valuable data for use in estimating construction equipment production in support of an amphibious landing.

<u>Trafficable Surfacing</u> The four ASPs defined in this report contain 28 mi of roadway. The principle MSR system constitutes an additional 16 mi of roadway, and the LSA surfacing requirement is on the order of 14 acres. AM2, M8A1, AMSS, MOMAT, and FOMAT are surfacing systems currently envisioned for use during an amphibious operation. Study is needed to determine the cost - with respect to time, money, and equipment - of using these and other, more conventional surfacing systems.

REFERENCES

1. Civil Engineering Laboratory. ALSA Definition Paper. Port Hueneme, Calif, 1976.

2. Department of the Navy. Office of the Chief of Naval Operations. NWIP 11-23(A): Base Development, 1967. 3. U.S. Marine Corps. I and L Department, Headquarters. Combat Service Support, A Revised Concept for Organization and Operation. Jan 1975.

4. Naval Facilities Engineering Command, NAVFAC P-405: Seabee Planner's and Estimator's Guide. Mar 1974.

5. O'Brien, James J. CPM in Construction Management. McGraw-Hill Book Company, NY, 1965.

6. General Electric Corporation. User's Guide: Automatic Scheduling with Time Integrated Resource Allocation, 1971.

7. TRADOC Engineer School and ACE Waterways Experiment Station. Container Port Construction (PORCON). Defense Documentation Center. Agency Accession No. DA700099.

8. Army Logistics Center. TRADOC Concepts and Doctrine Directorate. Containerized Shipment and Storage of Ammunition (ACN 22194). Defense Documentation Center. Agency Accession No. DA724041.

9. DARCOM Ammunition Center. Report No. EVT 9-73-3: "The Milvan Temperature and Humidity Test." Savanna, Ill., Jul 1976.

10. Ammunition Equipment Office. T-205: MILVAN Container Stowage Tests. Tooele Army Depot, Tooele, Utah, Nov 1973. (16-mm 20-min film report also available)

11. Naval Sea Systems Command NAVSEA OP-5/3: Ammunition and Explosives Ashore, Advanced Bases. 4th Rev, Oct 1974.

12. Department of the Army. TM 5-331: Management; Utilization of Engineer Construction Equipment.

13. Naval Air Systems Command. NAVAIR 51-35-7: Expeditionary Airfields; Logistics Data to Field Installation. Mar 1974.

14. Department of the Army. TM 5-330: Planning and Design of Roads, Airbases, and Heliports in the Theatre of Operations. Sep 1968.

15. Naval Sea Systems Command. NAVSEA OP-5/1: Ammunition and Explosives Ashore. 4th Rev, Oct 1974.

16. U.S. Naval Mobile Construction Battalion FIVE. Deployment Completion Report: Western Pacific, Apr-Dec 1972.

17. U.S. Marine Corps Mid-Range Objectives Plan FT 1973-1982 (MMROP), Nov 1971.

 Marine Corps Development and Education Command. Amphibious Instruction Department. Student Combat Service Support Reference Book. Mar 1976.

19. U.S. Marine Corps. TM-06674A-15: Amphibious Assault Fuel System M674C; Installation, Operation and Maintenance. Oct 1969.

20. Fonecon Between R. Pruett, Capt, USMC, Marine Corps Headquarters, Code LME, and J. E. Thayer, Civil Engineering Laboratory, Code L25. 20 May 1976.

21. Civil Engineering Laboratory. CEL 1tr, Ser 817 of 21 Feb 1975; Subj: Amphibious Logistic Support Ashore.

22. Department of the Navy. Naval Facilities Engineering Command. NAVFAC P-404: NCF Equipment Management Manual. Jun 1975.

23. FACSO Rpt SYM/NO 04040/B5040R01: Advanced Base Functional Component System, ABFC Requirements Index Master, P25 and P31, Jun 1976.

24. International Pay Line Division. Construction Equipment Reference Guide.

25. Naval Construction Training Center. Equipment Operator School. Instructor Lesson Plans. Naval Construction Battalion Center, Port Hueneme, Calif.

26. Caterpillar Tractor Company. Caterpillar Performance Handbook, Edition 4. Jan 1974.

27. RAYGO Incorporated. RAYGO Dynamic 400 and Super 600 Performance Specifications. Minneapolis, Minn.

28. Galion Manufacturing Division. Dresser Industries, Inc. Galion Model T-500L Performance Specifications.

29. John Deere Company. Construction Equipment Purchasing Guide. 1972.

30. Caterpillar Tractor Company. Caterpillar Purchasing Guide.

31. General Motors, TEREX Division. TEREX 82-30 FA Crawler Tractor Specifications. Oct 1971.

32. General Motors, TEREX Division. TEREX 72-31 Loader Specifications. Jan 1974.

Figure 2. Arrow network for EAF construction.

CLR PERIM	Clear perimeter
CLR RDS	Clear roads
FIN CLR RVTS	Finish clearing revetments
FIN CST RVT BRMS	Finish constructing revetment berms
FIN SHP RDS	Finish shaping roads
ST CST RVT BRMS	Start constructing revetment berms
ST CLR RVTS	Start clearing revetments
ST SHP RDS	Start shaping roads
STR RDS	Strip roads

----- Critical Path

Figure 3. Arrow network for 5.

Figure 12. Crawler tractor (TAM No. B2462) utilization.

Figure 15. Self-propelled vibratory roller (ECC No. 4635/31) utilization.

Figure 16.

de

(a) D + 6

Figure 20. MAF rear support area.

(b) D + 16

Figure 20. (continued)

(c) D + 30
Figure 20. (continued)

(d) D + 45

Appendix A

PRIORITIES AND DEFINITIONS FOR HORIZONTAL CONSTRUCTION PROJECTS

Instead of assigning individual priority numbers to each construction project, it is preferable to group projects into priority classes. The projects within each priority class then carry approximately the same priority classification rating and are developed more or less concurrently as determined by mission requirements [2]. Table 1 lists the major types of horizontal construction projects with respect to their priority. Through Table 1 a priority level was assigned to each project defined below.

Vertical Takeoff and Landing (VTOL) Forward Landing Site: Priority 1.

A portable airfield of minimum size (72 ft sq) designed for operations that are dependent upon logistic or tactical support by helicopters (Figure A-1). The VTOL field does not have lighting, communications, launch, or recovery systems [13].

Vertical/Short Takeoff and Landing (V/STOL) Forward Operating Facility: Priority 1.

A portable airfield capable of providing support through V/STOL, fixed-wing aircraft and helicopters (Figure A-1). Field consists of a 600-ft-long by 79.5-ft-wide surfaced runway, turnoff, and parking and maintenance areas. A field lighting system and a Fresnel Lens Optical Landing System (FLOLS) enhance aircraft recovery capability [13].

Short Airfield for Tactical Support (SATS): Priority 1.

A portable airfield designed for use by one tactical jet squadron. Consists of a 2,210-ft-long by 96-ft-wide surfaced runway, turnoff areas at either end, a hot pad, and parking and maintenance areas (Figure A-1). Includes a CE 1-3 Catapult, two M-21 Primary Recovery Systems, two FLOLS, extensive field lighting, and audio-visual communication systems [13].

Expeditionary Airfield (EAF): Priority 1.

An extension of SATS (Figure A-1) that provides a 96-ft-wide by 4,000-ft-long surfaced runway and parking and maintenance areas for up to four tactical jet squadrons. Includes SATS catapult and recovery system as well as three FLOLS, two M-21 Emergency Recovery Systems, and expanded field lighting and communication systems [13].

Main Supply Routes (MSR): Priority 1.

A system of two-way, improved roads that link primary rear area facilities, e.g., airfields, ammunition supply points, logistic areas, bulk fuel farms, etc. The hypothetical MSR system contains 15.9 mi of roads (Figure A-2) with typical cross sections as shown in Figure A-3. The MSR system was assumed to be constructed to meet Army specifications for military roads [14].

Bulk Fuel Storage (AAFS): Priority 1.

Onshore bulk fuel storage facilities that are capable of storing 8.6 million gal of POL for air and ground elements of the MAF. POL bulk storage facilities consist of twelve AAFS. Each AAFS (Figure A-4) is comprised of five tank farms with a storage capacity of 720,000 gal (including capacity of tanks at pump stations). Each tank farm contains six 20,000-gal fabric tanks that are individually bermed (Figure A-5).

Tactical Air Fuel Dispensing Systems (TAFDS): Priority 1.

One TAFDS area is located adjacent to the parking apron at each of the three EAFs. A total of 2.4 million gal of aviation fuel is stored and issued from these TAFDS areas. The TAFDS areas are composed of tank farms equal in size to the TAFDS units, i.e., six 20,000-gal fabric tanks.

Ammunition Supply Points (ASP): Priority 2.

There are four ASPs that individually cover 407 acres and have perimeters of 3.2 mi. Each ASP contains approximately 7.9 mi of ditched roads and 20 aboveground, earth-bermed revetments (Figures A-6 and A-7). Each ASP is capable of storing 5,000 ST of high explosive ordnance in accordance with NAVSEA OP-5 design criteria [15].

Logistic Support Area (LSA): Priority 1.

An LSA covers 18.8 acres and has expedient surfacing for storing and handling 1,645 full and 1,645 empty $8 \times 8 \times 20$ -ft containers. These containers hold supplies other than classes III and V. The LSA contains surfaced aisles for straddlelift and cargo truck traffic, an administrative area, and areas for container unstuffing, pallet staging, and cargo truck loading (Figure A-8).

Cantonments: Priority 2.

A cantonment is a partially cleared area of 490 acres with 27 mi of unsurfaced secondary roadway. The cantonment provides berthing for 24,000 MAW and FSSG personnel. A cantonment module (Figure A-9) was used to estimate total cantonment area (Appendix B). Specific cantonment designs were not attempted.

Figure A-2. Hypothetical MSR network.

Area = 23.0 acres Perimeter = 0.75 mi

Scale: 1 in. = 500 ft

and a stand of the stand of the stand of the

Scale: 1 in = 1,000 ft

Figure A-6. 5,000-ST ASP layout.

Figure A-7. Typical 250-ST, aboveground, noncovered, earth-bermed revetment.

Appendix B

PROJECT ACTIVITY ESTIMATION

EXPEDITIONARY AIRFIELD

The general limiting assumptions and several specific assumptions were applicable to estimation of EAF construction activities. The specific assumptions included:

- 1. Preliminary (pioneer) layout of the EAFs and construction of haul roads to borrow pits (approximately 1 mi from the EAF) were completed by MARCORPS Division engineers. The borrow pit area was stripped and cleared, but the EAF site was not cleared.
- 2. Site topography was assumed to be essentially level. Runway, taxiway, and parking apron were to be graded with a transverse slope of 0.5% and a longitudinal slope of 0%. Grading tolerance was such that the maximum permissible surface variation from a 12-ft straightedge was 1.0 in. The runways were to be constructed with 20-ft-wide shoulders and a 35-ft-wide clear area along all edges.

The slope, surface tolerance, and shoulder specifications of Assumption 2 closely conform to minimum airfield requirements specified by the U.S. Army for a tactical, rear area airfield [14]. Earthwork estimates were formulated using the cross section illustrated in Figure B-1. This cross section was designed along the specified transverse slope requirements.

Construction of an EAF was divided into two phases - the first consisted of constructing a SATS to achieve quick operating capability, and the second converted the SATS to an EAF. The SATS airfield was proportioned into four approximately equal areas (Figure B-2), and construction was scheduled to proceed consecutively from area to area. The same procedure of subdividing the construction effort into areas was followed for the conversion (Figure B-3). As the earthwork in any area was completed or sufficiently advanced to not present interference, matting placement was scheduled. The matting was placed in various sections as shown in Figures B-2 and B-3.

MAIN SUPPLY ROUTES

There is no reference that can define the extent or design of an MSR network capable of providing adequate logistic support to a MAF. Instead, the extent of the MSR network in the AOA must be determined

by the siting of the primary facilities in the rear area, e.g., airfields, ammunition supply points, logistic areas, bulk fuel farms, etc. The siting of these facilities would be influenced by safety, operational, topographical, and tactical considerations.

The MSR system of this report was developed primarily from consideration of operational and safety requirements. However, an actual MSR network may have to be more extensive to overcome or circumvent natural obstacles or to comply with tactical factors. Construction estimates were based upon the MSR network shown in Figure A-2. The network consisted of four MSRs with the main MSR (MSR 1) subdivided into three sections. Activity estimates were formulated for construction of each MSR and the three sections of MSR 1.

Construction estimates were derived with consideration given to the general limiting assumptions. The design cross section, (Figure A-3) was selected to meet the U.S. Army military road specifications for a theatre of operations [14]. Estimates for provision of drainage control (other than a standard "V" ditch to either side of the road), bridging, or placement of culverts were neglected. MSRs were assumed to be constructed over gently rolling terrain without encountering difficult topographical features, such as marshes and rocks. MSR 1 was assumed to have been totally cleared by the Division engineers earlier in the assault. MSR construction procedure was assumed to be (1) clearing of the roadway, (2) stripping 12 inches of deleterious material from the roadway, (3) cutting "V" ditches to either side of the roadbed while casting the cut material onto the roadbed, and (4) grading and compacting the roadbed to shape the traveled way and shoulders.

AMMUNITION STORAGE POINTS

A MAF of 48,362 personnel would use ammunition at a rate of approximately 32,136 ST/mo [17]. To build a 30-day reserve, it would be logical to assume that this amount would be doubled during the first month of the operation - half the supply being consumed and half of it being stock-piled [14]. Approximately 57% of the ammunition belongs to Class VA with the remainder in Class VW [17].

To size the ASPs, it was necessary to determine the net charge weight of the ammunition. A factor of 0.60 was selected; therefore, the net weight of explosives to be stored was estimated to be 19,282 ST. If the ammunition is stored in four ASPs (one for each EAF and one for MARDIV), the ASP capacity would have to be approximately 5,000 ST. Since an NMCB was to be tasked with the ASP construction, it seemed appropriate to use an ABFC, specifically System No. J36 (5,000-T Ammunition Depot). Drawings for this component were found to be defective (intermagazine separation distances exceeded those specified in NAVSEA OP-5), and the ASP was extremely large (650 acres). Therefore, a preliminary design for a 5,000-ton ASP (Figure A-6) was completed in accordance with NAVSEA OP-5 criteria. This ASP contained 20 250-ST-capacity aboveground revetments (Figure A-7).

All ASP construction activity estimates were referenced to the preliminary design of Figure A-6. Estimates were not included for drainage control (except minimum road ditching). The ASP areas were considered to be relatively level. Magazine berms were constructed by using scrapers to deposit material along the berm line. A scoop loader then piled the earth and shaped the berm with assistance from a road grader. Activity estimates considered construction of the ASP road systems by (1) clearing the roadway, (2) stripping 12 in. of deleterious material from the roadway, (3) cutting "V" ditches to either side of the roadbed while casting cut material onto the roadbed, and (4) grading and compacting the roadbed to shape the traveled way and shoulders.

An ASP was subdivided into four equal areas for construction scheduling, with roadway and magazine construction scheduled to proceed from area to area.

AAFS AND TAFDS

It is estimated that a MAF with 48,362 personnel will consume POL at a rate of 101,749 ST/mo. Approximately 70% of this is aircraft fuel (JP-5), with the remainder being MOGAS and diesel [17]. Using an average conversion factor of 283.6 gal/ton, the MAF consumption of POL equates to 28.9 million gal/mo.

Present concepts (not established doctrine) of MAF organization include two Bulk Fuel Companies within the Engineer Support Battalion of the FSSG [18]. Each of these two companies is assigned six AAFS. Each AAFS represents a storage capacity of 720,000 gal (36 20,000-gal tanks) [18,19]. Therefore, the POL storage ashore, will approximate 8.6 million gal (excluding TAFDS storage).

For purposes of this report, bulk fuel (AAFS) storage was assigned in increments of Tank Farms (six 20,000-gal tanks) and AAFS (five Tank Farms). In addition, each AAFS was considered to be supported by six booster tanks located along the supply lines. Typical Tank Farm and AAFS layouts are presented in Figures A-4 and A-5. The AAFS system offers considerable layout flexibility; thus, the layout illustrated in this report is only representative of one possible configuration. Eight AAFS were positioned to provide support to the three EAFs, and four AAFS were sited to provide MOGAS and diesel fuel for ground elements (Figure 1). The locations of the 72 tanks at pumping stations were not delineated in Figure 1 because of the small scale of the figure. The AAFS assignments were as follows:

AAFS	Supported Element/Facility	Total Storage Capacity (million gal)
A1,A2,A3	EAF 1	2.16
A4, A5, A6	EAF 2	2.16
A7,A8	EAF 3	1.44
G1,G2,G3,G4	Ground	2.88
		8.64

MAF organization concepts also include 20 TAFDS units assigned to the TAFDS section of the WSG [18]. In the future, each TAFDS unit may consist of six 20,000-gal fabric tanks [20]; therefore, 20 TAFDS units would provide storage for 2.5 million gal of aviation fuel. The TAFDS units were assigned as follows:

TAFDS Area	No. of TAFDS Units	Location
А	6	EAF 1
В	6	EAF 2
С	8	EAF 3

AAFS and TAFDS construction activity estimates were based upon constructing the tank farms as shown in Figure A-5. Each tank was considered to be individually bermed, with a clear area extending 10 ft from the outer toe of its berm. The general limiting assumptions were applied to the activity estimation. Berms were constructed using equipment and procedures identical to those employed for ASP berms. Overburden stripping was not included in the activity estimates for the POL site work.

CANTONMENTS

There would be approximately 15,000 personnel assigned to the MAW and 9,000 combat service support personnel assigned to the FSSG [3]. These personnel would be primarily confined to the rear of the MAF and would require areas for layout of berthing shelters. Rather than endeavor to predict a reasonable design for the various cantonments, it was decided to use an available cantonment design as a module and to multiply the module by appropriate factors to estimate clearing

and road requirements.

The selected design (Figure A-9) was that of a cantonment constructed by NMCB FIVE during 1972 in Nam Phong, Thailand, for MAG-15 of Task Force Delta (III MAF). The cantonment, which measured 1,230 ft by 2,231 ft (63.0 acres), contained 309 strongback tents/SEA HUTS and 3.5 mi of road [16]. If each hut averaged 10 personnel, the cantonment was capable of berthing 3,090 personnel. Although future MARCORPS amphibious operations could utilize container-type personnel shelters instead of SEAHUTS or strongback tents, it was estimated that the selected cantonment module would be sufficiently accurate for gross estimation since population density (troops/acre) would probably be independent of shelter type as a result of tactical and sanitation limitations. A single cantonment capable of berthing 24,000 personnel would require 7.8 modules, which is on the order of 27 mi of roadway and 490 acres of land.

Although Figure 1 depicts a cantonment at each airfield and one in the vicinity of the LSA for the FSSG, individual cantonment project estimates were not produced, but were lumped together as if one large cantonment were to be built. Estimates for total cantonment earthwork were formulated for the various activities involved. These estimates were based upon the general limiting assumptions. The cantonment area was considered to be essentially level with neither significant drainage problems nor natural obstructions. Clearing requirements were estimated to total 25% of the cantonment area. This is a smaller percentage of cleared area than was present in the design module (Figure B-4). Estimates for road construction activities were based on a single lane, 14-ft-wide traveled way with 4-ftwide shoulders and 1.5-ft-deep "V" ditches to either side of the roadway. The Engineer Support Battalion of the FSSG was assigned cantonment construction.

LOGISTIC SUPPORT AREAS

Based on daily cargo requirements and containerability of the cargo, it was calculated that 106 8 x 8 x 20-ft cont/day would be required to support a full-sized MAF operation. A double rate was assumed to be necessary initially to achieve a reserve stock of 30 days while concurrently meeting daily demands. Thus, the throughput rate would have to be at least 212 cont/day. This double rate by material class is as follows [21]:

<u>Class</u>	<u>Rate (cont/day)</u>
III	10
V	108
Other	94
	212

Safety factors require Class III and V materials to be separated from the other classes. Containers with Class III and V cargos would probably be routed to bulk fuel farms and ammunition storage points, respectively. The LSA must, therefore, be capable of handling the remaining 94 containers per day of other classes of supply items.

Allowing for a contingency of 5 days, the double rate would continue for a period of 35 days building to a total of 3,290 containers in the LSA. Half of these would be unstuffed in the LSA each day, with pallet-sized loads going forward or being stored in a pallet area forward of the LSA for subsequent forward movement. A design for a container-handling LSA does not presently exist. However, such an LSA must be capable of

- 1. Storing 1,645 empty containers in a compact area for retrograde.
- 2. Storing 1,645 full containers in arrays to facilitate handling/unstuffing.
- 3. Unstuffing 47 cont/day by transferring them to an unstuffing dock and/or bringing the unstuffing capability to the container.

Accordingly, a rough LSA design was developed to satisfy these three criteria. The LSA design should not be considered a blue print for LSA construction. The design was intended solely to facilitate estimation of LSA earthwork requirements. The design was based on arrangements of clusters of containers (Figure B-5). The cluster aisle spacing was derived by assuming the use of straddlelifts for container handling (Figure B-6). Assuming loaded containers are stacked two high and empty containers three high, then 4.3 clusters would be required for the full containers and 2.9 clusters for the empty containers. A plan view of the LSA concept is presented in Figure A-8.

The LSA discussed thus far was designed for containerizable cargo in classes other than Class III and V. There would be some noncontainerizable cargo from Classes IV and VII that would necessitate an additional LSA area. No attempt was made to accurately determine this area size; also, construction of an area for storage of the bulk cargo was not included in this report. Specific assumptions applied to LSA activity estimates included:

1. Construction of the LSA by functional areas (Figures 6 and A-8).

2. Stripping of 12 in. of deleterious material from areas of the LSA subject to container-capable MHE traffic. Hauling, placing, grading, and compacting of fill to provide a +0.5% slope from the longitudinal edges of the LSA to the longitudinal centerline.

3. Surfacing Areas 1, 2, and 3 and the Container Unstuffing Area with components of the AMSS.

Not to scale

Figure B-4. Actual cantonment module. Note proportion of cleared land area.

Figure B-5. Typical container cluster for straddlelift handling [21].

Appendix C

NCF AND MARCORPS CONSTRUCTION EQUIPMENT

NAVFAC is the inventory manager for major construction material and Civil Engineer Support Equipment (CESE). The Civil Engineer Support Office (CESO) serves as a decentralized headquarters for equipment management functions of NAVFAC. CESO budgets for NCF equipment and tactical support materials, assists in the determination of equipment allowances, and provides management guidance in the maintenance and overhaul of NCF equipment [22].

The NCF has been assigned allowances of CESE to support operations during a contingency and for training purposes. These allowances include tactical equipment to permit operations under adverse conditions.

The basic, or organic, equipment allowance is established to enable a unit or activity to fulfill its operational requirements. Allowance items have been selected to balance typical operating conditions and cost against the capability of providing support in a contingency situation. Organic allowances are not capable of meeting every conceivable operational requirement.

When an assigned project requires more equipment than a Unit has, the organic allowance is supplemented by the responsible Fleet or Operational commander. The Naval Construction Force Support Unit (NCFSU) provides augment equipment to support NCRs and NMCBs. This equipment is normally tailored for the accomplishment of specialized tasks, such as large-volume earth moving, rock crushing, concrete and asphalt production, etc. [22].

An NMCB and an NCFSU are components (P25 and P31, respectively) of the Advanced Base Functional Component (ABFC) System. Construction estimates for this study were based upon three NMCBs being assigned to the MAF. It was hypothesized that each NMCB would be accompanied by its organic (P25) allowance and several pieces of augment (P31) equipment. The equipment considered available to each NMCB is listed in Table C-1. It should be noted that numerous other items of equipment listed under separate equipment cost codes are contained within the organic (P25) and augment (P31) equipment allowances. Only the major equipment items considered to be necessary for estimation of the primary horizontal construction activities of this report were listed in Table C-1. An abridged listing from the Tables of Equipment for the FSSG Engineer Battalion is presented in Table C-2. Tables C-3 through C-13 contain specifications and performance characteristics for the equipment listed in Table C-1. Tables C-14 through C-17 contain specifications and performance characteristics for several MARCORPS (FSSG Engineer Battalion) equipment items.

Table C-1. NMCB Organic (P25) and Augment (P31) Equipment

ty Representative Manufacturer/Model	La	1	1	Galion, Model T-500L	Caterpillar, Model 977L	Caterpillar, Model 977L	John Deere, Model JD644	John Deere, Model JD644	RAYGO Model 400	RAYGO Model 400	MRS 1110, S110, or Int. 433	International TD-20B	International TD-20B	International TD-20B	h	Caterpillar, Model 637	Caterpillar, Model D8H
Quantity	Organic Equipment $^{\alpha}$	12	8	9	2	2	1	3	3	1	9	2	4	2	Augment Equipment	2	4
Short Description	Organic	TRK 5T Dump	TRK 15T Dump	Grader Motor	Tractor w/Load (W/W)	Tractor w/Load (W/BH)	Loader Front End (W/FK)	Loader Front End (Arctic)	Roller Vibrate	Roller Vibrate (ASP)	Tractor Scraper	Tractor Crawler U	Tractor Crawler A	Tractor Crawler R	Augmer	Tractor Scraper	Tractor Crawler U
ECC		0587/01	0644/11	4420/31	4530/11	4530/21	4531/31	4531/41	4635/21	4635/31	4750/01	4850/01	4850/11	4850/21		4750/11	4851/01

 $^{\alpha}{}_{\rm E}{\rm xtracted}$ from Reference 23. Represents an abridged P25 organic equipment listing. $^{b}{}_{\rm E}{\rm xtracted}$ from P31 equipment list of Reference 23.

Table C-2. FSSG Engineer Battalion Equipment Allowance $^{\alpha}$

TAM No.	Short Description	Ouantity	Representative	
		(Manufacturer/Model	
B-1080	Grader, Road, Motorized	8	I	
B-1900	Scraper, Earth Paving, Towed, Cable-Operated, 16 cu yd	ø	Q	
B-1920	Scraper, Earthmoving, Towed, Hydraulically Operated, 8 cu yd	2	MRS 100-M69	
B-2460	Tractor, Industrial	8	MRS 200	
B-2462	Tractor, Medium, Full-Tracked	36	TEREX 82-30FA-M2	
B-2463	Tractor, Full-Tracked w/Multipurpose Bucket	9	CASE 1150	
B-2465	Tractor, Ruuber-Tired, Arctic, Steering	9	TEREX 72-31	
B-2480	Tractor, Wheeled, Industrial	6	MRS 100-M69	
1070	Truck, Dump, 5T, 6x6 M54A2C	84	1	· · · ·
$a_{\rm Abridged}$	lpha Abridged listing from Tables of Equipment. b To be replaced by five MRS IllO scrapers.			1

Table C-3. TD-20 (ECC 4850) Tractor Crawler Specifications [24,25]

and the second second

Specification Sheet For IHC TD-20B

Gear	Speed (MPH)	Speed Rated Pull (MPH) (lb)	Rated Pull (lb)
First low	2.2	2.5	22,119
First high	3.1	3.6	15,698
Second low	4.3	4.9	11,200
Second high	5.9	6.7	8,247

Engine: Make and Model International DVT-800 Type Diesel, 4 Cycle, turbocharged
· · · ·
Flywheel Horsepower @ 2100 rpm (kW) 210 (157)
Number of Cylinders 8
Torque Converter Dia., in. (mm)
Transmission
Forward Reverse
Number of Speeds
Traveling Speed Range, mph (km/h) 0 to 6.38 (0 to 10.26) 0 to 7.48 (0 to 12.03)
Steering Unit
Number Track Rollers each side 6
Ground Clearance from Base of Shoe, in. (mm)
Weight, (Approx.) Shipping, lb (kg)
OPTIONAL EQUIPMENT AND ATTACHMENTS
Bulldozers Ripper Air Conditioned Cabs
Bullgraders Winches Cable Plows
2-Speed Geared Steer – Power in Turns

Angle Blade

Straight Blade

4.6 cu yd

5 cu yd

and the second					_		_				_			
Flywheel Horsepower .														270
Kilowatts														201
Rated Engine RPM														1280
Full Horsepower		•	ft											10,000
to attitude			(metres)		•	•								(3000)
			(metres)	•	•	•	•	•	•	•	•	•	•	D342
	• •	•		•	•	•	•	•	•	•	•	•	•	6
No. of Cylinders	• •	•	: • •	•	•	•	•	•	•	•	•	•	•	
Bore			in	•	•	•	•	•	•	•	•	•	•	5.75"
			(mm) .	•	•	•	•	•	•	•	•	•	•	(146)
Stroke			in	•	•	•	•		•	•	•	•	•	8"
			(mm) .											(203)
Displacement			cu. in											1246
			(litres)											(20.4)
Basic ^b PS			lb											51,000
Machine			(kg) .											(23 100)
Weight DD			lb											50,500
weight DD			(kg) .											(22 900)
General Dimensions:			(16) .	•	•	•	·	•	•		·	•		(22,700)
														17'
Length (overall)			ft	•	•	•	•	•	•	•	•	•	•	
			(mm) .	•	•	•	•	•	•	•	•	•	•	(5200)
Width (std. shoes)			ft	•	•	•	•	•	•	•	•	•	•	9'1"
			(mm) .	•	•	•	•	•	•	•	•	•	•	(2770)
Height (excl. exhaust,			ft									•	•	8'
precleaner)			(mm) .											(2440)
Gauge			in											84"
			(mm) .											(2130)
Ground clearance			in											15.2"
(from face of shoes)			(mm)											(386)
Choice of Shoe Width			in											20" to 28"
choice of shoe which			(mm) .											(510-710)
Ground Contact Area			sq. in	•	•	•	•	•	•	•	•	•	•	4942
			(m ²) .	•	•	•	•	•	•	•	•	•	•	(3.19)
(with std. shoe)				•	•	•	•	•	•	•	•	•	•	124"
Length of Track			in	•	•	•	•	•	•	•	•	•	•	
on ground			(mm) .	•	•	•	•	•	•	•	•	•	•	(3150)
Capacities:														
Cooling system			U.S. Gal.		•	•	•	•	•	•	•	•	•	31
			(litres)	•	•	•	•	•	•	•	•	•	•	(117)
Fuel Tank			U.S. Gal.											134
· uer runn			(litres)											(510)
					•	•	•	•	•			•		
Engine Crankcase			U.S. Gal.							•	•	•		8.75
			(litres)											(33)
Trease Treasus Dia			U.S. Gal.											31
Trans., Torque Div.,					•	•	•	•	•	•	•	•	•	(117)
Bevel Gear, Steer.			(litres)	•	•	•	•	•	•	•	•	•	•	(117)
Clutch Compts.														
Trans. Bevel Gear,			U.S. Gal.											31 ^c
Steer. Clutch			(litres)											(117)
Flywheel Clutch														
Final Drivers (each)			U.S. Gal.	•	•	•	•	•	•	•	•	•	•	9
			(litres)								•		•	(34)
Blade Types Available														Straight
blade Types Available														Angle
														Universal
														Cusion
														Rip

Table C-4. Caterpillar D8H (ECC 4851) Tractor Crawler Specifications [26]

^aKilowatts is the International System of Units equivalent of horsepower.

^bShipping weight including collant, hydraulic fluid, lubricant, 5% fuel in tank. ^cAlso includes flywheel clutch. Caterpillar D8H (ECC 4851) Tractor Crawler Performance Characteristics [26]. Table C-5.

-

Planetary-type power shift with 21" (534 mm) diameter, high-torque capacity, oil clutches. Modulating valve permits unrestricted speed and direction changes under full load.

	Fon	ward	Rev	erse
Gear	HAN	MPH (km/h)	Heim	MPH (km/h)
1	0-2.4	(3.9)	0-3.0	(4.8)
	0.4.2	(6.8)	0-5.2	(8.4)
m	0-6.5	(10.5)	0-8.1	(13.0)

DIRECT DRIVE TRANSMISSION

Constant mesh with helical gears and fast forward-reverse shift. Filtered, cooled, full pressure lubrication. Unit construction.

SPEED AND DRAWBAR PULL

At Rated RPM Maximum at Lug	pounds kg	190) 52,860 (28 990)	760) 47,930 (21 750)	2001 33,210 (15 080)	350) 24,360 (11 060)	(0861) 17,580 (7980)	10201 11 200 11 1020
Drawb ated AP		0 (23 7	(11) 0	0 (12 2	(88) 0	0 (62	101 0
A: A	Pound	52.410	39, 13(26.87	19.49	13,841	0 10
	#m/h	(5.6)	(3 4)	(4 7)	(1.9)	(6.1) 8.4	
Per	HUM	1.6	2.1	2.9	3.6	6.4	
pres	4/44	(5 6)	(3 4)	(4.7)	(0 9)	1 (19) 45	
For	HUM	31	21	58	3.1	6.4	
	Gear	-	2	~	-	•	

 Usable pull will depend on traction and weight of equipped tractor.

Table C-6. Caterpillar D8 Bulldozer Specifications [26].

Model		8A	85	80	
Туре		Angling	Straight	Universal	
Weight, Shipping (Installed)	-ib	11 300 (5125)	10900 (4950)	12100 (5500)	
General Dimensions: (Tractor & Dozens) Longth (Blades Straight)	-ft	21*10-1/3** (6650)	21'8'' (6600)	22'11-2/3" (6930)	
Length (Blade Angled)	-ft	24'11" (7590)			
Width (Blode Straight)	-ft	15'5-1/3'' (4720)	13'1/2" (3990)	14'2" (4320)	
Width (Blede Angled)	-ft	14' 1/3" (4270)			
Width (with C Frame only)	-ft	11'4-1/3" (3450)			

Model	8A	85	8U	
Blade:				
Length (Including End Bits)	-ft -(mm)	15'5-2/3" (4720)	13'1/2" (4000)	14'2" (4320)
Height	—in —(mm)	44" (1120)	60" (1520)	60" (1520)
Max. Drop Below Ground	-in	22.5"	23" (580)	23'' (580)
Max. Tilt	-in	11.6' (295)	35" (890)	38"
	-(mm) Max. Pitch Adjustment Blade Angle (either side)			9°
Attachments:				
Tilt Cylinder			2010	
Max. Hydraulic Tilt	—in	11.6" (295)	35" (890)	38" (965)
Push Cup - C Frame		Yes	No	No
- Blade		No	Yes	No
Weight, Shipping (blade only)	lb (kg)	5535 (2510)	750 (340)	

Table C-7. International 433 Pay Scraper and MRS S110 (ECC 4750/01) Scraper Specifications [24,25].

1	
0	
	Ĵ
-	
	1
τ	1
5	
-	
	1
2	-
	1

Brakes type Internal expanding, 2-shoe Actuation Actuation Air over hydraulic, wedge Actuation 2-9,5 x 29 28 PR (E-3)

MRS S110 Scraper Capacity

Struck – 14 cu yd Heaped – 17 cu yd Weight of Scraper – 25,250 lb

Weight - 38,500 lb MRS 1110 Tractor

Rated (lb)	37,800	27,531	20,050	14,190	10,025	6,961	
Speed	4.88	6.7	9.2	13.0	18.4	26.5	
Gear	lst	2nd	3rd	4th	Sth	6th	

Table C-8. Caterpillar 637 (ECC 4750/11) Scraper Specifications [26]

Model 637

Flywheel Horsepower										
Tractor	 									415
Scraper	 									225
Kilowatts										
Tractor	 									309
Scraper	 									168
Rated Engine RPM										
Tractor	 									1900
Scraper	 									2200
Full Horsepower To										
Altitude:		ft								5000
		(M)								(1500)
Capacity: Payload										
		ibs.								72000
		(kg)								(32700)
Struck:		yd ³								2L
		(m ³)								(16)
Heaped:		yd ³								30
		(m ³)								(23)
Tires:										
Tire Size - PR										
Drive	 									33.25x35-32
Rear										33.25x35-32
General Dimensions										
Length		ft			• .					44'9 1/2"
0		(mm								(13650)
Width		ft .								12'6"
		(mm).							(3800)
Shipping Width		ft								11'4"
		(mm).							(3450)
Height		ft								12'10 1/2"
		(mm).							(3900)

Model 637 With Cushion Hitch

1

-ft.													27'5"
-(mm)												(8350)
-ft.													7'9"
-(mm)												(2360)
-ft.													47'11"/38'4"
-(m)													(14.6/11.7)
-ft.													10'10"
-(mm)												(3300)
-lbs													-
-(kg)													-
-lbs													56,700
-(kg)													(25700)
-lbs													33,500
-(kg)													(15200)
-lbs													90,200
-(kg)													(40900)
	-ft. -(mm -ft. -(m) -ft. -(mm -lbs -(kg) -lbs -(kg) -lbs -(kg) -lbs -(kg) -lbs	-(mm) -ft -ft -ft -(mm) -lbs . -lbs . -(kg) . -lbs . -(kg) . -lbs .	-ft -(mm) -ft -ft -ft -(mm) -lbs -lbs -lbs -lbs	-ft	-ft	-ft	-ft. -(mm) -ft. -(mm) -lbs 	-ft	-ft. .	-ft. .	-ft	-ft	-ft. .

continued

Table C-8. Continued

Percent L														124	
Tractor F	ront	•	•	•	•	•	•	•	•	•	•	•		 A worker	
Drive															51
Scraper															49

^aTurns to left restricted by ROPS mountings.

^bWeight is include ROPS case and frame.

.

Table C-9. Caterpillar 637 (ECC 4750/11) Scraper Performance Characteristics [26]

Matrix Calculation Control constitution Contrent constane Contrent constitution	Total Effective Grade"		X			65			101							
Creat Trans Neuron Section Section Section <th< th=""><th>Approx. Total Resistance</th><th></th><th></th><th></th><th>120</th><th>e X</th><th></th><th>2002</th><th>5</th><th>9</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Approx. Total Resistance				120	e X		2002	5	9						
Marrier <	Haul Distance (One Way)	H		Production	Cycle Time		oduction	Cycle Time	-	oduction				LINDEM STORE	!	
		+					1 10		-	Lug			+			
238 239 231 241 233 244 234 244 235 234 235 234 235 <td></td> <td>282</td> <td>3</td> <td></td> <td>278</td> <td>615</td> <td>19</td> <td>565</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		282	3		278	615	19	565	-		-					
		2.98		368	3.19	15	345	3.66		Ā	1				-	_
316 327 300 401 327 238 234 235 <td></td> <td>333</td> <td></td> <td>i</td> <td>362</td> <td>398</td> <td>304</td> <td>421</td> <td>8</td> <td>258</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		333		i	362	398	304	421	8	258						-
(1) 359 774 465 726 563 728 729 863 721 864 <td>-</td> <td>367</td> <td>392</td> <td>00</td> <td>•03</td> <td>192</td> <td>273</td> <td>18</td> <td>596</td> <td>226</td> <td>R</td> <td></td> <td></td> <td></td> <td></td> <td>with the second second</td>	-	367	392	00	•03	192	273	18	596	226	R					with the second
4.06 3.00 3.24 4.01 3.06 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 6.04 2.04 1.01 <th< td=""><td></td><td>10+</td><td>359</td><td>274</td><td>445</td><td>324</td><td>248</td><td>5.45</td><td>264</td><td>202</td><td>-</td><td>-</td><td></td><td></td><td>3</td><td>1</td></th<>		10+	359	274	445	324	248	5.45	264	202	-	-			3	1
4.00 3.06 2.34 5.26 2.31 3.05 2.14 5.05 2.11 1.66 5.3 3.0 3.15 3.0 5.1 3.0 5.2 3.0 1.11		4.36	330	252	181	962	226	8.04	238	182	*					1111
5.36 7.37 7.38 5.10 7.32 103 7.32 103 1		4.70	900	234	5 28	233	508	663	211	991	-	11 64				+
5/1 5/1 8/1 1/1 <td></td> <td>625</td> <td>192</td> <td>204</td> <td>119</td> <td>35</td> <td>180</td> <td>181</td> <td>184</td> <td>19</td> <td>-</td> <td></td> <td></td> <td></td> <td>X</td> <td>-</td>		625	192	204	119	35	180	181	184	19	-				X	-
5/21 7/31 8/32 7/31 8/32 7/31 8/32 7/31 8/32 7/31 8/32 7/31 8/32 7/31 8/31 1/31 9/31 <th< td=""><td>+</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>Pierce .</td><td></td><td>4</td><td>1</td><td></td></th<>	+		-								*	Pierce .		4	1	
Attendent Control Contro Control <thcontrol< th=""> <t< td=""><td></td><td>523</td><td>152</td><td>192</td><td>653</td><td>122</td><td>691</td><td></td><td>5</td><td>8 8</td><td></td><td></td><td>-</td><td></td><td></td><td>**</td></t<></thcontrol<>		523	152	192	653	122	691		5	8 8			-			**
6.6 2.13 16.3 7.34 10.5 10.1 10.1 10.1 7.10 7.33 19.3 19.3 19.5 19.5 19.5 19.5 19.5 19.5 10.1 10.		642	224	5	136	961	150	656	150	511	-		+	XX +	X	1
710 731 155 813 116 135 107 134 102 746 133 141 861 167 133 113	-	676	213	163	178	185	141	81.01	1	108	-	-		1/1	1	
745 193 144 861 157 128 1135 120 22 775 133 145 145 145 145 145 133 100 22 84 130 135 145 145 133 100 22 84 130 135 146 107 1317 100 22 84 130 135 146 107 1317 100 24 10x1104x01 Scatter Payues 1005401 Scatter Payues 33 144 65 66 Shift Learningian 220016 (13700 (4) Decrement of 34 Mrl (4) Decrement of 34 Mrl (4) 100		110	203	155	8.19	176	135	11 01	134	102	-			XXX	X	1
7/3 113 141 942 150 132 113 130 93 8.8 10 13 944 10 13 944 13 13 10 10	_	7.45	193	148	861	167	128	11 36	127	16	-	-		XXX	1	+
8.13 117 113 113 113 113 115 <td></td> <td>61.1</td> <td>185</td> <td>141</td> <td>9 02</td> <td>160</td> <td>122</td> <td>\$611</td> <td>120</td> <td>82</td> <td>-1</td> <td></td> <td>Ĭ</td> <td>+/ /</td> <td>1</td> <td>*</td>		61.1	185	141	9 02	160	122	\$611	120	82	-1		Ĭ	+/ /	1	*
8.2 110 124 125 135 146 117 117 100 100 Tot (10 Kqr) Screek Pyrived 2500 to 12700 Kqr 100 kqr 127 100 101 Shift Transmuon 2800 to 12700 Kqr 3500 to 1200 Kqr 1500 kqr 3500 to 1200 Kqr 100 kqr 100 100 101 117 100 100 Shift Transmuon 2800 to 120 kqr 3500 to 14300 Kqr 100 kqr 100 kqr 100 kqr 100 101 117 100 100 Shift Transmuon 2800 to 120 kqr 3500 to 14300 Kqr 0.450 kqr 350 kqr 360 k		813		35	946	153	=	12 54	511		-		X	/ mark	1	X
Tar. (10 Kg/s) Screene Pryced Solit Transmission Screene Pryced Toron (10 Kg/s) Screene Fryced Solit Transmission T2000 Is (12700 Kg) Solit Transmission T2000 Is (12700 Kg) Solit Transmission T2000 Is (12700 Kg) Solit Transmission T200 Is (1200 Kg) Solit Transmission <tht200 (1200="" is="" kg)<br="">Solit Transmission <</tht200>		8 8 2	163	125	58.6	140	101	22 61	501				11	1		1
Shift Terreminon 2000 (b. 12) (2) (0 f. 4) 200 (c. 10) 200	"1% adverse orade - 20 ib	Tan (10 Ka/t)		Scraper Pavloa			Included in C	icle Times					1	()	X	+
R3 PMI CENTIANTER HOURLY PRODUCTION IN BANK CUBIC YEA BANK CUBIC WETERS (Im.) R3 40 bit STIMATER HOURLY PRODUCTION IN BANK CUBIC VIA BANK CUBIC WETERS (Im.) 100 bit Total T	Considerations Tractor 8 Speed Power Scraper, 4 Speed Power 100% Fite-societ 150 Wer	Shift Transmission Shift Transmission Mourt		72000 Ib 24 BCY (1 Empty We	(32700 Kg.) 8.4.8m ¹) ght-95,500 lb	(\$3300 Kg)	3.9 min L Accelerate Decelerate	and Time. 0.7 m s from 25 MPH (4 C	In Maneuver (4.0 Km/h) 0 Km/h)	Spread	<u>+</u>	A	N		+	
QD b Total Total <tht< td=""><td>45(A) (C)</td><td>25 HP) ESTIMATE</td><td>D HOURLY</td><td>PRODUCTION</td><td>IN BANK CUBI</td><td>C VARDS (8</td><td>C Y) & BANK</td><td>CUBIC METERS</td><td>(, we) S</td><td></td><td>-1-</td><td>11</td><td>1</td><td></td><td>TOROUK CONVERTER D</td><td></td></tht<>	45(A) (C)	25 HP) ESTIMATE	D HOURLY	PRODUCTION	IN BANK CUBI	C VARDS (8	C Y) & BANK	CUBIC METERS	(, we) S		-1-	11	1		TOROUK CONVERTER D	
Operation Control (20 kpl) 100 kpl) 200 kpl) 200 kpl) Good Factor Antrop Antrop 200 kpl) Antrop Good Factor Moult (5 E V Moult (5 E Moult (5 19 Via Via Via Via Via Via Via 201 Via	Total Effective Grade .		3.8			•9			5		_	111	1	4	-	-
Certe Time Nouries Excut Time Nouries Noi Excut Time Nouries Noi Excut Time Nouries No Excut Time No	Approx. Total	40 P	/Ton-(20 kg		120 15	/Ton (60 kg/	-	200 Ib/	Ton - (100 kg/			11	1	7		
WINUTES ECV Tem/UTES BCV Tem	Haul Distance (One Way)	Cycle Time	Hourly P	roduction	Cycle Time	Hourly Pro	duction	Cycle Time	Hourly Pro	duction	+	111	1			
150 191 754 956 203 770 941 641 643 753 644 643 753 643 753 <th73< th=""> <th73< th=""> <th73< th=""></th73<></th73<></th73<>	FEET METERS	MUNUTES	B.C.Y.	(8m ⁻)	MINUTES	B C Y	(Bm ¹)	MINUTES	B.C.Y	(Bm)		-	11	***	*	*
400 7.31 600 7.31 600 7.31 600 7.31 600 7.31 600 7.31 7.35 7.31 7.35<		161	154	576	2 03	110	3	274	3	26.		01 0	8	0 40 SO	8	R
600 100 601 301 601 901 <td></td> <td>256</td> <td>279</td> <td>\$ 3</td> <td>857</td> <td>555</td> <td>242</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td>SPEED</td> <td></td> <td></td>		256	279	\$ 3	857	555	242			10				SPEED		
750 134 611 229 411 345 754 515 750 191 900 361 329 401 325 510 756 750 791 1000 357 320 461 301 723 793 791 166 1000 435 519 727 793 793 794 191 1000 445 310 233 513 723 193 936 193 1000 445 310 231 513 722 193 936 193 111 1000 445 310 231 513 723 193 193 113		3.00	480	198	366	Ř	301	4.87	36	225						
90 351 391 300 468 306 713 713 713 714 115 1000 139 341 275 513 273 730 192 111 1000 455 110 273 513 723 750 192 111 1000 455 110 273 513 273 193 183 113 1900 455 110 273 513 274 154 101 113 105 1900 530 271 573 174 154 101 113 106 1900 530 271 673 744 154 101 113 106 1100 530 531 263 133 113 101 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103		334	164	329	417	345	264	515	250	161						
1000 139 31 27 27 27 79 17 1300 455 310 27 27 37 73 73 17 1300 455 310 27 27 17 95 13 14 1300 455 310 27 57 37 17 95 13 1300 455 310 27 57 37 17 95 13 14 1300 456 77 57 13 10 11 <td></td> <td>367</td> <td>265</td> <td>300</td> <td>4.68</td> <td>308</td> <td>235</td> <td>663</td> <td>112</td> <td>166</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		367	265	300	4.68	308	235	663	112	166						
1300 453 130 231 6.21 232 131 9.85 156 131 100 1500 498 239 221 6.21 224 193 193 193 1500 498 239 221 6.21 224 193 193 193 1100 530 231 6.71 244 193 193 193 193 1100 541 231 164 101 111 100 111 100 1100 551 232 135 135 135 113 100 1100 551 253 135 135 135 135 135 2100 551 515 135 135 135 135 135 2100 552 233 135 135 135 135 135 2100 552 233 135 135 135 135 135 135	_	199		276	5 19	112	1.61	1 50	261		E					
1500 438 209 2.21 6.73 7.34 154 10.1 10.1 10.3 10		5	2	12	622	22	E	92.6	126	611	TYP	ICAL FIX	MIT De	110		
1700 5.30 271 207 7.24 199 152 1101 131 100 1800 553 256 195 7.24 199 152 1101 131 100 1800 553 256 195 7.56 195 7.56 110 131 100 2100 553 253 135 135 136 136 13 136 13 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 137 137<		86 *	582	122	613	511	154	5101		601						Mananew
7000 558 720 105 173 <td></td> <td>530</td> <td>271</td> <td>207</td> <td>124</td> <td>661</td> <td>152</td> <td>1011</td> <td>5</td> <td>901</td> <td></td> <td></td> <td></td> <td>Load Time</td> <td>ne</td> <td>Snre</td>		530	271	207	124	661	152	1011	5	901				Load Time	ne	Snre
2130 6.33 229 175 8.77 164 125 134 106 11 2300 6.62 218 167 9.28 155 118 1451 99 75 2400 6.62 218 167 9.28 155 118 1451 99 75 2400 7.57 98 1031 101 101 101 157 91 75 6.37 & 2500 7.56 189 144 1021 101 101 101 167 163 91 72 6.37 & 2500 7.56 189 144 1021 102 101 101 101 101 101 102 103 61 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64		96.5	242	582	8.26	174	18	1276						(mim)		
2440 653 201 155 90 111 153 91 72 637 & 2460 725 85 201 154 90 111 112 153 91 72 637 & 2500 725 93 131 101 <td< td=""><td></td><td>629</td><td>229</td><td>175</td><td>877</td><td>164</td><td>125</td><td>1364</td><td>901</td><td>18</td><td></td><td></td><td></td><td></td><td>1</td><td>1</td></td<>		629	229	175	877	164	125	1364	901	18					1	1
7600 723 90 151 101 101 152 93 62 7500 732 96 151 101 101 111 112 111	+	100	Luc		u e u		113	16 20		-	627	×	5	9 0		C
2750 760 189 144 1082 133 102 1714 84 2900 7 93 182 139 1133 127 97 1802 80		121	861	151	10.31		101	12 91	. 2	. 89		5	2			
2900 7.93 182 139 11.33 127 97 18.02 80		1 60	189	144	10.82	8	102	17.14	8	3						
3050 8.26 174 133 11.84 122 93 18.89 76		8 26	174	139	11 33	121	66	18.89	80 92	5 85						
1% deterrarge det - 20 (b)Tin (10 kg/s) Considerations: Future 1 (36) Considerations: Future 1 (36) 2 2000 (b) 122200 kg/s) 2 2 2000 (b) 122200 kg/s) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11% adverse grade = 20 Ib/ Considerations Pusher 1 C	fan (10 Kg/t) 96		Scraper Payloa 72000 lb. (d 32700 Kg)		ncluded in Cy 0.6 min Lo	cle Times ad Time. 0.6 min	n Maneuver 8	Spread						
					and a second sec	and the second		and the second se								

2 (101)

(Buillion State

....

Maneuver & Spread (min)

0.7

Table C-10. RAYGO 400 (ECC 4635) and RAYGO 600 Specifications [27]

		DYNAMIC 400	SUPER 600
	Overall Length	16' 11½''	17, 0,,
	Width	8' 8'' (Shpg. 7' 11'')	9' 11 34''
	Height (including muffler)	7' 2"	7' 4''
PHYSICAL	Shipping Weight (approx.)	17,900 lbs.	28,800 lbs.
DIMENSIONS	Drum Diameter	59"	,.09
	Drum Length	84"	100"
	Turning Radius	16' 10''	17' 0''
	Wheelbase	6, 0,,	9' 11/2"
	Curb Clearance	15%"	16"
	Hydraulic Direct Drive (no belts, no chains)	Vibra-Drum	Vibra-Drum
VIBRATION	Dynamic Force	27,000 lbs.	45,000 lbs.
SYSTEM	Frequency	1100 to 1500 V.P.M.	1100 to 1500 V.P.M.
	Total Applied Force	44,900 lbs.	73,800 lbs.
	Traction Wheel Drive	"Dynapower" Hydrostatic Drive with "Torque Selector" Control	ith "Torque Selector" Control
	Controls	Single Lever for Forward-Reverse Trave	Single Lever for Forward-Reverse Travel Speed Control and Dynamic Braking
PROPULSION	Steering System	Hydraulic Full-Power Steering - "Articulated" Type	ng – "Articulated" Type
SYSTEM	Braking	1. Dynamic on Drive 2. Hydraulic Service in Wheels 3. Hand Parking	Service in Wheels 3. Hand Parking
	Speed	0-15 M.P.H	0-15 M.P.H.
	Tires (standard)	23.1 x 26 - 8 ply Flotation type	28.1 x 26 - 10 Ply Flotation type
	Entite (Created)	GM 3-53 Detroit Diesel	GM 4-53/4 Valve Detroit
	Lugure (Stanuaru)	80 H.P. @ 2300 R.P.M.	Diesel 120 H.P. @ 2400 R.P.M.
	Electrical System	12-Volt	12-Volt
POWER	Muffler	Donaldson Heavy Duty	Donaldson Heavy Duty
UNIT	Air Cleaner	Donaldson Heavy Duty Dry Type	Donaldson Heavy Duty Dry Type
	Fuel Tank	50 Gal.	50 Gal.
	Engine Disconnect Clutch	Yes	Yes
	Hour Meter	Yes	Yes
OPTIONS	Tires - 20.5 x 25 - 12 Ply S.H. Rock Lug	No	Yes
AND	Driving Lights - Front and Rear	Ycs	Yes
ACCESSORIES		Yes	Ycs
(available on	Cab with wiper	Yes	Yes
special order	Heater	Yes	Yes
at extra cost)	Air Conditioner	Yes	

Table C-11. Galion Model T-500L (ECC 4420) Motor Grader Specifications [28].

BRIEF SPECIFICATIONS

Base weig	ht (aj	ppro	x.)													. 27	,80	O Ib	s.
Engine: I																			
																h.p. (
Speeds, 4	forw	ard, 4	4 re	even	rse										1.	3 to 2	22.8	mp	h
Moldboard	d, hy	drau	lic j	pov	ver	sh	ift								12'	' x 27	‴ x	7/8	••
Controls											F	ull	hy	dra	aulic	varia	ble	spee	d
Tires, from	nt and	d real	r .							1	4.0	0 x	24	ŀ, 1	0 pl	y, on	10"	rim	ıs
Breaks .										4-	wh	eel	hy	dra	aulic	, self-	adju	stin	g
									po	owe	er-b	000	ster	r, r	nech	anical	pai	kin	g
Steering .												1	Hy	dra	ulic	powe	r bo	oste	er
Torque co																			

OPERATING		BUCK	ET	
INFORMATION	General purpose	Loose materials	Light materials	Multi-purpose
Capacity, heaped, SAE	2-1/2 cu. yd.	3 cu. yd.	4-1/2 cu. yd.	2-1/4 cu. yd.
	(1.91 m ³)	(2,29 m ³)	(3,44 m ³)	(1,72 m ³)
Capacity, struck, SAE	2.05 cu. yd.	2.50 cu. yd.	3.73 cu. yd.	1.77 cu. yd.
	(1,57 m ³)	(1,80 m ³)	(2,45 m ³)	(1,35 m ³)
Bucket width	104.61 in.	104.61 in.	110.64 in.	106 in.
	(2.65 m)	(2.65 m)	(2,80 m)	(2,69 m)
Bucket weight	1,867 lb.	2,025 lb.	2,480 lb.	2,490 lb.
	(847 kg)	(918 kg)	(1124 kg)	(1129 kg)
* Breakout force, J732B	41.515 lb.	34,975 lb.	25,600 lb.	36,500 lb.
SAE Standard	(18831 kg)	(15864 kg)	(11612 kg)	(16556 kg)
Pivot point to cutting edge	25.14 in.	29.69 in.	39.81 in.	25.6 in.
	(639 mm)	(754 mm)	(1,01 m)	(650 mm)
Breakout force, J732C SAE Standard using bucket hinge pin as pivot point 4 in: (102 mm) behind cutting edge	23,945 lb. (10861 kg)	20,960 lb. (9507 kg)	16,125 lb. (7314 kg)	22,865 lb. (10371 kg)
Tipping load, straight	18,605 lb.	18,425 lb.	17,865 lb.	17,700 lb.
	(8439 kg)	(8357 kg)	(8103 kg)	(8029 kg)
Tipping load, 35-deg. turn	16,710 lb.	16,550 lb.	16,040 lb.	15,895 lb.
	(7580 kg)	(7507 kg)	(7275 kg)	(7210 kg)
Tipping load, 40-deg.	16,155 lb.	16,000 lb.	15.510 lb.	15,370 lb.
full turn, SAE	(7328 kg)	(7257 kg)	(7036 kg)	(6972 kg)
Loader operating weight	25,220 lb.	25,380 lb.	25,835 lb.	25.845 lb.
	(11440 kg)	(11512 kg)	(11719 kg)	(11723 kg)

Table C-12. John Deere Model JD644-A (ECC 4531) Loader Specifications [29].

* SAE Standard J732B has been superseded by J732C and is included for reference only.

Add ($+$) or deduct ($-$) lb. (kg) as indicated for loader equipped with:	Loader Operating Weight	Tipping Load, Straight	Tipping Load, 35-deg. turn	Tipping Load, 40- deg. full turn, SAE
Roll-over protective structure	+ 700 lb.	+630 lb.	+595 lb.	+ 580 lb.
w/canopy	(318 kg)	(286 kg)	(270 kg)	(263 kg)
Cab (includes roll-over protective structure)	+ 1,200 lb.	+ 1,080 lb.	+ 1,015 lb.	+ 1,000 lb.
	(544 kg)	(490 kg)	(460 kg)	(454 kg)
One additional set of side counter-	+ 750 lb.	+ 1,530 lb.	+ 1,330 lb.	+ 1,280 lb.
weights (total of two sets)	(340 kg)	(694 kg)	(603 kg)	(581 kg)
16-24, 12-ply-rating, rock grader tread tires w/1,304 lb. (592 kg) fluid in rear	- 700 lb.	-630 lb.	- 565 lb.	- 545 lb.
	(318 kg)	(286 kg)	(256 kg)	(247 kg)
17.5-25, 12-ply-rating, loader tread tires	-1.015 lb.	-945 lb.	-850 lb.	- 820 lb.
w/1,160 lb. (526 kg) fluid in rear	(460 kg)	(429 kg)	(386 kg)	(372 kg)

Table C-12.

Horsepower (at 2,400 engine rpm):	SAE	PS
Gross	141	143
Net	131	133

Net engine flywheel horsepower is for an engine equipped with fan, air cleaner, water pump, lubricating oil pump, fuel pump, alternator, and muffler. The gross engine horsepower is without fan. Gross and net flywheel horsepower ratings are under SAE standard conditions of 500-ft altitude and 85°F. temperature and DIN 70 020 (non-corrected). Engine maintains rated horsepower up to 10,000 feet (3,000 m) altitude

Transmission:

Twin-turbine torque converter with Power-Shift transmission (4 speeds forward—2 reverse).

Torque Multiplication Ratio		4.8 to 1
------------------------------------	--	----------

Differentials:

"No-Spin" type Front Rear Standard

Drive Axles:

4-wheel drive with inboard-mounted planetary gears to each wheel. Front axle fixed. Rear axle oscillates 22-degree total. 15.3 in. (389 mm) vertical travel at center of tire.

Travel Speeds	:	mph	km/h
Forward:			
Low range:	1st and 2nd turbine	0 - 3.3	0 - 5,3
		3.3 - 7	5.3 - 11.3
High range:		0 - 12.6	0 - 20.2
	2nd turbine	12.6 - 23	20.2 - 37
Reverse: 1st		0 - 4.5	0 - 7.2
	turbing	45 05	7 2 15 2

Continued

Brakes:

Service Power actuated, 4-wheel, inboard-mounted wet disk.

Foot-operated by either right or left pedal. Parking......10 x 1.5-in. (254 x 38 mm) expanding shoe type on transmission output shaft. Adjustable, hand operated with warn-

ing light on dash.

Steering:

Full power steering. Frame articulated 80 degrees by two hydraulic cylinders. Turning radius of 15 ft. 5 in. (4,70 m). Vehicle clearance circle is 35 ft. 8 in. (10,87 m).

Hydraulic Systems:

Loader functions system ... Live, transmission-driven, vane-type pump delivers 60 gpm (227 lpm) at 2,400 engine rpm and 2,250 psi (158,2 kg/cm²) relief-valve pressure setting.

Control Single-lever, double hydraulic system Optional triple hydraulic system for fork or multi-purpose bucket. Steering and brake systems . Engine-driven, eight-piston, vari-able-displacement-type pump delivers 27 gpm (102 lpm) at 2,400 engine rpm and 2,000 psi (140,6 kg/cm²).

Tires:

16-24, 12-ply-rating, rock grader tread 17.5-25, 12-ply-rating, loader tread 20.5-25, 12-ply-rating, loader tread

20.5-25, 12-ply-rating, loader rock tread

Wheel Treads:

Capacities:	U.S.	Liters
Cooling system	9 gal.	34.1
Fuel tank	50 gal.	189,3
Crankcase and filter		16,1
Transmission case and filters	9.75 gal.	36,9
Front differential	6 gal.	22.7
Rear differential	6.5 gal.	24.6
Loader hydraulic sump		66,2

Table C-13. Caterpillar Model 977L (ECC 4530) Specifications [30].

Buckets (ra	ted capaci	ty)	2.5 to 3.25	cu. yd. (1.91	to 2.49 m ³)
Flywheel Ho	rsepower		190	@ 1950 RP	M
Operating W	leight (mir	ı)*	47.00	0 lb. (21 320	kg)
Transmissio	n		Single leve	er power shift,	planetary
Travel		rd mph km/h)	2.15 (6.0)	3.75 (6.0)	5.8 (9.7)
Speeds		emph km/h)	2.60 (4.18)	4.54 (7.3)	7.0 (11.3)
Breakout Fo	rce		34,16	0 lb. (15 490	kg)
Basic Static	Tipping L	bad⇔⇔	31,25	0 lb. (14 170	kg)
Increase in tipping load		counterweight		3380 or 514 1530 or 2320	
		ripper	8,0	50 lb. (3650 l	kg)
Ground con	tact area		4,000	sq. in. (2.58	m²)
Track frame			7-rol	ler non-oscilla	iting
Width of sta	indard sho	e	1	8" (457 mm)	•
Gauge			7(6" (1930 mm)
Steering me	thod			Pedal	
DIMENSION	S:				
A - Length	of machin	e	13	'3" (4040 mr	n)
B - Overall	length		19	'4" (5890 mr	n)
C – Height	to top of F	OPS ·	11	'2" (3400 mm	n)
D - Reach,	max. lift (@ 45°	4	(1220 mm)	
E - Dump I	neight @ 4	15°	10	'7" (3230 mr	n)
F - Max. hi	nge pin he	eight	13	'2" (4010 mr	n)
Bucket widt	h (smalles	t)	98	8" (2490 mm)
Specification	ns With Lo	g Forkeee			
Operating w	eight with	top clamp	42,79	2 16. (19 410	kg)
Overall leng	th		21	'1" (6350 mm	n)
Tine spacing	, to center	s	7'	6" (2290 mm)
Maximum to	op clamp o	pening	9	(2750 mm)	
Minimum to	p clamp c	losure	3	9" (990 mm)	
Length of ti	nes		54	" (1370 mm)

BULLDOZERS FOR THE 82-30

	ANGLE		STRAIGHT		"U"		COAL	"U"
Tractor Dimensions with Blade		*(mm)		*(mm)		*(mm)		*(mm)
Trunnion to rear of tractor(A)	6'-3%"	(1921)	6'-35%"	(1921)	6'-3%"	(1921)	6'-3%"	(1921)
Trunnion to front of blade (Straight)(B)	14'-7"	(4285)	14'-63%"	(4283)	15'-71/2"	(4591)	16'-4%"	(4994)
Trunnion to front of blade (Angled)(C)	17'-73/4"	(5201)		-	-	-	-	
Width (Blade straight)(D)	15'-7%"	(4591)	12'-3"	(3665)	13'-23/4"	(3969)	17'-1"	(5207)
Width (Blade angled)(E)	14'-13/4"	(4272)	-		-	-		-
Width of C-Frame Only(F)		(3376)	-	-		-		
Height (Same as bare tractor)(G)		(2432)	7'-113/4"	(2432)	7'-113/4"	(2432)	7'-113/4"	(2432)
Moldboard Dimensions								
Material—High Strength Carbon Alloy Abrasion Resistant Steel								
Length (Corner bit to corner bit)(D)	15'-73/4"	(4591)	12'-3"	(3665)	13'-23/4"	(3969)	17'-1"	(5207)
Height(H)		(1235)	4'-61/4"	(1378)	4'-61/4"	(1378)	5'-136"	(1559)
Max. Lift Above Ground (Hydraulic)(I)		(1230)	4'-41/5"	(1334)	4'-41/5"	(1334)	4'.73%"	(1416)
Max. Drop Below Ground (Hydraulic)(J)		(578)	19%"	(499)	19%"	(499)	221/5"	(572)
Max. Angle (Either direction)(K)			-	-	-	-	_	
Max. Tilt		(578)	181/5"	(470)	20"	(508)	251/5"	(648)
Max. Pitch		-	141/20	- 0	141/20	-	141/20	
Cutting Edge	(4-Piece)		(3-Piece)		(4-Piec	:e)	(3-Pie	ece)
Material-High Strength Boron Alloy								
Abrasion Resistant Steel					Line Constant		S-17	
Length-Center Section	12'6"	(3810)	9'-1"	(2746)	5'-0"	(1524)	10'-3/4"	(3067)
Length-Wing Section	-	-	-	-	1'-61/4"	(464)	4'-5%"	(1356)
Width	10"	(254)	10"	(254)	10"	(254)	10"	(254)
Thickness	1″	(25)	1″	(25)	1″	(25)	1"	(25)
Corner Bits								
Material-High Strength Boron Alloy								
Abrasion Resistant Steel						(552)		
Length		(473)	213/4"	(552)	213/4"	(305)	-	
Width		(305)	12"		12"	(305)		1000
Thickness	1″	(25)	11/4"	(32)	11/4"			
Max. Allowable Track Shoe Width	28"	(711)	28" ••	(711)	28" ••	(711)	28" **	(711)
Approximete Weight	9585 lbs. (4	348 kg.)	8295 lbs. (3	3763 kg.)	9835 lbs.	(4461 kg.)	11,610 lbs.	(5266 kg.)

*Millimeters except where otherwise indicated. **Limited to use with push beams having mechanical tilt struts.

Table C-14. TEREX 82-30FA (TAM No. B-2462) Crawler Tractor Specifications [31].

Table C-14. Continued

ENGINE

General Motors 6-71N, 2 Cycle Diesel Gross Vehicle HP @ 2100 RPM Flywheel HP @ 2100 RPM

239 NOTE: Above ratings at sea level and 60° F. Gross Vehicle Horsepower rating includes standard engine equipment such as waterpump, fuel pump and lupricating oil pump. Flywheel Horsepower is the net horsepower after deductions from Gross

Horsepower is the net horsepower after deductions from Gross Vehicle Horsepower for fan and alternator requirements.	6 4¼″ x 5″ (108mm x 127mm)			SAE 30	.oad	1750 ft. per minute (53,340cm/min.)	Full Pressure	Dry Type	General Motors	Hand Throttle & Foot Decelerator
Vehicle Horsepower for fai	Number of Cylinders Bore and Stroke	Piston Displacement	Fuel-Commercial Grades	Oil-MIL-L-2104B	RPM Governed at Full Load	Piston Speed	Lubrication	Air Cleaners	Fuel System	Speed Control

	426 cu. in. (7,0 liter	Diesel Fu	SAE		1750 ft. per minute (53,340cm/mir	Full Pressu	Dry Ty	General Moto	Hand Throttle & Foot Decelerat
	ant	Grades		Full Load					T hand T
avoire nue allo	Piston Displacement	Fuel-Commercial Grades	Oil-MIL-L-2104B	RPM Governed at Full Load	Piston Speed	Lubrication	Air Cleaners	Fuel System	Speed Control

SPEEDS & TRANSMISSION RATIOS

Max. Speeds Gear Ratios Forward Reverse Gear Ratios mph km/h mph Reverse mph km/h mph km/h Low 1.9 3.06 2.2 3.54 3.04:1 2.52:1 Intermed. 3.8 6.15 4.3 6.91 1.51:1 1.25:1 High 7.3 11.78 8.3 13.34 0.76:1 0.63:1					IEI	5.
To the forward Reverse mph km/h mph km/h 1.9 3.06 2.2 3.54 1.3 3.54 3.54 1.78 8.3 13.34 7.3 11.78 8.3 13.34		Max.	Speeds		Gear R	atios
mph km/h mph km/h 1.9 3.06 2.2 3.54 . 3.8 6.15 4.3 6.91 7.3 11.78 8.3 13.34	For	ward	Rev	erse	For-	Re-
1.9 3.06 2.2 3.54 . 3.8 6.15 4.3 6.91 7.3 11.78 8.3 13.34	hdm	km/h	hqm	km/h	ward	verse
. 3.8 6.15 4.3 6.91 7.3 11.78 8.3 13.34	1.9	3.06	2.2	3.54	3.04:1	2.52:1
7.3 11.78 8.3 13.34	3.8	6.15	4.3	6.91	1.51:1	1.25:1
	7.3	11.78	8.3	13.34	0.76:1	0.63.1

DIMENSIONS

.15'- 71⁄2" (4763mm) . 8'- 61⁄2" (2604mm)	7'-1134" (2432mm) 17½" (445mm) 215 ₆ " (549mm) 44,500 lbs. (20,185 kgs.)
Overall Length (187½ inches) Overall Width (102½ inches)	reight texcusive or exhaust st (95% inches) Minimum Ground Clearance Height—Drawbar above Ground Shipping Weight

1

Table C-15. TEREX 72-31 (TAM No. B-2465) Loader Specifications [32].

NOTE: Unit shown with $2\frac{1}{2}$ yd. G.P. bucket, 20.5 x 25 (12) L-2 tires, and TEREX ROPS cab.

2000	Dantit
+	TTT
1000	200
Ľ	
110	5
10	UTO
Table	Tal

•21/2 yd3 •23/4 yd3 (1,91 m3) (2,10 m3) G.P. G.P.		-	-		10'-0" 9'- 9" (3048 mm) (2972 mm)		(mm)	16'-0'' 16'- 0'' (4877 mm) (4877 mm)	C	(mm	~	8 mm)	21'-3'/2" 21'- 4" (6490 mm) (6502 mm)	26,900 lbs. 23,500 lbs. (12202 kg) (10660 kg)	-	-	-	-	- 2
Heaped Capacity (S.A.E.)	Struck Capacity	Bucket Width	Bucket Weight	At Maximum Lift	Dump Clearance	Booch to Tires	@ 45°	Spillboard Clearance	Arrest Harrest	Overall Length Carry	Overall Length	on Ground	Turning Radius Outside Bucket Corner	Breakout Force @ 4" From Cutting Edge	Static Tipping Load Straight Ahead	Full Turn	Operating Weight Front	Rear	Total

NOTE: For a bucket equipped with teeth reduce dump clearance by 5" (127 mm) Other Special Buckets Available.

TRANSMISSION—Allison TT-2221

2 speeds forward and 1 reverse. Single lever full powershift control. Shift from first turbine to second turbine is automatic upon demand. Soft-shift feature for full powershift between forward and reverse.

VEHICLE SPEEDS

Forward 1.
High Turbine
Forward 2: L
I
Reverse 1: Lo
I

Bucket		*(mm)
S.A.E. Rated Capacity (cu. yds.) Overall Width		(2695)
Max. Tiltback at Ground At Max. Lift:		
A. Dump Clearance @ 45° Dump	9'-7"	(2921)
B. Reach @ 45° Dump Max. Dump Angle Max. Tiltback	60°	(914)
Overall Operating Height		(5029)
Clam-Dozer		
C. Max. Clam Opening At Max. Lift with Clam Open and Cutting Edge @ 45°:	4′-5″	(1345)
D. Dump Clearance	12'-2"	(3708)
E. Reach Height of Moldboard		(610) (1270)

*Millimeters except where otherwise indicated.

Table C-16. MRS Model 100 (TAM No. B-2480) Wheeled Tractor Specifications.

July 15, 1964	TRACTOR,		INDUSTRIA	
United States Marine Corps.			100 (4x4) M	
	Pneumatic Tir	ed, Diesel E	ngine Drive	n
FEDERAL STOC	CK NUMBER 2	2420-97 3-001 9)	
	USA	USN	USAF	USMC
STATUS OR TYPE CLASSIFICATION				STD
Manufacturer: M-R-S Manufacturing Com	npany (90407)			
RY	USHE SHERE	N.O.		
FUNCTIONAL DESCRIPTION:				
FUNCTIONAL DESCRIPTION: 1. The Model 100 (4x4) MC Trac mover, for light dozing, winching, hydraulically operated scraper of ap used in fording operations up to a d	tor is designed for towing, and in c	ombination wi t cubic yard ca	th a four-wh	eeled

RELATION TO SIMILAR EQUIPMENT:

M-R-S Wheeled Tractor - Model 200 - Non-Sectionalized

TECHNICAL DESCRIPTION:

1. DIMENSIONS:

Length — 224 inches Width (at dozer blade) — 108 inches Height — 123 inches Height, reduceable to — 88.5 inches Weight — 24000 lbs. Wheel Base — 112 inches Tread (front and rear wheels) — 88 inches

2. OPERATING DATA

Turning Radius — 18 feet Ground Clearance — 16.5 inches Angle of approach — 24 degrees Angle of departure — 53 degrees

Tractor Speeds:

1st Range — 3.2 M. P. H. 2nd Range — 10.0 M. P. H. 3rd Range — 29.0 M. P. H.

Available Tractive Effort: (maximum) — 24,000 lbs.

3. TIE DOWN AND LIFTING DEVICES:

Front — Eyes welded to front of radiator guard

Rear — Eyes welded to main frame inboard of each rear tire.

4. APPROXIMATE CAPACITIES:

Fuel Tank -- 64 gallons
Cooling System -- 12 gallons
Hydraulic Reservoir -- 30 gallons
Engine Crankcase -- 17 quarts
Engine Air Cleaner -- 7 quarts
Transmission:

Fill -- 7.5 gallons
Refill -- 5.5 gallons

Differentials, each -- 12 quarts
Planetary Reduction, each -- 8 quarts
Steering Knuckles, each -- 10 pounds
Winch -- 3.5 gallons

5. ENGINE:

Make — Detroit Diesel (GMC) Model — 4914 (Series 4-71) Type — Diesel, 2-stroke cycle Number of cylinders — 4 Bore and stroke — 4.25 x 5 inches Compression Ratio (nominal) — 17 to 1 Total displacement (cubic inches) — 284 Firing order — 1 - 3 - 4 - 2 Number of main bearings — 5 Horsepower — 143 Maximum speed, no load, RPM — 2440 Maximum Torque (1600 RPM) ft. lbs. — 366

UNCLAS	and the second second	JAN 78	P S S	SPRINGS	TON						NL	
	2 OF 2 AD A050 797				kafazildada	E Br			a na na ana ana ana ana ana ana ana ana			To de la construcción de la cons
	⊯]11			F			The second se			100		
	1	and the second s		ETH.		R.		The second se				
		-										
	END DATE FILMED 4-78											÷

Table C-17. MRS Model 100 (TAM No. B-1929) Towed Scraper Specifications.

March 15, 1965 United States Marine Corps.

SCRAPER, EARTHMOVING, TOWED MODEL MS100 (M-64) 4-Wheeled, Hydraulically Operated, 8 Cubic Yard Capacity

Federal Stock Number 3805-051-3139

States and	USA	USN	USAF	USMC
STATUS OR TYPE CLASSIFICATION				STD

Manufacturer: M-R-S Manufacturing Company (90407)

FUNCTIONAL DESCRIPTION:

1. The Model MS100 (M-64) earthmoving scraper is a hydraulically operated, four wheel, towed unit capable of loading, hauling, dumping and spreading up to 10^{12} cubic yards of earth. It consists essentially of a body (with apron and ejector), a frame (yoke arm), a rear truck assembly, and a front axle and tongue assembly. It is equipped with a traction mast so it may be used to advantage with the weight transfer device incorporated on M-R-S Manufacturing Company tractors.

2. The scraper is equipped with rear wheel air operated brakes.

3. The scraper can be sectionalized to facilitate air transport by helicopter or relatively small airplane, then reassembled at point of use.

Scraper, Earthmoving, To	owed, Model H-82 (M-6	52)	
ECHNICAL DESCRIPTION:			
. DIMENSIONS:		3.	BRAKES:
Length overall Width overall	31' 6'' 9' 2''		Type Air actuated (controlled from towing vehicle)
Height overall Cube	8' 9'' 2527 cu. ft.		Brake shoe size — 17¼ x 4 inches
	16,500 lbs. 18' 4'' 5' 9'' 7' 0''	4.	TIRES: Size 20.5 x 2 Type Tubeles
OPERATING DATA: Struck load capacity	8 cu. yd.		Ply rating 1 Type lug Sure grip loade Pressure 30 p.s.
	8' 9'' 13''	5.	HYDRAULICS: Bowl lift cylinders (two) 4 x 24 ⁷ / ₈ " double acting
Depth of spread (max.) Apron opening	13" 5' 0"		Apron lift cylinders (two) — 4 x 17% " double acting
Type of ejection	Forced roll-out		Dump cylinder (one) 4 x 47" double actin

Table C-17. Continued

REFERENCE DATA AND LITERATURE:

TM-01023D-15. Technical Manual. Model MS100 (M-64) Scraper SL-4-01023D, Repair Parts List, Model MS100 (M-64) Scraper TM-01023C-15, Technical Manual, Model H-82 (M-62) Scraper TM-04078A-15, Technical Manual, Model M-R-S 100-MC Tractor TM-04075A-15, Technical Manual, Model TD-15-420-2/151/M-62 Tractor TM-11275.1, Technical Manual, Maintenance of Engineer Equipment TM-5-331, Technical Manual, Management and Utilization of Construction Equipment

Appendix D

TABLES OF NETWORK FILES, DESCRIPTIONS, AND SOLUTIONS

This Appendix contains input data and solutions for the arrow networks of the main text. The legends and definitions of abbreviations used in this Appendix are as follows:

NETWORK FILE LEGEND

(1) 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Typical Activity
(9) 470	(10) (11) (12) (13) 2, 4, 4, Dozers (TD20U)	Typical Resource
	Computer line number.	Typical Resource
	Beginning activity node number.	
	Ending activity node number.	
	Activity duration in 1/2 days.	
(5)	Resource identification number.	
(6)	Assigned quantity of resource number 2.	
(7)	Resource identification number.	
(8)	Assigned quantity of resource number 3.	
(9)	Computer line number.	
10)	Resource identification number.	
11)	Desired resource allocation level	

(12) Critical resource allocation level.

(13) Resource description.

DESCRIPTION FILE LEGEND

- (1) (2) (3) (4) 1 2 CLR A1 10 RDS
- (1) Computer line number.
- (2) Beginning activity node number.
- (3) Ending activity node number.
- (4) Activity description.

ABBREVIATIONS

AMSS SFG	Surface with Advanced Multipurpose Surfacing System
BRK DLVR MAT	Breakout and deliver matting
CLR	Clear
CLR PERIM	Clear perimeter
CLR RDS	Clear roads
CON FG	Continue final grading
CRG	Compacting and rough grading
CST BRMS	Construct berms
CST TAFDS BRMS	Construct TAFDS berms
DMY	Dummy
FG	Final grading
FIL	Fill
FILL TKS	Fill tanks
FIN CLR RVTS	Finish clearing revetments
FIN CST BRMS	Finish constructing berms
FIN CST RVT BRMS	Finish constructing revetment berms
FIN F	Finish filling
FIN FG	Finish final grading
FIN SF	Finish stripping and filling
FIN SHP RDS	Finish shaping roads
FIN STR	Finish stripping
INST TAFDS TKS	Install TAFDS fuel bladders
LAY MAT	Install matting
PALLET STG AREA	Pallet storage area
SHP	Shaping
ST CLR RVTS	Start clearing revetments
ST CST BRMS	Start constructing berms
ST CST RVT BRMS	Start constructing revetment berms
ST F	Start filling
ST FG	Start final grading

STR	Stripping
STR RDS	Strip roads
ST SF	Start stripping and filling
ST SHP RDS	Start shaping roads
ST STR	Start stripping
TRK LDG AREA	Truck loading area
TRP STG MAT	Transport and stage matting

Table D-1. EAF Network Description File

DESCB

 DESCE

 10 1 2 CLR A1
 450 23 25 ST F A4

 20 1 5 OTRP STC MAT
 460 24 27 DMY

 20 1 3 CLR A2
 400 25 29 DMY

 20 1 3 ZC LR A5
 400 25 30 FLN F A4

 20 1 3 ZC RA 5
 400 25 30 FLN F A4

 20 3 STR A1
 500 23 62 FLN F A5

 20 3 STR A1
 500 26 20 PMY

 20 3 STR A1
 500 20 20 PMY

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A1
 500 30 30 PM

 20 4 S TF A2
 500 31 DMY

 20 4 S TF A2
 500 31 DMY

 20 5 S TF A3
 500 32 40 CLR A7

 20 6 1 1 S TR A2
 500 31 DMY

 20 7 23 STR A4
 600 32 40 CLR A7

 20 8 9 DMY
 600 32 40 CLR A7

 20 9 1 1 ST F A2
 600 35 37 DMY

 20 1 2 4 CLR TAFDS U2, 3
 700 39 DMY

 20 1 2 4 CLR TAFDS U2, 3
 700 39 DMY

 20 1 2 4 CLR TAFDS U2, 3
 700 37 38 ST FC A5

 20 1 1 1 5 DMY
 700 40 50 STR A7

 20 1

continued

Table D-2. EAF (CASE 1) Network File

EAFNETA

10 1,2,3,2,2,3,2 20 1,59,58,7,1 30 1, 5, 2, 2, 2 40 1,6,2,2,2 50 1,32,11,3,2 60 1,7,2,2,2 70 2,3,2,1,6,3,1 80 3, 59, 34, 7, 2 90 3,39,10 100 3,4,2,1,6,3,1 110 3,8,6,4,1,5,1 120 4,10,6,4,1,5,1 130 4,8,6,1,6,3,1 140 5,9,2,2,2 150 6,15,3,2,2 160 7,23,3,2,2 170 8,10,0 180 8,13,3,4,1,5,1 190 3,9,0 200 9,11,1,1,6,3,1 210 9,12,2,2,2 220 10,14,1,4,1,5,1 230 11,16,0 240 11,13,2,1,6,3,1 250 12,27,7,1,1,4,1,6,1 260 12,24,5,2,2 270 13,18,0 280 13,15,0 290 14,19,1 300 14,16,0 310 15,21,2,4,1,5,1 320 15,17,1,1,6,3,1 330 16,18,2,4,1,5,1 340 17,20,0 350 17,22,2,1,6,3,1 360 18,20,1,4,1,5,1 370 19,39,5 380 20, 39, 4 390 20, 26, 2, 4, 1, 5, 1 410 21,30,3,4,1,5,1 420 21,22,0 430 22,26,0 440 22,23,0

450 23, 25, 1, 1, 6, 3, 1 460 24,27,0 470 24,44,11,2,2 480 25,29,0 490 25, 30, 3, 1, 6, 3, 1 500 26,28,1,4,1,5,1 510 27, 36, 2 520 28, 39, 6 530 28,29,0 540 29, 33, 3, 4, 1, 5, 1 550 30,33,0 560 30, 42, 9, 4, 1, 5, 1 470 30,31,0 580 31,35,2,1,6,3,1 590 32,31,0 600 32,40,3,2,2 610 33, 34, 1, 4, 1, 5, 1 620 34, 39, 2 630 34,37,0 640 35, 37,0 650 35, 42, 10, 1, 6, 3, 2 660 36, 39, 2 670 37, 38, 2, 4, 1, 5, 1 680 38,39,0 690 38, 41, 4, 4, 1, 5, 1 700 39, 59, 14 710 40, 50, 3, 2, 2 720 41,45,2,4,1,5,1 730 42,41,0 740 42,43,0 750 43, 46, 2, 1, 6, 3, 2 760 43, 51, 12, 4, 1, 5, 1 770 44,43,0 780 44,48,3,3,2 790 45, 47, 2, 4, 1, 5, 1 800 46,45,0 810 46,50,12,1,6,3,2 820 47, 59, 16 830 47,49,6,4,1,5,1 840 48,54,3,3,2 850 49, 53, 2, 4, 1, 5, 1 860 50,49,0 870 50, 52, 1, 1, 6, 3, 1

continued

Table D-2. Continued

880 51,50,0 890 51,54,3,4,1,5,1 900 52,53,0 910 52,54,3,1,6,3,1 920 53,55,3,4,1,5,1 930 53,59,9 940 54,55,0 950 54,56,4,1,6,3,1 960 54,57,3,4,1,5,1 970 55,56,1,4,1,5,1 980 56,58,4,4,1,5,1 990 56,59,9 1000 57,56,0 1010 58,59,0 1030 1,6,6 SCRAPERS(MRSI110) 1040 2,4,4 DOZERS(TD20U) 1050 3,4,4 DOZERS(TD20A) 1060 4,4,8 GRADERS (GAL 500T) 1070 5,4,8 VIB ROLLERS(RAYGO 400) 1080 6,1,2 END LOADERS 1090 7,3,4 RT FORKLIFT

Table D-3. EAF (Case 1) Resource Usage, NRL

DESCRIPTION OF RECOURCE CODE:

	RESOURCE	NO.		1= S	CR	APER	RS (1	IRS	I110))	
	RESOURCE	NO.		2= D	OZI	ERS	TD	20U)		
	RESOURCE	NO.		3= D	OZI	ERS	(TD:	20A)		
	RESOURCE	NO.		4= G	RAI	DERS	G (GA	AL .	500T)		
	RESOURCE	NO.		5= V	IB	ROI	LE	RS (RAYGO	(40)	
	RESOURCE	NO.		6= E							
	RESOURCE	NO.		7= R	TI	FORM	LII	FT			
OURO	CE 1		2		3		4		5	6	
					-				-		

RESOURCE	1	2	3	4	5	6	7
DESIRED							
LIMIT	6	4	4	4	4	1	3
CRITICAL LIMIT	7	8	1.	8	8	2	4
LIMIT	'	0	4	0	0	2	4

CRITICAL LIMITS ARE CHANGED

USAGE VS TIME:

1	PERIOD	0	8	4	0	0	0	1
2	PERIOD	0	8	4	0	0	0	1
3	PERIOD	0	8	4	0	0	0	1
4	PERIOD	6	6	3	0	0	0	1
5	PERIOD	6	4	3	0	0	0	1
6	PERIOD	6	0	3	1	1	0	3
7	PERIOD	6	0	3	1	1	0	3
8	PERIOD	6	0	3	2	2	0	3
9	PERIOD	6	0	3	2	2	0	3
10	PERIOD	6	0	3	2	2	0	3
11	PERIOD	6	0	3	2	2	0	3
12	PERIOD	6	2	1	1	1	0	3
13	PERIOD	6	2	1	1	1	0	3
14	PERIOD	6	4	1	2	2	0	3
15	PERIOD	6	4	1	2	2	0	3
16	PERIOD	7	4	1	3	2	1	3
17	PERIOD	7	4	1	3	2	1	3
18	PERIOD	7	2	1	3	2	1	3
19	PERIOD	7		1	3	2	1	3
20	PERIOD	7	2	1	3	2	1	3
21	PERIOD	7	2	1	3	2	1	3

continued
Table D-3. Continued

22	PERIOD	7	2	1	2	1	1	3
23	PERIOD	6	2	1	1	1	0	3
24	PERIOD	6	2	1	2	2	0	3
25	PERIOD	6		1	1	1	0	3
26	PERIOD	6	2	2	2	2	0	3
27	PERIOD	6	2	2	2	2	0	3
28	PERIOD	6	2	2	2	2	0	3
29	PERIOD	6	2	2	2	2	0	3
30	PERIOD	6	2	2	2	2	0	3
31	PERIOD	6	2	2	2	2	0	3
32	PERIOD	6	0	4	1	1	0	3
33	PERIOD	6	0	4	0	0	0	3
34	PERIOD	6	0	4	0	0	0	3
35	PERIOD	6	0	4	0	0	0	3
36	PERIOD	6	0	4	2	2	0	3
37	PERIOD	6	0	4	2	2	0	3
38	PERIOD	6	0	2	2	2	0	3
39	PERIOD	6	0	2	2	2	0	3
40	PERIOD	6	0	2	2	2	0	1
41	PERIOD	6	0	2	2	2	0	1
42	PERIOD	6	0	2	2	2	0	1
43	PERIOD	6	0	2	2	2	0	1
44	PERIOD	6	0	2	2	2	0	1
45	PERIOD	6	0	2	2	2	0	1
46	PERIOD	6	0	2	1	1	0	1
47	PERIOD	6	0	2	1	1	0	1
48	PERIOD	6	0	2	1	1	0	1
49	PERIOD	6	0	2	1	1	0	1
50	PERIOD	6	0	1	2	2	0	1
51	PERIOD	6	0	1	1	1	0	1
52	PERIOD	6	0	1	1	1	0	1
53	PERIOD	6	0	1	1	1	0	1
54	PERIOD	6	0	1	2	2	0	1
55	PERIOD	6	0	1	2	2	0	1
56	PERIOD	6	0	1	1	1	0	1
57	PERIOD	6	0	1	0	0	0	1
58	PERIOD	0	0	0	1	1	0	1
59	PERIOD	0	0	0	1	1	0	0
60	PERIOD	0	0	0	1	1	0	0
61	PERIOD	0	0	0	1	1	0	0
62	PERIOD	0	0	0	0	0	0	0
63	PERIOD	0	0	0	0	0	0	0
64	PERIOD	0	0	0	0	0	0	0
65	PERIOD	0	0	0	0	0	0	0
66	PERIOD	0	0	0	0	0	0	0

AC	TIVITY	DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	2 CLR A	1	1	3	0
1	59 TRP S	TG MAT	1	58	8
1	5 CLR A		1	2	9
1	6 CLR A		1	2	11
1	32 CLR A		1	11	12
1	7 CLR A		1	2	14
2	3 STR A		4	2	0
3	59 BRK D		6	34	27
3		AT 3,6,12A	6	10	37
3	4 STF A		6	2	0
3	8 CRG A		6	6	2
4	10 ST FG		8	6	11
4	8 FIN F		8	6	0
5	9 STR A		3	2	9
6	15 STR A		3	3	11
7	23 STR A			3	14
8	10 DUMMY 13 CRG A		14	0 3	11
8		2	14 14	3 0	0
8 9	9 DMY 11 ST F	* 2	14	0	
9	12 CLR T		14	1 2	0 4
10	14 FIN F		14	1	4
11	14 FIN F 16 DMY	GAL	14	0	11
11	13 FIN F	1 12	15	2	0
12		AFDS BRMS	16	7	26
12		AFDS 02,3	16	5	4
13	18 DMY	APD5 02,5	10	0	11
13	15 DMY		17	0	0
14	19 LAY M	AT 1	15	1	32
14	16 DUMMY		15	Ō	11
15	21 CRG A		17	2	1
15	17 ST F		17	1	0
16	18 ST FG		15	2	11
17	20 DMY		18	0	11
17	22 FIN F	' A3	18	2	0
18	20 FIN F	G A2	17	1	11
19	39 LAY M	AT 2	16	5	32
20	39 LAY M	AT 4	18	4	31
20	26 ST FG		18	2	11
21	30 CRG A	.4	19	3	2
21	22 DMY		19	0	1
22	26 DMY		20	0	11
22	23 DMY		20	0	0

Table D-4. EAF (Case 1) Critical Path Solution, NRL

Table D-4. Continued

23	25 ST F A4	20	1	0
24	27 DMY	21	0	28
24	44 CLR A6	21	11	4
25	29 DMY	21	0	11
25	30 FIN F A4	21	3	0
26	28 FIN FG A3	20	1	11
27	36 INST TAFDS TKS	23	2	26
28	39 LAY MAT 7,5	21	6	26
28	29 DMY	21	0	11
29	33 ST FG A4	21	3	11
30	33 DMY	24	0	11
30	42 CRG A5	24	9	3
30	31 DMY	24	0	0
31	35 ST SF A5	24	2	0
32	31 DMY	12	ō	12
32	40 CLR A7	12	3	32
33	34 FIN FG A4	24	1	11
34	39 LAY MAT 8,9,10	25	2	26
34	37 DMY	25	0	11
35	37 DMY	26	0	11
		26		10
35	42 FIN SF A5		10	
36	39 FILL TKS	25	2	26
37	38 ST FG A5	26	2	10
38	39 DMY	28	0	25
38	41 CON FG A5	28	4	10
39	59 LAY MAT 12B	28	14	25
40	50 STR A7	15	3	32
41	45 FIN FG A5	36	2	6
42	41 DMY	36	0	6
42	43 DMY	36	0	0
43	46 ST SF A6	36	2	0
43	51 CRG A6	36	12	2
44	43 DMY	32	0	4
44	48 CLR A8	32	3	16
45	47 ST FG A6	38	2	6
46	45 DMY	38	0	6
46	50 FIN SF A6	38	12	0
47	59 LAY MAT 13	40	16	11
47	49 CON FG A6	40	6	6
48	54 STR A8	35	3	16
49	53 FN FG A6	50	2	2
50	49 DMY	50	0	2
50	52 ST F A7	50	1	0
51	50 DMY	48	0	2
51	54 CRG A7	48	3	3
52	53 DMY	40 51	0	3
52	JJ DHI	71	0	3

continued

Table D-4. Continued

52	54 FIN F A7	51	3	0
53	55 ST FG A7	52	3	2
53	59 LAY MAT 14	52	9	6
54	55 DMY	54	0	3
54	56 FILL A8	54	4	0
54	57 CRG A8	54	3	1
55	56 FIN FG A7	55	1	2
56	58 FG A8	58	4	5
56	59 LAY MAT 11	58	9	0
57	56 DMY	57	0	1
58	59 DMY	62	0	5

TOTAL PROJECT DURATION= 66 PERIODS

Table D-5. EAF (Case 1) Resource Usage, RL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOURCE	NO.	1=	SCRAPERS (MRS 1110)
RESOURCE	NO.	2=	DOZERS(TD20U)
RESOURCE	NO.	3=	DOZERS (TD20A)
RESOURCE	NO.	4=	GRADERS (GAL 500T)
RESOURCE	NO.	5=	VIB ROLLERS (RAYGO 40)
RESOURCE	NO.	6=	END LOADERS
RESOURCE	NO.	7=	RT FORKLIFT

RESOURCE	1	2	3	4	5	6	7
DESIRED LIMIT	6	4	4	4	4	1	3
CRITICAL LIMIT	7	4	4	8	8	2	4
CRITICAL	LIMITS	ARE CI	HANGED				

USAGE VS TIME:

1	PERIOD	0	4	4	0	0	0	1
2	PERIOD	0	4	4	0	0	0	1
3	PERIOD	0	4	4	0	0	0	1
4	PERIOD	6	2	3	0	0	0	1
5	PERIOD	6	2	3	0	0	0	1
6	PERIOD	6	2	3	1	1	U	3
7	PERIOD	6	4	3	1	1	0	3
8	PERIOD	6	4	3	2	2	0	3
9	PERIOD	6	4	3	2	2	0	3
10	PERIOD	6	2	3	2	2	0	3
11	PERIOD	6	2	3	2	2	0	3
12	PERIOD	6	2	1	1	1	0	3
13	PERIOD	6	2	1	1	1	0	3
14	PERIOD	6	4	1	2	2	0	3
15	PERIOD	6	4	1	2	2	0	3
16	PERIOD	6	4	1	2	2	0	3
17	PERIOD	6	4	1	2	2	0	3
18	PERIOD	6	2	1	2	2	0	3
19	PERIOD	6	2	1	2	2	0	3
20	PERIOD	6	2	1	2	2	0	3

Table D-5. Continued

21	PERIOD	6	2	1	2	2	0	3
22	PERIOD	6	2	1	1	1	0	3
23	PERIOD	6	2	1	1	1	0	3 3
24	PERIOD	6	2	1	2	2	0	3
25	PERIOD	6	2	1	1	1	0	3
26	PERIOD	6	2	2	2	2	0	3 3
27	PERIOD	6	2	2	2	2	0	3
28	PERIOD	6	2	2	2	2	0	3
29	PERIOD	6	2	2	2	2	0	3
30	PERIOD	6	2	2	2	2	0	3
31	PERIOD	6	2	2	2	2	0	3 3
32	PERIOD	6	ō	4	1	1	0	3
33	PERIOD	6	0	4	0	Ō	õ	3
34	PERIOD	6	0	4	Ő	0	õ	3
35	PERIOD	6	0	4	Ő	Ő	õ	3
36	PERIOD	6	0	4	2	2	0	3
37	PERIOD	6	0	4	2	2	0	3
38	PERIOD	6	0	2	2	2	0	3
39	PERIOD	6	0	2	2	2	0	3
40	PERIOD	6	0	2	2	2	0	1
41	PERIOD	6	0	2	2	2	0	1
41	PERIOD	7	0	2	3	2	1	1
42	PERIOD	7	0	2	3	2	1	1
43		7	0	2	3	2	1	1
44	PERIOD	7		2	3	2	1	1
	PERIOD	7	0	2	2	1	1	1
46	PERIOD	7	0	2	2	1	1	1
47 48	PERIOD	7	0	2	2	1	1	1
	PERIOD			2	1	1	0	1
49	PERIOD	6	0	1	2	2		
50	PERIOD	6	0	1	1		0	1
51	PERIOD	6	0			1	0	1
52	PERIOD	6	0	1	1	1	0	1
53	PERIOD	6	0	1	1	1	0	1
54	PERIOD	6	0	1	2	2	0	1
55	PERIOD	6	0	1	2	2	0	1
56	PERIOD	6	0	1	1	1	0	1
57	PERIOD	6	0	1	0	0	0	1
58	PERIOD	0	0	0	1	1	0	1
59	PERIOD	0	0	0	1	1	0	0
60		0	0	0	1	1	0	0
61	PERIOD	0	0	0	1	1	0	0
62	PERIOD	0	0	0	0	0	0	0
63	PERIOD	0	0	0	0	0	0	0
64	PERIOD	0	0	0	0	0	0	0
65	PERIOD	0	0	0	0	0	0	0
66	PERIOD	0	0	0	0	0	0	0

Table D-6. EAF (Case 1) Critical Path Solution, RL

TABLE OF SCHEDULED STARTS:

AC	TIVITY	DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	2 CLR	A1	1	3	0
1	59 TRP	STG MAT	1	58	8
1	5 CLR	A2	6	2	0
1	6 CLR	A3	7	2	0
1	32 CLR		1	11	0
1	7 CLR		1	2	0
2	3 STR		4	2	0
3		DLVR MAT	6	34	27
3		MAT 3,6,12A	6	10	37
3	4 ST		6	2	0
3	8 CRG		6	6	2
4	10 ST	FG A1	8	6	0
4	8 A1		8	6	0
5	9 STR		8	2	4
6	15 STR		9	. 3	5
7	23 STR		3	3	14
8	10 DUM		14	0	0
8	13 CRG		14	3	0
8	9 DMY		14	0	0
9 9	11 ST	TAFDS U1	14 14	1 2	0
10		FG A1	14	2	0
10	14 FIN 16 DMY		14	1	0
11	13 FIN		15	2	0
12		TAFDS BRMS	42	7	0
12		TAFDS U2,3	16	5	0
13	18 DMY		17	0	0
13	15 DMY		17	Ő	0
14		MAT 1	15	1	0
14	16 DUM		15	0	0
15	21 CRG	A3	17	2	0
15	17 ST	F A3	17	1	0
16	18 ST	FG A2	15	2	0
17	20 DMY		18	0	0
17	22 FIN	FA3	18	2	0
18	20 FIN	FG A2	17	1	0
19		MAT 2	16	5	32
20		MAT 4	18	4	31
20	26 ST		18	2	. 0
21	30 CRG	A4	19	3	2

Table D-6. Continued

21	22 DMY	19	0	1
22	26 DMY	20	0	0
22	23 DMY	20	0	0
23	25 ST F A4	20	1	0
24	27 DMY	21	0	28
24	44 CLR A6	21	11	0
25	29 DMY	21	0	0
25	30 FIN F A4	21	3	0
26	28 FIN FG A3	20	1	0
27	36 INST TAFDS TKS	49	2	0
28	39 LAY MAT 7,5	21	6	26
28	29 DMY	21	0	0
29	33 ST FG A4	21	3	0
30	33 DMY	24	0	0
30	42 CRG A5	24	9	3
30	31 DMY	24	0	0
31	35 ST SF A5	24	2	0
32	31 DMY	12	0	12
32	40 CLR A7	12	3	0
33	34 FIN FG A4	24	1	0
34	39 LAY MAT 8,9,10	25	2	26
34	37 DMY	25	0	1
35	37 DMY	26	0	0
35	42 FIN SF A5	26	10	0
36	39 FILL TKS	51	2	0
37	38 ST FG A5	26	2	0
38	39 DMY	28	0	25
38	41 CON FG A5	28	4	4
39	59 LAY MAT 12B	53	14	0
40	50 STR A7	15	3	32
41	45 FIN FG A5	36	2	0
42	41 DMY	36	0	0
42	43 DMY	36	0	0
43	46 ST SF A6	36	2	0
43	51 CRG A6	36	12	0
44	43 DMY	32	0	4
44	48 CLR A8	32	3	0
45	47 ST FG A6	38	2	0
46	45 DMY	38	0	0
46	50 FIN SF A6	38	12	0
47	59 LAY MAT 13	40	16	11
47	49 CON FG A6	40	6	4
48	54 STR A8	35	3	16
49	53 FIN FG A6	50	2	0
50	49 DMY	50	0	0

Table D-6. Continued

50	52 ST F A7	50	1	0
51	50 DMY	48	0	2
51	54 CRG A7	48	3	3
52	53 DMY	51	0	1
52	54 FIN F A7	51	3	0
53	55 ST FG A7	52	3	0
53	59 LAY MAT 14	52	9	6
54	55 DMY	54	0	1
54	56 FILL A8	54	4	0
54	57 CRG A8	54	3	0
55	56 FIN FG A7	55	1	2
56	58 FG A8	58	4	0
56	59 LAY MAT 11	58	9	0
57	56 DMY	57	0	1
58	59 DMY	62	0	5

TOTAL PROJECT DURATION= 66 PERIODS

Table D-7. EAF (Case 2) Network File

EAFNETB

10 1,2,1,2,4 20 1,59,30,6,1 30 1,5,2,2,1 40 1,6,2,2,1 50 1, 32, 4, 2, 2 60 1,7,2,2,1 70 2,3,1,1,6 80 3, 59, 26, 6, 2 90 3,39,10 100 3,4,1,1,6 110 3,8,5,3,2,4,2 120 4,10,1,3,2,4,2 130 4,8,3,1,6 140 5,9,1,2,2 150 6,15,2,2,1 160 7,23,3,2,1 170 8,10,0 180 8,13,2,3,2,4,2 190 8,9,0 200 9,11,1,1,6 210 9,12,2,2,1 220 10,14,4,3,2,4,2 230 11,16,0 240 11,13,1,1,6 250 12,27,7,3,1,5,1,7,1 260 12,24,4,2,1 270 13,18,0 280 13,15,0 290 14,19,1 300 14,16,0 310 15,21,2,3,2,4,2 320 15,17,1,1,6 330 16,18,1,3,2,4,2 340 17,20,0 350 17,22,1,1,6 350 18,20,1,3,2,4,2 370 19,39,5 380 20, 39, 4 390 20, 26, 1, 3, 2, 4, 2 410 21, 30, 2, 3, 2, 4, 2 420 21,22,0 430 22,26,0 440 22,23,0

450 23, 25, 1, 1, 6 460 24,27,0 470 24,44,5,2,2 480 25, 30, 1, 1, 6 490 25, 30, 1, 1, 6 500 26,28,1,3,2,4,2 510 27, 36, 2 520 28,39,6 530 28,29,0 540 23, 33, 2, 3, 2, 4, 2 550 30, 33, 0 560 3, 42, 5, 3, 2, 4, 2 570 30, 31,0 580 31, 35, 2, 1, 6 590 32,31,0 600 32,40,2,2,1 610 33, 34, 1, 3, 2, 4, 2 620 34, 39, 2 630 34,37,0 640 35, 37,0 650 35, 42, 6, 1, 6 660 36, 39, 2 670 37, 38, 2, 3, 2, 4, 2 680 38, 39, 0 690 38, 41, 3, 3, 2, 4, 2 700 39,59,14 710 40, 50, 2, 2, 1 720 41,45,1,3,2,4,2 730 42,41,0 740 42,43,0 750 43,46,1,1,6 760 43, 51, 6, 3, 2, 4, 2 770 44,43,0 780 44,48,2,2,1 790 45, 47, 1, 3, 2, 4, 2 800 46,45,0 810 46, 50, 6, 1, 6 820 47, 59, 16 830 47, 49, 5, 3, 2, 4, 2 840 48,54,2,2,1 850 49, 53, 1, 3, 2, 4, 2 860 50,49.0 870 50, 52, 1, 1, 6

Table D-7. Continued

880 51,50,0 890 51, 54, 2, 3, 2, 4, 2 900 52,53,0 910 52,54,1,1,6 920 53,55,2,3,2,4,2 930 53,59,7 940 94,55,0 950 54,56,2,1,6 960 54,57,2,3,2,4,2 970 55,56,1,3,2,4,2 980 56,58,3,3,2,4,2 990 56,59,7 1000 57,56,0 1010 58,59,0 1030 1,6,6 SCRAPERS(CAT 637) 1040 2,3,6 DOZERS(CAT D8) 1050 3,4,6 GRADERS(GAL 500T) 1060 4,4,4 VIB ROLLERS(RAYGO400) 1070 5,1,2 END LOADERS 1080 6,3,4 RT FORKLIFT 1090 7,1,1 SCRAPER (MRS)

Table D-8. EAF (Case 2) Resource Usage, NRL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOURCE	NO.	1=	SCRAPERS(CAT 637)
RESOURCE	NO.	2=	DOZERS(CAT D8)
RESOURCE	NO.	3=	GRADERS(GAL 500T)
RESOURCE	NO.	4=	VIB ROLLERS (RAYGO400
RESOURCE	NO.	5=	END LOADERS
RESOURCE	NO.	6=	RT FORKLIFT
RESOURCE	NO.	7=	SCRAPER (MRS)

RESOURCE	1	2	3	4	5	6	7	
							-	
DESIRED LIMIT	6	3	4	4	1	3	1	
CRITICAL LIMIT	6	9	6	4	2	4	1	
CRITICAL	LIMITS	ARE C	HANGED					

USAGE VS TIME:

1	PERIOD	0	9	0	0	0	1	0
2	PERIOD	6	5	0	0	0	1	0
3	PERIOD	6	6	2	2	0	3	0
4	PERIOD	6	4	4	4	0	3	0
5	PERIOD	6	2	2	2	0	3	0
6	PERIOD	6	1	2	2	0	3	0
7	PERIOD	0	1	2	2	0	3	0
8	PERIOD	6	2	4	4	0	3	0
9	PERIOD	6	1	4	4	0	3	0
10	PERIOD	6	1	5	4	1	3	1
11	PERIOD	6	1	5	4	1	3	1
12	PERIOD	6	1	5	4	1	3	1
13	PERIOD	6	1	5	4	1	3	1
14	PERIOD	6	2	5	4	1	3	1
15	PERIOD	6	2	5	4	1	3	1
16	PERIOD	6	2	5	4	1	3	1
17	PERIOD	6	2	4	4	0	3	0
18	PERIOD	6	2	4	4	0	3	0
19	PERIOD	6	1	2	2	0	3	0
20	PERIOD	6	1	2	2	0	3	0

continued

-

21	PERIOD	6	1	2	2	0	3	0
22	PERIOD	6	1	4	4	0	3	0
23	PERIOD	6	0	4	4	0	3	0
24	PERIOD	6	0	4	4	0	3	0
25	PERIOD	6	0	4	4	0	3	0
26	PERIOD	6	0	4	4	0	3	0
27	PERIOD	6	0	4	4	0	3	0
28	PERIOD	6	0	4	4	0	3	0
29	PERIOD	6	0	4	4	0	1	0
30	PERIOD	6	0	2	2	0	1	0
31	PERIOD	6	0	4	4	0	0	0
32	PERIOD	6	0	4	4	0	0	0
33	PERIOD	0	0	2	2	0	0	0
34	PERIOD	0	0	2	2	0	0	0
35	PERIOD	0	0	2	2	0	0	0
36	PERIOD	0	0	2	2	0	0	0
37	PERIOD	0	0	2	2	0	0	0
38	PERIOD	0	0	0	0	0	0	0
39	PERIOD	0	0	0	0	0	0	0
40	PERIOD	0	0	0	0	0	0	0
41	PERIOD	0	0	0	0	0	0	0

Table D-8. Continued

Table D-9. EAF (Case 2) Critical Path Solution, NRL

TABLE OF SCHEDULED STARTS:

AC	TIVITY DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	2 CLR A1	1	1	0
1	59 TRP STG MAT	1	30	11
1	5 CLR A2	1	2	6
	6 CLR A3	1	2	7
1	32 CLR A5	1	4	11
1	7 CLR A4	1	2	8
2	3 STR A1	2	1	0
3	59 BRK DLVR MAT	3	26	13
3	39 LAY MAT 3,6,12A	3	10	15
3	4 ST F Al	3	1	1
3	8 CRG A1	3	5	0
4	10 ST FG A1	4	1	3
4	8 FIN F Al 9 STR A2	4 3	3 1	1 6
5 6	9 STR A2 15 STR A3	3	2	6 7
7	23 STR A4	3	23	8
8	10 DUMMY	8	0	0
8	13 CRG A2	6	2	2
8	9 DMY	8	0	2
9	11 ST F A2	8	1	2
9	12 CLR TAFDS U1	8	2	5
10	14 FIN FG A1	8	4	0
11	16 DMY	9	0	3
11	13 FIN F A2	9	1	2
12	27 CST TAFDS BRMS	10	7	7
12	24 CLR TAFDS U2,3	10	4	5
13	18 DMY	10	0	3
13	15 DMY	10	0	2
14	19 LAY MAT 1	12	1	10
14	16 DUMMY	12	0	0
15	21 CRG A3	10	2	2
15	17 ST F A3	10	1	2
16	18 ST FG A2	12	1	0
17	20 DMY	11	0	3
17	22 FIN F A3	11	1	2
18	20 FIN FG A2	13	1	0
19	39 LAY MAT 2	13	5	10
20	39 LAY MAT 4	14	4	10
20	26 ST FG A3	14	1	0
21	30 CRG A4	12	2	2

Table D-9. Continued

21		DMY	12	0	2
22		DMY	12	0	3
22	23	DMY	12	0	2
23	25	ST F A4	12	1	2
24		DMY	14	0	10
24		CLR A6	14	5	5
25		DMY	13	0	3
25		FIN F A4	13	1	2
26		FIN FG A3	15	1	0
27	36	INST TAFDS TKS	17	2	7
28	39	LAY MAT 7,5	16	6	6
28		DMY	16	0	0
29		ST FG A4	16	2	0
30	33	DMY	14	0	4
30	42	CRG A5	14	5	5
30		DMY	14	0	2
31	35	ST SF A5	14	2	2
32	31	DMY	5	0	11
32	40	CLR A7	5	2	22
33	34	FIN FG A4	18	1	0
34	39	LAY MAT 8,9,10	19	2	7
34		DMY	19	0	0
35	37	DMY	16	0	3
35	42	FIN SF A5	16	6	2
36		FILL TKS	19	2	7
37	38	ST FG A5	19	2	0
38	39	DMY	21	0	7
38		CON FG A5	21	3	0
39	59	LAY MAT 12B	22	14	6
40	50	STR A7	7	2	22
41		FIN FG A5	24	ī	0
42		DMY	22	0	2
42		DMY	22	0	2
43		ST SF A6	22	1	2
43		CRG A6	22	6	3
44		DMY	19	0	5
44	48	CLR A8	19	2	10
45		ST FG A6	25	1	0
46		DMY	23	Ō	2
46		FIN SF A6	23	6	2
47		LAY MAT 13	26	16	0
47		CON FG A6	26	5	0
48		STR A8	21	2	10
49		FN FG A6	31	1	0
50		DMY	29	0	2
				v	2

Table D-9. Continued

50	52 ST F A7	29	1	2
51	50 DMY	28	0	3
51	54 CRG A7	28	2	3
52	53 DMY	30	0	2
52	54 FIN F A7	30	1	2
53	55 ST FG A7	32	2	0
53	59 LAY MAT 14	32	7	3
54	55 DMY	31	0	3
54	56 FILL A8	31	2	2
54	57 CRG A8	31	2	2
55	56 FIN FG A7	34	1	0
56	58 FG A8	35	3	4
56	59 LAY MAT 11	35	7	0
57	56 DMY	33	0	2
58	59 DMY	38	0	4

Table D-10. EAF (Case 2) Resource Usage, RL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOURCE 1 2 3 4 5 6 7 DESIRED LIMIT 6 3 4 4 1 3 1 CRITICAL LIMIT 6 6 6 4 2 4 1 USAGE VS TIME: 6 6 6 4 2 4 1 USAGE VS TIME: 1 9 0 6 0 0 1 0 2 PERIOD 6 2 0 0 1 0 2 PERIOD 6 1 2 2 0 3 0 3 PERIOD 6 1 2 2 0 3 0 3 PERIOD 6 1 2 2 0 3 0 4 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 7 PERIOD 6 2 2 2 3
LIMIT 6 3 4 4 1 3 1 CRITICAL LIMIT 6 6 6 4 2 4 1 USAGE VS TIME:
LIMIT 6 3 4 4 1 3 1 CRITICAL LIMIT 6 6 6 4 2 4 1 USAGE VS TIME:
LIMIT 6 6 6 4 2 4 1 USAGE VS TIME:
LIMIT 6 6 6 4 2 4 1 USAGE VS TIME:
USAGE VS TIME: 1 PERIOD 0 6 0 0 1 0 2 PERIOD 6 2 0 0 1 0 3 PERIOD 6 1 2 2 0 3 0 4 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 1 2 2 0 3 0 7 PERIOD 6 1 2 2 0 3 0 7 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6
1 PERIOD 0 6 0 0 1 0 2 PERIOD 6 2 0 0 1 0 3 PERIOD 6 1 2 2 0 3 0 4 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 1 2 2 0 3 0 7 PERIOD 6 2 2 2 0 3 0 7 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6 3 2 2
2 PERIOD 6 2 0 0 0 1 0 3 PERIOD 6 1 2 2 0 3 0 4 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 2 2 2 0 3 0 7 PERIOD 6 2 2 2 0 3 0 8 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2
2 PERIOD 6 2 0 0 0 1 0 3 PERIOD 6 1 2 2 0 3 0 4 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 2 2 2 0 3 0 7 PERIOD 6 2 2 2 0 3 0 8 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2
4 PERIOD 6 1 4 4 0 3 0 5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 2 2 2 0 3 0 7 PERIOD 0 1 2 2 0 3 0 8 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 2 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2 2 0 3 0 12 PERIOD 6 3 4 4 0 3 0
5 PERIOD 6 1 2 2 0 3 0 6 PERIOD 6 2 2 2 0 3 0 7 PERIOD 0 1 2 2 0 3 0 7 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 4 4 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2 2 0 3 0 12 PERIOD 6 3 4 4 0 3 0
6PERIOD62220307PERIOD01220308PERIOD63440309PERIOD624403010PERIOD632203011PERIOD632203012PERIOD6344030
7 PERIOD 0 1 2 2 0 3 0 8 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 4 4 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2 2 0 3 0 12 PERIOD 6 3 4 4 0 3 0
8 PERIOD 6 3 4 4 0 3 0 9 PERIOD 6 2 4 4 0 3 0 10 PERIOD 6 3 2 2 0 3 0 11 PERIOD 6 3 2 2 0 3 0 12 PERIOD 6 3 4 4 0 3 0
9 PERIOD624403010 PERIOD632203011 PERIOD632203012 PERIOD6344030
10 PERIOD632203011 PERIOD632203012 PERIOD6344030
11 PERIOD 6 3 2 2 0 3 0 12 PERIOD 6 3 4 4 0 3 0
12 PERIOD 6 3 4 4 0 3 0
13 PERIOD 6 3 4 4 0 3 0
14 PERIOD 6 3 4 4 0 3 0 15 PERIOD 6 3 4 4 0 3 0
16 PERIOD 6 3 2 2 0 3 0 17 PERIOD 6 3 5 4 1 3 1
18 PERIOD 6 2 5 4 1 3 1
19 PERIOD 6 1 5 4 1 3 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 PERIOD 6 1 5 4 1 3 1

22	PERIOD	6	1	5	4	1	3	1
23	PERIOD	6	0	5	4	1	3	1
24	PERIOD	6	0	4	4	0	3	0
25	PERIOD	6	0	4	4	0	3	0
26	PERIOD	6	0	4	4	0	3	0
27	PERIOD	6	0	4	4	0	3	0
28	PERIOD	6	0	4	4	0	3	0
29	PERIOD	6	0	4	4	0	1	0
30	PERIOD	6	0	2	2	0	1	0
31	PERIOD	6	0	4	4	0	0	0
32	PERIOD	6	0	4	4	0	0	0
33	PERIOD	0	0	2	2	0	0	0
34	PERIOD	0	0	2	2	0	0	0
35	PERIOD	0	0	2	2	0	0	0
36	PERIOD	0	0	2	2	0	0	0
37	PERIOD	0	0	2	2	0	0	0
38	PERIOD	0	0	0	0	0	0	0
39	PERIOD	0	0	0	0	0	0	0
40	PERIOD	0	0	0	0	0	0	0
41	PERIOD	0	0	0	0	0	0	0

Table D-10. Continued

Table D-11. EAF (Case 2) Critical Path Solution, RL

TABLE OF SCHEDULED STARTS:

AC	TIVITY	DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1			1	1	0
1		STG MAT	1	30	11
	5 CLR		1	2	3
1	6 CLR		1	2	4
1	32 CLR		10	4	0
1	7 CLR		1	2	0
2	3 STR		2	1	0
3		DLVR MAT	3	26	13
3		MAT 3,6,12A	3	10	15
3	4 SF		3	1	0
3	8 CRG		3	5	0
4	10 ST		4	1	3
4	8 FIN		4	3	1
6	9 STR 15 STR		6 7	1	1
7	23 STR		3	2 3	1
8	10 DUM		8	3	6
8	10 DOM 13 CRG		8	2	0
8	9 DMY		8	20	0
9	11 ST		8	0	0
9		TAFDS U1	8	2	0
10		FG A1	8	4	0
11	16 DMY		9	0	3
11	13 FIN		9	1	0
12		TAFDS BRMS	17	7	0
12		TAFDS U2,3	10	4	0
13	18 DMY		10	0	3
13	15 DMY		10	0	0
14	19 LAY	MAT 1	12	1	0
14	16 DUM	MY	12	0	0
15	21 CRG	A3	12	2	0
15	17 ST	F A3	10	1	0
16	18 ST	FG A2	12	1	0
17	20 DMY		11	0	3
17	22 FIN		11	1	0
18		FG A2	13	1	0
19		MAT 2	13	5	10
20	39 LAY	MAT 4	14	4	10
20	26 ST		14	1	0
21	30 CRG	A4	14	2	-2

continued

Table D-11. Continued

21	22	DMY	14	0	-2
22	26	DMY	12	0	3
22		DMY	14	0	-2
23	25	ST F A4	12	1	0
24	27	DMY	14	0	10
24	44	CLR A6	14	5	0
25	29	DMY	13	0	3
25	30	FIN F A4	13	1	0
26	28	FIN FG A3	15	1	0
27	36	INST TAFDS TKS	24	2	0
28	39	LAY MAT 7,5	16	6	6
28	29	DMY	16	0	0
29	33	ST FG A4	16	2	0
30	33	DMY	14	0	4
30	42	CRG A5	17	5	0
30	31	DMY	16	0	-2
31	35	ST SF A5	14	2	0
32	31	DMY	14	0	0
32	40	CLR A7	14	2	0
33	34	FIN FG A4	18	1	0
34	39	LAY MAT 8,9,10	19	2	7
34		DMY	19	0	0
35	37	DMY	16	0	3
35	42	FIN SF A5	16	6	0
36	39	FILL TKS	26	2	0
37	38	ST FG A5	19	2	0
38	39	DMY	21	0	7
38	41	CON FG A5	21	3	0
39	59	LAY MAT 12B	28	14	0
40		STR A7	16	2	11
41	45	FIN FG A5	24	1	0
42	41	DMY	22	0	2
42		DMY	22	0	0
43		ST SF A6	22	1	0
43		CRG A6	22	6	0
44		DMY	19	0	3
44		CLR A8	19	2	0
45		ST FG A6	25	1	0
46		DMY	23	0	2
46		FIN SF A6	23	6	0
47		LAY MAT 13	26	16	0
47		CON FG A6	26	5	0
48		STR A8	21	2	8
49		FN FG A6	31	1	0
50	49	DMY	29	0	2

Table D-11. Continued

50	52 ST F A7	29	1	0
51	50 DMY	28	0	1
51	54 CRG A7	28	2	1
52	53 DMY	30	0	2
52	54 FIN F A7	30	1	0
53	55 ST FG A7	32	2	0
53	59 LAY MAT 14	32	7	3
54	55 DMY	31	0	3
54	56 FILL A8	31	2	2
54	57 CRG A8	31	2	0
55	56 FIN FG A7	34	1	0
56	58 FG A8	35	3	0
56	59 LAY MAT 11	35	7	0
57	56 DMY	33	0	2
58	59 DMY	38	0	4

Table D-12. 5,000 ST ASP Network and Network Description Files

ASPDESCA

10 1 2 CLR A1 RDS 20 1 5 CLR A2 RDS 30 1 11 CLR A3 RDS 40 1 19 CLR A4 RDS 50 1 6 ST CLR A3 RVTS 60 1 7 ST CLR A1 RVTS 62 1 28 CLR PERIM 70 2 3 ST SHP A1 RDS 80 2 4 STR A1 RDS 90 3 8 FIN SHP A1 RDS 100 4 3 DMY 110 4 5 DMY 120 5 8 DMY 130 5 10 STR A2 RDS 140 6 12 FIN CLR A3 RVTS 150 6 13 ST CST A3 RVT BRMS 160 7 14 FIN CLR A1 RVTS 170 7 15 ST CST A1 RVT BRMS 180 8 9 ST SHP A2 RDS 190 9 16 FIN SHP A2 RDS 200 10 9 DMY 210 10 11 DMY 220 11 16 DMY 230 11 18 STR A3 RDS 240 12 20 ST CLR A4 RVTS 250 12 13 DMY 260 13 21 FIN CST A3 RVT BRMS 270 14 22 ST CLR A2 RVTS 280 14 15 DMY 290 15 23 FIN CST A1 RVT BRMS 300 16 17 ST SHP A3 RDS 310 17 24 FIN SHP A3 RDS 320 18 17 DMY 330 18 19 DMY 340 19 24 DMY 350 19 27 STR A4 RDS 360 20 25 FIN CLR A4 RVTS 370 20 21 DMY 380 21 25 ST CST A4 RVT BRMS 390 22 26 FIN CLR A2 RVTS 400 22 23 DMY 410 23 26 ST CST A2 RVT BRMS 420 24 27 ST SHP A4 RDS

 430
 25
 28
 FIN
 CST
 A4
 RVT
 BRMS

 440
 26
 28
 FIN
 CST
 A2
 RVT
 BRMS

 450
 27
 28
 FIN
 SHP
 A4
 RDS

ASPNETA

10 1,2,4,2,2,3,2 20 1, 5, 3, 2, 2, 3, 2 30 1,11,7,2,2 40 1,19,7,2,2 50 1, 6, 2, 2, 2 60 1,7,2,3,2 62 1,28,15,7,3 70 2,3,2,3,1,5,1,6,1 80 2,4,6,1,4,3,1 50 3,8,1,3,1,5,1,6 100 4,3,0 110 4,5,0 120 5,8,0 130 5,10,3,1,6,3,2 140 6,12,1 2 2 90 3,8,1,3,1,5,1,6,1 150 6,13,3,1,1,4,2,5,1 160 7, 14, 1, 3, 2 170 7,15,3,1,1,4,2,5,1 180 8,9,2,3,1,5,1,6,1 190 9,16,1,3,1,5,1,6,1 200 10,9,0 210 10,11,0 220 11,16,0 230 11,18,4,1,6,3,2 240 12,20,2,2,2 250 12,13,0 260 13, 21, 1, 1, 1, 4, 2, 5, 1 270 14,22,2,3,2 280 14,15,0 290 15,23,1,1,1,4,2,5,1 200 16,17 2,3,1,5,1,6,1 310 17,24,1,3,1,5,1,6,1 320 18,17,0 330 18,19,0 340 19,24,0 350 19,27,4,1,6,3,2 360 20,25,1,2,2 370 20,21,0 380 21,25,3,1,1,4,2,5,1

continued

Table D-12. Continued

390 22,26,1,3,2 400 22,23,0 410 23,26,3,1,1,4,2,5,1 420 24,27,2,3,1,5,1,6,1 430 25,28,1,1,1,4,2,5,1 440 26,28,1,1,1,4,2,5,1 450 27,28,1,3,1,5,1,6,1 460 1,5,6 SCRAPERS(MRSI110) 470 2,4,4 DOZERS(TD20U) 480 3,4,4 DOZERS(TD20U) 480 3,4,4 DOZERS(TD20A) 490 4,4,6 END LOADER(2.25LCY) 500 5,3,6 GRADER(GAL500T) 510 6,1,4,VIB ROLLER(RAYGO400) 520 7,2,4 DOZERS(CAT D8)

Table D-13. 5,000-ST ASP Resource Usage, NRL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOURCE	NO.	1=	SCRAPERS(MRSI110)
RESOURCE	NO.	2=	DOZERS (TD20U)
RESOURCE	NO.	3=	DOZERS(TD20A)
RESOURCE	NO.	4=	END LOADER (2.25LCY)
RESOURCE	NO.	5=	GRADER (GAL500T)
RESOURCE	NO.	6=	VIB ROLLER (RAYGO400)
RESOURCE	NO.	7=	DOZERS (CAT D8)

RESOURCE	1	2	3	4	5	6	7
DESIRED LIMIT	5	4	4	4	3	1	2
DINII	,	-	-	-	5	-	-
CRITICAL							
LIMIT	6	10	6	6	6	4	4
CRITTCAL	TIMTTC	ADE CUA	NCED				

CRITICAL LIMITS ARE CHANGED

USAGE VS TIME:

1	PERIOD	0	10	6	0	0	0	3
2	PERIOD	0	10	6	0	0	0	3
3	PERIOD	2	10	6	4	2	0	3
4	PERIOD	2	8	4	4	2	0	3
5	PERIOD	6	6	4	4	3	1	3
6	PERIOD	6	6	4	4	3	1	3
7	PERIOD	6	4	1	4	2	0	3
8	PERIOD	6	0	1	4	2	0	3
9	PERIOD	6	0	1	4	2	0	3
10	PERIOD	6	0	1	4	2	0	3
11	PERIOD	6	0	3	0	1	1	3
12	PERIOD	6	0	3	0	1	1	3
13	PERIOD	6	0	3	0	1	1	3
14	PERIOD	6	0	3	0	1	1	3
15	PERIOD	6	0	3	0	1	1	3
16	PERIOD	6	0	3	0	1	1	0
17	PERIOD	6	0	2	0	0	0	0
18	PERIOD	6	0	3	0	1	1	0
19	PERIOD	6	0	3	0	1	1	0
20	PERIOD	6	0	3	0	1	1	0
21	PERIOD	6	0	2	0	0	0	0
22	PERIOD	0	0	1	0	1	1	0

Table D-14. 5,000-ST ASP Critical Path Solution, NRL

TABLE OF SCHEDULED STARTS:

and the second se

AC	TIV	ITY DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	2	CLR A1 RDS	1	4	0
1		CLR A2 RDS	1 1 1	3	7
1	11	CLR A3 RDS	1	7	6
1		CLR A4 RDS	1	7	10
1	6	ST CLR A3 RVTS	1	2	12
1	7	ST CLR A1 RVTS	1	2	12
1	28	CLR PERIM	1 5	15	7
2		ST SHP A1 RDS	5	2	6
2		STR A1 RDS	5	6	0
3		FIN SHP A1 RDS		1	2
4		DMY	11	0	2
4		DMY	11	0	0
5		DMY	11	0	3
5		STR A2 RDS	11	3	0
6	12	FIN CLR A3 RVTS	3	1	13
6	13	ST CST A3 RVT BRMS	3	3	12
7				1	13
7	15	ST CST A1 RVT BRMS	3	3	12
8	9	ST SHP AZ KDS	12	2	2
9	16	FIN SHP A2 RDS	14	1	2
10	9	DMY	14	0	2
10	11	DMY DMY STR A3 RDS ST. CLB A4 DVTS	14	0	0
11	10	DMY STR A3 RDS ST CLR A4 RVTS	14	0	3
11	18	STR A3 RDS	14	4	0
12	20	SI CLK A4 KVIS	4	2	13
12	13	DMY	4	0	14
13	21	FIN CST A3 RVT BRMS ST CLR A2 RVTS	6	1	12
14			4	2	13
14	10	DMY	4	0	14 12
15	23	FIN CST A1 RVT BRMS	6	1	
16		ST SHP A3 RDS FIN SHP A3 RDS	15	2	2
17 18		DMY	18 18	1 0	1
18		DMY	18	0	1 0
		DMY		0	0 2
19		STR A4 RDS	18	4	
19 20			18	4	0 15
20		FIN CLR A4 RVTS	6	0	
20		ST CST A4 RVT BRMS		3	13 12
21		FIN CLR A2 RVTS	6	1	12
22	20	TIN OLK AZ KVIÐ	0	1	15

continued

Table D-14. Continued

22	23 DMY	6	0	13
23	26 ST CST A2 RVT BRMS	7	3	12
24	27 ST SHP A4 RDS	19	2	1
25	28 FIN CST A4 RVT BRMS	10	1	12
26	28 FIN CST A2 RVT BRMS	10	1	12
27	28 FIN SHP A4 RDS	22	1	0

TOTAL PROJECT DURATION= 22 PERIODS

Table D-15. 5,000-ST ASP Resource Usage, RL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

I I I I I I	ESOURCE ESOURCE ESOURCE ESOURCE ESOURCE ESOURCE ESOURCE	NO. NO. NO. NO.	2= 3= 4= 5= 6=						
RESOURCE	E 1		2	3	4	5	6	7	
DESIRED		-	-						
LIMIT	5		4	4	4	3	1	4	
CRITICAL									
LIMIT	7		4	4	6	6	4	4	
CRITICAI	L LIMITS	ARE	CHANC	GED					
USAGE VS	S TIME:								

1	PERIOD	0	4	4	0	0	0	3
2	PERIOD	0	4	4	0	0	0	3
3	PER10D	1	4	4	2	1	0	3
4	PERIOD	1	4	4	2	1	0	3
5	PERIOD	5	2	4	2	2	1	3
6	PERIOD	5	2	4	2	2	1	3
7	PERIOD	5	2	1	2	1	0	3
8	PERIOD	6	4	3	4	2	0	3
9	PERIOD	6	4	3	4	2	0	3
10	PERIOD	6	4	3	4	2	0	3
11	PERIOD	7	4	3	2	2	1	3
12	PERIOD	7	4	3	2	2	1	3
13	PERIOD	7	4	3	2	2	1	3
14	PERIOD	7	2	3	2	2	1	3
15	PERIOD	6	2	3	0	1	1	3
16	PERIOD	6	2	3	0	1	1	0
17	PERIOD	6	2	2	0	0	0	0
18	PERIOD	6	0	3	0	1	1	0
19	PERIOD	6	0	3	0	1	1	0
20	PERIOD	6	0	3	0	1	1	0
21	PERIOD	6	0	2	0	0	0	0
22	PERIOD	1	0	1	2	2	1	0

Table D-16. 5,000-ST ASP Critical Path Solution, RL

TABLE OF SCHEDULED STARTS:

AC	TIVITY	DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	2 CLR	A1 RDS	1	4	0
1	5 CLR	A1 RDS A2 RDS A3 RDS A4 RDS LR A3 RVTS	8	3	0
1	11 CLR	A3 RDS	7	7	0
1	19 CLR	A4 RDS	11	7	0
1	6 ST C	LR A3 RVTS	1	2	0
1	7 ST C	LR A1 RVTS PERIM HP A1 RDS A1 RDS SHP A1 RDS	1	2	0
1	28 CLR	PERIM	1	15	7
2	3 ST S	HP A1 RDS	5	2	4
	4 STR	A1 RDS	5	6	0
3	8 FIN	SHP A1 RDS	11	1	0
4	3 DMY		11	0	0
4	5 DMY		11	0	0
5	O Drii		11 11	0	1
5	10 STR .	A2 RDS	11	3	0
6	12 FIN	CLR A3 RVTS	3	1	0
6	13 ST C	ST A3 RVT BRMS CLR A1 RVTS ST A1 RVT BRMS HP A2 RDS	3	3	0
7	14 FIN	CLR A1 RVTS	3	1	0
7	15 ST C	ST A1 RVT BRMS	8	3	0
8	9 ST S	HP A2 RDS	12	2	0
9	16 FIN	SHP A2 RDS	14	1	0
10	9 DMY		14	0	0
10	11 DMY		14	0	0
11			14 14 4	0	1
11	18 STR	A3 RDS	14	4	0
12	20 ST C	LR A4 RVTS	4	2	0
12	13 DMY		4	0	2
13	21 FIN	CST A3 RVT BRMS	6	1	0
14	22 ST C	CST A3 RVT BRMS LR A2 RVTS	4	2	0
14	IJ DHI		4	0	7
15	23 FIN	CST A1 RVT BRMS HP A3 RDS	11	1	0
16	17 ST S	HP A3 RDS SHP A3 RDS	15	2	1
17	24 FIN	SHP A3 RDS	18	1	0
18	17 DMY		18	0	0
18	19 DMY		18	0	0
19	24 DMY		18	0	1
19	27 STR	A4 RDS	18	4	0
20	25 FIN	CLR A4 RVTS	6	1	3
	21 DMY		6	0	1
		ST A4 RVT BRMS		3	0
22	26 FIN	CLR A2 RVTS	6	1	15

continued

Table D-16. Continued

22	23 DMY	6	0	6
23	26 ST CST A2 RVT BRMS	12	3	7
24	27 ST SHP A4 RDS	19	2	1
25	28 FIN CST A4 RVT BRMS	10	1	12
26	28 FIN CST A2 RVT BRMS	22	1	0
27	28 FIN SHP A4 RDS	22	1	0
TOT	AL PROJECT DURATION= 22	PERIODS		

Table D-17. MSR Network and Network Description Files

MSRNET

10 1,12,11,2,4 20 1,3,6,2,4 30 1,3,3,1,6,3,2 40 2,3,4,1,6,3,2 50 2,5,2,3,1,4,1,5,1 60 3,4,2,1,6,3,2 70 4,6,3,1,6,3,2 80 4,5,0 90 5,8,4,3,1,4,1,5,1 100 5,19,9,4,1,6,2 110 6,7,2,1,6,3,2 120 7,8,0 130 7,9,2,1,6,3,2 140 8,11,3,3,1,4,1 150 8,19,10,4,1,6,2 160 9,10,2,1,6,3,2 170 10,13,7,1,6,3,2 180 10,11,0 190 11,15,6,3,1,4,1,5,1 200 12,16,9,2,4 210 12,13,0 220 13,14,2,1,6,3,2 230 14,16,8,1,6,3,2 240 14,15,0 250 15,18,7,3,1,4,1,5,1 260 16,17,2,1,6,3,2 270 17,19,6,1,6,3,2 280 17,18,0 290 18,19,6,3,1,4,1,5,1 300 1,6,6 SCRAPERS(MRSI110) 310 2,4,4 DOZERS(TD20U) 320 3,4,4 DOZERS(TD20A) 330 4,2,6 GRADERS(GAL500T) 340 5,1,4 VIB ROLLERS (RAYGO400) 350 6,4,6 AMSS LRU

MSRDESC

10 1 12 CLR MSR 3 20 1 3 CLR MSR2 30 1 2 ST STR MSR 1A 40 2 3 FIN STR MSR 1A 50 2 5 SHP MSR 1A 60 3 4 ST STR MSR2 70 4 6 FIN STR MSR 2 80 4 5 DMY 90 5 8 SHP MSR2 100 5 19 AMSS SFG MSR 1A 110 6 7 ST STR MSR 1B 120 7 8 DMY 130 7 9 FIN STR MSR 1B 140 8 11 SHP MSR 1B 150 8 19 AMSS SFG MSR2 160 9 10 ST STR MSR 1C 170 10 13 FIN STR MSR 1C 180 10 11 DMY 190 11 15 SHP MSR 1C 200 12 16 CLR MSR 4 210 12 13 DMY 220 13 14 ST STR MSR3 230 14 16 FIN STR MSR3 240 14 15 DMY 250 15 18 SHP MSR3 260 16 17 ST STR MSR4 270 17 19 FIN STR MSR4 280 17 18 DMY 290 18 19 SHP MSR4

Table D-18. MSR Resource Usage, NRL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOUR	CE NO.	1= S	CRAPER	S (MRSI	110)	
RESOUR	CE NO.		OZERS (
RESOUR	CE NO.		DZERS (
RESOUR	CE NO.		RADERS		(ТО	
RESOUR					AYGO40	0
RESOUR	CE NO.		MSS LR			
RESOURCE	1	2	3	4	5	6
RESOURCE	1	2	2	4	2	0
DESIRED						
LIMIT	6	4	4	2	1	4
LIMII	0	4	4	2	1	4
CRITICAL						
LIMIT	6	8	4	6	4	6
LINII	0	0	4	U	4	0
CRITICAL L	IMITS A	RE CHA	NGED			
USAGE VS T	IME:					
USAGE VS I	Inc.					
1 PERIOD	6	8	2	0	0	0
2 PERIOD	6	8	2	0	0	0
3 PERIOD	6	8	3	1	1	Ő
4 PERIOD	6	8	3	1	1	0
5 PERIOD	6	8	2	0	0	0
6 PERIOD	6	8	2	0	0	0
7 PERIOD	6	4	2	0	0	0
8 PERIOD	6	4	2	0	0	0
9 PERIOD	6	4	3	2	1	
10 PERIOD	6	4	3	2	1	2 2
11 PERIOD	6	4	3	2	1	2
12 PERIOD	6	4	3	2	1	2 2
13 PERIOD	6	4	2	1	0	2
14 PERIOD	6	4	3	3	0	4
15 PERIOD	6	4	3	3	0	4
16 PERIOD	6	4	3	3	0	4
17 PERIOD	6	4	2	2	0	4
18 PERIOD	6	4	3	2	1	
19 PERIOD	6	4	3	2	1	2
20 PERIOD	6	4	3	2	1	2 2 2 2
21 PERIOD	6	0	3	2	1	2
-1 Thribb	U	0	-	-	-	-

22	PERIOD	6	0	3	2	1	2
23	PERIOD	6	0	3	2	1	2
24	PERIOD	6	0	2	0	0	0
25	PERIOD	6	0	2	0	0	0
26	PERIOD	6	0	2	0	0	0
27	PERIOD	6	0	3	1	1	0
28	PERIOD	6	0	3	1	1	0
29	PERIOD	6	0	3	1	1	0
30	PERIOD	6	0	3	1	1	0
31	PERIOD	6	0	3	1	1	0
32	PERIOD	6	0	3	1	1	0
33	PERIOD	6	0	3	1	1	0
34	PERIOD	6	0	2	0	0	0
35	PERIOD	6	0	2	0	0	0
36	PERIOD	6	0	2	0	0	0
37	PERIOD	6	0	3	1	1	0
38	PERIOD	6	0	3	1	1	0
39	PERIOD	6	0	3	1	1	0
40	PERIOD	6	0	3	1	1	0
41	PERIOD	6	0	3	1	1	0
42	PERIOD	6	0	3	1	1	0

Table D-18. Continued

130

C CON LINE OF

Table D-19. MSR Critical Path Solution, NRL

TABLE OF SCHEDULED STARTS:

	ACTIV	ITY DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
	1 12	CLR MSR 3	1	11	13
		CLR MSR2	1	6	0
	1 2	ST STR MSR 1A	1	2	0
		FIN STR MSR 1A	3	4	0
		SHP MSR 1A	3	2	12
		ST STR MSR2	7	2	0
	4 6	FIN STR MSR 2	9	3	0
	4 5	DMY	9	0	8
	5 8	SHP MSR2	9	4	8
	5 19	AMSS SFG MSR 1A	9	9	25
	6 7	ST STR MSR 1R	12	2	0
	7 8	DMY	14	0	7
	7 9	FIN STR MSR 1B	14	2	0
	8 11	SHP MSR 1B	14	3	7
	8 19	AMSS SFG MSR2	14	10	19
	9 10	ST STR MSR 1C	16	2	0
1	0 13	FIN STR MSR 1C	18	7	0
1	0 11	DMY	18	0	6
1	1 15	SHP MSR 1C	18	6	6
1	2 16	CLR MSR 4	12	9	14
1	2 13	DMY	12	0	13
1	3 14	ST STR MSR3	25	2	0
1	4 16	FIN STR MSR3	27	8	0
1	4 15	DMY	27	0	3
1	5 18	SHP MSR3	27	7	3
1	6 17	ST STR MSR4	35	2	0
1	7 19	FIN STR MSR4	37	6	0
1	7 18	DMY	37	0	0
1	8 19	SHP MSR4	37	6	0

TOTAL PROJECT DURATION= 42 PERIODS

Table D-20. MSR Resource Usage, RL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

	RESOURCE RESOURCE RESOURCE RESOURCE RESOURCE RESOURCE	NO. NO. NO. NO. NO.		DOZERS (TD20U) DOZERS (TD20A) GRADERS (GAL500T)					
RES	SOURCE	1	2	3	4	5	6		
DES	SIRED								
	1IT	6	4	4	2	1	4		
						-			
CR	ITICAL								
LIN		6	4	4	6	4	6		
		•			U		Ū		
USA	AGE VS TIM	E:							
1	PERIOD	6	4	2	0	0	0		
2	PERIOD	6	4	2	0	0	0		
3	PERIOD	6	4	3	1	1	0		
4	PERIOD	6	4	3	1	1	Ő		
5	PERIOD	6	4	2	Ō	Ō	Ō		
6	PERIOD	6	4	2	0	Ő	õ		
7	PERIOD	6	0	2	Ő	0	õ		
8	PERIOD	6	0	2	Ő	Ő	Ő		
9	PERIOD	6	0	3	2	1	2		
	PERIOD	6	0	3	2	1	2		
11	PERIOD	6	0	3	2	1	2		
12	PERIOD	6	0	3	2	1	2		
13	PERIOD	6	0	2	1	õ	2		
14	PERIOD	6	4	3	3	0	4		
15	PERIOD	6	4	3	3	Ő	4		
16	PERIOD	6	4	3	3	0	4		
17	PERIOD	6	4	2	2	0	4		
18	PERIOD	6	4	3	2	1	2		
19	PERIOD	6	4	3	2	1	2		
20		6	4	3	2 2	1	2 2		
21	PERIOD	6	4	3	2	1			
22	PERIOD	6	4	3	2	1	2 2		
			-		-	-	-		

continued

Table D-20. Continued

23	PERIOD	6	4	3	2	1	2
24	PERIOD	6	4	2	0	0	0
25	PERIOD	6	4	2	0	0	0
26	PERIOD	6	4	2	0	0	0
27	PERIOD	6	4	3	1	1	0
28	PERIOD	6	4	3	1	1	0
29	PERIOD	5	4	3	1	1	0
30	PERIOD	6	4	3	1	1	0
31	PERIOD	6	4	3	1	1	0
32	PERIOD	6	4	3	1	1	0
33	PERIOD	6	4	3	1	1	0
34	PERIOD	6	0	2	0	0	0
35	PERIOD	6	0	2	0	0	0
36	PERIOD	6	0	2	0	0	0
37	PERIOD	6	0	3	1	1	0
38	PERIOD	6	0	3	1	1	0
39	PERIOD	6	0	3	1	1	0
40	PERIOD	6	0	3]	1	0
41	PERIOD	6	0	3	1	1	0
42	PERIOD	6	0	3	1	1	0

Table D-21. MSR Critical Path Solution, RL

TABLE OF SCHEDULED STARTS:

AC	TIV	ITY DESCRIPTION	SCHEDULED START		
1	12	CLR MSR 3	14	11	0
1	3	CLR MSR2 ST STR MSR 1A	1	6	0
1	2	ST STR MSR 1A	1	2	0
2	3	FIN STR MSR 1A	3	4	0
2	5	SHP MSR 1A	3	2	4
3	4	ST STR MSR2	7	2	0
4	6	ST STR MSR2 FIN STR MSR 2 DMY	9	3	0
4	5	DMY	9	0	0
5	8	SHP MSR2	9	4	1
5	19	AMSS SFG MSR 1A	9	9	25
		ST STR MSR 1B	12	2	0
	8	DMY	14	0	0
7		FIN STR MSR 1B	14	2	0
8	11	SHP MSR 1B	14	3	1
8	19	AMSS SFG MSR2	14	10	19
9	10	ST STR MSR 1C	16	2	0
10	13	FIN STR MSR 1C	18	7	0
		DMY	18	0	0
11	15	SHP MSR 1C	18	6	3
12	16	CLR MSR 4	25	9	1
		DMY	25	0	0
		ST STR MSR3	25	2	0
		FIN STR MSR3	27	8	0
14	15	DMY	27	0	0
15	18	SHP MSR3	27	7	3
		ST STR MSR4	35	2	0
17	19	FIN STR MSR4	37	6	0
		DMY	37	0	0
18	19	SHP MSR4	37	6	0

TOTAL PROJECT DURATION= 42 PERIODS

ALL A DATE OF ANY PLOT

Table D-22. POL Network and Network Description Files

POLNET

```
5 14,3
10 1,2,2,2,10
20 1,3,3,1,3,2,1,3,3
30 1,4,5,2,6
40 1,5,8,1,2,2,1,3,3
50 2,7,2,2,10
55 2,3,0
60 3, 6, 2, 1, 3, 2, 1, 3, 3
70 4,5,0
80 5,10,2,1,2,2,1,3,3
90 6,8,3,1,3,2,1,3,3
100 7,10,2,2,10
110 7,8,0
120 8,9,2,1,3,2,1,3,3
130 9,10,4,1,3,2,1,3,3
140 1,5,5 SCRAPER (TAMB1900)
150 2,18,36 DOZER (TAM B2462)
160 3,6,6 LOADER (TAM B2465)
```

POLDESC

10 1 2 CLR AAFS 1,2,3 20 1 3 ST BRM CST AAFS 1,2,3 30 1 4 CLR AAFS G1-4 40 1 5 ST BRM CST AAFS G1-4 50 2 7 CLR AAFS 4,5,6 55 2 3 DMY 60 3 6 FIN BRM CST AAFS 1,2,3 70 4 5 DMY 80 5 10 FIN BRM CST AAFS G1-4 90 6 8 ST BRM CST AAFS 4,5,6 100 7 10 CLR AAFS 7,8 110 7 8 DMY 120 8 9 FIN BRM CST AAFS 4,5,6 130 9 10 CST BRMS AAFS 7,8

Table D-23. POL Resource Usage, NRL and RL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

RESOURCE NO. RESOURCE NO.		SCRAPER (TAN DOZER (TAM H	
RESOURCE NO.	3=	LOADER (TAM	B2465)
RESOURCE	1	2	3
DESIRED			
LIMIT	5	18	6
CRITICAL			
LIMIT	5	36	6
USAGE VS TIME:			
	-		
1 PERIOD	5	18	6
2 PERIOD	5	18	6
3 PERIOD	5	18	6
4 PERIOD	5	18	6
5 PERIOD	5	18	6
6 PERIOD	5	12	6
7 PERIOD	5	2	6
8 PERIOD	5	2	6
9 PERIOD	5	2	6
10 PERIOD	5	2	6
10 PERIOD 11 PERIOD	5 3	2 1	6 3
10 PERIOD 11 PERIOD 12 PERIOD	5 3 3	2 1 1	6 3 3
10 PERIOD 11 PERIOD	5 3	2 1	6 3

TABLE OF SCHEDULED STARTS:

		SCHEDULED		REMAINING
ACT	TIVITY DESCRIPTION	START	DURATION	SLACK
1	2 CLR AAFS 1,2,3	1	2	1
1	3 ST BRM CST AAFS 1,2,3	1	3	0
1	4 CLR AAFS G1-4	1	5	7
1	5 ST BRM CST AAFS G1-4	1	8	4

Table D-23. Continued

2	7	CLR AAFS 4,5,6	3	2	4
2	3	DMY	3	0	1
3	6	FIN BRM CST AAFS 1,2,3	4	2	0
4	5	DMY	6	0	7
5	10	FIN BRM CST AAFS G1-4	9	2	4
6	8	ST BRM CST AAFS 4,5,6	6	3	0
7	10	CLR AAFS 7,8	5	2	8
7	8	DMY	5	0	4
8	9	FIN BRM CST AAFS 4,5,6	9	2	0
9	10	CST BRMS AAFS 7,8	11	4	0

TOTAL PROJECT DURATION= 14 PERIODS

Table D-24. LSA Network and Network Description Files

LSANET

10 1,10,1,2,1 20 1,2,3,2,4 30 1, 5, 2, 2, 4 40 1,3,1,2,3 50 1, 4, 2, 2, 4 60 2,7,4,1,3,2,1 70 3,6,1,1,2,2,1 80 4,11,5,2,4 90 5,12,3,2,4 100 6,8,1,1,2,2,1 110 6,13,1,3,1,4,1 120 7,9,2,1,3,2,1 130 7,14,4,3,1,4,2 135 7,20,2,2,1 140 8,19,2,5,1 150 8,17,2,3,1,4,1 160 8,11,1,1,2,2,1 170 9,25,10,5,2 180 9,15,4,3,2,4,1 190 9,12,6,1,3,2,1 200 10,25,1,3,1,4,1 210 11,18,2,1,2,2,1 220 11,13,0 230 12,16,2,1,3,2,1 240 12,14,0 250 13,24,4,3,1,4,2 260 14,21,2,3,1,4,2 270 15,25,7,5,2 280 15,22,3,3,2,4,1 290 16,15,0 300 16,20,3,1,3,2,1 310 17,19,0 320 17,24,2,3,2,4,1 330 18,17,0 340 18,24,9,1,2,2,1 350 19,25,10,5,2 360 20,23,2,1,3,2,1 370 20,21,0 380 21,25,3,3,1,4,1 390 22,25,2,3,1,4,1 400 23,22,0 410 23,25,3,1,3,2,1 420 24,25,2,3,2,4,1 430 1,5,5 SCRAPERS(TAMB1900) 440 2,12,19 DOZERS(TAMB2462) 450 3,6,8 GRADERS(TAMB1080)

460 4,6,6 VIB ROLLERS 470 5,4,6 AMSS LRU LSADESC 10 1 10 CLR PALLET STG AREA 20 1 2 CLR A1 30 1 5 CLR A2 40 1 3 CLR AA UA 50 1 4 CLR A3 60 2 7 STR A1 70 3 6 STR AA/UA 80 4 11 STR A3 90 5 12 STR A2 100 6 8 ST F AA/UA 110 6 13 CRG AA/UA 120 7 9 ST F A1 130 7 14 CRG A1 135 7 20 CLR TRK LDG AREA 140 8 19 AMSS SFG UA 150 8 17 FG AA/UA 160 8 11 FIN F AA/UA 170 9 25 AMSS SFG A1 180 9 15 FG A1 190 9 12 FIN F A1 200 10 25 FG PALLET STG AREA 210 11 18 ST F A3 220 11 13 DMY 230 12 16 ST F A2 240 12 14 DMY 250 13 24 CRG A3 260 14 21 CRG A2 270 15 25 AMSS SFG A2 280 15 22 FG A2 290 16 15 DMY 300 16 20 FIN F A2 310 17 19 DMY 320 17 24 ST FG A3 330 18 17 DMY 340 18 24 FIN F A3 350 19 25 AMSS SFG A3 360 20 23 ST F TRK LDG AREA 370 20 21 DMY 380 21 25 CRG TRK LDG AREA 390 22 25 FG TRK LDG AREA 400 23 22 DMY 410 23 25 FIN F TRK LDG AREA 420 24 25 FIN F TRK LDG AREA 420 24 25 FIN FG A3

Table D-25. LSA Resource Usage, NRL

TABLE OF RESOURCE USAGE FOR ALL RESOURCES

DESCRIPTION OF RESOURCE CODE:

	RESOUR RESOUR RESOUR RESOUR RESOUR	CE NO. CE NO. CE NO.	2= DOZE		462)	
RES	SOURCE	1	2	3	4	5
DES	SIRED					
LIN	1IT	5	12	6	6	4
CR	ITICAL					
	1IT	5	19	8	6	6
USA	AGE VS TIME	:				
1	PERIOD	- 0	16	0	0	0
2	PERIOD	2	13	1	1	0
	PERIOD	2	13	1	1	0
	PERIOD	5	10	1	1	1
	PERIOD	3	9	1	1	1
	PERIOD	3	5	Ō	Ō	ō
7	PERIOD	3	5	0	Ő	0
	PERIOD	5	3	2	4	0
9	PERIOD	5	3	2	4	0
10	PERIOD	5	2	6	6	4
	PERIOD	5	2	6	6	4
12	PERIOD	5	2	2	1	4
13	PERIOD	5	2	2	1	4
14	PERIOD	5	2	0	0	4
15	PERIOD	5	2	0	0	4
16	PERIOD	5	2	1	2	4
17	PERIOD	5	2	1	2	4
18	PERIOD	5	2	2	1	6
19	PERIOD	3	1	4	2	6
20	PERIOD	3	1	5	3	2
21	PERIOD	3	1	1	1	2 2
22	PERIOD	3	1	2	2	
23	PERIOD	3	1	1	1	2
24	PERIOD	3	1	0	0	2

Table D-26. LSA Critical Path Solution, NRL

TABLE OF SCHEDULED STARTS:

AC	TIVITY DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	10 CLR PALLET STG AREA	1	1	22
1	2 CLR A1	1	3	0
1	5 CLR A2	1	2	10
1	3 CLR AA UA	1	1	7
1	4 CLR A3	1	2	4
2	7 STR Al	4	4	0
3	6 STR AA/UA	2	1	7
4	11 STR A3	3	5	4
5	12 STR A2	3	3	10
6	8 ST F AA/UA	3	1	7
6	13 CRG AA/UA	3	1	15
7	9 ST F A1	8	2	0
7	14 CRG A1	8	4	8
7	20 CLR TRK LDG AREA	8	2	10
8	19 AMSS SFG UA	4	2	9
8	17 FG AA/UA	4	2	9
8	11 FIN F AA/UA	4	1	7
9	25 AMSS SFG A1	10	10	5
9	15 FG A1	10	4	4
9	12 FIN F A1	10	6	0
10	25 FG PALLET STG AREA	2	1	22
11	18 ST F A3	8	2	4
11	13 DMY	8	0	11
12	16 ST F A2	16	2	0
	14 DMY	16	0	4
	24 CRG A3	8	4	11
14	21 CRG A2	16	2	4
	25 AMSS SFG A2	18	7	0
	22 FG A2	18	3	2
	15 DMY	18	0	0
16	20 FIN F A2	18	2	0
17	19 DMY	10	0	5
17	24 ST FG A3	10	2	11
18	17 DMY	10	0	5
18	24 FIN F A3	10	9	4
	25 AMSS SFG A3	10	10	5
20	23 ST F TRK LDG AREA	20	2	0
20	21 DMY	20	0	2

continued

Table D-26. Continued

21	25 CRG TRK LDG AREA	20	3	
22	25 FG TRK LDG AREA	22	2	
23	22 DMY	22	0	
23	25 FIN F TRK LDG AREA	22	3	
24	25 FIN FG A3	19	2	

TOTAL PROJECT DURATION= 24 PERIODS

Table D-27. LSA Resource Usage, RL

	TABLE OF R	ESOURC	E USAGE	FOR ALL	RESOURC	ES
	DESCRIPT	ION OF	RESOURC	E CODE:		
	RESOURCE RESOURCE	NO.	2 = DOZE	RS (TAME	2462)	
	RESOURCE RESOURCE RESOURCE	NO.	4 = VIB 5 = AMSS	ROLLERS		
RE	SOURCE	1	2	3	4	5
	SIRED					
LIN	4IT	5	12	6	6	4
	ITICAL MIT	5	19	8	6	6
USA	AGE VS TIME	:				
	PERIOD	0	12	0	0	0
-	PERIOD PERIOD	2 2	9 9	1	1	0 0
	PERIOD PERIOD	5 3	6 9	1	1 1	1 1
	PERIOD	3	9	0	0	0
	PERIOD PERIOD	3 5	9 7	0 2	0 4	0 0
9	PERIOD	5	7	2	4	0
	PERIOD PERIOD	5 5	2 2	6 6	6 6	0 0
	PERIOD PERIOD	5 5	2 2	2 2	1	0 0
14	PERIOD	5	2	0	0	0
	PERIOD PERIOD	5 5	2 2	0 1	0 2	4
17	PERIOD	5	2	1	2	4
	PERIOD PERIOD	5 3	2 1	2 4	1 2	6 6
20	PERIOD	3	1	5	3	6
22	PERIOD PERIOD	3	1 1	1 2	1 2	6 6
	PERIOD PERIOD	3 3	1	1 0	1 0	6 6

Table D-28. LSA Critical Path Solution, RL

TABLE OF SCHEDULED STARTS:

AC	TIVITY	DESCRIPTION	SCHEDULED START	DURATION	REMAINING SLACK
1	10 CLR	PALLET STG AREA	1	1	0
1	2 CLR		1	3	0
	5 CLR		1	2	4
	3 CLR		1	1	0
2	7 STR	Al	4	4	. 0
	6 STR		2	1	0
4	11 STR	A3	3	5	0
5	12 STR	A2	7	3	6
6	8 ST	F AA/UA	3	1	0
6	13 CRG		3	1	4
7	9 ST	F Al	8	2	0
7	14 CRG		8	4	4
7		TRK LDG AREA	8	2	10
8		S SFG UA	4	2	9
8		AA/UA	4	2	4
8		F AA/UA	4	1	3
9	25 AMS	S SFG Al	15	10	0
9	15 FG	A1	10	4	4
9		F A1	10	6	0
10	25 FG	PALLET STG AREA		1	22
11	18 ST	F A3	8	2	0
11	13 DMY		8	0	0
12	16 ST	F A2	16	2	0
12	14 DMY		16	0	0
13	24 CRG		8	4	7
14	21 CRG		16	2	2
15		S SFG A2	18	7	0
15	22 FG		18	3	1
16	15 DMY		18	0	0
16	20 FIN		18	2	0
17	19 DMY		10	0	5
17	24 ST		10	2	7
18	17 DMY		10	0	0
18	24 FIN		10	9	0
19		S SFG A3	15	10	0
20		F TRK LDG AREA	20	2	0
20	21 DMY		20	0	0
21	25 CRG	TRK LDG AREA	20	3	2
22		TRK LDG AREA	22	2	1
23	22 DMY		22	0	0
23		F TRK LDG AREA	22	3	0
24	25 FIN	FG A3	19	2	4

TOTAL PROJECT DURATION= 24 PERIODS