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Chapter 8

ARRAY GRAMMARS

In the previous chapters we have discussed various types
of string and array acceptors. This chapter introduces
grammars that can be used to either generate or accept
("parse") sets of strings or arrays. It defines a hierarchy
of such grammars, and establishes equivalences between certain

classes of grammars and of acceptors.

30 String grammars

We first consider grammars that generate or parse sets
of strings. Sections 1.1-2 review the usual definitions
of such grammars. Section 1.3 defines "isometric" grammars
that rewrite #s, rather than simply extending the given
string; this alternative approach will be important when we
treat array grammars in Section 3. Section 1.4 discusses
various definitions of "parallel" grammars and their relation-

ships to conventional (sequential) grammars.




—TT

1.1 Grammars
Informally, a (string) grammar G is a mechanism that
generates a set of strings by a process of repeatedly substi-

tuting one substring for another, starting with a standard

initial string. The (rewriting) rules or productions of G

specify which substrings can be replaced by which others.
The language of G is the set of strings (usually required to
consist entirely of symbols of a special type, called "ter-
minal" symbols) that can be produced in this way. We shall
now define these ideas more precisely.

As we did in Chapter 3 for automata, we shall require
that grammars satisfy certain finiteness and nontriviality
conditions. Specifically, we shall assume that the
vocabulary, or set of symbols, the subset of "terminal"
symbols, and the set of rules are all finite, nonempty sets.
We shall also assume that the initial string consists of a
single non-terminal symbol S. Under these assumptions, we
can formally define a ("type 0") grammar G to be a 4-tuple

(v,v.,P,S), where

T'
V is the vocabulary (a finite, nonempty set of symbols)

VT < V is the terminal vocabulary (# #)

SeV-V,, is the initial symbol

T
P is a finite, nonempty set of pairs (a,B), where a and

B are non-null* strings of elements of V. These pairs

*We require B to be non-null to prevent the null string from
being generated by a grammar; this corresponds to our require-
ment, in earlier chapters, that the input strings of acceptors
are always non-null.
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are called the rules of G, and are usually written in
the form a+8 (denoting the fact that o can be replaced

by B).

In order to define the language of G, we must introduce
the notion of a "derivation" in G. We say that the string

T is directly derived from the string ¢ in G (notation:

oz 7) if there exists a rule o+*f of G such that a is a
substring of 0, and T is the result of replacing some
occurrence of o (as a substring of o) by B. We say that 1
is derived from ¢ in G (notation: G_E*T) if there exists
a sequence of strings o = oo,ol,...,on = T, where n 2 0,
such that o, is directly derived from o, , in G, 1 = i = n.
The set of strings on VT that can be derived in G from the
initial string S (consisting of the single symbol S) is
called the language of G, and is denoted by L(G). A
sequence of strings S=oo,ol,...,on=TeL(G) for which
0,_1 @0; is called a derivation of T in G. (We will omit
"in G" from now on unless there is danger of confusion.)
Given any grammar G, there exists a grammar G' in
which terminal symbols are never rewritten by any rule,
and such that L(G') = L(G). In fact, we can define G' to
have nonterminal vocabulary (V-VT)UVﬂ , where Vé is a set
of primed copies of the symbols in Vo For each rule o-f
of G, we have the rule o'+B' in G', where the primes denote

the fact that each symbol in V., is replaced by the corres-

T

ponding symbol in Vé. In addition, G' has the rules x'-+x




for all xe&V Evidently a string on Vip is derivable in G' if

7
it is derivable in G (since G' can derive the corresponding

string on V!, which can then be changed into a VT string %
using the x'—»x rules), and conversely (since the x'-»x rules %
are the only rules of G' that produce symbols in VT). [Note 1
that if the x'+x rules are applied too soon, it may be im- 1
possible to complete a derivation, since a rule a'+B"' may re- |
quire the presence of some primed symbol that has already
become unprimed.] We shall assume from now on that grammars
never rewrite terminal symbols.

A grammar can function as an "acceptor" by performing
derivations in reverse. Given a string 0 on VT’ we say that
G parses 0 if there exists a sequence of strings
0 =0

= S such that Go is the result of apply-

n’%n-1""""% 3
ing a rule o+B of G in reverse (i.e., replacing B by a) to
Osv 1 =i s=n. It is clear that this is the same thing as
saying that Ogre=+10, is a derivation; thus o0 is parsed by G
iff. it is generated by G. {

A less trivial equivalence between grammars and acceptors

is provided by

Theorem 1.1. The languages generated by grammars are the i

same as the languages accepted by Turing acceptors. A

Proof: Let L be generated by G; then we can define a Turing

acceptor A that operates as follows: Given a string o, A
creates an S (separated from o by a distinctive marker) and

then (nondeterministically) applies a sequence of rules of




G, starting with the S (and leaving o0 intact), to produce a
sequence of strings % = S'°1'°2"" At each step of this
process, itcompares o4 with o (this can be done by moving
back and forth from o; to o, and marking off corresponding
symbols if they are the same). If at any stage A finds that
o; =0, it accepts. Evidently this happens iff. o€L(G).

Conversely, let L be accepted by A. We shall define
below a grammar GA that generates two copies of an arbitrary
string, and simulates the operation of A on one copy. If
the simulation accepts, GA erases that copy and converts the
other copy to a terminal string. Evidently a terminal
string o is produced by GA in this way iff. o€L(a).

The grammar GA has the following sets of rules:

S > St (% )
S' » 8'(x,x) for all x in the
(1) g?

¥

((qO,N), (x",x))[ vocabulary of A
((qy,N), (x*,x)

0
¥

These rules generate a string of the form ((qo,N)(x*,x)),
or ((qo,N)(x{,xl))(xz,xz),...,(xn_l,xn_l),(x'n,xn) (where
n > 1). Primed x's are always at the right end of the
string; double-primed x's, at the_left end; and starred x's
are always singletons. Here q, represents the initial state
of A at the left end of its input string.
(2) For all u,v,w,X,Y,2Z,
(@)  ((qy,4) (w,x)) > ((q,,N)(t,x)) for all

(qz,t,N)EG(ql,w,d), where § is the transition

s
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(b)

(b")

{c)

(c")

function of A, and where if w is primed,
double-primed, or starred, so is t. These
rules simulate the case where A changes state
and rewrites a symbol but does not move.
(u,v) ((q;.,d4) (w,x)) > ((q,,L) (u,v)) (t,x) for
all (qz,t,L)td(ql,w,d),where if w is primed,
so is t. These rules handle the case where
A moves left, provided it was not at the
left end of the string.
((ql,d)(w“.x))**((qz,L)(#“,#))(t,x) } o
((qy.d) (w*,x)) > ((q,,L) (4", #)) (£',x)

all (qz,t,L)té(ql,w,d)

Rules (b') handle the case where A is at the
left end of the non-#s and moves left.
((gy,d) (w,x)) (y,2z) > (t,x)((q,,R) (y,2z)) for
all (qz,t,R)eé(ql,w,dL where if w.is double-
primed, so is t. These rules handle the
case where A moves right and was not at the
right end of the string.
((qy,4d) (w',x)) > (t,x)((qer)(#',#)) }

for
((ql.d)(W*.X)) o (t",x)((qz,R)(#',#))

all (qz,t,R)QG(ql;W:d),

Rules (c') handle the case where A is at the

right end of the non-#s and moves right.

These rules simulate A on the string, adding pairs of #s at

its ends if necessary. Note that the conventions about primes,

ko




double-primes and stars are preserved by these rules. Note

also that the simulation affects only the first terms of

the pairs;

the second terms are unchanged, except that #

second terms may be added at the ends. We assume in (2)

that q is not an accepting state of A.

(3)

(4)

(5)

For all w,x,y,z, where w may be double-primed
and y may be primed, and for all accepting states

qp of A,

((gy,d) (w,x)) (y,x) > (w,x) ((qp,d) (y,2))
When an accepting state is created, it moves

rightward.
For all w,x,y,z, where w may be double-primed,

(e, d) ly',2)) + (Hy!,2)q,) if 2 # &
(w,x) ((gy,@) (y', #)) > ((w,x),q,)

(3, 9) (¥%,2)) > 2

When (qA,d) reaches the right end of the string,
it becomes dp if the second term at the right
end is non-#, or erases the # and becomes qA
if the second term at the right end is #. If
the string is a singleton, (qA,A) turns it into
a singleton terminal (the second term must be
non-# in this case, since the original string

of second terms was non-null).

For all w,x,y, where w may be double-primed in

the second case,
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(6)

(7)

Evidently, this process generates a terminal string (namely,
the original string of second terms; the terminal vocabulary

of GA is the same as the vocabulary of A) iff. the simulation

(w,#) ((y,#).,q,) > ((w,#),q,)

(W.x)((y.#),qA) ¥ ((W.x).qA) if x # #

The g, moves leftward, erasing #s; when it
reaches a non-# second term (which must happen
eventually, since the original string was non-

null), it becomes dp-
For all w,x,y,z, where y may be primed,

(w,x) ((y,2z),qp) > ((W,x),q,)z if x # #
((y",2)ay) > z
The da moves left, turning pairs with non-# second
terms into their second terms; if it reaches the
left end of the string, it erases itself, leaving
only its pair's second term z. Note that z

cannot be #, by (4-6).
For all w,y,z, where y may be primed,

(W.#)((y,Z).qA) > ((y.z),qA)

(W, #) ((y,2),q,) + 2

If the dp reaches # second terms (which must lie
to the left of all the non-# second terms), it
erases them; when it erases the last oné, it also

erases itself, leaving only its pair's second term z.




of A accepted that string (of first terms); in other words,

GA generates a terminal string o iff. o €L(A).//




1.2, Special types of grammars

A grammar G is called context-sensitive (or "type 1")

if for each rule a+B of G there exist strings -, n, and T on
V, where T is non-null, and a symbol AtV—VT, such that
a = EAn and B = £€tn. Thus any such rule rewrites a single
nonterminal A, "in the context of" & and n, as a non-null
string T. Note that in such a grammar, terminals are never
rewritten.

We shall call a grammar G monotonic if for each rule

a>B of G we have |oa| = |B].

Theorem 1.2. The languages generated by monotonic grammars

are the same as those generated by context-sensitive grammars.

Proof: Context-sensitive certainly implies monotonic, since
T non-null implies |[£An| = |£tn|. To prove the converse, we
show that any rule o»B with |a| s |B| can be replaced by a
set of context-sensitive rules without altering the language
generated by the grammar. We can assume, as shown earlier,
that the given grammar does not rewrite terminals, so that
the symbols involved in the rule a+f are all nonterminals
(unless the rule is of the form x' -+ x, which is already
context-sensitive).

Let a = Al"°Am and B = Bl"'Bn' where m = n. Then
we can replace o+B by the following sets of context-sensitive
rules:

A (1)

1 * M4

A1185 > A4489,

Am-l,m—lAm i Am—l,m—lA‘mm

a
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These rules successively change the symbols in o to special
forms which are understood to be unique to the given rule

and to the given position in that rule, so that they can only
be applied in the given sequence. If a rule is applied in
the wrong place (only the beginning of a is present, or a
later part of a is the same as its beginning), the rule
sequence (1) cannot go to completion, and there is no way to
get rid of the last-created special symbol (unless the rest
of o is later created; but if this happens, it cannot depend
on the presence of the spécial symbols, and so could have

happened earlier).

A)1322 * ByBy, (2)

AjoR33 * Byhg,

Am-> BmBm+l' . .Brl

These rules change the special A's to B's after the next

ones have been created (except in the case of the last one).
As already pointed out, this process can go to completion
only if all the special A's are created, which can only
happen if all of a is present (or could have been present).
Thus replacing o+f by (1-2) cannot change L(G), since the
only way (1-2) can create a string free of special symbols

is to simulate a complete application of a+B, and analogously

for all the other rules of G.//
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Theorem 1.3. The languages generated by monotonic grammars

are the same as those accepted by tape-bounded acceptors.

Proof: When a terminal string o is derived from S in a
monotonic grammar, the successive strings in the derivation
have nondecreasing lengths, so that none of them is longer
than 0. Hence in the first part of the proof of Theorem 1.1,
A can generate an S by turning some'symbol x of o into a
pair (S,x), and then simulating the application of a
sequence of rules, creating further pairs as necessary, and
shifting the pairs leftward or rightward if it comes to the
end of o. If the string of first terms generated in this
way tries to become longer than o, A cannot possibly be
simulating a derivation of o. Thus in carrying out the
proof of the first part of Theorem 1.1 in the case where G
is context-sensitive, A need never move off thewnon-#s.

Conversely, in the second part of the proof, note that
the rules of GA are all monotonic except for some rules in
(4-7) which erase #s; but these rules are not needed if A is
tape-bounded, since rules (2b') and (2c') are never used, so
that pairs with # second terms are never created. (Since
the string ends are marked " and ‘', the simulation of A need
not involve #s at all, even when A bounces off them.) Thus
if A is tape-bounded, Gp is monotonic.//

A grammar G is called context-free (or "type 2") if

in all rules o+B of G, a is a single nonterminal symbol and

B is non-null. (Evidently context-free implies context-

apaa e DAL b o bl et
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sensitive.) G is called finite-state (or "type 3") if in

all rules o+*B of G, a is a single nonterminal symbol and B
either ends in a single nonterminal symbol, possibly preceded
by terminal symbols, or else B is a nonnull string of

terminal symbols.

Theorem 1.4. The languages generated by finite-state grammars

are the same as the languages accepted by finite-state accept-

ors.

Proof: If given G, we define an FSA,A, that operates on its
input string o as follows: A examines the right end of ©
for matches to right-hand rules of G. If o = 0181, where

Bl > Bl is a rule of G, A memorizes Bl' moves to just past
the beginning of Bl (i.e., to the right end of ol), and looks
for matches of the right end of olBl to right-hand sides of
rules of G. If it finds such a match, say tp 82 > BzBl,
where o, = 0282, this process is repeated, with o becoming
shorter at each repetition. If at some stage A finds that
all of o B matches the right-hand side of a rule of G whose
left-hand side is S, then A accepts 0. Evidently this can
happen iff. 0 can be derived in G, using the succession of
rules S+B B

n. n-1' Bn-l-> Bn-an-Z'
A accepts o iff. o€L(G).

R 32*8281, 31+Bl. Thus

Conversely, suppose that L is accepted by a one-way
FSA, A. We can define a finite-state grammar G that generates

L as follows:

l) 8§ » (qo,x) for all x
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2) (g,x) » x(q',y) for all gq'€d(q,x) and all y, where §
is A's transition function, and g is a non-accept-
ing state of A.

3) (qA,x) + x for all accepting states dp of A.

Here the x's (the vocabulary of A) constitute the terminal
vocabulary of G. Thus G generates a string and simulates A's
behavior on it; it generates an all-terminal string o iff. A
accepts o0.//

Theorems 1.1-4 tell us that the languages of (arbitrary,
context-sensitive, finite-state) grammars are the same as
the languages of (Turing, tape-bounded, finite-state)
acceptors, respectively. [It can be shown (e.g., [1, pp. 74-
78]1) that the languages of context-free grammars are the
same as the languages of one-way, nondeterministic pushdown
acceptors, but we will not prove this here.] Thus introduc-

ing these types of grammars has not expanded our language

hierarchy.
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1.3 Isometric grammars

In this section we consider grammars in which the
left and right hand sides of any rule a+B have the same
length --'i.e., |a| = |B|. In such "isometric" grammars
(called "isotonic" in [2]), strings grow by rewriting #s,
and the initial string is #%*S#*. We shall show that such
grammars generate the same set of languages as do ordinary
grammars, and that by suitably restricting them, we obtain
the context-sensitive and finite-state languages. The re-
striction that, in any rdle a+B, a and B must be of the same
size will prove to be important when we define array grammars
in Section 3.

Formally, an isometric grammar is a 5-tuple

G = (V,VT,P,S,#), where V,VT,P and S are defined just as in
Section 1.1, except that for all pairs (a,B) &P we require that
a) |a| = |8]
b) o does not consist entirely of #s
c) Replacing o by B cannot disconnect or eliminate

the non-#s*.

The symbol #€V-V,, is called the blank symbol. Derivations

T
are defined exactly as in Section 1l.1. The language of G is

0 o0
the set of all (non-null) strings o on VT such that # o# can

. ®©
be derived in G from the initial infinite string # S# .

*Readily, condition (c) is equivalent to the following: The
non-#s in B exist and are connected; if o has a non-# at its
left(right) end, so does B.

Bl oa ab e Sl anes o hi o it o
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Theorem 1.5. The languages generated by isometric grammars

are the same as those generated by ordinary grammars.

Proof: For any grammar G, we can define an isometric grammar
G' that generates exactly L(G) as follows:
1) For every rule a»B of G such that |a| = |B|, G'
has the rule a qlal'lﬁl + B,where j is a special
nonterminal symbol.
2) For every rule a»B of G such that |a| = |B|, G' has
the rule a-B hlu‘—|8|.
3) In addition, G' has the rulesx# - xf , xf > Q{x,
and #j x > ##x, for all non-#x. These rules allow
#s to be changed into lys at the right end of the
string of non-#s; qs to be shifted leftward; and
t‘s to be changed back to #s at the left end of the

string.

It is easy to see that G' canr generate a terminal string o
(surrounded by #s) iff. just enough QS are created, and they
are shifted into just the right positions, to allow a de-
rivation of 0 in G to be simulated using rules in (1-2)
(The terminal vocabulary of G' is the same as that of G.)
Thus L(G') = L(G).

Conversely, given an isometric grammar G', we can de-
fine G such that, for every rule a+B of G', G has the rule

a' - B', where o' and B' are the same as a and B but with #s,
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if any, omitted. It is not hard to see that G can generate a
terminal string o iff. G' generates #”0#”. (We recall that
under G' the non-#s remain connected; thus derivations in G
differ from those in G' only in that, when G' destroys or

creates #s at its ends, G simply grows or shrinks.)//

Theorem 1.6. The languages generated by isometric grammars

that never create #s (i.e., for all rules a+B, there can be
#s in B only in positions corresponding to #s in a) are the

same as those generated by monotonic grammars.

Proof: 1In the first part of the proof of Theorem 1.5, if G
is monotonic there are no rules of type (2); hence we can
omit the rules #t\x + ##x and still guarantee that deriva-
tions in G can be simulated, by creating and shifting in
just enough t‘s to allow the rules of type (1) to operate.
Thus if G is monotonic, we can define G' so that it never
creates #s. In the second part of the proof; if G' never
creates #s, then for all rules a+B of G' we have

|a*| s |B'|, so that G is monotonic.//

Theorem 1.7. The languages generated by isometric grammars

whose rules are all of the form B#" + B, where |B| = m+l and
B is a string of terminals ending in at most one (non-#) non-

terminal, are the same as the languages generated by finite-

state grammars.//
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1.4 Parallel grammars

As defined in Sections 1l.1-2, a grammar generates (or
parses) a string by applying only one rule o+f at a time,

and replacing only one instance of o by B when this rule is

applied. 1In this section we briefly discuss several approaches

to defining "parallel grammars", in which rules are applied
in more than one place at a time.

We first consider an approach [2] in which we still
apply only a single rule a+B at a given time, but we apply
this rule by replacing every instance of a by B. One problem
with this approach is that instances of o can overlap. For
example, if we apply the rule AA -+ BB to the string AAA, in
parallel, the result is (presumably) BBBB, since AAA contains
two instances of AA; thus application of the isometric rule
AA > BB changes the length of the string. (Indeed, if we
apply AAA » BB to A" in parallel, we get B2(m-2)' so that
applying a length-decreasing rule can increase thé string
length.) In ordinary ("sequential") rule application, this
could not happen; applying the rule AA » BB to AAA yields
either BBA or ABB, to which the rule no longer applies.

Another problem with parallel rule application is that
parsing and generating are no longer inverses of one another.
For example, applying AA -+ BB to AAA in parallel yields
BBBB, but applying BB + AA to BBBB in parallel yields AAAAAA,
since BBBB contains three instances of BB. In fact (see [2]),

it is not hard to exhibit a grammar G such that the sets of

i i i




strings generated and parsed by G "in parallel” are disjoint

from one another and from L(G).

The "parallel language" LP(G) generated by a given
grammar G- is not the same as G's "sequential language" L(G)
in general, but it is the same in certain important cases.
For example, consider the finite-state grammars; it is evident
tlat these have the property that, at any stage of a derivation,
at most one nonterminal symbol is present. (Grammars with
this property are called "linear".) Since the rules of a
finite-state grammar all have left-hand sides consisting of
a single nonterminal symbol, it is clear that at ahy stage
of a derivation, a given rule can apply in at most one place;
thus it makes no difference whether a rule is applied
"sequentially" (i.e., in one place) or in parallel. In other
words, if G is a finite-state (or more generally, a linear)
grammar, we have L,(G) = L(G).

It can also be shown that the class of languages gen-
erated in parallel by grammars is the same as the class of
languages generated in the usual way; and similarly for the
classes of languages generated sequentially and in parallel
by monotonic grammars. To prove that any (sequential)
language is a parallel language, we show that for any
grammar G, there exists a grammar G* with L(G*) = L(G), such
that at any step of a derivation in G*, no rule applies at
more than one place. Specifically, for each rule

* AXA A R*RB B
A ...Am > Bl"'Bn of G, G* has the rule A1A2...Am > BlBZ"°Bn’

1
where the barred symbols are all nonterminals. We also give




G* the rule S > S* and the set of rules

A*B » AB* and AB* -+ A*B
for all pairs of nonterminals one of which is starred and the
other is not. These rules initially create a * and allow it
to shift from symbol to symbol. Since the rules that corres-
pond to those of G all involve the *, it is clear that any

rule applies at only one place (evidently, more than one

* never exists). Finally, we give G* the rules
a*b > ab* ; a*# > a#

for all a,b corresponding to terminal symbols a,b of G (or,
if we do not want to introduce the # symbol, we design G* so
that the rightmost symbol of any string derivable in it is
always uniquely marked). These last rules allow the * to
shift rightward through symbols that correspond to terminals,
turning them into terminals as it goes, until it reaches the
right end of the string and vanishes. It is evident that
this process can result in a terminal string iff. G* gen-
erated a string of symbols corresponding to terminals, by
imitating a derivation in G which leads to a string of ter-
minals; thus the resulting terminal string must be in L(G).
(If the last rules are used too soon, or are not started

with the * at the left end of the string, a string consisting
entirely of terminals will not be created.) Since in G*, no
rule can apply in more than one place, we have LP(G*) = L(G¥*);

thus L(G) = L(G*) = LP(G*), which proves that any language
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is a parallel language. Note also that if G is monotonic, so
is G¥*.

Conversely, we can show that for any grammar G there
exists a grammar G' that, in effect, applies the rules of G
in parallel; thus LP(G) = L(G'), so that any parallel
language is a sequential language. Basically, we define G'
to simulate an automaton A' (compare the proof of Theorem ]
l.1). Suppose that, at a given stage in the operation of
A', we are ready to apply a rule of G in parallel to the
current string ¢ (initially, this string is S). A' picks a
ru}e a+B, scans o, and marks every position in o at which a
match to o begins. It then scans ¢ again and replaces each
instance of o by B. (If irnstances overlap, the part of ¢
from the start of one instance of a to the start of the next
is replaced by B.) When this process is complete, we are
ready to apply another rule of G. Readily, if G is mono-
tonic, so is G'. (A detailed description of G' can be found
in [2].)

The remarks in the preceding three paragraphs show
that any (arbitrary, context-sensitive, finite-state) language
is an (arbitrary, context-sensitive, finite-state) parallel
language, and conversely, The analogous result about
context-free languages is false. For example, consider the

context-free grammar whose rules are
S > SS; S + a

The parallel language of this grammar is readily the set of




strings {aznln=0,l,2,...}; but it is well-known that this is
not a context-free language in the ordinary sense (see,

e.g., [1, p. 57, Theorem 4.7]). Conversely, it can be shown
that the parenthesis-string language, which is context-free
[1, p. 67], is not parallel context-free. On the relation-
ship between context-free and parallel context-free languages
see [3, 4].

Parallel rule application has a particularly convenient
interpretation for rules that are in the context-sensitive
form £An » £1n: For each instance of £An in the given string
0, we replace the A by a t*. In this case, some of the prob-
lems mentioned at the beginning of this section do not arise,
since the substrings being replaced (i.e., the A's) cannot
overlap, even if the &An's do overlap. Parsing and gener-
ation are still not always inverses of one anohter; e.g., if
we apply AA - AB to AAA we obtain ABB, whereas if~we apply
AB - AA to ABB we obtain AAB. On the other hand, string
length can never decrease, since A's are being replaced by
nonnull strings (1's). The results in the preceding para-
graphs all continue to held for this modified concept of

parallel rule application.

*Note that this is not the same as replacing each instance of
EAn by £1n; for the rule AA + AB, applied to the string AAA,
replacing AA's by AB's gives ABAB, whereas replacing A's by
B's when they have A's on their left gives ABB.




Another approach to defining parallelism for context-

sensitive grammars is to apply rules in all possible positions
at the same time. In other words, given a string o0 = Ay-.. "
for each Ai we choose a rule giAini =+ EiTi"i of G that applies
to Ai in 0 (i.e., such that Ei precedes Ai in o, and n;
follows it), and replace Ai by T, - (If no such rule exists,
we leave A; unchanged.) This is done in parallel for every
symbol in 0; the rule used is chosen independently for each
A,. Parallel rule-application systems of this kind are

called L—sxstems.[5-7]; if the rules are all context-free,
they are called OL-systems. L-systems have been extensively
studied as models of biological growth; they will not be
discussed here in detail.

In defining L-systems, it is customary to make no dis-
tinction between terminal and nonterminal vocabularies; the
language is the set of all strings that can be derived from
the initial string. Another possibility is to define the
language as the set of all such strings that are stable under
E application of the rules; such strings correspond, from the
biological growth standpoint, to "adult" organisms. It is
not hard to show [8] that the "adult languages" of L-systems
are just the context-sensitive languages. In fact, given an

L-system H and a string o, we can easily define a tape-

bounded acceptor A that accepts iff. it belongs to the adult

language of H. [A first checks that o is stable under H.

It then nondeterministically generates a sequence of strings

O1105rcee by applying the rules of H to the initial string 99




and checks at each step whether o matches 0. Since we have
assumed that the rules of H are context-sensitive (i.e., the
T;'s are non-null), we know that |00|_> Ioll s |02l Wi

thus if o is derivable from o, in H, no o; can be longer than

0
0, so A has room to store it, as in the proof of Theorem 1.3.
Thus if 0 is derivable in H, A can discover this fact and
accept 0.] Conversely, given a context-sensitive grammar G,

we can define a modified G* such that at any stage of a de-
rivation in G* there is only one place where any rule applies,
as shown earlier in this section. We can thus define an L-
system H* that simulates G*. Note that in the definition of
G*, as long as the * remains, there is always some rule that
applies; but the * disappears only when all the symbols have
been turned into terminals*. Thus the only strings that are
stable under the rules of H* are the terminal strings of G¥*,
which are the same as the terminal strings of G; hence the
adult language of H* is just L(G). If we modify the defini-
tion of an L-system to allow erasing rules (i.e., &An + &n),

it can be shown that the adult languages are just the arbitrary
(Turing-machine) languages (but allowing the null string to

be in a language); the proof is analogous. [L-systems that

do not allow erasing rules are called "propagating".]

*This requires a slight modification of the definition of G*
so that the * can only begin creating terminals when it is
at the left end of a string; the details are straightfor-
ward.
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Similarly, it can be shown that the adult languages of OL~
systems are just the context-free languages. For the details
of these proofs, see [8].

In analogy with Section 1.3, one can consider "isometric"
parallel grammars (or L-systems) in which the rules are all
of the form £An + £Bn, so that strings can grow only by re-
writing #s at their ends. L-systems of this special type
are essentially nondeterministic cellular automata, in which
the transition function is defined by the rewriting rules:
state A, in the context of states g€ on the left and n on the

right, can change into state B. If #s are never rewritten,

they become bounded cellular automata.




2, Matrix grammars

In this section we discuss grammars that generate or
parse sets of rectangular arrays. Grammars whose languages
are sets of connected (not necessarily rectangular) arrays
will be considered in Section 3.

A class of "matrix grammars" [9-11] that generate
rectangular arrays can be informally defined as follows:

a) A string grammar G generates a string o thch will

become the top row of the array.

b) The symbols in 6 are initial symbols of a set of

finite-state string grammars Gl""’Gn’ These
grammars operate in parallel (compare Section 1.4)
to generate the columns of the array. Their oper-
ation must be coordinated so that in every column,
at any given time, a rule of the same length if
applied, and that the terminating rules are all
applied at the same time.*

Formally, a matrix grammar M is a pair (G,G), where G is a

grammar and G = {Gl,...,Gn} is a set of finite-state grammars,

such that the terminal vocabulary of G is the set {Sl,...,Sn}

*We can assume without loss of generality that the rules of
each Gi are all of the forms A+aB and A+a, where A,B are
nonterminals and a is a terminal. Under this assumption,

it suffices to require that the terminating rules are applied

in every column at the same time.
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of initial symbols of the Gi's. (We assume that the non-
terminal vocabularies of the Gi's are disjoint.) M operates
by generating a (horizontal) string o of Si's using the
rules of G, and then generating a rectangular array from the
top row 0 by applying rules of the Gi's in parallel, and
finally terminating simultaneously.
Matrix grammars are of interest because they generate
(or parse) rectangular arrays, but unfortunately the classes
of array languages that they generate are not the same as the
classes accepted by the'various types of array acceptors.
Specifically, we give the following examples:
a) If G is finite-state, the language L of M is a
finite-state array language. [Indeed, we can define
a finite-state array acceptor A that accepts L as
follows: Given a rectangular array R, A scans the
last column C of R, simulates acceptors for the
finite-state column languages, and thus determines
to which of those languages, if any, cm belongs.
A can thus verify whether aterminating rule of
G could have produced any of the initial symbols Sn
that began the generation of Cn® A then scans the
next-to-last column C__,, determines which symbols

S could have begun its generation, and verifies

m-1
whether a rule of G could have produced any of
these symbols together with a nonterminal that

then resulted in Sm' This process is repeated
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until all of R has been accounted for.] Conversely,
however, there are (deterministic, tape-bounded)
finite-state rectangular array languages that
cannot be generated by any such M. For example,
consider the set L of square arrays of even side
length whose rows are all of the form a™™. No ,
such M can generate L, since the string language f
{a™™|m=1,2,...} is not finite-state (see Section

3.2 of Chapter 3). On theother hand, a finite-state
array acceptor cah verify that its input array R |
is in L as follows: Verify squareness (and even
side length) by moving "diagonally"; then move at
“67§°" (alternately two steps upward and one left-
ward, starting at the lower right corner) to find |
a middle column; finally, move down that column i
and verify that, in each row, there are a's on its j
left and b's on its right. Thus the class of matrix
languages for which G is finite-state is a proper
subset of the class of finite-state array languages.
[Readily, we can require A in the first part of the

3 proof to be deterministic and tape-bounded; thus

these matrix languages are a proper subset of the
deterministic, tape-bounded finite-state array

languages.]

b) If G is context-free, the language of M is not

finite-state. For example, the set L of rectangular




arrays of even width whose rows are all of the

form a™™ can be generated by such an M (G gener-
m.m

ates 8152' the rules of Gl and G2 are Sl*asl,sl*a,

and those of G2 and Sz*bsz,sz*b), but L cannot be

accepted by a finite-state array acceptor, since
{ambm|i=1,2,...} is not a finite-state string

5 language (consider the arrays of height 1!). Thus

- the matrix languages in general (even for context-
free G's) are not a subset of the finite-state

array 1anguagés. Conversely, there are (deterministic,
tape-bounded) finite-state array languages that are
not matrix languages, for any choice of G. For
example, the set L consisting of all square arrays

is not a matrix language, since the termination
decision in generating the columns does not depend

on the array width. [The step numbers at which
column termination can occur depend on the set of
Si's that initiated the columns; there are only
finitely many such sets, and they cannot carry enough
information to provide for a different termination
step for every top row width.] Thus the matrix
languages and the finite-state array languages

are incomparable.

c) The matrix languages for which G is context-sensitive
are a proper subset of the tape-bounded array

languages. For example, the arrays whose columns




are all of the form a™b" are a tape~bounded array
language, but are not a matrix language (since
{ambm|m=1,2,...} is not a finite-state string
language). Conversely, a tape-bounded acceptor

can scan the columns of a rectangular array, deter-
mine which Si's could have initiated their generation,
record these (sets of) Si's in the top row, and then
simulate a one-dimensional tape-bounded acceptor to
verify whether some such set of Si's could have

been generated by G; thus any such matrix language
is a tape-bounded array language. On the other hand,
there are matrix languages (having non-context-
sensitive top rows, and height 1) which are not
tape-bounded array languages; thus the tape-bounded
array languages and the matrix languages are in-
comparable. Finally, the matrix languages are a
proper subset of the Turing rectangular array
languages, by arguments similar to those already

given.

It can be shown [9,12] that the languages of matrix grammars
for which G is context-sensitive are the same as the languages
of a special class of parallel-sequential array acceptors
(Section of Chapter 7) -- namely, the class in which the
cells (of the one-dimensional cellular acceptor) do not
communicate with their neighbors until the acceptor has

reached the last row of its input array.
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A number of other grammar-like mechanisms can be used
to generate rectangular array languages. In [10-11], for
example, a grammar generates a string which specifies a
sequence of horizontal and vertical concatenations to be
performed on rectangular arrays. It is understood that when
two arrays are horizontally (vertically) concatenated, they
must have the same numbers of rows (columns); hence any such
sequence of concatenation operations generates a rectangular
array. Another way to insure rectangularity is to require
that all border symbols of a given type (north, south, east,
or west) be rewritten simultaneously; note that the column
generation process in a matrix grammar is a special case of
this (rewriting all south border symbols at the same time).
Such models have been studied in [13]. We will not consider

these approaches further here.
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& Array grammars

This section introduces grammars that generate or parse
sets of connected arrays, and investigates their relationship
to array acceptors. As w2 shall see, several problems arise
with array grammars that did not arise for string grammars.

An array grammar must operate by replacing subarrays by
subarrays, just as a string grammar replaced subst;ings by
substrings. However, if the two subarrays (a and B, say)
are not identical in size and shape, it is not clear how to
replace a by B. One can presumably shift the rows or columns
of the host array relative to one another so as to make room
for B; but this may cause changes in symbol adjacencies
arbitarily far away from B, since adjacent rows or columns
may shift by different amounts. Thus applying a local re-
writing rule o> may cause nonlocal changes in the host array,
which seems undesirable. To avoid this problem, we shall
require array grammars to be isometric (see Section 1.3);
this means that for any rule o+B, o and B are geometrically
identical, and the array grows (or shrinks) by rewriting
(or creating) #s. For a treatment of non-isometric array
grammars, see [14].

A second problem with array grammars is how to insure
that they preserve connectedness (and nonemptiness) of the
set of non-#s. Before formulating conditions for this, we
first observe that in any rule a+B8, a must contain non-#s,

but they need not be connected. [In one dimension, as long

-

S




as the non-#s remain connected, a rule in which a has non-
connected non-#s could never apply; but in two dimensions,
a globally connected array can contain locally non-connected
parts.] On the other hand, if o has more than one connected
component of non-#s, everv such component must touch the
border of a. Our conditions on B are then as follows:
1) If the non-#s of a do not touch the border of a,
then the non-#s of B must be connected (and non-
empty) .
2) Otherwise,
a) Every connected component of non-#s in B must
contain the border of some component of non-
#s in o, and
b) The border of every component of non-#s in a
must be contained in some component of non-

#s in B.

Proposition 3.1. If conditions (1-2) hold, applying the

rule o+f does not disconnect or eliminate the non-és.

Proof: We assume that non-#s existed and were connected
before a+B was applied. 1In case (1), the non-#s of o must be
the only non-#s that exist (there cannot be any outside a,
since they would have to be connected to those in o, which
would require that non-#s exist on the border of a); hence
when we replace o by B, the non-#s of B are the only ones

that exist, and they are connected by (1). 1




In case (2), we first show that any two non-#s p,qg not
in a remain connected when o is replaced by B. If there is
a path of non-#s from p to g that does not meet a, this is
clear. Otherwise, note that each time the path enters and
leaves a, it meets only one component of non-#s in o, and by
(2b) the border of this component is contained in a component
of non-#s in B; hence each such segment of the path can be
replaced by a segment in B.

Similarly, if p is not in o and g is in B8, then by (2a)
the component of non-#s in B that contains g also contains
the border of some component of non-#s in o. Now p was
connected (outside a) to this component, hence to its border;
thus p is connected to qg.

Finally, if p and q are both in B, and are not connected,
they are both in components of non-#s that (by (2a)) contain
borders of components of non-#s in o. But these components
were connected outside o, hence so were their borders.//

It is clear that if (1) did not hold, applying o-+f would
disconnect (or annihilate) the non-#s. If (2a) did not hold,
a component of non-#s in B might be created that failed to
be connected to the other non-#s; while if (2b) did not hold,

some non-#s outside B might be disconnected from the other

non-#s.

an S
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3ala Array grammars and languages

Formally, an (isometric) array grammar is a 5-tuple

G = (V,VT,P,S,#), where all of these are defined just as in
Section 1.2, except that P is a set of pairs of connected
arrays (o,B), for all of which

a) a and B are geometrically identical

b) o does not consist entirely of #s

c) B satisfies conditions (1-2) of Proposition 3.1.
The language of G, L(G), is the set of all (non-null) connected
arrays I on VT such tha£ L (embedded in an infinite array of
#s) can be derived in G from the initial array, which consists
of a single S (embedded in an infinite array of #s). [De-
rivations are defined exactly as in Section 1, except that
they involve replacement of one subarray by another, rather
than of one substring by another. Parsing is also defined
just as in Section 1.] Note that by Proposition 3.1 and
induction, the array resulting from any derivation always
has its non-#s connected.

As in Section 1.1, we can (and shall from now on)
assume that terminal symbols are never rewritten by any
rule of G.

An array grammar is called monotonic if #s are never
created by any rule -- in other words, for all rules o+8 of G,
there are #s in B only in positions corresponding to #s in a.
[We can also define an array grammar G to be "context-free"

if, for all rules o+B of G, o consists of a single nonterminal
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symbol and (possibly) of #s; note that such rules do use

#s as "context." Similarly, we can call G linear if G is
"context-free" and, in addition, any B contains at most one
nonterminal symbol; note that at any stage (except the last)
of a derivation in such a G, exactly one nonterminal exists.
As we shall see later, there does not seem to be a good
analog of "finite~state" for array grammars.]

In some of the examples to be given later, it will
be convenient to introduce some notation that allows us to
compactly describe sets of array rewriting rules that differ
by 90° rotations. We shall denote by o+f (ROT) the set of
four rules in which o and B are both rotated by 0°, 90°,

180°, and 270°. For example,
AB ~ UV (ROT)
denotes the four rules

AB -+~ UV

BA -+ VU

wy» Pw
<c a<g

Alternatively, we may denote by A(d)B the pair of adjacent

symbols such that B is in direction 4 (=U,D,L, or R) from A;

thus A(R)B = AB, A(L)B = BA, A(U)B = i, and A(D)B = g.
In this notation, we may write
A(d)B » U(@d)V for all 4 €4 = {U,D,L,R}

instead of AB + UV (ROT).
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302 Equivalence to array acceptors

Our goal in this section is to prove that (arbitrary,
monotonic) array grammars generate the same classes of
languares as (Turing, tape-bounded) array acceptors. The
proofs are based on [15]; see also [16], which proves an §
analog of Theorem 3.3 using a somewhat different definition é
of an array grammer. We also discuss the relationship be- ‘
tween finite-state array grammars and array acceptors; this

discussion is based on [17].

Theorem 3.2. The languages generated by array grammars are

the same as the languages accepted by Turing array acceptors.

Proof: Given an array grammar G, we define a TAA, A, that
accepts exactly L(G) as follows: Given an array I of non-is
in the terminal vocabulary VT of G, embedded in an infinite
array of #s, A moves around nondeterministically, starting

at some point of I, and rewrites each symbol x (possibly #)

that it comes to as (x,#).* Finally, at some step, A rewrites
some x as (x,S); this can only happen once. After it happens,
A begins to simulate rules of G on the second terms of pairs;

pairs with no second term are regarded as having second term #.

*This is done in order to insure that A is always on a con-

nected set of non-#s; if A moved onto the #s without rewriting

them as pairs, it might be unable to find I again.
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Suppose that at some step A decides to apply the rule o~
of G. It then searches (nondeterministically) for one of the
non-# symbols in o (as a second term), marks it, checks
(deterministically) for the other symbols as second terms
(these are in known positions relative to the given symbol),
marks them, and when they have all been found, rewrites
these second terms as the corresponding symbols in B; after
this is done, A is ready to simulate another rule. (While
searching, A continues to rewrite x's as (x,#)'s.) At any
stage after applying a rule of G, A can systematically scan
the array of non-#s (Proposition 4.1 of Chapter 4) and check
whether (a) every non-# is a pair; (b) the second term of
every pair is the same as its first term. [A can also check,
during some such scan, that the non-# first terms are in fact
all in VT.] If this is found to be true, A accepts I; other-
wise, A can resume the simulation of G. Evidently A accepts
L iff. a derivation in G exists that generates a copy of I;
thus A accepts exactly L(G) (from some starting point).
Conversely, given A, we define a grammar G that
generates exactly L(A) as follows: Starting with an S on
a background of #s, G begins by geneféting an arbitrary
array X of triples of the form (x,x,0) or (x,x%,1), where
x is any non-# symbol in the vocabulary V of A, and where

there is always exactly one 1. This can be done using

the rules
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la) 8 + (x,x,1)

1b) (x,x,1)# + (x,x,0)(y,y,1) (ROT)

le) (x,x,1)(y,y,0) + (x,x,0)(y,y.1l) (ROT)
1d)  (x,x,1) > (x,x,(q,,N))

for all x, y # # in V.

When (1d) is used, the 1 turns into a pair (qo,N) repre-
senting the initial state and (fictitious) "previous move
direction" of A. :

Next, G simulates the operation of A‘on the array of
second terms of the triples; the first terms remain un-
affected. This is done using the rules (for all x,u,v in V).

2a) (x,y,(q,d)) » (x,z,(q',N)) for all (q',z,N)€S(q,y,d)

2b) (x,y,(q,d))(d') (u,v,0) +» (x,2,0)(4') (u,v,(q',d"))

for all (q',z,4')€é(q,y,d)
2¢) (x,y,(q,d)) (@)% > (x,2z,0)(d') (#,#,(q",d")) (similarly)

where 6 is the transition function of A, and provided that g
is not an accepting state of A.

Finally, if the simulation of A enters an accepting
state, the triples are turned into their first terms using
the rules

3a) (x,y,(q,d)) e for all x,y,€V and all g<QA

3b) (u,v,0)x » ux(ROT) for all u,v,x€V.

Since V-{#} is the terminal vocabulary of G, this means
that G generates a terminal array of non-#s (the first terms

of I) iff. A accepts this array (from some starting point).//
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Theorem 3.3. The languages generated by monotonic array

grammars are the same as the languages accepted by tape-

bounded array acceptors.

Proof: In the first part of the proof of Theorem 3.2, note
that at any step of a derivation of I in the monotonic array
grammar G, the non-#s are always a subset of I, since #s

can never be created by G. Thus, we can simulate G using

a tape-bounded A that always remains on I. [A problem
arises with this simulation if a rule a+B of G uses #s as
context (i.e., there are #s in a which are also in the
corresponding positions in B); these #s may be outside I,
but A must verify their presence in order to apply the rule.
This can be done using the array scanning process described
just prior to Proposition 4.6 of Chapter 4. Suppose that

A is located at position (i,j) and wants to verify that there
is a # in position (i',j'), where the differénces i-i' and
j=j' are known to A. To do this, A marks (i,j), finds the
outer border of I, and scans I row by row. When A reaches
the row with the marked point, it returns to the outer border
and follows it, using the positions of markers to keep track
of its net up and down moves. If the outer border never
reaches row i', I cannot intersect that row, so that posi-
tion (i',3j') is certainly #. Otherwise, A marks the points
of the outer border that are on row i', and scans these rows

of I, marking their points. Analogously, using a column by

S




column scan, A finds the marked point and checks whether
the outer border reaches column j'. If not, (i',j') is #;
if so, A marks the points of I that are on column j'. If
these marks ever encounter the marks on row i', (i',j') is
not #; otherwise, it is #, and A can rescan I, erase the
marks on row i' and column j', rescan I and return to the
marked point (i,j). In this way, A can verify that #s
exist in given positions relative to some non-# point of a,
and thus check that all of a is present, without having to
leave L. Note that a similar process may be necessary for
the rewriting of a, since the non-#s of a may be separated
by #s, and A may have to compute the positions of these
non-#s in order to locate them and rewrite them.] After
any step of the simulation, A can scan I and check that the
first and second terms are all the same (and all in Vo) -
If so, A accepts; otherwise, it continues ﬁhe simulation.
Thus A accepts exactly L(G), as in the proof of Theorem 3.2.
In the second part of the proof, note that the only
rules of G that can create #s are the terminating rules
3(a-b); and these create #s only if triples with # first
terms were created by the simulation rule (2c). But if A

is tape-bounded, we can modify (2c) to have the form
(x,y,(q,d)) (d")#% » (x,z,(q",d"l))(d')#

where q" is a possible state of A after it has bounced back
off the #. Thus when A is tape-bounded, G need never create

#s, so that G can be monotonic.//
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It does not seem to be easy to define a class of

array grammars whose languages are the same as those of the
finite-state array acceptors. (A generator model that
generates exactly the FSA languages is described in [18].
However, in this model, every time a given symbol is re-
written, it must be rewritten in the same way, even though
the generation process cannot tell whether or not this is
happening; thus this model requires some means, outside the
generator itself, to reject arrays in which a rewriting
inconsistency occurs.) Of course, one can always define a
class of array grammars that are capable only of simulating
FSA's [19]; but this is artificial.

In one dimension, the linear grammars (in which, at
any step of a derivation except the last step, exactly one
nonterminal symbol exists) generate more than the finite-
state languages (e.g., {ambm|m=l,2,...} is‘a linear string
language, having the grammar whose rules are S+ aSb,S +ab);
whereas the "right linear" grammars, in which (until the last
step) the sole nonterminal symbol is always at the right end
of the string, generate exactly the finite-state languages
(Theorem 1.4). In two dimensions, there is no natural analog
of "right linear." Moreover, we shall now show that the
languages of linear array grammars are incomparable with the
FSA languages.

We first exhibit an FSA language that cannot be gen-

erated by a linear array grammar. Consider the set of thin,
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upright T-shaped arrays of x's on a background of #s. This
set is accepted by a deterministic, tape-bounded FSA which
operates as follows: It moves up until it hits a #, then
moves left until it hits a # again. It then verifies that
it is on a row of x's that have #'s above and below them,
with exactly one exception that has an x below it and that
is not at either end of the row. Finally, it moves back to
the exceptional x and moves downward, verifying that it is
on a column of x's that have #s on their left and right.
When it reaches the bottom of this column, if all these
verifications have been carried out successfully, it accepts.
We now show that the set of T's cannot be generated
by a linear array grammar. Suppose G were such a grammar;
let the greatest diameter of any right hand side of a rule
of G be k. Since the T's can be arbitrarily large, it is
clear that G must generate the ends of the arms of a large
T at different steps in the derivation of that T. Let these
arm ends be a, b, and c. One of them, say a, can be generated
before the point P at the T-junction is generated, but b
and ¢ must be generated afterwards. After P is generated,
if the nonterminal moves sufficiently far (>k) down the b
arm, it can never generate the c¢ arm, since it cannot return
down the b arm (which now consists of terminals) or cross
the #s (which, once rewritten, would destroy the shape of

the desired thin T).
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Conversely, we can exhibit a language that is generated
by a linear array grammar but is not accepted by a tape-

bounded FSA. Let G be the array grammar whose rules are

S# » xS ; S# » xT
T X T X
R O TR T

#U > Ux ; #U » Vx

el os v

Informally, the S moves to ﬁhe right, leaving a trail of x's,
until it changes to a T; the T moves down, trailing x's,
until it changes to a U; the U moves left, leaving x's behind
it, until it changes to a V; and the V moves up, trailing
x's, until it changes to an x. Thus the language of this
grammar consists of four-sided upright rectangular arcs,
composed of x's, which may touch themselves, but cannot cross
themselves. In particular, all the hollow, thin upright
rectangles of x's are in this language. But as we have
seen (in the proof of Theorem 4.3 of Chapter 4), any tape-
bounded FSA that accepts all such rectangles must also accept
various sufficiently large rectangular spirals (having many
more than four sides). Hence the language of G is not a
tape bounded FSA language.

Another possibility, discussed in [17,19], is to
allow a linear grammar to rewrite terminal symbols, but not

to sense what symbols are present; for example, in a rule
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o » B, a would consist of a single nonterminal A together
with a set of "don't-care" symbols, and in applying the rule
we would rewrite whatever symbols lie in those positions
relative to A. [If we do allow the grammar to sense what
symbols are present, it is at least as strong as an ordinary
linear array grammar, hence can generate a class of patterns
that is not an FSA language, as in the preceding paragraph.]
If we do this, it becomes possible to generate thin T-shaped
patterns (possibly including degenerate T's with arms missing);
we omit the details heré. On the other hand, such a "blind"
grammar could not generate the set of arcs (composed of x's)
that do not cross or touch themselves, since the nonterminal
leaving the trail of x's coulid not know when it was about to
cross its own path; but this set is evidently an FSA language
(the FSA verifies that all but two of the non-#s have exactly
two non-# neighbors). Conversely, a "blind" grammar can
generate the set of all connected arrays of x's; but this

is not an FSA language. [Proof: It contains the set of all
thin, hollow rectangles of x's; but if A accepts such a
rectangle, it also accepts a sufficiently large rectangular
spiral without visiting its ends, so that it cannot tell

whether or not there are symbols other than x at the ends.]




3.3 Parallel array grammars

In Section 1.4, we introduced the idea of parallel
rule application (rewrite all instances of a as B's, rather
than just a single instance), and showed that the classes of
languages generated in parallel by (arbitrary, context-
sensitive) grammars are the same as the classes of languages
generated by those types of grammars in the ordinary way.

The proofs apply also to isometric grammars; in fact, in

the préof that any sequential language is a parallel language,
if G is isometric, so is G*, while in the proof that. any
parallel language is a sequential language, we know that an
isometric G' can simulate an automaton of the desired type
that applies the rules of G. 5

Analogous results can be established for (isometric) A
array grammars; the details are straightforward [20]. One
can also define (isometric) array L-systems (fhe details

will be omitted here); as pointed out in Section 1.4, they

are essentially nondeterministic cellular automata.
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