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ABSTRACT 

~~~~~ c2~1~~3~
This report is a draft  of Chapter 8 of a forthcoming

book on “Picture Languages.” [Drafts of Chapter 2, on
digital topology , and chapters 3-5, on sequential and
parallel picture acceptors , were issued earlier as TR’ s
542 and 613, respectively.] This chapter deals with array
grammars, with emphasis on their relationship to acceptors ;
some preliminary material on string grammars is also included .
Comments on the choice and treatment of the material are

• invited.
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Chapter 8

- ARRAY GRAMMARS

In the previous chapters we have discussed various types

of string and array acceptors. This chapter introduces

grammars that can be used to either generate or accept

(“parse”) sets of strings or arrays. It defines a hierarchy

of such grammars , and establishes equivalences between certain

classes of grammars and of acceptors.

1. String grammars

We first consider grammars that generate or parse sets

of strings. Sections 1.1-2 review the usual definitions

of such grammars. Section 1.3 defines “isometric” grammars

that rewrite #s, rather than simply extending the given

• string; this alternative approach will be important when we

treat array grammars in Section 3. Section 1.4 discusses

various definitions of “parallel” grammars and their relation-

ships to conventional (sequential) grammars.



• _______________—-- _ _

1.1 Grammars

-

• 
Informally,  a (str ing) grammar G is a mechanism that

generates a set of strings by a process of repeatedly substi-
• tuting one substring for another , starting with a standard

initial string. The (rewriting) rules or productions of G

specify which substrings can be replaced by which others.

The language of G is the set of strings (usually required to

consist entirely of symbols of a special type, called “ter-

minal” symbols) that can be produced in this way . We shall

now define these ideas more precisely .

As we did in Chapter 3 for automata, we shall require

that grammars satisfy certain finiteness and nontriviality

conditions. Specifically , we shall assume that the

vocabulary, or set of symbols, the subset of “terminal”

symbols , and the set of rules are all finite, nonempty sets.

We shall also assume that the initial string consists of a

single non-terminal symbol S. Under these assumptions, we

can formally define a (“type 0”) grammar G to be a 4-tuple

(V,VT,P,S), where

V is the vocabulary (a f inite, nonempty set of symbols)

VT ~ V is the terminal vocabulary (j ~ 0)
S
~
V
~
VT is the initial symbol

P is a finite, nonempty set of pairs (a ,~~), where a and

~ are non_null* strings of elements of V. These pairs

*We require ~ to be non-null to prevent the null string from
being generated by a grammar ; this corresponds to our require-
ment, in earlier chapters , that the input strings of acceptors
are always non-null. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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are called the rules of G, and are usually written in

• the form a-’8 (denoting the fact that a can be replaced

by 8).

In order to define the language of G, we must introduce

the notion of a “derivation” in G. We say that the string

T is directly der ived from the string a in G (notation:

o t )  if there exists a rule a~ 8 of G such that a is a

substring of a , and t is the result of replacing some

occurrence of a (as a substring of a) by 8. We say that T

is derived from a in G (notation: a~~~*T ) if there exists

a sequence of strings c = 00’0l ’ • ,0n = T, where n ~ 0,

such that a1 is directly derived from 0i l  in G, 1 ~ i ~ n.

The set of strings on V
T that can be derived in C from the

initial string S (consisting of the single symbol 5) is

called the language of C, and is denoted by L(G). A

sequence of strings ~~~~~~~~~~~~~~~~~~~~~ for which

a. ~~a. is called a derivation of T in G. (We will omiti—1 -G 1

“in G” from now on unless there is danger of confusion.)

Given any grammar G, there exists a grammar G ’ in

which terminal symbols are never rewritten by any rule ,

and such that L(G’) = L(G). In fact, we can define G ’ to

have nonterminal vocabulary (V_V
T)UV~ , 

where V~ is a set

of primed copies of the symbols in VT. For each rule a~8

of G, we have the rule a ’ -p 8’ in G ’ , where the primes denote

the fact that each symbol in VT is replaced by the corres-

ponding symbol in V~j,. In addition , G ’ has the rules x ’~ x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • • • • • • • • •- • - • •
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for all X
~
VT. Evidently a string on VT is derivable in G ’ if

it is derivable in G (since G ’ can derive the corresponding

string on V~ , which can then be changed into a VT string

• using the x’~ x rules), and conversely (since the x ’-’x ru les

are the only rules of G ’ that produce symbols in VT). [Note

that if the x’÷x rules are applied too soon , it may be im-

possible to complete a derivation , since a rule a ’~~8’ may re-

quire the presence of some primed symbol that has already

become unprimed.J We shall assume from now on that grammars

never rewrite terminal symbols.

A grammar can function as an “acceptor ” by performing

derivations in reverse . Given a string a on VTI we say that

G parses a if there exists a sequence of strings

o = °n’°n-l’ . . ,a~ = S such that 0i-1 is the result of apply-

ing a rule a~ 8 of G in reverse (i.e., replacing 8 by a) to

1 ~ i ~ n. It is clear that this is the same 
•
thing as

saying that os,. ..,o~ is a derivation ; thus a is parsed by G

1ff .  it is generated by G .

A less trivial equivalence between grammars and acceptors

is provided by

Theorem 1.1. The languages generated by grammars are the

same as the languages accepted by Turing acceptors.

Proof: Let L be generated by G; then we can define a Turing

acceptor A that operates as follows: Given a string a , A

creates an S (separated from a by a distinctive marker ) and

then (nondeterministically) applies a sequence of rules of
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G, starting with the S (and leaving a intact), to produce a

sequence of strings a0 E S,al~
a2,... At each step of this

process , it compares a~ with a (this can be done by moving

back and forth from a1 to a, and marking off corresponding

symbols if they are the same). If at any stage A finds that

= a, it accepts. Evidently this happens if f. a~L(G).

Conversely , let L be accepted by A. We shall define

below a grammar GA that generates two copies of an arbitrary

string, and simulates the operation of A on one copy. If

the simulation accepts, GA erases that copy and converts the

other copy to a terminal string. Evidently a terminal

string a is produced by GA in this way if f. a~L(A).

The grammar GA has the following sets of rules:

S ÷ S’(x ’,x) -
~

-
~~ S’ (x,x) for all x in the

S’ ((q0,N), (x”,x))f vocabulary of A

S -
~~ ((q0,N), (x*,x))J

These rules generate a string of the form ((q0,N)(x*,x)),

or ((q0,N) (xj’,x1)) (x2,x2),..., (x~....1~x~_ 1) (x ’~~ x~ ) (where

n ~ 1). Primed x ’s are always at the right end of the

string; double-primed x ’s, at the lef t end; and starred x ’s

are always singletons. Here q0 represents the initial state

of A at the left end of its input string.

(2) For all u,v,w,x ,y , z,

(a) ((q11d)(w,x)) -‘- ((q2 ,N)(t,x)) for all

(q2,t,N)~~6(q1,w,d ) ,  where 6 is the transition

~

-

~

-

~

• --
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function of A , and where if w is primed,

double-primed , or starred, so is t. These

rules simulate the case where A changes state

and rewrites a symbol but does not move.

(b) (u,v) ((q1,d) (w ,x)) ((q2,L) (u,v)) (t,x) for

all (q2,t,L)~~6(q1,w,d),where if w is primed ,

so is t. These rules handle the case where

A moves left, provided it was not at the

jeft end of the string.

(b’) ((q11 d) (w” ,x)) -* ((q2,L) ( #“ , # ) )  ( t , x)  )
j for

((q1,d) (w*,x)) -‘ ((q~ ,L) (# “ , U)  (t ’ , x )~~

all (q21t,L)tIS (q11w,d)

Rules (b’) handle the case where A is at the

left end of the non-#s and moves left.

(c) ((q1,d) (w,x)) (y,z) ÷ (t,x) ((q2,R) (y,z) ) for

all (q2,t,R)~~~(q1,w ,d), where if w is double—

primed, so is t. These rules handle the

case where A moves right and was not at the

right end of the string.

(c’) ((q11d) (w’ ,x)) ÷ (t,x) ((q2,R) (*‘ ,#)) ‘~
~ for

( (g 1~~~ (w * , x ) )  ÷ (t” ,x) ((q2,R) ( # ‘ , # ) )J

all (q2,t,R)~~ô(q11w,d),

Rules (C ’)  handle the case where A is at the

right end of the non-#s and moves right.

These rules simulate A on the string , adding pairs of #s at

its ends if necessary . Note that the conventions about primes,
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double-primes and stars are preserved by these rules. Note 
-

also that the simulation affects only the first terms of

the pairs ; the second terms are unchanged, except that #

second terms may be added at the ends. We assume in (2)

that q is not an accepting state of A.

(3) For all w,x ,y, z, where w may be double-primed

and y may be priflted, and for all accepting states

q~ of A ,

(w,x)((q~ ,d)(y,z))

When an accepting state is created , it moves

rightward .

(4) For all w ,x ,y , z, where w may be double—primed ,

((q~ ?d)(y ’~~z)) ((y ’,z)q~) if z ~ *
(w,x) ((q~~d) (y’ , # ) )  ÷ ((w,x) ,q~ )

• ((q~~d) (y*,z)) ÷ z

When (q~ ,d) reaches the right end of the string ,

it becomes if the second term at the right

end is non—#, or erases the # and becomes

if the second term at the right end is # .  If

the string is a singleton , (q~ ,X) turns it into

a singleton terminal (the second term must be

norl-# in this case, since the original string

of second terms was non—null).

(5) For all w ,x ,y,  where w may be double-primed in

the second case , - 

- • • •-~~~~
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(w , # )  ( ( y , * )  ,q~~) + ( (w , # )  c ci;)

• (w , x)  ( ( y , # )  ,q~~) + ( ( w , x )  ~~~ if x ~

The moves leftward , erasing #5; when it

reaches a non-# second term (which must happen

eventually, since the original string was non—

-
• 

null), it becomes

(6) For all w,x,y,z, where y may be primed,

(w,x)((yI z)~ q~ ) ÷ ((w~x)fq~~) z  if x ~ #

((y ”~ z)q~ ). z

The moves lef t, turning pairs with non-# second

terms into their second terms; if it reaches the

left end of the string, it erases itself, leaving

only its pair ’s second term z. Note that z

cannot be #, by (4-6).

(7) For all w ,y,z, where y may be primed,

(wV *)((y~ z)Iq~ ) ÷ ((y~z)~~q~ )

(w” ,#)((y,z),q~ ) ÷ z

If the reaches # second terms (which must lie

to the left of all the non-# second terms), it

erases them; when it erases the last one, it also

erases itself , leaving only its pair ’s second term z.

Evidently, this process generates a terminal string (namely ,

the original string of second terms ; the terminal vocabulary

of GA 
is the same as the vocabulary of A) if f. the simulation

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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.-

~~~~~
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~~~~~~~~

- •
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of A accepted that string (of first terms); in other words ,

GA generates a terminal string a if f. a EL (A).//

• I

I 

— __ _ --a -— ~~~~~~~~~~ -- ---— -- -~~~___- •  -~~ — -a--~ --~~~~—
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1.2. Special types of grammars

A grammar G is called context—sensitive (or “type 1”)

if for each rule a÷8 of G there exist strings 
~~~, n, and T on

V, where T is non—null , and a symbol A
~
V
~
VTI such that

a = ~Afl and 8 = Etr~. Thus any such rule rewrites a single

nonterminal A , “in the context of” ~ and n, as a non-null

string t . Note that in such a grammar , terminals are never

rewritten.

We shall cal l a grammar G monotonic if for each rule

a÷8 of G we have a ~ I 8 .

Theorem 1.2. The languages générated by monotonic grammars

are the same as those generated by context-sensitive grammars.

Proof: Context—sensitive certainly implies monotonic , since

t non-null implies RAi l £ R T n I .  To prove the converse, we

show that any rule a÷8 with la I £ 1 8 1 can be replaced by a

set of context—sensitive rules without altering the language

generated by the grammar. We can assume, as shown earlier ,

that the given grammar does not rewrite terminals, so that

the symbols involved in the rule a÷8 are all nonterminals

(unless the rule is of the form x ’ + x, which is already

context-sensitive).

Let a = Al•~~
Am and 8 = ~~~~~~~~ where m ~ n. Then

we can replace a÷8 by the following sets of context—sensitive

rules :

A1 ÷ A11 (1)
I

A11A2 + A11A22

Am_l;m_lAm Am_l ,m_lAmm
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These rules successively rhange the symbols in a to special

forms which are understood to be uni’~ue to the given rule

and to the given position in that rule, so that they can only

be applied in the given sequence. If a rule is applied in

the wrong place (only the beginning of a is present, or a

later part of a is the same as its beginning), the rule

sequence (1) cannot go to completion, and there is no way to

get rid of the last—created special symbol (unless the rest

of a is later created; but if this happens, it cannot depend

on the presence of the special symbols , and so could have

happened earlier).

A11A22 
+ B1A22 (2)

A22A33 
+ B2A33

A ÷ B B  ...B• n~ m m+l n

These rules change the special A’s to B’s af ter the next

ones have been created (except in the case of the last one).

As already pointed out, this process can go to comp let ion

only if all the special A ’ s are created , which can only

happen if all of a is presen t (or could have been present) .

• Thus replacing a-’-~ by (1-2) cannot change L(G), since the

• only way (1-2) can create a string free of special symbols

is to simulate a complete application of a÷8, and analogously

for all the other rules of G.//

4

_ _ _ _ _ _  _ _ _ _
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Theorem 1.3. The languages generated by monotonic grammars

are the same as those accepted by tape—bounded acceptors.

Proof: When a terminal string a is derived from S in a

monotonic grammar , the successive strings in the derivation

have nondecreasing lengths , so that none of them is longer

than a. Hence in the first part of the proof of Theorem 1.1,

A can generate an S by turning some symbol x of a into a

pair (S,x), and then simulating the application of a

sequence of rules, creating further pairs as necessary , and

shifting the pairs leftward or rightward if it comes to the

end of a. If the string of first terms generated in this

• way tries to become longer than a, A cannot possibly be

simulating a derivation of a. Thus in carrying out the

proof of the f irst part of Theorem 1.1 in the case where G

is context-sensitive , A need never move off the non—#s.

Conversely , in the second part of the proof , note that

the rules of GA are all monotonic except for some rules in

(4-7) which erase #s; but these rules are not needed if A is

tape—bounded , since rules (2b ’) and (2c ’) are never used, so

that pairs with # second terms are never created . (Since

the string ends are marked “ and ‘ , tne simulation o± ~ need

not involve #s at all, even when A bounces off them.) Thus 
•

if A is tape-bounded , CA is monotonic.//

A grammar G is called context-free (or “type 2”) if

in all rules a-’-8 of G, a is a single nonterminal symbol and

8 is non-null. (Evidently context—free implies context-



sensitive.) G is called finite—state (or “type 3” ) if in

all rules a÷8 of G, a is a single nonterminal symbol and 8

either ends in a single nonterminal symbol , possibly preceded

by terminal symbols , or else 8 is a nonnull string of

terminal symbols.

Theorem 1.4. The languages generated by finite—state grammars

are the same as the languages accepted by finite—state accept-

ors.

Proof: If given G, we define an FSA,A , that operates on its

input string a as follows: A examines the right end of a

for matches to right-hand rules of G. If a = 0181, where

B1 ~ 
is a rule of G , A memorizes B1, moves to just past

the beginning of 8i (i.e., to the right end of 01), and looks

for matches of the right end of a1B1 to right-hand sides of

rules of G. If it finds such a match, say to B2 
-

~~

where a
~ 

= 0
282, this process is repeated, with a becoming

shorter at each repetition. If at some stage A finds that

all of a~ 8~ matches the right-hand side of a rule of G whose

left—hand side is S, then A accepts a. Evidently this can

happen if f. a can be derived in G, using the succession of

rules S~ 8~B~~1~ B 1~ 8n_lBn_2~ • •
~~~
‘ ~2~~ 2~1’ B1~ 81. Thus

A accepts a iff. a~L(G).

Conversely , suppose that L is accepted by a one-way

FSA, A. We can define a finite-state grammar C that generates

L as follows:

1) S + (q0, x) for all x
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2) (q,x) ÷ x(q ’ ,y) for all q ’~~6 (g, x) and all y ,  where 6

is A ’ s transition function , and q is a non-accept-

ing state of A.

~~~~ 
-‘ x for all accepting states of A.

Here the x ’s (the vocabulary of A) constitute the terminal

vocabulary of G. Thus C generates a string and simulates A’s

behavior on it; it generates an all-terminal string a if f. A

accepts 0.//

Theorems 1.1—4 tell us that the languages of (arbitrary ,

context—sensitive , finite—state) grammars are the same as

the languages of (Turing, tape-bounded , finite-state)

acceptors , respectively . [It can be shown (e.g., [1, pp. 74-

78]) that the languages of context-free grammars are the

same as the languages of one-way , nondeterministic pushdown

acceptors , but we will not prove this here.) Thus introduc-

ing these types of grammars has not expanded our language

• hierarchy .

—•- - - •
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1.3 Isometric grammars

In this section we consider grammars in which the

left and right hand sides of any rule a÷8 have the same

length -- i.e., l a l  = 81 . In such “isometric” grammars

(called “isotonic” in [2]), strings grow by rewriting #s,

and the initial string is #~S*~~. We shall show that such

grammars generate the same set of languages as do ordinary

grammars, and that by suitably restricting them, we obtain

the context-sensitive and finite—state languages. The re-

striction that, in any rule a-s-8, a and 8 must be of the same

size will prove to be important when we define array grammars

in Section 3.

Formally , an isometric grammar is a 5—tuple

G (V,VT, P,S,#), where V ,VTIP and S are defined just as in

Section 1.1, except that for all pairs (a ,8)~ P we require that

a) a l =  18 1 - 
-

b) a does not consist entirely of #s

c) Replacing a by 8 cannot disconnect or eliminate

the non_#s*.

• The symbol #
~
V
~
VT is called the blank symbol. Derivations

are defined exactly as in Section 1.1. The language of C is

the set of all (non-null) strings a onVT such that 
#a# can

be derived in G from tne initial infinite string * S* .

*Readjly , condition (c) is equivalent to the following: The
non-#s in 8 exist and are connected ; if a has a non—# at its
left (right) end , so does 8. 

-- — -- - -  ~~~- —---- •— - - - • -~~~ 

-
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Theorem 1.5. The languages generated by isometric grammars

are the same as those generated by ordinary grammars .

Proof: For any grammar G , we can define an isometric grammar

G’ that generates exactly L(G) as follows:

1) For every rule a÷8 of G such that Ja~ ~ 18 1 . G’
has the rule a ~~~H I 8 I  ÷ 8,where ~ is a special

nonterminal symbol.

2) For every rule ct÷8 of G such that la l ~ 1 8 1 . G’ has

the rule a÷8 ~I a I — I 8 l

3) In addition, G ’ has the rulesx# ÷ xt~ , xl~ ÷ t~x ,

and #~ x ÷ #*x, for all non—#x. These rules allow

#s to be changed into 1~s at the right end of the

string of non-#s; %~s to be shifted leftward ; and

s to be changed back to #s at the left end of the

string.

• It is easy to see that G’ can generate a terminal string a

(surrounded by #s) if f. just enough t~s are created , and they

are shif ted into just the right positions , to allow a de-

rivation of a in G to be simulated using rules in (1-2)

(The terminal vocabulary of G’ is the same as that of G.)

Thus L(G’) = L(G).

Conversely , given an isometric grammar G’ , we can de-

fine G such that , for every rule a-’-8 of G’, G has the rule

a’ -
~~ 8’ , where a’ and 8’ are the same as a and 8 but with #s ,

- - - - - ~~~~~~~~~~~~~~ ~~~~
--- -- -- --

~~----
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if any , omitted. It is not hard to see that G can generate a

terminal string a if f. G’ generates #‘~a#~~. (We recall that

under G’ the non—#s remain connected ; thus derivations in G

differ  from those in G ’ only in that, when G ’ destroys or

creates #s at its ends , G simply grows or shrinks.) !!

Theorem 1.6. The languages generated by isometric grammars

that never create #s (i.e., for all rules a-*~8, there can be

#s in 8 only in positions corresponding to #s in a) are the

same as those generated by monotonic grammars.

Proof: In the first part of the proof of Theorem 1.5, if G

is monotonic there are no rules of type (2); hence we can

omit the rules #5x -
~~ ##x and still guarantee that deriva-

tions in G can be simulated, by creating and shifting in

just enough 4s to allow the rules of type (1) to operate.

Thus if G is monotonic , we can define G’ so that it never

creates #s. In the second part of the proof , if G ’ never

creates #s, then for all rules a-’-8 of G’ we have

Ia ’ I ~ 1 8 ’ I , so that C is monotonic.//

Theorem 1.7. The languages generated by isometric grammars

whose rules are all of the form 8#m + 8, where 1 8 1 = m+l and

8 is a string of terminals ending in at most one (non—#) non—

terminal , are the same as the languages generated by finite-

state grammars.!!

- - • -  -~~~~ - - - •~~~~~~~~ •~~~---- --—- - 
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1.4 Parallel grammars

As defined in Sections 1.1-2, a grammar generates (or

F parses) a string by applying only one rule a÷8 at a time,

and replacing only one instance of a by 8 when this rule is

applied. In this section we briefly discuss several approaches

to defining “parallel grammars ”, in which rules are applied

in more than one place at a time.

We f irst consider an approach [2] in which we still

apply only a single rule a÷8 at a given time, but we apply

this rule by replacing every instance of a by B. One problem

with this approach is that instances of a can overlap. For

example, if we apply the rule AA BB to the string AAA , in

parallel, the result is (presumably) BBBB, since AAA contains

two instances of AA ; thus application of the isometric rule

AA ÷ BE changes the length of the string. (Indeed, if we

apply AAA BB to Am in parallel , we get B2(m 2), so that

applying a length-decreasing rule can increase the string

length.) In ordinary (“sequential ”) rule application , this

could not happen ; applying the rule AA ÷ BE to AAA yields

either BBA or ABB , to which the rule no longer applies.

Another prob lem with parallel rule application is that

parsing and generating are no longer inverses of one another.

For example , applying AA BB to AAA in parallel yields

BBBB , but applying BB + AA to BBBB in parallel yields AAAAAA ,

since BBBB contains three instances of BB. In fact (see [2]),

it is not hard to exhibit a grammar G such that the sets of
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strings generated and parsed by G “in parallel” are disjoint

from one another and from L(G).

The “parallel language” L~ (G) generated by a given

grammar G is not the same as G ’s “sequential language” L(G)

in general , but it is the same in certain important cases.

For example, consider the finite—state grammars ; it is evident

ttat these have the property that, at any stage of a derivation ,

at most one nonterminal symbol is present. (Grammars with

this property are called “linear ” .) Since the rules of a

finite-state grammar all • have left-hand sides consisting of

a single nonterminal symbol, it is clear that at any stage

of a derivation , a given rule can apply in at most one place;

thus it makes no difference whether a rule is applied

“sequentially” (i.e., in one place) or in parallel. In other

words, if G is a finite-state (or more generally , a linear)

grammar , we have L~~(G) = L(G). -

It can also be shown that the class of languages gen-

erated in parallel by grammars is the same as the class of

languages generated in the usual way ; and similarly for the

classes of languages generated sequentially ar~ in parallel

by monotonic grammars. To prove that any (sequential)

language is a parallel language, we show that for any

grammar G, there exists a grammar G* with L(G*) = L(G), such

that at any step of a derivation in G*, no rule applies at

more than one place. Specifically, for each rule

÷ B1...B~ of C, G* has the rule AtA2•••Am 
+

where the barred symbols are all nonterminals. We also give

I
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G* the rule S ÷ S~ and the set of rules

A*B ÷ AB* and AB* ÷ A*B

for all pairs of nonterminals one of which is starred and the

other is not. These rules initially create a * and allow it

to shift from symbol to symbol. Since the rules that corres-

pond to those of G all involve the ~~, it is clear that any

rule applies at only one place (evidently , more than one

* never exists). Finally , we give G* the rules

~~*~~~~ + ab~ ; ~
•
** ÷ a# - -

•

for all ~,E corresponding to terminal symbols a,b of G (or,

if we do not want to introduce the * symbol, we design G* so

that the rightmost symbol of any string derivable in it is

always uniquely marked). These last rules allow the * to

shift  rightward through symbols that correspond to terminals ,

turning them into terminals as it goes, until it reaches the

right end of the string and vanishes. It is evident that

this process can result in a terminal string if f. G* gen-

erated a string of symbols corresponding to terminals, by

imitating a derivation in C which leads to a string of ter— -
•

minals; thus the resulting terminal string must be in L(G). - :
(If the last rules are used too soon, or are not started

with the * at the left end of the string, a string consisting

entirely of terminals will not be created.) Since in G~ , no

rule can apply in more than one place , we have L~~(G*) L(G*); —

thus L(G) = L(G*) = L~ (G*), which proves that any language 

- --a------• -—--,~~~~ - •
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is a parallel language. Note also that if G is monotonic , so

is G*.

Conversely, we can show that for any grammar G there

exists a grammar G’ that , in effect , applies the rules of G

in parallel; thus L~~(G) = L(G’), so that any parallel

language is a sequential language. Basically , we define G’

to simulate an automaton A’ (compare the proof of Theorem

1.1). Suppose that, at a given stage in the operation of

A’ , we are ready to apply a rule of G in parallel to the

current string a (initially,  this string is S). A’ picks a

rule a-’-B, scans a , and marks every position in a at which a

match to a begins. It then scans a again and replaces each

instance of a by 8. (If ir.stances overlap, the part of a

from the start of one instance of a to the start of the next

is replaced by B.) When this process is complete , we are

ready to apply another rule of G. Readily , -if G is mono-

tonic, so is G’. (A detailed description of G’ can be found
• in [2].)

The remarks in the preceding three paragraphs show

• that any (arbitrary , context-sensitive , finite-state) language

is an (arbitrary , context-sensitive , finite-state) parallel

language , and conversely, The analogous result about

context—free languages is false. For example , consider the

context—free grammar whose rules are

S SS; S ÷ a

The parallel language of this grammar is readily the set of

• 
----- - -~~-- -~~ - - -- - - - •
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strings {a l n=0,l,2,.. . } ;  but it is well-known that this is

- not a context-free language in the ordinary sense (see,

e.g., [1, p. 57, Theorem 4.7]). Conversely, it can be shown

that the parenthesis-string language , which is context-free

[1, p. 67], is not parallel context-free . On the relation-

ship between context—free and parallel context—free languages

see [3, 4].

Parallel rule application has a particularly convenient

interpretation for rules that are in the context-sensitive

form ~Ar~ ÷ ~Tr~: For each instance of ~An in the given string

a, we replace the A by a r~~. In this case, some of the prob-

• lems mentioned at the beginning of this section do not arise,

since the substrings being replaced (i.e., the A’ s) cannot

overlap , even if the CAn ’s do overlap. Parsing and gener-

ation are still not always inverses of one anohter ; e.g., if

we apply AA ÷ AB to AAA we obtain ABB, whereas if we apply
• AB ÷ AA to ABB we obtain AAB. On the other hand , string

• length can never decrease, since A’ s are being replaced by

nonnull strings (i’s). The results in the preceding para-

graphs all continue to held for this modified concept of

parallel rule application.

*Note that this is not the same as replacing each instance of
~Ai by Eta ; for the rule AA + AB , applied to the string AAA ,

• replacing AA ’s by AB’s gives ABAB, whereas replacing A ’ s by
B ’ s when they have A’s on their left gives ABE.

-~~~~~~~~~-~~~~~~~ ---—~~ ~~~~~~~~~~~ •~~~~~~~~ • , -  ~~~~~~~~~~~~
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Another approach to defining parallelism for context-

sensitive grammars is to apply ru les in all possible positions

at the same time . In other words, given a string a =

for each A1 we choose a rule 
~~
Ajfl

~ 
+ of G that applies

to A1 in a (i.e., such that ~~ 
precedes A1 in a , and flj

• follows it), and replace A~ by r
~~
. (If no such rule exists ,

we leave A~ unchanged.) This is done in parallel for every

symbol in a ; the rule used is chosen independently for each

A1. Parallel rule-application systems of this kind are

called L-systems [5-7]; if the rules are all context—free ,

they are called OL-systems. L-systems have been extensively

studied as models of biological growth ; they will not be

discussed here in detail.

In defining L-systems, it is customary to make no dis-

tinction between terminal and nonterminal vocabularies; the

• language is the set of all strings that can be derived from

• the initial string. Another possibility is to define the

language as the set of all such strings that are stable under

application of the rules; such strings correspond , from the

biological growth standpoint, to “adult” organisms. It is

not hard to show [8] that the “adult languages ” of L-systems

are just the context-sensitive languages. In fact, given an

L-system H and a string a, we can easily define a tape-

bounded acceptor A that accepts if f. it belongs to the adult

language of H. [A first checks that a is stable under H.

It then nondeterministically generates a sequence of strings

01~
02~ ••• by applying the rules of H to the initial string a

~~
,

4
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and checks at each step whether a~ matches 0 . Since we have

assumed that the rules of H are context-sensitive (i.e., the

T 1’ s are n o n — n u l l ) ,  we know that la~ I ~ l~~l ~ 10 2 1 ~
thus if a is derivable from 00 in H , no can be longer than

a , so A has room to store it, as in the proof of Theorem 1.3.

Thus if a is derivable in H, A can discover this fact and

accept a.] Conversely , given a context-sensitive grammar G,

we can define a modified G* such that at any stage of a de-

rivation in G* there is only one place where any rule applies,

as shown earlier in this section. We can thus define an L-

system H* that simulates G*. Note that in the definition of

G*, as long as the * remains , there is always some rule that

applies; but the * disappears only when all the symbols have

been turned into terminals*. Thus the only strings that are

stable under the rules of H* are the t.~rrnina1 strings of G* ,

which are the same as the terminal strings of G; hence the

adult language of H* is just L(G). If we modify the defini-

tion of an L-system to allow erasing rules (i.e., ~~~ ÷

it can be shown that the adult languages are just the arbitrary

(Turing—machine) languages (but allowing the null string to

be in a language); the proof is analogous. [L-systems that

do not allow erasing rules are called “propagating ” .]

*This requires a slight modification of the definition of G*
so that the * can only begin creating terminals when it is
at the lef t end of a string ; the details are straightfor-
ward.
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Similarly, it can be shown that the adult languages of OL-

• systems are just the context-free languages. For the details

of these proofs , see [8].

In analogy with Section 1.3, one can consider “isometric”

-

- 

parallel grammars (or L-systems) in which the rules are all

of the form ~Ari + ~~~~ so that strings can grow only by re-

writing #s at their ends. L-systems of this special type

are essentially nondeterministic cellular automata, in which

- 
the transition function is defined by the rewriting rules:

state A, in the context of states ~ on the left and n on the
- right, can change into state B. If #s are never rewritten,

they become bounded cellular automata.

_ _ _  j
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2. Matrix grammars

In this section we discuss grammars that generate or

parse sets of rectangular arrays. Grammars whose languages

are sets of connected (not necessarily rectangular) arrays

will be considered in Section 3.

A class of “matrix grammars” [9-11] that generate

rectangular arrays can be informally defined as follows:

a) A string grammar C generates a string a which will

become the top row of the array.

b) The symbols in a are initial symbols of a set of

finite—state string grammars G11. ~~~~~ These

grammars operate in parallel (compare Section 1.4)

to generate the columns of the array . Their oper-

ation must be coordinated so that in every column ,

at any given time , a rule of the same length if

applied , and that the terminating rules are all

applied at the same time.*
F

Formally , a matrix grammar M is a pair (G,G), where G is a

grammar and G = ~G1I . .. S G~~} is a set of finite-state grammars ,

such that the terminal vocabulary of G is the set

*We can assume without loss of generality that the rules of

• each G• are all of the forms A+aB and A+a, where A ,B are1
nonterminals and a is a terminal. Under this assumption ,

it suffices to require that the terminating rules are applied

in every column at the same time.

_ _ _ _ _ _ _



of initial symbols of the G1’s. (We assume that the non-

• terminal vocabularies of the G1
s are disjoint.) M operates

• by generating a (horizontal) string a of S1’s using the

rules of C, and then generating a rectangular array from the

top row a by applying rules of the G
~
’s in parallel , and

finally terminating simultaneously .

Matrix grammars are of interest because they generate

(or parse) rectangular arrays, but unfortunately the classes —

of array languages that they generate are not the same as the

classes accepted by the various types of array acceptors.

Specifically, we give the following examples:

a) If G is finite-state, the language L of M is a

finite—state array language . [Indeed, we can define

a finite-state array acceptor A that accepts L as

follows: Given a rectangular array R, A scans the

• last column C of R , simulates acceptors for the

finite-state column languages , and thus determines

to which of those languages, if any , Cm belongs.

A can thus verify whether a~terminating rule of —

G could have produced any of the initial symbols 5m

that began the generation of Cm~ 
A then scans the

next-to-last column Cm_li determines which symbols

Sm .l  could have begun its generation , and verifies

whether a rule of C could have produced any of

these symbols together with a nonterminal that

then resulted in This process is repeated

_ _ _ _ _ _ _ _ _ _ _ _ _  •
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• until all of R has been accounted for.] -Conversely ,

however , there are (deterministic , tape-bounded)

finite—state rectangular array languages that

cannot be generated by any such M. Foi example,

consider the set L of square arrays of even side

length whose rows are all of the form ambm. No

such M can generate L, since the string language

{aI%m lm= l,2,...} is not finite—state (see Section

3.2 of Chapter 3). On the other hand , a finite-state

array acceptor can verify that its input array R

• is in L as follows: Verify- squareness (and even

side length) by moving “diagonally ” ; then -move at

“64°” (alternately two steps upward and one left-

ward , starting at the lower right corner) to find

a middle column ; f inal ly ,  move down that column

and verify that, in each row , there are a’s on its

lef t and b ’s on its- right. Thus the class of matrix

languages for which G is finite-state is a proper

subset of the class of finite—state array languages.

[Readi ly,  we can require A in the f irst part of the

proof to be deterministic and tape-bounded; thus

these matrix languages are a proper subset of the

determini stic , tape-bounded finite-state array

languages.]

b) If G is context—free , the language of M is not

finite-state. For example , the set L of rectangular

--- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

•~~~~ - --•~~
_--——~~~~~ ~~~ —-~~~
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arrays of even width whose rows are all of the

form a%m can be generated by such an M (G gener-

ates S~~S~~; the rules of G1 and G2 are S1+aS1,S1+a,

and those of G2 and S2÷bS2, S2~b), but L cannot be

accepted by a finite-state array acceptor , since

{a%m l i=l ,2 , . . .}  is not a f ini te—state string

language (consider the arrays of height 1!). Thus

the matrix languages in general (even for context-

free G’ s) are not a subset of the finite-state

array languages. Conversely , there are (deterministic,

tape-bounded) finite-state array languages that are

not matrix languages , for any choice of G. For

example , the set L consisting of all square arrays

is not a matrix language, since the termination

decision in generating the columns does not depend

on the array width. [The step numbers at which

column termination can occur depend on the set of

Si’s that initiated the columns ; there are only

finitely many such sets, and they cannot carry enough

information to provide for a different termination

step for every top row width.] Thus the matrix

languages and the finite-state array languages

are incomparable .

C) The matrix languages for which C is context-sensitive

are a proper subset of the tape-bounded array

languages. For example , the arrays whose columns
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are al l of the form ambm are a tape-bounded array

• language , but are not a matrix language (since

(ambm lm= 1,2,. ..} is not a finite—state string

language). Conversely , a tape—bounded acceptor

can scan the columns of a rectangular array,  deter-

mine which S ’s could have initiated their generation ,

record these (sets of) S1
1 s in the top row , and then

simulate a one—dimensional tape—bounded acceptor to

verify whether some such set of S1’s could have

been generated by C; thus any such matrix language

is a tape-bounded array language. On the other hand ,

there are matrix languages (having non-context-

sensitive top rows, and height 1) which are not

tape-bounded array languages; thus the tape-bounded

array languages and the matrix languages are in-

comparable. Finally, the matrix languages are a

proper subset of the Turing rectangular array

languages , by arguments similar to those already

given.

It can be shown [9,12] that the languages of matrix grammars

for which C is context-sensitive are the same as the languages

of a special class of parallel-sequential array acceptors

(Section of Chapter 7) —— namely , the class in which the

cells (of the one-dimensional cellular acceptor) do not 
•

communicate with their neighbors until the acceptor has

reached the last row of its input array.



A number of other grammar-like mechanisms can be used

to generate rectangular array languages. In [10—11], for

example , a grammar generates a string which specifies a

sequence of horizontal and vertical concatenations to be

performed on rectangular arrays. It is understood that when

two arrays are horizontally (vertically) concatenated, they

must have the same numbers of rows (columns); hence any such

sequence of concatenation operations generates a rectangular

array. Another way to insure rectangularity is to require

that all border symbols of a given type (north, south, east,

or west) be rewritten simultaneously; note that the column

generation process in a matrix grammar is a special case of

this (rewriting all south border symbols at the same time).

Such models have been studied in (13]. We will not consider

these approaches further here.
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3. Array grammars

This section introduces grammars that generate or parse

sets of connected arrays, and investigates their relationship

to array acceptors. As w’~ shall see, several problems arise

with array grammars that did not arise for string grammars.

An array grammar must operate by replacing subarrays by

subarrays , just as a string grammar replaced substrings by

substrings. However , if the two subarrays (a and 8, say)

are not identical in size and shape, it is not clear how to

replace a by 8. One can presumably shift the rows or columns

of the host array relative to one another so as to make room

for 8; but this may cause changes in symbol adjacencies

arbitarily far away from 8, since adjacent rows or columns

may shif t  by di f ferent amounts. Thus apply ing a local re-

writing rule a÷8 may cause nonlocal changes in the host array ,

which seems undesirable . To avoid this problem , we shall

require array grammars to be isometric (see Section 1.3);

this means that for any rule a÷8, a and 8 are geometrically

identical, and the array grows (or shrinks) by rewriting

(or creating) #s. For a treatment of non-isometric array

grammars, see [14].

A second problem with array grammars is how to insure

that they preserve connectedness (and nonemptiness) of the

set of non-#s. Before formulating conditions for this , we

first observe that in any rule a÷8, a must contain non-#s ,

but they need not be connected. [In one dimension , as long

. -- - --•-
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as the non—#s remain connected , a rule in which a has non-

connected non-Is could never apply; but in two dimensions,

a globally connected array can contain locally non-connected

parts.] On the other hand, if a has more than one connected

component of non—Is, every such component must touch the

border of a. Our conditions on 8 are then as follows:

1) If the non-Is of a do not touch the border of a,

then the non-Is of B must be connected (and non-

empty). 
-

2) Otherwise,

a) Every connected component of non-Is in 8 must

contain the border of some component of non-

Is in a, and

b) The border of every component of non-Is in a

must be contained in some component of non-

#s in 8.

Proposition 3.1. If conditions (1-2) hold, applying the

rule a+B does not disconnect or eliminate the non—Is.

Proof: We assume that non—Is existed and were connected

before a÷8 was applied. In case (1), the non-Is of a must be

the only non-Is that exist (there cannot be any outside a,

since they would have to be connected to those in a, which

would require that non-Is exist on the border of a); hence

when we replace a by 8, the non-Is of 8 are the only ones

that exist, and they are connected by (1). 

~-
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In case (2), we first show that any two non-Is p,q not

in a remain connected when a is replaced by 8. If there is

a path of non-Is from p to q that does not meet a, this is

clear. Otherwise , note that each time the path enters and

leaves a, it meets only one component of non-Is in a, and by

(2b) the border of this component is contained in a component

of non-Is in B; hence each such segment of the path can be

replaced by a segment in B.

Similarly , if p is not in a and g is in 8, then by (2a)

the component of non-Is in B that contains q also contains

the border of some component of non—Is in a. Now p was

connected (outside a) to this component, hence to its border;

thus p is connected to q.

Finally , if p and q are both in B, and are not connected ,

they are both in components of non-Is that (by (2a)) contain

borders of components of non—Is in a. But these components

were connected outside a , hence so were their borders.!!

It is clear that if (1) did not hold , applying a÷B would

disconnect (or annihilate) the non-#s. If (2a) did not hold,

a component of non-Is in 8 might be created that failed to

be connected to the other non-Is; while if (2b) did not hold , •

some non-Is outside 8 might be disconnected from the other

non—Is.
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3.1. Array grammars and languages

Formally, an (isometric) array grammar is a 5-tuple

C = (V,VT,P,S,#), where all of these are def ined just as in

Section 1.2, except that P is a set of pairs of connected

arrays (a,B ), for all of which

a) a and B are geometrically identical

b) a does not consist entirely of Is

c) B satisfies conditions (1—2) of Proposition 3.1.

The language of C, L(G), is the set of all (non-null) connected

arrays E on VT such that E (embedded in an infinite array of

Is) can be derived in G from the initial array , which consists

of a single S (embedded in an infinite array of Is). [De-

rivations are defined exactly as in Section 1, except that

they involve replacement of one subarray by another , rather

than of one substring by another. Parsing is also defined

just as in Section 1.] Note that by Proposition 3.1 and

induction , the array resulting from any derivation always

has its non—Is connected.

As in Section 1.1, we can (and shall from now on)

• assume that terminal symbols are never rewritten by any

rule of G.

An array grammar is called monotonic if Is are never

created by any rule -- in other words , for all rules a÷B of G,

there are Is in B only in positions corresponding to Is in a.

[We can also define an array grammar G to be “context-free”

if , for all rules a÷B of G, a consists of a single nonterminal

---—- --
~~~~~
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symbol and (possibly) of #s; note that such rules do use

Is as “context.” Similarly , we can call G linear if G is

“context—free” and, in addition, any B contains at most one

nonterminal symbol; note that at any stage (except the last)

of a derivation in such a G, exactly one nonterminal exists.

As we shall see later, there does not seem to be a good

analog of “finite—state ” for array grammars.]

In some of the examples to be given later, it will

be convenient to introduce some notation that allows us to

compactly describe sets of array rewriting rules that differ

by 90° rotations. We shall denote by ct~ B (ROT) the set of

four rules in which a and B are both rotated by 0°, 90°,

180°, and 270°. For example ,

AB ÷ UV (ROT)

denotes the four rules -

-
• AB ÷ UV A U

BA ÷ VU A ÷ U
B V

Alternatively, we may denote by A(d)B the pair of adjacent

symbols such that B is in direction d (=U,D,L, or R) from A;

thus A(R)B AB, A(L)B BA, A(U)B ~~~, and A(D)B E ~~~.

In this notation , we may write

A(d)B + U(d)V for all d E~ E {U ,D ,L ,R}

instead of AB + UV (ROT) .
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3 2 .  EQuivalence to array acceptors -

Our goal in this section is to prove that (arbitrary ,

monotonic) array grammars generate the same classes of

languares as (Turing , tape—bounded) array acceptors. The

proofs are based on [15]; see also [16], which proves an

analog of Theorem 3.3 using a somewhat different definition

of an array graxnmer. We also discuss the relationship be-

tween finite-state array grammars and array acceptors; this

discussion is based on (17].

Theorem 3.2. The languages generated by array grammars are

the same as the languages accepted by Turing array acceptors.

Proof: Given an array grammar C, we define a TAA , A , that

accepts exactly L(G) as fol].ows: Given an array E of non-Is

in the terminal vocabulary VT of G, embedded in an infinite

array of Is, A moves around nondeterministically , starting

- at some point of E , and rewrites each symbol x (possibly I)

that it comes to as (x,%).* Finally , at some step, A rewrites

some x as (x,S); this can only happen once. After it happens ,

• A begins to simulate rules of G on the second terms of pairs;

pairs with no second term are regarded as having second term I.

*This is done in order to insure that A is always on a con—

nected set of non-Is; if A moved onto the Is without rewriting

them as pairs , it might be unable to find E again.

-~ —--- ~~— - — --~~ —~~~_-a
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Suppose that at some step A decides to apply the rule a÷8

of G. It then searches (nondeterministically) for one of the

• non— I symbols in a (as a second term), marks it, checks

• (deterministically) for the other symbols as second terms

(these are in known positions relative to the given symbol),

marks them, and when they have all been found , rewrites

these second terms as the corresponding symbols in B; after

this is done, A is ready to simulate another rule. (While

• searching, A continues to rewrite x’s as (x ,#)’s.) At any

-
• stage af ter applying a rule of G, A can systematically scan

the array of non—Is (Proposition 4.1 of Chapter 4) and check

whether (a) every non-I is a pair; (b) the second term of

every pair is the same as its first term. [A can also check ,

during some such scan , that the non-I first terms are in fact

all in VT.] If this is found to be true, A accepts ~ ; other-
• wise, A can resume the simulation of C. Evidently -A accepts

E if f. a derivation in C exists that generates a copy of I;

thus A accepts exactly L(C) (from some starting point).

Conversely, given A , we define a grammar G that

generates exactly L (A) as fol lows: Starting with an S on

a background of Is, C begins by generating an arbitrary

array ~ of triples of the form (x,x,0) or (x,x,l), where

x is any non-I symbol in the vocabulary V of A , and where

there is always exactly one 1. This can be done using

the rules

__ _
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la) S + (x,x,l)

lb) (x,x,l)# ÷ (x,x,0)(y,y,l) (ROT)

lc) (x ,x,1) (y,y,0) ÷ (x,x,0) (y,y,l) (ROT)

ld) (x ,x,l) ÷ (x,x,(q0,N))

for all x , y # # in V.

When (ld) is used , the 1 turns into a pair (q0,N) repre-

senting the initial state and (fictitious) “previous move

direction” of A.

Next, G simulates the operation of A on the array of

second terms of the triples; the first terms remain un-

affected. This is done using the rules (for all x,u-,v in V).

2a) (x,y,(q,d)) + (x ,z,(q’,N)) for all (q’,z,N)E~S(q,y,d)

2b) (x,y,(q,d))(d’)(u,v,O) + (x ,z,0)(d’)(u,v,(q’ ,d’))

for all (q ’,z,d’)Eô(q,y,d)

2c) (x,y,(q,d))(d’)# + (x ,z,0)(d’)(#,#,(q ’,d’))(similarly)

where 6 is the transition function of A, and provided that q

is not an accepting state of A.

Finally , if the simulation of A enters an accepting

state, the triples are turned into their first terms using

the rules

3a) (x,y,(q,d)) ÷ x for all x ,y, €V and all q~QA

3b) (u,v,0)x + ux(ROT) for all u,v,xEV.

Since v— {# } is the terminal vocabulary of C, this means

that G generates a terminal array of non-Is (the first terms

of E) if f. A accepts this array (from some starting point) .1/

L~~~~~~~~ . _ _ _•
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Theorem 3.3. The languages generated by monotonic array

grammars are the same as the languages accepted by tape—

bounded array acceptors.

Proof: In the first part of the proof of Theorem 3.2, note

that at any step of a derivation of E in the monotonic array

grammar G,• the non-#s are always a subset of I, since Is

can never be created by G. Thus, we can simulate G using

a tape-bounded A that always remains on E. (A problem

arises with this simulation if a rule cz+B of G uses Is as

context (i.e., there are #s in a which are also in the

corresponding positions in B); these Is may be outside E ,

but A must verify their presence in order to apply the rule.

This can be done using the array scanning process described

just prior to Proposition 4.6 of Chapter 4. Suppose that

A is located at position (i,j) and wants to verify that there

is a I in position (i’,j’), where the differences i-i’ and

j-j’ are known to A. To do this, A marks (i j), finds the

outer border of E , and scans E row by row. When A reaches

the row with the marked point, it returns to the outer border

and follows it , using the positions of markers to keep track

of its net up and down moves. If the outer border never

reaches row i’ , E cannot intersect that row, so that posi-

tion (i’ j’) is certainly I. Otherwise, A marks the points

of the outer border that are on row i’, and scans these rows

of E , marking their points. Analogously , using a column by 

~~~~~~~- - -  --
~~~~~~~~~~~~~ -— --- ~~
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column scan, A finds the marked point and checks whether

the outer border reaches column j’. If not, (i’ ,j ’ )  iS #

if so, A marks the points of Z that are on column j’. If

these marks ever encounter the marks on row i’, (i’,j’) is

not I; otherwise, it is *, and A can rescan E, erase the

marks on row i’ and column j’, rescan E and return to the

marked point (i,j). In this way, A can verify that Is

-~ exist in given positions relative to some non-I point of a ,

and thus check that all of a is present, without having to

leave E. Note that a similar process may be necessary for

the rewriting of a, since the non—Is of a may be separated

by Is, and A may have to compute the positions of these

non—Is in order to locate them and rewrite them.] After

any step of the simulation, A can scan I and check that the

first and second terms are all the same (and all in VT).

If so, A accepts; otherwise, it continues the simulation.

Thus A accepts exactly L (C), as in the proof of Theorem 3.2.

In the second part of the proof , note that the only

rules of C that can create Is are the terminating rules

3(a—b); and these create Is only if triples with I first

L 
. 

terms were created by the simulation rule (2c). But if A

is tape-bounded, we can modify (2c) to have the form

(x,y,(q,d))(d’)# + (x ,z,(q”,d’~~ ))(d’)#

where q” is a possible state of A after it has bounced back

off the I. Thus when A is tape-bounded , G need never create

Is, so that C can be monotonic.// -
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It does not seem to be easy to define a class of

array grammars whose languages are the same as those of the

finite-state array acceptors. (A generator model that

generates exactly the FSA languages is described in [18].

However, in this model, every time a given symbol is re-

written , it must be rewritten in the same way , even though

the generation process cannot tell whether or not this is

happening ; thus this model requires some means, outside the

generator itself, to reject arrays in which a rewriting

inconsistency occurs.) Of course, one can always define a

class of array grammars that are capable only of simulating

FSA’s [19]; but this is artificial.

In one dimension , the linear grammars (in which , at

any step of a derivation except the last step , exactly one

nonterminal symbol exists) generate more than the finite-

state languages (e.g., {a%m l m=l,2,...} is a linear string

language, having the grammar whose rules are S~~aSb,S÷ab) ;

whereas the “right linear” grammars, in which (until the last

step) the sole nonterminal symbol is always at the right end

of the string, generate exactly the finite-state languages

(Theorem 1.4). In two dimensions, there is no natural analog

• of “right linear.” Moreover, we shall now show that the

languages of linear array grammars are incomparable with the

FSA languages.

We first exhibit an FSA language that cannot be gen-

erated by a linear array grammar. Consider the set of thin,

_  _ _  ~~~~~~~~~~~~~~~~ • -  _ _ _  _
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upright T-shaped arrays of x’s on a background of Is. This -

set is accepted by a deterministic, tape-bounded PSA which

operates as follows: It moves up until it hits a I, then

moves left until it hits a * again. It then verifies that

it is on a row of x’s that have l’s above and below them,

with exactly one exception that has an x below it and that

is not at either end of the row. Finally, it moves back to

the exceptional x and moves downward, verifying that it is
on a column of x’s that have Is on their left and right.

When it reaches the bottom of this column, if all these

verifications have been carried out successfully, it accepts.

We now show that the set of T’s cannot be generated

• by a linear array grammar. Suppose C were such a grammar ;

let the greatest diameter of any right hand side of a rule

of G be k. Since the T’s can be arbitrarily large, it is

clear that C must generate the ends of the arms of a large

T at different steps in the derivation of that T. Let these

arm ends be a, b, and c. One of them, say a, can be generated

before the point P at the T-junction is generated , but b

and c must be generated afterwards. After P is generated,

if the nonterminal moves sufficiently far (>k) down the b

arm, it can never generate the c arm, since it cannot return

down the b arm (which now consists of terminals) or cross

the Is (which, once rewritten , would destroy the shape of

the desired thin T).

--- — --- - - • -- — ---~~~~~~~ - • ~~~~- --- ---- •-------



Conversely , we can exhibit a language that is generated

by a linear array grammar but is not accepted by a tape-

bounded FSA. Let G be the array grammar whose rules are

SI÷xS ; SI~~~ xT

T x T ÷ x
I~~~~~~~T I U

#U ÷ Ux ; #U÷Vx

V~~~x

Informally , the S moves to the right, leaving a trail of x’s,

until it changes to a T; the T moves down, trailing x ’s,

until it changes to a U; the U moves left, leaving x’s behind

it, until it changes to a V; and the V moves up, trailing

x’s, until it changes to an x. Thus the language of this

grammar consists of four-sided upright rectangular arcs,

-
• 

composed of x ’s, which may touch themselve s ,but cannot cross

themselves. In particular, all the hollow, thin upright

rectangles of x’s are in this language. But as we have

seen (in the proof of Theorem 4.3 of Chapter 4), any tape-

bounded PSA that accepts all such rectangles must also accept

various sufficiently large rectangular spirals (having many

more than four sides). Hence the language of C is not a

tape bounded FSA language.

Another possibility , discussed in [17 ,19], is to

allow a linear grammar to rewrite terminal symbols, but not

to sense what symbols are present; for example, in a rule

_ _ _ _ _ _  j
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a ÷ 8, a would consist of a single nonterminal A together

with a set of “don ’t-care” symbols, and in applying the rule

we would rewrite whatever symbols lie in those positions

relative to A. [If we do allow the grammar to sense what

symbols are present, it is at least as strong as an ordinary

linear array grammar, hence can generate a class of patterns

that is not an FSA language, as in the preceding paragraph.]

If we do this , it becomes possible to generate thin T-shaped

patterns (possibly including degenerate T’s with arms missing);

we omit the details here. On the other hand , such a “blind”

grammar could not generate the set of arcs (composed of x ’s)

that do not cross or touch themselves, since the nonterminal

leaving the trail of x ’s could not know when it was about to

cross its own path; but this set is evidently an FSA language

(the FSA verifies that all but two of the non-Is have exactly

two non-I neighbors). Conversely , a “blind 1’ grammar can

generate the set of all connected arrays of x ’s; but this

is not an FSA language. [Proof: It contains the set of all

thin, hollow rectangles of x ’s; but if A accepts such a

rectangle , it also accepts a sufficiently large rectangular

spiral without visiting its ends, so that it cannot tell

whether or not there are symbols other than x at the ends.]

- - - • -  
-
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3.3 Parallel array grammars

In Section 1.4, we introduced the idea of parallel

rule application (rewrite all instances of a as B’s, rather

than just a single instance), and showed that the classes of

languages generated in parallel by (arbitrary, context-

sensitive) grammars are the same as the classes of languages

generated by those types of grammars in the ordinary way .

The proofs apply also to isometric grammars; in fact, in

the proof that any sequential language is a parallel language,

if ~ is isometric, so is G*, while in the proof that- any

parallel language is a sequential language, we know that an

isometric C’ can simulate an automaton of the desired type

that applies the rules of C.

Analogous results can be established for (isometric)

array grammars; the details are straightforward [20]. One

can also define (isometric) array L-systems (the details

will be omitted here); as pointed out in Section 1.4, they

are essentially nondeterministic cellular automata.
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